Merge branch 'pm-cpufreq'
[deliverable/linux.git] / kernel / workqueue.c
1 /*
2 * kernel/workqueue.c - generic async execution with shared worker pool
3 *
4 * Copyright (C) 2002 Ingo Molnar
5 *
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
11 *
12 * Made to use alloc_percpu by Christoph Lameter.
13 *
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
16 *
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
19 * automatically managed. There is one worker pool for each CPU and
20 * one extra for works which are better served by workers which are
21 * not bound to any specific CPU.
22 *
23 * Please read Documentation/workqueue.txt for details.
24 */
25
26 #include <linux/export.h>
27 #include <linux/kernel.h>
28 #include <linux/sched.h>
29 #include <linux/init.h>
30 #include <linux/signal.h>
31 #include <linux/completion.h>
32 #include <linux/workqueue.h>
33 #include <linux/slab.h>
34 #include <linux/cpu.h>
35 #include <linux/notifier.h>
36 #include <linux/kthread.h>
37 #include <linux/hardirq.h>
38 #include <linux/mempolicy.h>
39 #include <linux/freezer.h>
40 #include <linux/kallsyms.h>
41 #include <linux/debug_locks.h>
42 #include <linux/lockdep.h>
43 #include <linux/idr.h>
44 #include <linux/jhash.h>
45 #include <linux/hashtable.h>
46 #include <linux/rculist.h>
47 #include <linux/nodemask.h>
48 #include <linux/moduleparam.h>
49 #include <linux/uaccess.h>
50
51 #include "workqueue_internal.h"
52
53 enum {
54 /*
55 * worker_pool flags
56 *
57 * A bound pool is either associated or disassociated with its CPU.
58 * While associated (!DISASSOCIATED), all workers are bound to the
59 * CPU and none has %WORKER_UNBOUND set and concurrency management
60 * is in effect.
61 *
62 * While DISASSOCIATED, the cpu may be offline and all workers have
63 * %WORKER_UNBOUND set and concurrency management disabled, and may
64 * be executing on any CPU. The pool behaves as an unbound one.
65 *
66 * Note that DISASSOCIATED should be flipped only while holding
67 * manager_mutex to avoid changing binding state while
68 * create_worker() is in progress.
69 */
70 POOL_MANAGE_WORKERS = 1 << 0, /* need to manage workers */
71 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
72 POOL_FREEZING = 1 << 3, /* freeze in progress */
73
74 /* worker flags */
75 WORKER_STARTED = 1 << 0, /* started */
76 WORKER_DIE = 1 << 1, /* die die die */
77 WORKER_IDLE = 1 << 2, /* is idle */
78 WORKER_PREP = 1 << 3, /* preparing to run works */
79 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
80 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
81 WORKER_REBOUND = 1 << 8, /* worker was rebound */
82
83 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE |
84 WORKER_UNBOUND | WORKER_REBOUND,
85
86 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
87
88 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
89 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
90
91 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
92 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
93
94 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
95 /* call for help after 10ms
96 (min two ticks) */
97 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
98 CREATE_COOLDOWN = HZ, /* time to breath after fail */
99
100 /*
101 * Rescue workers are used only on emergencies and shared by
102 * all cpus. Give -20.
103 */
104 RESCUER_NICE_LEVEL = -20,
105 HIGHPRI_NICE_LEVEL = -20,
106
107 WQ_NAME_LEN = 24,
108 };
109
110 /*
111 * Structure fields follow one of the following exclusion rules.
112 *
113 * I: Modifiable by initialization/destruction paths and read-only for
114 * everyone else.
115 *
116 * P: Preemption protected. Disabling preemption is enough and should
117 * only be modified and accessed from the local cpu.
118 *
119 * L: pool->lock protected. Access with pool->lock held.
120 *
121 * X: During normal operation, modification requires pool->lock and should
122 * be done only from local cpu. Either disabling preemption on local
123 * cpu or grabbing pool->lock is enough for read access. If
124 * POOL_DISASSOCIATED is set, it's identical to L.
125 *
126 * MG: pool->manager_mutex and pool->lock protected. Writes require both
127 * locks. Reads can happen under either lock.
128 *
129 * PL: wq_pool_mutex protected.
130 *
131 * PR: wq_pool_mutex protected for writes. Sched-RCU protected for reads.
132 *
133 * WQ: wq->mutex protected.
134 *
135 * WR: wq->mutex protected for writes. Sched-RCU protected for reads.
136 *
137 * MD: wq_mayday_lock protected.
138 */
139
140 /* struct worker is defined in workqueue_internal.h */
141
142 struct worker_pool {
143 spinlock_t lock; /* the pool lock */
144 int cpu; /* I: the associated cpu */
145 int node; /* I: the associated node ID */
146 int id; /* I: pool ID */
147 unsigned int flags; /* X: flags */
148
149 struct list_head worklist; /* L: list of pending works */
150 int nr_workers; /* L: total number of workers */
151
152 /* nr_idle includes the ones off idle_list for rebinding */
153 int nr_idle; /* L: currently idle ones */
154
155 struct list_head idle_list; /* X: list of idle workers */
156 struct timer_list idle_timer; /* L: worker idle timeout */
157 struct timer_list mayday_timer; /* L: SOS timer for workers */
158
159 /* a workers is either on busy_hash or idle_list, or the manager */
160 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
161 /* L: hash of busy workers */
162
163 /* see manage_workers() for details on the two manager mutexes */
164 struct mutex manager_arb; /* manager arbitration */
165 struct mutex manager_mutex; /* manager exclusion */
166 struct idr worker_idr; /* MG: worker IDs and iteration */
167
168 struct workqueue_attrs *attrs; /* I: worker attributes */
169 struct hlist_node hash_node; /* PL: unbound_pool_hash node */
170 int refcnt; /* PL: refcnt for unbound pools */
171
172 /*
173 * The current concurrency level. As it's likely to be accessed
174 * from other CPUs during try_to_wake_up(), put it in a separate
175 * cacheline.
176 */
177 atomic_t nr_running ____cacheline_aligned_in_smp;
178
179 /*
180 * Destruction of pool is sched-RCU protected to allow dereferences
181 * from get_work_pool().
182 */
183 struct rcu_head rcu;
184 } ____cacheline_aligned_in_smp;
185
186 /*
187 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
188 * of work_struct->data are used for flags and the remaining high bits
189 * point to the pwq; thus, pwqs need to be aligned at two's power of the
190 * number of flag bits.
191 */
192 struct pool_workqueue {
193 struct worker_pool *pool; /* I: the associated pool */
194 struct workqueue_struct *wq; /* I: the owning workqueue */
195 int work_color; /* L: current color */
196 int flush_color; /* L: flushing color */
197 int refcnt; /* L: reference count */
198 int nr_in_flight[WORK_NR_COLORS];
199 /* L: nr of in_flight works */
200 int nr_active; /* L: nr of active works */
201 int max_active; /* L: max active works */
202 struct list_head delayed_works; /* L: delayed works */
203 struct list_head pwqs_node; /* WR: node on wq->pwqs */
204 struct list_head mayday_node; /* MD: node on wq->maydays */
205
206 /*
207 * Release of unbound pwq is punted to system_wq. See put_pwq()
208 * and pwq_unbound_release_workfn() for details. pool_workqueue
209 * itself is also sched-RCU protected so that the first pwq can be
210 * determined without grabbing wq->mutex.
211 */
212 struct work_struct unbound_release_work;
213 struct rcu_head rcu;
214 } __aligned(1 << WORK_STRUCT_FLAG_BITS);
215
216 /*
217 * Structure used to wait for workqueue flush.
218 */
219 struct wq_flusher {
220 struct list_head list; /* WQ: list of flushers */
221 int flush_color; /* WQ: flush color waiting for */
222 struct completion done; /* flush completion */
223 };
224
225 struct wq_device;
226
227 /*
228 * The externally visible workqueue. It relays the issued work items to
229 * the appropriate worker_pool through its pool_workqueues.
230 */
231 struct workqueue_struct {
232 struct list_head pwqs; /* WR: all pwqs of this wq */
233 struct list_head list; /* PL: list of all workqueues */
234
235 struct mutex mutex; /* protects this wq */
236 int work_color; /* WQ: current work color */
237 int flush_color; /* WQ: current flush color */
238 atomic_t nr_pwqs_to_flush; /* flush in progress */
239 struct wq_flusher *first_flusher; /* WQ: first flusher */
240 struct list_head flusher_queue; /* WQ: flush waiters */
241 struct list_head flusher_overflow; /* WQ: flush overflow list */
242
243 struct list_head maydays; /* MD: pwqs requesting rescue */
244 struct worker *rescuer; /* I: rescue worker */
245
246 int nr_drainers; /* WQ: drain in progress */
247 int saved_max_active; /* WQ: saved pwq max_active */
248
249 struct workqueue_attrs *unbound_attrs; /* WQ: only for unbound wqs */
250 struct pool_workqueue *dfl_pwq; /* WQ: only for unbound wqs */
251
252 #ifdef CONFIG_SYSFS
253 struct wq_device *wq_dev; /* I: for sysfs interface */
254 #endif
255 #ifdef CONFIG_LOCKDEP
256 struct lockdep_map lockdep_map;
257 #endif
258 char name[WQ_NAME_LEN]; /* I: workqueue name */
259
260 /* hot fields used during command issue, aligned to cacheline */
261 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */
262 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
263 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* FR: unbound pwqs indexed by node */
264 };
265
266 static struct kmem_cache *pwq_cache;
267
268 static int wq_numa_tbl_len; /* highest possible NUMA node id + 1 */
269 static cpumask_var_t *wq_numa_possible_cpumask;
270 /* possible CPUs of each node */
271
272 static bool wq_disable_numa;
273 module_param_named(disable_numa, wq_disable_numa, bool, 0444);
274
275 /* see the comment above the definition of WQ_POWER_EFFICIENT */
276 #ifdef CONFIG_WQ_POWER_EFFICIENT_DEFAULT
277 static bool wq_power_efficient = true;
278 #else
279 static bool wq_power_efficient;
280 #endif
281
282 module_param_named(power_efficient, wq_power_efficient, bool, 0444);
283
284 static bool wq_numa_enabled; /* unbound NUMA affinity enabled */
285
286 /* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
287 static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
288
289 static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */
290 static DEFINE_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */
291
292 static LIST_HEAD(workqueues); /* PL: list of all workqueues */
293 static bool workqueue_freezing; /* PL: have wqs started freezing? */
294
295 /* the per-cpu worker pools */
296 static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS],
297 cpu_worker_pools);
298
299 static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */
300
301 /* PL: hash of all unbound pools keyed by pool->attrs */
302 static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
303
304 /* I: attributes used when instantiating standard unbound pools on demand */
305 static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
306
307 struct workqueue_struct *system_wq __read_mostly;
308 EXPORT_SYMBOL(system_wq);
309 struct workqueue_struct *system_highpri_wq __read_mostly;
310 EXPORT_SYMBOL_GPL(system_highpri_wq);
311 struct workqueue_struct *system_long_wq __read_mostly;
312 EXPORT_SYMBOL_GPL(system_long_wq);
313 struct workqueue_struct *system_unbound_wq __read_mostly;
314 EXPORT_SYMBOL_GPL(system_unbound_wq);
315 struct workqueue_struct *system_freezable_wq __read_mostly;
316 EXPORT_SYMBOL_GPL(system_freezable_wq);
317 struct workqueue_struct *system_power_efficient_wq __read_mostly;
318 EXPORT_SYMBOL_GPL(system_power_efficient_wq);
319 struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
320 EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
321
322 static int worker_thread(void *__worker);
323 static void copy_workqueue_attrs(struct workqueue_attrs *to,
324 const struct workqueue_attrs *from);
325
326 #define CREATE_TRACE_POINTS
327 #include <trace/events/workqueue.h>
328
329 #define assert_rcu_or_pool_mutex() \
330 rcu_lockdep_assert(rcu_read_lock_sched_held() || \
331 lockdep_is_held(&wq_pool_mutex), \
332 "sched RCU or wq_pool_mutex should be held")
333
334 #define assert_rcu_or_wq_mutex(wq) \
335 rcu_lockdep_assert(rcu_read_lock_sched_held() || \
336 lockdep_is_held(&wq->mutex), \
337 "sched RCU or wq->mutex should be held")
338
339 #ifdef CONFIG_LOCKDEP
340 #define assert_manager_or_pool_lock(pool) \
341 WARN_ONCE(debug_locks && \
342 !lockdep_is_held(&(pool)->manager_mutex) && \
343 !lockdep_is_held(&(pool)->lock), \
344 "pool->manager_mutex or ->lock should be held")
345 #else
346 #define assert_manager_or_pool_lock(pool) do { } while (0)
347 #endif
348
349 #define for_each_cpu_worker_pool(pool, cpu) \
350 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
351 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
352 (pool)++)
353
354 /**
355 * for_each_pool - iterate through all worker_pools in the system
356 * @pool: iteration cursor
357 * @pi: integer used for iteration
358 *
359 * This must be called either with wq_pool_mutex held or sched RCU read
360 * locked. If the pool needs to be used beyond the locking in effect, the
361 * caller is responsible for guaranteeing that the pool stays online.
362 *
363 * The if/else clause exists only for the lockdep assertion and can be
364 * ignored.
365 */
366 #define for_each_pool(pool, pi) \
367 idr_for_each_entry(&worker_pool_idr, pool, pi) \
368 if (({ assert_rcu_or_pool_mutex(); false; })) { } \
369 else
370
371 /**
372 * for_each_pool_worker - iterate through all workers of a worker_pool
373 * @worker: iteration cursor
374 * @wi: integer used for iteration
375 * @pool: worker_pool to iterate workers of
376 *
377 * This must be called with either @pool->manager_mutex or ->lock held.
378 *
379 * The if/else clause exists only for the lockdep assertion and can be
380 * ignored.
381 */
382 #define for_each_pool_worker(worker, wi, pool) \
383 idr_for_each_entry(&(pool)->worker_idr, (worker), (wi)) \
384 if (({ assert_manager_or_pool_lock((pool)); false; })) { } \
385 else
386
387 /**
388 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
389 * @pwq: iteration cursor
390 * @wq: the target workqueue
391 *
392 * This must be called either with wq->mutex held or sched RCU read locked.
393 * If the pwq needs to be used beyond the locking in effect, the caller is
394 * responsible for guaranteeing that the pwq stays online.
395 *
396 * The if/else clause exists only for the lockdep assertion and can be
397 * ignored.
398 */
399 #define for_each_pwq(pwq, wq) \
400 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node) \
401 if (({ assert_rcu_or_wq_mutex(wq); false; })) { } \
402 else
403
404 #ifdef CONFIG_DEBUG_OBJECTS_WORK
405
406 static struct debug_obj_descr work_debug_descr;
407
408 static void *work_debug_hint(void *addr)
409 {
410 return ((struct work_struct *) addr)->func;
411 }
412
413 /*
414 * fixup_init is called when:
415 * - an active object is initialized
416 */
417 static int work_fixup_init(void *addr, enum debug_obj_state state)
418 {
419 struct work_struct *work = addr;
420
421 switch (state) {
422 case ODEBUG_STATE_ACTIVE:
423 cancel_work_sync(work);
424 debug_object_init(work, &work_debug_descr);
425 return 1;
426 default:
427 return 0;
428 }
429 }
430
431 /*
432 * fixup_activate is called when:
433 * - an active object is activated
434 * - an unknown object is activated (might be a statically initialized object)
435 */
436 static int work_fixup_activate(void *addr, enum debug_obj_state state)
437 {
438 struct work_struct *work = addr;
439
440 switch (state) {
441
442 case ODEBUG_STATE_NOTAVAILABLE:
443 /*
444 * This is not really a fixup. The work struct was
445 * statically initialized. We just make sure that it
446 * is tracked in the object tracker.
447 */
448 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
449 debug_object_init(work, &work_debug_descr);
450 debug_object_activate(work, &work_debug_descr);
451 return 0;
452 }
453 WARN_ON_ONCE(1);
454 return 0;
455
456 case ODEBUG_STATE_ACTIVE:
457 WARN_ON(1);
458
459 default:
460 return 0;
461 }
462 }
463
464 /*
465 * fixup_free is called when:
466 * - an active object is freed
467 */
468 static int work_fixup_free(void *addr, enum debug_obj_state state)
469 {
470 struct work_struct *work = addr;
471
472 switch (state) {
473 case ODEBUG_STATE_ACTIVE:
474 cancel_work_sync(work);
475 debug_object_free(work, &work_debug_descr);
476 return 1;
477 default:
478 return 0;
479 }
480 }
481
482 static struct debug_obj_descr work_debug_descr = {
483 .name = "work_struct",
484 .debug_hint = work_debug_hint,
485 .fixup_init = work_fixup_init,
486 .fixup_activate = work_fixup_activate,
487 .fixup_free = work_fixup_free,
488 };
489
490 static inline void debug_work_activate(struct work_struct *work)
491 {
492 debug_object_activate(work, &work_debug_descr);
493 }
494
495 static inline void debug_work_deactivate(struct work_struct *work)
496 {
497 debug_object_deactivate(work, &work_debug_descr);
498 }
499
500 void __init_work(struct work_struct *work, int onstack)
501 {
502 if (onstack)
503 debug_object_init_on_stack(work, &work_debug_descr);
504 else
505 debug_object_init(work, &work_debug_descr);
506 }
507 EXPORT_SYMBOL_GPL(__init_work);
508
509 void destroy_work_on_stack(struct work_struct *work)
510 {
511 debug_object_free(work, &work_debug_descr);
512 }
513 EXPORT_SYMBOL_GPL(destroy_work_on_stack);
514
515 #else
516 static inline void debug_work_activate(struct work_struct *work) { }
517 static inline void debug_work_deactivate(struct work_struct *work) { }
518 #endif
519
520 /* allocate ID and assign it to @pool */
521 static int worker_pool_assign_id(struct worker_pool *pool)
522 {
523 int ret;
524
525 lockdep_assert_held(&wq_pool_mutex);
526
527 ret = idr_alloc(&worker_pool_idr, pool, 0, 0, GFP_KERNEL);
528 if (ret >= 0) {
529 pool->id = ret;
530 return 0;
531 }
532 return ret;
533 }
534
535 /**
536 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
537 * @wq: the target workqueue
538 * @node: the node ID
539 *
540 * This must be called either with pwq_lock held or sched RCU read locked.
541 * If the pwq needs to be used beyond the locking in effect, the caller is
542 * responsible for guaranteeing that the pwq stays online.
543 */
544 static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
545 int node)
546 {
547 assert_rcu_or_wq_mutex(wq);
548 return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
549 }
550
551 static unsigned int work_color_to_flags(int color)
552 {
553 return color << WORK_STRUCT_COLOR_SHIFT;
554 }
555
556 static int get_work_color(struct work_struct *work)
557 {
558 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
559 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
560 }
561
562 static int work_next_color(int color)
563 {
564 return (color + 1) % WORK_NR_COLORS;
565 }
566
567 /*
568 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
569 * contain the pointer to the queued pwq. Once execution starts, the flag
570 * is cleared and the high bits contain OFFQ flags and pool ID.
571 *
572 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
573 * and clear_work_data() can be used to set the pwq, pool or clear
574 * work->data. These functions should only be called while the work is
575 * owned - ie. while the PENDING bit is set.
576 *
577 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
578 * corresponding to a work. Pool is available once the work has been
579 * queued anywhere after initialization until it is sync canceled. pwq is
580 * available only while the work item is queued.
581 *
582 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
583 * canceled. While being canceled, a work item may have its PENDING set
584 * but stay off timer and worklist for arbitrarily long and nobody should
585 * try to steal the PENDING bit.
586 */
587 static inline void set_work_data(struct work_struct *work, unsigned long data,
588 unsigned long flags)
589 {
590 WARN_ON_ONCE(!work_pending(work));
591 atomic_long_set(&work->data, data | flags | work_static(work));
592 }
593
594 static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
595 unsigned long extra_flags)
596 {
597 set_work_data(work, (unsigned long)pwq,
598 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
599 }
600
601 static void set_work_pool_and_keep_pending(struct work_struct *work,
602 int pool_id)
603 {
604 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
605 WORK_STRUCT_PENDING);
606 }
607
608 static void set_work_pool_and_clear_pending(struct work_struct *work,
609 int pool_id)
610 {
611 /*
612 * The following wmb is paired with the implied mb in
613 * test_and_set_bit(PENDING) and ensures all updates to @work made
614 * here are visible to and precede any updates by the next PENDING
615 * owner.
616 */
617 smp_wmb();
618 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
619 }
620
621 static void clear_work_data(struct work_struct *work)
622 {
623 smp_wmb(); /* see set_work_pool_and_clear_pending() */
624 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
625 }
626
627 static struct pool_workqueue *get_work_pwq(struct work_struct *work)
628 {
629 unsigned long data = atomic_long_read(&work->data);
630
631 if (data & WORK_STRUCT_PWQ)
632 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
633 else
634 return NULL;
635 }
636
637 /**
638 * get_work_pool - return the worker_pool a given work was associated with
639 * @work: the work item of interest
640 *
641 * Return the worker_pool @work was last associated with. %NULL if none.
