Do not add padding if an output section is marked as ignored
[deliverable/binutils-gdb.git] / ld / ldlang.c
1 /* Linker command language support.
2 Copyright (C) 1991-2016 Free Software Foundation, Inc.
3
4 This file is part of the GNU Binutils.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include "bfd.h"
23 #include "libiberty.h"
24 #include "filenames.h"
25 #include "safe-ctype.h"
26 #include "obstack.h"
27 #include "bfdlink.h"
28
29 #include "ld.h"
30 #include "ldmain.h"
31 #include "ldexp.h"
32 #include "ldlang.h"
33 #include <ldgram.h>
34 #include "ldlex.h"
35 #include "ldmisc.h"
36 #include "ldctor.h"
37 #include "ldfile.h"
38 #include "ldemul.h"
39 #include "fnmatch.h"
40 #include "demangle.h"
41 #include "hashtab.h"
42 #include "elf-bfd.h"
43 #ifdef ENABLE_PLUGINS
44 #include "plugin.h"
45 #endif /* ENABLE_PLUGINS */
46
47 #ifndef offsetof
48 #define offsetof(TYPE, MEMBER) ((size_t) & (((TYPE*) 0)->MEMBER))
49 #endif
50
51 /* Convert between addresses in bytes and sizes in octets.
52 For currently supported targets, octets_per_byte is always a power
53 of two, so we can use shifts. */
54 #define TO_ADDR(X) ((X) >> opb_shift)
55 #define TO_SIZE(X) ((X) << opb_shift)
56
57 /* Local variables. */
58 static struct obstack stat_obstack;
59 static struct obstack map_obstack;
60
61 #define obstack_chunk_alloc xmalloc
62 #define obstack_chunk_free free
63 static const char *entry_symbol_default = "start";
64 static bfd_boolean placed_commons = FALSE;
65 static bfd_boolean map_head_is_link_order = FALSE;
66 static lang_output_section_statement_type *default_common_section;
67 static bfd_boolean map_option_f;
68 static bfd_vma print_dot;
69 static lang_input_statement_type *first_file;
70 static const char *current_target;
71 static lang_statement_list_type statement_list;
72 static lang_statement_list_type *stat_save[10];
73 static lang_statement_list_type **stat_save_ptr = &stat_save[0];
74 static struct unique_sections *unique_section_list;
75 static struct asneeded_minfo *asneeded_list_head;
76 static unsigned int opb_shift = 0;
77
78 /* Forward declarations. */
79 static void exp_init_os (etree_type *);
80 static lang_input_statement_type *lookup_name (const char *);
81 static void insert_undefined (const char *);
82 static bfd_boolean sort_def_symbol (struct bfd_link_hash_entry *, void *);
83 static void print_statement (lang_statement_union_type *,
84 lang_output_section_statement_type *);
85 static void print_statement_list (lang_statement_union_type *,
86 lang_output_section_statement_type *);
87 static void print_statements (void);
88 static void print_input_section (asection *, bfd_boolean);
89 static bfd_boolean lang_one_common (struct bfd_link_hash_entry *, void *);
90 static void lang_record_phdrs (void);
91 static void lang_do_version_exports_section (void);
92 static void lang_finalize_version_expr_head
93 (struct bfd_elf_version_expr_head *);
94 static void lang_do_memory_regions (void);
95
96 /* Exported variables. */
97 const char *output_target;
98 lang_output_section_statement_type *abs_output_section;
99 lang_statement_list_type lang_output_section_statement;
100 lang_statement_list_type *stat_ptr = &statement_list;
101 lang_statement_list_type file_chain = { NULL, NULL };
102 lang_statement_list_type input_file_chain;
103 struct bfd_sym_chain entry_symbol = { NULL, NULL };
104 const char *entry_section = ".text";
105 struct lang_input_statement_flags input_flags;
106 bfd_boolean entry_from_cmdline;
107 bfd_boolean undef_from_cmdline;
108 bfd_boolean lang_has_input_file = FALSE;
109 bfd_boolean had_output_filename = FALSE;
110 bfd_boolean lang_float_flag = FALSE;
111 bfd_boolean delete_output_file_on_failure = FALSE;
112 struct lang_phdr *lang_phdr_list;
113 struct lang_nocrossrefs *nocrossref_list;
114 struct asneeded_minfo **asneeded_list_tail;
115
116 /* Functions that traverse the linker script and might evaluate
117 DEFINED() need to increment this at the start of the traversal. */
118 int lang_statement_iteration = 0;
119
120 /* Return TRUE if the PATTERN argument is a wildcard pattern.
121 Although backslashes are treated specially if a pattern contains
122 wildcards, we do not consider the mere presence of a backslash to
123 be enough to cause the pattern to be treated as a wildcard.
124 That lets us handle DOS filenames more naturally. */
125 #define wildcardp(pattern) (strpbrk ((pattern), "?*[") != NULL)
126
127 #define new_stat(x, y) \
128 (x##_type *) new_statement (x##_enum, sizeof (x##_type), y)
129
130 #define outside_section_address(q) \
131 ((q)->output_offset + (q)->output_section->vma)
132
133 #define outside_symbol_address(q) \
134 ((q)->value + outside_section_address (q->section))
135
136 #define SECTION_NAME_MAP_LENGTH (16)
137
138 void *
139 stat_alloc (size_t size)
140 {
141 return obstack_alloc (&stat_obstack, size);
142 }
143
144 static int
145 name_match (const char *pattern, const char *name)
146 {
147 if (wildcardp (pattern))
148 return fnmatch (pattern, name, 0);
149 return strcmp (pattern, name);
150 }
151
152 /* If PATTERN is of the form archive:file, return a pointer to the
153 separator. If not, return NULL. */
154
155 static char *
156 archive_path (const char *pattern)
157 {
158 char *p = NULL;
159
160 if (link_info.path_separator == 0)
161 return p;
162
163 p = strchr (pattern, link_info.path_separator);
164 #ifdef HAVE_DOS_BASED_FILE_SYSTEM
165 if (p == NULL || link_info.path_separator != ':')
166 return p;
167
168 /* Assume a match on the second char is part of drive specifier,
169 as in "c:\silly.dos". */
170 if (p == pattern + 1 && ISALPHA (*pattern))
171 p = strchr (p + 1, link_info.path_separator);
172 #endif
173 return p;
174 }
175
176 /* Given that FILE_SPEC results in a non-NULL SEP result from archive_path,
177 return whether F matches FILE_SPEC. */
178
179 static bfd_boolean
180 input_statement_is_archive_path (const char *file_spec, char *sep,
181 lang_input_statement_type *f)
182 {
183 bfd_boolean match = FALSE;
184
185 if ((*(sep + 1) == 0
186 || name_match (sep + 1, f->filename) == 0)
187 && ((sep != file_spec)
188 == (f->the_bfd != NULL && f->the_bfd->my_archive != NULL)))
189 {
190 match = TRUE;
191
192 if (sep != file_spec)
193 {
194 const char *aname = f->the_bfd->my_archive->filename;
195 *sep = 0;
196 match = name_match (file_spec, aname) == 0;
197 *sep = link_info.path_separator;
198 }
199 }
200 return match;
201 }
202
203 static bfd_boolean
204 unique_section_p (const asection *sec,
205 const lang_output_section_statement_type *os)
206 {
207 struct unique_sections *unam;
208 const char *secnam;
209
210 if (bfd_link_relocatable (&link_info)
211 && sec->owner != NULL
212 && bfd_is_group_section (sec->owner, sec))
213 return !(os != NULL
214 && strcmp (os->name, DISCARD_SECTION_NAME) == 0);
215
216 secnam = sec->name;
217 for (unam = unique_section_list; unam; unam = unam->next)
218 if (name_match (unam->name, secnam) == 0)
219 return TRUE;
220
221 return FALSE;
222 }
223
224 /* Generic traversal routines for finding matching sections. */
225
226 /* Return true if FILE matches a pattern in EXCLUDE_LIST, otherwise return
227 false. */
228
229 static bfd_boolean
230 walk_wild_file_in_exclude_list (struct name_list *exclude_list,
231 lang_input_statement_type *file)
232 {
233 struct name_list *list_tmp;
234
235 for (list_tmp = exclude_list;
236 list_tmp;
237 list_tmp = list_tmp->next)
238 {
239 char *p = archive_path (list_tmp->name);
240
241 if (p != NULL)
242 {
243 if (input_statement_is_archive_path (list_tmp->name, p, file))
244 return TRUE;
245 }
246
247 else if (name_match (list_tmp->name, file->filename) == 0)
248 return TRUE;
249
250 /* FIXME: Perhaps remove the following at some stage? Matching
251 unadorned archives like this was never documented and has
252 been superceded by the archive:path syntax. */
253 else if (file->the_bfd != NULL
254 && file->the_bfd->my_archive != NULL
255 && name_match (list_tmp->name,
256 file->the_bfd->my_archive->filename) == 0)
257 return TRUE;
258 }
259
260 return FALSE;
261 }
262
263 /* Try processing a section against a wildcard. This just calls
264 the callback unless the filename exclusion list is present
265 and excludes the file. It's hardly ever present so this
266 function is very fast. */
267
268 static void
269 walk_wild_consider_section (lang_wild_statement_type *ptr,
270 lang_input_statement_type *file,
271 asection *s,
272 struct wildcard_list *sec,
273 callback_t callback,
274 void *data)
275 {
276 /* Don't process sections from files which were excluded. */
277 if (walk_wild_file_in_exclude_list (sec->spec.exclude_name_list, file))
278 return;
279
280 (*callback) (ptr, sec, s, ptr->section_flag_list, file, data);
281 }
282
283 /* Lowest common denominator routine that can handle everything correctly,
284 but slowly. */
285
286 static void
287 walk_wild_section_general (lang_wild_statement_type *ptr,
288 lang_input_statement_type *file,
289 callback_t callback,
290 void *data)
291 {
292 asection *s;
293 struct wildcard_list *sec;
294
295 for (s = file->the_bfd->sections; s != NULL; s = s->next)
296 {
297 sec = ptr->section_list;
298 if (sec == NULL)
299 (*callback) (ptr, sec, s, ptr->section_flag_list, file, data);
300
301 while (sec != NULL)
302 {
303 bfd_boolean skip = FALSE;
304
305 if (sec->spec.name != NULL)
306 {
307 const char *sname = bfd_get_section_name (file->the_bfd, s);
308
309 skip = name_match (sec->spec.name, sname) != 0;
310 }
311
312 if (!skip)
313 walk_wild_consider_section (ptr, file, s, sec, callback, data);
314
315 sec = sec->next;
316 }
317 }
318 }
319
320 /* Routines to find a single section given its name. If there's more
321 than one section with that name, we report that. */
322
323 typedef struct
324 {
325 asection *found_section;
326 bfd_boolean multiple_sections_found;
327 } section_iterator_callback_data;
328
329 static bfd_boolean
330 section_iterator_callback (bfd *abfd ATTRIBUTE_UNUSED, asection *s, void *data)
331 {
332 section_iterator_callback_data *d = (section_iterator_callback_data *) data;
333
334 if (d->found_section != NULL)
335 {
336 d->multiple_sections_found = TRUE;
337 return TRUE;
338 }
339
340 d->found_section = s;
341 return FALSE;
342 }
343
344 static asection *
345 find_section (lang_input_statement_type *file,
346 struct wildcard_list *sec,
347 bfd_boolean *multiple_sections_found)
348 {
349 section_iterator_callback_data cb_data = { NULL, FALSE };
350
351 bfd_get_section_by_name_if (file->the_bfd, sec->spec.name,
352 section_iterator_callback, &cb_data);
353 *multiple_sections_found = cb_data.multiple_sections_found;
354 return cb_data.found_section;
355 }
356
357 /* Code for handling simple wildcards without going through fnmatch,
358 which can be expensive because of charset translations etc. */
359
360 /* A simple wild is a literal string followed by a single '*',
361 where the literal part is at least 4 characters long. */
362
363 static bfd_boolean
364 is_simple_wild (const char *name)
365 {
366 size_t len = strcspn (name, "*?[");
367 return len >= 4 && name[len] == '*' && name[len + 1] == '\0';
368 }
369
370 static bfd_boolean
371 match_simple_wild (const char *pattern, const char *name)
372 {
373 /* The first four characters of the pattern are guaranteed valid
374 non-wildcard characters. So we can go faster. */
375 if (pattern[0] != name[0] || pattern[1] != name[1]
376 || pattern[2] != name[2] || pattern[3] != name[3])
377 return FALSE;
378
379 pattern += 4;
380 name += 4;
381 while (*pattern != '*')
382 if (*name++ != *pattern++)
383 return FALSE;
384
385 return TRUE;
386 }
387
388 /* Return the numerical value of the init_priority attribute from
389 section name NAME. */
390
391 static unsigned long
392 get_init_priority (const char *name)
393 {
394 char *end;
395 unsigned long init_priority;
396
397 /* GCC uses the following section names for the init_priority
398 attribute with numerical values 101 and 65535 inclusive. A
399 lower value means a higher priority.
400
401 1: .init_array.NNNN/.fini_array.NNNN: Where NNNN is the
402 decimal numerical value of the init_priority attribute.
403 The order of execution in .init_array is forward and
404 .fini_array is backward.
405 2: .ctors.NNNN/.dtors.NNNN: Where NNNN is 65535 minus the
406 decimal numerical value of the init_priority attribute.
407 The order of execution in .ctors is backward and .dtors
408 is forward.
409 */
410 if (strncmp (name, ".init_array.", 12) == 0
411 || strncmp (name, ".fini_array.", 12) == 0)
412 {
413 init_priority = strtoul (name + 12, &end, 10);
414 return *end ? 0 : init_priority;
415 }
416 else if (strncmp (name, ".ctors.", 7) == 0
417 || strncmp (name, ".dtors.", 7) == 0)
418 {
419 init_priority = strtoul (name + 7, &end, 10);
420 return *end ? 0 : 65535 - init_priority;
421 }
422
423 return 0;
424 }
425
426 /* Compare sections ASEC and BSEC according to SORT. */
427
428 static int
429 compare_section (sort_type sort, asection *asec, asection *bsec)
430 {
431 int ret;
432 unsigned long ainit_priority, binit_priority;
433
434 switch (sort)
435 {
436 default:
437 abort ();
438
439 case by_init_priority:
440 ainit_priority
441 = get_init_priority (bfd_get_section_name (asec->owner, asec));
442 binit_priority
443 = get_init_priority (bfd_get_section_name (bsec->owner, bsec));
444 if (ainit_priority == 0 || binit_priority == 0)
445 goto sort_by_name;
446 ret = ainit_priority - binit_priority;
447 if (ret)
448 break;
449 else
450 goto sort_by_name;
451
452 case by_alignment_name:
453 ret = (bfd_section_alignment (bsec->owner, bsec)
454 - bfd_section_alignment (asec->owner, asec));
455 if (ret)
456 break;
457 /* Fall through. */
458
459 case by_name:
460 sort_by_name:
461 ret = strcmp (bfd_get_section_name (asec->owner, asec),
462 bfd_get_section_name (bsec->owner, bsec));
463 break;
464
465 case by_name_alignment:
466 ret = strcmp (bfd_get_section_name (asec->owner, asec),
467 bfd_get_section_name (bsec->owner, bsec));
468 if (ret)
469 break;
470 /* Fall through. */
471
472 case by_alignment:
473 ret = (bfd_section_alignment (bsec->owner, bsec)
474 - bfd_section_alignment (asec->owner, asec));
475 break;
476 }
477
478 return ret;
479 }
480
481 /* Build a Binary Search Tree to sort sections, unlike insertion sort
482 used in wild_sort(). BST is considerably faster if the number of
483 of sections are large. */
484
485 static lang_section_bst_type **
486 wild_sort_fast (lang_wild_statement_type *wild,
487 struct wildcard_list *sec,
488 lang_input_statement_type *file ATTRIBUTE_UNUSED,
489 asection *section)
490 {
491 lang_section_bst_type **tree;
492
493 tree = &wild->tree;
494 if (!wild->filenames_sorted
495 && (sec == NULL || sec->spec.sorted == none))
496 {
497 /* Append at the right end of tree. */
498 while (*tree)
499 tree = &((*tree)->right);
500 return tree;
501 }
502
503 while (*tree)
504 {
505 /* Find the correct node to append this section. */
506 if (compare_section (sec->spec.sorted, section, (*tree)->section) < 0)
507 tree = &((*tree)->left);
508 else
509 tree = &((*tree)->right);
510 }
511
512 return tree;
513 }
514
515 /* Use wild_sort_fast to build a BST to sort sections. */
516
517 static void
518 output_section_callback_fast (lang_wild_statement_type *ptr,
519 struct wildcard_list *sec,
520 asection *section,
521 struct flag_info *sflag_list ATTRIBUTE_UNUSED,
522 lang_input_statement_type *file,
523 void *output)
524 {
525 lang_section_bst_type *node;
526 lang_section_bst_type **tree;
527 lang_output_section_statement_type *os;
528
529 os = (lang_output_section_statement_type *) output;
530
531 if (unique_section_p (section, os))
532 return;
533
534 node = (lang_section_bst_type *) xmalloc (sizeof (lang_section_bst_type));
535 node->left = 0;
536 node->right = 0;
537 node->section = section;
538
539 tree = wild_sort_fast (ptr, sec, file, section);
540 if (tree != NULL)
541 *tree = node;
542 }
543
544 /* Convert a sorted sections' BST back to list form. */
545
546 static void
547 output_section_callback_tree_to_list (lang_wild_statement_type *ptr,
548 lang_section_bst_type *tree,
549 void *output)
550 {
551 if (tree->left)
552 output_section_callback_tree_to_list (ptr, tree->left, output);
553
554 lang_add_section (&ptr->children, tree->section, NULL,
555 (lang_output_section_statement_type *) output);
556
557 if (tree->right)
558 output_section_callback_tree_to_list (ptr, tree->right, output);
559
560 free (tree);
561 }
562
563 /* Specialized, optimized routines for handling different kinds of
564 wildcards */
565
566 static void
567 walk_wild_section_specs1_wild0 (lang_wild_statement_type *ptr,
568 lang_input_statement_type *file,
569 callback_t callback,
570 void *data)
571 {
572 /* We can just do a hash lookup for the section with the right name.
573 But if that lookup discovers more than one section with the name
574 (should be rare), we fall back to the general algorithm because
575 we would otherwise have to sort the sections to make sure they
576 get processed in the bfd's order. */
577 bfd_boolean multiple_sections_found;
578 struct wildcard_list *sec0 = ptr->handler_data[0];
579 asection *s0 = find_section (file, sec0, &multiple_sections_found);
580
581 if (multiple_sections_found)
582 walk_wild_section_general (ptr, file, callback, data);
583 else if (s0)
584 walk_wild_consider_section (ptr, file, s0, sec0, callback, data);
585 }
586
587 static void
588 walk_wild_section_specs1_wild1 (lang_wild_statement_type *ptr,
589 lang_input_statement_type *file,
590 callback_t callback,
591 void *data)
592 {
593 asection *s;
594 struct wildcard_list *wildsec0 = ptr->handler_data[0];
595
596 for (s = file->the_bfd->sections; s != NULL; s = s->next)
597 {
598 const char *sname = bfd_get_section_name (file->the_bfd, s);
599 bfd_boolean skip = !match_simple_wild (wildsec0->spec.name, sname);
600
601 if (!skip)
602 walk_wild_consider_section (ptr, file, s, wildsec0, callback, data);
603 }
604 }
605
606 static void
607 walk_wild_section_specs2_wild1 (lang_wild_statement_type *ptr,
608 lang_input_statement_type *file,
609 callback_t callback,
610 void *data)
611 {
612 asection *s;
613 struct wildcard_list *sec0 = ptr->handler_data[0];
614 struct wildcard_list *wildsec1 = ptr->handler_data[1];
615 bfd_boolean multiple_sections_found;
616 asection *s0 = find_section (file, sec0, &multiple_sections_found);
617
618 if (multiple_sections_found)
619 {
620 walk_wild_section_general (ptr, file, callback, data);
621 return;
622 }
623
624 /* Note that if the section was not found, s0 is NULL and
625 we'll simply never succeed the s == s0 test below. */
626 for (s = file->the_bfd->sections; s != NULL; s = s->next)
627 {
628 /* Recall that in this code path, a section cannot satisfy more
629 than one spec, so if s == s0 then it cannot match
630 wildspec1. */
631 if (s == s0)
632 walk_wild_consider_section (ptr, file, s, sec0, callback, data);
633 else
634 {
635 const char *sname = bfd_get_section_name (file->the_bfd, s);
636 bfd_boolean skip = !match_simple_wild (wildsec1->spec.name, sname);
637
638 if (!skip)
639 walk_wild_consider_section (ptr, file, s, wildsec1, callback,
640 data);
641 }
642 }
643 }
644
645 static void
646 walk_wild_section_specs3_wild2 (lang_wild_statement_type *ptr,
647 lang_input_statement_type *file,
648 callback_t callback,
649 void *data)
650 {
651 asection *s;
652 struct wildcard_list *sec0 = ptr->handler_data[0];
653 struct wildcard_list *wildsec1 = ptr->handler_data[1];
654 struct wildcard_list *wildsec2 = ptr->handler_data[2];
655 bfd_boolean multiple_sections_found;
656 asection *s0 = find_section (file, sec0, &multiple_sections_found);
657
658 if (multiple_sections_found)
659 {
660 walk_wild_section_general (ptr, file, callback, data);
661 return;
662 }
663
664 for (s = file->the_bfd->sections; s != NULL; s = s->next)
665 {
666 if (s == s0)
667 walk_wild_consider_section (ptr, file, s, sec0, callback, data);
668 else
669 {
670 const char *sname = bfd_get_section_name (file->the_bfd, s);
671 bfd_boolean skip = !match_simple_wild (wildsec1->spec.name, sname);
672
673 if (!skip)
674 walk_wild_consider_section (ptr, file, s, wildsec1, callback, data);
675 else
676 {
677 skip = !match_simple_wild (wildsec2->spec.name, sname);
678 if (!skip)
679 walk_wild_consider_section (ptr, file, s, wildsec2, callback,
680 data);
681 }
682 }
683 }
684 }
685
686 static void
687 walk_wild_section_specs4_wild2 (lang_wild_statement_type *ptr,
688 lang_input_statement_type *file,
689 callback_t callback,
690 void *data)
691 {
692 asection *s;
693 struct wildcard_list *sec0 = ptr->handler_data[0];
694 struct wildcard_list *sec1 = ptr->handler_data[1];
695 struct wildcard_list *wildsec2 = ptr->handler_data[2];
696 struct wildcard_list *wildsec3 = ptr->handler_data[3];
697 bfd_boolean multiple_sections_found;
698 asection *s0 = find_section (file, sec0, &multiple_sections_found), *s1;
699
700 if (multiple_sections_found)
701 {
702 walk_wild_section_general (ptr, file, callback, data);
703 return;
704 }
705
706 s1 = find_section (file, sec1, &multiple_sections_found);
707 if (multiple_sections_found)
708 {
709 walk_wild_section_general (ptr, file, callback, data);
710 return;
711 }
712
713 for (s = file->the_bfd->sections; s != NULL; s = s->next)
714 {
715 if (s == s0)
716 walk_wild_consider_section (ptr, file, s, sec0, callback, data);
717 else
718 if (s == s1)
719 walk_wild_consider_section (ptr, file, s, sec1, callback, data);
720 else
721 {
722 const char *sname = bfd_get_section_name (file->the_bfd, s);
723 bfd_boolean skip = !match_simple_wild (wildsec2->spec.name,
724 sname);
725
726 if (!skip)
727 walk_wild_consider_section (ptr, file, s, wildsec2, callback,
728 data);
729 else
730 {
731 skip = !match_simple_wild (wildsec3->spec.name, sname);
732 if (!skip)
733 walk_wild_consider_section (ptr, file, s, wildsec3,
734 callback, data);
735 }
736 }
737 }
738 }
739
740 static void
741 walk_wild_section (lang_wild_statement_type *ptr,
742 lang_input_statement_type *file,
743 callback_t callback,
744 void *data)
745 {
746 if (file->flags.just_syms)
747 return;
748
749 (*ptr->walk_wild_section_handler) (ptr, file, callback, data);
750 }
751
752 /* Returns TRUE when name1 is a wildcard spec that might match
753 something name2 can match. We're conservative: we return FALSE
754 only if the prefixes of name1 and name2 are different up to the
755 first wildcard character. */
756
757 static bfd_boolean
758 wild_spec_can_overlap (const char *name1, const char *name2)
759 {
760 size_t prefix1_len = strcspn (name1, "?*[");
761 size_t prefix2_len = strcspn (name2, "?*[");
762 size_t min_prefix_len;
763
764 /* Note that if there is no wildcard character, then we treat the
765 terminating 0 as part of the prefix. Thus ".text" won't match
766 ".text." or ".text.*", for example. */
767 if (name1[prefix1_len] == '\0')
768 prefix1_len++;
769 if (name2[prefix2_len] == '\0')
770 prefix2_len++;
771
772 min_prefix_len = prefix1_len < prefix2_len ? prefix1_len : prefix2_len;
773
774 return memcmp (name1, name2, min_prefix_len) == 0;
775 }
776
777 /* Select specialized code to handle various kinds of wildcard
778 statements. */
779
780 static void
781 analyze_walk_wild_section_handler (lang_wild_statement_type *ptr)
782 {
783 int sec_count = 0;
784 int wild_name_count = 0;
785 struct wildcard_list *sec;
786 int signature;
787 int data_counter;
788
789 ptr->walk_wild_section_handler = walk_wild_section_general;
790 ptr->handler_data[0] = NULL;
791 ptr->handler_data[1] = NULL;
792 ptr->handler_data[2] = NULL;
793 ptr->handler_data[3] = NULL;
794 ptr->tree = NULL;
795
796 /* Count how many wildcard_specs there are, and how many of those
797 actually use wildcards in the name. Also, bail out if any of the
798 wildcard names are NULL. (Can this actually happen?
799 walk_wild_section used to test for it.) And bail out if any
800 of the wildcards are more complex than a simple string
801 ending in a single '*'. */
802 for (sec = ptr->section_list; sec != NULL; sec = sec->next)
803 {
804 ++sec_count;
805 if (sec->spec.name == NULL)
806 return;
807 if (wildcardp (sec->spec.name))
808 {
809 ++wild_name_count;
810 if (!is_simple_wild (sec->spec.name))
811 return;
812 }
813 }
814
815 /* The zero-spec case would be easy to optimize but it doesn't
816 happen in practice. Likewise, more than 4 specs doesn't
817 happen in practice. */
818 if (sec_count == 0 || sec_count > 4)
819 return;
820
821 /* Check that no two specs can match the same section. */
822 for (sec = ptr->section_list; sec != NULL; sec = sec->next)
823 {
824 struct wildcard_list *sec2;
825 for (sec2 = sec->next; sec2 != NULL; sec2 = sec2->next)
826 {
827 if (wild_spec_can_overlap (sec->spec.name, sec2->spec.name))
828 return;
829 }
830 }
831
832 signature = (sec_count << 8) + wild_name_count;
833 switch (signature)
834 {
835 case 0x0100:
836 ptr->walk_wild_section_handler = walk_wild_section_specs1_wild0;
837 break;
838 case 0x0101:
839 ptr->walk_wild_section_handler = walk_wild_section_specs1_wild1;
840 break;
841 case 0x0201:
842 ptr->walk_wild_section_handler = walk_wild_section_specs2_wild1;
843 break;
844 case 0x0302:
845 ptr->walk_wild_section_handler = walk_wild_section_specs3_wild2;
846 break;
847 case 0x0402:
848 ptr->walk_wild_section_handler = walk_wild_section_specs4_wild2;
849 break;
850 default:
851 return;
852 }
853
854 /* Now fill the data array with pointers to the specs, first the
855 specs with non-wildcard names, then the specs with wildcard
856 names. It's OK to process the specs in different order from the
857 given order, because we've already determined that no section
858 will match more than one spec. */
859 data_counter = 0;
860 for (sec = ptr->section_list; sec != NULL; sec = sec->next)
861 if (!wildcardp (sec->spec.name))
862 ptr->handler_data[data_counter++] = sec;
863 for (sec = ptr->section_list; sec != NULL; sec = sec->next)
864 if (wildcardp (sec->spec.name))
865 ptr->handler_data[data_counter++] = sec;
866 }
867
868 /* Handle a wild statement for a single file F. */
869
870 static void
871 walk_wild_file (lang_wild_statement_type *s,
872 lang_input_statement_type *f,
873 callback_t callback,
874 void *data)
875 {
876 if (walk_wild_file_in_exclude_list (s->exclude_name_list, f))
877 return;
878
879 if (f->the_bfd == NULL
880 || !bfd_check_format (f->the_bfd, bfd_archive))
881 walk_wild_section (s, f, callback, data);
882 else
883 {
884 bfd *member;
885
886 /* This is an archive file. We must map each member of the
887 archive separately. */
888 member = bfd_openr_next_archived_file (f->the_bfd, NULL);
889 while (member != NULL)
890 {
891 /* When lookup_name is called, it will call the add_symbols
892 entry point for the archive. For each element of the
893 archive which is included, BFD will call ldlang_add_file,
894 which will set the usrdata field of the member to the
895 lang_input_statement. */
896 if (member->usrdata != NULL)
897 {
898 walk_wild_section (s,
899 (lang_input_statement_type *) member->usrdata,
900 callback, data);
901 }
902
903 member = bfd_openr_next_archived_file (f->the_bfd, member);
904 }
905 }
906 }
907
908 static void
909 walk_wild (lang_wild_statement_type *s, callback_t callback, void *data)
910 {
911 const char *file_spec = s->filename;
912 char *p;
913
914 if (file_spec == NULL)
915 {
916 /* Perform the iteration over all files in the list. */
917 LANG_FOR_EACH_INPUT_STATEMENT (f)
918 {
919 walk_wild_file (s, f, callback, data);
920 }
921 }
922 else if ((p = archive_path (file_spec)) != NULL)
923 {
924 LANG_FOR_EACH_INPUT_STATEMENT (f)
925 {
926 if (input_statement_is_archive_path (file_spec, p, f))
927 walk_wild_file (s, f, callback, data);
928 }
929 }
930 else if (wildcardp (file_spec))
931 {
932 LANG_FOR_EACH_INPUT_STATEMENT (f)
933 {
934 if (fnmatch (file_spec, f->filename, 0) == 0)
935 walk_wild_file (s, f, callback, data);
936 }
937 }
938 else
939 {
940 lang_input_statement_type *f;
941
942 /* Perform the iteration over a single file. */
943 f = lookup_name (file_spec);
944 if (f)
945 walk_wild_file (s, f, callback, data);
946 }
947 }
948
949 /* lang_for_each_statement walks the parse tree and calls the provided
950 function for each node, except those inside output section statements
951 with constraint set to -1. */
952
953 void
954 lang_for_each_statement_worker (void (*func) (lang_statement_union_type *),
955 lang_statement_union_type *s)
956 {
957 for (; s != NULL; s = s->header.next)
958 {
959 func (s);
960
961 switch (s->header.type)
962 {
963 case lang_constructors_statement_enum:
964 lang_for_each_statement_worker (func, constructor_list.head);
965 break;
966 case lang_output_section_statement_enum:
967 if (s->output_section_statement.constraint != -1)
968 lang_for_each_statement_worker
969 (func, s->output_section_statement.children.head);
970 break;
971 case lang_wild_statement_enum:
972 lang_for_each_statement_worker (func,
973 s->wild_statement.children.head);
974 break;
975 case lang_group_statement_enum:
976 lang_for_each_statement_worker (func,
977 s->group_statement.children.head);
978 break;
979 case lang_data_statement_enum:
980 case lang_reloc_statement_enum:
981 case lang_object_symbols_statement_enum:
982 case lang_output_statement_enum:
983 case lang_target_statement_enum:
984 case lang_input_section_enum:
985 case lang_input_statement_enum:
986 case lang_assignment_statement_enum:
987 case lang_padding_statement_enum:
988 case lang_address_statement_enum:
989 case lang_fill_statement_enum:
990 case lang_insert_statement_enum:
991 break;
992 default:
993 FAIL ();
994 break;
995 }
996 }
997 }
998
999 void
1000 lang_for_each_statement (void (*func) (lang_statement_union_type *))
1001 {
1002 lang_for_each_statement_worker (func, statement_list.head);
1003 }
1004
1005 /*----------------------------------------------------------------------*/
1006
1007 void
1008 lang_list_init (lang_statement_list_type *list)
1009 {
1010 list->head = NULL;
1011 list->tail = &list->head;
1012 }
1013
1014 void
1015 push_stat_ptr (lang_statement_list_type *new_ptr)
1016 {
1017 if (stat_save_ptr >= stat_save + sizeof (stat_save) / sizeof (stat_save[0]))
1018 abort ();
1019 *stat_save_ptr++ = stat_ptr;
1020 stat_ptr = new_ptr;
1021 }
1022
1023 void
1024 pop_stat_ptr (void)
1025 {
1026 if (stat_save_ptr <= stat_save)
1027 abort ();
1028 stat_ptr = *--stat_save_ptr;
1029 }
1030
1031 /* Build a new statement node for the parse tree. */
1032
1033 static lang_statement_union_type *
1034 new_statement (enum statement_enum type,
1035 size_t size,
1036 lang_statement_list_type *list)
1037 {
1038 lang_statement_union_type *new_stmt;
1039
1040 new_stmt = (lang_statement_union_type *) stat_alloc (size);
1041 new_stmt->header.type = type;
1042 new_stmt->header.next = NULL;
1043 lang_statement_append (list, new_stmt, &new_stmt->header.next);
1044 return new_stmt;
1045 }
1046
1047 /* Build a new input file node for the language. There are several
1048 ways in which we treat an input file, eg, we only look at symbols,
1049 or prefix it with a -l etc.