642 *
643 * Pools are created and destroyed under wq_pool_mutex, and allows read
644 * access under sched-RCU read lock. As such, this function should be
645 * called under wq_pool_mutex or with preemption disabled.
646 *
647 * All fields of the returned pool are accessible as long as the above
648 * mentioned locking is in effect. If the returned pool needs to be used
649 * beyond the critical section, the caller is responsible for ensuring the
650 * returned pool is and stays online.
651 */
652 static struct worker_pool *get_work_pool(struct work_struct *work)
653 {
654 unsigned long data = atomic_long_read(&work->data);
655 int pool_id;
656
657 assert_rcu_or_pool_mutex();
658
659 if (data & WORK_STRUCT_PWQ)
660 return ((struct pool_workqueue *)
661 (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
662
663 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
664 if (pool_id == WORK_OFFQ_POOL_NONE)
665 return NULL;
666
667 return idr_find(&worker_pool_idr, pool_id);
668 }
669
670 /**
671 * get_work_pool_id - return the worker pool ID a given work is associated with
672 * @work: the work item of interest
673 *
674 * Return the worker_pool ID @work was last associated with.
675 * %WORK_OFFQ_POOL_NONE if none.
676 */
677 static int get_work_pool_id(struct work_struct *work)
678 {
679 unsigned long data = atomic_long_read(&work->data);
680
681 if (data & WORK_STRUCT_PWQ)
682 return ((struct pool_workqueue *)
683 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
684
685 return data >> WORK_OFFQ_POOL_SHIFT;
686 }
687
688 static void mark_work_canceling(struct work_struct *work)
689 {
690 unsigned long pool_id = get_work_pool_id(work);
691
692 pool_id <<= WORK_OFFQ_POOL_SHIFT;
693 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
694 }
695
696 static bool work_is_canceling(struct work_struct *work)
697 {
698 unsigned long data = atomic_long_read(&work->data);
699
700 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
701 }
702
703 /*
704 * Policy functions. These define the policies on how the global worker
705 * pools are managed. Unless noted otherwise, these functions assume that
706 * they're being called with pool->lock held.
707 */
708
709 static bool __need_more_worker(struct worker_pool *pool)
710 {
711 return !atomic_read(&pool->nr_running);
712 }
713
714 /*
715 * Need to wake up a worker? Called from anything but currently
716 * running workers.
717 *
718 * Note that, because unbound workers never contribute to nr_running, this
719 * function will always return %true for unbound pools as long as the
720 * worklist isn't empty.
721 */
722 static bool need_more_worker(struct worker_pool *pool)
723 {
724 return !list_empty(&pool->worklist) && __need_more_worker(pool);
725 }
726
727 /* Can I start working? Called from busy but !running workers. */
728 static bool may_start_working(struct worker_pool *pool)
729 {
730 return pool->nr_idle;
731 }
732
733 /* Do I need to keep working? Called from currently running workers. */
734 static bool keep_working(struct worker_pool *pool)
735 {
736 return !list_empty(&pool->worklist) &&
737 atomic_read(&pool->nr_running) <= 1;
738 }
739
740 /* Do we need a new worker? Called from manager. */
741 static bool need_to_create_worker(struct worker_pool *pool)
742 {
743 return need_more_worker(pool) && !may_start_working(pool);
744 }
745
746 /* Do I need to be the manager? */
747 static bool need_to_manage_workers(struct worker_pool *pool)
748 {
749 return need_to_create_worker(pool) ||
750 (pool->flags & POOL_MANAGE_WORKERS);
751 }
752
753 /* Do we have too many workers and should some go away? */
754 static bool too_many_workers(struct worker_pool *pool)
755 {
756 bool managing = mutex_is_locked(&pool->manager_arb);
757 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
758 int nr_busy = pool->nr_workers - nr_idle;
759
760 /*
761 * nr_idle and idle_list may disagree if idle rebinding is in
762 * progress. Never return %true if idle_list is empty.
763 */
764 if (list_empty(&pool->idle_list))
765 return false;
766
767 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
768 }
769
770 /*
771 * Wake up functions.
772 */
773
774 /* Return the first worker. Safe with preemption disabled */
775 static struct worker *first_worker(struct worker_pool *pool)
776 {
777 if (unlikely(list_empty(&pool->idle_list)))
778 return NULL;
779
780 return list_first_entry(&pool->idle_list, struct worker, entry);
781 }
782
783 /**
784 * wake_up_worker - wake up an idle worker
785 * @pool: worker pool to wake worker from
786 *
787 * Wake up the first idle worker of @pool.
788 *
789 * CONTEXT:
790 * spin_lock_irq(pool->lock).
791 */
792 static void wake_up_worker(struct worker_pool *pool)
793 {
794 struct worker *worker = first_worker(pool);
795
796 if (likely(worker))
797 wake_up_process(worker->task);
798 }
799
800 /**
801 * wq_worker_waking_up - a worker is waking up
802 * @task: task waking up
803 * @cpu: CPU @task is waking up to
804 *
805 * This function is called during try_to_wake_up() when a worker is
806 * being awoken.
807 *
808 * CONTEXT:
809 * spin_lock_irq(rq->lock)
810 */
811 void wq_worker_waking_up(struct task_struct *task, int cpu)
812 {
813 struct worker *worker = kthread_data(task);
814
815 if (!(worker->flags & WORKER_NOT_RUNNING)) {
816 WARN_ON_ONCE(worker->pool->cpu != cpu);
817 atomic_inc(&worker->pool->nr_running);
818 }
819 }
820
821 /**
822 * wq_worker_sleeping - a worker is going to sleep
823 * @task: task going to sleep
824 * @cpu: CPU in question, must be the current CPU number
825 *
826 * This function is called during schedule() when a busy worker is
827 * going to sleep. Worker on the same cpu can be woken up by
828 * returning pointer to its task.
829 *
830 * CONTEXT:
831 * spin_lock_irq(rq->lock)
832 *
833 * RETURNS:
834 * Worker task on @cpu to wake up, %NULL if none.
835 */
836 struct task_struct *wq_worker_sleeping(struct task_struct *task, int cpu)
837 {
838 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
839 struct worker_pool *pool;
840
841 /*
842 * Rescuers, which may not have all the fields set up like normal
843 * workers, also reach here, let's not access anything before
844 * checking NOT_RUNNING.
845 */
846 if (worker->flags & WORKER_NOT_RUNNING)
847 return NULL;
848
849 pool = worker->pool;
850
851 /* this can only happen on the local cpu */
852 if (WARN_ON_ONCE(cpu != raw_smp_processor_id()))
853 return NULL;
854
855 /*
856 * The counterpart of the following dec_and_test, implied mb,
857 * worklist not empty test sequence is in insert_work().
858 * Please read comment there.
859 *
860 * NOT_RUNNING is clear. This means that we're bound to and
861 * running on the local cpu w/ rq lock held and preemption
862 * disabled, which in turn means that none else could be
863 * manipulating idle_list, so dereferencing idle_list without pool
864 * lock is safe.
865 */
866 if (atomic_dec_and_test(&pool->nr_running) &&
867 !list_empty(&pool->worklist))
868 to_wakeup = first_worker(pool);
869 return to_wakeup ? to_wakeup->task : NULL;
870 }
871
872 /**
873 * worker_set_flags - set worker flags and adjust nr_running accordingly
874 * @worker: self
875 * @flags: flags to set
876 * @wakeup: wakeup an idle worker if necessary
877 *
878 * Set @flags in @worker->flags and adjust nr_running accordingly. If
879 * nr_running becomes zero and @wakeup is %true, an idle worker is
880 * woken up.
881 *
882 * CONTEXT:
883 * spin_lock_irq(pool->lock)
884 */
885 static inline void worker_set_flags(struct worker *worker, unsigned int flags,
886 bool wakeup)
887 {
888 struct worker_pool *pool = worker->pool;
889
890 WARN_ON_ONCE(worker->task != current);
891
892 /*
893 * If transitioning into NOT_RUNNING, adjust nr_running and
894 * wake up an idle worker as necessary if requested by
895 * @wakeup.
896 */
897 if ((flags & WORKER_NOT_RUNNING) &&
898 !(worker->flags & WORKER_NOT_RUNNING)) {
899 if (wakeup) {
900 if (atomic_dec_and_test(&pool->nr_running) &&
901 !list_empty(&pool->worklist))
902 wake_up_worker(pool);
903 } else
904 atomic_dec(&pool->nr_running);
905 }
906
907 worker->flags |= flags;
908 }
909
910 /**
911 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
912 * @worker: self
913 * @flags: flags to clear
914 *
915 * Clear @flags in @worker->flags and adjust nr_running accordingly.
916 *
917 * CONTEXT:
918 * spin_lock_irq(pool->lock)
919 */
920 static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
921 {
922 struct worker_pool *pool = worker->pool;
923 unsigned int oflags = worker->flags;
924
925 WARN_ON_ONCE(worker->task != current);
926
927 worker->flags &= ~flags;
928
929 /*
930 * If transitioning out of NOT_RUNNING, increment nr_running. Note
931 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
932 * of multiple flags, not a single flag.
933 */
934 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
935 if (!(worker->flags & WORKER_NOT_RUNNING))
936 atomic_inc(&pool->nr_running);
937 }
938
939 /**
940 * find_worker_executing_work - find worker which is executing a work
941 * @pool: pool of interest
942 * @work: work to find worker for
943 *
944 * Find a worker which is executing @work on @pool by searching
945 * @pool->busy_hash which is keyed by the address of @work. For a worker
946 * to match, its current execution should match the address of @work and
947 * its work function. This is to avoid unwanted dependency between
948 * unrelated work executions through a work item being recycled while still
949 * being executed.
950 *
951 * This is a bit tricky. A work item may be freed once its execution
952 * starts and nothing prevents the freed area from being recycled for
953 * another work item. If the same work item address ends up being reused
954 * before the original execution finishes, workqueue will identify the
955 * recycled work item as currently executing and make it wait until the
956 * current execution finishes, introducing an unwanted dependency.
957 *
958 * This function checks the work item address and work function to avoid
959 * false positives. Note that this isn't complete as one may construct a
960 * work function which can introduce dependency onto itself through a
961 * recycled work item. Well, if somebody wants to shoot oneself in the
962 * foot that badly, there's only so much we can do, and if such deadlock
963 * actually occurs, it should be easy to locate the culprit work function.
964 *
965 * CONTEXT:
966 * spin_lock_irq(pool->lock).
967 *
968 * RETURNS:
969 * Pointer to worker which is executing @work if found, NULL
970 * otherwise.
971 */
972 static struct worker *find_worker_executing_work(struct worker_pool *pool,
973 struct work_struct *work)
974 {
975 struct worker *worker;
976
977 hash_for_each_possible(pool->busy_hash, worker, hentry,
978 (unsigned long)work)
979 if (worker->current_work == work &&
980 worker->current_func == work->func)
981 return worker;
982
983 return NULL;
984 }
985
986 /**
987 * move_linked_works - move linked works to a list
988 * @work: start of series of works to be scheduled
989 * @head: target list to append @work to
990 * @nextp: out paramter for nested worklist walking
991 *
992 * Schedule linked works starting from @work to @head. Work series to
993 * be scheduled starts at @work and includes any consecutive work with
994 * WORK_STRUCT_LINKED set in its predecessor.
995 *
996 * If @nextp is not NULL, it's updated to point to the next work of
997 * the last scheduled work. This allows move_linked_works() to be
998 * nested inside outer list_for_each_entry_safe().
999 *
1000 * CONTEXT:
1001 * spin_lock_irq(pool->lock).
1002 */
1003 static void move_linked_works(struct work_struct *work, struct list_head *head,
1004 struct work_struct **nextp)
1005 {
1006 struct work_struct *n;
1007
1008 /*
1009 * Linked worklist will always end before the end of the list,
1010 * use NULL for list head.
1011 */
1012 list_for_each_entry_safe_from(work, n, NULL, entry) {
1013 list_move_tail(&work->entry, head);
1014 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1015 break;
1016 }
1017
1018 /*
1019 * If we're already inside safe list traversal and have moved
1020 * multiple works to the scheduled queue, the next position
1021 * needs to be updated.
1022 */
1023 if (nextp)
1024 *nextp = n;
1025 }
1026
1027 /**
1028 * get_pwq - get an extra reference on the specified pool_workqueue
1029 * @pwq: pool_workqueue to get
1030 *
1031 * Obtain an extra reference on @pwq. The caller should guarantee that
1032 * @pwq has positive refcnt and be holding the matching pool->lock.
1033 */
1034 static void get_pwq(struct pool_workqueue *pwq)
1035 {
1036 lockdep_assert_held(&pwq->pool->lock);
1037 WARN_ON_ONCE(pwq->refcnt <= 0);
1038 pwq->refcnt++;
1039 }
1040
1041 /**
1042 * put_pwq - put a pool_workqueue reference
1043 * @pwq: pool_workqueue to put
1044 *
1045 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
1046 * destruction. The caller should be holding the matching pool->lock.
1047 */
1048 static void put_pwq(struct pool_workqueue *pwq)
1049 {
1050 lockdep_assert_held(&pwq->pool->lock);
1051 if (likely(--pwq->refcnt))
1052 return;
1053 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1054 return;
1055 /*
1056 * @pwq can't be released under pool->lock, bounce to
1057 * pwq_unbound_release_workfn(). This never recurses on the same
1058 * pool->lock as this path is taken only for unbound workqueues and
1059 * the release work item is scheduled on a per-cpu workqueue. To
1060 * avoid lockdep warning, unbound pool->locks are given lockdep
1061 * subclass of 1 in get_unbound_pool().
1062 */
1063 schedule_work(&pwq->unbound_release_work);
1064 }
1065
1066 /**
1067 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1068 * @pwq: pool_workqueue to put (can be %NULL)
1069 *
1070 * put_pwq() with locking. This function also allows %NULL @pwq.
1071 */
1072 static void put_pwq_unlocked(struct pool_workqueue *pwq)
1073 {
1074 if (pwq) {
1075 /*
1076 * As both pwqs and pools are sched-RCU protected, the
1077 * following lock operations are safe.
1078 */
1079 spin_lock_irq(&pwq->pool->lock);
1080 put_pwq(pwq);
1081 spin_unlock_irq(&pwq->pool->lock);
1082 }
1083 }
1084
1085 static void pwq_activate_delayed_work(struct work_struct *work)
1086 {
1087 struct pool_workqueue *pwq = get_work_pwq(work);
1088
1089 trace_workqueue_activate_work(work);
1090 move_linked_works(work, &pwq->pool->worklist, NULL);
1091 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
1092 pwq->nr_active++;
1093 }
1094
1095 static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
1096 {
1097 struct work_struct *work = list_first_entry(&pwq->delayed_works,
1098 struct work_struct, entry);
1099
1100 pwq_activate_delayed_work(work);
1101 }
1102
1103 /**
1104 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1105 * @pwq: pwq of interest
1106 * @color: color of work which left the queue
1107 *
1108 * A work either has completed or is removed from pending queue,
1109 * decrement nr_in_flight of its pwq and handle workqueue flushing.
1110 *
1111 * CONTEXT:
1112 * spin_lock_irq(pool->lock).
1113 */
1114 static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
1115 {
1116 /* uncolored work items don't participate in flushing or nr_active */
1117 if (color == WORK_NO_COLOR)
1118 goto out_put;
1119
1120 pwq->nr_in_flight[color]--;
1121
1122 pwq->nr_active--;
1123 if (!list_empty(&pwq->delayed_works)) {
1124 /* one down, submit a delayed one */
1125 if (pwq->nr_active < pwq->max_active)
1126 pwq_activate_first_delayed(pwq);
1127 }
1128
1129 /* is flush in progress and are we at the flushing tip? */
1130 if (likely(pwq->flush_color != color))
1131 goto out_put;
1132
1133 /* are there still in-flight works? */
1134 if (pwq->nr_in_flight[color])
1135 goto out_put;
1136
1137 /* this pwq is done, clear flush_color */
1138 pwq->flush_color = -1;
1139
1140 /*
1141 * If this was the last pwq, wake up the first flusher. It
1142 * will handle the rest.
1143 */
1144 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1145 complete(&pwq->wq->first_flusher->done);
1146 out_put:
1147 put_pwq(pwq);
1148 }
1149
1150 /**
1151 * try_to_grab_pending - steal work item from worklist and disable irq
1152 * @work: work item to steal
1153 * @is_dwork: @work is a delayed_work
1154 * @flags: place to store irq state
1155 *
1156 * Try to grab PENDING bit of @work. This function can handle @work in any
1157 * stable state - idle, on timer or on worklist. Return values are
1158 *
1159 * 1 if @work was pending and we successfully stole PENDING
1160 * 0 if @work was idle and we claimed PENDING
1161 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
1162 * -ENOENT if someone else is canceling @work, this state may persist
1163 * for arbitrarily long
1164 *
1165 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
1166 * interrupted while holding PENDING and @work off queue, irq must be
1167 * disabled on entry. This, combined with delayed_work->timer being
1168 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
1169 *
1170 * On successful return, >= 0, irq is disabled and the caller is
1171 * responsible for releasing it using local_irq_restore(*@flags).
1172 *
1173 * This function is safe to call from any context including IRQ handler.
1174 */
1175 static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1176 unsigned long *flags)
1177 {
1178 struct worker_pool *pool;
1179 struct pool_workqueue *pwq;
1180
1181 local_irq_save(*flags);
1182
1183 /* try to steal the timer if it exists */
1184 if (is_dwork) {
1185 struct delayed_work *dwork = to_delayed_work(work);
1186
1187 /*
1188 * dwork->timer is irqsafe. If del_timer() fails, it's
1189 * guaranteed that the timer is not queued anywhere and not
1190 * running on the local CPU.
1191 */
1192 if (likely(del_timer(&dwork->timer)))
1193 return 1;
1194 }
1195
1196 /* try to claim PENDING the normal way */
1197 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1198 return 0;
1199
1200 /*
1201 * The queueing is in progress, or it is already queued. Try to
1202 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1203 */
1204 pool = get_work_pool(work);
1205 if (!pool)
1206 goto fail;
1207
1208 spin_lock(&pool->lock);
1209 /*
1210 * work->data is guaranteed to point to pwq only while the work
1211 * item is queued on pwq->wq, and both updating work->data to point
1212 * to pwq on queueing and to pool on dequeueing are done under
1213 * pwq->pool->lock. This in turn guarantees that, if work->data
1214 * points to pwq which is associated with a locked pool, the work
1215 * item is currently queued on that pool.
1216 */
1217 pwq = get_work_pwq(work);
1218 if (pwq && pwq->pool == pool) {
1219 debug_work_deactivate(work);
1220
1221 /*
1222 * A delayed work item cannot be grabbed directly because
1223 * it might have linked NO_COLOR work items which, if left
1224 * on the delayed_list, will confuse pwq->nr_active
1225 * management later on and cause stall. Make sure the work
1226 * item is activated before grabbing.
1227 */
1228 if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
1229 pwq_activate_delayed_work(work);
1230
1231 list_del_init(&work->entry);
1232 pwq_dec_nr_in_flight(get_work_pwq(work), get_work_color(work));
1233
1234 /* work->data points to pwq iff queued, point to pool */
1235 set_work_pool_and_keep_pending(work, pool->id);
1236
1237 spin_unlock(&pool->lock);
1238 return 1;
1239 }
1240 spin_unlock(&pool->lock);
1241 fail:
1242 local_irq_restore(*flags);
1243 if (work_is_canceling(work))
1244 return -ENOENT;
1245 cpu_relax();
1246 return -EAGAIN;
1247 }
1248
1249 /**
1250 * insert_work - insert a work into a pool
1251 * @pwq: pwq @work belongs to
1252 * @work: work to insert
1253 * @head: insertion point
1254 * @extra_flags: extra WORK_STRUCT_* flags to set
1255 *
1256 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
1257 * work_struct flags.
1258 *
1259 * CONTEXT:
1260 * spin_lock_irq(pool->lock).
1261 */
1262 static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1263 struct list_head *head, unsigned int extra_flags)
1264 {
1265 struct worker_pool *pool = pwq->pool;
1266
1267 /* we own @work, set data and link */
1268 set_work_pwq(work, pwq, extra_flags);
1269 list_add_tail(&work->entry, head);
1270 get_pwq(pwq);
1271
1272 /*
1273 * Ensure either wq_worker_sleeping() sees the above
1274 * list_add_tail() or we see zero nr_running to avoid workers lying
1275 * around lazily while there are works to be processed.
1276 */
1277 smp_mb();
1278
1279 if (__need_more_worker(pool))
1280 wake_up_worker(pool);
1281 }
1282
1283 /*
1284 * Test whether @work is being queued from another work executing on the
1285 * same workqueue.
1286 */
1287 static bool is_chained_work(struct workqueue_struct *wq)
1288 {
1289 struct worker *worker;
1290
1291 worker = current_wq_worker();
1292 /*
1293 * Return %true iff I'm a worker execuing a work item on @wq. If
1294 * I'm @worker, it's safe to dereference it without locking.
1295 */
1296 return worker && worker->current_pwq->wq == wq;
1297 }
1298
1299 static void __queue_work(int cpu, struct workqueue_struct *wq,
1300 struct work_struct *work)
1301 {
1302 struct pool_workqueue *pwq;
1303 struct worker_pool *last_pool;
1304 struct list_head *worklist;
1305 unsigned int work_flags;
1306 unsigned int req_cpu = cpu;
1307
1308 /*
1309 * While a work item is PENDING && off queue, a task trying to
1310 * steal the PENDING will busy-loop waiting for it to either get
1311 * queued or lose PENDING. Grabbing PENDING and queueing should
1312 * happen with IRQ disabled.
1313 */
1314 WARN_ON_ONCE(!irqs_disabled());
1315
1316 debug_work_activate(work);
1317
1318 /* if dying, only works from the same workqueue are allowed */
1319 if (unlikely(wq->flags & __WQ_DRAINING) &&
1320 WARN_ON_ONCE(!is_chained_work(wq)))
1321 return;
1322 retry:
1323 if (req_cpu == WORK_CPU_UNBOUND)
1324 cpu = raw_smp_processor_id();
1325
1326 /* pwq which will be used unless @work is executing elsewhere */
1327 if (!(wq->flags & WQ_UNBOUND))
1328 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
1329 else
1330 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
1331
1332 /*
1333 * If @work was previously on a different pool, it might still be
1334 * running there, in which case the work needs to be queued on that
1335 * pool to guarantee non-reentrancy.
1336 */
1337 last_pool = get_work_pool(work);
1338 if (last_pool && last_pool != pwq->pool) {
1339 struct worker *worker;
1340
1341 spin_lock(&last_pool->lock);
1342
1343 worker = find_worker_executing_work(last_pool, work);
1344
1345 if (worker && worker->current_pwq->wq == wq) {
1346 pwq = worker->current_pwq;
1347 } else {
1348 /* meh... not running there, queue here */
1349 spin_unlock(&last_pool->lock);
1350 spin_lock(&pwq->pool->lock);
1351 }
1352 } else {
1353 spin_lock(&pwq->pool->lock);
1354 }
1355
1356 /*
1357 * pwq is determined and locked. For unbound pools, we could have
1358 * raced with pwq release and it could already be dead. If its
1359 * refcnt is zero, repeat pwq selection. Note that pwqs never die
1360 * without another pwq replacing it in the numa_pwq_tbl or while
1361 * work items are executing on it, so the retrying is guaranteed to
1362 * make forward-progress.
1363 */
1364 if (unlikely(!pwq->refcnt)) {
1365 if (wq->flags & WQ_UNBOUND) {
1366 spin_unlock(&pwq->pool->lock);
1367 cpu_relax();
1368 goto retry;
1369 }
1370 /* oops */
1371 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1372 wq->name, cpu);
1373 }
1374
1375 /* pwq determined, queue */
1376 trace_workqueue_queue_work(req_cpu, pwq, work);
1377
1378 if (WARN_ON(!list_empty(&work->entry))) {
1379 spin_unlock(&pwq->pool->lock);
1380 return;
1381 }
1382
1383 pwq->nr_in_flight[pwq->work_color]++;
1384 work_flags = work_color_to_flags(pwq->work_color);
1385
1386 if (likely(pwq->nr_active < pwq->max_active)) {
1387 trace_workqueue_activate_work(work);
1388 pwq->nr_active++;
1389 worklist = &pwq->pool->worklist;
1390 } else {
1391 work_flags |= WORK_STRUCT_DELAYED;
1392 worklist = &pwq->delayed_works;
1393 }
1394
1395 insert_work(pwq, work, worklist, work_flags);
1396
1397 spin_unlock(&pwq->pool->lock);
1398 }
1399
1400 /**
1401 * queue_work_on - queue work on specific cpu
1402 * @cpu: CPU number to execute work on
1403 * @wq: workqueue to use
1404 * @work: work to queue
1405 *
1406 * Returns %false if @work was already on a queue, %true otherwise.
1407 *
1408 * We queue the work to a specific CPU, the caller must ensure it
1409 * can't go away.
1410 */
1411 bool queue_work_on(int cpu, struct workqueue_struct *wq,
1412 struct work_struct *work)
1413 {
1414 bool ret = false;
1415 unsigned long flags;
1416
1417 local_irq_save(flags);
1418
1419 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1420 __queue_work(cpu, wq, work);
1421 ret = true;
1422 }
1423
1424 local_irq_restore(flags);
1425 return ret;
1426 }
1427 EXPORT_SYMBOL(queue_work_on);
1428
1429 void delayed_work_timer_fn(unsigned long __data)
1430 {
1431 struct delayed_work *dwork = (struct delayed_work *)__data;
1432
1433 /* should have been called from irqsafe timer with irq already off */
1434 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1435 }
1436 EXPORT_SYMBOL(delayed_work_timer_fn);
1437
1438 static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1439 struct delayed_work *dwork, unsigned long delay)
1440 {
1441 struct timer_list *timer = &dwork->timer;
1442 struct work_struct *work = &dwork->work;
1443
1444 WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1445 timer->data != (unsigned long)dwork);
1446 WARN_ON_ONCE(timer_pending(timer));
1447 WARN_ON_ONCE(!list_empty(&work->entry));
1448
1449 /*
1450 * If @delay is 0, queue @dwork->work immediately. This is for
1451 * both optimization and correctness. The earliest @timer can
1452 * expire is on the closest next tick and delayed_work users depend
1453 * on that there's no such delay when @delay is 0.
1454 */
1455 if (!delay) {
1456 __queue_work(cpu, wq, &dwork->work);
1457 return;
1458 }
1459
1460 timer_stats_timer_set_start_info(&dwork->timer);
1461
1462 dwork->wq = wq;
1463 dwork->cpu = cpu;
1464 timer->expires = jiffies + delay;
1465
1466 if (unlikely(cpu != WORK_CPU_UNBOUND))
1467 add_timer_on(timer, cpu);
1468 else
1469 add_timer(timer);
1470 }
1471
1472 /**
1473 * queue_delayed_work_on - queue work on specific CPU after delay
1474 * @cpu: CPU number to execute work on
1475 * @wq: workqueue to use
1476 * @dwork: work to queue
1477 * @delay: number of jiffies to wait before queueing
1478 *
1479 * Returns %false if @work was already on a queue, %true otherwise. If
1480 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1481 * execution.
1482 */
1483 bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1484 struct delayed_work *dwork, unsigned long delay)
1485 {
1486 struct work_struct *work = &dwork->work;
1487 bool ret = false;
1488 unsigned long flags;
1489
1490 /* read the comment in __queue_work() */
1491 local_irq_save(flags);
1492
1493 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
1494 __queue_delayed_work(cpu, wq, dwork, delay);
1495 ret = true;
1496 }
1497
1498 local_irq_restore(flags);
1499 return ret;
1500 }
1501 EXPORT_SYMBOL(queue_delayed_work_on);
1502
1503 /**
1504 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1505 * @cpu: CPU number to execute work on
1506 * @wq: workqueue to use
1507 * @dwork: work to queue
1508 * @delay: number of jiffies to wait before queueing
1509 *
1510 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1511 * modify @dwork's timer so that it expires after @delay. If @delay is
1512 * zero, @work is guaranteed to be scheduled immediately regardless of its
1513 * current state.
1514 *
1515 * Returns %false if @dwork was idle and queued, %true if @dwork was
1516 * pending and its timer was modified.
1517 *
1518 * This function is safe to call from any context including IRQ handler.
1519 * See try_to_grab_pending() for details.
1520 */
1521 bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1522 struct delayed_work *dwork, unsigned long delay)
1523 {
1524 unsigned long flags;
1525 int ret;
1526
1527 do {
1528 ret = try_to_grab_pending(&dwork->work, true, &flags);
1529 } while (unlikely(ret == -EAGAIN));
1530
1531 if (likely(ret >= 0)) {
1532 __queue_delayed_work(cpu, wq, dwork, delay);
1533 local_irq_restore(flags);
1534 }
1535
1536 /* -ENOENT from try_to_grab_pending() becomes %true */
1537 return ret;
1538 }
1539 EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1540
1541 /**
1542 * worker_enter_idle - enter idle state
1543 * @worker: worker which is entering idle state
1544 *
1545 * @worker is entering idle state. Update stats and idle timer if
1546 * necessary.
1547 *
1548 * LOCKING:
1549 * spin_lock_irq(pool->lock).
1550 */
1551 static void worker_enter_idle(struct worker *worker)
1552 {
1553 struct worker_pool *pool = worker->pool;
1554
1555 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1556 WARN_ON_ONCE(!list_empty(&worker->entry) &&
1557 (worker->hentry.next || worker->hentry.pprev)))
1558 return;
1559
1560 /* can't use worker_set_flags(), also called from start_worker() */
1561 worker->flags |= WORKER_IDLE;
1562 pool->nr_idle++;
1563 worker->last_active = jiffies;
1564
1565 /* idle_list is LIFO */
1566 list_add(&worker->entry, &pool->idle_list);
1567
1568 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1569 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
1570
1571 /*
1572 * Sanity check nr_running. Because wq_unbind_fn() releases
1573 * pool->lock between setting %WORKER_UNBOUND and zapping
1574 * nr_running, the warning may trigger spuriously. Check iff
1575 * unbind is not in progress.
1576 */
1577 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
1578 pool->nr_workers == pool->nr_idle &&
1579 atomic_read(&pool->nr_running));
1580 }
1581
1582 /**
1583 * worker_leave_idle - leave idle state
1584 * @worker: worker which is leaving idle state
1585 *
1586 * @worker is leaving idle state. Update stats.
1587 *
1588 * LOCKING:
1589 * spin_lock_irq(pool->lock).
1590 */
1591 static void worker_leave_idle(struct worker *worker)
1592 {
1593 struct worker_pool *pool = worker->pool;
1594
1595 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1596 return;
1597 worker_clr_flags(worker, WORKER_IDLE);
1598 pool->nr_idle--;
1599 list_del_init(&worker->entry);
1600 }
1601
1602 /**
1603 * worker_maybe_bind_and_lock - try to bind %current to worker_pool and lock it
1604 * @pool: target worker_pool
1605 *
1606 * Bind %current to the cpu of @pool if it is associated and lock @pool.
1607 *
1608 * Works which are scheduled while the cpu is online must at least be
1609 * scheduled to a worker which is bound to the cpu so that if they are
1610 * flushed from cpu callbacks while cpu is going down, they are
1611 * guaranteed to execute on the cpu.
1612 *
1613 * This function is to be used by unbound workers and rescuers to bind
1614 * themselves to the target cpu and may race with cpu going down or
1615 * coming online. kthread_bind() can't be used because it may put the
1616 * worker to already dead cpu and set_cpus_allowed_ptr() can't be used
1617 * verbatim as it's best effort and blocking and pool may be
1618 * [dis]associated in the meantime.
1619 *
1620 * This function tries set_cpus_allowed() and locks pool and verifies the
1621 * binding against %POOL_DISASSOCIATED which is set during
1622 * %CPU_DOWN_PREPARE and cleared during %CPU_ONLINE, so if the worker
1623 * enters idle state or fetches works without dropping lock, it can
1624 * guarantee the scheduling requirement described in the first paragraph.
1625 *
1626 * CONTEXT:
1627 * Might sleep. Called without any lock but returns with pool->lock
1628 * held.
1629 *
1630 * RETURNS:
1631 * %true if the associated pool is online (@worker is successfully
1632 * bound), %false if offline.
1633 */
1634 static bool worker_maybe_bind_and_lock(struct worker_pool *pool)
1635 __acquires(&pool->lock)
1636 {
1637 while (true) {
1638 /*
1639 * The following call may fail, succeed or succeed
1640 * without actually migrating the task to the cpu if
1641 * it races with cpu hotunplug operation. Verify
1642 * against POOL_DISASSOCIATED.
1643 */
1644 if (!(pool->flags & POOL_DISASSOCIATED))
1645 set_cpus_allowed_ptr(current, pool->attrs->cpumask);
1646
1647 spin_lock_irq(&pool->lock);
1648 if (pool->flags & POOL_DISASSOCIATED)
1649 return false;
1650 if (task_cpu(current) == pool->cpu &&
1651 cpumask_equal(&current->cpus_allowed, pool->attrs->cpumask))
1652 return true;
1653 spin_unlock_irq(&pool->lock);
1654
1655 /*
1656 * We've raced with CPU hot[un]plug. Give it a breather
1657 * and retry migration. cond_resched() is required here;
1658 * otherwise, we might deadlock against cpu_stop trying to
1659 * bring down the CPU on non-preemptive kernel.
1660 */
1661 cpu_relax();
1662 cond_resched();
1663 }
1664 }
1665
1666 static struct worker *alloc_worker(void)
1667 {
1668 struct worker *worker;
1669
1670 worker = kzalloc(sizeof(*worker), GFP_KERNEL);
1671 if (worker) {
1672 INIT_LIST_HEAD(&worker->entry);
1673 INIT_LIST_HEAD(&worker->scheduled);
1674 /* on creation a worker is in !idle && prep state */
1675 worker->flags = WORKER_PREP;
1676 }
1677 return worker;
1678 }
1679
1680 /**
1681 * create_worker - create a new workqueue worker
1682 * @pool: pool the new worker will belong to
1683 *
1684 * Create a new worker which is bound to @pool. The returned worker
1685 * can be started by calling start_worker() or destroyed using
1686 * destroy_worker().
1687 *
1688 * CONTEXT:
1689 * Might sleep. Does GFP_KERNEL allocations.
1690 *
1691 * RETURNS:
1692 * Pointer to the newly created worker.
1693 */
1694 static struct worker *create_worker(struct worker_pool *pool)
1695 {
1696 struct worker *worker = NULL;
1697 int id = -1;
1698 char id_buf[16];
1699
1700 lockdep_assert_held(&pool->manager_mutex);
1701
1702 /*
1703 * ID is needed to determine kthread name. Allocate ID first
1704 * without installing the pointer.
1705 */
1706 idr_preload(GFP_KERNEL);
1707 spin_lock_irq(&pool->lock);
1708
1709 id = idr_alloc(&pool->worker_idr, NULL, 0, 0, GFP_NOWAIT);
1710
1711 spin_unlock_irq(&pool->lock);
1712 idr_preload_end();
1713 if (id < 0)
1714 goto fail;
1715
1716 worker = alloc_worker();
1717 if (!worker)
1718 goto fail;
1719
1720 worker->pool = pool;
1721 worker->id = id;
1722
1723 if (pool->cpu >= 0)
1724 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1725 pool->attrs->nice < 0 ? "H" : "");
1726 else
1727 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1728
1729 worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
1730 "kworker/%s", id_buf);
1731 if (IS_ERR(worker->task))
1732 goto fail;
1733
1734 /*
1735 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1736 * online CPUs. It'll be re-applied when any of the CPUs come up.
1737 */
1738 set_user_nice(worker->task, pool->attrs->nice);
1739 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1740
1741 /* prevent userland from meddling with cpumask of workqueue workers */
1742 worker->task->flags |= PF_NO_SETAFFINITY;
1743
1744 /*
1745 * The caller is responsible for ensuring %POOL_DISASSOCIATED
1746 * remains stable across this function. See the comments above the
1747 * flag definition for details.
1748 */
1749 if (pool->flags & POOL_DISASSOCIATED)
1750 worker->flags |= WORKER_UNBOUND;
1751
1752 /* successful, commit the pointer to idr */
1753 spin_lock_irq(&pool->lock);
1754 idr_replace(&pool->worker_idr, worker, worker->id);
1755 spin_unlock_irq(&pool->lock);
1756
1757 return worker;
1758
1759 fail:
1760 if (id >= 0) {
1761 spin_lock_irq(&pool->lock);
1762 idr_remove(&pool->worker_idr, id);
1763 spin_unlock_irq(&pool->lock);
1764 }
1765 kfree(worker);
1766 return NULL;
1767 }
1768
1769 /**
1770 * start_worker - start a newly created worker
1771 * @worker: worker to start
1772 *
1773 * Make the pool aware of @worker and start it.
1774 *
1775 * CONTEXT:
1776 * spin_lock_irq(pool->lock).
1777 */
1778 static void start_worker(struct worker *worker)
1779 {
1780 worker->flags |= WORKER_STARTED;
1781 worker->pool->nr_workers++;
1782 worker_enter_idle(worker);
1783 wake_up_process(worker->task);
1784 }
1785
1786 /**
1787 * create_and_start_worker - create and start a worker for a pool
1788 * @pool: the target pool
1789 *
1790 * Grab the managership of @pool and create and start a new worker for it.
1791 */
1792 static int create_and_start_worker(struct worker_pool *pool)
1793 {
1794 struct worker *worker;
1795
1796 mutex_lock(&pool->manager_mutex);
1797
1798 worker = create_worker(pool);
1799 if (worker) {
1800 spin_lock_irq(&pool->lock);
1801 start_worker(worker);
1802 spin_unlock_irq(&pool->lock);
1803 }
1804
1805 mutex_unlock(&pool->manager_mutex);
1806
1807 return worker ? 0 : -ENOMEM;
1808 }
1809
1810 /**
1811 * destroy_worker - destroy a workqueue worker
1812 * @worker: worker to be destroyed
1813 *
1814 * Destroy @worker and adjust @pool stats accordingly.
1815 *
1816 * CONTEXT:
1817 * spin_lock_irq(pool->lock) which is released and regrabbed.
1818 */
1819 static void destroy_worker(struct worker *worker)
1820 {
1821 struct worker_pool *pool = worker->pool;
1822
1823 lockdep_assert_held(&pool->manager_mutex);
1824 lockdep_assert_held(&pool->lock);
1825
1826 /* sanity check frenzy */
1827 if (WARN_ON(worker->current_work) ||
1828 WARN_ON(!list_empty(&worker->scheduled)))
1829 return;
1830
1831 if (worker->flags & WORKER_STARTED)
1832 pool->nr_workers--;
1833 if (worker->flags & WORKER_IDLE)
1834 pool->nr_idle--;
1835
1836 list_del_init(&worker->entry);
1837 worker->flags |= WORKER_DIE;
1838
1839 idr_remove(&pool->worker_idr, worker->id);
1840
1841 spin_unlock_irq(&pool->lock);
1842
1843 kthread_stop(worker->task);
1844 kfree(worker);
1845
1846 spin_lock_irq(&pool->lock);
1847 }
1848
1849 static void idle_worker_timeout(unsigned long __pool)
1850 {
1851 struct worker_pool *pool = (void *)__pool;
1852
1853 spin_lock_irq(&pool->lock);
1854
1855 if (too_many_workers(pool)) {
1856 struct worker *worker;
1857 unsigned long expires;
1858
1859 /* idle_list is kept in LIFO order, check the last one */
1860 worker = list_entry(pool->idle_list.prev, struct worker, entry);
1861 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1862
1863 if (time_before(jiffies, expires))
1864 mod_timer(&pool->idle_timer, expires);
1865 else {
1866 /* it's been idle for too long, wake up manager */
1867 pool->flags |= POOL_MANAGE_WORKERS;
1868 wake_up_worker(pool);
1869 }
1870 }
1871
1872 spin_unlock_irq(&pool->lock);
1873 }
1874
1875 static void send_mayday(struct work_struct *work)
1876 {
1877 struct pool_workqueue *pwq = get_work_pwq(work);
1878 struct workqueue_struct *wq = pwq->wq;
1879
1880 lockdep_assert_held(&wq_mayday_lock);
1881
1882 if (!wq->rescuer)
1883 return;
1884
1885 /* mayday mayday mayday */
1886 if (list_empty(&pwq->mayday_node)) {
1887 list_add_tail(&pwq->mayday_node, &wq->maydays);
1888 wake_up_process(wq->rescuer->task);
1889 }
1890 }
1891
1892 static void pool_mayday_timeout(unsigned long __pool)
1893 {
1894 struct worker_pool *pool = (void *)__pool;
1895 struct work_struct *work;
1896
1897 spin_lock_irq(&wq_mayday_lock); /* for wq->maydays */
1898 spin_lock(&pool->lock);
1899
1900 if (need_to_create_worker(pool)) {
1901 /*
1902 * We've been trying to create a new worker but
1903 * haven't been successful. We might be hitting an
1904 * allocation deadlock. Send distress signals to
1905 * rescuers.