1050
1051 We can be supplied with requests for input files more than once;
1052 they may, for example be split over several lines like foo.o(.text)
1053 foo.o(.data) etc, so when asked for a file we check that we haven't
1054 got it already so we don't duplicate the bfd. */
1055
1056 static lang_input_statement_type *
1057 new_afile (const char *name,
1058 lang_input_file_enum_type file_type,
1059 const char *target,
1060 bfd_boolean add_to_list)
1061 {
1062 lang_input_statement_type *p;
1063
1064 lang_has_input_file = TRUE;
1065
1066 if (add_to_list)
1067 p = (lang_input_statement_type *) new_stat (lang_input_statement, stat_ptr);
1068 else
1069 {
1070 p = (lang_input_statement_type *)
1071 stat_alloc (sizeof (lang_input_statement_type));
1072 p->header.type = lang_input_statement_enum;
1073 p->header.next = NULL;
1074 }
1075
1076 memset (&p->the_bfd, 0,
1077 sizeof (*p) - offsetof (lang_input_statement_type, the_bfd));
1078 p->target = target;
1079 p->flags.dynamic = input_flags.dynamic;
1080 p->flags.add_DT_NEEDED_for_dynamic = input_flags.add_DT_NEEDED_for_dynamic;
1081 p->flags.add_DT_NEEDED_for_regular = input_flags.add_DT_NEEDED_for_regular;
1082 p->flags.whole_archive = input_flags.whole_archive;
1083 p->flags.sysrooted = input_flags.sysrooted;
1084
1085 switch (file_type)
1086 {
1087 case lang_input_file_is_symbols_only_enum:
1088 p->filename = name;
1089 p->local_sym_name = name;
1090 p->flags.real = TRUE;
1091 p->flags.just_syms = TRUE;
1092 break;
1093 case lang_input_file_is_fake_enum:
1094 p->filename = name;
1095 p->local_sym_name = name;
1096 break;
1097 case lang_input_file_is_l_enum:
1098 if (name[0] == ':' && name[1] != '\0')
1099 {
1100 p->filename = name + 1;
1101 p->flags.full_name_provided = TRUE;
1102 }
1103 else
1104 p->filename = name;
1105 p->local_sym_name = concat ("-l", name, (const char *) NULL);
1106 p->flags.maybe_archive = TRUE;
1107 p->flags.real = TRUE;
1108 p->flags.search_dirs = TRUE;
1109 break;
1110 case lang_input_file_is_marker_enum:
1111 p->filename = name;
1112 p->local_sym_name = name;
1113 p->flags.search_dirs = TRUE;
1114 break;
1115 case lang_input_file_is_search_file_enum:
1116 p->filename = name;
1117 p->local_sym_name = name;
1118 p->flags.real = TRUE;
1119 p->flags.search_dirs = TRUE;
1120 break;
1121 case lang_input_file_is_file_enum:
1122 p->filename = name;
1123 p->local_sym_name = name;
1124 p->flags.real = TRUE;
1125 break;
1126 default:
1127 FAIL ();
1128 }
1129
1130 lang_statement_append (&input_file_chain,
1131 (lang_statement_union_type *) p,
1132 &p->next_real_file);
1133 return p;
1134 }
1135
1136 lang_input_statement_type *
1137 lang_add_input_file (const char *name,
1138 lang_input_file_enum_type file_type,
1139 const char *target)
1140 {
1141 if (name != NULL && *name == '=')
1142 {
1143 lang_input_statement_type *ret;
1144 char *sysrooted_name
1145 = concat (ld_sysroot, name + 1, (const char *) NULL);
1146
1147 /* We've now forcibly prepended the sysroot, making the input
1148 file independent of the context. Therefore, temporarily
1149 force a non-sysrooted context for this statement, so it won't
1150 get the sysroot prepended again when opened. (N.B. if it's a
1151 script, any child nodes with input files starting with "/"
1152 will be handled as "sysrooted" as they'll be found to be
1153 within the sysroot subdirectory.) */
1154 unsigned int outer_sysrooted = input_flags.sysrooted;
1155 input_flags.sysrooted = 0;
1156 ret = new_afile (sysrooted_name, file_type, target, TRUE);
1157 input_flags.sysrooted = outer_sysrooted;
1158 return ret;
1159 }
1160
1161 return new_afile (name, file_type, target, TRUE);
1162 }
1163
1164 struct out_section_hash_entry
1165 {
1166 struct bfd_hash_entry root;
1167 lang_statement_union_type s;
1168 };
1169
1170 /* The hash table. */
1171
1172 static struct bfd_hash_table output_section_statement_table;
1173
1174 /* Support routines for the hash table used by lang_output_section_find,
1175 initialize the table, fill in an entry and remove the table. */
1176
1177 static struct bfd_hash_entry *
1178 output_section_statement_newfunc (struct bfd_hash_entry *entry,
1179 struct bfd_hash_table *table,
1180 const char *string)
1181 {
1182 lang_output_section_statement_type **nextp;
1183 struct out_section_hash_entry *ret;
1184
1185 if (entry == NULL)
1186 {
1187 entry = (struct bfd_hash_entry *) bfd_hash_allocate (table,
1188 sizeof (*ret));
1189 if (entry == NULL)
1190 return entry;
1191 }
1192
1193 entry = bfd_hash_newfunc (entry, table, string);
1194 if (entry == NULL)
1195 return entry;
1196
1197 ret = (struct out_section_hash_entry *) entry;
1198 memset (&ret->s, 0, sizeof (ret->s));
1199 ret->s.header.type = lang_output_section_statement_enum;
1200 ret->s.output_section_statement.subsection_alignment = -1;
1201 ret->s.output_section_statement.section_alignment = -1;
1202 ret->s.output_section_statement.block_value = 1;
1203 lang_list_init (&ret->s.output_section_statement.children);
1204 lang_statement_append (stat_ptr, &ret->s, &ret->s.header.next);
1205
1206 /* For every output section statement added to the list, except the
1207 first one, lang_output_section_statement.tail points to the "next"
1208 field of the last element of the list. */
1209 if (lang_output_section_statement.head != NULL)
1210 ret->s.output_section_statement.prev
1211 = ((lang_output_section_statement_type *)
1212 ((char *) lang_output_section_statement.tail
1213 - offsetof (lang_output_section_statement_type, next)));
1214
1215 /* GCC's strict aliasing rules prevent us from just casting the
1216 address, so we store the pointer in a variable and cast that
1217 instead. */
1218 nextp = &ret->s.output_section_statement.next;
1219 lang_statement_append (&lang_output_section_statement,
1220 &ret->s,
1221 (lang_statement_union_type **) nextp);
1222 return &ret->root;
1223 }
1224
1225 static void
1226 output_section_statement_table_init (void)
1227 {
1228 if (!bfd_hash_table_init_n (&output_section_statement_table,
1229 output_section_statement_newfunc,
1230 sizeof (struct out_section_hash_entry),
1231 61))
1232 einfo (_("%P%F: can not create hash table: %E\n"));
1233 }
1234
1235 static void
1236 output_section_statement_table_free (void)
1237 {
1238 bfd_hash_table_free (&output_section_statement_table);
1239 }
1240
1241 /* Build enough state so that the parser can build its tree. */
1242
1243 void
1244 lang_init (void)
1245 {
1246 obstack_begin (&stat_obstack, 1000);
1247
1248 stat_ptr = &statement_list;
1249
1250 output_section_statement_table_init ();
1251
1252 lang_list_init (stat_ptr);
1253
1254 lang_list_init (&input_file_chain);
1255 lang_list_init (&lang_output_section_statement);
1256 lang_list_init (&file_chain);
1257 first_file = lang_add_input_file (NULL, lang_input_file_is_marker_enum,
1258 NULL);
1259 abs_output_section =
1260 lang_output_section_statement_lookup (BFD_ABS_SECTION_NAME, 0, TRUE);
1261
1262 abs_output_section->bfd_section = bfd_abs_section_ptr;
1263
1264 asneeded_list_head = NULL;
1265 asneeded_list_tail = &asneeded_list_head;
1266 }
1267
1268 void
1269 lang_finish (void)
1270 {
1271 output_section_statement_table_free ();
1272 }
1273
1274 /*----------------------------------------------------------------------
1275 A region is an area of memory declared with the
1276 MEMORY { name:org=exp, len=exp ... }
1277 syntax.
1278
1279 We maintain a list of all the regions here.
1280
1281 If no regions are specified in the script, then the default is used
1282 which is created when looked up to be the entire data space.
1283
1284 If create is true we are creating a region inside a MEMORY block.
1285 In this case it is probably an error to create a region that has
1286 already been created. If we are not inside a MEMORY block it is
1287 dubious to use an undeclared region name (except DEFAULT_MEMORY_REGION)
1288 and so we issue a warning.
1289
1290 Each region has at least one name. The first name is either
1291 DEFAULT_MEMORY_REGION or the name given in the MEMORY block. You can add
1292 alias names to an existing region within a script with
1293 REGION_ALIAS (alias, region_name). Each name corresponds to at most one
1294 region. */
1295
1296 static lang_memory_region_type *lang_memory_region_list;
1297 static lang_memory_region_type **lang_memory_region_list_tail
1298 = &lang_memory_region_list;
1299
1300 lang_memory_region_type *
1301 lang_memory_region_lookup (const char *const name, bfd_boolean create)
1302 {
1303 lang_memory_region_name *n;
1304 lang_memory_region_type *r;
1305 lang_memory_region_type *new_region;
1306
1307 /* NAME is NULL for LMA memspecs if no region was specified. */
1308 if (name == NULL)
1309 return NULL;
1310
1311 for (r = lang_memory_region_list; r != NULL; r = r->next)
1312 for (n = &r->name_list; n != NULL; n = n->next)
1313 if (strcmp (n->name, name) == 0)
1314 {
1315 if (create)
1316 einfo (_("%P:%S: warning: redeclaration of memory region `%s'\n"),
1317 NULL, name);
1318 return r;
1319 }
1320
1321 if (!create && strcmp (name, DEFAULT_MEMORY_REGION))
1322 einfo (_("%P:%S: warning: memory region `%s' not declared\n"),
1323 NULL, name);
1324
1325 new_region = (lang_memory_region_type *)
1326 stat_alloc (sizeof (lang_memory_region_type));
1327
1328 new_region->name_list.name = xstrdup (name);
1329 new_region->name_list.next = NULL;
1330 new_region->next = NULL;
1331 new_region->origin_exp = NULL;
1332 new_region->origin = 0;
1333 new_region->length_exp = NULL;
1334 new_region->length = ~(bfd_size_type) 0;
1335 new_region->current = 0;
1336 new_region->last_os = NULL;
1337 new_region->flags = 0;
1338 new_region->not_flags = 0;
1339 new_region->had_full_message = FALSE;
1340
1341 *lang_memory_region_list_tail = new_region;
1342 lang_memory_region_list_tail = &new_region->next;
1343
1344 return new_region;
1345 }
1346
1347 void
1348 lang_memory_region_alias (const char *alias, const char *region_name)
1349 {
1350 lang_memory_region_name *n;
1351 lang_memory_region_type *r;
1352 lang_memory_region_type *region;
1353
1354 /* The default region must be unique. This ensures that it is not necessary
1355 to iterate through the name list if someone wants the check if a region is
1356 the default memory region. */
1357 if (strcmp (region_name, DEFAULT_MEMORY_REGION) == 0
1358 || strcmp (alias, DEFAULT_MEMORY_REGION) == 0)
1359 einfo (_("%F%P:%S: error: alias for default memory region\n"), NULL);
1360
1361 /* Look for the target region and check if the alias is not already
1362 in use. */
1363 region = NULL;
1364 for (r = lang_memory_region_list; r != NULL; r = r->next)
1365 for (n = &r->name_list; n != NULL; n = n->next)
1366 {
1367 if (region == NULL && strcmp (n->name, region_name) == 0)
1368 region = r;
1369 if (strcmp (n->name, alias) == 0)
1370 einfo (_("%F%P:%S: error: redefinition of memory region "
1371 "alias `%s'\n"),
1372 NULL, alias);
1373 }
1374
1375 /* Check if the target region exists. */
1376 if (region == NULL)
1377 einfo (_("%F%P:%S: error: memory region `%s' "
1378 "for alias `%s' does not exist\n"),
1379 NULL, region_name, alias);
1380
1381 /* Add alias to region name list. */
1382 n = (lang_memory_region_name *) stat_alloc (sizeof (lang_memory_region_name));
1383 n->name = xstrdup (alias);
1384 n->next = region->name_list.next;
1385 region->name_list.next = n;
1386 }
1387
1388 static lang_memory_region_type *
1389 lang_memory_default (asection *section)
1390 {
1391 lang_memory_region_type *p;
1392
1393 flagword sec_flags = section->flags;
1394
1395 /* Override SEC_DATA to mean a writable section. */
1396 if ((sec_flags & (SEC_ALLOC | SEC_READONLY | SEC_CODE)) == SEC_ALLOC)
1397 sec_flags |= SEC_DATA;
1398
1399 for (p = lang_memory_region_list; p != NULL; p = p->next)
1400 {
1401 if ((p->flags & sec_flags) != 0
1402 && (p->not_flags & sec_flags) == 0)
1403 {
1404 return p;
1405 }
1406 }
1407 return lang_memory_region_lookup (DEFAULT_MEMORY_REGION, FALSE);
1408 }
1409
1410 /* Get the output section statement directly from the userdata. */
1411
1412 lang_output_section_statement_type *
1413 lang_output_section_get (const asection *output_section)
1414 {
1415 return get_userdata (output_section);
1416 }
1417
1418 /* Find or create an output_section_statement with the given NAME.
1419 If CONSTRAINT is non-zero match one with that constraint, otherwise
1420 match any non-negative constraint. If CREATE, always make a
1421 new output_section_statement for SPECIAL CONSTRAINT. */
1422
1423 lang_output_section_statement_type *
1424 lang_output_section_statement_lookup (const char *name,
1425 int constraint,
1426 bfd_boolean create)
1427 {
1428 struct out_section_hash_entry *entry;
1429
1430 entry = ((struct out_section_hash_entry *)
1431 bfd_hash_lookup (&output_section_statement_table, name,
1432 create, FALSE));
1433 if (entry == NULL)
1434 {
1435 if (create)
1436 einfo (_("%P%F: failed creating section `%s': %E\n"), name);
1437 return NULL;
1438 }
1439
1440 if (entry->s.output_section_statement.name != NULL)
1441 {
1442 /* We have a section of this name, but it might not have the correct
1443 constraint. */
1444 struct out_section_hash_entry *last_ent;
1445
1446 name = entry->s.output_section_statement.name;
1447 if (create && constraint == SPECIAL)
1448 /* Not traversing to the end reverses the order of the second
1449 and subsequent SPECIAL sections in the hash table chain,
1450 but that shouldn't matter. */
1451 last_ent = entry;
1452 else
1453 do
1454 {
1455 if (constraint == entry->s.output_section_statement.constraint
1456 || (constraint == 0
1457 && entry->s.output_section_statement.constraint >= 0))
1458 return &entry->s.output_section_statement;
1459 last_ent = entry;
1460 entry = (struct out_section_hash_entry *) entry->root.next;
1461 }
1462 while (entry != NULL
1463 && name == entry->s.output_section_statement.name);
1464
1465 if (!create)
1466 return NULL;
1467
1468 entry
1469 = ((struct out_section_hash_entry *)
1470 output_section_statement_newfunc (NULL,
1471 &output_section_statement_table,
1472 name));
1473 if (entry == NULL)
1474 {
1475 einfo (_("%P%F: failed creating section `%s': %E\n"), name);
1476 return NULL;
1477 }
1478 entry->root = last_ent->root;
1479 last_ent->root.next = &entry->root;
1480 }
1481
1482 entry->s.output_section_statement.name = name;
1483 entry->s.output_section_statement.constraint = constraint;
1484 return &entry->s.output_section_statement;
1485 }
1486
1487 /* Find the next output_section_statement with the same name as OS.
1488 If CONSTRAINT is non-zero, find one with that constraint otherwise
1489 match any non-negative constraint. */
1490
1491 lang_output_section_statement_type *
1492 next_matching_output_section_statement (lang_output_section_statement_type *os,
1493 int constraint)
1494 {
1495 /* All output_section_statements are actually part of a
1496 struct out_section_hash_entry. */
1497 struct out_section_hash_entry *entry = (struct out_section_hash_entry *)
1498 ((char *) os
1499 - offsetof (struct out_section_hash_entry, s.output_section_statement));
1500 const char *name = os->name;
1501
1502 ASSERT (name == entry->root.string);
1503 do
1504 {
1505 entry = (struct out_section_hash_entry *) entry->root.next;
1506 if (entry == NULL
1507 || name != entry->s.output_section_statement.name)
1508 return NULL;
1509 }
1510 while (constraint != entry->s.output_section_statement.constraint
1511 && (constraint != 0
1512 || entry->s.output_section_statement.constraint < 0));
1513
1514 return &entry->s.output_section_statement;
1515 }
1516
1517 /* A variant of lang_output_section_find used by place_orphan.
1518 Returns the output statement that should precede a new output
1519 statement for SEC. If an exact match is found on certain flags,
1520 sets *EXACT too. */
1521
1522 lang_output_section_statement_type *
1523 lang_output_section_find_by_flags (const asection *sec,
1524 flagword sec_flags,
1525 lang_output_section_statement_type **exact,
1526 lang_match_sec_type_func match_type)
1527 {
1528 lang_output_section_statement_type *first, *look, *found;
1529 flagword look_flags, differ;
1530
1531 /* We know the first statement on this list is *ABS*. May as well
1532 skip it. */
1533 first = &lang_output_section_statement.head->output_section_statement;
1534 first = first->next;
1535
1536 /* First try for an exact match. */
1537 found = NULL;
1538 for (look = first; look; look = look->next)
1539 {
1540 look_flags = look->flags;
1541 if (look->bfd_section != NULL)
1542 {
1543 look_flags = look->bfd_section->flags;
1544 if (match_type && !match_type (link_info.output_bfd,
1545 look->bfd_section,
1546 sec->owner, sec))
1547 continue;
1548 }
1549 differ = look_flags ^ sec_flags;
1550 if (!(differ & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD | SEC_READONLY
1551 | SEC_CODE | SEC_SMALL_DATA | SEC_THREAD_LOCAL)))
1552 found = look;
1553 }
1554 if (found != NULL)
1555 {
1556 if (exact != NULL)
1557 *exact = found;
1558 return found;
1559 }
1560
1561 if ((sec_flags & SEC_CODE) != 0
1562 && (sec_flags & SEC_ALLOC) != 0)
1563 {
1564 /* Try for a rw code section. */
1565 for (look = first; look; look = look->next)
1566 {
1567 look_flags = look->flags;
1568 if (look->bfd_section != NULL)
1569 {
1570 look_flags = look->bfd_section->flags;
1571 if (match_type && !match_type (link_info.output_bfd,
1572 look->bfd_section,
1573 sec->owner, sec))
1574 continue;
1575 }
1576 differ = look_flags ^ sec_flags;
1577 if (!(differ & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD
1578 | SEC_CODE | SEC_SMALL_DATA | SEC_THREAD_LOCAL)))
1579 found = look;
1580 }
1581 }
1582 else if ((sec_flags & SEC_READONLY) != 0
1583 && (sec_flags & SEC_ALLOC) != 0)
1584 {
1585 /* .rodata can go after .text, .sdata2 after .rodata. */
1586 for (look = first; look; look = look->next)
1587 {
1588 look_flags = look->flags;
1589 if (look->bfd_section != NULL)
1590 {
1591 look_flags = look->bfd_section->flags;
1592 if (match_type && !match_type (link_info.output_bfd,
1593 look->bfd_section,
1594 sec->owner, sec))
1595 continue;
1596 }
1597 differ = look_flags ^ sec_flags;
1598 if (!(differ & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD
1599 | SEC_READONLY | SEC_SMALL_DATA))
1600 || (!(differ & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD
1601 | SEC_READONLY))
1602 && !(look_flags & SEC_SMALL_DATA)))
1603 found = look;
1604 }
1605 }
1606 else if ((sec_flags & SEC_THREAD_LOCAL) != 0
1607 && (sec_flags & SEC_ALLOC) != 0)
1608 {
1609 /* .tdata can go after .data, .tbss after .tdata. Treat .tbss
1610 as if it were a loaded section, and don't use match_type. */
1611 bfd_boolean seen_thread_local = FALSE;
1612
1613 match_type = NULL;
1614 for (look = first; look; look = look->next)
1615 {
1616 look_flags = look->flags;
1617 if (look->bfd_section != NULL)
1618 look_flags = look->bfd_section->flags;
1619
1620 differ = look_flags ^ (sec_flags | SEC_LOAD | SEC_HAS_CONTENTS);
1621 if (!(differ & (SEC_THREAD_LOCAL | SEC_ALLOC)))
1622 {
1623 /* .tdata and .tbss must be adjacent and in that order. */
1624 if (!(look_flags & SEC_LOAD)
1625 && (sec_flags & SEC_LOAD))
1626 /* ..so if we're at a .tbss section and we're placing
1627 a .tdata section stop looking and return the
1628 previous section. */
1629 break;
1630 found = look;
1631 seen_thread_local = TRUE;
1632 }
1633 else if (seen_thread_local)
1634 break;
1635 else if (!(differ & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD)))
1636 found = look;
1637 }
1638 }
1639 else if ((sec_flags & SEC_SMALL_DATA) != 0
1640 && (sec_flags & SEC_ALLOC) != 0)
1641 {
1642 /* .sdata goes after .data, .sbss after .sdata. */
1643 for (look = first; look; look = look->next)
1644 {
1645 look_flags = look->flags;
1646 if (look->bfd_section != NULL)
1647 {
1648 look_flags = look->bfd_section->flags;
1649 if (match_type && !match_type (link_info.output_bfd,
1650 look->bfd_section,
1651 sec->owner, sec))
1652 continue;
1653 }
1654 differ = look_flags ^ sec_flags;
1655 if (!(differ & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD
1656 | SEC_THREAD_LOCAL))
1657 || ((look_flags & SEC_SMALL_DATA)
1658 && !(sec_flags & SEC_HAS_CONTENTS)))
1659 found = look;
1660 }
1661 }
1662 else if ((sec_flags & SEC_HAS_CONTENTS) != 0
1663 && (sec_flags & SEC_ALLOC) != 0)
1664 {
1665 /* .data goes after .rodata. */
1666 for (look = first; look; look = look->next)
1667 {
1668 look_flags = look->flags;
1669 if (look->bfd_section != NULL)
1670 {
1671 look_flags = look->bfd_section->flags;
1672 if (match_type && !match_type (link_info.output_bfd,
1673 look->bfd_section,
1674 sec->owner, sec))
1675 continue;
1676 }
1677 differ = look_flags ^ sec_flags;
1678 if (!(differ & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD
1679 | SEC_SMALL_DATA | SEC_THREAD_LOCAL)))
1680 found = look;
1681 }
1682 }
1683 else if ((sec_flags & SEC_ALLOC) != 0)
1684 {
1685 /* .bss goes after any other alloc section. */
1686 for (look = first; look; look = look->next)
1687 {
1688 look_flags = look->flags;
1689 if (look->bfd_section != NULL)
1690 {
1691 look_flags = look->bfd_section->flags;
1692 if (match_type && !match_type (link_info.output_bfd,
1693 look->bfd_section,
1694 sec->owner, sec))
1695 continue;
1696 }
1697 differ = look_flags ^ sec_flags;
1698 if (!(differ & SEC_ALLOC))
1699 found = look;
1700 }
1701 }
1702 else
1703 {
1704 /* non-alloc go last. */
1705 for (look = first; look; look = look->next)
1706 {
1707 look_flags = look->flags;
1708 if (look->bfd_section != NULL)
1709 look_flags = look->bfd_section->flags;
1710 differ = look_flags ^ sec_flags;
1711 if (!(differ & SEC_DEBUGGING))
1712 found = look;
1713 }
1714 return found;
1715 }
1716
1717 if (found || !match_type)
1718 return found;
1719
1720 return lang_output_section_find_by_flags (sec, sec_flags, NULL, NULL);
1721 }
1722
1723 /* Find the last output section before given output statement.
1724 Used by place_orphan. */
1725
1726 static asection *
1727 output_prev_sec_find (lang_output_section_statement_type *os)
1728 {
1729 lang_output_section_statement_type *lookup;
1730
1731 for (lookup = os->prev; lookup != NULL; lookup = lookup->prev)
1732 {
1733 if (lookup->constraint < 0)
1734 continue;
1735
1736 if (lookup->bfd_section != NULL && lookup->bfd_section->owner != NULL)
1737 return lookup->bfd_section;
1738 }
1739
1740 return NULL;
1741 }
1742
1743 /* Look for a suitable place for a new output section statement. The
1744 idea is to skip over anything that might be inside a SECTIONS {}
1745 statement in a script, before we find another output section
1746 statement. Assignments to "dot" before an output section statement
1747 are assumed to belong to it, except in two cases; The first
1748 assignment to dot, and assignments before non-alloc sections.
1749 Otherwise we might put an orphan before . = . + SIZEOF_HEADERS or
1750 similar assignments that set the initial address, or we might
1751 insert non-alloc note sections among assignments setting end of
1752 image symbols. */
1753
1754 static lang_statement_union_type **
1755 insert_os_after (lang_output_section_statement_type *after)
1756 {
1757 lang_statement_union_type **where;
1758 lang_statement_union_type **assign = NULL;
1759 bfd_boolean ignore_first;
1760
1761 ignore_first
1762 = after == &lang_output_section_statement.head->output_section_statement;
1763
1764 for (where = &after->header.next;
1765 *where != NULL;
1766 where = &(*where)->header.next)
1767 {
1768 switch ((*where)->header.type)
1769 {
1770 case lang_assignment_statement_enum:
1771 if (assign == NULL)
1772 {
1773 lang_assignment_statement_type *ass;
1774
1775 ass = &(*where)->assignment_statement;
1776 if (ass->exp->type.node_class != etree_assert
1777 && ass->exp->assign.dst[0] == '.'
1778 && ass->exp->assign.dst[1] == 0
1779 && !ignore_first)
1780 assign = where;
1781 }
1782 ignore_first = FALSE;
1783 continue;
1784 case lang_wild_statement_enum:
1785 case lang_input_section_enum:
1786 case lang_object_symbols_statement_enum:
1787 case lang_fill_statement_enum:
1788 case lang_data_statement_enum:
1789 case lang_reloc_statement_enum:
1790 case lang_padding_statement_enum:
1791 case lang_constructors_statement_enum:
1792 assign = NULL;
1793 continue;
1794 case lang_output_section_statement_enum:
1795 if (assign != NULL)
1796 {
1797 asection *s = (*where)->output_section_statement.bfd_section;
1798
1799 if (s == NULL
1800 || s->map_head.s == NULL
1801 || (s->flags & SEC_ALLOC) != 0)
1802 where = assign;
1803 }
1804 break;
1805 case lang_input_statement_enum:
1806 case lang_address_statement_enum:
1807 case lang_target_statement_enum:
1808 case lang_output_statement_enum:
1809 case lang_group_statement_enum:
1810 case lang_insert_statement_enum:
1811 continue;
1812 }
1813 break;
1814 }
1815
1816 return where;
1817 }
1818
1819 lang_output_section_statement_type *
1820 lang_insert_orphan (asection *s,
1821 const char *secname,
1822 int constraint,
1823 lang_output_section_statement_type *after,
1824 struct orphan_save *place,
1825 etree_type *address,
1826 lang_statement_list_type *add_child)
1827 {
1828 lang_statement_list_type add;
1829 const char *ps;
1830 lang_assignment_statement_type *start_assign;
1831 lang_output_section_statement_type *os;
1832 lang_output_section_statement_type **os_tail;
1833
1834 /* If we have found an appropriate place for the output section
1835 statements for this orphan, add them to our own private list,
1836 inserting them later into the global statement list. */
1837 if (after != NULL)
1838 {
1839 lang_list_init (&add);
1840 push_stat_ptr (&add);
1841 }
1842
1843 if (bfd_link_relocatable (&link_info)
1844 || (s->flags & (SEC_LOAD | SEC_ALLOC)) == 0)
1845 address = exp_intop (0);
1846
1847 os_tail = ((lang_output_section_statement_type **)
1848 lang_output_section_statement.tail);
1849 os = lang_enter_output_section_statement (secname, address, normal_section,
1850 NULL, NULL, NULL, constraint, 0);
1851
1852 ps = NULL;
1853 start_assign = NULL;
1854 if (config.build_constructors && *os_tail == os)
1855 {
1856 /* If the name of the section is representable in C, then create
1857 symbols to mark the start and the end of the section. */
1858 for (ps = secname; *ps != '\0'; ps++)
1859 if (!ISALNUM ((unsigned char) *ps) && *ps != '_')
1860 break;
1861 if (*ps == '\0')
1862 {
1863 char *symname;
1864
1865 symname = (char *) xmalloc (ps - secname + sizeof "__start_" + 1);
1866 symname[0] = bfd_get_symbol_leading_char (link_info.output_bfd);
1867 sprintf (symname + (symname[0] != 0), "__start_%s", secname);
1868 start_assign
1869 = lang_add_assignment (exp_provide (symname,
1870 exp_nameop (NAME, "."),
1871 FALSE));
1872 }
1873 }
1874
1875 if (add_child == NULL)
1876 add_child = &os->children;
1877 lang_add_section (add_child, s, NULL, os);
1878
1879 if (after && (s->flags & (SEC_LOAD | SEC_ALLOC)) != 0)
1880 {
1881 const char *region = (after->region
1882 ? after->region->name_list.name
1883 : DEFAULT_MEMORY_REGION);
1884 const char *lma_region = (after->lma_region
1885 ? after->lma_region->name_list.name
1886 : NULL);
1887 lang_leave_output_section_statement (NULL, region, after->phdrs,
1888 lma_region);
1889 }
1890 else
1891 lang_leave_output_section_statement (NULL, DEFAULT_MEMORY_REGION, NULL,
1892 NULL);
1893
1894 if (start_assign != NULL)
1895 {
1896 char *symname;
1897 lang_assignment_statement_type *stop_assign;
1898 bfd_vma dot;
1899
1900 symname = (char *) xmalloc (ps - secname + sizeof "__stop_" + 1);
1901 symname[0] = bfd_get_symbol_leading_char (link_info.output_bfd);
1902 sprintf (symname + (symname[0] != 0), "__stop_%s", secname);
1903 stop_assign
1904 = lang_add_assignment (exp_provide (symname,
1905 exp_nameop (NAME, "."),
1906 FALSE));
1907 /* Evaluate the expression to define the symbol if referenced,
1908 before sizing dynamic sections. */
1909 dot = os->bfd_section->vma;
1910 exp_fold_tree (start_assign->exp, os->bfd_section, &dot);
1911 dot += TO_ADDR (s->size);
1912 exp_fold_tree (stop_assign->exp, os->bfd_section, &dot);
1913 }
1914
1915 /* Restore the global list pointer. */
1916 if (after != NULL)
1917 pop_stat_ptr ();
1918
1919 if (after != NULL && os->bfd_section != NULL)
1920 {
1921 asection *snew, *as;
1922
1923 snew = os->bfd_section;
1924
1925 /* Shuffle the bfd section list to make the output file look
1926 neater. This is really only cosmetic. */
1927 if (place->section == NULL
1928 && after != (&lang_output_section_statement.head
1929 ->output_section_statement))
1930 {
1931 asection *bfd_section = after->bfd_section;
1932
1933 /* If the output statement hasn't been used to place any input
1934 sections (and thus doesn't have an output bfd_section),
1935 look for the closest prior output statement having an
1936 output section. */
1937 if (bfd_section == NULL)
1938 bfd_section = output_prev_sec_find (after);
1939
1940 if (bfd_section != NULL && bfd_section != snew)
1941 place->section = &bfd_section->next;
1942 }
1943
1944 if (place->section == NULL)
1945 place->section = &link_info.output_bfd->sections;
1946
1947 as = *place->section;
1948
1949 if (!as)
1950 {
1951 /* Put the section at the end of the list. */
1952
1953 /* Unlink the section. */
1954 bfd_section_list_remove (link_info.output_bfd, snew);
1955
1956 /* Now tack it back on in the right place. */
1957 bfd_section_list_append (link_info.output_bfd, snew);
1958 }
1959 else if (as != snew && as->prev != snew)
1960 {
1961 /* Unlink the section. */
1962 bfd_section_list_remove (link_info.output_bfd, snew);
1963
1964 /* Now tack it back on in the right place. */
1965 bfd_section_list_insert_before (link_info.output_bfd, as, snew);
1966 }
1967
1968 /* Save the end of this list. Further ophans of this type will
1969 follow the one we've just added. */
1970 place->section = &snew->next;
1971
1972 /* The following is non-cosmetic. We try to put the output
1973 statements in some sort of reasonable order here, because they
1974 determine the final load addresses of the orphan sections.
1975 In addition, placing output statements in the wrong order may
1976 require extra segments. For instance, given a typical
1977 situation of all read-only sections placed in one segment and
1978 following that a segment containing all the read-write
1979 sections, we wouldn't want to place an orphan read/write
1980 section before or amongst the read-only ones. */
1981 if (add.head != NULL)
1982 {
1983 lang_output_section_statement_type *newly_added_os;
1984
1985 if (place->stmt == NULL)
1986 {
1987 lang_statement_union_type **where = insert_os_after (after);
1988
1989 *add.tail = *where;
1990 *where = add.head;
1991
1992 place->os_tail = &after->next;
1993 }
1994 else
1995 {
1996 /* Put it after the last orphan statement we added. */
1997 *add.tail = *place->stmt;
1998 *place->stmt = add.head;
1999 }
2000
2001 /* Fix the global list pointer if we happened to tack our
2002 new list at the tail. */
2003 if (*stat_ptr->tail == add.head)
2004 stat_ptr->tail = add.tail;
2005
2006 /* Save the end of this list. */
2007 place->stmt = add.tail;
2008
2009 /* Do the same for the list of output section statements. */
2010 newly_added_os = *os_tail;
2011 *os_tail = NULL;
2012 newly_added_os->prev = (lang_output_section_statement_type *)
2013 ((char *) place->os_tail
2014 - offsetof (lang_output_section_statement_type, next));
2015 newly_added_os->next = *place->os_tail;
2016 if (newly_added_os->next != NULL)
2017 newly_added_os->next->prev = newly_added_os;
2018 *place->os_tail = newly_added_os;
2019 place->os_tail = &newly_added_os->next;
2020
2021 /* Fixing the global list pointer here is a little different.