1906 */
1907 list_for_each_entry(work, &pool->worklist, entry)
1908 send_mayday(work);
1909 }
1910
1911 spin_unlock(&pool->lock);
1912 spin_unlock_irq(&wq_mayday_lock);
1913
1914 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1915 }
1916
1917 /**
1918 * maybe_create_worker - create a new worker if necessary
1919 * @pool: pool to create a new worker for
1920 *
1921 * Create a new worker for @pool if necessary. @pool is guaranteed to
1922 * have at least one idle worker on return from this function. If
1923 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
1924 * sent to all rescuers with works scheduled on @pool to resolve
1925 * possible allocation deadlock.
1926 *
1927 * On return, need_to_create_worker() is guaranteed to be %false and
1928 * may_start_working() %true.
1929 *
1930 * LOCKING:
1931 * spin_lock_irq(pool->lock) which may be released and regrabbed
1932 * multiple times. Does GFP_KERNEL allocations. Called only from
1933 * manager.
1934 *
1935 * RETURNS:
1936 * %false if no action was taken and pool->lock stayed locked, %true
1937 * otherwise.
1938 */
1939 static bool maybe_create_worker(struct worker_pool *pool)
1940 __releases(&pool->lock)
1941 __acquires(&pool->lock)
1942 {
1943 if (!need_to_create_worker(pool))
1944 return false;
1945 restart:
1946 spin_unlock_irq(&pool->lock);
1947
1948 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
1949 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
1950
1951 while (true) {
1952 struct worker *worker;
1953
1954 worker = create_worker(pool);
1955 if (worker) {
1956 del_timer_sync(&pool->mayday_timer);
1957 spin_lock_irq(&pool->lock);
1958 start_worker(worker);
1959 if (WARN_ON_ONCE(need_to_create_worker(pool)))
1960 goto restart;
1961 return true;
1962 }
1963
1964 if (!need_to_create_worker(pool))
1965 break;
1966
1967 __set_current_state(TASK_INTERRUPTIBLE);
1968 schedule_timeout(CREATE_COOLDOWN);
1969
1970 if (!need_to_create_worker(pool))
1971 break;
1972 }
1973
1974 del_timer_sync(&pool->mayday_timer);
1975 spin_lock_irq(&pool->lock);
1976 if (need_to_create_worker(pool))
1977 goto restart;
1978 return true;
1979 }
1980
1981 /**
1982 * maybe_destroy_worker - destroy workers which have been idle for a while
1983 * @pool: pool to destroy workers for
1984 *
1985 * Destroy @pool workers which have been idle for longer than
1986 * IDLE_WORKER_TIMEOUT.
1987 *
1988 * LOCKING:
1989 * spin_lock_irq(pool->lock) which may be released and regrabbed
1990 * multiple times. Called only from manager.
1991 *
1992 * RETURNS:
1993 * %false if no action was taken and pool->lock stayed locked, %true
1994 * otherwise.
1995 */
1996 static bool maybe_destroy_workers(struct worker_pool *pool)
1997 {
1998 bool ret = false;
1999
2000 while (too_many_workers(pool)) {
2001 struct worker *worker;
2002 unsigned long expires;
2003
2004 worker = list_entry(pool->idle_list.prev, struct worker, entry);
2005 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
2006
2007 if (time_before(jiffies, expires)) {
2008 mod_timer(&pool->idle_timer, expires);
2009 break;
2010 }
2011
2012 destroy_worker(worker);
2013 ret = true;
2014 }
2015
2016 return ret;
2017 }
2018
2019 /**
2020 * manage_workers - manage worker pool
2021 * @worker: self
2022 *
2023 * Assume the manager role and manage the worker pool @worker belongs
2024 * to. At any given time, there can be only zero or one manager per
2025 * pool. The exclusion is handled automatically by this function.
2026 *
2027 * The caller can safely start processing works on false return. On
2028 * true return, it's guaranteed that need_to_create_worker() is false
2029 * and may_start_working() is true.
2030 *
2031 * CONTEXT:
2032 * spin_lock_irq(pool->lock) which may be released and regrabbed
2033 * multiple times. Does GFP_KERNEL allocations.
2034 *
2035 * RETURNS:
2036 * spin_lock_irq(pool->lock) which may be released and regrabbed
2037 * multiple times. Does GFP_KERNEL allocations.
2038 */
2039 static bool manage_workers(struct worker *worker)
2040 {
2041 struct worker_pool *pool = worker->pool;
2042 bool ret = false;
2043
2044 /*
2045 * Managership is governed by two mutexes - manager_arb and
2046 * manager_mutex. manager_arb handles arbitration of manager role.
2047 * Anyone who successfully grabs manager_arb wins the arbitration
2048 * and becomes the manager. mutex_trylock() on pool->manager_arb
2049 * failure while holding pool->lock reliably indicates that someone
2050 * else is managing the pool and the worker which failed trylock
2051 * can proceed to executing work items. This means that anyone
2052 * grabbing manager_arb is responsible for actually performing
2053 * manager duties. If manager_arb is grabbed and released without
2054 * actual management, the pool may stall indefinitely.
2055 *
2056 * manager_mutex is used for exclusion of actual management
2057 * operations. The holder of manager_mutex can be sure that none
2058 * of management operations, including creation and destruction of
2059 * workers, won't take place until the mutex is released. Because
2060 * manager_mutex doesn't interfere with manager role arbitration,
2061 * it is guaranteed that the pool's management, while may be
2062 * delayed, won't be disturbed by someone else grabbing
2063 * manager_mutex.
2064 */
2065 if (!mutex_trylock(&pool->manager_arb))
2066 return ret;
2067
2068 /*
2069 * With manager arbitration won, manager_mutex would be free in
2070 * most cases. trylock first without dropping @pool->lock.
2071 */
2072 if (unlikely(!mutex_trylock(&pool->manager_mutex))) {
2073 spin_unlock_irq(&pool->lock);
2074 mutex_lock(&pool->manager_mutex);
2075 spin_lock_irq(&pool->lock);
2076 ret = true;
2077 }
2078
2079 pool->flags &= ~POOL_MANAGE_WORKERS;
2080
2081 /*
2082 * Destroy and then create so that may_start_working() is true
2083 * on return.
2084 */
2085 ret |= maybe_destroy_workers(pool);
2086 ret |= maybe_create_worker(pool);
2087
2088 mutex_unlock(&pool->manager_mutex);
2089 mutex_unlock(&pool->manager_arb);
2090 return ret;
2091 }
2092
2093 /**
2094 * process_one_work - process single work
2095 * @worker: self
2096 * @work: work to process
2097 *
2098 * Process @work. This function contains all the logics necessary to
2099 * process a single work including synchronization against and
2100 * interaction with other workers on the same cpu, queueing and
2101 * flushing. As long as context requirement is met, any worker can
2102 * call this function to process a work.
2103 *
2104 * CONTEXT:
2105 * spin_lock_irq(pool->lock) which is released and regrabbed.
2106 */
2107 static void process_one_work(struct worker *worker, struct work_struct *work)
2108 __releases(&pool->lock)
2109 __acquires(&pool->lock)
2110 {
2111 struct pool_workqueue *pwq = get_work_pwq(work);
2112 struct worker_pool *pool = worker->pool;
2113 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
2114 int work_color;
2115 struct worker *collision;
2116 #ifdef CONFIG_LOCKDEP
2117 /*
2118 * It is permissible to free the struct work_struct from
2119 * inside the function that is called from it, this we need to
2120 * take into account for lockdep too. To avoid bogus "held
2121 * lock freed" warnings as well as problems when looking into
2122 * work->lockdep_map, make a copy and use that here.
2123 */
2124 struct lockdep_map lockdep_map;
2125
2126 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
2127 #endif
2128 /*
2129 * Ensure we're on the correct CPU. DISASSOCIATED test is
2130 * necessary to avoid spurious warnings from rescuers servicing the
2131 * unbound or a disassociated pool.
2132 */
2133 WARN_ON_ONCE(!(worker->flags & WORKER_UNBOUND) &&
2134 !(pool->flags & POOL_DISASSOCIATED) &&
2135 raw_smp_processor_id() != pool->cpu);
2136
2137 /*
2138 * A single work shouldn't be executed concurrently by
2139 * multiple workers on a single cpu. Check whether anyone is
2140 * already processing the work. If so, defer the work to the
2141 * currently executing one.
2142 */
2143 collision = find_worker_executing_work(pool, work);
2144 if (unlikely(collision)) {
2145 move_linked_works(work, &collision->scheduled, NULL);
2146 return;
2147 }
2148
2149 /* claim and dequeue */
2150 debug_work_deactivate(work);
2151 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
2152 worker->current_work = work;
2153 worker->current_func = work->func;
2154 worker->current_pwq = pwq;
2155 work_color = get_work_color(work);
2156
2157 list_del_init(&work->entry);
2158
2159 /*
2160 * CPU intensive works don't participate in concurrency
2161 * management. They're the scheduler's responsibility.
2162 */
2163 if (unlikely(cpu_intensive))
2164 worker_set_flags(worker, WORKER_CPU_INTENSIVE, true);
2165
2166 /*
2167 * Unbound pool isn't concurrency managed and work items should be
2168 * executed ASAP. Wake up another worker if necessary.
2169 */
2170 if ((worker->flags & WORKER_UNBOUND) && need_more_worker(pool))
2171 wake_up_worker(pool);
2172
2173 /*
2174 * Record the last pool and clear PENDING which should be the last
2175 * update to @work. Also, do this inside @pool->lock so that
2176 * PENDING and queued state changes happen together while IRQ is
2177 * disabled.
2178 */
2179 set_work_pool_and_clear_pending(work, pool->id);
2180
2181 spin_unlock_irq(&pool->lock);
2182
2183 lock_map_acquire_read(&pwq->wq->lockdep_map);
2184 lock_map_acquire(&lockdep_map);
2185 trace_workqueue_execute_start(work);
2186 worker->current_func(work);
2187 /*
2188 * While we must be careful to not use "work" after this, the trace
2189 * point will only record its address.
2190 */
2191 trace_workqueue_execute_end(work);
2192 lock_map_release(&lockdep_map);
2193 lock_map_release(&pwq->wq->lockdep_map);
2194
2195 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
2196 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2197 " last function: %pf\n",
2198 current->comm, preempt_count(), task_pid_nr(current),
2199 worker->current_func);
2200 debug_show_held_locks(current);
2201 dump_stack();
2202 }
2203
2204 /*
2205 * The following prevents a kworker from hogging CPU on !PREEMPT
2206 * kernels, where a requeueing work item waiting for something to
2207 * happen could deadlock with stop_machine as such work item could
2208 * indefinitely requeue itself while all other CPUs are trapped in
2209 * stop_machine.
2210 */
2211 cond_resched();
2212
2213 spin_lock_irq(&pool->lock);
2214
2215 /* clear cpu intensive status */
2216 if (unlikely(cpu_intensive))
2217 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2218
2219 /* we're done with it, release */
2220 hash_del(&worker->hentry);
2221 worker->current_work = NULL;
2222 worker->current_func = NULL;
2223 worker->current_pwq = NULL;
2224 worker->desc_valid = false;
2225 pwq_dec_nr_in_flight(pwq, work_color);
2226 }
2227
2228 /**
2229 * process_scheduled_works - process scheduled works
2230 * @worker: self
2231 *
2232 * Process all scheduled works. Please note that the scheduled list
2233 * may change while processing a work, so this function repeatedly
2234 * fetches a work from the top and executes it.
2235 *
2236 * CONTEXT:
2237 * spin_lock_irq(pool->lock) which may be released and regrabbed
2238 * multiple times.
2239 */
2240 static void process_scheduled_works(struct worker *worker)
2241 {
2242 while (!list_empty(&worker->scheduled)) {
2243 struct work_struct *work = list_first_entry(&worker->scheduled,
2244 struct work_struct, entry);
2245 process_one_work(worker, work);
2246 }
2247 }
2248
2249 /**
2250 * worker_thread - the worker thread function
2251 * @__worker: self
2252 *
2253 * The worker thread function. All workers belong to a worker_pool -
2254 * either a per-cpu one or dynamic unbound one. These workers process all
2255 * work items regardless of their specific target workqueue. The only
2256 * exception is work items which belong to workqueues with a rescuer which
2257 * will be explained in rescuer_thread().
2258 */
2259 static int worker_thread(void *__worker)
2260 {
2261 struct worker *worker = __worker;
2262 struct worker_pool *pool = worker->pool;
2263
2264 /* tell the scheduler that this is a workqueue worker */
2265 worker->task->flags |= PF_WQ_WORKER;
2266 woke_up:
2267 spin_lock_irq(&pool->lock);
2268
2269 /* am I supposed to die? */
2270 if (unlikely(worker->flags & WORKER_DIE)) {
2271 spin_unlock_irq(&pool->lock);
2272 WARN_ON_ONCE(!list_empty(&worker->entry));
2273 worker->task->flags &= ~PF_WQ_WORKER;
2274 return 0;
2275 }
2276
2277 worker_leave_idle(worker);
2278 recheck:
2279 /* no more worker necessary? */
2280 if (!need_more_worker(pool))
2281 goto sleep;
2282
2283 /* do we need to manage? */
2284 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
2285 goto recheck;
2286
2287 /*
2288 * ->scheduled list can only be filled while a worker is
2289 * preparing to process a work or actually processing it.
2290 * Make sure nobody diddled with it while I was sleeping.
2291 */
2292 WARN_ON_ONCE(!list_empty(&worker->scheduled));
2293
2294 /*
2295 * Finish PREP stage. We're guaranteed to have at least one idle
2296 * worker or that someone else has already assumed the manager
2297 * role. This is where @worker starts participating in concurrency
2298 * management if applicable and concurrency management is restored
2299 * after being rebound. See rebind_workers() for details.
2300 */
2301 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
2302
2303 do {
2304 struct work_struct *work =
2305 list_first_entry(&pool->worklist,
2306 struct work_struct, entry);
2307
2308 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2309 /* optimization path, not strictly necessary */
2310 process_one_work(worker, work);
2311 if (unlikely(!list_empty(&worker->scheduled)))
2312 process_scheduled_works(worker);
2313 } else {
2314 move_linked_works(work, &worker->scheduled, NULL);
2315 process_scheduled_works(worker);
2316 }
2317 } while (keep_working(pool));
2318
2319 worker_set_flags(worker, WORKER_PREP, false);
2320 sleep:
2321 if (unlikely(need_to_manage_workers(pool)) && manage_workers(worker))
2322 goto recheck;
2323
2324 /*
2325 * pool->lock is held and there's no work to process and no need to
2326 * manage, sleep. Workers are woken up only while holding
2327 * pool->lock or from local cpu, so setting the current state
2328 * before releasing pool->lock is enough to prevent losing any
2329 * event.
2330 */
2331 worker_enter_idle(worker);
2332 __set_current_state(TASK_INTERRUPTIBLE);
2333 spin_unlock_irq(&pool->lock);
2334 schedule();
2335 goto woke_up;
2336 }
2337
2338 /**
2339 * rescuer_thread - the rescuer thread function
2340 * @__rescuer: self
2341 *
2342 * Workqueue rescuer thread function. There's one rescuer for each
2343 * workqueue which has WQ_MEM_RECLAIM set.
2344 *
2345 * Regular work processing on a pool may block trying to create a new
2346 * worker which uses GFP_KERNEL allocation which has slight chance of
2347 * developing into deadlock if some works currently on the same queue
2348 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2349 * the problem rescuer solves.
2350 *
2351 * When such condition is possible, the pool summons rescuers of all
2352 * workqueues which have works queued on the pool and let them process
2353 * those works so that forward progress can be guaranteed.
2354 *
2355 * This should happen rarely.
2356 */
2357 static int rescuer_thread(void *__rescuer)
2358 {
2359 struct worker *rescuer = __rescuer;
2360 struct workqueue_struct *wq = rescuer->rescue_wq;
2361 struct list_head *scheduled = &rescuer->scheduled;
2362
2363 set_user_nice(current, RESCUER_NICE_LEVEL);
2364
2365 /*
2366 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2367 * doesn't participate in concurrency management.
2368 */
2369 rescuer->task->flags |= PF_WQ_WORKER;
2370 repeat:
2371 set_current_state(TASK_INTERRUPTIBLE);
2372
2373 if (kthread_should_stop()) {
2374 __set_current_state(TASK_RUNNING);
2375 rescuer->task->flags &= ~PF_WQ_WORKER;
2376 return 0;
2377 }
2378
2379 /* see whether any pwq is asking for help */
2380 spin_lock_irq(&wq_mayday_lock);
2381
2382 while (!list_empty(&wq->maydays)) {
2383 struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2384 struct pool_workqueue, mayday_node);
2385 struct worker_pool *pool = pwq->pool;
2386 struct work_struct *work, *n;
2387
2388 __set_current_state(TASK_RUNNING);
2389 list_del_init(&pwq->mayday_node);
2390
2391 spin_unlock_irq(&wq_mayday_lock);
2392
2393 /* migrate to the target cpu if possible */
2394 worker_maybe_bind_and_lock(pool);
2395 rescuer->pool = pool;
2396
2397 /*
2398 * Slurp in all works issued via this workqueue and
2399 * process'em.
2400 */
2401 WARN_ON_ONCE(!list_empty(&rescuer->scheduled));
2402 list_for_each_entry_safe(work, n, &pool->worklist, entry)
2403 if (get_work_pwq(work) == pwq)
2404 move_linked_works(work, scheduled, &n);
2405
2406 process_scheduled_works(rescuer);
2407
2408 /*
2409 * Leave this pool. If keep_working() is %true, notify a
2410 * regular worker; otherwise, we end up with 0 concurrency
2411 * and stalling the execution.
2412 */
2413 if (keep_working(pool))
2414 wake_up_worker(pool);
2415
2416 rescuer->pool = NULL;
2417 spin_unlock(&pool->lock);
2418 spin_lock(&wq_mayday_lock);
2419 }
2420
2421 spin_unlock_irq(&wq_mayday_lock);
2422
2423 /* rescuers should never participate in concurrency management */
2424 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
2425 schedule();
2426 goto repeat;
2427 }
2428
2429 struct wq_barrier {
2430 struct work_struct work;
2431 struct completion done;
2432 };
2433
2434 static void wq_barrier_func(struct work_struct *work)
2435 {
2436 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2437 complete(&barr->done);
2438 }
2439
2440 /**
2441 * insert_wq_barrier - insert a barrier work
2442 * @pwq: pwq to insert barrier into
2443 * @barr: wq_barrier to insert
2444 * @target: target work to attach @barr to
2445 * @worker: worker currently executing @target, NULL if @target is not executing
2446 *
2447 * @barr is linked to @target such that @barr is completed only after
2448 * @target finishes execution. Please note that the ordering
2449 * guarantee is observed only with respect to @target and on the local
2450 * cpu.
2451 *
2452 * Currently, a queued barrier can't be canceled. This is because
2453 * try_to_grab_pending() can't determine whether the work to be
2454 * grabbed is at the head of the queue and thus can't clear LINKED
2455 * flag of the previous work while there must be a valid next work
2456 * after a work with LINKED flag set.
2457 *
2458 * Note that when @worker is non-NULL, @target may be modified
2459 * underneath us, so we can't reliably determine pwq from @target.
2460 *
2461 * CONTEXT:
2462 * spin_lock_irq(pool->lock).
2463 */
2464 static void insert_wq_barrier(struct pool_workqueue *pwq,
2465 struct wq_barrier *barr,
2466 struct work_struct *target, struct worker *worker)
2467 {
2468 struct list_head *head;
2469 unsigned int linked = 0;
2470
2471 /*
2472 * debugobject calls are safe here even with pool->lock locked
2473 * as we know for sure that this will not trigger any of the
2474 * checks and call back into the fixup functions where we
2475 * might deadlock.
2476 */
2477 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
2478 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
2479 init_completion(&barr->done);
2480
2481 /*
2482 * If @target is currently being executed, schedule the
2483 * barrier to the worker; otherwise, put it after @target.
2484 */
2485 if (worker)
2486 head = worker->scheduled.next;
2487 else {
2488 unsigned long *bits = work_data_bits(target);
2489
2490 head = target->entry.next;
2491 /* there can already be other linked works, inherit and set */
2492 linked = *bits & WORK_STRUCT_LINKED;
2493 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2494 }
2495
2496 debug_work_activate(&barr->work);
2497 insert_work(pwq, &barr->work, head,
2498 work_color_to_flags(WORK_NO_COLOR) | linked);
2499 }
2500
2501 /**
2502 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
2503 * @wq: workqueue being flushed
2504 * @flush_color: new flush color, < 0 for no-op
2505 * @work_color: new work color, < 0 for no-op
2506 *
2507 * Prepare pwqs for workqueue flushing.
2508 *
2509 * If @flush_color is non-negative, flush_color on all pwqs should be
2510 * -1. If no pwq has in-flight commands at the specified color, all
2511 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
2512 * has in flight commands, its pwq->flush_color is set to
2513 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
2514 * wakeup logic is armed and %true is returned.
2515 *
2516 * The caller should have initialized @wq->first_flusher prior to
2517 * calling this function with non-negative @flush_color. If
2518 * @flush_color is negative, no flush color update is done and %false
2519 * is returned.
2520 *
2521 * If @work_color is non-negative, all pwqs should have the same
2522 * work_color which is previous to @work_color and all will be
2523 * advanced to @work_color.
2524 *
2525 * CONTEXT:
2526 * mutex_lock(wq->mutex).
2527 *
2528 * RETURNS:
2529 * %true if @flush_color >= 0 and there's something to flush. %false
2530 * otherwise.
2531 */
2532 static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
2533 int flush_color, int work_color)
2534 {
2535 bool wait = false;
2536 struct pool_workqueue *pwq;
2537
2538 if (flush_color >= 0) {
2539 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
2540 atomic_set(&wq->nr_pwqs_to_flush, 1);
2541 }
2542
2543 for_each_pwq(pwq, wq) {
2544 struct worker_pool *pool = pwq->pool;
2545
2546 spin_lock_irq(&pool->lock);
2547
2548 if (flush_color >= 0) {
2549 WARN_ON_ONCE(pwq->flush_color != -1);
2550
2551 if (pwq->nr_in_flight[flush_color]) {
2552 pwq->flush_color = flush_color;
2553 atomic_inc(&wq->nr_pwqs_to_flush);
2554 wait = true;
2555 }
2556 }
2557
2558 if (work_color >= 0) {
2559 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
2560 pwq->work_color = work_color;
2561 }
2562
2563 spin_unlock_irq(&pool->lock);
2564 }
2565
2566 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
2567 complete(&wq->first_flusher->done);
2568
2569 return wait;
2570 }
2571
2572 /**
2573 * flush_workqueue - ensure that any scheduled work has run to completion.
2574 * @wq: workqueue to flush
2575 *
2576 * This function sleeps until all work items which were queued on entry
2577 * have finished execution, but it is not livelocked by new incoming ones.
2578 */
2579 void flush_workqueue(struct workqueue_struct *wq)
2580 {
2581 struct wq_flusher this_flusher = {
2582 .list = LIST_HEAD_INIT(this_flusher.list),
2583 .flush_color = -1,
2584 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2585 };
2586 int next_color;
2587
2588 lock_map_acquire(&wq->lockdep_map);
2589 lock_map_release(&wq->lockdep_map);
2590
2591 mutex_lock(&wq->mutex);
2592
2593 /*
2594 * Start-to-wait phase
2595 */
2596 next_color = work_next_color(wq->work_color);
2597
2598 if (next_color != wq->flush_color) {
2599 /*
2600 * Color space is not full. The current work_color
2601 * becomes our flush_color and work_color is advanced
2602 * by one.
2603 */
2604 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
2605 this_flusher.flush_color = wq->work_color;
2606 wq->work_color = next_color;
2607
2608 if (!wq->first_flusher) {
2609 /* no flush in progress, become the first flusher */
2610 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2611
2612 wq->first_flusher = &this_flusher;
2613
2614 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
2615 wq->work_color)) {
2616 /* nothing to flush, done */
2617 wq->flush_color = next_color;
2618 wq->first_flusher = NULL;
2619 goto out_unlock;
2620 }
2621 } else {
2622 /* wait in queue */
2623 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
2624 list_add_tail(&this_flusher.list, &wq->flusher_queue);
2625 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2626 }
2627 } else {
2628 /*
2629 * Oops, color space is full, wait on overflow queue.
2630 * The next flush completion will assign us
2631 * flush_color and transfer to flusher_queue.
2632 */
2633 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2634 }
2635
2636 mutex_unlock(&wq->mutex);
2637
2638 wait_for_completion(&this_flusher.done);
2639
2640 /*
2641 * Wake-up-and-cascade phase
2642 *
2643 * First flushers are responsible for cascading flushes and
2644 * handling overflow. Non-first flushers can simply return.
2645 */
2646 if (wq->first_flusher != &this_flusher)
2647 return;
2648
2649 mutex_lock(&wq->mutex);
2650
2651 /* we might have raced, check again with mutex held */
2652 if (wq->first_flusher != &this_flusher)
2653 goto out_unlock;
2654
2655 wq->first_flusher = NULL;
2656
2657 WARN_ON_ONCE(!list_empty(&this_flusher.list));
2658 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
2659
2660 while (true) {
2661 struct wq_flusher *next, *tmp;
2662
2663 /* complete all the flushers sharing the current flush color */
2664 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2665 if (next->flush_color != wq->flush_color)
2666 break;
2667 list_del_init(&next->list);
2668 complete(&next->done);
2669 }
2670
2671 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2672 wq->flush_color != work_next_color(wq->work_color));
2673
2674 /* this flush_color is finished, advance by one */
2675 wq->flush_color = work_next_color(wq->flush_color);
2676
2677 /* one color has been freed, handle overflow queue */
2678 if (!list_empty(&wq->flusher_overflow)) {
2679 /*
2680 * Assign the same color to all overflowed
2681 * flushers, advance work_color and append to
2682 * flusher_queue. This is the start-to-wait
2683 * phase for these overflowed flushers.
2684 */
2685 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2686 tmp->flush_color = wq->work_color;
2687
2688 wq->work_color = work_next_color(wq->work_color);
2689
2690 list_splice_tail_init(&wq->flusher_overflow,
2691 &wq->flusher_queue);
2692 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
2693 }
2694
2695 if (list_empty(&wq->flusher_queue)) {
2696 WARN_ON_ONCE(wq->flush_color != wq->work_color);
2697 break;
2698 }
2699
2700 /*
2701 * Need to flush more colors. Make the next flusher
2702 * the new first flusher and arm pwqs.
2703 */
2704 WARN_ON_ONCE(wq->flush_color == wq->work_color);
2705 WARN_ON_ONCE(wq->flush_color != next->flush_color);
2706
2707 list_del_init(&next->list);
2708 wq->first_flusher = next;
2709
2710 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
2711 break;
2712
2713 /*
2714 * Meh... this color is already done, clear first
2715 * flusher and repeat cascading.
2716 */
2717 wq->first_flusher = NULL;
2718 }
2719
2720 out_unlock:
2721 mutex_unlock(&wq->mutex);
2722 }
2723 EXPORT_SYMBOL_GPL(flush_workqueue);
2724
2725 /**
2726 * drain_workqueue - drain a workqueue
2727 * @wq: workqueue to drain
2728 *
2729 * Wait until the workqueue becomes empty. While draining is in progress,
2730 * only chain queueing is allowed. IOW, only currently pending or running
2731 * work items on @wq can queue further work items on it. @wq is flushed
2732 * repeatedly until it becomes empty. The number of flushing is detemined
2733 * by the depth of chaining and should be relatively short. Whine if it
2734 * takes too long.
2735 */
2736 void drain_workqueue(struct workqueue_struct *wq)
2737 {
2738 unsigned int flush_cnt = 0;
2739 struct pool_workqueue *pwq;
2740
2741 /*
2742 * __queue_work() needs to test whether there are drainers, is much
2743 * hotter than drain_workqueue() and already looks at @wq->flags.
2744 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
2745 */
2746 mutex_lock(&wq->mutex);
2747 if (!wq->nr_drainers++)
2748 wq->flags |= __WQ_DRAINING;
2749 mutex_unlock(&wq->mutex);
2750 reflush:
2751 flush_workqueue(wq);
2752
2753 mutex_lock(&wq->mutex);
2754
2755 for_each_pwq(pwq, wq) {
2756 bool drained;
2757
2758 spin_lock_irq(&pwq->pool->lock);
2759 drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
2760 spin_unlock_irq(&pwq->pool->lock);
2761
2762 if (drained)
2763 continue;
2764
2765 if (++flush_cnt == 10 ||
2766 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
2767 pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
2768 wq->name, flush_cnt);
2769
2770 mutex_unlock(&wq->mutex);
2771 goto reflush;
2772 }
2773
2774 if (!--wq->nr_drainers)
2775 wq->flags &= ~__WQ_DRAINING;
2776 mutex_unlock(&wq->mutex);
2777 }
2778 EXPORT_SYMBOL_GPL(drain_workqueue);
2779
2780 static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
2781 {
2782 struct worker *worker = NULL;
2783 struct worker_pool *pool;
2784 struct pool_workqueue *pwq;
2785
2786 might_sleep();
2787
2788 local_irq_disable();
2789 pool = get_work_pool(work);
2790 if (!pool) {
2791 local_irq_enable();
2792 return false;
2793 }
2794
2795 spin_lock(&pool->lock);
2796 /* see the comment in try_to_grab_pending() with the same code */
2797 pwq = get_work_pwq(work);
2798 if (pwq) {
2799 if (unlikely(pwq->pool != pool))
2800 goto already_gone;
2801 } else {
2802 worker = find_worker_executing_work(pool, work);
2803 if (!worker)
2804 goto already_gone;
2805 pwq = worker->current_pwq;
2806 }
2807
2808 insert_wq_barrier(pwq, barr, work, worker);
2809 spin_unlock_irq(&pool->lock);
2810
2811 /*
2812 * If @max_active is 1 or rescuer is in use, flushing another work
2813 * item on the same workqueue may lead to deadlock. Make sure the
2814 * flusher is not running on the same workqueue by verifying write
2815 * access.
2816 */
2817 if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
2818 lock_map_acquire(&pwq->wq->lockdep_map);
2819 else
2820 lock_map_acquire_read(&pwq->wq->lockdep_map);
2821 lock_map_release(&pwq->wq->lockdep_map);
2822
2823 return true;
2824 already_gone:
2825 spin_unlock_irq(&pool->lock);
2826 return false;
2827 }
2828
2829 static bool __flush_work(struct work_struct *work)
2830 {
2831 struct wq_barrier barr;
2832
2833 if (start_flush_work(work, &barr)) {
2834 wait_for_completion(&barr.done);
2835 destroy_work_on_stack(&barr.work);
2836 return true;
2837 } else {
2838 return false;
2839 }
2840 }
2841
2842 /**
2843 * flush_work - wait for a work to finish executing the last queueing instance
2844 * @work: the work to flush
2845 *
2846 * Wait until @work has finished execution. @work is guaranteed to be idle
2847 * on return if it hasn't been requeued since flush started.
2848 *
2849 * RETURNS:
2850 * %true if flush_work() waited for the work to finish execution,
2851 * %false if it was already idle.
2852 */
2853 bool flush_work(struct work_struct *work)
2854 {
2855 lock_map_acquire(&work->lockdep_map);
2856 lock_map_release(&work->lockdep_map);
2857
2858 return __flush_work(work);
2859 }
2860 EXPORT_SYMBOL_GPL(flush_work);
2861
2862 static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
2863 {
2864 unsigned long flags;
2865 int ret;
2866
2867 do {
2868 ret = try_to_grab_pending(work, is_dwork, &flags);
2869 /*
2870 * If someone else is canceling, wait for the same event it
2871 * would be waiting for before retrying.
2872 */
2873 if (unlikely(ret == -ENOENT))
2874 flush_work(work);
2875 } while (unlikely(ret < 0));
2876
2877 /* tell other tasks trying to grab @work to back off */
2878 mark_work_canceling(work);
2879 local_irq_restore(flags);
2880
2881 flush_work(work);
2882 clear_work_data(work);
2883 return ret;
2884 }
2885
2886 /**
2887 * cancel_work_sync - cancel a work and wait for it to finish
2888 * @work: the work to cancel
2889 *
2890 * Cancel @work and wait for its execution to finish. This function
2891 * can be used even if the work re-queues itself or migrates to
2892 * another workqueue. On return from this function, @work is
2893 * guaranteed to be not pending or executing on any CPU.
2894 *
2895 * cancel_work_sync(&delayed_work->work) must not be used for
2896 * delayed_work's. Use cancel_delayed_work_sync() instead.
2897 *
2898 * The caller must ensure that the workqueue on which @work was last
2899 * queued can't be destroyed before this function returns.
2900 *
2901 * RETURNS:
2902 * %true if @work was pending, %false otherwise.
2903 */
2904 bool cancel_work_sync(struct work_struct *work)
2905 {
2906 return __cancel_work_timer(work, false);
2907 }
2908 EXPORT_SYMBOL_GPL(cancel_work_sync);
2909
2910 /**
2911 * flush_delayed_work - wait for a dwork to finish executing the last queueing
2912 * @dwork: the delayed work to flush
2913 *
2914 * Delayed timer is cancelled and the pending work is queued for
2915 * immediate execution. Like flush_work(), this function only
2916 * considers the last queueing instance of @dwork.
2917 *
2918 * RETURNS:
2919 * %true if flush_work() waited for the work to finish execution,
2920 * %false if it was already idle.
2921 */
2922 bool flush_delayed_work(struct delayed_work *dwork)
2923 {
2924 local_irq_disable();
2925 if (del_timer_sync(&dwork->timer))
2926 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
2927 local_irq_enable();
2928 return flush_work(&dwork->work);
2929 }
2930 EXPORT_SYMBOL(flush_delayed_work);
2931
2932 /**
2933 * cancel_delayed_work - cancel a delayed work
2934 * @dwork: delayed_work to cancel
2935 *
2936 * Kill off a pending delayed_work. Returns %true if @dwork was pending
2937 * and canceled; %false if wasn't pending. Note that the work callback
2938 * function may still be running on return, unless it returns %true and the
2939 * work doesn't re-arm itself. Explicitly flush or use
2940 * cancel_delayed_work_sync() to wait on it.
2941 *
2942 * This function is safe to call from any context including IRQ handler.
2943 */
2944 bool cancel_delayed_work(struct delayed_work *dwork)
2945 {
2946 unsigned long flags;
2947 int ret;
2948
2949 do {
2950 ret = try_to_grab_pending(&dwork->work, true, &flags);
2951 } while (unlikely(ret == -EAGAIN));
2952
2953 if (unlikely(ret < 0))
2954 return false;
2955
2956 set_work_pool_and_clear_pending(&dwork->work,
2957 get_work_pool_id(&dwork->work));
2958 local_irq_restore(flags);
2959 return ret;
2960 }
2961 EXPORT_SYMBOL(cancel_delayed_work);
2962
2963 /**
2964 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
2965 * @dwork: the delayed work cancel
2966 *
2967 * This is cancel_work_sync() for delayed works.
2968 *
2969 * RETURNS:
2970 * %true if @dwork was pending, %false otherwise.
2971 */
2972 bool cancel_delayed_work_sync(struct delayed_work *dwork)
2973 {
2974 return __cancel_work_timer(&dwork->work, true);
2975 }
2976 EXPORT_SYMBOL(cancel_delayed_work_sync);
2977
2978 /**
2979 * schedule_on_each_cpu - execute a function synchronously on each online CPU
2980 * @func: the function to call
2981 *
2982 * schedule_on_each_cpu() executes @func on each online CPU using the
2983 * system workqueue and blocks until all CPUs have completed.
2984 * schedule_on_each_cpu() is very slow.
2985 *
2986 * RETURNS:
2987 * 0 on success, -errno on failure.
2988 */
2989 int schedule_on_each_cpu(work_func_t func)
2990 {
2991 int cpu;
2992 struct work_struct __percpu *works;
2993
2994 works = alloc_percpu(struct work_struct);
2995 if (!works)
2996 return -ENOMEM;
2997
2998 get_online_cpus();
2999
3000 for_each_online_cpu(cpu) {
3001 struct work_struct *work = per_cpu_ptr(works, cpu);
3002
3003 INIT_WORK(work, func);
3004 schedule_work_on(cpu, work);
3005 }
3006
3007 for_each_online_cpu(cpu)
3008 flush_work(per_cpu_ptr(works, cpu));
3009
3010 put_online_cpus();
3011 free_percpu(works);
3012 return 0;
3013 }
3014
3015 /**
3016 * flush_scheduled_work - ensure that any scheduled work has run to completion.
3017 *
3018 * Forces execution of the kernel-global workqueue and blocks until its
3019 * completion.
3020 *
3021 * Think twice before calling this function! It's very easy to get into
3022 * trouble if you don't take great care. Either of the following situations
3023 * will lead to deadlock:
3024 *
3025 * One of the work items currently on the workqueue needs to acquire
3026 * a lock held by your code or its caller.
3027 *
3028 * Your code is running in the context of a work routine.
3029 *
3030 * They will be detected by lockdep when they occur, but the first might not
3031 * occur very often. It depends on what work items are on the workqueue and
3032 * what locks they need, which you have no control over.
3033 *
3034 * In most situations flushing the entire workqueue is overkill; you merely
3035 * need to know that a particular work item isn't queued and isn't running.
3036 * In such cases you should use cancel_delayed_work_sync() or
3037 * cancel_work_sync() instead.
3038 */
3039 void flush_scheduled_work(void)
3040 {
3041 flush_workqueue(system_wq);
3042 }
3043 EXPORT_SYMBOL(flush_scheduled_work);
3044
3045 /**
3046 * execute_in_process_context - reliably execute the routine with user context
3047 * @fn: the function to execute
3048 * @ew: guaranteed storage for the execute work structure (must
3049 * be available when the work executes)
3050 *
3051 * Executes the function immediately if process context is available,
3052 * otherwise schedules the function for delayed execution.
3053 *
3054 * Returns: 0 - function was executed
3055 * 1 - function was scheduled for execution
3056 */
3057 int execute_in_process_context(work_func_t fn, struct execute_work *ew)
3058 {
3059 if (!in_interrupt()) {
3060 fn(&ew->work);
3061 return 0;
3062 }
3063
3064 INIT_WORK(&ew->work, fn);
3065 schedule_work(&ew->work);
3066
3067 return 1;
3068 }
3069 EXPORT_SYMBOL_GPL(execute_in_process_context);
3070
3071 #ifdef CONFIG_SYSFS
3072 /*
3073 * Workqueues with WQ_SYSFS flag set is visible to userland via
3074 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
3075 * following attributes.
3076 *
3077 * per_cpu RO bool : whether the workqueue is per-cpu or unbound
3078 * max_active RW int : maximum number of in-flight work items
3079 *
3080 * Unbound workqueues have the following extra attributes.