2022 We added to the list in lang_enter_output_section_statement,
2023 trimmed off the new output_section_statment above when
2024 assigning *os_tail = NULL, but possibly added it back in
2025 the same place when assigning *place->os_tail. */
2026 if (*os_tail == NULL)
2027 lang_output_section_statement.tail
2028 = (lang_statement_union_type **) os_tail;
2029 }
2030 }
2031 return os;
2032 }
2033
2034 static void
2035 lang_print_asneeded (void)
2036 {
2037 struct asneeded_minfo *m;
2038 char buf[100];
2039
2040 if (asneeded_list_head == NULL)
2041 return;
2042
2043 sprintf (buf, _("\nAs-needed library included "
2044 "to satisfy reference by file (symbol)\n\n"));
2045 minfo ("%s", buf);
2046
2047 for (m = asneeded_list_head; m != NULL; m = m->next)
2048 {
2049 size_t len;
2050
2051 minfo ("%s", m->soname);
2052 len = strlen (m->soname);
2053
2054 if (len >= 29)
2055 {
2056 print_nl ();
2057 len = 0;
2058 }
2059 while (len < 30)
2060 {
2061 print_space ();
2062 ++len;
2063 }
2064
2065 if (m->ref != NULL)
2066 minfo ("%B ", m->ref);
2067 minfo ("(%T)\n", m->name);
2068 }
2069 }
2070
2071 static void
2072 lang_map_flags (flagword flag)
2073 {
2074 if (flag & SEC_ALLOC)
2075 minfo ("a");
2076
2077 if (flag & SEC_CODE)
2078 minfo ("x");
2079
2080 if (flag & SEC_READONLY)
2081 minfo ("r");
2082
2083 if (flag & SEC_DATA)
2084 minfo ("w");
2085
2086 if (flag & SEC_LOAD)
2087 minfo ("l");
2088 }
2089
2090 void
2091 lang_map (void)
2092 {
2093 lang_memory_region_type *m;
2094 bfd_boolean dis_header_printed = FALSE;
2095
2096 LANG_FOR_EACH_INPUT_STATEMENT (file)
2097 {
2098 asection *s;
2099
2100 if ((file->the_bfd->flags & (BFD_LINKER_CREATED | DYNAMIC)) != 0
2101 || file->flags.just_syms)
2102 continue;
2103
2104 for (s = file->the_bfd->sections; s != NULL; s = s->next)
2105 if ((s->output_section == NULL
2106 || s->output_section->owner != link_info.output_bfd)
2107 && (s->flags & (SEC_LINKER_CREATED | SEC_KEEP)) == 0)
2108 {
2109 if (!dis_header_printed)
2110 {
2111 fprintf (config.map_file, _("\nDiscarded input sections\n\n"));
2112 dis_header_printed = TRUE;
2113 }
2114
2115 print_input_section (s, TRUE);
2116 }
2117 }
2118
2119 minfo (_("\nMemory Configuration\n\n"));
2120 fprintf (config.map_file, "%-16s %-18s %-18s %s\n",
2121 _("Name"), _("Origin"), _("Length"), _("Attributes"));
2122
2123 for (m = lang_memory_region_list; m != NULL; m = m->next)
2124 {
2125 char buf[100];
2126 int len;
2127
2128 fprintf (config.map_file, "%-16s ", m->name_list.name);
2129
2130 sprintf_vma (buf, m->origin);
2131 minfo ("0x%s ", buf);
2132 len = strlen (buf);
2133 while (len < 16)
2134 {
2135 print_space ();
2136 ++len;
2137 }
2138
2139 minfo ("0x%V", m->length);
2140 if (m->flags || m->not_flags)
2141 {
2142 #ifndef BFD64
2143 minfo (" ");
2144 #endif
2145 if (m->flags)
2146 {
2147 print_space ();
2148 lang_map_flags (m->flags);
2149 }
2150
2151 if (m->not_flags)
2152 {
2153 minfo (" !");
2154 lang_map_flags (m->not_flags);
2155 }
2156 }
2157
2158 print_nl ();
2159 }
2160
2161 fprintf (config.map_file, _("\nLinker script and memory map\n\n"));
2162
2163 if (!link_info.reduce_memory_overheads)
2164 {
2165 obstack_begin (&map_obstack, 1000);
2166 bfd_link_hash_traverse (link_info.hash, sort_def_symbol, 0);
2167 }
2168 lang_statement_iteration++;
2169 print_statements ();
2170
2171 ldemul_extra_map_file_text (link_info.output_bfd, &link_info,
2172 config.map_file);
2173 }
2174
2175 static bfd_boolean
2176 sort_def_symbol (struct bfd_link_hash_entry *hash_entry,
2177 void *info ATTRIBUTE_UNUSED)
2178 {
2179 if ((hash_entry->type == bfd_link_hash_defined
2180 || hash_entry->type == bfd_link_hash_defweak)
2181 && hash_entry->u.def.section->owner != link_info.output_bfd
2182 && hash_entry->u.def.section->owner != NULL)
2183 {
2184 input_section_userdata_type *ud;
2185 struct map_symbol_def *def;
2186
2187 ud = ((input_section_userdata_type *)
2188 get_userdata (hash_entry->u.def.section));
2189 if (!ud)
2190 {
2191 ud = (input_section_userdata_type *) stat_alloc (sizeof (*ud));
2192 get_userdata (hash_entry->u.def.section) = ud;
2193 ud->map_symbol_def_tail = &ud->map_symbol_def_head;
2194 ud->map_symbol_def_count = 0;
2195 }
2196 else if (!ud->map_symbol_def_tail)
2197 ud->map_symbol_def_tail = &ud->map_symbol_def_head;
2198
2199 def = (struct map_symbol_def *) obstack_alloc (&map_obstack, sizeof *def);
2200 def->entry = hash_entry;
2201 *(ud->map_symbol_def_tail) = def;
2202 ud->map_symbol_def_tail = &def->next;
2203 ud->map_symbol_def_count++;
2204 }
2205 return TRUE;
2206 }
2207
2208 /* Initialize an output section. */
2209
2210 static void
2211 init_os (lang_output_section_statement_type *s, flagword flags)
2212 {
2213 if (strcmp (s->name, DISCARD_SECTION_NAME) == 0)
2214 einfo (_("%P%F: Illegal use of `%s' section\n"), DISCARD_SECTION_NAME);
2215
2216 if (s->constraint != SPECIAL)
2217 s->bfd_section = bfd_get_section_by_name (link_info.output_bfd, s->name);
2218 if (s->bfd_section == NULL)
2219 s->bfd_section = bfd_make_section_anyway_with_flags (link_info.output_bfd,
2220 s->name, flags);
2221 if (s->bfd_section == NULL)
2222 {
2223 einfo (_("%P%F: output format %s cannot represent section"
2224 " called %s: %E\n"),
2225 link_info.output_bfd->xvec->name, s->name);
2226 }
2227 s->bfd_section->output_section = s->bfd_section;
2228 s->bfd_section->output_offset = 0;
2229
2230 /* Set the userdata of the output section to the output section
2231 statement to avoid lookup. */
2232 get_userdata (s->bfd_section) = s;
2233
2234 /* If there is a base address, make sure that any sections it might
2235 mention are initialized. */
2236 if (s->addr_tree != NULL)
2237 exp_init_os (s->addr_tree);
2238
2239 if (s->load_base != NULL)
2240 exp_init_os (s->load_base);
2241
2242 /* If supplied an alignment, set it. */
2243 if (s->section_alignment != -1)
2244 s->bfd_section->alignment_power = s->section_alignment;
2245 }
2246
2247 /* Make sure that all output sections mentioned in an expression are
2248 initialized. */
2249
2250 static void
2251 exp_init_os (etree_type *exp)
2252 {
2253 switch (exp->type.node_class)
2254 {
2255 case etree_assign:
2256 case etree_provide:
2257 exp_init_os (exp->assign.src);
2258 break;
2259
2260 case etree_binary:
2261 exp_init_os (exp->binary.lhs);
2262 exp_init_os (exp->binary.rhs);
2263 break;
2264
2265 case etree_trinary:
2266 exp_init_os (exp->trinary.cond);
2267 exp_init_os (exp->trinary.lhs);
2268 exp_init_os (exp->trinary.rhs);
2269 break;
2270
2271 case etree_assert:
2272 exp_init_os (exp->assert_s.child);
2273 break;
2274
2275 case etree_unary:
2276 exp_init_os (exp->unary.child);
2277 break;
2278
2279 case etree_name:
2280 switch (exp->type.node_code)
2281 {
2282 case ADDR:
2283 case LOADADDR:
2284 case SIZEOF:
2285 {
2286 lang_output_section_statement_type *os;
2287
2288 os = lang_output_section_find (exp->name.name);
2289 if (os != NULL && os->bfd_section == NULL)
2290 init_os (os, 0);
2291 }
2292 }
2293 break;
2294
2295 default:
2296 break;
2297 }
2298 }
2299 \f
2300 static void
2301 section_already_linked (bfd *abfd, asection *sec, void *data)
2302 {
2303 lang_input_statement_type *entry = (lang_input_statement_type *) data;
2304
2305 /* If we are only reading symbols from this object, then we want to
2306 discard all sections. */
2307 if (entry->flags.just_syms)
2308 {
2309 bfd_link_just_syms (abfd, sec, &link_info);
2310 return;
2311 }
2312
2313 /* Deal with SHF_EXCLUDE ELF sections. */
2314 if (!bfd_link_relocatable (&link_info)
2315 && (abfd->flags & BFD_PLUGIN) == 0
2316 && (sec->flags & (SEC_GROUP | SEC_KEEP | SEC_EXCLUDE)) == SEC_EXCLUDE)
2317 sec->output_section = bfd_abs_section_ptr;
2318
2319 if (!(abfd->flags & DYNAMIC))
2320 bfd_section_already_linked (abfd, sec, &link_info);
2321 }
2322 \f
2323 /* The wild routines.
2324
2325 These expand statements like *(.text) and foo.o to a list of
2326 explicit actions, like foo.o(.text), bar.o(.text) and
2327 foo.o(.text, .data). */
2328
2329 /* Add SECTION to the output section OUTPUT. Do this by creating a
2330 lang_input_section statement which is placed at PTR. */
2331
2332 void
2333 lang_add_section (lang_statement_list_type *ptr,
2334 asection *section,
2335 struct flag_info *sflag_info,
2336 lang_output_section_statement_type *output)
2337 {
2338 flagword flags = section->flags;
2339
2340 bfd_boolean discard;
2341 lang_input_section_type *new_section;
2342 bfd *abfd = link_info.output_bfd;
2343
2344 /* Discard sections marked with SEC_EXCLUDE. */
2345 discard = (flags & SEC_EXCLUDE) != 0;
2346
2347 /* Discard input sections which are assigned to a section named
2348 DISCARD_SECTION_NAME. */
2349 if (strcmp (output->name, DISCARD_SECTION_NAME) == 0)
2350 discard = TRUE;
2351
2352 /* Discard debugging sections if we are stripping debugging
2353 information. */
2354 if ((link_info.strip == strip_debugger || link_info.strip == strip_all)
2355 && (flags & SEC_DEBUGGING) != 0)
2356 discard = TRUE;
2357
2358 if (discard)
2359 {
2360 if (section->output_section == NULL)
2361 {
2362 /* This prevents future calls from assigning this section. */
2363 section->output_section = bfd_abs_section_ptr;
2364 }
2365 return;
2366 }
2367
2368 if (sflag_info)
2369 {
2370 bfd_boolean keep;
2371
2372 keep = bfd_lookup_section_flags (&link_info, sflag_info, section);
2373 if (!keep)
2374 return;
2375 }
2376
2377 if (section->output_section != NULL)
2378 return;
2379
2380 /* We don't copy the SEC_NEVER_LOAD flag from an input section
2381 to an output section, because we want to be able to include a
2382 SEC_NEVER_LOAD section in the middle of an otherwise loaded
2383 section (I don't know why we want to do this, but we do).
2384 build_link_order in ldwrite.c handles this case by turning
2385 the embedded SEC_NEVER_LOAD section into a fill. */
2386 flags &= ~ SEC_NEVER_LOAD;
2387
2388 /* If final link, don't copy the SEC_LINK_ONCE flags, they've
2389 already been processed. One reason to do this is that on pe
2390 format targets, .text$foo sections go into .text and it's odd
2391 to see .text with SEC_LINK_ONCE set. */
2392
2393 if (!bfd_link_relocatable (&link_info))
2394 flags &= ~(SEC_LINK_ONCE | SEC_LINK_DUPLICATES | SEC_RELOC);
2395
2396 switch (output->sectype)
2397 {
2398 case normal_section:
2399 case overlay_section:
2400 break;
2401 case noalloc_section:
2402 flags &= ~SEC_ALLOC;
2403 break;
2404 case noload_section:
2405 flags &= ~SEC_LOAD;
2406 flags |= SEC_NEVER_LOAD;
2407 /* Unfortunately GNU ld has managed to evolve two different
2408 meanings to NOLOAD in scripts. ELF gets a .bss style noload,
2409 alloc, no contents section. All others get a noload, noalloc
2410 section. */
2411 if (bfd_get_flavour (link_info.output_bfd) == bfd_target_elf_flavour)
2412 flags &= ~SEC_HAS_CONTENTS;
2413 else
2414 flags &= ~SEC_ALLOC;
2415 break;
2416 }
2417
2418 if (output->bfd_section == NULL)
2419 init_os (output, flags);
2420
2421 /* If SEC_READONLY is not set in the input section, then clear
2422 it from the output section. */
2423 output->bfd_section->flags &= flags | ~SEC_READONLY;
2424
2425 if (output->bfd_section->linker_has_input)
2426 {
2427 /* Only set SEC_READONLY flag on the first input section. */
2428 flags &= ~ SEC_READONLY;
2429
2430 /* Keep SEC_MERGE and SEC_STRINGS only if they are the same. */
2431 if ((output->bfd_section->flags & (SEC_MERGE | SEC_STRINGS))
2432 != (flags & (SEC_MERGE | SEC_STRINGS))
2433 || ((flags & SEC_MERGE) != 0
2434 && output->bfd_section->entsize != section->entsize))
2435 {
2436 output->bfd_section->flags &= ~ (SEC_MERGE | SEC_STRINGS);
2437 flags &= ~ (SEC_MERGE | SEC_STRINGS);
2438 }
2439 }
2440 output->bfd_section->flags |= flags;
2441
2442 if (!output->bfd_section->linker_has_input)
2443 {
2444 output->bfd_section->linker_has_input = 1;
2445 /* This must happen after flags have been updated. The output
2446 section may have been created before we saw its first input
2447 section, eg. for a data statement. */
2448 bfd_init_private_section_data (section->owner, section,
2449 link_info.output_bfd,
2450 output->bfd_section,
2451 &link_info);
2452 if ((flags & SEC_MERGE) != 0)
2453 output->bfd_section->entsize = section->entsize;
2454 }
2455
2456 if ((flags & SEC_TIC54X_BLOCK) != 0
2457 && bfd_get_arch (section->owner) == bfd_arch_tic54x)
2458 {
2459 /* FIXME: This value should really be obtained from the bfd... */
2460 output->block_value = 128;
2461 }
2462
2463 if (section->alignment_power > output->bfd_section->alignment_power)
2464 output->bfd_section->alignment_power = section->alignment_power;
2465
2466 section->output_section = output->bfd_section;
2467
2468 if (!map_head_is_link_order)
2469 {
2470 asection *s = output->bfd_section->map_tail.s;
2471 output->bfd_section->map_tail.s = section;
2472 section->map_head.s = NULL;
2473 section->map_tail.s = s;
2474 if (s != NULL)
2475 s->map_head.s = section;
2476 else
2477 output->bfd_section->map_head.s = section;
2478 }
2479
2480 /* Add a section reference to the list. */
2481 new_section = new_stat (lang_input_section, ptr);
2482 new_section->section = section;
2483 }
2484
2485 /* Handle wildcard sorting. This returns the lang_input_section which
2486 should follow the one we are going to create for SECTION and FILE,
2487 based on the sorting requirements of WILD. It returns NULL if the
2488 new section should just go at the end of the current list. */
2489
2490 static lang_statement_union_type *
2491 wild_sort (lang_wild_statement_type *wild,
2492 struct wildcard_list *sec,
2493 lang_input_statement_type *file,
2494 asection *section)
2495 {
2496 lang_statement_union_type *l;
2497
2498 if (!wild->filenames_sorted
2499 && (sec == NULL || sec->spec.sorted == none))
2500 return NULL;
2501
2502 for (l = wild->children.head; l != NULL; l = l->header.next)
2503 {
2504 lang_input_section_type *ls;
2505
2506 if (l->header.type != lang_input_section_enum)
2507 continue;
2508 ls = &l->input_section;
2509
2510 /* Sorting by filename takes precedence over sorting by section
2511 name. */
2512
2513 if (wild->filenames_sorted)
2514 {
2515 const char *fn, *ln;
2516 bfd_boolean fa, la;
2517 int i;
2518
2519 /* The PE support for the .idata section as generated by
2520 dlltool assumes that files will be sorted by the name of
2521 the archive and then the name of the file within the
2522 archive. */
2523
2524 if (file->the_bfd != NULL
2525 && file->the_bfd->my_archive != NULL)
2526 {
2527 fn = bfd_get_filename (file->the_bfd->my_archive);
2528 fa = TRUE;
2529 }
2530 else
2531 {
2532 fn = file->filename;
2533 fa = FALSE;
2534 }
2535
2536 if (ls->section->owner->my_archive != NULL)
2537 {
2538 ln = bfd_get_filename (ls->section->owner->my_archive);
2539 la = TRUE;
2540 }
2541 else
2542 {
2543 ln = ls->section->owner->filename;
2544 la = FALSE;
2545 }
2546
2547 i = filename_cmp (fn, ln);
2548 if (i > 0)
2549 continue;
2550 else if (i < 0)
2551 break;
2552
2553 if (fa || la)
2554 {
2555 if (fa)
2556 fn = file->filename;
2557 if (la)
2558 ln = ls->section->owner->filename;
2559
2560 i = filename_cmp (fn, ln);
2561 if (i > 0)
2562 continue;
2563 else if (i < 0)
2564 break;
2565 }
2566 }
2567
2568 /* Here either the files are not sorted by name, or we are
2569 looking at the sections for this file. */
2570
2571 if (sec != NULL
2572 && sec->spec.sorted != none
2573 && sec->spec.sorted != by_none)
2574 if (compare_section (sec->spec.sorted, section, ls->section) < 0)
2575 break;
2576 }
2577
2578 return l;
2579 }
2580
2581 /* Expand a wild statement for a particular FILE. SECTION may be
2582 NULL, in which case it is a wild card. */
2583
2584 static void
2585 output_section_callback (lang_wild_statement_type *ptr,
2586 struct wildcard_list *sec,
2587 asection *section,
2588 struct flag_info *sflag_info,
2589 lang_input_statement_type *file,
2590 void *output)
2591 {
2592 lang_statement_union_type *before;
2593 lang_output_section_statement_type *os;
2594
2595 os = (lang_output_section_statement_type *) output;
2596
2597 /* Exclude sections that match UNIQUE_SECTION_LIST. */
2598 if (unique_section_p (section, os))
2599 return;
2600
2601 before = wild_sort (ptr, sec, file, section);
2602
2603 /* Here BEFORE points to the lang_input_section which
2604 should follow the one we are about to add. If BEFORE
2605 is NULL, then the section should just go at the end
2606 of the current list. */
2607
2608 if (before == NULL)
2609 lang_add_section (&ptr->children, section, sflag_info, os);
2610 else
2611 {
2612 lang_statement_list_type list;
2613 lang_statement_union_type **pp;
2614
2615 lang_list_init (&list);
2616 lang_add_section (&list, section, sflag_info, os);
2617
2618 /* If we are discarding the section, LIST.HEAD will
2619 be NULL. */
2620 if (list.head != NULL)
2621 {
2622 ASSERT (list.head->header.next == NULL);
2623
2624 for (pp = &ptr->children.head;
2625 *pp != before;
2626 pp = &(*pp)->header.next)
2627 ASSERT (*pp != NULL);
2628
2629 list.head->header.next = *pp;
2630 *pp = list.head;
2631 }
2632 }
2633 }
2634
2635 /* Check if all sections in a wild statement for a particular FILE
2636 are readonly. */
2637
2638 static void
2639 check_section_callback (lang_wild_statement_type *ptr ATTRIBUTE_UNUSED,
2640 struct wildcard_list *sec ATTRIBUTE_UNUSED,
2641 asection *section,
2642 struct flag_info *sflag_info ATTRIBUTE_UNUSED,
2643 lang_input_statement_type *file ATTRIBUTE_UNUSED,
2644 void *output)
2645 {
2646 lang_output_section_statement_type *os;
2647
2648 os = (lang_output_section_statement_type *) output;
2649
2650 /* Exclude sections that match UNIQUE_SECTION_LIST. */
2651 if (unique_section_p (section, os))
2652 return;
2653
2654 if (section->output_section == NULL && (section->flags & SEC_READONLY) == 0)
2655 os->all_input_readonly = FALSE;
2656 }
2657
2658 /* This is passed a file name which must have been seen already and
2659 added to the statement tree. We will see if it has been opened
2660 already and had its symbols read. If not then we'll read it. */
2661
2662 static lang_input_statement_type *
2663 lookup_name (const char *name)
2664 {
2665 lang_input_statement_type *search;
2666
2667 for (search = (lang_input_statement_type *) input_file_chain.head;
2668 search != NULL;
2669 search = (lang_input_statement_type *) search->next_real_file)
2670 {
2671 /* Use the local_sym_name as the name of the file that has
2672 already been loaded as filename might have been transformed
2673 via the search directory lookup mechanism. */
2674 const char *filename = search->local_sym_name;
2675
2676 if (filename != NULL
2677 && filename_cmp (filename, name) == 0)
2678 break;
2679 }
2680
2681 if (search == NULL)
2682 search = new_afile (name, lang_input_file_is_search_file_enum,
2683 default_target, FALSE);
2684
2685 /* If we have already added this file, or this file is not real
2686 don't add this file. */
2687 if (search->flags.loaded || !search->flags.real)
2688 return search;
2689
2690 if (!load_symbols (search, NULL))
2691 return NULL;
2692
2693 return search;
2694 }
2695
2696 /* Save LIST as a list of libraries whose symbols should not be exported. */
2697
2698 struct excluded_lib
2699 {
2700 char *name;
2701 struct excluded_lib *next;
2702 };
2703 static struct excluded_lib *excluded_libs;
2704
2705 void
2706 add_excluded_libs (const char *list)
2707 {
2708 const char *p = list, *end;
2709
2710 while (*p != '\0')
2711 {
2712 struct excluded_lib *entry;
2713 end = strpbrk (p, ",:");
2714 if (end == NULL)
2715 end = p + strlen (p);
2716 entry = (struct excluded_lib *) xmalloc (sizeof (*entry));
2717 entry->next = excluded_libs;
2718 entry->name = (char *) xmalloc (end - p + 1);
2719 memcpy (entry->name, p, end - p);
2720 entry->name[end - p] = '\0';
2721 excluded_libs = entry;
2722 if (*end == '\0')
2723 break;
2724 p = end + 1;
2725 }
2726 }
2727
2728 static void
2729 check_excluded_libs (bfd *abfd)
2730 {
2731 struct excluded_lib *lib = excluded_libs;
2732
2733 while (lib)
2734 {
2735 int len = strlen (lib->name);
2736 const char *filename = lbasename (abfd->filename);
2737
2738 if (strcmp (lib->name, "ALL") == 0)
2739 {
2740 abfd->no_export = TRUE;
2741 return;
2742 }
2743
2744 if (filename_ncmp (lib->name, filename, len) == 0
2745 && (filename[len] == '\0'
2746 || (filename[len] == '.' && filename[len + 1] == 'a'
2747 && filename[len + 2] == '\0')))
2748 {
2749 abfd->no_export = TRUE;
2750 return;
2751 }
2752
2753 lib = lib->next;
2754 }
2755 }
2756
2757 /* Get the symbols for an input file. */
2758
2759 bfd_boolean
2760 load_symbols (lang_input_statement_type *entry,
2761 lang_statement_list_type *place)
2762 {
2763 char **matching;
2764
2765 if (entry->flags.loaded)
2766 return TRUE;
2767
2768 ldfile_open_file (entry);
2769
2770 /* Do not process further if the file was missing. */
2771 if (entry->flags.missing_file)
2772 return TRUE;
2773
2774 if (!bfd_check_format (entry->the_bfd, bfd_archive)
2775 && !bfd_check_format_matches (entry->the_bfd, bfd_object, &matching))
2776 {
2777 bfd_error_type err;
2778 struct lang_input_statement_flags save_flags;
2779 extern FILE *yyin;
2780
2781 err = bfd_get_error ();
2782
2783 /* See if the emulation has some special knowledge. */
2784 if (ldemul_unrecognized_file (entry))
2785 return TRUE;
2786
2787 if (err == bfd_error_file_ambiguously_recognized)
2788 {
2789 char **p;
2790
2791 einfo (_("%B: file not recognized: %E\n"), entry->the_bfd);
2792 einfo (_("%B: matching formats:"), entry->the_bfd);
2793 for (p = matching; *p != NULL; p++)
2794 einfo (" %s", *p);
2795 einfo ("%F\n");
2796 }
2797 else if (err != bfd_error_file_not_recognized
2798 || place == NULL)
2799 einfo (_("%F%B: file not recognized: %E\n"), entry->the_bfd);
2800
2801 bfd_close (entry->the_bfd);
2802 entry->the_bfd = NULL;
2803
2804 /* Try to interpret the file as a linker script. */
2805 save_flags = input_flags;
2806 ldfile_open_command_file (entry->filename);
2807
2808 push_stat_ptr (place);
2809 input_flags.add_DT_NEEDED_for_regular
2810 = entry->flags.add_DT_NEEDED_for_regular;
2811 input_flags.add_DT_NEEDED_for_dynamic
2812 = entry->flags.add_DT_NEEDED_for_dynamic;
2813 input_flags.whole_archive = entry->flags.whole_archive;
2814 input_flags.dynamic = entry->flags.dynamic;
2815
2816 ldfile_assumed_script = TRUE;
2817 parser_input = input_script;
2818 yyparse ();
2819 ldfile_assumed_script = FALSE;
2820
2821 /* missing_file is sticky. sysrooted will already have been
2822 restored when seeing EOF in yyparse, but no harm to restore
2823 again. */
2824 save_flags.missing_file |= input_flags.missing_file;
2825 input_flags = save_flags;
2826 pop_stat_ptr ();
2827 fclose (yyin);
2828 yyin = NULL;
2829 entry->flags.loaded = TRUE;
2830
2831 return TRUE;
2832 }
2833
2834 if (ldemul_recognized_file (entry))
2835 return TRUE;
2836
2837 /* We don't call ldlang_add_file for an archive. Instead, the
2838 add_symbols entry point will call ldlang_add_file, via the
2839 add_archive_element callback, for each element of the archive
2840 which is used. */
2841 switch (bfd_get_format (entry->the_bfd))
2842 {
2843 default:
2844 break;
2845
2846 case bfd_object:
2847 if (!entry->flags.reload)
2848 ldlang_add_file (entry);
2849 if (trace_files || verbose)
2850 info_msg ("%I\n", entry);
2851 break;
2852
2853 case bfd_archive:
2854 check_excluded_libs (entry->the_bfd);
2855
2856 if (entry->flags.whole_archive)
2857 {
2858 bfd *member = NULL;
2859 bfd_boolean loaded = TRUE;
2860
2861 for (;;)
2862 {
2863 bfd *subsbfd;
2864 member = bfd_openr_next_archived_file (entry->the_bfd, member);
2865
2866 if (member == NULL)
2867 break;
2868
2869 if (!bfd_check_format (member, bfd_object))
2870 {
2871 einfo (_("%F%B: member %B in archive is not an object\n"),
2872 entry->the_bfd, member);
2873 loaded = FALSE;
2874 }
2875
2876 subsbfd = member;
2877 if (!(*link_info.callbacks
2878 ->add_archive_element) (&link_info, member,
2879 "--whole-archive", &subsbfd))
2880 abort ();
2881
2882 /* Potentially, the add_archive_element hook may have set a
2883 substitute BFD for us. */
2884 if (!bfd_link_add_symbols (subsbfd, &link_info))
2885 {
2886 einfo (_("%F%B: error adding symbols: %E\n"), member);
2887 loaded = FALSE;
2888 }
2889 }
2890
2891 entry->flags.loaded = loaded;
2892 return loaded;
2893 }
2894 break;
2895 }
2896
2897 if (bfd_link_add_symbols (entry->the_bfd, &link_info))
2898 entry->flags.loaded = TRUE;
2899 else
2900 einfo (_("%F%B: error adding symbols: %E\n"), entry->the_bfd);
2901
2902 return entry->flags.loaded;
2903 }
2904
2905 /* Handle a wild statement. S->FILENAME or S->SECTION_LIST or both
2906 may be NULL, indicating that it is a wildcard. Separate
2907 lang_input_section statements are created for each part of the
2908 expansion; they are added after the wild statement S. OUTPUT is
2909 the output section. */
2910
2911 static void
2912 wild (lang_wild_statement_type *s,
2913 const char *target ATTRIBUTE_UNUSED,
2914 lang_output_section_statement_type *output)
2915 {
2916 struct wildcard_list *sec;
2917
2918 if (s->handler_data[0]
2919 && s->handler_data[0]->spec.sorted == by_name
2920 && !s->filenames_sorted)
2921 {
2922 lang_section_bst_type *tree;
2923
2924 walk_wild (s, output_section_callback_fast, output);
2925
2926 tree = s->tree;
2927 if (tree)
2928 {
2929 output_section_callback_tree_to_list (s, tree, output);
2930 s->tree = NULL;
2931 }
2932 }
2933 else
2934 walk_wild (s, output_section_callback, output);
2935
2936 if (default_common_section == NULL)
2937 for (sec = s->section_list; sec != NULL; sec = sec->next)
2938 if (sec->spec.name != NULL && strcmp (sec->spec.name, "COMMON") == 0)
2939 {
2940 /* Remember the section that common is going to in case we
2941 later get something which doesn't know where to put it. */
2942 default_common_section = output;
2943 break;
2944 }
2945 }
2946
2947 /* Return TRUE iff target is the sought target. */
2948
2949 static int
2950 get_target (const bfd_target *target, void *data)
2951 {
2952 const char *sought = (const char *) data;
2953
2954 return strcmp (target->name, sought) == 0;
2955 }
2956
2957 /* Like strcpy() but convert to lower case as well. */
2958
2959 static void
2960 stricpy (char *dest, char *src)
2961 {
2962 char c;
2963
2964 while ((c = *src++) != 0)
2965 *dest++ = TOLOWER (c);
2966
2967 *dest = 0;
2968 }
2969
2970 /* Remove the first occurrence of needle (if any) in haystack
2971 from haystack. */
2972
2973 static void
2974 strcut (char *haystack, char *needle)
2975 {
2976 haystack = strstr (haystack, needle);
2977
2978 if (haystack)
2979 {
2980 char *src;
2981
2982 for (src = haystack + strlen (needle); *src;)
2983 *haystack++ = *src++;
2984
2985 *haystack = 0;
2986 }
2987 }
2988
2989 /* Compare two target format name strings.
2990 Return a value indicating how "similar" they are. */
2991
2992 static int
2993 name_compare (char *first, char *second)
2994 {
2995 char *copy1;
2996 char *copy2;
2997 int result;
2998
2999 copy1 = (char *) xmalloc (strlen (first) + 1);
3000 copy2 = (char *) xmalloc (strlen (second) + 1);
3001
3002 /* Convert the names to lower case. */
3003 stricpy (copy1, first);
3004 stricpy (copy2, second);
3005
3006 /* Remove size and endian strings from the name. */
3007 strcut (copy1, "big");
3008 strcut (copy1, "little");
3009 strcut (copy2, "big");
3010 strcut (copy2, "little");
3011
3012 /* Return a value based on how many characters match,
3013 starting from the beginning. If both strings are
3014 the same then return 10 * their length. */
3015 for (result = 0; copy1[result] == copy2[result]; result++)
3016 if (copy1[result] == 0)
3017 {
3018 result *= 10;
3019 break;
3020 }
3021
3022 free (copy1);
3023 free (copy2);
3024
3025 return result;
3026 }
3027
3028 /* Set by closest_target_match() below. */
3029 static const bfd_target *winner;
3030
3031 /* Scan all the valid bfd targets looking for one that has the endianness
3032 requirement that was specified on the command line, and is the nearest
3033 match to the original output target. */
3034
3035 static int
3036 closest_target_match (const bfd_target *target, void *data)
3037 {
3038 const bfd_target *original = (const bfd_target *) data;
3039
3040 if (command_line.endian == ENDIAN_BIG
3041 && target->byteorder != BFD_ENDIAN_BIG)
3042 return 0;
3043
3044 if (command_line.endian == ENDIAN_LITTLE
3045 && target->byteorder != BFD_ENDIAN_LITTLE)
3046 return 0;
3047
3048 /* Must be the same flavour. */
3049 if (target->flavour != original->flavour)
3050 return 0;
3051
3052 /* Ignore generic big and little endian elf vectors. */
3053 if (strcmp (target->name, "elf32-big") == 0
3054 || strcmp (target->name, "elf64-big") == 0
3055 || strcmp (target->name, "elf32-little") == 0
3056 || strcmp (target->name, "elf64-little") == 0)
3057 return 0;
3058
3059 /* If we have not found a potential winner yet, then record this one. */
3060 if (winner == NULL)
3061 {
3062 winner = target;
3063 return 0;
3064 }
3065
3066 /* Oh dear, we now have two potential candidates for a successful match.
3067 Compare their names and choose the better one. */
3068 if (name_compare (target->name, original->name)
3069 > name_compare (winner->name, original->name))
3070 winner = target;
3071
3072 /* Keep on searching until wqe have checked them all. */
3073 return 0;
3074 }
3075
3076 /* Return the BFD target format of the first input file. */
3077
3078 static char *
3079 get_first_input_target (void)
3080 {
3081 char *target = NULL;
3082
3083 LANG_FOR_EACH_INPUT_STATEMENT (s)
3084 {
3085 if (s->header.type == lang_input_statement_enum
3086 && s->flags.real)
3087 {
3088 ldfile_open_file (s);
3089
3090 if (s->the_bfd != NULL
3091 && bfd_check_format (s->the_bfd, bfd_object))
3092 {
3093 target = bfd_get_target (s->the_bfd);
3094
3095 if (target != NULL)
3096 break;
3097 }
3098 }
3099 }
3100
3101 return target;
3102 }
3103
3104 const char *
3105 lang_get_output_target (void)
3106 {
3107 const char *target;
3108
3109 /* Has the user told us which output format to use? */
3110 if (output_target != NULL)
3111 return output_target;
3112
3113 /* No - has the current target been set to something other than
3114 the default? */
3115 if (current_target != default_target && current_target != NULL)
3116 return current_target;
3117
3118 /* No - can we determine the format of the first input file? */
3119 target = get_first_input_target ();
3120 if (target != NULL)
3121 return target;
3122
3123 /* Failed - use the default output target. */
3124 return default_target;
3125 }
3126
3127 /* Open the output file. */
3128
3129 static void
3130 open_output (const char *name)
3131 {
3132 output_target = lang_get_output_target ();
3133
3134 /* Has the user requested a particular endianness on the command
3135 line? */
3136 if (command_line.endian != ENDIAN_UNSET)
3137 {
3138 /* Get the chosen target. */
3139 const bfd_target *target
3140 = bfd_iterate_over_targets (get_target, (void *) output_target);
3141
3142 /* If the target is not supported, we cannot do anything. */
3143 if (target != NULL)
3144 {
3145 enum bfd_endian desired_endian;
3146
3147 if (command_line.endian == ENDIAN_BIG)
3148 desired_endian = BFD_ENDIAN_BIG;
3149 else
3150 desired_endian = BFD_ENDIAN_LITTLE;
3151
3152 /* See if the target has the wrong endianness. This should
3153 not happen if the linker script has provided big and
3154 little endian alternatives, but some scrips don't do
3155 this. */
3156 if (target->byteorder != desired_endian)
3157 {
3158 /* If it does, then see if the target provides
3159 an alternative with the correct endianness. */
3160 if (target->alternative_target != NULL
3161 && (target->alternative_target->byteorder == desired_endian))
3162 output_target = target->alternative_target->name;
3163 else
3164 {
3165 /* Try to find a target as similar as possible to
3166 the default target, but which has the desired
3167 endian characteristic. */
3168 bfd_iterate_over_targets (closest_target_match,
3169 (void *) target);
3170
3171 /* Oh dear - we could not find any targets that
3172 satisfy our requirements. */
3173 if (winner == NULL)
3174 einfo (_("%P: warning: could not find any targets"
3175 " that match endianness requirement\n"));
3176 else
3177 output_target = winner->name;
3178 }
3179 }
3180 }
3181 }
3182
3183 link_info.output_bfd = bfd_openw (name, output_target);
3184
3185 if (link_info.output_bfd == NULL)
3186 {
3187 if (bfd_get_error () == bfd_error_invalid_target)
3188 einfo (_("%P%F: target %s not found\n"), output_target);
3189
3190 einfo (_("%P%F: cannot open output file %s: %E\n"), name);
3191 }
3192
3193 delete_output_file_on_failure = TRUE;
3194
3195 if (!bfd_set_format (link_info.output_bfd, bfd_object))
3196 einfo (_("%P%F:%s: can not make object file: %E\n"), name);
3197 if (!bfd_set_arch_mach (link_info.output_bfd,
3198 ldfile_output_architecture,
3199 ldfile_output_machine))
3200 einfo (_("%P%F:%s: can not set architecture: %E\n"), name);
3201
3202 link_info.hash = bfd_link_hash_table_create (link_info.output_bfd);
3203 if (link_info.hash == NULL)
3204 einfo (_("%P%F: can not create hash table: %E\n"));
3205
3206 bfd_set_gp_size (link_info.output_bfd, g_switch_value);
3207 }
3208
3209 static void
3210 ldlang_open_output (lang_statement_union_type *statement)
3211 {
3212 switch (statement->header.type)
3213 {
3214 case lang_output_statement_enum:
3215 ASSERT (link_info.output_bfd == NULL);
3216 open_output (statement->output_statement.name);
3217 ldemul_set_output_arch ();
3218 if (config.magic_demand_paged
3219 && !bfd_link_relocatable (&link_info))
3220 link_info.output_bfd->flags |= D_PAGED;
3221 else
3222 link_info.output_bfd->flags &= ~D_PAGED;
3223 if (config.text_read_only)
3224 link_info.output_bfd->flags |= WP_TEXT;
3225 else
3226 link_info.output_bfd->flags &= ~WP_TEXT;
3227 if (link_info.traditional_format)
3228 link_info.output_bfd->flags |= BFD_TRADITIONAL_FORMAT;
3229 else
3230 link_info.output_bfd->flags &= ~BFD_TRADITIONAL_FORMAT;
3231 break;
3232
3233 case lang_target_statement_enum:
3234 current_target = statement->target_statement.target;
3235 break;
3236 default:
3237 break;
3238 }
3239 }
3240
3241 static void
3242 init_opb (void)
3243 {
3244 unsigned x = bfd_arch_mach_octets_per_byte (ldfile_output_architecture,
3245 ldfile_output_machine);
3246 opb_shift = 0;
3247 if (x > 1)
3248 while ((x & 1) == 0)
3249 {
3250 x >>= 1;
3251 ++opb_shift;
3252 }
3253 ASSERT (x == 1);
3254 }
3255
3256 /* Open all the input files. */
3257
3258 enum open_bfd_mode
3259 {
3260 OPEN_BFD_NORMAL = 0,
3261 OPEN_BFD_FORCE = 1,
3262 OPEN_BFD_RESCAN = 2
3263 };
3264 #ifdef ENABLE_PLUGINS
3265 static lang_input_statement_type *plugin_insert = NULL;
3266 #endif
3267
3268 static void
3269 open_input_bfds (lang_statement_union_type *s, enum open_bfd_mode mode)
3270 {
3271 for (; s != NULL; s = s->header.next)
3272 {
3273 switch (s->header.type)
3274 {
3275 case lang_constructors_statement_enum:
3276 open_input_bfds (constructor_list.head, mode);
3277 break;
3278 case lang_output_section_statement_enum:
3279 open_input_bfds (s->output_section_statement.children.head, mode);
3280 break;
3281 case lang_wild_statement_enum:
3282 /* Maybe we should load the file's symbols. */
3283 if ((mode & OPEN_BFD_RESCAN) == 0
3284 && s->wild_statement.filename
3285 && !wildcardp (s->wild_statement.filename)
3286 && !archive_path (s->wild_statement.filename))
3287 lookup_name (s->wild_statement.filename);
3288 open_input_bfds (s->wild_statement.children.head, mode);
3289 break;
3290 case lang_group_statement_enum:
3291 {
3292 struct bfd_link_hash_entry *undefs;
3293
3294 /* We must continually search the entries in the group
3295 until no new symbols are added to the list of undefined
3296 symbols. */
3297
3298 do
3299 {
3300 undefs = link_info.hash->undefs_tail;
3301 open_input_bfds (s->group_statement.children.head,
3302 mode | OPEN_BFD_FORCE);
3303 }
3304 while (undefs != link_info.hash->undefs_tail);
3305 }
3306 break;
3307 case lang_target_statement_enum:
3308 current_target = s->target_statement.target;
3309 break;
3310 case lang_input_statement_enum:
3311 if (s->input_statement.flags.real)
3312 {
3313 lang_statement_union_type **os_tail;
3314 lang_statement_list_type add;
3315 bfd *abfd;
3316
3317 s->input_statement.target = current_target;
3318
3319 /* If we are being called from within a group, and this
3320 is an archive which has already been searched, then
3321 force it to be researched unless the whole archive
3322 has been loaded already. Do the same for a rescan.
3323 Likewise reload --as-needed shared libs. */
3324 if (mode != OPEN_BFD_NORMAL
3325 #ifdef ENABLE_PLUGINS
3326 && ((mode & OPEN_BFD_RESCAN) == 0
3327 || plugin_insert == NULL)
3328 #endif
3329 && s->input_statement.flags.loaded
3330 && (abfd = s->input_statement.the_bfd) != NULL
3331 && ((bfd_get_format (abfd) == bfd_archive
3332 && !s->input_statement.flags.whole_archive)
3333 || (bfd_get_format (abfd) == bfd_object
3334 && ((abfd->flags) & DYNAMIC) != 0
3335 && s->input_statement.flags.add_DT_NEEDED_for_regular
3336 && bfd_get_flavour (abfd) == bfd_target_elf_flavour
3337 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)))
3338 {
3339 s->input_statement.flags.loaded = FALSE;
3340 s->input_statement.flags.reload = TRUE;
3341 }
3342
3343 os_tail = lang_output_section_statement.tail;
3344 lang_list_init (&add);
3345
3346 if (!load_symbols (&s->input_statement, &add))
3347 config.make_executable = FALSE;
3348
3349 if (add.head != NULL)
3350 {
3351 /* If this was a script with output sections then
3352 tack any added statements on to the end of the
3353 list. This avoids having to reorder the output
3354 section statement list. Very likely the user
3355 forgot -T, and whatever we do here will not meet
3356 naive user expectations. */
3357 if (os_tail != lang_output_section_statement.tail)
3358 {
3359 einfo (_("%P: warning: %s contains output sections;"
3360 " did you forget -T?\n"),
3361 s->input_statement.filename);
3362 *stat_ptr->tail = add.head;
3363 stat_ptr->tail = add.tail;
3364 }
3365 else
3366 {
3367 *add.tail = s->header.next;
3368 s->header.next = add.head;
3369 }
3370 }
3371 }
3372 #ifdef ENABLE_PLUGINS
3373 /* If we have found the point at which a plugin added new
3374 files, clear plugin_insert to enable archive rescan. */
3375 if (&s->input_statement == plugin_insert)
3376 plugin_insert = NULL;
3377 #endif
3378 break;
3379 case lang_assignment_statement_enum:
3380 if (s->assignment_statement.exp->assign.defsym)
3381 /* This is from a --defsym on the command line. */
3382 exp_fold_tree_no_dot (s->assignment_statement.exp);
3383 break;
3384 default:
3385 break;
3386 }
3387 }
3388
3389 /* Exit if any of the files were missing. */
3390 if (input_flags.missing_file)
3391 einfo ("%F");
3392 }
3393
3394 /* Add the supplied name to the symbol table as an undefined reference.
3395 This is a two step process as the symbol table doesn't even exist at
3396 the time the ld command line is processed. First we put the name
3397 on a list, then, once the output file has been opened, transfer the
3398 name to the symbol table. */
3399
3400 typedef struct bfd_sym_chain ldlang_undef_chain_list_type;
3401
3402 #define ldlang_undef_chain_list_head entry_symbol.next
3403
3404 void
3405 ldlang_add_undef (const char *const name, bfd_boolean cmdline)
3406 {
3407 ldlang_undef_chain_list_type *new_undef;
3408
3409 undef_from_cmdline = undef_from_cmdline || cmdline;
3410 new_undef = (ldlang_undef_chain_list_type *) stat_alloc (sizeof (*new_undef));
3411 new_undef->next = ldlang_undef_chain_list_head;
3412 ldlang_undef_chain_list_head = new_undef;
3413
3414 new_undef->name = xstrdup (name);
3415
3416 if (link_info.output_bfd != NULL)
3417 insert_undefined (new_undef->name);
3418 }
3419
3420 /* Insert NAME as undefined in the symbol table. */
3421
3422 static void
3423 insert_undefined (const char *name)
3424 {
3425 struct bfd_link_hash_entry *h;
3426
3427 h = bfd_link_hash_lookup (link_info.hash, name, TRUE, FALSE, TRUE);
3428 if (h == NULL)
3429 einfo (_("%P%F: bfd_link_hash_lookup failed: %E\n"));
3430 if (h->type == bfd_link_hash_new)
3431 {
3432 h->type = bfd_link_hash_undefined;
3433 h->u.undef.abfd = NULL;
3434 bfd_link_add_undef (link_info.hash, h);
3435 }
3436 }
3437
3438 /* Run through the list of undefineds created above and place them
3439 into the linker hash table as undefined symbols belonging to the
3440 script file. */
3441
3442 static void
3443 lang_place_undefineds (void)
3444 {
3445 ldlang_undef_chain_list_type *ptr;
3446
3447 for (ptr = ldlang_undef_chain_list_head; ptr != NULL; ptr = ptr->next)
3448 insert_undefined (ptr->name);
3449 }
3450
3451 /* Structure used to build the list of symbols that the user has required
3452 be defined. */
3453
3454 struct require_defined_symbol
3455 {
3456 const char *name;
3457 struct require_defined_symbol *next;
3458 };
3459
3460 /* The list of symbols that the user has required be defined. */
3461
3462 static struct require_defined_symbol *require_defined_symbol_list;
3463
3464 /* Add a new symbol NAME to the list of symbols that are required to be
3465 defined. */
3466
3467 void
3468 ldlang_add_require_defined (const char *const name)
3469 {
3470 struct require_defined_symbol *ptr;
3471
3472 ldlang_add_undef (name, TRUE);
3473 ptr = (struct require_defined_symbol *) stat_alloc (sizeof (*ptr));
3474 ptr->next = require_defined_symbol_list;
3475 ptr->name = strdup (name);
3476 require_defined_symbol_list = ptr;
3477 }
3478
3479 /* Check that all symbols the user required to be defined, are defined,
3480 raise an error if we find a symbol that is not defined. */
3481
3482 static void
3483 ldlang_check_require_defined_symbols (void)
3484 {
3485 struct require_defined_symbol *ptr;
3486
3487 for (ptr = require_defined_symbol_list; ptr != NULL; ptr = ptr->next)
3488 {
3489 struct bfd_link_hash_entry *h;
3490
3491 h = bfd_link_hash_lookup (link_info.hash, ptr->name,
3492 FALSE, FALSE, TRUE);
3493 if (h == NULL
3494 || (h->type != bfd_link_hash_defined
3495 && h->type != bfd_link_hash_defweak))
3496 einfo(_("%P%X: required symbol `%s' not defined\n"), ptr->name);
3497 }
3498 }
3499
3500 /* Check for all readonly or some readwrite sections. */
3501
3502 static void
3503 check_input_sections
3504 (lang_statement_union_type *s,
3505 lang_output_section_statement_type *output_section_statement)
3506 {
3507 for (; s != (lang_statement_union_type *) NULL; s = s->header.next)
3508 {
3509 switch (s->header.type)
3510 {
3511 case lang_wild_statement_enum:
3512 walk_wild (&s->wild_statement, check_section_callback,
3513 output_section_statement);
3514 if (!output_section_statement->all_input_readonly)
3515 return;
3516 break;
3517 case lang_constructors_statement_enum:
3518 check_input_sections (constructor_list.head,
3519 output_section_statement);
3520 if (!output_section_statement->all_input_readonly)
3521 return;
3522 break;
3523 case lang_group_statement_enum:
3524 check_input_sections (s->group_statement.children.head,
3525 output_section_statement);
3526 if (!output_section_statement->all_input_readonly)
3527 return;
3528 break;
3529 default:
3530 break;
3531 }
3532 }
3533 }
3534
3535 /* Update wildcard statements if needed. */
3536
3537 static void
3538 update_wild_statements (lang_statement_union_type *s)
3539 {
3540 struct wildcard_list *sec;
3541
3542 switch (sort_section)
3543 {
3544 default:
3545 FAIL ();
3546
3547 case none:
3548 break;
3549
3550 case by_name:
3551 case by_alignment:
3552 for (; s != NULL; s = s->header.next)
3553 {
3554 switch (s->header.type)
3555 {
3556 default:
3557 break;
3558
3559 case lang_wild_statement_enum:
3560 for (sec = s->wild_statement.section_list; sec != NULL;
3561 sec = sec->next)
3562 {
3563 switch (sec->spec.sorted)
3564 {
3565 case none:
3566 sec->spec.sorted = sort_section;
3567 break;
3568 case by_name:
3569 if (sort_section == by_alignment)
3570 sec->spec.sorted = by_name_alignment;
3571 break;
3572 case by_alignment:
3573 if (sort_section == by_name)
3574 sec->spec.sorted = by_alignment_name;
3575 break;
3576 default:
3577 break;
3578 }
3579 }
3580 break;
3581
3582 case lang_constructors_statement_enum:
3583 update_wild_statements (constructor_list.head);
3584 break;
3585
3586 case lang_output_section_statement_enum:
3587 /* Don't sort .init/.fini sections. */
3588 if (strcmp (s->output_section_statement.name, ".init") != 0
3589 && strcmp (s->output_section_statement.name, ".fini") != 0)
3590 update_wild_statements
3591 (s->output_section_statement.children.head);
3592 break;
3593
3594 case lang_group_statement_enum:
3595 update_wild_statements (s->group_statement.children.head);
3596 break;
3597 }
3598 }
3599 break;
3600 }
3601 }
3602
3603 /* Open input files and attach to output sections. */
3604
3605 static void
3606 map_input_to_output_sections
3607 (lang_statement_union_type *s, const char *target,
3608 lang_output_section_statement_type *os)
3609 {
3610 for (; s != NULL; s = s->header.next)
3611 {
3612 lang_output_section_statement_type *tos;
3613 flagword flags;
3614
3615 switch (s->header.type)
3616 {
3617 case lang_wild_statement_enum:
3618 wild (&s->wild_statement, target, os);
3619 break;
3620 case lang_constructors_statement_enum:
3621 map_input_to_output_sections (constructor_list.head,
3622 target,
3623 os);
3624 break;
3625 case lang_output_section_statement_enum:
3626 tos = &s->output_section_statement;
3627 if (tos->constraint != 0)
3628 {
3629 if (tos->constraint != ONLY_IF_RW
3630 && tos->constraint != ONLY_IF_RO)
3631 break;
3632 tos->all_input_readonly = TRUE;
3633 check_input_sections (tos->children.head, tos);
3634 if (tos->all_input_readonly != (tos->constraint == ONLY_IF_RO))
3635 {
3636 tos->constraint = -1;
3637 break;
3638 }
3639 }
3640 map_input_to_output_sections (tos->children.head,
3641 target,
3642 tos);
3643 break;
3644 case lang_output_statement_enum:
3645 break;
3646 case lang_target_statement_enum:
3647 target = s->target_statement.target;
3648 break;
3649 case lang_group_statement_enum:
3650 map_input_to_output_sections (s->group_statement.children.head,
3651 target,
3652 os);
3653 break;
3654 case lang_data_statement_enum:
3655 /* Make sure that any sections mentioned in the expression
3656 are initialized. */
3657 exp_init_os (s->data_statement.exp);
3658 /* The output section gets CONTENTS, ALLOC and LOAD, but
3659 these may be overridden by the script. */
3660 flags = SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD;
3661 switch (os->sectype)
3662 {
3663 case normal_section:
3664 case overlay_section:
3665 break;
3666 case noalloc_section:
3667 flags = SEC_HAS_CONTENTS;
3668 break;
3669 case noload_section:
3670 if (bfd_get_flavour (link_info.output_bfd)
3671 == bfd_target_elf_flavour)
3672 flags = SEC_NEVER_LOAD | SEC_ALLOC;
3673 else
3674 flags = SEC_NEVER_LOAD | SEC_HAS_CONTENTS;
3675 break;
3676 }
3677 if (os->bfd_section == NULL)
3678 init_os (os, flags);
3679 else
3680 os->bfd_section->flags |= flags;
3681 break;
3682 case lang_input_section_enum:
3683 break;
3684 case lang_fill_statement_enum:
3685 case lang_object_symbols_statement_enum:
3686 case lang_reloc_statement_enum:
3687 case lang_padding_statement_enum:
3688 case lang_input_statement_enum:
3689 if (os != NULL && os->bfd_section == NULL)
3690 init_os (os, 0);
3691 break;
3692 case lang_assignment_statement_enum:
3693 if (os != NULL && os->bfd_section == NULL)
3694 init_os (os, 0);
3695
3696 /* Make sure that any sections mentioned in the assignment
3697 are initialized. */
3698 exp_init_os (s->assignment_statement.exp);
3699 break;
3700 case lang_address_statement_enum:
3701 /* Mark the specified section with the supplied address.
3702 If this section was actually a segment marker, then the
3703 directive is ignored if the linker script explicitly
3704 processed the segment marker. Originally, the linker
3705 treated segment directives (like -Ttext on the
3706 command-line) as section directives. We honor the
3707 section directive semantics for backwards compatibility;
3708 linker scripts that do not specifically check for
3709 SEGMENT_START automatically get the old semantics. */
3710 if (!s->address_statement.segment
3711 || !s->address_statement.segment->used)
3712 {
3713 const char *name = s->address_statement.section_name;
3714
3715 /* Create the output section statement here so that
3716 orphans with a set address will be placed after other
3717 script sections. If we let the orphan placement code
3718 place them in amongst other sections then the address
3719 will affect following script sections, which is
3720 likely to surprise naive users. */
3721 tos = lang_output_section_statement_lookup (name, 0, TRUE);
3722 tos->addr_tree = s->address_statement.address;
3723 if (tos->bfd_section == NULL)
3724 init_os (tos, 0);
3725 }
3726 break;
3727 case lang_insert_statement_enum:
3728 break;
3729 }
3730 }
3731 }
3732
3733 /* An insert statement snips out all the linker statements from the
3734 start of the list and places them after the output section
3735 statement specified by the insert. This operation is complicated
3736 by the fact that we keep a doubly linked list of output section
3737 statements as well as the singly linked list of all statements. */
3738
3739 static void
3740 process_insert_statements (void)
3741 {
3742 lang_statement_union_type **s;
3743 lang_output_section_statement_type *first_os = NULL;
3744 lang_output_section_statement_type *last_os = NULL;
3745 lang_output_section_statement_type *os;
3746
3747 /* "start of list" is actually the statement immediately after
3748 the special abs_section output statement, so that it isn't
3749 reordered. */
3750 s = &lang_output_section_statement.head;
3751 while (*(s = &(*s)->header.next) != NULL)
3752 {
3753 if ((*s)->header.type == lang_output_section_statement_enum)
3754 {
3755 /* Keep pointers to the first and last output section
3756 statement in the sequence we may be about to move. */
3757 os = &(*s)->output_section_statement;
3758
3759 ASSERT (last_os == NULL || last_os->next == os);
3760 last_os = os;
3761
3762 /* Set constraint negative so that lang_output_section_find
3763 won't match this output section statement. At this
3764 stage in linking constraint has values in the range
3765 [-1, ONLY_IN_RW]. */
3766 last_os->constraint = -2 - last_os->constraint;
3767 if (first_os == NULL)
3768 first_os = last_os;
3769 }
3770 else if ((*s)->header.type == lang_insert_statement_enum)
3771 {
3772 lang_insert_statement_type *i = &(*s)->insert_statement;
3773 lang_output_section_statement_type *where;
3774 lang_statement_union_type **ptr;
3775 lang_statement_union_type *first;
3776
3777 where = lang_output_section_find (i->where);
3778 if (where != NULL && i->is_before)
3779 {
3780 do
3781 where = where->prev;
3782 while (where != NULL && where->constraint < 0);
3783 }
3784 if (where == NULL)
3785 {
3786 einfo (_("%F%P: %s not found for insert\n"), i->where);
3787 return;
3788 }
3789
3790 /* Deal with reordering the output section statement list. */
3791 if (last_os != NULL)
3792 {
3793 asection *first_sec, *last_sec;
3794 struct lang_output_section_statement_struct **next;
3795
3796 /* Snip out the output sections we are moving. */
3797 first_os->prev->next = last_os->next;
3798 if (last_os->next == NULL)
3799 {
3800 next = &first_os->prev->next;
3801 lang_output_section_statement.tail
3802 = (lang_statement_union_type **) next;
3803 }
3804 else
3805 last_os->next->prev = first_os->prev;
3806 /* Add them in at the new position. */
3807 last_os->next = where->next;
3808 if (where->next == NULL)
3809 {
3810 next = &last_os->next;
3811 lang_output_section_statement.tail
3812 = (lang_statement_union_type **) next;
3813 }
3814 else
3815 where->next->prev = last_os;
3816 first_os->prev = where;
3817 where->next = first_os;
3818
3819 /* Move the bfd sections in the same way. */
3820 first_sec = NULL;
3821 last_sec = NULL;
3822 for (os = first_os; os != NULL; os = os->next)
3823 {
3824 os->constraint = -2 - os->constraint;
3825 if (os->bfd_section != NULL
3826 && os->bfd_section->owner != NULL)
3827 {
3828 last_sec = os->bfd_section;
3829 if (first_sec == NULL)
3830 first_sec = last_sec;
3831 }
3832 if (os == last_os)
3833 break;
3834 }
3835 if (last_sec != NULL)
3836 {
3837 asection *sec = where->bfd_section;
3838 if (sec == NULL)
3839 sec = output_prev_sec_find (where);
3840
3841 /* The place we want to insert must come after the
3842 sections we are moving. So if we find no
3843 section or if the section is the same as our
3844 last section, then no move is needed. */
3845 if (sec != NULL && sec != last_sec)
3846 {
3847 /* Trim them off. */
3848 if (first_sec->prev != NULL)
3849 first_sec->prev->next = last_sec->next;
3850 else
3851 link_info.output_bfd->sections = last_sec->next;
3852 if (last_sec->next != NULL)
3853 last_sec->next->prev = first_sec->prev;
3854 else
3855 link_info.output_bfd->section_last = first_sec->prev;
3856 /* Add back. */
3857 last_sec->next = sec->next;
3858 if (sec->next != NULL)
3859 sec->next->prev = last_sec;
3860 else
3861 link_info.output_bfd->section_last = last_sec;
3862 first_sec->prev = sec;
3863 sec->next = first_sec;
3864 }
3865 }
3866
3867 first_os = NULL;
3868 last_os = NULL;
3869 }
3870
3871 ptr = insert_os_after (where);
3872 /* Snip everything after the abs_section output statement we
3873 know is at the start of the list, up to and including
3874 the insert statement we are currently processing. */
3875 first = lang_output_section_statement.head->header.next;
3876 lang_output_section_statement.head->header.next = (*s)->header.next;
3877 /* Add them back where they belong. */
3878 *s = *ptr;
3879 if (*s == NULL)
3880 statement_list.tail = s;
3881 *ptr = first;
3882 s = &lang_output_section_statement.head;
3883 }
3884 }
3885
3886 /* Undo constraint twiddling. */
3887 for (os = first_os; os != NULL; os = os->next)
3888 {
3889 os->constraint = -2 - os->constraint;
3890 if (os == last_os)
3891 break;
3892 }
3893 }
3894
3895 /* An output section might have been removed after its statement was
3896 added. For example, ldemul_before_allocation can remove dynamic
3897 sections if they turn out to be not needed. Clean them up here. */
3898
3899 void
3900 strip_excluded_output_sections (void)
3901 {
3902 lang_output_section_statement_type *os;
3903
3904 /* Run lang_size_sections (if not already done). */
3905 if (expld.phase != lang_mark_phase_enum)
3906 {
3907 expld.phase = lang_mark_phase_enum;
3908 expld.dataseg.phase = exp_dataseg_none;
3909 one_lang_size_sections_pass (NULL, FALSE);
3910 lang_reset_memory_regions ();
3911 }
3912
3913 for (os = &lang_output_section_statement.head->output_section_statement;
3914 os != NULL;
3915 os = os->next)
3916 {
3917 asection *output_section;
3918 bfd_boolean exclude;
3919
3920 if (os->constraint < 0)
3921 continue;
3922
3923 output_section = os->bfd_section;
3924 if (output_section == NULL)
3925 continue;
3926
3927 exclude = (output_section->rawsize == 0
3928 && (output_section->flags & SEC_KEEP) == 0
3929 && !bfd_section_removed_from_list (link_info.output_bfd,
3930 output_section));
3931
3932 /* Some sections have not yet been sized, notably .gnu.version,
3933 .dynsym, .dynstr and .hash. These all have SEC_LINKER_CREATED
3934 input sections, so don't drop output sections that have such
3935 input sections unless they are also marked SEC_EXCLUDE. */
3936 if (exclude && output_section->map_head.s != NULL)
3937 {
3938 asection *s;
3939
3940 for (s = output_section->map_head.s; s != NULL; s = s->map_head.s)
3941 if ((s->flags & SEC_EXCLUDE) == 0
3942 && ((s->flags & SEC_LINKER_CREATED) != 0
3943 || link_info.emitrelocations))
3944 {
3945 exclude = FALSE;
3946 break;
3947 }
3948 }
3949
3950 if (exclude)
3951 {
3952 /* We don't set bfd_section to NULL since bfd_section of the
3953 removed output section statement may still be used. */
3954 if (!os->update_dot)
3955 os->ignored = TRUE;
3956 output_section->flags |= SEC_EXCLUDE;
3957 bfd_section_list_remove (link_info.output_bfd, output_section);
3958 link_info.output_bfd->section_count--;
3959 }
3960 }
3961 }
3962
3963 /* Called from ldwrite to clear out asection.map_head and
3964 asection.map_tail for use as link_orders in ldwrite.
3965 FIXME: Except for sh64elf.em which starts creating link_orders in
3966 its after_allocation routine so needs to call it early. */
3967
3968 void
3969 lang_clear_os_map (void)
3970 {
3971 lang_output_section_statement_type *os;
3972
3973 if (map_head_is_link_order)
3974 return;
3975
3976 for (os = &lang_output_section_statement.head->output_section_statement;
3977 os != NULL;
3978 os = os->next)
3979 {
3980 asection *output_section;
3981
3982 if (os->constraint < 0)
3983 continue;
3984
3985 output_section = os->bfd_section;
3986 if (output_section == NULL)
3987 continue;
3988
3989 /* TODO: Don't just junk map_head.s, turn them into link_orders. */
3990 output_section->map_head.link_order = NULL;
3991 output_section->map_tail.link_order = NULL;
3992 }
3993
3994 /* Stop future calls to lang_add_section from messing with map_head
3995 and map_tail link_order fields. */
3996 map_head_is_link_order = TRUE;
3997 }
3998
3999 static void
4000 print_output_section_statement
4001 (lang_output_section_statement_type *output_section_statement)
4002 {
4003 asection *section = output_section_statement->bfd_section;
4004 int len;
4005
4006 if (output_section_statement != abs_output_section)
4007 {
4008 minfo ("\n%s", output_section_statement->name);
4009
4010 if (section != NULL)
4011 {
4012 print_dot = section->vma;
4013
4014 len = strlen (output_section_statement->name);
4015 if (len >= SECTION_NAME_MAP_LENGTH - 1)
4016 {
4017 print_nl ();
4018 len = 0;
4019 }
4020 while (len < SECTION_NAME_MAP_LENGTH)
4021 {
4022 print_space ();
4023 ++len;
4024 }
4025
4026 minfo ("0x%V %W", section->vma, TO_ADDR (section->size));
4027
4028 if (section->vma != section->lma)
4029 minfo (_(" load address 0x%V"), section->lma);
4030
4031 if (output_section_statement->update_dot_tree != NULL)
4032 exp_fold_tree (output_section_statement->update_dot_tree,
4033 bfd_abs_section_ptr, &print_dot);
4034 }
4035
4036 print_nl ();
4037 }
4038
4039 print_statement_list (output_section_statement->children.head,
4040 output_section_statement);
4041 }
4042
4043 static void
4044 print_assignment (lang_assignment_statement_type *assignment,
4045 lang_output_section_statement_type *output_section)
4046 {
4047 unsigned int i;
4048 bfd_boolean is_dot;
4049 etree_type *tree;
4050 asection *osec;
4051
4052 for (i = 0; i < SECTION_NAME_MAP_LENGTH; i++)
4053 print_space ();
4054
4055 if (assignment->exp->type.node_class == etree_assert)
4056 {
4057 is_dot = FALSE;
4058 tree = assignment->exp->assert_s.child;
4059 }
4060 else
4061 {
4062 const char *dst = assignment->exp->assign.dst;
4063
4064 is_dot = (dst[0] == '.' && dst[1] == 0);
4065 if (!is_dot)
4066 expld.assign_name = dst;
4067 tree = assignment->exp->assign.src;
4068 }
4069
4070 osec = output_section->bfd_section;
4071 if (osec == NULL)
4072 osec = bfd_abs_section_ptr;
4073
4074 if (assignment->exp->type.node_class != etree_provide)
4075 exp_fold_tree (tree, osec, &print_dot);
4076 else
4077 expld.result.valid_p = FALSE;
4078
4079 if (expld.result.valid_p)
4080 {
4081 bfd_vma value;
4082
4083 if (assignment->exp->type.node_class == etree_assert
4084 || is_dot
4085 || expld.assign_name != NULL)
4086 {
4087 value = expld.result.value;
4088
4089 if (expld.result.section != NULL)
4090 value += expld.result.section->vma;
4091
4092 minfo ("0x%V", value);
4093 if (is_dot)
4094 print_dot = value;
4095 }
4096 else
4097 {
4098 struct bfd_link_hash_entry *h;
4099
4100 h = bfd_link_hash_lookup (link_info.hash, assignment->exp->assign.dst,
4101 FALSE, FALSE, TRUE);
4102 if (h)
4103 {
4104 value = h->u.def.value;
4105 value += h->u.def.section->output_section->vma;
4106 value += h->u.def.section->output_offset;
4107
4108 minfo ("[0x%V]", value);
4109 }
4110 else
4111 minfo ("[unresolved]");
4112 }
4113 }
4114 else
4115 {
4116 if (assignment->exp->type.node_class == etree_provide)
4117 minfo ("[!provide]");
4118 else
4119 minfo ("*undef* ");
4120 #ifdef BFD64
4121 minfo (" ");
4122 #endif
4123 }
4124 expld.assign_name = NULL;
4125
4126 minfo (" ");
4127 exp_print_tree (assignment->exp);
4128 print_nl ();
4129 }
4130
4131 static void
4132 print_input_statement (lang_input_statement_type *statm)
4133 {
4134 if (statm->filename != NULL
4135 && (statm->the_bfd == NULL
4136 || (statm->the_bfd->flags & BFD_LINKER_CREATED) == 0))
4137 fprintf (config.map_file, "LOAD %s\n", statm->filename);
4138 }
4139
4140 /* Print all symbols defined in a particular section. This is called
4141 via bfd_link_hash_traverse, or by print_all_symbols. */
4142
4143 static bfd_boolean
4144 print_one_symbol (struct bfd_link_hash_entry *hash_entry, void *ptr)
4145 {
4146 asection *sec = (asection *) ptr;
4147
4148 if ((hash_entry->type == bfd_link_hash_defined
4149 || hash_entry->type == bfd_link_hash_defweak)
4150 && sec == hash_entry->u.def.section)
4151 {
4152 int i;
4153
4154 for (i = 0; i < SECTION_NAME_MAP_LENGTH; i++)
4155 print_space ();
4156 minfo ("0x%V ",
4157 (hash_entry->u.def.value
4158 + hash_entry->u.def.section->output_offset
4159 + hash_entry->u.def.section->output_section->vma));
4160
4161 minfo (" %T\n", hash_entry->root.string);
4162 }
4163
4164 return TRUE;
4165 }
4166
4167 static int
4168 hash_entry_addr_cmp (const void *a, const void *b)
4169 {
4170 const struct bfd_link_hash_entry *l = *(const struct bfd_link_hash_entry **)a;
4171 const struct bfd_link_hash_entry *r = *(const struct bfd_link_hash_entry **)b;
4172
4173 if (l->u.def.value < r->u.def.value)
4174 return -1;
4175 else if (l->u.def.value > r->u.def.value)
4176 return 1;
4177 else
4178 return 0;
4179 }
4180
4181 static void
4182 print_all_symbols (asection *sec)
4183 {
4184 input_section_userdata_type *ud
4185 = (input_section_userdata_type *) get_userdata (sec);
4186 struct map_symbol_def *def;
4187 struct bfd_link_hash_entry **entries;
4188 unsigned int i;
4189
4190 if (!ud)
4191 return;
4192
4193 *ud->map_symbol_def_tail = 0;
4194
4195 /* Sort the symbols by address. */
4196 entries = (struct bfd_link_hash_entry **)
4197 obstack_alloc (&map_obstack,
4198 ud->map_symbol_def_count * sizeof (*entries));
4199
4200 for (i = 0, def = ud->map_symbol_def_head; def; def = def->next, i++)
4201 entries[i] = def->entry;
4202
4203 qsort (entries, ud->map_symbol_def_count, sizeof (*entries),
4204 hash_entry_addr_cmp);
4205
4206 /* Print the symbols. */
4207 for (i = 0; i < ud->map_symbol_def_count; i++)
4208 print_one_symbol (entries[i], sec);
4209
4210 obstack_free (&map_obstack, entries);
4211 }
4212
4213 /* Print information about an input section to the map file. */
4214
4215 static void
4216 print_input_section (asection *i, bfd_boolean is_discarded)
4217 {
4218 bfd_size_type size = i->size;
4219 int len;
4220 bfd_vma addr;
4221
4222 init_opb ();
4223
4224 print_space ();
4225 minfo ("%s", i->name);
4226
4227 len = 1 + strlen (i->name);
4228 if (len >= SECTION_NAME_MAP_LENGTH - 1)
4229 {
4230 print_nl ();
4231 len = 0;
4232 }
4233 while (len < SECTION_NAME_MAP_LENGTH)
4234 {
4235 print_space ();
4236 ++len;
4237 }
4238
4239 if (i->output_section != NULL
4240 && i->output_section->owner == link_info.output_bfd)
4241 addr = i->output_section->vma + i->output_offset;
4242 else
4243 {
4244 addr = print_dot;
4245 if (!is_discarded)
4246 size = 0;
4247 }
4248
4249 minfo ("0x%V %W %B\n", addr, size, i->owner);
4250
4251 if (size != i->rawsize && i->rawsize != 0)
4252 {
4253 len = SECTION_NAME_MAP_LENGTH + 3;
4254 #ifdef BFD64
4255 len += 16;
4256 #else
4257 len += 8;
4258 #endif
4259 while (len > 0)
4260 {
4261 print_space ();
4262 --len;
4263 }
4264
4265 minfo (_("%W (size before relaxing)\n"), i->rawsize);
4266 }
4267
4268 if (i->output_section != NULL
4269 && i->output_section->owner == link_info.output_bfd)
4270 {
4271 if (link_info.reduce_memory_overheads)
4272 bfd_link_hash_traverse (link_info.hash, print_one_symbol, i);
4273 else
4274 print_all_symbols (i);
4275
4276 /* Update print_dot, but make sure that we do not move it
4277 backwards - this could happen if we have overlays and a
4278 later overlay is shorter than an earier one. */
4279 if (addr + TO_ADDR (size) > print_dot)
4280 print_dot = addr + TO_ADDR (size);
4281 }
4282 }
4283
4284 static void
4285 print_fill_statement (lang_fill_statement_type *fill)
4286 {
4287 size_t size;
4288 unsigned char *p;
4289 fputs (" FILL mask 0x", config.map_file);
4290 for (p = fill->fill->data, size = fill->fill->size; size != 0; p++, size--)
4291 fprintf (config.map_file, "%02x", *p);
4292 fputs ("\n", config.map_file);
4293 }
4294
4295 static void
4296 print_data_statement (lang_data_statement_type *data)
4297 {
4298 int i;
4299 bfd_vma addr;
4300 bfd_size_type size;
4301 const char *name;
4302
4303 init_opb ();
4304 for (i = 0; i < SECTION_NAME_MAP_LENGTH; i++)
4305 print_space ();
4306
4307 addr = data->output_offset;
4308 if (data->output_section != NULL)
4309 addr += data->output_section->vma;
4310
4311 switch (data->type)
4312 {
4313 default:
4314 abort ();
4315 case BYTE:
4316 size = BYTE_SIZE;
4317 name = "BYTE";
4318 break;
4319 case SHORT:
4320 size = SHORT_SIZE;
4321 name = "SHORT";
4322 break;
4323 case LONG:
4324 size = LONG_SIZE;
4325 name = "LONG";
4326 break;
4327 case QUAD:
4328 size = QUAD_SIZE;
4329 name = "QUAD";
4330 break;
4331 case SQUAD:
4332 size = QUAD_SIZE;
4333 name = "SQUAD";
4334 break;
4335 }
4336
4337 if (size < TO_SIZE ((unsigned) 1))
4338 size = TO_SIZE ((unsigned) 1);
4339 minfo ("0x%V %W %s 0x%v", addr, TO_ADDR (size), name, data->value);
4340
4341 if (data->exp->type.node_class != etree_value)
4342 {
4343 print_space ();
4344 exp_print_tree (data->exp);
4345 }
4346
4347 print_nl ();
4348
4349 print_dot = addr + TO_ADDR (size);
4350 }
4351
4352 /* Print an address statement. These are generated by options like
4353 -Ttext. */
4354
4355 static void
4356 print_address_statement (lang_address_statement_type *address)
4357 {
4358 minfo (_("Address of section %s set to "), address->section_name);
4359 exp_print_tree (address->address);
4360 print_nl ();
4361 }
4362
4363 /* Print a reloc statement. */
4364
4365 static void
4366 print_reloc_statement (lang_reloc_statement_type *reloc)
4367 {
4368 int i;
4369 bfd_vma addr;
4370 bfd_size_type size;
4371
4372 init_opb ();
4373 for (i = 0; i < SECTION_NAME_MAP_LENGTH; i++)
4374 print_space ();
4375
4376 addr = reloc->output_offset;
4377 if (reloc->output_section != NULL)
4378 addr += reloc->output_section->vma;
4379
4380 size = bfd_get_reloc_size (reloc->howto);
4381
4382 minfo ("0x%V %W RELOC %s ", addr, TO_ADDR (size), reloc->howto->name);
4383
4384 if (reloc->name != NULL)
4385 minfo ("%s+", reloc->name);
4386 else
4387 minfo ("%s+", reloc->section->name);
4388
4389 exp_print_tree (reloc->addend_exp);
4390
4391 print_nl ();
4392
4393 print_dot = addr + TO_ADDR (size);
4394 }
4395
4396 static void
4397 print_padding_statement (lang_padding_statement_type *s)
4398 {
4399 int len;
4400 bfd_vma addr;
4401
4402 init_opb ();
4403 minfo (" *fill*");
4404
4405 len = sizeof " *fill*" - 1;
4406 while (len < SECTION_NAME_MAP_LENGTH)
4407 {
4408 print_space ();
4409 ++len;
4410 }
4411
4412 addr = s->output_offset;
4413 if (s->output_section != NULL)
4414 addr += s->output_section->vma;
4415 minfo ("0x%V %W ", addr, TO_ADDR (s->size));
4416
4417 if (s->fill->size != 0)
4418 {
4419 size_t size;
4420 unsigned char *p;
4421 for (p = s->fill->data, size = s->fill->size; size != 0; p++, size--)
4422 fprintf (config.map_file, "%02x", *p);
4423 }
4424
4425 print_nl ();
4426
4427 print_dot = addr + TO_ADDR (s->size);
4428 }
4429
4430 static void
4431 print_wild_statement (lang_wild_statement_type *w,
4432 lang_output_section_statement_type *os)
4433 {
4434 struct wildcard_list *sec;
4435
4436 print_space ();
4437
4438 if (w->exclude_name_list)
4439 {
4440 name_list *tmp;
4441 minfo ("EXCLUDE_FILE(%s", w->exclude_name_list->name);
4442 for (tmp = w->exclude_name_list->next; tmp; tmp = tmp->next)
4443 minfo (" %s", tmp->name);
4444 minfo (") ");
4445 }
4446
4447 if (w->filenames_sorted)
4448 minfo ("SORT(");
4449 if (w->filename != NULL)
4450 minfo ("%s", w->filename);
4451 else
4452 minfo ("*");
4453 if (w->filenames_sorted)
4454 minfo (")");
4455
4456 minfo ("(");
4457 for (sec = w->section_list; sec; sec = sec->next)
4458 {
4459 if (sec->spec.sorted)
4460 minfo ("SORT(");
4461 if (sec->spec.exclude_name_list != NULL)
4462 {
4463 name_list *tmp;
4464 minfo ("EXCLUDE_FILE(%s", sec->spec.exclude_name_list->name);
4465 for (tmp = sec->spec.exclude_name_list->next; tmp; tmp = tmp->next)
4466 minfo (" %s", tmp->name);
4467 minfo (") ");
4468 }
4469 if (sec->spec.name != NULL)
4470 minfo ("%s", sec->spec.name);
4471 else
4472 minfo ("*");
4473 if (sec->spec.sorted)
4474 minfo (")");
4475 if (sec->next)
4476 minfo (" ");
4477 }
4478 minfo (")");
4479
4480 print_nl ();
4481
4482 print_statement_list (w->children.head, os);
4483 }
4484
4485 /* Print a group statement. */
4486
4487 static void
4488 print_group (lang_group_statement_type *s,
4489 lang_output_section_statement_type *os)
4490 {
4491 fprintf (config.map_file, "START GROUP\n");
4492 print_statement_list (s->children.head, os);
4493 fprintf (config.map_file, "END GROUP\n");
4494 }
4495
4496 /* Print the list of statements in S.