3081 *
3082 * id RO int : the associated pool ID
3083 * nice RW int : nice value of the workers
3084 * cpumask RW mask : bitmask of allowed CPUs for the workers
3085 */
3086 struct wq_device {
3087 struct workqueue_struct *wq;
3088 struct device dev;
3089 };
3090
3091 static struct workqueue_struct *dev_to_wq(struct device *dev)
3092 {
3093 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
3094
3095 return wq_dev->wq;
3096 }
3097
3098 static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
3099 char *buf)
3100 {
3101 struct workqueue_struct *wq = dev_to_wq(dev);
3102
3103 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
3104 }
3105 static DEVICE_ATTR_RO(per_cpu);
3106
3107 static ssize_t max_active_show(struct device *dev,
3108 struct device_attribute *attr, char *buf)
3109 {
3110 struct workqueue_struct *wq = dev_to_wq(dev);
3111
3112 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
3113 }
3114
3115 static ssize_t max_active_store(struct device *dev,
3116 struct device_attribute *attr, const char *buf,
3117 size_t count)
3118 {
3119 struct workqueue_struct *wq = dev_to_wq(dev);
3120 int val;
3121
3122 if (sscanf(buf, "%d", &val) != 1 || val <= 0)
3123 return -EINVAL;
3124
3125 workqueue_set_max_active(wq, val);
3126 return count;
3127 }
3128 static DEVICE_ATTR_RW(max_active);
3129
3130 static struct attribute *wq_sysfs_attrs[] = {
3131 &dev_attr_per_cpu.attr,
3132 &dev_attr_max_active.attr,
3133 NULL,
3134 };
3135 ATTRIBUTE_GROUPS(wq_sysfs);
3136
3137 static ssize_t wq_pool_ids_show(struct device *dev,
3138 struct device_attribute *attr, char *buf)
3139 {
3140 struct workqueue_struct *wq = dev_to_wq(dev);
3141 const char *delim = "";
3142 int node, written = 0;
3143
3144 rcu_read_lock_sched();
3145 for_each_node(node) {
3146 written += scnprintf(buf + written, PAGE_SIZE - written,
3147 "%s%d:%d", delim, node,
3148 unbound_pwq_by_node(wq, node)->pool->id);
3149 delim = " ";
3150 }
3151 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
3152 rcu_read_unlock_sched();
3153
3154 return written;
3155 }
3156
3157 static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
3158 char *buf)
3159 {
3160 struct workqueue_struct *wq = dev_to_wq(dev);
3161 int written;
3162
3163 mutex_lock(&wq->mutex);
3164 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
3165 mutex_unlock(&wq->mutex);
3166
3167 return written;
3168 }
3169
3170 /* prepare workqueue_attrs for sysfs store operations */
3171 static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
3172 {
3173 struct workqueue_attrs *attrs;
3174
3175 attrs = alloc_workqueue_attrs(GFP_KERNEL);
3176 if (!attrs)
3177 return NULL;
3178
3179 mutex_lock(&wq->mutex);
3180 copy_workqueue_attrs(attrs, wq->unbound_attrs);
3181 mutex_unlock(&wq->mutex);
3182 return attrs;
3183 }
3184
3185 static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
3186 const char *buf, size_t count)
3187 {
3188 struct workqueue_struct *wq = dev_to_wq(dev);
3189 struct workqueue_attrs *attrs;
3190 int ret;
3191
3192 attrs = wq_sysfs_prep_attrs(wq);
3193 if (!attrs)
3194 return -ENOMEM;
3195
3196 if (sscanf(buf, "%d", &attrs->nice) == 1 &&
3197 attrs->nice >= -20 && attrs->nice <= 19)
3198 ret = apply_workqueue_attrs(wq, attrs);
3199 else
3200 ret = -EINVAL;
3201
3202 free_workqueue_attrs(attrs);
3203 return ret ?: count;
3204 }
3205
3206 static ssize_t wq_cpumask_show(struct device *dev,
3207 struct device_attribute *attr, char *buf)
3208 {
3209 struct workqueue_struct *wq = dev_to_wq(dev);
3210 int written;
3211
3212 mutex_lock(&wq->mutex);
3213 written = cpumask_scnprintf(buf, PAGE_SIZE, wq->unbound_attrs->cpumask);
3214 mutex_unlock(&wq->mutex);
3215
3216 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
3217 return written;
3218 }
3219
3220 static ssize_t wq_cpumask_store(struct device *dev,
3221 struct device_attribute *attr,
3222 const char *buf, size_t count)
3223 {
3224 struct workqueue_struct *wq = dev_to_wq(dev);
3225 struct workqueue_attrs *attrs;
3226 int ret;
3227
3228 attrs = wq_sysfs_prep_attrs(wq);
3229 if (!attrs)
3230 return -ENOMEM;
3231
3232 ret = cpumask_parse(buf, attrs->cpumask);
3233 if (!ret)
3234 ret = apply_workqueue_attrs(wq, attrs);
3235
3236 free_workqueue_attrs(attrs);
3237 return ret ?: count;
3238 }
3239
3240 static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
3241 char *buf)
3242 {
3243 struct workqueue_struct *wq = dev_to_wq(dev);
3244 int written;
3245
3246 mutex_lock(&wq->mutex);
3247 written = scnprintf(buf, PAGE_SIZE, "%d\n",
3248 !wq->unbound_attrs->no_numa);
3249 mutex_unlock(&wq->mutex);
3250
3251 return written;
3252 }
3253
3254 static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
3255 const char *buf, size_t count)
3256 {
3257 struct workqueue_struct *wq = dev_to_wq(dev);
3258 struct workqueue_attrs *attrs;
3259 int v, ret;
3260
3261 attrs = wq_sysfs_prep_attrs(wq);
3262 if (!attrs)
3263 return -ENOMEM;
3264
3265 ret = -EINVAL;
3266 if (sscanf(buf, "%d", &v) == 1) {
3267 attrs->no_numa = !v;
3268 ret = apply_workqueue_attrs(wq, attrs);
3269 }
3270
3271 free_workqueue_attrs(attrs);
3272 return ret ?: count;
3273 }
3274
3275 static struct device_attribute wq_sysfs_unbound_attrs[] = {
3276 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
3277 __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
3278 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
3279 __ATTR(numa, 0644, wq_numa_show, wq_numa_store),
3280 __ATTR_NULL,
3281 };
3282
3283 static struct bus_type wq_subsys = {
3284 .name = "workqueue",
3285 .dev_groups = wq_sysfs_groups,
3286 };
3287
3288 static int __init wq_sysfs_init(void)
3289 {
3290 return subsys_virtual_register(&wq_subsys, NULL);
3291 }
3292 core_initcall(wq_sysfs_init);
3293
3294 static void wq_device_release(struct device *dev)
3295 {
3296 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
3297
3298 kfree(wq_dev);
3299 }
3300
3301 /**
3302 * workqueue_sysfs_register - make a workqueue visible in sysfs
3303 * @wq: the workqueue to register
3304 *
3305 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
3306 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
3307 * which is the preferred method.
3308 *
3309 * Workqueue user should use this function directly iff it wants to apply
3310 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
3311 * apply_workqueue_attrs() may race against userland updating the
3312 * attributes.
3313 *
3314 * Returns 0 on success, -errno on failure.
3315 */
3316 int workqueue_sysfs_register(struct workqueue_struct *wq)
3317 {
3318 struct wq_device *wq_dev;
3319 int ret;
3320
3321 /*
3322 * Adjusting max_active or creating new pwqs by applyting
3323 * attributes breaks ordering guarantee. Disallow exposing ordered
3324 * workqueues.
3325 */
3326 if (WARN_ON(wq->flags & __WQ_ORDERED))
3327 return -EINVAL;
3328
3329 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
3330 if (!wq_dev)
3331 return -ENOMEM;
3332
3333 wq_dev->wq = wq;
3334 wq_dev->dev.bus = &wq_subsys;
3335 wq_dev->dev.init_name = wq->name;
3336 wq_dev->dev.release = wq_device_release;
3337
3338 /*
3339 * unbound_attrs are created separately. Suppress uevent until
3340 * everything is ready.
3341 */
3342 dev_set_uevent_suppress(&wq_dev->dev, true);
3343
3344 ret = device_register(&wq_dev->dev);
3345 if (ret) {
3346 kfree(wq_dev);
3347 wq->wq_dev = NULL;
3348 return ret;
3349 }
3350
3351 if (wq->flags & WQ_UNBOUND) {
3352 struct device_attribute *attr;
3353
3354 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
3355 ret = device_create_file(&wq_dev->dev, attr);
3356 if (ret) {
3357 device_unregister(&wq_dev->dev);
3358 wq->wq_dev = NULL;
3359 return ret;
3360 }
3361 }
3362 }
3363
3364 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
3365 return 0;
3366 }
3367
3368 /**
3369 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
3370 * @wq: the workqueue to unregister
3371 *
3372 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
3373 */
3374 static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
3375 {
3376 struct wq_device *wq_dev = wq->wq_dev;
3377
3378 if (!wq->wq_dev)
3379 return;
3380
3381 wq->wq_dev = NULL;
3382 device_unregister(&wq_dev->dev);
3383 }
3384 #else /* CONFIG_SYSFS */
3385 static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { }
3386 #endif /* CONFIG_SYSFS */
3387
3388 /**
3389 * free_workqueue_attrs - free a workqueue_attrs
3390 * @attrs: workqueue_attrs to free
3391 *
3392 * Undo alloc_workqueue_attrs().
3393 */
3394 void free_workqueue_attrs(struct workqueue_attrs *attrs)
3395 {
3396 if (attrs) {
3397 free_cpumask_var(attrs->cpumask);
3398 kfree(attrs);
3399 }
3400 }
3401
3402 /**
3403 * alloc_workqueue_attrs - allocate a workqueue_attrs
3404 * @gfp_mask: allocation mask to use
3405 *
3406 * Allocate a new workqueue_attrs, initialize with default settings and
3407 * return it. Returns NULL on failure.
3408 */
3409 struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
3410 {
3411 struct workqueue_attrs *attrs;
3412
3413 attrs = kzalloc(sizeof(*attrs), gfp_mask);
3414 if (!attrs)
3415 goto fail;
3416 if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
3417 goto fail;
3418
3419 cpumask_copy(attrs->cpumask, cpu_possible_mask);
3420 return attrs;
3421 fail:
3422 free_workqueue_attrs(attrs);
3423 return NULL;
3424 }
3425
3426 static void copy_workqueue_attrs(struct workqueue_attrs *to,
3427 const struct workqueue_attrs *from)
3428 {
3429 to->nice = from->nice;
3430 cpumask_copy(to->cpumask, from->cpumask);
3431 /*
3432 * Unlike hash and equality test, this function doesn't ignore
3433 * ->no_numa as it is used for both pool and wq attrs. Instead,
3434 * get_unbound_pool() explicitly clears ->no_numa after copying.
3435 */
3436 to->no_numa = from->no_numa;
3437 }
3438
3439 /* hash value of the content of @attr */
3440 static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
3441 {
3442 u32 hash = 0;
3443
3444 hash = jhash_1word(attrs->nice, hash);
3445 hash = jhash(cpumask_bits(attrs->cpumask),
3446 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3447 return hash;
3448 }
3449
3450 /* content equality test */
3451 static bool wqattrs_equal(const struct workqueue_attrs *a,
3452 const struct workqueue_attrs *b)
3453 {
3454 if (a->nice != b->nice)
3455 return false;
3456 if (!cpumask_equal(a->cpumask, b->cpumask))
3457 return false;
3458 return true;
3459 }
3460
3461 /**
3462 * init_worker_pool - initialize a newly zalloc'd worker_pool
3463 * @pool: worker_pool to initialize
3464 *
3465 * Initiailize a newly zalloc'd @pool. It also allocates @pool->attrs.
3466 * Returns 0 on success, -errno on failure. Even on failure, all fields
3467 * inside @pool proper are initialized and put_unbound_pool() can be called
3468 * on @pool safely to release it.
3469 */
3470 static int init_worker_pool(struct worker_pool *pool)
3471 {
3472 spin_lock_init(&pool->lock);
3473 pool->id = -1;
3474 pool->cpu = -1;
3475 pool->node = NUMA_NO_NODE;
3476 pool->flags |= POOL_DISASSOCIATED;
3477 INIT_LIST_HEAD(&pool->worklist);
3478 INIT_LIST_HEAD(&pool->idle_list);
3479 hash_init(pool->busy_hash);
3480
3481 init_timer_deferrable(&pool->idle_timer);
3482 pool->idle_timer.function = idle_worker_timeout;
3483 pool->idle_timer.data = (unsigned long)pool;
3484
3485 setup_timer(&pool->mayday_timer, pool_mayday_timeout,
3486 (unsigned long)pool);
3487
3488 mutex_init(&pool->manager_arb);
3489 mutex_init(&pool->manager_mutex);
3490 idr_init(&pool->worker_idr);
3491
3492 INIT_HLIST_NODE(&pool->hash_node);
3493 pool->refcnt = 1;
3494
3495 /* shouldn't fail above this point */
3496 pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
3497 if (!pool->attrs)
3498 return -ENOMEM;
3499 return 0;
3500 }
3501
3502 static void rcu_free_pool(struct rcu_head *rcu)
3503 {
3504 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
3505
3506 idr_destroy(&pool->worker_idr);
3507 free_workqueue_attrs(pool->attrs);
3508 kfree(pool);
3509 }
3510
3511 /**
3512 * put_unbound_pool - put a worker_pool
3513 * @pool: worker_pool to put
3514 *
3515 * Put @pool. If its refcnt reaches zero, it gets destroyed in sched-RCU
3516 * safe manner. get_unbound_pool() calls this function on its failure path
3517 * and this function should be able to release pools which went through,
3518 * successfully or not, init_worker_pool().
3519 *
3520 * Should be called with wq_pool_mutex held.
3521 */
3522 static void put_unbound_pool(struct worker_pool *pool)
3523 {
3524 struct worker *worker;
3525
3526 lockdep_assert_held(&wq_pool_mutex);
3527
3528 if (--pool->refcnt)
3529 return;
3530
3531 /* sanity checks */
3532 if (WARN_ON(!(pool->flags & POOL_DISASSOCIATED)) ||
3533 WARN_ON(!list_empty(&pool->worklist)))
3534 return;
3535
3536 /* release id and unhash */
3537 if (pool->id >= 0)
3538 idr_remove(&worker_pool_idr, pool->id);
3539 hash_del(&pool->hash_node);
3540
3541 /*
3542 * Become the manager and destroy all workers. Grabbing
3543 * manager_arb prevents @pool's workers from blocking on
3544 * manager_mutex.
3545 */
3546 mutex_lock(&pool->manager_arb);
3547 mutex_lock(&pool->manager_mutex);
3548 spin_lock_irq(&pool->lock);
3549
3550 while ((worker = first_worker(pool)))
3551 destroy_worker(worker);
3552 WARN_ON(pool->nr_workers || pool->nr_idle);
3553
3554 spin_unlock_irq(&pool->lock);
3555 mutex_unlock(&pool->manager_mutex);
3556 mutex_unlock(&pool->manager_arb);
3557
3558 /* shut down the timers */
3559 del_timer_sync(&pool->idle_timer);
3560 del_timer_sync(&pool->mayday_timer);
3561
3562 /* sched-RCU protected to allow dereferences from get_work_pool() */
3563 call_rcu_sched(&pool->rcu, rcu_free_pool);
3564 }
3565
3566 /**
3567 * get_unbound_pool - get a worker_pool with the specified attributes
3568 * @attrs: the attributes of the worker_pool to get
3569 *
3570 * Obtain a worker_pool which has the same attributes as @attrs, bump the
3571 * reference count and return it. If there already is a matching
3572 * worker_pool, it will be used; otherwise, this function attempts to
3573 * create a new one. On failure, returns NULL.
3574 *
3575 * Should be called with wq_pool_mutex held.
3576 */
3577 static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
3578 {
3579 u32 hash = wqattrs_hash(attrs);
3580 struct worker_pool *pool;
3581 int node;
3582
3583 lockdep_assert_held(&wq_pool_mutex);
3584
3585 /* do we already have a matching pool? */
3586 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3587 if (wqattrs_equal(pool->attrs, attrs)) {
3588 pool->refcnt++;
3589 goto out_unlock;
3590 }
3591 }
3592
3593 /* nope, create a new one */
3594 pool = kzalloc(sizeof(*pool), GFP_KERNEL);
3595 if (!pool || init_worker_pool(pool) < 0)
3596 goto fail;
3597
3598 if (workqueue_freezing)
3599 pool->flags |= POOL_FREEZING;
3600
3601 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */
3602 copy_workqueue_attrs(pool->attrs, attrs);
3603
3604 /*
3605 * no_numa isn't a worker_pool attribute, always clear it. See
3606 * 'struct workqueue_attrs' comments for detail.
3607 */
3608 pool->attrs->no_numa = false;
3609
3610 /* if cpumask is contained inside a NUMA node, we belong to that node */
3611 if (wq_numa_enabled) {
3612 for_each_node(node) {
3613 if (cpumask_subset(pool->attrs->cpumask,
3614 wq_numa_possible_cpumask[node])) {
3615 pool->node = node;
3616 break;
3617 }
3618 }
3619 }
3620
3621 if (worker_pool_assign_id(pool) < 0)
3622 goto fail;
3623
3624 /* create and start the initial worker */
3625 if (create_and_start_worker(pool) < 0)
3626 goto fail;
3627
3628 /* install */
3629 hash_add(unbound_pool_hash, &pool->hash_node, hash);
3630 out_unlock:
3631 return pool;
3632 fail:
3633 if (pool)
3634 put_unbound_pool(pool);
3635 return NULL;
3636 }
3637
3638 static void rcu_free_pwq(struct rcu_head *rcu)
3639 {
3640 kmem_cache_free(pwq_cache,
3641 container_of(rcu, struct pool_workqueue, rcu));
3642 }
3643
3644 /*
3645 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3646 * and needs to be destroyed.
3647 */
3648 static void pwq_unbound_release_workfn(struct work_struct *work)
3649 {
3650 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3651 unbound_release_work);
3652 struct workqueue_struct *wq = pwq->wq;
3653 struct worker_pool *pool = pwq->pool;
3654 bool is_last;
3655
3656 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3657 return;
3658
3659 /*
3660 * Unlink @pwq. Synchronization against wq->mutex isn't strictly
3661 * necessary on release but do it anyway. It's easier to verify
3662 * and consistent with the linking path.
3663 */
3664 mutex_lock(&wq->mutex);
3665 list_del_rcu(&pwq->pwqs_node);
3666 is_last = list_empty(&wq->pwqs);
3667 mutex_unlock(&wq->mutex);
3668
3669 mutex_lock(&wq_pool_mutex);
3670 put_unbound_pool(pool);
3671 mutex_unlock(&wq_pool_mutex);
3672
3673 call_rcu_sched(&pwq->rcu, rcu_free_pwq);
3674
3675 /*
3676 * If we're the last pwq going away, @wq is already dead and no one
3677 * is gonna access it anymore. Free it.
3678 */
3679 if (is_last) {
3680 free_workqueue_attrs(wq->unbound_attrs);
3681 kfree(wq);
3682 }
3683 }
3684
3685 /**
3686 * pwq_adjust_max_active - update a pwq's max_active to the current setting
3687 * @pwq: target pool_workqueue
3688 *
3689 * If @pwq isn't freezing, set @pwq->max_active to the associated
3690 * workqueue's saved_max_active and activate delayed work items
3691 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero.
3692 */
3693 static void pwq_adjust_max_active(struct pool_workqueue *pwq)
3694 {
3695 struct workqueue_struct *wq = pwq->wq;
3696 bool freezable = wq->flags & WQ_FREEZABLE;
3697
3698 /* for @wq->saved_max_active */
3699 lockdep_assert_held(&wq->mutex);
3700
3701 /* fast exit for non-freezable wqs */
3702 if (!freezable && pwq->max_active == wq->saved_max_active)
3703 return;
3704
3705 spin_lock_irq(&pwq->pool->lock);
3706
3707 if (!freezable || !(pwq->pool->flags & POOL_FREEZING)) {
3708 pwq->max_active = wq->saved_max_active;
3709
3710 while (!list_empty(&pwq->delayed_works) &&
3711 pwq->nr_active < pwq->max_active)
3712 pwq_activate_first_delayed(pwq);
3713
3714 /*
3715 * Need to kick a worker after thawed or an unbound wq's
3716 * max_active is bumped. It's a slow path. Do it always.
3717 */
3718 wake_up_worker(pwq->pool);
3719 } else {
3720 pwq->max_active = 0;
3721 }
3722
3723 spin_unlock_irq(&pwq->pool->lock);
3724 }
3725
3726 /* initialize newly alloced @pwq which is associated with @wq and @pool */
3727 static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3728 struct worker_pool *pool)
3729 {
3730 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
3731
3732 memset(pwq, 0, sizeof(*pwq));
3733
3734 pwq->pool = pool;
3735 pwq->wq = wq;
3736 pwq->flush_color = -1;
3737 pwq->refcnt = 1;
3738 INIT_LIST_HEAD(&pwq->delayed_works);
3739 INIT_LIST_HEAD(&pwq->pwqs_node);
3740 INIT_LIST_HEAD(&pwq->mayday_node);
3741 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
3742 }
3743
3744 /* sync @pwq with the current state of its associated wq and link it */
3745 static void link_pwq(struct pool_workqueue *pwq)
3746 {
3747 struct workqueue_struct *wq = pwq->wq;
3748
3749 lockdep_assert_held(&wq->mutex);
3750
3751 /* may be called multiple times, ignore if already linked */
3752 if (!list_empty(&pwq->pwqs_node))
3753 return;
3754
3755 /*
3756 * Set the matching work_color. This is synchronized with
3757 * wq->mutex to avoid confusing flush_workqueue().
3758 */
3759 pwq->work_color = wq->work_color;
3760
3761 /* sync max_active to the current setting */
3762 pwq_adjust_max_active(pwq);
3763
3764 /* link in @pwq */
3765 list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3766 }
3767
3768 /* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3769 static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3770 const struct workqueue_attrs *attrs)
3771 {
3772 struct worker_pool *pool;
3773 struct pool_workqueue *pwq;
3774
3775 lockdep_assert_held(&wq_pool_mutex);
3776
3777 pool = get_unbound_pool(attrs);
3778 if (!pool)
3779 return NULL;
3780
3781 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3782 if (!pwq) {
3783 put_unbound_pool(pool);
3784 return NULL;
3785 }
3786
3787 init_pwq(pwq, wq, pool);
3788 return pwq;
3789 }
3790
3791 /* undo alloc_unbound_pwq(), used only in the error path */
3792 static void free_unbound_pwq(struct pool_workqueue *pwq)
3793 {
3794 lockdep_assert_held(&wq_pool_mutex);
3795
3796 if (pwq) {
3797 put_unbound_pool(pwq->pool);
3798 kmem_cache_free(pwq_cache, pwq);
3799 }
3800 }
3801
3802 /**
3803 * wq_calc_node_mask - calculate a wq_attrs' cpumask for the specified node
3804 * @attrs: the wq_attrs of interest
3805 * @node: the target NUMA node
3806 * @cpu_going_down: if >= 0, the CPU to consider as offline
3807 * @cpumask: outarg, the resulting cpumask
3808 *
3809 * Calculate the cpumask a workqueue with @attrs should use on @node. If
3810 * @cpu_going_down is >= 0, that cpu is considered offline during
3811 * calculation. The result is stored in @cpumask. This function returns
3812 * %true if the resulting @cpumask is different from @attrs->cpumask,
3813 * %false if equal.