4497 This can be called for any statement type. */
4498
4499 static void
4500 print_statement_list (lang_statement_union_type *s,
4501 lang_output_section_statement_type *os)
4502 {
4503 while (s != NULL)
4504 {
4505 print_statement (s, os);
4506 s = s->header.next;
4507 }
4508 }
4509
4510 /* Print the first statement in statement list S.
4511 This can be called for any statement type. */
4512
4513 static void
4514 print_statement (lang_statement_union_type *s,
4515 lang_output_section_statement_type *os)
4516 {
4517 switch (s->header.type)
4518 {
4519 default:
4520 fprintf (config.map_file, _("Fail with %d\n"), s->header.type);
4521 FAIL ();
4522 break;
4523 case lang_constructors_statement_enum:
4524 if (constructor_list.head != NULL)
4525 {
4526 if (constructors_sorted)
4527 minfo (" SORT (CONSTRUCTORS)\n");
4528 else
4529 minfo (" CONSTRUCTORS\n");
4530 print_statement_list (constructor_list.head, os);
4531 }
4532 break;
4533 case lang_wild_statement_enum:
4534 print_wild_statement (&s->wild_statement, os);
4535 break;
4536 case lang_address_statement_enum:
4537 print_address_statement (&s->address_statement);
4538 break;
4539 case lang_object_symbols_statement_enum:
4540 minfo (" CREATE_OBJECT_SYMBOLS\n");
4541 break;
4542 case lang_fill_statement_enum:
4543 print_fill_statement (&s->fill_statement);
4544 break;
4545 case lang_data_statement_enum:
4546 print_data_statement (&s->data_statement);
4547 break;
4548 case lang_reloc_statement_enum:
4549 print_reloc_statement (&s->reloc_statement);
4550 break;
4551 case lang_input_section_enum:
4552 print_input_section (s->input_section.section, FALSE);
4553 break;
4554 case lang_padding_statement_enum:
4555 print_padding_statement (&s->padding_statement);
4556 break;
4557 case lang_output_section_statement_enum:
4558 print_output_section_statement (&s->output_section_statement);
4559 break;
4560 case lang_assignment_statement_enum:
4561 print_assignment (&s->assignment_statement, os);
4562 break;
4563 case lang_target_statement_enum:
4564 fprintf (config.map_file, "TARGET(%s)\n", s->target_statement.target);
4565 break;
4566 case lang_output_statement_enum:
4567 minfo ("OUTPUT(%s", s->output_statement.name);
4568 if (output_target != NULL)
4569 minfo (" %s", output_target);
4570 minfo (")\n");
4571 break;
4572 case lang_input_statement_enum:
4573 print_input_statement (&s->input_statement);
4574 break;
4575 case lang_group_statement_enum:
4576 print_group (&s->group_statement, os);
4577 break;
4578 case lang_insert_statement_enum:
4579 minfo ("INSERT %s %s\n",
4580 s->insert_statement.is_before ? "BEFORE" : "AFTER",
4581 s->insert_statement.where);
4582 break;
4583 }
4584 }
4585
4586 static void
4587 print_statements (void)
4588 {
4589 print_statement_list (statement_list.head, abs_output_section);
4590 }
4591
4592 /* Print the first N statements in statement list S to STDERR.
4593 If N == 0, nothing is printed.
4594 If N < 0, the entire list is printed.
4595 Intended to be called from GDB. */
4596
4597 void
4598 dprint_statement (lang_statement_union_type *s, int n)
4599 {
4600 FILE *map_save = config.map_file;
4601
4602 config.map_file = stderr;
4603
4604 if (n < 0)
4605 print_statement_list (s, abs_output_section);
4606 else
4607 {
4608 while (s && --n >= 0)
4609 {
4610 print_statement (s, abs_output_section);
4611 s = s->header.next;
4612 }
4613 }
4614
4615 config.map_file = map_save;
4616 }
4617
4618 static void
4619 insert_pad (lang_statement_union_type **ptr,
4620 fill_type *fill,
4621 bfd_size_type alignment_needed,
4622 asection *output_section,
4623 bfd_vma dot)
4624 {
4625 static fill_type zero_fill;
4626 lang_statement_union_type *pad = NULL;
4627
4628 if (ptr != &statement_list.head)
4629 pad = ((lang_statement_union_type *)
4630 ((char *) ptr - offsetof (lang_statement_union_type, header.next)));
4631 if (pad != NULL
4632 && pad->header.type == lang_padding_statement_enum
4633 && pad->padding_statement.output_section == output_section)
4634 {
4635 /* Use the existing pad statement. */
4636 }
4637 else if ((pad = *ptr) != NULL
4638 && pad->header.type == lang_padding_statement_enum
4639 && pad->padding_statement.output_section == output_section)
4640 {
4641 /* Use the existing pad statement. */
4642 }
4643 else
4644 {
4645 /* Make a new padding statement, linked into existing chain. */
4646 pad = (lang_statement_union_type *)
4647 stat_alloc (sizeof (lang_padding_statement_type));
4648 pad->header.next = *ptr;
4649 *ptr = pad;
4650 pad->header.type = lang_padding_statement_enum;
4651 pad->padding_statement.output_section = output_section;
4652 if (fill == NULL)
4653 fill = &zero_fill;
4654 pad->padding_statement.fill = fill;
4655 }
4656 pad->padding_statement.output_offset = dot - output_section->vma;
4657 pad->padding_statement.size = alignment_needed;
4658 output_section->size = TO_SIZE (dot + TO_ADDR (alignment_needed)
4659 - output_section->vma);
4660 }
4661
4662 /* Work out how much this section will move the dot point. */
4663
4664 static bfd_vma
4665 size_input_section
4666 (lang_statement_union_type **this_ptr,
4667 lang_output_section_statement_type *output_section_statement,
4668 fill_type *fill,
4669 bfd_vma dot)
4670 {
4671 lang_input_section_type *is = &((*this_ptr)->input_section);
4672 asection *i = is->section;
4673 asection *o = output_section_statement->bfd_section;
4674
4675 if (i->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
4676 i->output_offset = i->vma - o->vma;
4677 else if (((i->flags & SEC_EXCLUDE) != 0)
4678 || output_section_statement->ignored)
4679 i->output_offset = dot - o->vma;
4680 else
4681 {
4682 bfd_size_type alignment_needed;
4683
4684 /* Align this section first to the input sections requirement,
4685 then to the output section's requirement. If this alignment
4686 is greater than any seen before, then record it too. Perform
4687 the alignment by inserting a magic 'padding' statement. */
4688
4689 if (output_section_statement->subsection_alignment != -1)
4690 i->alignment_power = output_section_statement->subsection_alignment;
4691
4692 if (o->alignment_power < i->alignment_power)
4693 o->alignment_power = i->alignment_power;
4694
4695 alignment_needed = align_power (dot, i->alignment_power) - dot;
4696
4697 if (alignment_needed != 0)
4698 {
4699 insert_pad (this_ptr, fill, TO_SIZE (alignment_needed), o, dot);
4700 dot += alignment_needed;
4701 }
4702
4703 /* Remember where in the output section this input section goes. */
4704 i->output_offset = dot - o->vma;
4705
4706 /* Mark how big the output section must be to contain this now. */
4707 dot += TO_ADDR (i->size);
4708 o->size = TO_SIZE (dot - o->vma);
4709 }
4710
4711 return dot;
4712 }
4713
4714 struct check_sec
4715 {
4716 asection *sec;
4717 bfd_boolean warned;
4718 };
4719
4720 static int
4721 sort_sections_by_lma (const void *arg1, const void *arg2)
4722 {
4723 const asection *sec1 = ((const struct check_sec *) arg1)->sec;
4724 const asection *sec2 = ((const struct check_sec *) arg2)->sec;
4725
4726 if (sec1->lma < sec2->lma)
4727 return -1;
4728 else if (sec1->lma > sec2->lma)
4729 return 1;
4730 else if (sec1->id < sec2->id)
4731 return -1;
4732 else if (sec1->id > sec2->id)
4733 return 1;
4734
4735 return 0;
4736 }
4737
4738 static int
4739 sort_sections_by_vma (const void *arg1, const void *arg2)
4740 {
4741 const asection *sec1 = ((const struct check_sec *) arg1)->sec;
4742 const asection *sec2 = ((const struct check_sec *) arg2)->sec;
4743
4744 if (sec1->vma < sec2->vma)
4745 return -1;
4746 else if (sec1->vma > sec2->vma)
4747 return 1;
4748 else if (sec1->id < sec2->id)
4749 return -1;
4750 else if (sec1->id > sec2->id)
4751 return 1;
4752
4753 return 0;
4754 }
4755
4756 #define IS_TBSS(s) \
4757 ((s->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == SEC_THREAD_LOCAL)
4758
4759 #define IGNORE_SECTION(s) \
4760 ((s->flags & SEC_ALLOC) == 0 || IS_TBSS (s))
4761
4762 /* Check to see if any allocated sections overlap with other allocated
4763 sections. This can happen if a linker script specifies the output
4764 section addresses of the two sections. Also check whether any memory
4765 region has overflowed. */
4766
4767 static void
4768 lang_check_section_addresses (void)
4769 {
4770 asection *s, *p;
4771 struct check_sec *sections;
4772 size_t i, count;
4773 bfd_vma s_start;
4774 bfd_vma s_end;
4775 bfd_vma p_start = 0;
4776 bfd_vma p_end = 0;
4777 lang_memory_region_type *m;
4778 bfd_boolean overlays;
4779
4780 if (bfd_count_sections (link_info.output_bfd) <= 1)
4781 return;
4782
4783 count = bfd_count_sections (link_info.output_bfd);
4784 sections = XNEWVEC (struct check_sec, count);
4785
4786 /* Scan all sections in the output list. */
4787 count = 0;
4788 for (s = link_info.output_bfd->sections; s != NULL; s = s->next)
4789 {
4790 if (IGNORE_SECTION (s)
4791 || s->size == 0)
4792 continue;
4793
4794 sections[count].sec = s;
4795 sections[count].warned = FALSE;
4796 count++;
4797 }
4798
4799 if (count <= 1)
4800 {
4801 free (sections);
4802 return;
4803 }
4804
4805 qsort (sections, count, sizeof (*sections), sort_sections_by_lma);
4806
4807 /* First check section LMAs. There should be no overlap of LMAs on
4808 loadable sections, even with overlays. */
4809 for (p = NULL, i = 0; i < count; i++)
4810 {
4811 s = sections[i].sec;
4812 if ((s->flags & SEC_LOAD) != 0)
4813 {
4814 s_start = s->lma;
4815 s_end = s_start + TO_ADDR (s->size) - 1;
4816
4817 /* Look for an overlap. We have sorted sections by lma, so
4818 we know that s_start >= p_start. Besides the obvious
4819 case of overlap when the current section starts before
4820 the previous one ends, we also must have overlap if the
4821 previous section wraps around the address space. */
4822 if (p != NULL
4823 && (s_start <= p_end
4824 || p_end < p_start))
4825 {
4826 einfo (_("%X%P: section %s LMA [%V,%V]"
4827 " overlaps section %s LMA [%V,%V]\n"),
4828 s->name, s_start, s_end, p->name, p_start, p_end);
4829 sections[i].warned = TRUE;
4830 }
4831 p = s;
4832 p_start = s_start;
4833 p_end = s_end;
4834 }
4835 }
4836
4837 /* If any non-zero size allocated section (excluding tbss) starts at
4838 exactly the same VMA as another such section, then we have
4839 overlays. Overlays generated by the OVERLAY keyword will have
4840 this property. It is possible to intentionally generate overlays
4841 that fail this test, but it would be unusual. */
4842 qsort (sections, count, sizeof (*sections), sort_sections_by_vma);
4843 overlays = FALSE;
4844 p_start = sections[0].sec->vma;
4845 for (i = 1; i < count; i++)
4846 {
4847 s_start = sections[i].sec->vma;
4848 if (p_start == s_start)
4849 {
4850 overlays = TRUE;
4851 break;
4852 }
4853 p_start = s_start;
4854 }
4855
4856 /* Now check section VMAs if no overlays were detected. */
4857 if (!overlays)
4858 {
4859 for (p = NULL, i = 0; i < count; i++)
4860 {
4861 s = sections[i].sec;
4862 s_start = s->vma;
4863 s_end = s_start + TO_ADDR (s->size) - 1;
4864
4865 if (p != NULL
4866 && !sections[i].warned
4867 && (s_start <= p_end
4868 || p_end < p_start))
4869 einfo (_("%X%P: section %s VMA [%V,%V]"
4870 " overlaps section %s VMA [%V,%V]\n"),
4871 s->name, s_start, s_end, p->name, p_start, p_end);
4872 p = s;
4873 p_start = s_start;
4874 p_end = s_end;
4875 }
4876 }
4877
4878 free (sections);
4879
4880 /* If any memory region has overflowed, report by how much.
4881 We do not issue this diagnostic for regions that had sections
4882 explicitly placed outside their bounds; os_region_check's
4883 diagnostics are adequate for that case.
4884
4885 FIXME: It is conceivable that m->current - (m->origin + m->length)
4886 might overflow a 32-bit integer. There is, alas, no way to print
4887 a bfd_vma quantity in decimal. */
4888 for (m = lang_memory_region_list; m; m = m->next)
4889 if (m->had_full_message)
4890 einfo (_("%X%P: region `%s' overflowed by %ld bytes\n"),
4891 m->name_list.name, (long)(m->current - (m->origin + m->length)));
4892 }
4893
4894 /* Make sure the new address is within the region. We explicitly permit the
4895 current address to be at the exact end of the region when the address is
4896 non-zero, in case the region is at the end of addressable memory and the
4897 calculation wraps around. */
4898
4899 static void
4900 os_region_check (lang_output_section_statement_type *os,
4901 lang_memory_region_type *region,
4902 etree_type *tree,
4903 bfd_vma rbase)
4904 {
4905 if ((region->current < region->origin
4906 || (region->current - region->origin > region->length))
4907 && ((region->current != region->origin + region->length)
4908 || rbase == 0))
4909 {
4910 if (tree != NULL)
4911 {
4912 einfo (_("%X%P: address 0x%v of %B section `%s'"
4913 " is not within region `%s'\n"),
4914 region->current,
4915 os->bfd_section->owner,
4916 os->bfd_section->name,
4917 region->name_list.name);
4918 }
4919 else if (!region->had_full_message)
4920 {
4921 region->had_full_message = TRUE;
4922
4923 einfo (_("%X%P: %B section `%s' will not fit in region `%s'\n"),
4924 os->bfd_section->owner,
4925 os->bfd_section->name,
4926 region->name_list.name);
4927 }
4928 }
4929 }
4930
4931 /* Set the sizes for all the output sections. */
4932
4933 static bfd_vma
4934 lang_size_sections_1
4935 (lang_statement_union_type **prev,
4936 lang_output_section_statement_type *output_section_statement,
4937 fill_type *fill,
4938 bfd_vma dot,
4939 bfd_boolean *relax,
4940 bfd_boolean check_regions)
4941 {
4942 lang_statement_union_type *s;
4943
4944 /* Size up the sections from their constituent parts. */
4945 for (s = *prev; s != NULL; s = s->header.next)
4946 {
4947 switch (s->header.type)
4948 {
4949 case lang_output_section_statement_enum:
4950 {
4951 bfd_vma newdot, after, dotdelta;
4952 lang_output_section_statement_type *os;
4953 lang_memory_region_type *r;
4954 int section_alignment = 0;
4955
4956 os = &s->output_section_statement;
4957 if (os->constraint == -1)
4958 break;
4959
4960 /* FIXME: We shouldn't need to zero section vmas for ld -r
4961 here, in lang_insert_orphan, or in the default linker scripts.
4962 This is covering for coff backend linker bugs. See PR6945. */
4963 if (os->addr_tree == NULL
4964 && bfd_link_relocatable (&link_info)
4965 && (bfd_get_flavour (link_info.output_bfd)
4966 == bfd_target_coff_flavour))
4967 os->addr_tree = exp_intop (0);
4968 if (os->addr_tree != NULL)
4969 {
4970 os->processed_vma = FALSE;
4971 exp_fold_tree (os->addr_tree, bfd_abs_section_ptr, &dot);
4972
4973 if (expld.result.valid_p)
4974 {
4975 dot = expld.result.value;
4976 if (expld.result.section != NULL)
4977 dot += expld.result.section->vma;
4978 }
4979 else if (expld.phase != lang_mark_phase_enum)
4980 einfo (_("%F%S: non constant or forward reference"
4981 " address expression for section %s\n"),
4982 os->addr_tree, os->name);
4983 }
4984
4985 if (os->bfd_section == NULL)
4986 /* This section was removed or never actually created. */
4987 break;
4988
4989 /* If this is a COFF shared library section, use the size and
4990 address from the input section. FIXME: This is COFF
4991 specific; it would be cleaner if there were some other way
4992 to do this, but nothing simple comes to mind. */
4993 if (((bfd_get_flavour (link_info.output_bfd)
4994 == bfd_target_ecoff_flavour)
4995 || (bfd_get_flavour (link_info.output_bfd)
4996 == bfd_target_coff_flavour))
4997 && (os->bfd_section->flags & SEC_COFF_SHARED_LIBRARY) != 0)
4998 {
4999 asection *input;
5000
5001 if (os->children.head == NULL
5002 || os->children.head->header.next != NULL
5003 || (os->children.head->header.type
5004 != lang_input_section_enum))
5005 einfo (_("%P%X: Internal error on COFF shared library"
5006 " section %s\n"), os->name);
5007
5008 input = os->children.head->input_section.section;
5009 bfd_set_section_vma (os->bfd_section->owner,
5010 os->bfd_section,
5011 bfd_section_vma (input->owner, input));
5012 os->bfd_section->size = input->size;
5013 break;
5014 }
5015
5016 newdot = dot;
5017 dotdelta = 0;
5018 if (bfd_is_abs_section (os->bfd_section))
5019 {
5020 /* No matter what happens, an abs section starts at zero. */
5021 ASSERT (os->bfd_section->vma == 0);
5022 }
5023 else
5024 {
5025 if (os->addr_tree == NULL)
5026 {
5027 /* No address specified for this section, get one
5028 from the region specification. */
5029 if (os->region == NULL
5030 || ((os->bfd_section->flags & (SEC_ALLOC | SEC_LOAD))
5031 && os->region->name_list.name[0] == '*'
5032 && strcmp (os->region->name_list.name,
5033 DEFAULT_MEMORY_REGION) == 0))
5034 {
5035 os->region = lang_memory_default (os->bfd_section);
5036 }
5037
5038 /* If a loadable section is using the default memory
5039 region, and some non default memory regions were
5040 defined, issue an error message. */
5041 if (!os->ignored
5042 && !IGNORE_SECTION (os->bfd_section)
5043 && !bfd_link_relocatable (&link_info)
5044 && check_regions
5045 && strcmp (os->region->name_list.name,
5046 DEFAULT_MEMORY_REGION) == 0
5047 && lang_memory_region_list != NULL
5048 && (strcmp (lang_memory_region_list->name_list.name,
5049 DEFAULT_MEMORY_REGION) != 0
5050 || lang_memory_region_list->next != NULL)
5051 && expld.phase != lang_mark_phase_enum)
5052 {
5053 /* By default this is an error rather than just a
5054 warning because if we allocate the section to the
5055 default memory region we can end up creating an
5056 excessively large binary, or even seg faulting when
5057 attempting to perform a negative seek. See
5058 sources.redhat.com/ml/binutils/2003-04/msg00423.html
5059 for an example of this. This behaviour can be
5060 overridden by the using the --no-check-sections
5061 switch. */
5062 if (command_line.check_section_addresses)
5063 einfo (_("%P%F: error: no memory region specified"
5064 " for loadable section `%s'\n"),
5065 bfd_get_section_name (link_info.output_bfd,
5066 os->bfd_section));
5067 else
5068 einfo (_("%P: warning: no memory region specified"
5069 " for loadable section `%s'\n"),
5070 bfd_get_section_name (link_info.output_bfd,
5071 os->bfd_section));
5072 }
5073
5074 newdot = os->region->current;
5075 section_alignment = os->bfd_section->alignment_power;
5076 }
5077 else
5078 section_alignment = os->section_alignment;
5079
5080 /* Align to what the section needs. */
5081 if (section_alignment > 0)
5082 {
5083 bfd_vma savedot = newdot;
5084 newdot = align_power (newdot, section_alignment);
5085
5086 dotdelta = newdot - savedot;
5087 if (dotdelta != 0
5088 && (config.warn_section_align
5089 || os->addr_tree != NULL)
5090 && expld.phase != lang_mark_phase_enum)
5091 einfo (_("%P: warning: changing start of section"
5092 " %s by %lu bytes\n"),
5093 os->name, (unsigned long) dotdelta);
5094 }
5095
5096 bfd_set_section_vma (0, os->bfd_section, newdot);
5097
5098 os->bfd_section->output_offset = 0;
5099 }
5100
5101 lang_size_sections_1 (&os->children.head, os,
5102 os->fill, newdot, relax, check_regions);
5103
5104 os->processed_vma = TRUE;
5105
5106 if (bfd_is_abs_section (os->bfd_section) || os->ignored)
5107 /* Except for some special linker created sections,
5108 no output section should change from zero size
5109 after strip_excluded_output_sections. A non-zero
5110 size on an ignored section indicates that some
5111 input section was not sized early enough. */
5112 ASSERT (os->bfd_section->size == 0);
5113 else
5114 {
5115 dot = os->bfd_section->vma;
5116
5117 /* Put the section within the requested block size, or
5118 align at the block boundary. */
5119 after = ((dot
5120 + TO_ADDR (os->bfd_section->size)
5121 + os->block_value - 1)
5122 & - (bfd_vma) os->block_value);
5123
5124 os->bfd_section->size = TO_SIZE (after - os->bfd_section->vma);
5125 }
5126
5127 /* Set section lma. */
5128 r = os->region;
5129 if (r == NULL)
5130 r = lang_memory_region_lookup (DEFAULT_MEMORY_REGION, FALSE);
5131
5132 if (os->load_base)
5133 {
5134 bfd_vma lma = exp_get_abs_int (os->load_base, 0, "load base");
5135 os->bfd_section->lma = lma;
5136 }
5137 else if (os->lma_region != NULL)
5138 {
5139 bfd_vma lma = os->lma_region->current;
5140
5141 if (os->align_lma_with_input)
5142 lma += dotdelta;
5143 else
5144 {
5145 /* When LMA_REGION is the same as REGION, align the LMA
5146 as we did for the VMA, possibly including alignment
5147 from the bfd section. If a different region, then
5148 only align according to the value in the output
5149 statement. */
5150 if (os->lma_region != os->region)
5151 section_alignment = os->section_alignment;
5152 if (section_alignment > 0)
5153 lma = align_power (lma, section_alignment);
5154 }
5155 os->bfd_section->lma = lma;
5156 }
5157 else if (r->last_os != NULL
5158 && (os->bfd_section->flags & SEC_ALLOC) != 0)
5159 {
5160 bfd_vma lma;
5161 asection *last;
5162
5163 last = r->last_os->output_section_statement.bfd_section;
5164
5165 /* A backwards move of dot should be accompanied by
5166 an explicit assignment to the section LMA (ie.
5167 os->load_base set) because backwards moves can
5168 create overlapping LMAs. */
5169 if (dot < last->vma
5170 && os->bfd_section->size != 0
5171 && dot + TO_ADDR (os->bfd_section->size) <= last->vma)
5172 {
5173 /* If dot moved backwards then leave lma equal to
5174 vma. This is the old default lma, which might
5175 just happen to work when the backwards move is
5176 sufficiently large. Nag if this changes anything,
5177 so people can fix their linker scripts. */
5178
5179 if (last->vma != last->lma)
5180 einfo (_("%P: warning: dot moved backwards "
5181 "before `%s'\n"), os->name);
5182 }
5183 else
5184 {
5185 /* If this is an overlay, set the current lma to that
5186 at the end of the previous section. */
5187 if (os->sectype == overlay_section)
5188 lma = last->lma + TO_ADDR (last->size);
5189
5190 /* Otherwise, keep the same lma to vma relationship
5191 as the previous section. */
5192 else
5193 lma = dot + last->lma - last->vma;
5194
5195 if (section_alignment > 0)
5196 lma = align_power (lma, section_alignment);
5197 os->bfd_section->lma = lma;
5198 }
5199 }
5200 os->processed_lma = TRUE;
5201
5202 if (bfd_is_abs_section (os->bfd_section) || os->ignored)
5203 break;
5204
5205 /* Keep track of normal sections using the default
5206 lma region. We use this to set the lma for
5207 following sections. Overlays or other linker
5208 script assignment to lma might mean that the
5209 default lma == vma is incorrect.
5210 To avoid warnings about dot moving backwards when using
5211 -Ttext, don't start tracking sections until we find one
5212 of non-zero size or with lma set differently to vma. */
5213 if (!IGNORE_SECTION (os->bfd_section)
5214 && (os->bfd_section->size != 0
5215 || (r->last_os == NULL
5216 && os->bfd_section->vma != os->bfd_section->lma)
5217 || (r->last_os != NULL
5218 && dot >= (r->last_os->output_section_statement
5219 .bfd_section->vma)))
5220 && os->lma_region == NULL
5221 && !bfd_link_relocatable (&link_info))
5222 r->last_os = s;
5223
5224 /* .tbss sections effectively have zero size. */
5225 if (!IS_TBSS (os->bfd_section)
5226 || bfd_link_relocatable (&link_info))
5227 dotdelta = TO_ADDR (os->bfd_section->size);
5228 else
5229 dotdelta = 0;
5230 dot += dotdelta;
5231
5232 if (os->update_dot_tree != 0)
5233 exp_fold_tree (os->update_dot_tree, bfd_abs_section_ptr, &dot);
5234
5235 /* Update dot in the region ?
5236 We only do this if the section is going to be allocated,
5237 since unallocated sections do not contribute to the region's
5238 overall size in memory. */
5239 if (os->region != NULL
5240 && (os->bfd_section->flags & (SEC_ALLOC | SEC_LOAD)))
5241 {
5242 os->region->current = dot;
5243
5244 if (check_regions)
5245 /* Make sure the new address is within the region. */
5246 os_region_check (os, os->region, os->addr_tree,
5247 os->bfd_section->vma);
5248
5249 if (os->lma_region != NULL && os->lma_region != os->region
5250 && ((os->bfd_section->flags & SEC_LOAD)
5251 || os->align_lma_with_input))
5252 {
5253 os->lma_region->current = os->bfd_section->lma + dotdelta;
5254
5255 if (check_regions)
5256 os_region_check (os, os->lma_region, NULL,
5257 os->bfd_section->lma);
5258 }
5259 }
5260 }
5261 break;
5262
5263 case lang_constructors_statement_enum:
5264 dot = lang_size_sections_1 (&constructor_list.head,
5265 output_section_statement,
5266 fill, dot, relax, check_regions);
5267 break;
5268
5269 case lang_data_statement_enum:
5270 {
5271 unsigned int size = 0;
5272
5273 s->data_statement.output_offset =
5274 dot - output_section_statement->bfd_section->vma;
5275 s->data_statement.output_section =
5276 output_section_statement->bfd_section;
5277
5278 /* We might refer to provided symbols in the expression, and
5279 need to mark them as needed. */
5280 exp_fold_tree (s->data_statement.exp, bfd_abs_section_ptr, &dot);
5281
5282 switch (s->data_statement.type)
5283 {
5284 default:
5285 abort ();
5286 case QUAD:
5287 case SQUAD:
5288 size = QUAD_SIZE;
5289 break;
5290 case LONG:
5291 size = LONG_SIZE;
5292 break;
5293 case SHORT:
5294 size = SHORT_SIZE;
5295 break;
5296 case BYTE:
5297 size = BYTE_SIZE;
5298 break;
5299 }
5300 if (size < TO_SIZE ((unsigned) 1))
5301 size = TO_SIZE ((unsigned) 1);
5302 dot += TO_ADDR (size);
5303 output_section_statement->bfd_section->size
5304 = TO_SIZE (dot - output_section_statement->bfd_section->vma);
5305
5306 }
5307 break;
5308
5309 case lang_reloc_statement_enum:
5310 {
5311 int size;
5312
5313 s->reloc_statement.output_offset =
5314 dot - output_section_statement->bfd_section->vma;
5315 s->reloc_statement.output_section =
5316 output_section_statement->bfd_section;
5317 size = bfd_get_reloc_size (s->reloc_statement.howto);
5318 dot += TO_ADDR (size);
5319 output_section_statement->bfd_section->size
5320 = TO_SIZE (dot - output_section_statement->bfd_section->vma);
5321 }
5322 break;
5323
5324 case lang_wild_statement_enum:
5325 dot = lang_size_sections_1 (&s->wild_statement.children.head,
5326 output_section_statement,
5327 fill, dot, relax, check_regions);
5328 break;
5329
5330 case lang_object_symbols_statement_enum:
5331 link_info.create_object_symbols_section =
5332 output_section_statement->bfd_section;
5333 break;
5334
5335 case lang_output_statement_enum:
5336 case lang_target_statement_enum:
5337 break;
5338
5339 case lang_input_section_enum:
5340 {
5341 asection *i;
5342
5343 i = s->input_section.section;
5344 if (relax)
5345 {
5346 bfd_boolean again;
5347
5348 if (!bfd_relax_section (i->owner, i, &link_info, &again))
5349 einfo (_("%P%F: can't relax section: %E\n"));
5350 if (again)
5351 *relax = TRUE;
5352 }
5353 dot = size_input_section (prev, output_section_statement,
5354 fill, dot);
5355 }
5356 break;
5357
5358 case lang_input_statement_enum:
5359 break;
5360
5361 case lang_fill_statement_enum:
5362 s->fill_statement.output_section =
5363 output_section_statement->bfd_section;
5364
5365 fill = s->fill_statement.fill;
5366 break;
5367
5368 case lang_assignment_statement_enum:
5369 {
5370 bfd_vma newdot = dot;
5371 etree_type *tree = s->assignment_statement.exp;
5372
5373 expld.dataseg.relro = exp_dataseg_relro_none;
5374
5375 exp_fold_tree (tree,
5376 output_section_statement->bfd_section,
5377 &newdot);
5378
5379 if (expld.dataseg.relro == exp_dataseg_relro_start)
5380 {
5381 if (!expld.dataseg.relro_start_stat)
5382 expld.dataseg.relro_start_stat = s;
5383 else
5384 {
5385 ASSERT (expld.dataseg.relro_start_stat == s);
5386 }
5387 }
5388 else if (expld.dataseg.relro == exp_dataseg_relro_end)
5389 {
5390 if (!expld.dataseg.relro_end_stat)
5391 expld.dataseg.relro_end_stat = s;
5392 else
5393 {
5394 ASSERT (expld.dataseg.relro_end_stat == s);
5395 }
5396 }
5397 expld.dataseg.relro = exp_dataseg_relro_none;
5398
5399 /* This symbol may be relative to this section. */
5400 if ((tree->type.node_class == etree_provided
5401 || tree->type.node_class == etree_assign)
5402 && (tree->assign.dst [0] != '.'
5403 || tree->assign.dst [1] != '\0'))
5404 output_section_statement->update_dot = 1;
5405
5406 if (!output_section_statement->ignored)
5407 {
5408 if (output_section_statement == abs_output_section)
5409 {
5410 /* If we don't have an output section, then just adjust
5411 the default memory address. */
5412 lang_memory_region_lookup (DEFAULT_MEMORY_REGION,
5413 FALSE)->current = newdot;
5414 }
5415 else if (newdot != dot)
5416 {
5417 /* Insert a pad after this statement. We can't
5418 put the pad before when relaxing, in case the
5419 assignment references dot. */
5420 insert_pad (&s->header.next, fill, TO_SIZE (newdot - dot),
5421 output_section_statement->bfd_section, dot);
5422
5423 /* Don't neuter the pad below when relaxing. */
5424 s = s->header.next;
5425
5426 /* If dot is advanced, this implies that the section
5427 should have space allocated to it, unless the
5428 user has explicitly stated that the section
5429 should not be allocated. */
5430 if (output_section_statement->sectype != noalloc_section
5431 && (output_section_statement->sectype != noload_section
5432 || (bfd_get_flavour (link_info.output_bfd)
5433 == bfd_target_elf_flavour)))
5434 output_section_statement->bfd_section->flags |= SEC_ALLOC;
5435 }
5436 dot = newdot;
5437 }
5438 }
5439 break;
5440
5441 case lang_padding_statement_enum:
5442 /* If this is the first time lang_size_sections is called,
5443 we won't have any padding statements. If this is the
5444 second or later passes when relaxing, we should allow
5445 padding to shrink. If padding is needed on this pass, it
5446 will be added back in. */
5447 s->padding_statement.size = 0;
5448
5449 /* Make sure output_offset is valid. If relaxation shrinks
5450 the section and this pad isn't needed, it's possible to
5451 have output_offset larger than the final size of the
5452 section. bfd_set_section_contents will complain even for
5453 a pad size of zero. */
5454 s->padding_statement.output_offset
5455 = dot - output_section_statement->bfd_section->vma;
5456 break;
5457
5458 case lang_group_statement_enum:
5459 dot = lang_size_sections_1 (&s->group_statement.children.head,
5460 output_section_statement,
5461 fill, dot, relax, check_regions);
5462 break;
5463
5464 case lang_insert_statement_enum:
5465 break;
5466
5467 /* We can only get here when relaxing is turned on. */
5468 case lang_address_statement_enum:
5469 break;
5470
5471 default:
5472 FAIL ();
5473 break;
5474 }
5475 prev = &s->header.next;
5476 }
5477 return dot;
5478 }
5479
5480 /* Callback routine that is used in _bfd_elf_map_sections_to_segments.
5481 The BFD library has set NEW_SEGMENT to TRUE iff it thinks that
5482 CURRENT_SECTION and PREVIOUS_SECTION ought to be placed into different
5483 segments. We are allowed an opportunity to override this decision. */
5484
5485 bfd_boolean
5486 ldlang_override_segment_assignment (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5487 bfd *abfd ATTRIBUTE_UNUSED,
5488 asection *current_section,
5489 asection *previous_section,
5490 bfd_boolean new_segment)
5491 {
5492 lang_output_section_statement_type *cur;
5493 lang_output_section_statement_type *prev;
5494
5495 /* The checks below are only necessary when the BFD library has decided
5496 that the two sections ought to be placed into the same segment. */
5497 if (new_segment)
5498 return TRUE;
5499
5500 /* Paranoia checks. */
5501 if (current_section == NULL || previous_section == NULL)
5502 return new_segment;
5503
5504 /* If this flag is set, the target never wants code and non-code
5505 sections comingled in the same segment. */
5506 if (config.separate_code
5507 && ((current_section->flags ^ previous_section->flags) & SEC_CODE))
5508 return TRUE;
5509
5510 /* Find the memory regions associated with the two sections.
5511 We call lang_output_section_find() here rather than scanning the list
5512 of output sections looking for a matching section pointer because if
5513 we have a large number of sections then a hash lookup is faster. */
5514 cur = lang_output_section_find (current_section->name);
5515 prev = lang_output_section_find (previous_section->name);
5516
5517 /* More paranoia. */
5518 if (cur == NULL || prev == NULL)
5519 return new_segment;
5520
5521 /* If the regions are different then force the sections to live in
5522 different segments. See the email thread starting at the following
5523 URL for the reasons why this is necessary:
5524 http://sourceware.org/ml/binutils/2007-02/msg00216.html */
5525 return cur->region != prev->region;
5526 }
5527
5528 void
5529 one_lang_size_sections_pass (bfd_boolean *relax, bfd_boolean check_regions)
5530 {
5531 lang_statement_iteration++;
5532 lang_size_sections_1 (&statement_list.head, abs_output_section,
5533 0, 0, relax, check_regions);
5534 }
5535
5536 void
5537 lang_size_sections (bfd_boolean *relax, bfd_boolean check_regions)
5538 {
5539 expld.phase = lang_allocating_phase_enum;
5540 expld.dataseg.phase = exp_dataseg_none;
5541
5542 one_lang_size_sections_pass (relax, check_regions);
5543 if (expld.dataseg.phase == exp_dataseg_end_seen
5544 && link_info.relro && expld.dataseg.relro_end)
5545 {
5546 bfd_vma initial_base, relro_end, desired_end;
5547 asection *sec;
5548
5549 /* Compute the expected PT_GNU_RELRO segment end. */
5550 relro_end = ((expld.dataseg.relro_end + expld.dataseg.pagesize - 1)
5551 & ~(expld.dataseg.pagesize - 1));
5552
5553 /* Adjust by the offset arg of DATA_SEGMENT_RELRO_END. */
5554 desired_end = relro_end - expld.dataseg.relro_offset;
5555
5556 /* For sections in the relro segment.. */
5557 for (sec = link_info.output_bfd->section_last; sec; sec = sec->prev)
5558 if ((sec->flags & SEC_ALLOC) != 0
5559 && sec->vma >= expld.dataseg.base
5560 && sec->vma < expld.dataseg.relro_end - expld.dataseg.relro_offset)
5561 {
5562 /* Where do we want to put this section so that it ends as
5563 desired? */
5564 bfd_vma start, end, bump;
5565
5566 end = start = sec->vma;
5567 if (!IS_TBSS (sec))
5568 end += TO_ADDR (sec->size);
5569 bump = desired_end - end;
5570 /* We'd like to increase START by BUMP, but we must heed
5571 alignment so the increase might be less than optimum. */
5572 start += bump;
5573 start &= ~(((bfd_vma) 1 << sec->alignment_power) - 1);
5574 /* This is now the desired end for the previous section. */
5575 desired_end = start;
5576 }
5577
5578 expld.dataseg.phase = exp_dataseg_relro_adjust;
5579 ASSERT (desired_end >= expld.dataseg.base);
5580 initial_base = expld.dataseg.base;
5581 expld.dataseg.base = desired_end;
5582 lang_reset_memory_regions ();
5583 one_lang_size_sections_pass (relax, check_regions);
5584
5585 if (expld.dataseg.relro_end > relro_end)
5586 {
5587 /* Assignments to dot, or to output section address in a
5588 user script have increased padding over the original.
5589 Revert. */
5590 expld.dataseg.base = initial_base;
5591 lang_reset_memory_regions ();
5592 one_lang_size_sections_pass (relax, check_regions);
5593 }
5594
5595 link_info.relro_start = expld.dataseg.base;
5596 link_info.relro_end = expld.dataseg.relro_end;
5597 }
5598 else if (expld.dataseg.phase == exp_dataseg_end_seen)
5599 {
5600 /* If DATA_SEGMENT_ALIGN DATA_SEGMENT_END pair was seen, check whether
5601 a page could be saved in the data segment. */
5602 bfd_vma first, last;
5603
5604 first = -expld.dataseg.base & (expld.dataseg.pagesize - 1);
5605 last = expld.dataseg.end & (expld.dataseg.pagesize - 1);
5606 if (first && last
5607 && ((expld.dataseg.base & ~(expld.dataseg.pagesize - 1))
5608 != (expld.dataseg.end & ~(expld.dataseg.pagesize - 1)))
5609 && first + last <= expld.dataseg.pagesize)
5610 {
5611 expld.dataseg.phase = exp_dataseg_adjust;
5612 lang_reset_memory_regions ();
5613 one_lang_size_sections_pass (relax, check_regions);
5614 }
5615 else
5616 expld.dataseg.phase = exp_dataseg_done;
5617 }
5618 else
5619 expld.dataseg.phase = exp_dataseg_done;
5620 }
5621
5622 static lang_output_section_statement_type *current_section;
5623 static lang_assignment_statement_type *current_assign;
5624 static bfd_boolean prefer_next_section;
5625
5626 /* Worker function for lang_do_assignments. Recursiveness goes here. */
5627
5628 static bfd_vma
5629 lang_do_assignments_1 (lang_statement_union_type *s,
5630 lang_output_section_statement_type *current_os,
5631 fill_type *fill,
5632 bfd_vma dot,
5633 bfd_boolean *found_end)
5634 {
5635 for (; s != NULL; s = s->header.next)
5636 {
5637 switch (s->header.type)
5638 {
5639 case lang_constructors_statement_enum:
5640 dot = lang_do_assignments_1 (constructor_list.head,
5641 current_os, fill, dot, found_end);
5642 break;
5643
5644 case lang_output_section_statement_enum:
5645 {
5646 lang_output_section_statement_type *os;
5647 bfd_vma newdot;
5648
5649 os = &(s->output_section_statement);
5650 os->after_end = *found_end;
5651 if (os->bfd_section != NULL && !os->ignored)
5652 {
5653 if ((os->bfd_section->flags & SEC_ALLOC) != 0)
5654 {
5655 current_section = os;
5656 prefer_next_section = FALSE;
5657 }
5658 dot = os->bfd_section->vma;
5659 }
5660 newdot = lang_do_assignments_1 (os->children.head,
5661 os, os->fill, dot, found_end);
5662 if (!os->ignored)
5663 {
5664 if (os->bfd_section != NULL)
5665 {
5666 /* .tbss sections effectively have zero size. */
5667 if (!IS_TBSS (os->bfd_section)
5668 || bfd_link_relocatable (&link_info))
5669 dot += TO_ADDR (os->bfd_section->size);
5670
5671 if (os->update_dot_tree != NULL)
5672 exp_fold_tree (os->update_dot_tree,
5673 bfd_abs_section_ptr, &dot);
5674 }
5675 else
5676 dot = newdot;
5677 }
5678 }
5679 break;
5680
5681 case lang_wild_statement_enum:
5682
5683 dot = lang_do_assignments_1 (s->wild_statement.children.head,
5684 current_os, fill, dot, found_end);
5685 break;
5686
5687 case lang_object_symbols_statement_enum:
5688 case lang_output_statement_enum:
5689 case lang_target_statement_enum:
5690 break;
5691
5692 case lang_data_statement_enum:
5693 exp_fold_tree (s->data_statement.exp, bfd_abs_section_ptr, &dot);
5694 if (expld.result.valid_p)
5695 {
5696 s->data_statement.value = expld.result.value;
5697 if (expld.result.section != NULL)
5698 s->data_statement.value += expld.result.section->vma;
5699 }
5700 else if (expld.phase == lang_final_phase_enum)
5701 einfo (_("%F%P: invalid data statement\n"));
5702 {
5703 unsigned int size;
5704 switch (s->data_statement.type)
5705 {
5706 default:
5707 abort ();
5708 case QUAD:
5709 case SQUAD:
5710 size = QUAD_SIZE;
5711 break;
5712 case LONG:
5713 size = LONG_SIZE;
5714 break;
5715 case SHORT:
5716 size = SHORT_SIZE;
5717 break;
5718 case BYTE:
5719 size = BYTE_SIZE;
5720 break;
5721 }
5722 if (size < TO_SIZE ((unsigned) 1))
5723 size = TO_SIZE ((unsigned) 1);
5724 dot += TO_ADDR (size);
5725 }
5726 break;
5727
5728 case lang_reloc_statement_enum:
5729 exp_fold_tree (s->reloc_statement.addend_exp,
5730 bfd_abs_section_ptr, &dot);
5731 if (expld.result.valid_p)
5732 s->reloc_statement.addend_value = expld.result.value;
5733 else if (expld.phase == lang_final_phase_enum)
5734 einfo (_("%F%P: invalid reloc statement\n"));
5735 dot += TO_ADDR (bfd_get_reloc_size (s->reloc_statement.howto));
5736 break;
5737
5738 case lang_input_section_enum:
5739 {
5740 asection *in = s->input_section.section;
5741
5742 if ((in->flags & SEC_EXCLUDE) == 0)
5743 dot += TO_ADDR (in->size);
5744 }
5745 break;
5746
5747 case lang_input_statement_enum:
5748 break;
5749
5750 case lang_fill_statement_enum:
5751 fill = s->fill_statement.fill;
5752 break;
5753
5754 case lang_assignment_statement_enum:
5755 current_assign = &s->assignment_statement;
5756 if (current_assign->exp->type.node_class != etree_assert)
5757 {
5758 const char *p = current_assign->exp->assign.dst;
5759
5760 if (current_os == abs_output_section && p[0] == '.' && p[1] == 0)
5761 prefer_next_section = TRUE;
5762
5763 while (*p == '_')
5764 ++p;
5765 if (strcmp (p, "end") == 0)
5766 *found_end = TRUE;
5767 }
5768 exp_fold_tree (s->assignment_statement.exp,
5769 (current_os->bfd_section != NULL
5770 ? current_os->bfd_section : bfd_und_section_ptr),
5771 &dot);
5772 break;
5773
5774 case lang_padding_statement_enum:
5775 dot += TO_ADDR (s->padding_statement.size);
5776 break;
5777
5778 case lang_group_statement_enum:
5779 dot = lang_do_assignments_1 (s->group_statement.children.head,
5780 current_os, fill, dot, found_end);
5781 break;
5782
5783 case lang_insert_statement_enum:
5784 break;
5785
5786 case lang_address_statement_enum:
5787 break;
5788
5789 default:
5790 FAIL ();
5791 break;
5792 }
5793 }
5794 return dot;
5795 }
5796
5797 void
5798 lang_do_assignments (lang_phase_type phase)
5799 {
5800 bfd_boolean found_end = FALSE;
5801
5802 current_section = NULL;
5803 prefer_next_section = FALSE;
5804 expld.phase = phase;
5805 lang_statement_iteration++;
5806 lang_do_assignments_1 (statement_list.head,
5807 abs_output_section, NULL, 0, &found_end);
5808 }
5809
5810 /* For an assignment statement outside of an output section statement,
5811 choose the best of neighbouring output sections to use for values
5812 of "dot". */
5813
5814 asection *
5815 section_for_dot (void)
5816 {
5817 asection *s;
5818
5819 /* Assignments belong to the previous output section, unless there
5820 has been an assignment to "dot", in which case following
5821 assignments belong to the next output section. (The assumption
5822 is that an assignment to "dot" is setting up the address for the
5823 next output section.) Except that past the assignment to "_end"
5824 we always associate with the previous section. This exception is
5825 for targets like SH that define an alloc .stack or other
5826 weirdness after non-alloc sections. */
5827 if (current_section == NULL || prefer_next_section)
5828 {
5829 lang_statement_union_type *stmt;
5830 lang_output_section_statement_type *os;
5831
5832 for (stmt = (lang_statement_union_type *) current_assign;
5833 stmt != NULL;
5834 stmt = stmt->header.next)
5835 if (stmt->header.type == lang_output_section_statement_enum)
5836 break;
5837
5838 os = &stmt->output_section_statement;
5839 while (os != NULL
5840 && !os->after_end
5841 && (os->bfd_section == NULL
5842 || (os->bfd_section->flags & SEC_EXCLUDE) != 0
5843 || bfd_section_removed_from_list (link_info.output_bfd,
5844 os->bfd_section)))
5845 os = os->next;
5846
5847 if (current_section == NULL || os == NULL || !os->after_end)
5848 {
5849 if (os != NULL)
5850 s = os->bfd_section;
5851 else
5852 s = link_info.output_bfd->section_last;
5853 while (s != NULL
5854 && ((s->flags & SEC_ALLOC) == 0
5855 || (s->flags & SEC_THREAD_LOCAL) != 0))
5856 s = s->prev;
5857 if (s != NULL)
5858 return s;
5859
5860 return bfd_abs_section_ptr;
5861 }
5862 }
5863
5864 s = current_section->bfd_section;
5865
5866 /* The section may have been stripped. */
5867 while (s != NULL
5868 && ((s->flags & SEC_EXCLUDE) != 0
5869 || (s->flags & SEC_ALLOC) == 0
5870 || (s->flags & SEC_THREAD_LOCAL) != 0
5871 || bfd_section_removed_from_list (link_info.output_bfd, s)))
5872 s = s->prev;
5873 if (s == NULL)
5874 s = link_info.output_bfd->sections;
5875 while (s != NULL
5876 && ((s->flags & SEC_ALLOC) == 0
5877 || (s->flags & SEC_THREAD_LOCAL) != 0))
5878 s = s->next;
5879 if (s != NULL)
5880 return s;
5881
5882 return bfd_abs_section_ptr;
5883 }
5884
5885 /* Fix any .startof. or .sizeof. symbols. When the assemblers see the
5886 operator .startof. (section_name), it produces an undefined symbol
5887 .startof.section_name. Similarly, when it sees
5888 .sizeof. (section_name), it produces an undefined symbol
5889 .sizeof.section_name. For all the output sections, we look for
5890 such symbols, and set them to the correct value. */
5891
5892 static void
5893 lang_set_startof (void)
5894 {
5895 asection *s;
5896
5897 if (bfd_link_relocatable (&link_info))
5898 return;
5899
5900 for (s = link_info.output_bfd->sections; s != NULL; s = s->next)
5901 {
5902 const char *secname;
5903 char *buf;
5904 struct bfd_link_hash_entry *h;
5905
5906 secname = bfd_get_section_name (link_info.output_bfd, s);
5907 buf = (char *) xmalloc (10 + strlen (secname));
5908
5909 sprintf (buf, ".startof.%s", secname);
5910 h = bfd_link_hash_lookup (link_info.hash, buf, FALSE, FALSE, TRUE);
5911 if (h != NULL && h->type == bfd_link_hash_undefined)
5912 {
5913 h->type = bfd_link_hash_defined;
5914 h->u.def.value = 0;
5915 h->u.def.section = s;
5916 }
5917
5918 sprintf (buf, ".sizeof.%s", secname);
5919 h = bfd_link_hash_lookup (link_info.hash, buf, FALSE, FALSE, TRUE);
5920 if (h != NULL && h->type == bfd_link_hash_undefined)
5921 {
5922 h->type = bfd_link_hash_defined;
5923 h->u.def.value = TO_ADDR (s->size);
5924 h->u.def.section = bfd_abs_section_ptr;
5925 }
5926
5927 free (buf);
5928 }
5929 }
5930
5931 static void
5932 lang_end (void)
5933 {
5934 struct bfd_link_hash_entry *h;
5935 bfd_boolean warn;
5936
5937 if ((bfd_link_relocatable (&link_info) && !link_info.gc_sections)
5938 || bfd_link_dll (&link_info))
5939 warn = entry_from_cmdline;
5940 else
5941 warn = TRUE;
5942
5943 /* Force the user to specify a root when generating a relocatable with
5944 --gc-sections. */
5945 if (link_info.gc_sections && bfd_link_relocatable (&link_info)
5946 && !(entry_from_cmdline || undef_from_cmdline))
5947 einfo (_("%P%F: gc-sections requires either an entry or "
5948 "an undefined symbol\n"));
5949
5950 if (entry_symbol.name == NULL)
5951 {
5952 /* No entry has been specified. Look for the default entry, but
5953 don't warn if we don't find it. */
5954 entry_symbol.name = entry_symbol_default;
5955 warn = FALSE;
5956 }
5957
5958 h = bfd_link_hash_lookup (link_info.hash, entry_symbol.name,
5959 FALSE, FALSE, TRUE);
5960 if (h != NULL
5961 && (h->type == bfd_link_hash_defined
5962 || h->type == bfd_link_hash_defweak)
5963 && h->u.def.section->output_section != NULL)
5964 {
5965 bfd_vma val;
5966
5967 val = (h->u.def.value
5968 + bfd_get_section_vma (link_info.output_bfd,
5969 h->u.def.section->output_section)
5970 + h->u.def.section->output_offset);
5971 if (!bfd_set_start_address (link_info.output_bfd, val))
5972 einfo (_("%P%F:%s: can't set start address\n"), entry_symbol.name);
5973 }
5974 else
5975 {
5976 bfd_vma val;
5977 const char *send;
5978
5979 /* We couldn't find the entry symbol. Try parsing it as a
5980 number. */
5981 val = bfd_scan_vma (entry_symbol.name, &send, 0);
5982 if (*send == '\0')
5983 {
5984 if (!bfd_set_start_address (link_info.output_bfd, val))
5985 einfo (_("%P%F: can't set start address\n"));
5986 }
5987 else
5988 {
5989 asection *ts;
5990
5991 /* Can't find the entry symbol, and it's not a number. Use
5992 the first address in the text section. */
5993 ts = bfd_get_section_by_name (link_info.output_bfd, entry_section);
5994 if (ts != NULL)
5995 {
5996 if (warn)
5997 einfo (_("%P: warning: cannot find entry symbol %s;"
5998 " defaulting to %V\n"),
5999 entry_symbol.name,
6000 bfd_get_section_vma (link_info.output_bfd, ts));
6001 if (!(bfd_set_start_address
6002 (link_info.output_bfd,
6003 bfd_get_section_vma (link_info.output_bfd, ts))))
6004 einfo (_("%P%F: can't set start address\n"));
6005 }
6006 else
6007 {
6008 if (warn)
6009 einfo (_("%P: warning: cannot find entry symbol %s;"
6010 " not setting start address\n"),
6011 entry_symbol.name);
6012 }
6013 }
6014 }
6015 }
6016
6017 /* This is a small function used when we want to ignore errors from
6018 BFD. */
6019
6020 static void
6021 ignore_bfd_errors (const char *fmt ATTRIBUTE_UNUSED,
6022 va_list ap ATTRIBUTE_UNUSED)
6023 {
6024 /* Don't do anything. */
6025 }
6026
6027 /* Check that the architecture of all the input files is compatible
6028 with the output file. Also call the backend to let it do any
6029 other checking that is needed. */
6030
6031 static void
6032 lang_check (void)
6033 {
6034 lang_statement_union_type *file;
6035 bfd *input_bfd;
6036 const bfd_arch_info_type *compatible;
6037
6038 for (file = file_chain.head; file != NULL; file = file->input_statement.next)
6039 {
6040 #ifdef ENABLE_PLUGINS
6041 /* Don't check format of files claimed by plugin. */
6042 if (file->input_statement.flags.claimed)
6043 continue;
6044 #endif /* ENABLE_PLUGINS */
6045 input_bfd = file->input_statement.the_bfd;
6046 compatible
6047 = bfd_arch_get_compatible (input_bfd, link_info.output_bfd,
6048 command_line.accept_unknown_input_arch);
6049
6050 /* In general it is not possible to perform a relocatable
6051 link between differing object formats when the input
6052 file has relocations, because the relocations in the
6053 input format may not have equivalent representations in
6054 the output format (and besides BFD does not translate
6055 relocs for other link purposes than a final link). */
6056 if ((bfd_link_relocatable (&link_info)
6057 || link_info.emitrelocations)
6058 && (compatible == NULL
6059 || (bfd_get_flavour (input_bfd)
6060 != bfd_get_flavour (link_info.output_bfd)))
6061 && (bfd_get_file_flags (input_bfd) & HAS_RELOC) != 0)
6062 {
6063 einfo (_("%P%F: Relocatable linking with relocations from"
6064 " format %s (%B) to format %s (%B) is not supported\n"),
6065 bfd_get_target (input_bfd), input_bfd,
6066 bfd_get_target (link_info.output_bfd), link_info.output_bfd);
6067 /* einfo with %F exits. */
6068 }
6069
6070 if (compatible == NULL)
6071 {
6072 if (command_line.warn_mismatch)
6073 einfo (_("%P%X: %s architecture of input file `%B'"
6074 " is incompatible with %s output\n"),
6075 bfd_printable_name (input_bfd), input_bfd,
6076 bfd_printable_name (link_info.output_bfd));
6077 }
6078 else if (bfd_count_sections (input_bfd))
6079 {
6080 /* If the input bfd has no contents, it shouldn't set the
6081 private data of the output bfd. */
6082
6083 bfd_error_handler_type pfn = NULL;
6084
6085 /* If we aren't supposed to warn about mismatched input
6086 files, temporarily set the BFD error handler to a
6087 function which will do nothing. We still want to call
6088 bfd_merge_private_bfd_data, since it may set up
6089 information which is needed in the output file. */
6090 if (!command_line.warn_mismatch)
6091 pfn = bfd_set_error_handler (ignore_bfd_errors);
6092 if (!bfd_merge_private_bfd_data (input_bfd, &link_info))
6093 {
6094 if (command_line.warn_mismatch)
6095 einfo (_("%P%X: failed to merge target specific data"
6096 " of file %B\n"), input_bfd);
6097 }
6098 if (!command_line.warn_mismatch)
6099 bfd_set_error_handler (pfn);
6100 }
6101 }
6102 }
6103
6104 /* Look through all the global common symbols and attach them to the
6105 correct section. The -sort-common command line switch may be used
6106 to roughly sort the entries by alignment. */
6107
6108 static void
6109 lang_common (void)
6110 {
6111 if (command_line.inhibit_common_definition)
6112 return;
6113 if (bfd_link_relocatable (&link_info)
6114 && !command_line.force_common_definition)
6115 return;
6116
6117 if (!config.sort_common)
6118 bfd_link_hash_traverse (link_info.hash, lang_one_common, NULL);
6119 else
6120 {
6121 unsigned int power;
6122
6123 if (config.sort_common == sort_descending)
6124 {
6125 for (power = 4; power > 0; power--)
6126 bfd_link_hash_traverse (link_info.hash, lang_one_common, &power);
6127
6128 power = 0;
6129 bfd_link_hash_traverse (link_info.hash, lang_one_common, &power);
6130 }
6131 else
6132 {
6133 for (power = 0; power <= 4; power++)
6134 bfd_link_hash_traverse (link_info.hash, lang_one_common, &power);
6135
6136 power = (unsigned int) -1;
6137 bfd_link_hash_traverse (link_info.hash, lang_one_common, &power);
6138 }
6139 }
6140 }
6141
6142 /* Place one common symbol in the correct section. */
6143
6144 static bfd_boolean
6145 lang_one_common (struct bfd_link_hash_entry *h, void *info)
6146 {
6147 unsigned int power_of_two;
6148 bfd_vma size;
6149 asection *section;
6150
6151 if (h->type != bfd_link_hash_common)
6152 return TRUE;
6153
6154 size = h->u.c.size;
6155 power_of_two = h->u.c.p->alignment_power;
6156
6157 if (config.sort_common == sort_descending
6158 && power_of_two < *(unsigned int *) info)
6159 return TRUE;
6160 else if (config.sort_common == sort_ascending
6161 && power_of_two > *(unsigned int *) info)
6162 return TRUE;
6163
6164 section = h->u.c.p->section;
6165 if (!bfd_define_common_symbol (link_info.output_bfd, &link_info, h))
6166 einfo (_("%P%F: Could not define common symbol `%T': %E\n"),
6167 h->root.string);
6168
6169 if (config.map_file != NULL)
6170 {
6171 static bfd_boolean header_printed;
6172 int len;
6173 char *name;
6174 char buf[50];
6175
6176 if (!header_printed)
6177 {
6178 minfo (_("\nAllocating common symbols\n"));
6179 minfo (_("Common symbol size file\n\n"));
6180 header_printed = TRUE;
6181 }
6182
6183 name = bfd_demangle (link_info.output_bfd, h->root.string,
6184 DMGL_ANSI | DMGL_PARAMS);
6185 if (name == NULL)
6186 {
6187 minfo ("%s", h->root.string);
6188 len = strlen (h->root.string);
6189 }
6190 else
6191 {
6192 minfo ("%s", name);
6193 len = strlen (name);
6194 free (name);
6195 }
6196
6197 if (len >= 19)
6198 {
6199 print_nl ();
6200 len = 0;
6201 }
6202 while (len < 20)
6203 {
6204 print_space ();
6205 ++len;
6206 }
6207
6208 minfo ("0x");
6209 if (size <= 0xffffffff)
6210 sprintf (buf, "%lx", (unsigned long) size);
6211 else
6212 sprintf_vma (buf, size);
6213 minfo ("%s", buf);
6214 len = strlen (buf);
6215
6216 while (len < 16)
6217 {
6218 print_space ();
6219 ++len;
6220 }
6221
6222 minfo ("%B\n", section->owner);
6223 }
6224
6225 return TRUE;
6226 }
6227
6228 /* Handle a single orphan section S, placing the orphan into an appropriate
6229 output section. The effects of the --orphan-handling command line
6230 option are handled here. */
6231
6232 static void
6233 ldlang_place_orphan (asection *s)
6234 {
6235 if (config.orphan_handling == orphan_handling_discard)
6236 {
6237 lang_output_section_statement_type *os;
6238 os = lang_output_section_statement_lookup (DISCARD_SECTION_NAME, 0,
6239 TRUE);
6240 if (os->addr_tree == NULL
6241 && (bfd_link_relocatable (&link_info)
6242 || (s->flags & (SEC_LOAD | SEC_ALLOC)) == 0))
6243 os->addr_tree = exp_intop (0);
6244 lang_add_section (&os->children, s, NULL, os);
6245 }
6246 else
6247 {
6248 lang_output_section_statement_type *os;
6249 const char *name = s->name;
6250 int constraint = 0;
6251
6252 if (config.orphan_handling == orphan_handling_error)
6253 einfo ("%X%P: error: unplaced orphan section `%A' from `%B'.\n",
6254 s, s->owner);
6255
6256 if (config.unique_orphan_sections || unique_section_p (s, NULL))
6257 constraint = SPECIAL;
6258