3814 *
3815 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If
3816 * enabled and @node has online CPUs requested by @attrs, the returned
3817 * cpumask is the intersection of the possible CPUs of @node and
3818 * @attrs->cpumask.
3819 *
3820 * The caller is responsible for ensuring that the cpumask of @node stays
3821 * stable.
3822 */
3823 static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3824 int cpu_going_down, cpumask_t *cpumask)
3825 {
3826 if (!wq_numa_enabled || attrs->no_numa)
3827 goto use_dfl;
3828
3829 /* does @node have any online CPUs @attrs wants? */
3830 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3831 if (cpu_going_down >= 0)
3832 cpumask_clear_cpu(cpu_going_down, cpumask);
3833
3834 if (cpumask_empty(cpumask))
3835 goto use_dfl;
3836
3837 /* yeap, return possible CPUs in @node that @attrs wants */
3838 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3839 return !cpumask_equal(cpumask, attrs->cpumask);
3840
3841 use_dfl:
3842 cpumask_copy(cpumask, attrs->cpumask);
3843 return false;
3844 }
3845
3846 /* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3847 static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3848 int node,
3849 struct pool_workqueue *pwq)
3850 {
3851 struct pool_workqueue *old_pwq;
3852
3853 lockdep_assert_held(&wq->mutex);
3854
3855 /* link_pwq() can handle duplicate calls */
3856 link_pwq(pwq);
3857
3858 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3859 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3860 return old_pwq;
3861 }
3862
3863 /**
3864 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
3865 * @wq: the target workqueue
3866 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
3867 *
3868 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA
3869 * machines, this function maps a separate pwq to each NUMA node with
3870 * possibles CPUs in @attrs->cpumask so that work items are affine to the
3871 * NUMA node it was issued on. Older pwqs are released as in-flight work
3872 * items finish. Note that a work item which repeatedly requeues itself
3873 * back-to-back will stay on its current pwq.
3874 *
3875 * Performs GFP_KERNEL allocations. Returns 0 on success and -errno on
3876 * failure.
3877 */
3878 int apply_workqueue_attrs(struct workqueue_struct *wq,
3879 const struct workqueue_attrs *attrs)
3880 {
3881 struct workqueue_attrs *new_attrs, *tmp_attrs;
3882 struct pool_workqueue **pwq_tbl, *dfl_pwq;
3883 int node, ret;
3884
3885 /* only unbound workqueues can change attributes */
3886 if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
3887 return -EINVAL;
3888
3889 /* creating multiple pwqs breaks ordering guarantee */
3890 if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)))
3891 return -EINVAL;
3892
3893 pwq_tbl = kzalloc(wq_numa_tbl_len * sizeof(pwq_tbl[0]), GFP_KERNEL);
3894 new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3895 tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3896 if (!pwq_tbl || !new_attrs || !tmp_attrs)
3897 goto enomem;
3898
3899 /* make a copy of @attrs and sanitize it */
3900 copy_workqueue_attrs(new_attrs, attrs);
3901 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
3902
3903 /*
3904 * We may create multiple pwqs with differing cpumasks. Make a
3905 * copy of @new_attrs which will be modified and used to obtain
3906 * pools.
3907 */
3908 copy_workqueue_attrs(tmp_attrs, new_attrs);
3909
3910 /*
3911 * CPUs should stay stable across pwq creations and installations.
3912 * Pin CPUs, determine the target cpumask for each node and create
3913 * pwqs accordingly.
3914 */
3915 get_online_cpus();
3916
3917 mutex_lock(&wq_pool_mutex);
3918
3919 /*
3920 * If something goes wrong during CPU up/down, we'll fall back to
3921 * the default pwq covering whole @attrs->cpumask. Always create
3922 * it even if we don't use it immediately.
3923 */
3924 dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3925 if (!dfl_pwq)
3926 goto enomem_pwq;
3927
3928 for_each_node(node) {
3929 if (wq_calc_node_cpumask(attrs, node, -1, tmp_attrs->cpumask)) {
3930 pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3931 if (!pwq_tbl[node])
3932 goto enomem_pwq;
3933 } else {
3934 dfl_pwq->refcnt++;
3935 pwq_tbl[node] = dfl_pwq;
3936 }
3937 }
3938
3939 mutex_unlock(&wq_pool_mutex);
3940
3941 /* all pwqs have been created successfully, let's install'em */
3942 mutex_lock(&wq->mutex);
3943
3944 copy_workqueue_attrs(wq->unbound_attrs, new_attrs);
3945
3946 /* save the previous pwq and install the new one */
3947 for_each_node(node)
3948 pwq_tbl[node] = numa_pwq_tbl_install(wq, node, pwq_tbl[node]);
3949
3950 /* @dfl_pwq might not have been used, ensure it's linked */
3951 link_pwq(dfl_pwq);
3952 swap(wq->dfl_pwq, dfl_pwq);
3953
3954 mutex_unlock(&wq->mutex);
3955
3956 /* put the old pwqs */
3957 for_each_node(node)
3958 put_pwq_unlocked(pwq_tbl[node]);
3959 put_pwq_unlocked(dfl_pwq);
3960
3961 put_online_cpus();
3962 ret = 0;
3963 /* fall through */
3964 out_free:
3965 free_workqueue_attrs(tmp_attrs);
3966 free_workqueue_attrs(new_attrs);
3967 kfree(pwq_tbl);
3968 return ret;
3969
3970 enomem_pwq:
3971 free_unbound_pwq(dfl_pwq);
3972 for_each_node(node)
3973 if (pwq_tbl && pwq_tbl[node] != dfl_pwq)
3974 free_unbound_pwq(pwq_tbl[node]);
3975 mutex_unlock(&wq_pool_mutex);
3976 put_online_cpus();
3977 enomem:
3978 ret = -ENOMEM;
3979 goto out_free;
3980 }
3981
3982 /**
3983 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
3984 * @wq: the target workqueue
3985 * @cpu: the CPU coming up or going down
3986 * @online: whether @cpu is coming up or going down
3987 *
3988 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
3989 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of
3990 * @wq accordingly.
3991 *
3992 * If NUMA affinity can't be adjusted due to memory allocation failure, it
3993 * falls back to @wq->dfl_pwq which may not be optimal but is always
3994 * correct.
3995 *
3996 * Note that when the last allowed CPU of a NUMA node goes offline for a
3997 * workqueue with a cpumask spanning multiple nodes, the workers which were
3998 * already executing the work items for the workqueue will lose their CPU
3999 * affinity and may execute on any CPU. This is similar to how per-cpu
4000 * workqueues behave on CPU_DOWN. If a workqueue user wants strict
4001 * affinity, it's the user's responsibility to flush the work item from
4002 * CPU_DOWN_PREPARE.
4003 */
4004 static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
4005 bool online)
4006 {
4007 int node = cpu_to_node(cpu);
4008 int cpu_off = online ? -1 : cpu;
4009 struct pool_workqueue *old_pwq = NULL, *pwq;
4010 struct workqueue_attrs *target_attrs;
4011 cpumask_t *cpumask;
4012
4013 lockdep_assert_held(&wq_pool_mutex);
4014
4015 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND))
4016 return;
4017
4018 /*
4019 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
4020 * Let's use a preallocated one. The following buf is protected by
4021 * CPU hotplug exclusion.
4022 */
4023 target_attrs = wq_update_unbound_numa_attrs_buf;
4024 cpumask = target_attrs->cpumask;
4025
4026 mutex_lock(&wq->mutex);
4027 if (wq->unbound_attrs->no_numa)
4028 goto out_unlock;
4029
4030 copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
4031 pwq = unbound_pwq_by_node(wq, node);
4032
4033 /*
4034 * Let's determine what needs to be done. If the target cpumask is
4035 * different from wq's, we need to compare it to @pwq's and create
4036 * a new one if they don't match. If the target cpumask equals
4037 * wq's, the default pwq should be used. If @pwq is already the
4038 * default one, nothing to do; otherwise, install the default one.
4039 */
4040 if (wq_calc_node_cpumask(wq->unbound_attrs, node, cpu_off, cpumask)) {
4041 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
4042 goto out_unlock;
4043 } else {
4044 if (pwq == wq->dfl_pwq)
4045 goto out_unlock;
4046 else
4047 goto use_dfl_pwq;
4048 }
4049
4050 mutex_unlock(&wq->mutex);
4051
4052 /* create a new pwq */
4053 pwq = alloc_unbound_pwq(wq, target_attrs);
4054 if (!pwq) {
4055 pr_warning("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
4056 wq->name);
4057 goto out_unlock;
4058 }
4059
4060 /*
4061 * Install the new pwq. As this function is called only from CPU
4062 * hotplug callbacks and applying a new attrs is wrapped with
4063 * get/put_online_cpus(), @wq->unbound_attrs couldn't have changed
4064 * inbetween.
4065 */
4066 mutex_lock(&wq->mutex);
4067 old_pwq = numa_pwq_tbl_install(wq, node, pwq);
4068 goto out_unlock;
4069
4070 use_dfl_pwq:
4071 spin_lock_irq(&wq->dfl_pwq->pool->lock);
4072 get_pwq(wq->dfl_pwq);
4073 spin_unlock_irq(&wq->dfl_pwq->pool->lock);
4074 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
4075 out_unlock:
4076 mutex_unlock(&wq->mutex);
4077 put_pwq_unlocked(old_pwq);
4078 }
4079
4080 static int alloc_and_link_pwqs(struct workqueue_struct *wq)
4081 {
4082 bool highpri = wq->flags & WQ_HIGHPRI;
4083 int cpu;
4084
4085 if (!(wq->flags & WQ_UNBOUND)) {
4086 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
4087 if (!wq->cpu_pwqs)
4088 return -ENOMEM;
4089
4090 for_each_possible_cpu(cpu) {
4091 struct pool_workqueue *pwq =
4092 per_cpu_ptr(wq->cpu_pwqs, cpu);
4093 struct worker_pool *cpu_pools =
4094 per_cpu(cpu_worker_pools, cpu);
4095
4096 init_pwq(pwq, wq, &cpu_pools[highpri]);
4097
4098 mutex_lock(&wq->mutex);
4099 link_pwq(pwq);
4100 mutex_unlock(&wq->mutex);
4101 }
4102 return 0;
4103 } else {
4104 return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
4105 }
4106 }
4107
4108 static int wq_clamp_max_active(int max_active, unsigned int flags,
4109 const char *name)
4110 {
4111 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
4112
4113 if (max_active < 1 || max_active > lim)
4114 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
4115 max_active, name, 1, lim);
4116
4117 return clamp_val(max_active, 1, lim);
4118 }
4119
4120 struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
4121 unsigned int flags,
4122 int max_active,
4123 struct lock_class_key *key,
4124 const char *lock_name, ...)
4125 {
4126 size_t tbl_size = 0;
4127 va_list args;
4128 struct workqueue_struct *wq;
4129 struct pool_workqueue *pwq;
4130
4131 /* see the comment above the definition of WQ_POWER_EFFICIENT */
4132 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
4133 flags |= WQ_UNBOUND;
4134
4135 /* allocate wq and format name */
4136 if (flags & WQ_UNBOUND)
4137 tbl_size = wq_numa_tbl_len * sizeof(wq->numa_pwq_tbl[0]);
4138
4139 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
4140 if (!wq)
4141 return NULL;
4142
4143 if (flags & WQ_UNBOUND) {
4144 wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
4145 if (!wq->unbound_attrs)
4146 goto err_free_wq;
4147 }
4148
4149 va_start(args, lock_name);
4150 vsnprintf(wq->name, sizeof(wq->name), fmt, args);
4151 va_end(args);
4152
4153 max_active = max_active ?: WQ_DFL_ACTIVE;
4154 max_active = wq_clamp_max_active(max_active, flags, wq->name);
4155
4156 /* init wq */
4157 wq->flags = flags;
4158 wq->saved_max_active = max_active;
4159 mutex_init(&wq->mutex);
4160 atomic_set(&wq->nr_pwqs_to_flush, 0);
4161 INIT_LIST_HEAD(&wq->pwqs);
4162 INIT_LIST_HEAD(&wq->flusher_queue);
4163 INIT_LIST_HEAD(&wq->flusher_overflow);
4164 INIT_LIST_HEAD(&wq->maydays);
4165
4166 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
4167 INIT_LIST_HEAD(&wq->list);
4168
4169 if (alloc_and_link_pwqs(wq) < 0)
4170 goto err_free_wq;
4171
4172 /*
4173 * Workqueues which may be used during memory reclaim should
4174 * have a rescuer to guarantee forward progress.
4175 */
4176 if (flags & WQ_MEM_RECLAIM) {
4177 struct worker *rescuer;
4178
4179 rescuer = alloc_worker();
4180 if (!rescuer)
4181 goto err_destroy;
4182
4183 rescuer->rescue_wq = wq;
4184 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
4185 wq->name);
4186 if (IS_ERR(rescuer->task)) {
4187 kfree(rescuer);
4188 goto err_destroy;
4189 }
4190
4191 wq->rescuer = rescuer;
4192 rescuer->task->flags |= PF_NO_SETAFFINITY;
4193 wake_up_process(rescuer->task);
4194 }
4195
4196 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
4197 goto err_destroy;
4198
4199 /*
4200 * wq_pool_mutex protects global freeze state and workqueues list.
4201 * Grab it, adjust max_active and add the new @wq to workqueues
4202 * list.
4203 */
4204 mutex_lock(&wq_pool_mutex);
4205
4206 mutex_lock(&wq->mutex);
4207 for_each_pwq(pwq, wq)
4208 pwq_adjust_max_active(pwq);
4209 mutex_unlock(&wq->mutex);
4210
4211 list_add(&wq->list, &workqueues);
4212
4213 mutex_unlock(&wq_pool_mutex);
4214
4215 return wq;
4216
4217 err_free_wq:
4218 free_workqueue_attrs(wq->unbound_attrs);
4219 kfree(wq);
4220 return NULL;
4221 err_destroy:
4222 destroy_workqueue(wq);
4223 return NULL;
4224 }
4225 EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
4226
4227 /**
4228 * destroy_workqueue - safely terminate a workqueue
4229 * @wq: target workqueue
4230 *
4231 * Safely destroy a workqueue. All work currently pending will be done first.
4232 */
4233 void destroy_workqueue(struct workqueue_struct *wq)
4234 {
4235 struct pool_workqueue *pwq;
4236 int node;
4237
4238 /* drain it before proceeding with destruction */
4239 drain_workqueue(wq);
4240
4241 /* sanity checks */
4242 mutex_lock(&wq->mutex);
4243 for_each_pwq(pwq, wq) {
4244 int i;
4245
4246 for (i = 0; i < WORK_NR_COLORS; i++) {
4247 if (WARN_ON(pwq->nr_in_flight[i])) {
4248 mutex_unlock(&wq->mutex);
4249 return;
4250 }
4251 }
4252
4253 if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
4254 WARN_ON(pwq->nr_active) ||
4255 WARN_ON(!list_empty(&pwq->delayed_works))) {
4256 mutex_unlock(&wq->mutex);
4257 return;
4258 }
4259 }
4260 mutex_unlock(&wq->mutex);
4261
4262 /*
4263 * wq list is used to freeze wq, remove from list after
4264 * flushing is complete in case freeze races us.
4265 */
4266 mutex_lock(&wq_pool_mutex);
4267 list_del_init(&wq->list);
4268 mutex_unlock(&wq_pool_mutex);
4269
4270 workqueue_sysfs_unregister(wq);
4271
4272 if (wq->rescuer) {
4273 kthread_stop(wq->rescuer->task);
4274 kfree(wq->rescuer);
4275 wq->rescuer = NULL;
4276 }
4277
4278 if (!(wq->flags & WQ_UNBOUND)) {
4279 /*
4280 * The base ref is never dropped on per-cpu pwqs. Directly
4281 * free the pwqs and wq.
4282 */
4283 free_percpu(wq->cpu_pwqs);
4284 kfree(wq);
4285 } else {
4286 /*
4287 * We're the sole accessor of @wq at this point. Directly
4288 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4289 * @wq will be freed when the last pwq is released.
4290 */
4291 for_each_node(node) {
4292 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4293 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4294 put_pwq_unlocked(pwq);
4295 }
4296
4297 /*
4298 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is
4299 * put. Don't access it afterwards.
4300 */
4301 pwq = wq->dfl_pwq;
4302 wq->dfl_pwq = NULL;
4303 put_pwq_unlocked(pwq);
4304 }
4305 }
4306 EXPORT_SYMBOL_GPL(destroy_workqueue);
4307
4308 /**
4309 * workqueue_set_max_active - adjust max_active of a workqueue
4310 * @wq: target workqueue
4311 * @max_active: new max_active value.
4312 *
4313 * Set max_active of @wq to @max_active.
4314 *
4315 * CONTEXT:
4316 * Don't call from IRQ context.
4317 */
4318 void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4319 {
4320 struct pool_workqueue *pwq;
4321
4322 /* disallow meddling with max_active for ordered workqueues */
4323 if (WARN_ON(wq->flags & __WQ_ORDERED))
4324 return;
4325
4326 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
4327
4328 mutex_lock(&wq->mutex);
4329
4330 wq->saved_max_active = max_active;
4331
4332 for_each_pwq(pwq, wq)
4333 pwq_adjust_max_active(pwq);
4334
4335 mutex_unlock(&wq->mutex);
4336 }
4337 EXPORT_SYMBOL_GPL(workqueue_set_max_active);
4338
4339 /**
4340 * current_is_workqueue_rescuer - is %current workqueue rescuer?
4341 *
4342 * Determine whether %current is a workqueue rescuer. Can be used from
4343 * work functions to determine whether it's being run off the rescuer task.
4344 */
4345 bool current_is_workqueue_rescuer(void)
4346 {
4347 struct worker *worker = current_wq_worker();
4348
4349 return worker && worker->rescue_wq;
4350 }
4351
4352 /**
4353 * workqueue_congested - test whether a workqueue is congested
4354 * @cpu: CPU in question
4355 * @wq: target workqueue
4356 *
4357 * Test whether @wq's cpu workqueue for @cpu is congested. There is
4358 * no synchronization around this function and the test result is
4359 * unreliable and only useful as advisory hints or for debugging.
4360 *
4361 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4362 * Note that both per-cpu and unbound workqueues may be associated with
4363 * multiple pool_workqueues which have separate congested states. A
4364 * workqueue being congested on one CPU doesn't mean the workqueue is also
4365 * contested on other CPUs / NUMA nodes.
4366 *
4367 * RETURNS:
4368 * %true if congested, %false otherwise.
4369 */
4370 bool workqueue_congested(int cpu, struct workqueue_struct *wq)
4371 {
4372 struct pool_workqueue *pwq;
4373 bool ret;
4374
4375 rcu_read_lock_sched();
4376
4377 if (cpu == WORK_CPU_UNBOUND)
4378 cpu = smp_processor_id();
4379
4380 if (!(wq->flags & WQ_UNBOUND))
4381 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4382 else
4383 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
4384
4385 ret = !list_empty(&pwq->delayed_works);
4386 rcu_read_unlock_sched();
4387
4388 return ret;
4389 }
4390 EXPORT_SYMBOL_GPL(workqueue_congested);
4391
4392 /**
4393 * work_busy - test whether a work is currently pending or running
4394 * @work: the work to be tested
4395 *
4396 * Test whether @work is currently pending or running. There is no
4397 * synchronization around this function and the test result is
4398 * unreliable and only useful as advisory hints or for debugging.
4399 *
4400 * RETURNS:
4401 * OR'd bitmask of WORK_BUSY_* bits.
4402 */
4403 unsigned int work_busy(struct work_struct *work)
4404 {
4405 struct worker_pool *pool;
4406 unsigned long flags;
4407 unsigned int ret = 0;
4408
4409 if (work_pending(work))
4410 ret |= WORK_BUSY_PENDING;
4411
4412 local_irq_save(flags);
4413 pool = get_work_pool(work);
4414 if (pool) {
4415 spin_lock(&pool->lock);
4416 if (find_worker_executing_work(pool, work))
4417 ret |= WORK_BUSY_RUNNING;
4418 spin_unlock(&pool->lock);
4419 }
4420 local_irq_restore(flags);
4421
4422 return ret;
4423 }
4424 EXPORT_SYMBOL_GPL(work_busy);
4425
4426 /**
4427 * set_worker_desc - set description for the current work item
4428 * @fmt: printf-style format string
4429 * @...: arguments for the format string
4430 *
4431 * This function can be called by a running work function to describe what
4432 * the work item is about. If the worker task gets dumped, this
4433 * information will be printed out together to help debugging. The
4434 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4435 */
4436 void set_worker_desc(const char *fmt, ...)