6259 os = ldemul_place_orphan (s, name, constraint);
6260 if (os == NULL)
6261 {
6262 os = lang_output_section_statement_lookup (name, constraint, TRUE);
6263 if (os->addr_tree == NULL
6264 && (bfd_link_relocatable (&link_info)
6265 || (s->flags & (SEC_LOAD | SEC_ALLOC)) == 0))
6266 os->addr_tree = exp_intop (0);
6267 lang_add_section (&os->children, s, NULL, os);
6268 }
6269
6270 if (config.orphan_handling == orphan_handling_warn)
6271 einfo ("%P: warning: orphan section `%A' from `%B' being "
6272 "placed in section `%s'.\n",
6273 s, s->owner, os->name);
6274 }
6275 }
6276
6277 /* Run through the input files and ensure that every input section has
6278 somewhere to go. If one is found without a destination then create
6279 an input request and place it into the statement tree. */
6280
6281 static void
6282 lang_place_orphans (void)
6283 {
6284 LANG_FOR_EACH_INPUT_STATEMENT (file)
6285 {
6286 asection *s;
6287
6288 for (s = file->the_bfd->sections; s != NULL; s = s->next)
6289 {
6290 if (s->output_section == NULL)
6291 {
6292 /* This section of the file is not attached, root
6293 around for a sensible place for it to go. */
6294
6295 if (file->flags.just_syms)
6296 bfd_link_just_syms (file->the_bfd, s, &link_info);
6297 else if ((s->flags & SEC_EXCLUDE) != 0)
6298 s->output_section = bfd_abs_section_ptr;
6299 else if (strcmp (s->name, "COMMON") == 0)
6300 {
6301 /* This is a lonely common section which must have
6302 come from an archive. We attach to the section
6303 with the wildcard. */
6304 if (!bfd_link_relocatable (&link_info)
6305 || command_line.force_common_definition)
6306 {
6307 if (default_common_section == NULL)
6308 default_common_section
6309 = lang_output_section_statement_lookup (".bss", 0,
6310 TRUE);
6311 lang_add_section (&default_common_section->children, s,
6312 NULL, default_common_section);
6313 }
6314 }
6315 else
6316 ldlang_place_orphan (s);
6317 }
6318 }
6319 }
6320 }
6321
6322 void
6323 lang_set_flags (lang_memory_region_type *ptr, const char *flags, int invert)
6324 {
6325 flagword *ptr_flags;
6326
6327 ptr_flags = invert ? &ptr->not_flags : &ptr->flags;
6328
6329 while (*flags)
6330 {
6331 switch (*flags)
6332 {
6333 /* PR 17900: An exclamation mark in the attributes reverses
6334 the sense of any of the attributes that follow. */
6335 case '!':
6336 invert = !invert;
6337 ptr_flags = invert ? &ptr->not_flags : &ptr->flags;
6338 break;
6339
6340 case 'A': case 'a':
6341 *ptr_flags |= SEC_ALLOC;
6342 break;
6343
6344 case 'R': case 'r':
6345 *ptr_flags |= SEC_READONLY;
6346 break;
6347
6348 case 'W': case 'w':
6349 *ptr_flags |= SEC_DATA;
6350 break;
6351
6352 case 'X': case 'x':
6353 *ptr_flags |= SEC_CODE;
6354 break;
6355
6356 case 'L': case 'l':
6357 case 'I': case 'i':
6358 *ptr_flags |= SEC_LOAD;
6359 break;
6360
6361 default:
6362 einfo (_("%P%F: invalid character %c (%d) in flags\n"),
6363 *flags, *flags);
6364 break;
6365 }
6366 flags++;
6367 }
6368 }
6369
6370 /* Call a function on each input file. This function will be called
6371 on an archive, but not on the elements. */
6372
6373 void
6374 lang_for_each_input_file (void (*func) (lang_input_statement_type *))
6375 {
6376 lang_input_statement_type *f;
6377
6378 for (f = (lang_input_statement_type *) input_file_chain.head;
6379 f != NULL;
6380 f = (lang_input_statement_type *) f->next_real_file)
6381 func (f);
6382 }
6383
6384 /* Call a function on each file. The function will be called on all
6385 the elements of an archive which are included in the link, but will
6386 not be called on the archive file itself. */
6387
6388 void
6389 lang_for_each_file (void (*func) (lang_input_statement_type *))
6390 {
6391 LANG_FOR_EACH_INPUT_STATEMENT (f)
6392 {
6393 func (f);
6394 }
6395 }
6396
6397 void
6398 ldlang_add_file (lang_input_statement_type *entry)
6399 {
6400 lang_statement_append (&file_chain,
6401 (lang_statement_union_type *) entry,
6402 &entry->next);
6403
6404 /* The BFD linker needs to have a list of all input BFDs involved in
6405 a link. */
6406 ASSERT (entry->the_bfd->link.next == NULL);
6407 ASSERT (entry->the_bfd != link_info.output_bfd);
6408
6409 *link_info.input_bfds_tail = entry->the_bfd;
6410 link_info.input_bfds_tail = &entry->the_bfd->link.next;
6411 entry->the_bfd->usrdata = entry;
6412 bfd_set_gp_size (entry->the_bfd, g_switch_value);
6413
6414 /* Look through the sections and check for any which should not be
6415 included in the link. We need to do this now, so that we can
6416 notice when the backend linker tries to report multiple
6417 definition errors for symbols which are in sections we aren't
6418 going to link. FIXME: It might be better to entirely ignore
6419 symbols which are defined in sections which are going to be
6420 discarded. This would require modifying the backend linker for
6421 each backend which might set the SEC_LINK_ONCE flag. If we do
6422 this, we should probably handle SEC_EXCLUDE in the same way. */
6423
6424 bfd_map_over_sections (entry->the_bfd, section_already_linked, entry);
6425 }
6426
6427 void
6428 lang_add_output (const char *name, int from_script)
6429 {
6430 /* Make -o on command line override OUTPUT in script. */
6431 if (!had_output_filename || !from_script)
6432 {
6433 output_filename = name;
6434 had_output_filename = TRUE;
6435 }
6436 }
6437
6438 static int
6439 topower (int x)
6440 {
6441 unsigned int i = 1;
6442 int l;
6443
6444 if (x < 0)
6445 return -1;
6446
6447 for (l = 0; l < 32; l++)
6448 {
6449 if (i >= (unsigned int) x)
6450 return l;
6451 i <<= 1;
6452 }
6453
6454 return 0;
6455 }
6456
6457 lang_output_section_statement_type *
6458 lang_enter_output_section_statement (const char *output_section_statement_name,
6459 etree_type *address_exp,
6460 enum section_type sectype,
6461 etree_type *align,
6462 etree_type *subalign,
6463 etree_type *ebase,
6464 int constraint,
6465 int align_with_input)
6466 {
6467 lang_output_section_statement_type *os;
6468
6469 os = lang_output_section_statement_lookup (output_section_statement_name,
6470 constraint, TRUE);
6471 current_section = os;
6472
6473 if (os->addr_tree == NULL)
6474 {
6475 os->addr_tree = address_exp;
6476 }
6477 os->sectype = sectype;
6478 if (sectype != noload_section)
6479 os->flags = SEC_NO_FLAGS;
6480 else
6481 os->flags = SEC_NEVER_LOAD;
6482 os->block_value = 1;
6483
6484 /* Make next things chain into subchain of this. */
6485 push_stat_ptr (&os->children);
6486
6487 os->align_lma_with_input = align_with_input == ALIGN_WITH_INPUT;
6488 if (os->align_lma_with_input && align != NULL)
6489 einfo (_("%F%P:%S: error: align with input and explicit align specified\n"),
6490 NULL);
6491
6492 os->subsection_alignment =
6493 topower (exp_get_value_int (subalign, -1, "subsection alignment"));
6494 os->section_alignment =
6495 topower (exp_get_value_int (align, -1, "section alignment"));
6496
6497 os->load_base = ebase;
6498 return os;
6499 }
6500
6501 void
6502 lang_final (void)
6503 {
6504 lang_output_statement_type *new_stmt;
6505
6506 new_stmt = new_stat (lang_output_statement, stat_ptr);
6507 new_stmt->name = output_filename;
6508 }
6509
6510 /* Reset the current counters in the regions. */
6511
6512 void
6513 lang_reset_memory_regions (void)
6514 {
6515 lang_memory_region_type *p = lang_memory_region_list;
6516 asection *o;
6517 lang_output_section_statement_type *os;
6518
6519 for (p = lang_memory_region_list; p != NULL; p = p->next)
6520 {
6521 p->current = p->origin;
6522 p->last_os = NULL;
6523 }
6524
6525 for (os = &lang_output_section_statement.head->output_section_statement;
6526 os != NULL;
6527 os = os->next)
6528 {
6529 os->processed_vma = FALSE;
6530 os->processed_lma = FALSE;
6531 }
6532
6533 for (o = link_info.output_bfd->sections; o != NULL; o = o->next)
6534 {
6535 /* Save the last size for possible use by bfd_relax_section. */
6536 o->rawsize = o->size;
6537 o->size = 0;
6538 }
6539 }
6540
6541 /* Worker for lang_gc_sections_1. */
6542
6543 static void
6544 gc_section_callback (lang_wild_statement_type *ptr,
6545 struct wildcard_list *sec ATTRIBUTE_UNUSED,
6546 asection *section,
6547 struct flag_info *sflag_info ATTRIBUTE_UNUSED,
6548 lang_input_statement_type *file ATTRIBUTE_UNUSED,
6549 void *data ATTRIBUTE_UNUSED)
6550 {
6551 /* If the wild pattern was marked KEEP, the member sections
6552 should be as well. */
6553 if (ptr->keep_sections)
6554 section->flags |= SEC_KEEP;
6555 }
6556
6557 /* Iterate over sections marking them against GC. */
6558
6559 static void
6560 lang_gc_sections_1 (lang_statement_union_type *s)
6561 {
6562 for (; s != NULL; s = s->header.next)
6563 {
6564 switch (s->header.type)
6565 {
6566 case lang_wild_statement_enum:
6567 walk_wild (&s->wild_statement, gc_section_callback, NULL);
6568 break;
6569 case lang_constructors_statement_enum:
6570 lang_gc_sections_1 (constructor_list.head);
6571 break;
6572 case lang_output_section_statement_enum:
6573 lang_gc_sections_1 (s->output_section_statement.children.head);
6574 break;
6575 case lang_group_statement_enum:
6576 lang_gc_sections_1 (s->group_statement.children.head);
6577 break;
6578 default:
6579 break;
6580 }
6581 }
6582 }
6583
6584 static void
6585 lang_gc_sections (void)
6586 {
6587 /* Keep all sections so marked in the link script. */
6588 lang_gc_sections_1 (statement_list.head);
6589
6590 /* SEC_EXCLUDE is ignored when doing a relocatable link, except in
6591 the special case of debug info. (See bfd/stabs.c)
6592 Twiddle the flag here, to simplify later linker code. */
6593 if (bfd_link_relocatable (&link_info))
6594 {
6595 LANG_FOR_EACH_INPUT_STATEMENT (f)
6596 {
6597 asection *sec;
6598 #ifdef ENABLE_PLUGINS
6599 if (f->flags.claimed)
6600 continue;
6601 #endif
6602 for (sec = f->the_bfd->sections; sec != NULL; sec = sec->next)
6603 if ((sec->flags & SEC_DEBUGGING) == 0)
6604 sec->flags &= ~SEC_EXCLUDE;
6605 }
6606 }
6607
6608 if (link_info.gc_sections)
6609 bfd_gc_sections (link_info.output_bfd, &link_info);
6610 }
6611
6612 /* Worker for lang_find_relro_sections_1. */
6613
6614 static void
6615 find_relro_section_callback (lang_wild_statement_type *ptr ATTRIBUTE_UNUSED,
6616 struct wildcard_list *sec ATTRIBUTE_UNUSED,
6617 asection *section,
6618 struct flag_info *sflag_info ATTRIBUTE_UNUSED,
6619 lang_input_statement_type *file ATTRIBUTE_UNUSED,
6620 void *data)
6621 {
6622 /* Discarded, excluded and ignored sections effectively have zero
6623 size. */
6624 if (section->output_section != NULL
6625 && section->output_section->owner == link_info.output_bfd
6626 && (section->output_section->flags & SEC_EXCLUDE) == 0
6627 && !IGNORE_SECTION (section)
6628 && section->size != 0)
6629 {
6630 bfd_boolean *has_relro_section = (bfd_boolean *) data;
6631 *has_relro_section = TRUE;
6632 }
6633 }
6634
6635 /* Iterate over sections for relro sections. */
6636
6637 static void
6638 lang_find_relro_sections_1 (lang_statement_union_type *s,
6639 bfd_boolean *has_relro_section)
6640 {
6641 if (*has_relro_section)
6642 return;
6643
6644 for (; s != NULL; s = s->header.next)
6645 {
6646 if (s == expld.dataseg.relro_end_stat)
6647 break;
6648
6649 switch (s->header.type)
6650 {
6651 case lang_wild_statement_enum:
6652 walk_wild (&s->wild_statement,
6653 find_relro_section_callback,
6654 has_relro_section);
6655 break;
6656 case lang_constructors_statement_enum:
6657 lang_find_relro_sections_1 (constructor_list.head,
6658 has_relro_section);
6659 break;
6660 case lang_output_section_statement_enum:
6661 lang_find_relro_sections_1 (s->output_section_statement.children.head,
6662 has_relro_section);
6663 break;
6664 case lang_group_statement_enum:
6665 lang_find_relro_sections_1 (s->group_statement.children.head,
6666 has_relro_section);
6667 break;
6668 default:
6669 break;
6670 }
6671 }
6672 }
6673
6674 static void
6675 lang_find_relro_sections (void)
6676 {
6677 bfd_boolean has_relro_section = FALSE;
6678
6679 /* Check all sections in the link script. */
6680
6681 lang_find_relro_sections_1 (expld.dataseg.relro_start_stat,
6682 &has_relro_section);
6683
6684 if (!has_relro_section)
6685 link_info.relro = FALSE;
6686 }
6687
6688 /* Relax all sections until bfd_relax_section gives up. */
6689
6690 void
6691 lang_relax_sections (bfd_boolean need_layout)
6692 {
6693 if (RELAXATION_ENABLED)
6694 {
6695 /* We may need more than one relaxation pass. */
6696 int i = link_info.relax_pass;
6697
6698 /* The backend can use it to determine the current pass. */
6699 link_info.relax_pass = 0;
6700
6701 while (i--)
6702 {
6703 /* Keep relaxing until bfd_relax_section gives up. */
6704 bfd_boolean relax_again;
6705
6706 link_info.relax_trip = -1;
6707 do
6708 {
6709 link_info.relax_trip++;
6710
6711 /* Note: pe-dll.c does something like this also. If you find
6712 you need to change this code, you probably need to change
6713 pe-dll.c also. DJ */
6714
6715 /* Do all the assignments with our current guesses as to
6716 section sizes. */
6717 lang_do_assignments (lang_assigning_phase_enum);
6718
6719 /* We must do this after lang_do_assignments, because it uses
6720 size. */
6721 lang_reset_memory_regions ();
6722
6723 /* Perform another relax pass - this time we know where the
6724 globals are, so can make a better guess. */
6725 relax_again = FALSE;
6726 lang_size_sections (&relax_again, FALSE);
6727 }
6728 while (relax_again);
6729
6730 link_info.relax_pass++;
6731 }
6732 need_layout = TRUE;
6733 }
6734
6735 if (need_layout)
6736 {
6737 /* Final extra sizing to report errors. */
6738 lang_do_assignments (lang_assigning_phase_enum);
6739 lang_reset_memory_regions ();
6740 lang_size_sections (NULL, TRUE);
6741 }
6742 }
6743
6744 #ifdef ENABLE_PLUGINS
6745 /* Find the insert point for the plugin's replacement files. We
6746 place them after the first claimed real object file, or if the
6747 first claimed object is an archive member, after the last real
6748 object file immediately preceding the archive. In the event
6749 no objects have been claimed at all, we return the first dummy
6750 object file on the list as the insert point; that works, but
6751 the callee must be careful when relinking the file_chain as it
6752 is not actually on that chain, only the statement_list and the
6753 input_file list; in that case, the replacement files must be
6754 inserted at the head of the file_chain. */
6755
6756 static lang_input_statement_type *
6757 find_replacements_insert_point (void)
6758 {
6759 lang_input_statement_type *claim1, *lastobject;
6760 lastobject = &input_file_chain.head->input_statement;
6761 for (claim1 = &file_chain.head->input_statement;
6762 claim1 != NULL;
6763 claim1 = &claim1->next->input_statement)
6764 {
6765 if (claim1->flags.claimed)
6766 return claim1->flags.claim_archive ? lastobject : claim1;
6767 /* Update lastobject if this is a real object file. */
6768 if (claim1->the_bfd != NULL && claim1->the_bfd->my_archive == NULL)
6769 lastobject = claim1;
6770 }
6771 /* No files were claimed by the plugin. Choose the last object
6772 file found on the list (maybe the first, dummy entry) as the
6773 insert point. */
6774 return lastobject;
6775 }
6776
6777 /* Insert SRCLIST into DESTLIST after given element by chaining
6778 on FIELD as the next-pointer. (Counterintuitively does not need
6779 a pointer to the actual after-node itself, just its chain field.) */
6780
6781 static void
6782 lang_list_insert_after (lang_statement_list_type *destlist,
6783 lang_statement_list_type *srclist,
6784 lang_statement_union_type **field)
6785 {
6786 *(srclist->tail) = *field;
6787 *field = srclist->head;
6788 if (destlist->tail == field)
6789 destlist->tail = srclist->tail;
6790 }
6791
6792 /* Detach new nodes added to DESTLIST since the time ORIGLIST
6793 was taken as a copy of it and leave them in ORIGLIST. */
6794
6795 static void
6796 lang_list_remove_tail (lang_statement_list_type *destlist,
6797 lang_statement_list_type *origlist)
6798 {
6799 union lang_statement_union **savetail;
6800 /* Check that ORIGLIST really is an earlier state of DESTLIST. */
6801 ASSERT (origlist->head == destlist->head);
6802 savetail = origlist->tail;
6803 origlist->head = *(savetail);
6804 origlist->tail = destlist->tail;
6805 destlist->tail = savetail;
6806 *savetail = NULL;
6807 }
6808 #endif /* ENABLE_PLUGINS */
6809
6810 /* Add NAME to the list of garbage collection entry points. */
6811
6812 void
6813 lang_add_gc_name (const char *name)
6814 {
6815 struct bfd_sym_chain *sym;
6816
6817 if (name == NULL)
6818 return;
6819
6820 sym = (struct bfd_sym_chain *) stat_alloc (sizeof (*sym));
6821
6822 sym->next = link_info.gc_sym_list;
6823 sym->name = name;
6824 link_info.gc_sym_list = sym;
6825 }
6826
6827 /* Check relocations. */
6828
6829 static void
6830 lang_check_relocs (void)
6831 {
6832 if (link_info.check_relocs_after_open_input)
6833 {
6834 bfd *abfd;
6835
6836 for (abfd = link_info.input_bfds;
6837 abfd != (bfd *) NULL; abfd = abfd->link.next)
6838 if (!bfd_link_check_relocs (abfd, &link_info))
6839 {
6840 /* No object output, fail return. */
6841 config.make_executable = FALSE;
6842 /* Note: we do not abort the loop, but rather
6843 continue the scan in case there are other
6844 bad relocations to report. */
6845 }
6846 }
6847 }
6848
6849 void
6850 lang_process (void)
6851 {
6852 /* Finalize dynamic list. */
6853 if (link_info.dynamic_list)
6854 lang_finalize_version_expr_head (&link_info.dynamic_list->head);
6855
6856 current_target = default_target;
6857
6858 /* Open the output file. */
6859 lang_for_each_statement (ldlang_open_output);
6860 init_opb ();
6861
6862 ldemul_create_output_section_statements ();
6863
6864 /* Add to the hash table all undefineds on the command line. */
6865 lang_place_undefineds ();
6866
6867 if (!bfd_section_already_linked_table_init ())
6868 einfo (_("%P%F: Failed to create hash table\n"));
6869
6870 /* Create a bfd for each input file. */
6871 current_target = default_target;
6872 open_input_bfds (statement_list.head, OPEN_BFD_NORMAL);
6873
6874 #ifdef ENABLE_PLUGINS
6875 if (link_info.lto_plugin_active)
6876 {
6877 lang_statement_list_type added;
6878 lang_statement_list_type files, inputfiles;
6879
6880 /* Now all files are read, let the plugin(s) decide if there
6881 are any more to be added to the link before we call the
6882 emulation's after_open hook. We create a private list of
6883 input statements for this purpose, which we will eventually
6884 insert into the global statement list after the first claimed
6885 file. */
6886 added = *stat_ptr;
6887 /* We need to manipulate all three chains in synchrony. */
6888 files = file_chain;
6889 inputfiles = input_file_chain;
6890 if (plugin_call_all_symbols_read ())
6891 einfo (_("%P%F: %s: plugin reported error after all symbols read\n"),
6892 plugin_error_plugin ());
6893 /* Open any newly added files, updating the file chains. */
6894 open_input_bfds (*added.tail, OPEN_BFD_NORMAL);
6895 /* Restore the global list pointer now they have all been added. */
6896 lang_list_remove_tail (stat_ptr, &added);
6897 /* And detach the fresh ends of the file lists. */
6898 lang_list_remove_tail (&file_chain, &files);
6899 lang_list_remove_tail (&input_file_chain, &inputfiles);
6900 /* Were any new files added? */
6901 if (added.head != NULL)
6902 {
6903 /* If so, we will insert them into the statement list immediately
6904 after the first input file that was claimed by the plugin. */
6905 plugin_insert = find_replacements_insert_point ();
6906 /* If a plugin adds input files without having claimed any, we
6907 don't really have a good idea where to place them. Just putting
6908 them at the start or end of the list is liable to leave them
6909 outside the crtbegin...crtend range. */
6910 ASSERT (plugin_insert != NULL);
6911 /* Splice the new statement list into the old one. */
6912 lang_list_insert_after (stat_ptr, &added,
6913 &plugin_insert->header.next);
6914 /* Likewise for the file chains. */
6915 lang_list_insert_after (&input_file_chain, &inputfiles,
6916 &plugin_insert->next_real_file);
6917 /* We must be careful when relinking file_chain; we may need to
6918 insert the new files at the head of the list if the insert
6919 point chosen is the dummy first input file. */
6920 if (plugin_insert->filename)
6921 lang_list_insert_after (&file_chain, &files, &plugin_insert->next);
6922 else
6923 lang_list_insert_after (&file_chain, &files, &file_chain.head);
6924
6925 /* Rescan archives in case new undefined symbols have appeared. */
6926 open_input_bfds (statement_list.head, OPEN_BFD_RESCAN);
6927 }
6928 }
6929 #endif /* ENABLE_PLUGINS */
6930
6931 /* Make sure that nobody has tried to add a symbol to this list
6932 before now. */
6933 ASSERT (link_info.gc_sym_list == NULL);
6934
6935 link_info.gc_sym_list = &entry_symbol;
6936
6937 if (entry_symbol.name == NULL)
6938 {
6939 link_info.gc_sym_list = ldlang_undef_chain_list_head;
6940
6941 /* entry_symbol is normally initialied by a ENTRY definition in the
6942 linker script or the -e command line option. But if neither of
6943 these have been used, the target specific backend may still have
6944 provided an entry symbol via a call to lang_default_entry().
6945 Unfortunately this value will not be processed until lang_end()
6946 is called, long after this function has finished. So detect this
6947 case here and add the target's entry symbol to the list of starting
6948 points for garbage collection resolution. */
6949 lang_add_gc_name (entry_symbol_default);
6950 }
6951
6952 lang_add_gc_name (link_info.init_function);
6953 lang_add_gc_name (link_info.fini_function);
6954
6955 ldemul_after_open ();
6956 if (config.map_file != NULL)
6957 lang_print_asneeded ();
6958
6959 bfd_section_already_linked_table_free ();
6960
6961 /* Make sure that we're not mixing architectures. We call this
6962 after all the input files have been opened, but before we do any
6963 other processing, so that any operations merge_private_bfd_data
6964 does on the output file will be known during the rest of the
6965 link. */
6966 lang_check ();
6967
6968 /* Handle .exports instead of a version script if we're told to do so. */
6969 if (command_line.version_exports_section)
6970 lang_do_version_exports_section ();
6971
6972 /* Build all sets based on the information gathered from the input
6973 files. */
6974 ldctor_build_sets ();
6975
6976 /* PR 13683: We must rerun the assignments prior to running garbage
6977 collection in order to make sure that all symbol aliases are resolved. */
6978 lang_do_assignments (lang_mark_phase_enum);
6979
6980 lang_do_memory_regions();
6981 expld.phase = lang_first_phase_enum;
6982
6983 /* Size up the common data. */
6984 lang_common ();
6985
6986 /* Remove unreferenced sections if asked to. */
6987 lang_gc_sections ();
6988
6989 /* Check relocations. */
6990 lang_check_relocs ();
6991
6992 /* Update wild statements. */
6993 update_wild_statements (statement_list.head);
6994
6995 /* Run through the contours of the script and attach input sections
6996 to the correct output sections. */
6997 lang_statement_iteration++;
6998 map_input_to_output_sections (statement_list.head, NULL, NULL);
6999
7000 process_insert_statements ();
7001
7002 /* Find any sections not attached explicitly and handle them. */
7003 lang_place_orphans ();
7004
7005 if (!bfd_link_relocatable (&link_info))
7006 {
7007 asection *found;
7008
7009 /* Merge SEC_MERGE sections. This has to be done after GC of
7010 sections, so that GCed sections are not merged, but before
7011 assigning dynamic symbols, since removing whole input sections
7012 is hard then. */
7013 bfd_merge_sections (link_info.output_bfd, &link_info);
7014
7015 /* Look for a text section and set the readonly attribute in it. */
7016 found = bfd_get_section_by_name (link_info.output_bfd, ".text");
7017
7018 if (found != NULL)
7019 {
7020 if (config.text_read_only)
7021 found->flags |= SEC_READONLY;
7022 else
7023 found->flags &= ~SEC_READONLY;
7024 }
7025 }
7026
7027 /* Do anything special before sizing sections. This is where ELF
7028 and other back-ends size dynamic sections. */
7029 ldemul_before_allocation ();
7030
7031 /* We must record the program headers before we try to fix the
7032 section positions, since they will affect SIZEOF_HEADERS. */
7033 lang_record_phdrs ();
7034
7035 /* Check relro sections. */
7036 if (link_info.relro && !bfd_link_relocatable (&link_info))
7037 lang_find_relro_sections ();
7038
7039 /* Size up the sections. */
7040 lang_size_sections (NULL, !RELAXATION_ENABLED);
7041
7042 /* See if anything special should be done now we know how big
7043 everything is. This is where relaxation is done. */
7044 ldemul_after_allocation ();
7045
7046 /* Fix any .startof. or .sizeof. symbols. */
7047 lang_set_startof ();
7048
7049 /* Do all the assignments, now that we know the final resting places
7050 of all the symbols. */
7051 lang_do_assignments (lang_final_phase_enum);
7052
7053 ldemul_finish ();
7054
7055 /* Convert absolute symbols to section relative. */
7056 ldexp_finalize_syms ();
7057
7058 /* Make sure that the section addresses make sense. */
7059 if (command_line.check_section_addresses)
7060 lang_check_section_addresses ();
7061
7062 /* Check any required symbols are known. */
7063 ldlang_check_require_defined_symbols ();
7064
7065 lang_end ();
7066 }
7067
7068 /* EXPORTED TO YACC */
7069
7070 void
7071 lang_add_wild (struct wildcard_spec *filespec,
7072 struct wildcard_list *section_list,
7073 bfd_boolean keep_sections)
7074 {
7075 struct wildcard_list *curr, *next;
7076 lang_wild_statement_type *new_stmt;
7077
7078 /* Reverse the list as the parser puts it back to front. */
7079 for (curr = section_list, section_list = NULL;
7080 curr != NULL;
7081 section_list = curr, curr = next)
7082 {
7083 if (curr->spec.name != NULL && strcmp (curr->spec.name, "COMMON") == 0)
7084 placed_commons = TRUE;
7085
7086 next = curr->next;
7087 curr->next = section_list;
7088 }
7089
7090 if (filespec != NULL && filespec->name != NULL)
7091 {
7092 if (strcmp (filespec->name, "*") == 0)
7093 filespec->name = NULL;
7094 else if (!wildcardp (filespec->name))
7095 lang_has_input_file = TRUE;
7096 }
7097
7098 new_stmt = new_stat (lang_wild_statement, stat_ptr);
7099 new_stmt->filename = NULL;
7100 new_stmt->filenames_sorted = FALSE;
7101 new_stmt->section_flag_list = NULL;
7102 new_stmt->exclude_name_list = NULL;
7103 if (filespec != NULL)
7104 {
7105 new_stmt->filename = filespec->name;
7106 new_stmt->filenames_sorted = filespec->sorted == by_name;
7107 new_stmt->section_flag_list = filespec->section_flag_list;
7108 new_stmt->exclude_name_list = filespec->exclude_name_list;
7109 }
7110 new_stmt->section_list = section_list;
7111 new_stmt->keep_sections = keep_sections;
7112 lang_list_init (&new_stmt->children);
7113 analyze_walk_wild_section_handler (new_stmt);
7114 }
7115
7116 void
7117 lang_section_start (const char *name, etree_type *address,
7118 const segment_type *segment)
7119 {
7120 lang_address_statement_type *ad;
7121
7122 ad = new_stat (lang_address_statement, stat_ptr);
7123 ad->section_name = name;
7124 ad->address = address;
7125 ad->segment = segment;
7126 }
7127
7128 /* Set the start symbol to NAME. CMDLINE is nonzero if this is called
7129 because of a -e argument on the command line, or zero if this is
7130 called by ENTRY in a linker script. Command line arguments take
7131 precedence. */
7132
7133 void
7134 lang_add_entry (const char *name, bfd_boolean cmdline)
7135 {
7136 if (entry_symbol.name == NULL
7137 || cmdline
7138 || !entry_from_cmdline)
7139 {
7140 entry_symbol.name = name;
7141 entry_from_cmdline = cmdline;
7142 }
7143 }
7144
7145 /* Set the default start symbol to NAME. .em files should use this,
7146 not lang_add_entry, to override the use of "start" if neither the
7147 linker script nor the command line specifies an entry point. NAME
7148 must be permanently allocated. */
7149 void
7150 lang_default_entry (const char *name)
7151 {
7152 entry_symbol_default = name;
7153 }
7154
7155 void
7156 lang_add_target (const char *name)
7157 {
7158 lang_target_statement_type *new_stmt;
7159
7160 new_stmt = new_stat (lang_target_statement, stat_ptr);
7161 new_stmt->target = name;
7162 }
7163
7164 void
7165 lang_add_map (const char *name)
7166 {
7167 while (*name)
7168 {
7169 switch (*name)
7170 {
7171 case 'F':
7172 map_option_f = TRUE;
7173 break;
7174 }
7175 name++;
7176 }
7177 }
7178
7179 void
7180 lang_add_fill (fill_type *fill)
7181 {
7182 lang_fill_statement_type *new_stmt;
7183
7184 new_stmt = new_stat (lang_fill_statement, stat_ptr);
7185 new_stmt->fill = fill;
7186 }
7187
7188 void
7189 lang_add_data (int type, union etree_union *exp)
7190 {
7191 lang_data_statement_type *new_stmt;
7192
7193 new_stmt = new_stat (lang_data_statement, stat_ptr);
7194 new_stmt->exp = exp;
7195 new_stmt->type = type;
7196 }
7197
7198 /* Create a new reloc statement. RELOC is the BFD relocation type to
7199 generate. HOWTO is the corresponding howto structure (we could
7200 look this up, but the caller has already done so). SECTION is the
7201 section to generate a reloc against, or NAME is the name of the
7202 symbol to generate a reloc against. Exactly one of SECTION and
7203 NAME must be NULL. ADDEND is an expression for the addend. */
7204
7205 void
7206 lang_add_reloc (bfd_reloc_code_real_type reloc,
7207 reloc_howto_type *howto,
7208 asection *section,
7209 const char *name,
7210 union etree_union *addend)
7211 {
7212 lang_reloc_statement_type *p = new_stat (lang_reloc_statement, stat_ptr);
7213
7214 p->reloc = reloc;
7215 p->howto = howto;
7216 p->section = section;
7217 p->name = name;
7218 p->addend_exp = addend;
7219
7220 p->addend_value = 0;
7221 p->output_section = NULL;
7222 p->output_offset = 0;
7223 }
7224
7225 lang_assignment_statement_type *
7226 lang_add_assignment (etree_type *exp)
7227 {
7228 lang_assignment_statement_type *new_stmt;
7229
7230 new_stmt = new_stat (lang_assignment_statement, stat_ptr);
7231 new_stmt->exp = exp;
7232 return new_stmt;
7233 }
7234
7235 void
7236 lang_add_attribute (enum statement_enum attribute)
7237 {
7238 new_statement (attribute, sizeof (lang_statement_header_type), stat_ptr);
7239 }
7240
7241 void
7242 lang_startup (const char *name)
7243 {
7244 if (first_file->filename != NULL)
7245 {
7246 einfo (_("%P%F: multiple STARTUP files\n"));
7247 }
7248 first_file->filename = name;
7249 first_file->local_sym_name = name;
7250 first_file->flags.real = TRUE;
7251 }
7252
7253 void
7254 lang_float (bfd_boolean maybe)
7255 {
7256 lang_float_flag = maybe;
7257 }
7258
7259
7260 /* Work out the load- and run-time regions from a script statement, and
7261 store them in *LMA_REGION and *REGION respectively.
7262
7263 MEMSPEC is the name of the run-time region, or the value of
7264 DEFAULT_MEMORY_REGION if the statement didn't specify one.
7265 LMA_MEMSPEC is the name of the load-time region, or null if the
7266 statement didn't specify one.HAVE_LMA_P is TRUE if the statement
7267 had an explicit load address.