4437 {
4438 struct worker *worker = current_wq_worker();
4439 va_list args;
4440
4441 if (worker) {
4442 va_start(args, fmt);
4443 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4444 va_end(args);
4445 worker->desc_valid = true;
4446 }
4447 }
4448
4449 /**
4450 * print_worker_info - print out worker information and description
4451 * @log_lvl: the log level to use when printing
4452 * @task: target task
4453 *
4454 * If @task is a worker and currently executing a work item, print out the
4455 * name of the workqueue being serviced and worker description set with
4456 * set_worker_desc() by the currently executing work item.
4457 *
4458 * This function can be safely called on any task as long as the
4459 * task_struct itself is accessible. While safe, this function isn't
4460 * synchronized and may print out mixups or garbages of limited length.
4461 */
4462 void print_worker_info(const char *log_lvl, struct task_struct *task)
4463 {
4464 work_func_t *fn = NULL;
4465 char name[WQ_NAME_LEN] = { };
4466 char desc[WORKER_DESC_LEN] = { };
4467 struct pool_workqueue *pwq = NULL;
4468 struct workqueue_struct *wq = NULL;
4469 bool desc_valid = false;
4470 struct worker *worker;
4471
4472 if (!(task->flags & PF_WQ_WORKER))
4473 return;
4474
4475 /*
4476 * This function is called without any synchronization and @task
4477 * could be in any state. Be careful with dereferences.
4478 */
4479 worker = probe_kthread_data(task);
4480
4481 /*
4482 * Carefully copy the associated workqueue's workfn and name. Keep
4483 * the original last '\0' in case the original contains garbage.
4484 */
4485 probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
4486 probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
4487 probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
4488 probe_kernel_read(name, wq->name, sizeof(name) - 1);
4489
4490 /* copy worker description */
4491 probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid));
4492 if (desc_valid)
4493 probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);
4494
4495 if (fn || name[0] || desc[0]) {
4496 printk("%sWorkqueue: %s %pf", log_lvl, name, fn);
4497 if (desc[0])
4498 pr_cont(" (%s)", desc);
4499 pr_cont("\n");
4500 }
4501 }
4502
4503 /*
4504 * CPU hotplug.
4505 *
4506 * There are two challenges in supporting CPU hotplug. Firstly, there
4507 * are a lot of assumptions on strong associations among work, pwq and
4508 * pool which make migrating pending and scheduled works very
4509 * difficult to implement without impacting hot paths. Secondly,
4510 * worker pools serve mix of short, long and very long running works making
4511 * blocked draining impractical.
4512 *
4513 * This is solved by allowing the pools to be disassociated from the CPU
4514 * running as an unbound one and allowing it to be reattached later if the
4515 * cpu comes back online.
4516 */
4517
4518 static void wq_unbind_fn(struct work_struct *work)
4519 {
4520 int cpu = smp_processor_id();
4521 struct worker_pool *pool;
4522 struct worker *worker;
4523 int wi;
4524
4525 for_each_cpu_worker_pool(pool, cpu) {
4526 WARN_ON_ONCE(cpu != smp_processor_id());
4527
4528 mutex_lock(&pool->manager_mutex);
4529 spin_lock_irq(&pool->lock);
4530
4531 /*
4532 * We've blocked all manager operations. Make all workers
4533 * unbound and set DISASSOCIATED. Before this, all workers
4534 * except for the ones which are still executing works from
4535 * before the last CPU down must be on the cpu. After
4536 * this, they may become diasporas.
4537 */
4538 for_each_pool_worker(worker, wi, pool)
4539 worker->flags |= WORKER_UNBOUND;
4540
4541 pool->flags |= POOL_DISASSOCIATED;
4542
4543 spin_unlock_irq(&pool->lock);
4544 mutex_unlock(&pool->manager_mutex);
4545
4546 /*
4547 * Call schedule() so that we cross rq->lock and thus can
4548 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4549 * This is necessary as scheduler callbacks may be invoked
4550 * from other cpus.
4551 */
4552 schedule();
4553
4554 /*
4555 * Sched callbacks are disabled now. Zap nr_running.
4556 * After this, nr_running stays zero and need_more_worker()
4557 * and keep_working() are always true as long as the
4558 * worklist is not empty. This pool now behaves as an
4559 * unbound (in terms of concurrency management) pool which
4560 * are served by workers tied to the pool.
4561 */
4562 atomic_set(&pool->nr_running, 0);
4563
4564 /*
4565 * With concurrency management just turned off, a busy
4566 * worker blocking could lead to lengthy stalls. Kick off
4567 * unbound chain execution of currently pending work items.
4568 */
4569 spin_lock_irq(&pool->lock);
4570 wake_up_worker(pool);
4571 spin_unlock_irq(&pool->lock);
4572 }
4573 }
4574
4575 /**
4576 * rebind_workers - rebind all workers of a pool to the associated CPU
4577 * @pool: pool of interest
4578 *
4579 * @pool->cpu is coming online. Rebind all workers to the CPU.
4580 */
4581 static void rebind_workers(struct worker_pool *pool)
4582 {
4583 struct worker *worker;
4584 int wi;
4585
4586 lockdep_assert_held(&pool->manager_mutex);
4587
4588 /*
4589 * Restore CPU affinity of all workers. As all idle workers should
4590 * be on the run-queue of the associated CPU before any local
4591 * wake-ups for concurrency management happen, restore CPU affinty
4592 * of all workers first and then clear UNBOUND. As we're called
4593 * from CPU_ONLINE, the following shouldn't fail.
4594 */
4595 for_each_pool_worker(worker, wi, pool)
4596 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4597 pool->attrs->cpumask) < 0);
4598
4599 spin_lock_irq(&pool->lock);
4600
4601 for_each_pool_worker(worker, wi, pool) {
4602 unsigned int worker_flags = worker->flags;
4603
4604 /*
4605 * A bound idle worker should actually be on the runqueue
4606 * of the associated CPU for local wake-ups targeting it to
4607 * work. Kick all idle workers so that they migrate to the
4608 * associated CPU. Doing this in the same loop as
4609 * replacing UNBOUND with REBOUND is safe as no worker will
4610 * be bound before @pool->lock is released.
4611 */
4612 if (worker_flags & WORKER_IDLE)
4613 wake_up_process(worker->task);
4614
4615 /*
4616 * We want to clear UNBOUND but can't directly call
4617 * worker_clr_flags() or adjust nr_running. Atomically
4618 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4619 * @worker will clear REBOUND using worker_clr_flags() when
4620 * it initiates the next execution cycle thus restoring
4621 * concurrency management. Note that when or whether
4622 * @worker clears REBOUND doesn't affect correctness.
4623 *
4624 * ACCESS_ONCE() is necessary because @worker->flags may be
4625 * tested without holding any lock in
4626 * wq_worker_waking_up(). Without it, NOT_RUNNING test may
4627 * fail incorrectly leading to premature concurrency
4628 * management operations.
4629 */
4630 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
4631 worker_flags |= WORKER_REBOUND;
4632 worker_flags &= ~WORKER_UNBOUND;
4633 ACCESS_ONCE(worker->flags) = worker_flags;
4634 }
4635
4636 spin_unlock_irq(&pool->lock);
4637 }
4638
4639 /**
4640 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
4641 * @pool: unbound pool of interest
4642 * @cpu: the CPU which is coming up
4643 *
4644 * An unbound pool may end up with a cpumask which doesn't have any online
4645 * CPUs. When a worker of such pool get scheduled, the scheduler resets
4646 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any
4647 * online CPU before, cpus_allowed of all its workers should be restored.
4648 */
4649 static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
4650 {
4651 static cpumask_t cpumask;
4652 struct worker *worker;
4653 int wi;
4654
4655 lockdep_assert_held(&pool->manager_mutex);
4656
4657 /* is @cpu allowed for @pool? */
4658 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
4659 return;
4660
4661 /* is @cpu the only online CPU? */
4662 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
4663 if (cpumask_weight(&cpumask) != 1)
4664 return;
4665
4666 /* as we're called from CPU_ONLINE, the following shouldn't fail */
4667 for_each_pool_worker(worker, wi, pool)
4668 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4669 pool->attrs->cpumask) < 0);
4670 }
4671
4672 /*
4673 * Workqueues should be brought up before normal priority CPU notifiers.
4674 * This will be registered high priority CPU notifier.
4675 */
4676 static int workqueue_cpu_up_callback(struct notifier_block *nfb,
4677 unsigned long action,
4678 void *hcpu)
4679 {
4680 int cpu = (unsigned long)hcpu;
4681 struct worker_pool *pool;
4682 struct workqueue_struct *wq;
4683 int pi;
4684
4685 switch (action & ~CPU_TASKS_FROZEN) {
4686 case CPU_UP_PREPARE:
4687 for_each_cpu_worker_pool(pool, cpu) {
4688 if (pool->nr_workers)
4689 continue;
4690 if (create_and_start_worker(pool) < 0)
4691 return NOTIFY_BAD;
4692 }
4693 break;
4694
4695 case CPU_DOWN_FAILED:
4696 case CPU_ONLINE:
4697 mutex_lock(&wq_pool_mutex);
4698
4699 for_each_pool(pool, pi) {
4700 mutex_lock(&pool->manager_mutex);
4701
4702 if (pool->cpu == cpu) {
4703 spin_lock_irq(&pool->lock);
4704 pool->flags &= ~POOL_DISASSOCIATED;
4705 spin_unlock_irq(&pool->lock);
4706
4707 rebind_workers(pool);
4708 } else if (pool->cpu < 0) {
4709 restore_unbound_workers_cpumask(pool, cpu);
4710 }
4711
4712 mutex_unlock(&pool->manager_mutex);
4713 }
4714
4715 /* update NUMA affinity of unbound workqueues */
4716 list_for_each_entry(wq, &workqueues, list)
4717 wq_update_unbound_numa(wq, cpu, true);
4718
4719 mutex_unlock(&wq_pool_mutex);
4720 break;
4721 }
4722 return NOTIFY_OK;
4723 }
4724
4725 /*
4726 * Workqueues should be brought down after normal priority CPU notifiers.
4727 * This will be registered as low priority CPU notifier.
4728 */
4729 static int workqueue_cpu_down_callback(struct notifier_block *nfb,
4730 unsigned long action,
4731 void *hcpu)
4732 {
4733 int cpu = (unsigned long)hcpu;
4734 struct work_struct unbind_work;
4735 struct workqueue_struct *wq;
4736
4737 switch (action & ~CPU_TASKS_FROZEN) {
4738 case CPU_DOWN_PREPARE:
4739 /* unbinding per-cpu workers should happen on the local CPU */
4740 INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
4741 queue_work_on(cpu, system_highpri_wq, &unbind_work);
4742
4743 /* update NUMA affinity of unbound workqueues */
4744 mutex_lock(&wq_pool_mutex);
4745 list_for_each_entry(wq, &workqueues, list)
4746 wq_update_unbound_numa(wq, cpu, false);
4747 mutex_unlock(&wq_pool_mutex);
4748
4749 /* wait for per-cpu unbinding to finish */
4750 flush_work(&unbind_work);
4751 break;
4752 }
4753 return NOTIFY_OK;
4754 }
4755
4756 #ifdef CONFIG_SMP
4757
4758 struct work_for_cpu {
4759 struct work_struct work;
4760 long (*fn)(void *);
4761 void *arg;
4762 long ret;
4763 };
4764
4765 static void work_for_cpu_fn(struct work_struct *work)
4766 {
4767 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
4768
4769 wfc->ret = wfc->fn(wfc->arg);
4770 }
4771
4772 /**
4773 * work_on_cpu - run a function in user context on a particular cpu
4774 * @cpu: the cpu to run on
4775 * @fn: the function to run
4776 * @arg: the function arg
4777 *
4778 * This will return the value @fn returns.
4779 * It is up to the caller to ensure that the cpu doesn't go offline.
4780 * The caller must not hold any locks which would prevent @fn from completing.
4781 */
4782 long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
4783 {
4784 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
4785
4786 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
4787 schedule_work_on(cpu, &wfc.work);
4788
4789 /*
4790 * The work item is on-stack and can't lead to deadlock through
4791 * flushing. Use __flush_work() to avoid spurious lockdep warnings
4792 * when work_on_cpu()s are nested.
4793 */
4794 __flush_work(&wfc.work);
4795
4796 return wfc.ret;
4797 }
4798 EXPORT_SYMBOL_GPL(work_on_cpu);
4799 #endif /* CONFIG_SMP */
4800
4801 #ifdef CONFIG_FREEZER
4802
4803 /**
4804 * freeze_workqueues_begin - begin freezing workqueues
4805 *
4806 * Start freezing workqueues. After this function returns, all freezable
4807 * workqueues will queue new works to their delayed_works list instead of
4808 * pool->worklist.
4809 *
4810 * CONTEXT:
4811 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4812 */
4813 void freeze_workqueues_begin(void)
4814 {
4815 struct worker_pool *pool;
4816 struct workqueue_struct *wq;
4817 struct pool_workqueue *pwq;
4818 int pi;
4819
4820 mutex_lock(&wq_pool_mutex);
4821
4822 WARN_ON_ONCE(workqueue_freezing);
4823 workqueue_freezing = true;
4824
4825 /* set FREEZING */
4826 for_each_pool(pool, pi) {
4827 spin_lock_irq(&pool->lock);
4828 WARN_ON_ONCE(pool->flags & POOL_FREEZING);
4829 pool->flags |= POOL_FREEZING;
4830 spin_unlock_irq(&pool->lock);
4831 }
4832
4833 list_for_each_entry(wq, &workqueues, list) {
4834 mutex_lock(&wq->mutex);
4835 for_each_pwq(pwq, wq)
4836 pwq_adjust_max_active(pwq);
4837 mutex_unlock(&wq->mutex);
4838 }
4839
4840 mutex_unlock(&wq_pool_mutex);
4841 }
4842
4843 /**
4844 * freeze_workqueues_busy - are freezable workqueues still busy?
4845 *
4846 * Check whether freezing is complete. This function must be called
4847 * between freeze_workqueues_begin() and thaw_workqueues().
4848 *
4849 * CONTEXT:
4850 * Grabs and releases wq_pool_mutex.
4851 *
4852 * RETURNS:
4853 * %true if some freezable workqueues are still busy. %false if freezing
4854 * is complete.
4855 */
4856 bool freeze_workqueues_busy(void)
4857 {
4858 bool busy = false;
4859 struct workqueue_struct *wq;
4860 struct pool_workqueue *pwq;
4861
4862 mutex_lock(&wq_pool_mutex);
4863
4864 WARN_ON_ONCE(!workqueue_freezing);
4865
4866 list_for_each_entry(wq, &workqueues, list) {
4867 if (!(wq->flags & WQ_FREEZABLE))
4868 continue;
4869 /*
4870 * nr_active is monotonically decreasing. It's safe
4871 * to peek without lock.
4872 */
4873 rcu_read_lock_sched();
4874 for_each_pwq(pwq, wq) {
4875 WARN_ON_ONCE(pwq->nr_active < 0);
4876 if (pwq->nr_active) {
4877 busy = true;
4878 rcu_read_unlock_sched();
4879 goto out_unlock;
4880 }
4881 }
4882 rcu_read_unlock_sched();
4883 }
4884 out_unlock:
4885 mutex_unlock(&wq_pool_mutex);
4886 return busy;
4887 }
4888
4889 /**
4890 * thaw_workqueues - thaw workqueues
4891 *
4892 * Thaw workqueues. Normal queueing is restored and all collected
4893 * frozen works are transferred to their respective pool worklists.
4894 *
4895 * CONTEXT:
4896 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4897 */
4898 void thaw_workqueues(void)
4899 {
4900 struct workqueue_struct *wq;
4901 struct pool_workqueue *pwq;
4902 struct worker_pool *pool;
4903 int pi;
4904
4905 mutex_lock(&wq_pool_mutex);
4906
4907 if (!workqueue_freezing)
4908 goto out_unlock;
4909
4910 /* clear FREEZING */
4911 for_each_pool(pool, pi) {
4912 spin_lock_irq(&pool->lock);
4913 WARN_ON_ONCE(!(pool->flags & POOL_FREEZING));
4914 pool->flags &= ~POOL_FREEZING;
4915 spin_unlock_irq(&pool->lock);
4916 }
4917
4918 /* restore max_active and repopulate worklist */
4919 list_for_each_entry(wq, &workqueues, list) {
4920 mutex_lock(&wq->mutex);
4921 for_each_pwq(pwq, wq)
4922 pwq_adjust_max_active(pwq);
4923 mutex_unlock(&wq->mutex);
4924 }
4925
4926 workqueue_freezing = false;
4927 out_unlock:
4928 mutex_unlock(&wq_pool_mutex);
4929 }
4930 #endif /* CONFIG_FREEZER */
4931
4932 static void __init wq_numa_init(void)
4933 {
4934 cpumask_var_t *tbl;
4935 int node, cpu;
4936
4937 /* determine NUMA pwq table len - highest node id + 1 */
4938 for_each_node(node)
4939 wq_numa_tbl_len = max(wq_numa_tbl_len, node + 1);
4940
4941 if (num_possible_nodes() <= 1)
4942 return;
4943
4944 if (wq_disable_numa) {
4945 pr_info("workqueue: NUMA affinity support disabled\n");
4946 return;
4947 }
4948
4949 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
4950 BUG_ON(!wq_update_unbound_numa_attrs_buf);
4951
4952 /*
4953 * We want masks of possible CPUs of each node which isn't readily
4954 * available. Build one from cpu_to_node() which should have been
4955 * fully initialized by now.
4956 */
4957 tbl = kzalloc(wq_numa_tbl_len * sizeof(tbl[0]), GFP_KERNEL);
4958 BUG_ON(!tbl);
4959
4960 for_each_node(node)
4961 BUG_ON(!alloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
4962 node_online(node) ? node : NUMA_NO_NODE));
4963
4964 for_each_possible_cpu(cpu) {
4965 node = cpu_to_node(cpu);
4966 if (WARN_ON(node == NUMA_NO_NODE)) {
4967 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
4968 /* happens iff arch is bonkers, let's just proceed */
4969 return;
4970 }
4971 cpumask_set_cpu(cpu, tbl[node]);
4972 }
4973
4974 wq_numa_possible_cpumask = tbl;
4975 wq_numa_enabled = true;
4976 }
4977
4978 static int __init init_workqueues(void)
4979 {
4980 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
4981 int i, cpu;
4982
4983 /* make sure we have enough bits for OFFQ pool ID */
4984 BUILD_BUG_ON((1LU << (BITS_PER_LONG - WORK_OFFQ_POOL_SHIFT)) <
4985 WORK_CPU_END * NR_STD_WORKER_POOLS);
4986
4987 WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
4988
4989 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
4990
4991 cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
4992 hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
4993
4994 wq_numa_init();
4995
4996 /* initialize CPU pools */
4997 for_each_possible_cpu(cpu) {
4998 struct worker_pool *pool;
4999
5000 i = 0;
5001 for_each_cpu_worker_pool(pool, cpu) {
5002 BUG_ON(init_worker_pool(pool));
5003 pool->cpu = cpu;
5004 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
5005 pool->attrs->nice = std_nice[i++];
5006 pool->node = cpu_to_node(cpu);
5007
5008 /* alloc pool ID */
5009 mutex_lock(&wq_pool_mutex);
5010 BUG_ON(worker_pool_assign_id(pool));
5011 mutex_unlock(&wq_pool_mutex);
5012 }
5013 }
5014
5015 /* create the initial worker */
5016 for_each_online_cpu(cpu) {
5017 struct worker_pool *pool;
5018
5019 for_each_cpu_worker_pool(pool, cpu) {
5020 pool->flags &= ~POOL_DISASSOCIATED;
5021 BUG_ON(create_and_start_worker(pool) < 0);
5022 }
5023 }
5024
5025 /* create default unbound wq attrs */
5026 for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
5027 struct workqueue_attrs *attrs;
5028
5029 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5030 attrs->nice = std_nice[i];
5031 unbound_std_wq_attrs[i] = attrs;
5032 }
5033
5034 system_wq = alloc_workqueue("events", 0, 0);
5035 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
5036 system_long_wq = alloc_workqueue("events_long", 0, 0);
5037 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
5038 WQ_UNBOUND_MAX_ACTIVE);
5039 system_freezable_wq = alloc_workqueue("events_freezable",
5040 WQ_FREEZABLE, 0);
5041 system_power_efficient_wq = alloc_workqueue("events_power_efficient",
5042 WQ_POWER_EFFICIENT, 0);
5043 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
5044 WQ_FREEZABLE | WQ_POWER_EFFICIENT,
5045 0);
5046 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
5047 !system_unbound_wq || !system_freezable_wq ||
5048 !system_power_efficient_wq ||
5049 !system_freezable_power_efficient_wq);
5050 return 0;
5051 }
5052 early_initcall(init_workqueues);
This page took 0.14307 seconds and 6 git commands to generate.