7268
7269 It is an error to specify both a load region and a load address. */
7270
7271 static void
7272 lang_get_regions (lang_memory_region_type **region,
7273 lang_memory_region_type **lma_region,
7274 const char *memspec,
7275 const char *lma_memspec,
7276 bfd_boolean have_lma,
7277 bfd_boolean have_vma)
7278 {
7279 *lma_region = lang_memory_region_lookup (lma_memspec, FALSE);
7280
7281 /* If no runtime region or VMA has been specified, but the load region
7282 has been specified, then use the load region for the runtime region
7283 as well. */
7284 if (lma_memspec != NULL
7285 && !have_vma
7286 && strcmp (memspec, DEFAULT_MEMORY_REGION) == 0)
7287 *region = *lma_region;
7288 else
7289 *region = lang_memory_region_lookup (memspec, FALSE);
7290
7291 if (have_lma && lma_memspec != 0)
7292 einfo (_("%X%P:%S: section has both a load address and a load region\n"),
7293 NULL);
7294 }
7295
7296 void
7297 lang_leave_output_section_statement (fill_type *fill, const char *memspec,
7298 lang_output_section_phdr_list *phdrs,
7299 const char *lma_memspec)
7300 {
7301 lang_get_regions (&current_section->region,
7302 &current_section->lma_region,
7303 memspec, lma_memspec,
7304 current_section->load_base != NULL,
7305 current_section->addr_tree != NULL);
7306
7307 /* If this section has no load region or base, but uses the same
7308 region as the previous section, then propagate the previous
7309 section's load region. */
7310
7311 if (current_section->lma_region == NULL
7312 && current_section->load_base == NULL
7313 && current_section->addr_tree == NULL
7314 && current_section->region == current_section->prev->region)
7315 current_section->lma_region = current_section->prev->lma_region;
7316
7317 current_section->fill = fill;
7318 current_section->phdrs = phdrs;
7319 pop_stat_ptr ();
7320 }
7321
7322 void
7323 lang_statement_append (lang_statement_list_type *list,
7324 lang_statement_union_type *element,
7325 lang_statement_union_type **field)
7326 {
7327 *(list->tail) = element;
7328 list->tail = field;
7329 }
7330
7331 /* Set the output format type. -oformat overrides scripts. */
7332
7333 void
7334 lang_add_output_format (const char *format,
7335 const char *big,
7336 const char *little,
7337 int from_script)
7338 {
7339 if (output_target == NULL || !from_script)
7340 {
7341 if (command_line.endian == ENDIAN_BIG
7342 && big != NULL)
7343 format = big;
7344 else if (command_line.endian == ENDIAN_LITTLE
7345 && little != NULL)
7346 format = little;
7347
7348 output_target = format;
7349 }
7350 }
7351
7352 void
7353 lang_add_insert (const char *where, int is_before)
7354 {
7355 lang_insert_statement_type *new_stmt;
7356
7357 new_stmt = new_stat (lang_insert_statement, stat_ptr);
7358 new_stmt->where = where;
7359 new_stmt->is_before = is_before;
7360 saved_script_handle = previous_script_handle;
7361 }
7362
7363 /* Enter a group. This creates a new lang_group_statement, and sets
7364 stat_ptr to build new statements within the group. */
7365
7366 void
7367 lang_enter_group (void)
7368 {
7369 lang_group_statement_type *g;
7370
7371 g = new_stat (lang_group_statement, stat_ptr);
7372 lang_list_init (&g->children);
7373 push_stat_ptr (&g->children);
7374 }
7375
7376 /* Leave a group. This just resets stat_ptr to start writing to the
7377 regular list of statements again. Note that this will not work if
7378 groups can occur inside anything else which can adjust stat_ptr,
7379 but currently they can't. */
7380
7381 void
7382 lang_leave_group (void)
7383 {
7384 pop_stat_ptr ();
7385 }
7386
7387 /* Add a new program header. This is called for each entry in a PHDRS
7388 command in a linker script. */
7389
7390 void
7391 lang_new_phdr (const char *name,
7392 etree_type *type,
7393 bfd_boolean filehdr,
7394 bfd_boolean phdrs,
7395 etree_type *at,
7396 etree_type *flags)
7397 {
7398 struct lang_phdr *n, **pp;
7399 bfd_boolean hdrs;
7400
7401 n = (struct lang_phdr *) stat_alloc (sizeof (struct lang_phdr));
7402 n->next = NULL;
7403 n->name = name;
7404 n->type = exp_get_value_int (type, 0, "program header type");
7405 n->filehdr = filehdr;
7406 n->phdrs = phdrs;
7407 n->at = at;
7408 n->flags = flags;
7409
7410 hdrs = n->type == 1 && (phdrs || filehdr);
7411
7412 for (pp = &lang_phdr_list; *pp != NULL; pp = &(*pp)->next)
7413 if (hdrs
7414 && (*pp)->type == 1
7415 && !((*pp)->filehdr || (*pp)->phdrs))
7416 {
7417 einfo (_("%X%P:%S: PHDRS and FILEHDR are not supported"
7418 " when prior PT_LOAD headers lack them\n"), NULL);
7419 hdrs = FALSE;
7420 }
7421
7422 *pp = n;
7423 }
7424
7425 /* Record the program header information in the output BFD. FIXME: We
7426 should not be calling an ELF specific function here. */
7427
7428 static void
7429 lang_record_phdrs (void)
7430 {
7431 unsigned int alc;
7432 asection **secs;
7433 lang_output_section_phdr_list *last;
7434 struct lang_phdr *l;
7435 lang_output_section_statement_type *os;
7436
7437 alc = 10;
7438 secs = (asection **) xmalloc (alc * sizeof (asection *));
7439 last = NULL;
7440
7441 for (l = lang_phdr_list; l != NULL; l = l->next)
7442 {
7443 unsigned int c;
7444 flagword flags;
7445 bfd_vma at;
7446
7447 c = 0;
7448 for (os = &lang_output_section_statement.head->output_section_statement;
7449 os != NULL;
7450 os = os->next)
7451 {
7452 lang_output_section_phdr_list *pl;
7453
7454 if (os->constraint < 0)
7455 continue;
7456
7457 pl = os->phdrs;
7458 if (pl != NULL)
7459 last = pl;
7460 else
7461 {
7462 if (os->sectype == noload_section
7463 || os->bfd_section == NULL
7464 || (os->bfd_section->flags & SEC_ALLOC) == 0)
7465 continue;
7466
7467 /* Don't add orphans to PT_INTERP header. */
7468 if (l->type == 3)
7469 continue;
7470
7471 if (last == NULL)
7472 {
7473 lang_output_section_statement_type *tmp_os;
7474
7475 /* If we have not run across a section with a program
7476 header assigned to it yet, then scan forwards to find
7477 one. This prevents inconsistencies in the linker's
7478 behaviour when a script has specified just a single
7479 header and there are sections in that script which are
7480 not assigned to it, and which occur before the first
7481 use of that header. See here for more details:
7482 http://sourceware.org/ml/binutils/2007-02/msg00291.html */
7483 for (tmp_os = os; tmp_os; tmp_os = tmp_os->next)
7484 if (tmp_os->phdrs)
7485 {
7486 last = tmp_os->phdrs;
7487 break;
7488 }
7489 if (last == NULL)
7490 einfo (_("%F%P: no sections assigned to phdrs\n"));
7491 }
7492 pl = last;
7493 }
7494
7495 if (os->bfd_section == NULL)
7496 continue;
7497
7498 for (; pl != NULL; pl = pl->next)
7499 {
7500 if (strcmp (pl->name, l->name) == 0)
7501 {
7502 if (c >= alc)
7503 {
7504 alc *= 2;
7505 secs = (asection **) xrealloc (secs,
7506 alc * sizeof (asection *));
7507 }
7508 secs[c] = os->bfd_section;
7509 ++c;
7510 pl->used = TRUE;
7511 }
7512 }
7513 }
7514
7515 if (l->flags == NULL)
7516 flags = 0;
7517 else
7518 flags = exp_get_vma (l->flags, 0, "phdr flags");
7519
7520 if (l->at == NULL)
7521 at = 0;
7522 else
7523 at = exp_get_vma (l->at, 0, "phdr load address");
7524
7525 if (!bfd_record_phdr (link_info.output_bfd, l->type,
7526 l->flags != NULL, flags, l->at != NULL,
7527 at, l->filehdr, l->phdrs, c, secs))
7528 einfo (_("%F%P: bfd_record_phdr failed: %E\n"));
7529 }
7530
7531 free (secs);
7532
7533 /* Make sure all the phdr assignments succeeded. */
7534 for (os = &lang_output_section_statement.head->output_section_statement;
7535 os != NULL;
7536 os = os->next)
7537 {
7538 lang_output_section_phdr_list *pl;
7539
7540 if (os->constraint < 0
7541 || os->bfd_section == NULL)
7542 continue;
7543
7544 for (pl = os->phdrs;
7545 pl != NULL;
7546 pl = pl->next)
7547 if (!pl->used && strcmp (pl->name, "NONE") != 0)
7548 einfo (_("%X%P: section `%s' assigned to non-existent phdr `%s'\n"),
7549 os->name, pl->name);
7550 }
7551 }
7552
7553 /* Record a list of sections which may not be cross referenced. */
7554
7555 void
7556 lang_add_nocrossref (lang_nocrossref_type *l)
7557 {
7558 struct lang_nocrossrefs *n;
7559
7560 n = (struct lang_nocrossrefs *) xmalloc (sizeof *n);
7561 n->next = nocrossref_list;
7562 n->list = l;
7563 n->onlyfirst = FALSE;
7564 nocrossref_list = n;
7565
7566 /* Set notice_all so that we get informed about all symbols. */
7567 link_info.notice_all = TRUE;
7568 }
7569
7570 /* Record a section that cannot be referenced from a list of sections. */
7571
7572 void
7573 lang_add_nocrossref_to (lang_nocrossref_type *l)
7574 {
7575 lang_add_nocrossref (l);
7576 nocrossref_list->onlyfirst = TRUE;
7577 }
7578 \f
7579 /* Overlay handling. We handle overlays with some static variables. */
7580
7581 /* The overlay virtual address. */
7582 static etree_type *overlay_vma;
7583 /* And subsection alignment. */
7584 static etree_type *overlay_subalign;
7585
7586 /* An expression for the maximum section size seen so far. */
7587 static etree_type *overlay_max;
7588
7589 /* A list of all the sections in this overlay. */
7590
7591 struct overlay_list {
7592 struct overlay_list *next;
7593 lang_output_section_statement_type *os;
7594 };
7595
7596 static struct overlay_list *overlay_list;
7597
7598 /* Start handling an overlay. */
7599
7600 void
7601 lang_enter_overlay (etree_type *vma_expr, etree_type *subalign)
7602 {
7603 /* The grammar should prevent nested overlays from occurring. */
7604 ASSERT (overlay_vma == NULL
7605 && overlay_subalign == NULL
7606 && overlay_max == NULL);
7607
7608 overlay_vma = vma_expr;
7609 overlay_subalign = subalign;
7610 }
7611
7612 /* Start a section in an overlay. We handle this by calling
7613 lang_enter_output_section_statement with the correct VMA.
7614 lang_leave_overlay sets up the LMA and memory regions. */
7615
7616 void
7617 lang_enter_overlay_section (const char *name)
7618 {
7619 struct overlay_list *n;
7620 etree_type *size;
7621
7622 lang_enter_output_section_statement (name, overlay_vma, overlay_section,
7623 0, overlay_subalign, 0, 0, 0);
7624
7625 /* If this is the first section, then base the VMA of future
7626 sections on this one. This will work correctly even if `.' is
7627 used in the addresses. */
7628 if (overlay_list == NULL)
7629 overlay_vma = exp_nameop (ADDR, name);
7630
7631 /* Remember the section. */
7632 n = (struct overlay_list *) xmalloc (sizeof *n);
7633 n->os = current_section;
7634 n->next = overlay_list;
7635 overlay_list = n;
7636
7637 size = exp_nameop (SIZEOF, name);
7638
7639 /* Arrange to work out the maximum section end address. */
7640 if (overlay_max == NULL)
7641 overlay_max = size;
7642 else
7643 overlay_max = exp_binop (MAX_K, overlay_max, size);
7644 }
7645
7646 /* Finish a section in an overlay. There isn't any special to do
7647 here. */
7648
7649 void
7650 lang_leave_overlay_section (fill_type *fill,
7651 lang_output_section_phdr_list *phdrs)
7652 {
7653 const char *name;
7654 char *clean, *s2;
7655 const char *s1;
7656 char *buf;
7657
7658 name = current_section->name;
7659
7660 /* For now, assume that DEFAULT_MEMORY_REGION is the run-time memory
7661 region and that no load-time region has been specified. It doesn't
7662 really matter what we say here, since lang_leave_overlay will
7663 override it. */
7664 lang_leave_output_section_statement (fill, DEFAULT_MEMORY_REGION, phdrs, 0);
7665
7666 /* Define the magic symbols. */
7667
7668 clean = (char *) xmalloc (strlen (name) + 1);
7669 s2 = clean;
7670 for (s1 = name; *s1 != '\0'; s1++)
7671 if (ISALNUM (*s1) || *s1 == '_')
7672 *s2++ = *s1;
7673 *s2 = '\0';
7674
7675 buf = (char *) xmalloc (strlen (clean) + sizeof "__load_start_");
7676 sprintf (buf, "__load_start_%s", clean);
7677 lang_add_assignment (exp_provide (buf,
7678 exp_nameop (LOADADDR, name),
7679 FALSE));
7680
7681 buf = (char *) xmalloc (strlen (clean) + sizeof "__load_stop_");
7682 sprintf (buf, "__load_stop_%s", clean);
7683 lang_add_assignment (exp_provide (buf,
7684 exp_binop ('+',
7685 exp_nameop (LOADADDR, name),
7686 exp_nameop (SIZEOF, name)),
7687 FALSE));
7688
7689 free (clean);
7690 }
7691
7692 /* Finish an overlay. If there are any overlay wide settings, this
7693 looks through all the sections in the overlay and sets them. */
7694
7695 void
7696 lang_leave_overlay (etree_type *lma_expr,
7697 int nocrossrefs,
7698 fill_type *fill,
7699 const char *memspec,
7700 lang_output_section_phdr_list *phdrs,
7701 const char *lma_memspec)
7702 {
7703 lang_memory_region_type *region;
7704 lang_memory_region_type *lma_region;
7705 struct overlay_list *l;
7706 lang_nocrossref_type *nocrossref;
7707
7708 lang_get_regions (&region, &lma_region,
7709 memspec, lma_memspec,
7710 lma_expr != NULL, FALSE);
7711
7712 nocrossref = NULL;
7713
7714 /* After setting the size of the last section, set '.' to end of the
7715 overlay region. */
7716 if (overlay_list != NULL)
7717 {
7718 overlay_list->os->update_dot = 1;
7719 overlay_list->os->update_dot_tree
7720 = exp_assign (".", exp_binop ('+', overlay_vma, overlay_max), FALSE);
7721 }
7722
7723 l = overlay_list;
7724 while (l != NULL)
7725 {
7726 struct overlay_list *next;
7727
7728 if (fill != NULL && l->os->fill == NULL)
7729 l->os->fill = fill;
7730
7731 l->os->region = region;
7732 l->os->lma_region = lma_region;
7733
7734 /* The first section has the load address specified in the
7735 OVERLAY statement. The rest are worked out from that.
7736 The base address is not needed (and should be null) if
7737 an LMA region was specified. */
7738 if (l->next == 0)
7739 {
7740 l->os->load_base = lma_expr;
7741 l->os->sectype = normal_section;
7742 }
7743 if (phdrs != NULL && l->os->phdrs == NULL)
7744 l->os->phdrs = phdrs;
7745
7746 if (nocrossrefs)
7747 {
7748 lang_nocrossref_type *nc;
7749
7750 nc = (lang_nocrossref_type *) xmalloc (sizeof *nc);
7751 nc->name = l->os->name;
7752 nc->next = nocrossref;
7753 nocrossref = nc;
7754 }
7755
7756 next = l->next;
7757 free (l);
7758 l = next;
7759 }
7760
7761 if (nocrossref != NULL)
7762 lang_add_nocrossref (nocrossref);
7763
7764 overlay_vma = NULL;
7765 overlay_list = NULL;
7766 overlay_max = NULL;
7767 }
7768 \f
7769 /* Version handling. This is only useful for ELF. */
7770
7771 /* If PREV is NULL, return first version pattern matching particular symbol.
7772 If PREV is non-NULL, return first version pattern matching particular
7773 symbol after PREV (previously returned by lang_vers_match). */
7774
7775 static struct bfd_elf_version_expr *
7776 lang_vers_match (struct bfd_elf_version_expr_head *head,
7777 struct bfd_elf_version_expr *prev,
7778 const char *sym)
7779 {
7780 const char *c_sym;
7781 const char *cxx_sym = sym;
7782 const char *java_sym = sym;
7783 struct bfd_elf_version_expr *expr = NULL;
7784 enum demangling_styles curr_style;
7785
7786 curr_style = CURRENT_DEMANGLING_STYLE;
7787 cplus_demangle_set_style (no_demangling);
7788 c_sym = bfd_demangle (link_info.output_bfd, sym, DMGL_NO_OPTS);
7789 if (!c_sym)
7790 c_sym = sym;
7791 cplus_demangle_set_style (curr_style);
7792
7793 if (head->mask & BFD_ELF_VERSION_CXX_TYPE)
7794 {
7795 cxx_sym = bfd_demangle (link_info.output_bfd, sym,
7796 DMGL_PARAMS | DMGL_ANSI);
7797 if (!cxx_sym)
7798 cxx_sym = sym;
7799 }
7800 if (head->mask & BFD_ELF_VERSION_JAVA_TYPE)
7801 {
7802 java_sym = bfd_demangle (link_info.output_bfd, sym, DMGL_JAVA);
7803 if (!java_sym)
7804 java_sym = sym;
7805 }
7806
7807 if (head->htab && (prev == NULL || prev->literal))
7808 {
7809 struct bfd_elf_version_expr e;
7810
7811 switch (prev ? prev->mask : 0)
7812 {
7813 case 0:
7814 if (head->mask & BFD_ELF_VERSION_C_TYPE)
7815 {
7816 e.pattern = c_sym;
7817 expr = (struct bfd_elf_version_expr *)
7818 htab_find ((htab_t) head->htab, &e);
7819 while (expr && strcmp (expr->pattern, c_sym) == 0)
7820 if (expr->mask == BFD_ELF_VERSION_C_TYPE)
7821 goto out_ret;
7822 else
7823 expr = expr->next;
7824 }
7825 /* Fallthrough */
7826 case BFD_ELF_VERSION_C_TYPE:
7827 if (head->mask & BFD_ELF_VERSION_CXX_TYPE)
7828 {
7829 e.pattern = cxx_sym;
7830 expr = (struct bfd_elf_version_expr *)
7831 htab_find ((htab_t) head->htab, &e);
7832 while (expr && strcmp (expr->pattern, cxx_sym) == 0)
7833 if (expr->mask == BFD_ELF_VERSION_CXX_TYPE)
7834 goto out_ret;
7835 else
7836 expr = expr->next;
7837 }
7838 /* Fallthrough */
7839 case BFD_ELF_VERSION_CXX_TYPE:
7840 if (head->mask & BFD_ELF_VERSION_JAVA_TYPE)
7841 {
7842 e.pattern = java_sym;
7843 expr = (struct bfd_elf_version_expr *)
7844 htab_find ((htab_t) head->htab, &e);
7845 while (expr && strcmp (expr->pattern, java_sym) == 0)
7846 if (expr->mask == BFD_ELF_VERSION_JAVA_TYPE)
7847 goto out_ret;
7848 else
7849 expr = expr->next;
7850 }
7851 /* Fallthrough */
7852 default:
7853 break;
7854 }
7855 }
7856
7857 /* Finally, try the wildcards. */
7858 if (prev == NULL || prev->literal)
7859 expr = head->remaining;
7860 else
7861 expr = prev->next;
7862 for (; expr; expr = expr->next)
7863 {
7864 const char *s;
7865
7866 if (!expr->pattern)
7867 continue;
7868
7869 if (expr->pattern[0] == '*' && expr->pattern[1] == '\0')
7870 break;
7871
7872 if (expr->mask == BFD_ELF_VERSION_JAVA_TYPE)
7873 s = java_sym;
7874 else if (expr->mask == BFD_ELF_VERSION_CXX_TYPE)
7875 s = cxx_sym;
7876 else
7877 s = c_sym;
7878 if (fnmatch (expr->pattern, s, 0) == 0)
7879 break;
7880 }
7881
7882 out_ret:
7883 if (c_sym != sym)
7884 free ((char *) c_sym);
7885 if (cxx_sym != sym)
7886 free ((char *) cxx_sym);
7887 if (java_sym != sym)
7888 free ((char *) java_sym);
7889 return expr;
7890 }
7891
7892 /* Return NULL if the PATTERN argument is a glob pattern, otherwise,
7893 return a pointer to the symbol name with any backslash quotes removed. */
7894
7895 static const char *
7896 realsymbol (const char *pattern)
7897 {
7898 const char *p;
7899 bfd_boolean changed = FALSE, backslash = FALSE;
7900 char *s, *symbol = (char *) xmalloc (strlen (pattern) + 1);
7901
7902 for (p = pattern, s = symbol; *p != '\0'; ++p)
7903 {
7904 /* It is a glob pattern only if there is no preceding
7905 backslash. */
7906 if (backslash)
7907 {
7908 /* Remove the preceding backslash. */
7909 *(s - 1) = *p;
7910 backslash = FALSE;
7911 changed = TRUE;
7912 }
7913 else
7914 {
7915 if (*p == '?' || *p == '*' || *p == '[')
7916 {
7917 free (symbol);
7918 return NULL;
7919 }
7920
7921 *s++ = *p;
7922 backslash = *p == '\\';
7923 }
7924 }
7925
7926 if (changed)
7927 {
7928 *s = '\0';
7929 return symbol;
7930 }
7931 else
7932 {
7933 free (symbol);
7934 return pattern;
7935 }
7936 }
7937
7938 /* This is called for each variable name or match expression. NEW_NAME is
7939 the name of the symbol to match, or, if LITERAL_P is FALSE, a glob
7940 pattern to be matched against symbol names. */
7941
7942 struct bfd_elf_version_expr *
7943 lang_new_vers_pattern (struct bfd_elf_version_expr *orig,
7944 const char *new_name,
7945 const char *lang,
7946 bfd_boolean literal_p)
7947 {
7948 struct bfd_elf_version_expr *ret;
7949
7950 ret = (struct bfd_elf_version_expr *) xmalloc (sizeof *ret);
7951 ret->next = orig;
7952 ret->symver = 0;
7953 ret->script = 0;
7954 ret->literal = TRUE;
7955 ret->pattern = literal_p ? new_name : realsymbol (new_name);
7956 if (ret->pattern == NULL)
7957 {
7958 ret->pattern = new_name;
7959 ret->literal = FALSE;
7960 }
7961
7962 if (lang == NULL || strcasecmp (lang, "C") == 0)
7963 ret->mask = BFD_ELF_VERSION_C_TYPE;
7964 else if (strcasecmp (lang, "C++") == 0)
7965 ret->mask = BFD_ELF_VERSION_CXX_TYPE;
7966 else if (strcasecmp (lang, "Java") == 0)
7967 ret->mask = BFD_ELF_VERSION_JAVA_TYPE;
7968 else
7969 {
7970 einfo (_("%X%P: unknown language `%s' in version information\n"),
7971 lang);
7972 ret->mask = BFD_ELF_VERSION_C_TYPE;
7973 }
7974
7975 return ldemul_new_vers_pattern (ret);
7976 }
7977
7978 /* This is called for each set of variable names and match
7979 expressions. */
7980
7981 struct bfd_elf_version_tree *
7982 lang_new_vers_node (struct bfd_elf_version_expr *globals,
7983 struct bfd_elf_version_expr *locals)
7984 {
7985 struct bfd_elf_version_tree *ret;
7986
7987 ret = (struct bfd_elf_version_tree *) xcalloc (1, sizeof *ret);
7988 ret->globals.list = globals;
7989 ret->locals.list = locals;
7990 ret->match = lang_vers_match;
7991 ret->name_indx = (unsigned int) -1;
7992 return ret;
7993 }
7994
7995 /* This static variable keeps track of version indices. */
7996
7997 static int version_index;
7998
7999 static hashval_t
8000 version_expr_head_hash (const void *p)
8001 {
8002 const struct bfd_elf_version_expr *e =
8003 (const struct bfd_elf_version_expr *) p;
8004
8005 return htab_hash_string (e->pattern);
8006 }
8007
8008 static int
8009 version_expr_head_eq (const void *p1, const void *p2)
8010 {
8011 const struct bfd_elf_version_expr *e1 =
8012 (const struct bfd_elf_version_expr *) p1;
8013 const struct bfd_elf_version_expr *e2 =
8014 (const struct bfd_elf_version_expr *) p2;
8015
8016 return strcmp (e1->pattern, e2->pattern) == 0;
8017 }
8018
8019 static void
8020 lang_finalize_version_expr_head (struct bfd_elf_version_expr_head *head)
8021 {
8022 size_t count = 0;
8023 struct bfd_elf_version_expr *e, *next;
8024 struct bfd_elf_version_expr **list_loc, **remaining_loc;
8025
8026 for (e = head->list; e; e = e->next)
8027 {
8028 if (e->literal)
8029 count++;
8030 head->mask |= e->mask;
8031 }
8032
8033 if (count)
8034 {
8035 head->htab = htab_create (count * 2, version_expr_head_hash,
8036 version_expr_head_eq, NULL);
8037 list_loc = &head->list;
8038 remaining_loc = &head->remaining;
8039 for (e = head->list; e; e = next)
8040 {
8041 next = e->next;
8042 if (!e->literal)
8043 {
8044 *remaining_loc = e;
8045 remaining_loc = &e->next;
8046 }
8047 else
8048 {
8049 void **loc = htab_find_slot ((htab_t) head->htab, e, INSERT);
8050
8051 if (*loc)
8052 {
8053 struct bfd_elf_version_expr *e1, *last;
8054
8055 e1 = (struct bfd_elf_version_expr *) *loc;
8056 last = NULL;
8057 do
8058 {
8059 if (e1->mask == e->mask)
8060 {
8061 last = NULL;
8062 break;
8063 }
8064 last = e1;
8065 e1 = e1->next;
8066 }
8067 while (e1 && strcmp (e1->pattern, e->pattern) == 0);
8068
8069 if (last == NULL)
8070 {
8071 /* This is a duplicate. */
8072 /* FIXME: Memory leak. Sometimes pattern is not
8073 xmalloced alone, but in larger chunk of memory. */
8074 /* free (e->pattern); */
8075 free (e);
8076 }
8077 else
8078 {
8079 e->next = last->next;
8080 last->next = e;
8081 }
8082 }
8083 else
8084 {
8085 *loc = e;
8086 *list_loc = e;
8087 list_loc = &e->next;
8088 }
8089 }
8090 }
8091 *remaining_loc = NULL;
8092 *list_loc = head->remaining;
8093 }
8094 else
8095 head->remaining = head->list;
8096 }
8097
8098 /* This is called when we know the name and dependencies of the
8099 version. */
8100
8101 void
8102 lang_register_vers_node (const char *name,
8103 struct bfd_elf_version_tree *version,
8104 struct bfd_elf_version_deps *deps)
8105 {
8106 struct bfd_elf_version_tree *t, **pp;
8107 struct bfd_elf_version_expr *e1;
8108
8109 if (name == NULL)
8110 name = "";
8111
8112 if (link_info.version_info != NULL
8113 && (name[0] == '\0' || link_info.version_info->name[0] == '\0'))
8114 {
8115 einfo (_("%X%P: anonymous version tag cannot be combined"
8116 " with other version tags\n"));
8117 free (version);
8118 return;
8119 }
8120
8121 /* Make sure this node has a unique name. */
8122 for (t = link_info.version_info; t != NULL; t = t->next)
8123 if (strcmp (t->name, name) == 0)
8124 einfo (_("%X%P: duplicate version tag `%s'\n"), name);
8125
8126 lang_finalize_version_expr_head (&version->globals);
8127 lang_finalize_version_expr_head (&version->locals);
8128
8129 /* Check the global and local match names, and make sure there
8130 aren't any duplicates. */
8131
8132 for (e1 = version->globals.list; e1 != NULL; e1 = e1->next)
8133 {
8134 for (t = link_info.version_info; t != NULL; t = t->next)
8135 {
8136 struct bfd_elf_version_expr *e2;
8137
8138 if (t->locals.htab && e1->literal)
8139 {
8140 e2 = (struct bfd_elf_version_expr *)
8141 htab_find ((htab_t) t->locals.htab, e1);
8142 while (e2 && strcmp (e1->pattern, e2->pattern) == 0)
8143 {
8144 if (e1->mask == e2->mask)
8145 einfo (_("%X%P: duplicate expression `%s'"
8146 " in version information\n"), e1->pattern);
8147 e2 = e2->next;
8148 }
8149 }
8150 else if (!e1->literal)
8151 for (e2 = t->locals.remaining; e2 != NULL; e2 = e2->next)
8152 if (strcmp (e1->pattern, e2->pattern) == 0
8153 && e1->mask == e2->mask)
8154 einfo (_("%X%P: duplicate expression `%s'"
8155 " in version information\n"), e1->pattern);
8156 }
8157 }
8158
8159 for (e1 = version->locals.list; e1 != NULL; e1 = e1->next)
8160 {
8161 for (t = link_info.version_info; t != NULL; t = t->next)
8162 {
8163 struct bfd_elf_version_expr *e2;
8164
8165 if (t->globals.htab && e1->literal)
8166 {
8167 e2 = (struct bfd_elf_version_expr *)
8168 htab_find ((htab_t) t->globals.htab, e1);
8169 while (e2 && strcmp (e1->pattern, e2->pattern) == 0)
8170 {
8171 if (e1->mask == e2->mask)
8172 einfo (_("%X%P: duplicate expression `%s'"
8173 " in version information\n"),
8174 e1->pattern);
8175 e2 = e2->next;
8176 }
8177 }
8178 else if (!e1->literal)
8179 for (e2 = t->globals.remaining; e2 != NULL; e2 = e2->next)
8180 if (strcmp (e1->pattern, e2->pattern) == 0
8181 && e1->mask == e2->mask)
8182 einfo (_("%X%P: duplicate expression `%s'"
8183 " in version information\n"), e1->pattern);
8184 }
8185 }
8186
8187 version->deps = deps;
8188 version->name = name;
8189 if (name[0] != '\0')
8190 {
8191 ++version_index;
8192 version->vernum = version_index;
8193 }
8194 else
8195 version->vernum = 0;
8196
8197 for (pp = &link_info.version_info; *pp != NULL; pp = &(*pp)->next)
8198 ;
8199 *pp = version;
8200 }
8201
8202 /* This is called when we see a version dependency. */
8203
8204 struct bfd_elf_version_deps *
8205 lang_add_vers_depend (struct bfd_elf_version_deps *list, const char *name)
8206 {
8207 struct bfd_elf_version_deps *ret;
8208 struct bfd_elf_version_tree *t;
8209
8210 ret = (struct bfd_elf_version_deps *) xmalloc (sizeof *ret);
8211 ret->next = list;
8212
8213 for (t = link_info.version_info; t != NULL; t = t->next)
8214 {
8215 if (strcmp (t->name, name) == 0)
8216 {
8217 ret->version_needed = t;
8218 return ret;
8219 }
8220 }
8221
8222 einfo (_("%X%P: unable to find version dependency `%s'\n"), name);
8223
8224 ret->version_needed = NULL;
8225 return ret;
8226 }
8227
8228 static void
8229 lang_do_version_exports_section (void)
8230 {
8231 struct bfd_elf_version_expr *greg = NULL, *lreg;
8232
8233 LANG_FOR_EACH_INPUT_STATEMENT (is)
8234 {
8235 asection *sec = bfd_get_section_by_name (is->the_bfd, ".exports");
8236 char *contents, *p;
8237 bfd_size_type len;
8238
8239 if (sec == NULL)
8240 continue;
8241
8242 len = sec->size;
8243 contents = (char *) xmalloc (len);
8244 if (!bfd_get_section_contents (is->the_bfd, sec, contents, 0, len))
8245 einfo (_("%X%P: unable to read .exports section contents\n"), sec);
8246
8247 p = contents;
8248 while (p < contents + len)
8249 {
8250 greg = lang_new_vers_pattern (greg, p, NULL, FALSE);
8251 p = strchr (p, '\0') + 1;
8252 }
8253
8254 /* Do not free the contents, as we used them creating the regex. */
8255
8256 /* Do not include this section in the link. */
8257 sec->flags |= SEC_EXCLUDE | SEC_KEEP;
8258 }
8259
8260 lreg = lang_new_vers_pattern (NULL, "*", NULL, FALSE);
8261 lang_register_vers_node (command_line.version_exports_section,
8262 lang_new_vers_node (greg, lreg), NULL);
8263 }
8264
8265 /* Evaluate LENGTH and ORIGIN parts of MEMORY spec */
8266
8267 static void
8268 lang_do_memory_regions (void)
8269 {
8270 lang_memory_region_type *r = lang_memory_region_list;
8271
8272 for (; r != NULL; r = r->next)
8273 {
8274 if (r->origin_exp)
8275 {
8276 exp_fold_tree_no_dot (r->origin_exp);
8277 if (expld.result.valid_p)
8278 {
8279 r->origin = expld.result.value;
8280 r->current = r->origin;
8281 }
8282 else
8283 einfo (_("%F%P: invalid origin for memory region %s\n"),
8284 r->name_list.name);
8285 }
8286 if (r->length_exp)
8287 {
8288 exp_fold_tree_no_dot (r->length_exp);
8289 if (expld.result.valid_p)
8290 r->length = expld.result.value;
8291 else
8292 einfo (_("%F%P: invalid length for memory region %s\n"),
8293 r->name_list.name);
8294 }
8295 }
8296 }
8297
8298 void
8299 lang_add_unique (const char *name)
8300 {
8301 struct unique_sections *ent;
8302
8303 for (ent = unique_section_list; ent; ent = ent->next)
8304 if (strcmp (ent->name, name) == 0)
8305 return;
8306
8307 ent = (struct unique_sections *) xmalloc (sizeof *ent);
8308 ent->name = xstrdup (name);
8309 ent->next = unique_section_list;
8310 unique_section_list = ent;
8311 }
8312
8313 /* Append the list of dynamic symbols to the existing one. */
8314
8315 void
8316 lang_append_dynamic_list (struct bfd_elf_version_expr *dynamic)
8317 {
8318 if (link_info.dynamic_list)
8319 {
8320 struct bfd_elf_version_expr *tail;
8321 for (tail = dynamic; tail->next != NULL; tail = tail->next)
8322 ;
8323 tail->next = link_info.dynamic_list->head.list;
8324 link_info.dynamic_list->head.list = dynamic;
8325 }
8326 else
8327 {
8328 struct bfd_elf_dynamic_list *d;
8329
8330 d = (struct bfd_elf_dynamic_list *) xcalloc (1, sizeof *d);
8331 d->head.list = dynamic;
8332 d->match = lang_vers_match;
8333 link_info.dynamic_list = d;
8334 }
8335 }
8336
8337 /* Append the list of C++ typeinfo dynamic symbols to the existing
8338 one. */
8339
8340 void
8341 lang_append_dynamic_list_cpp_typeinfo (void)
8342 {
8343 const char *symbols[] =
8344 {
8345 "typeinfo name for*",
8346 "typeinfo for*"
8347 };
8348 struct bfd_elf_version_expr *dynamic = NULL;
8349 unsigned int i;
8350
8351 for (i = 0; i < ARRAY_SIZE (symbols); i++)
8352 dynamic = lang_new_vers_pattern (dynamic, symbols [i], "C++",
8353 FALSE);
8354
8355 lang_append_dynamic_list (dynamic);
8356 }
8357
8358 /* Append the list of C++ operator new and delete dynamic symbols to the
8359 existing one. */
8360
8361 void
8362 lang_append_dynamic_list_cpp_new (void)
8363 {
8364 const char *symbols[] =
8365 {
8366 "operator new*",
8367 "operator delete*"
8368 };
8369 struct bfd_elf_version_expr *dynamic = NULL;
8370 unsigned int i;
8371
8372 for (i = 0; i < ARRAY_SIZE (symbols); i++)
8373 dynamic = lang_new_vers_pattern (dynamic, symbols [i], "C++",
8374 FALSE);
8375
8376 lang_append_dynamic_list (dynamic);
8377 }
8378
8379 /* Scan a space and/or comma separated string of features. */
8380
8381 void
8382 lang_ld_feature (char *str)
8383 {
8384 char *p, *q;
8385
8386 p = str;
8387 while (*p)
8388 {
8389 char sep;
8390 while (*p == ',' || ISSPACE (*p))
8391 ++p;
8392 if (!*p)
8393 break;
8394 q = p + 1;
8395 while (*q && *q != ',' && !ISSPACE (*q))
8396 ++q;
8397 sep = *q;
8398 *q = 0;
8399 if (strcasecmp (p, "SANE_EXPR") == 0)
8400 config.sane_expr = TRUE;
8401 else
8402 einfo (_("%X%P: unknown feature `%s'\n"), p);
8403 *q = sep;
8404 p = q;
8405 }
8406 }
8407
8408 /* Pretty print memory amount. */
8409
8410 static void
8411 lang_print_memory_size (bfd_vma sz)
8412 {
8413 if ((sz & 0x3fffffff) == 0)
8414 printf ("%10" BFD_VMA_FMT "u GB", sz >> 30);
8415 else if ((sz & 0xfffff) == 0)
8416 printf ("%10" BFD_VMA_FMT "u MB", sz >> 20);
8417 else if ((sz & 0x3ff) == 0)
8418 printf ("%10" BFD_VMA_FMT "u KB", sz >> 10);
8419 else
8420 printf (" %10" BFD_VMA_FMT "u B", sz);
8421 }
8422
8423 /* Implement --print-memory-usage: disply per region memory usage. */
8424
8425 void
8426 lang_print_memory_usage (void)
8427 {
8428 lang_memory_region_type *r;
8429
8430 printf ("Memory region Used Size Region Size %%age Used\n");
8431 for (r = lang_memory_region_list; r->next != NULL; r = r->next)
8432 {
8433 bfd_vma used_length = r->current - r->origin;
8434 double percent;
8435
8436 printf ("%16s: ",r->name_list.name);
8437 lang_print_memory_size (used_length);
8438 lang_print_memory_size ((bfd_vma) r->length);
8439
8440 percent = used_length * 100.0 / r->length;
8441
8442 printf (" %6.2f%%\n", percent);
8443 }
8444 }
This page took 0.21538 seconds and 4 git commands to generate.