struct mi_interp: Remove unused fields
[deliverable/binutils-gdb.git] / ld / ldlang.c
1 /* Linker command language support.
2 Copyright (C) 1991-2017 Free Software Foundation, Inc.
3
4 This file is part of the GNU Binutils.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include "bfd.h"
23 #include "libiberty.h"
24 #include "filenames.h"
25 #include "safe-ctype.h"
26 #include "obstack.h"
27 #include "bfdlink.h"
28
29 #include "ld.h"
30 #include "ldmain.h"
31 #include "ldexp.h"
32 #include "ldlang.h"
33 #include <ldgram.h>
34 #include "ldlex.h"
35 #include "ldmisc.h"
36 #include "ldctor.h"
37 #include "ldfile.h"
38 #include "ldemul.h"
39 #include "fnmatch.h"
40 #include "demangle.h"
41 #include "hashtab.h"
42 #include "elf-bfd.h"
43 #ifdef ENABLE_PLUGINS
44 #include "plugin.h"
45 #endif /* ENABLE_PLUGINS */
46
47 #ifndef offsetof
48 #define offsetof(TYPE, MEMBER) ((size_t) & (((TYPE*) 0)->MEMBER))
49 #endif
50
51 /* Convert between addresses in bytes and sizes in octets.
52 For currently supported targets, octets_per_byte is always a power
53 of two, so we can use shifts. */
54 #define TO_ADDR(X) ((X) >> opb_shift)
55 #define TO_SIZE(X) ((X) << opb_shift)
56
57 /* Local variables. */
58 static struct obstack stat_obstack;
59 static struct obstack map_obstack;
60
61 #define obstack_chunk_alloc xmalloc
62 #define obstack_chunk_free free
63 static const char *entry_symbol_default = "start";
64 static bfd_boolean placed_commons = FALSE;
65 static bfd_boolean map_head_is_link_order = FALSE;
66 static lang_output_section_statement_type *default_common_section;
67 static bfd_boolean map_option_f;
68 static bfd_vma print_dot;
69 static lang_input_statement_type *first_file;
70 static const char *current_target;
71 static lang_statement_list_type statement_list;
72 static lang_statement_list_type *stat_save[10];
73 static lang_statement_list_type **stat_save_ptr = &stat_save[0];
74 static struct unique_sections *unique_section_list;
75 static struct asneeded_minfo *asneeded_list_head;
76 static unsigned int opb_shift = 0;
77
78 /* Forward declarations. */
79 static void exp_init_os (etree_type *);
80 static lang_input_statement_type *lookup_name (const char *);
81 static void insert_undefined (const char *);
82 static bfd_boolean sort_def_symbol (struct bfd_link_hash_entry *, void *);
83 static void print_statement (lang_statement_union_type *,
84 lang_output_section_statement_type *);
85 static void print_statement_list (lang_statement_union_type *,
86 lang_output_section_statement_type *);
87 static void print_statements (void);
88 static void print_input_section (asection *, bfd_boolean);
89 static bfd_boolean lang_one_common (struct bfd_link_hash_entry *, void *);
90 static void lang_record_phdrs (void);
91 static void lang_do_version_exports_section (void);
92 static void lang_finalize_version_expr_head
93 (struct bfd_elf_version_expr_head *);
94 static void lang_do_memory_regions (void);
95
96 /* Exported variables. */
97 const char *output_target;
98 lang_output_section_statement_type *abs_output_section;
99 lang_statement_list_type lang_output_section_statement;
100 lang_statement_list_type *stat_ptr = &statement_list;
101 lang_statement_list_type file_chain = { NULL, NULL };
102 lang_statement_list_type input_file_chain;
103 struct bfd_sym_chain entry_symbol = { NULL, NULL };
104 const char *entry_section = ".text";
105 struct lang_input_statement_flags input_flags;
106 bfd_boolean entry_from_cmdline;
107 bfd_boolean undef_from_cmdline;
108 bfd_boolean lang_has_input_file = FALSE;
109 bfd_boolean had_output_filename = FALSE;
110 bfd_boolean lang_float_flag = FALSE;
111 bfd_boolean delete_output_file_on_failure = FALSE;
112 struct lang_phdr *lang_phdr_list;
113 struct lang_nocrossrefs *nocrossref_list;
114 struct asneeded_minfo **asneeded_list_tail;
115
116 /* Functions that traverse the linker script and might evaluate
117 DEFINED() need to increment this at the start of the traversal. */
118 int lang_statement_iteration = 0;
119
120 /* Return TRUE if the PATTERN argument is a wildcard pattern.
121 Although backslashes are treated specially if a pattern contains
122 wildcards, we do not consider the mere presence of a backslash to
123 be enough to cause the pattern to be treated as a wildcard.
124 That lets us handle DOS filenames more naturally. */
125 #define wildcardp(pattern) (strpbrk ((pattern), "?*[") != NULL)
126
127 #define new_stat(x, y) \
128 (x##_type *) new_statement (x##_enum, sizeof (x##_type), y)
129
130 #define outside_section_address(q) \
131 ((q)->output_offset + (q)->output_section->vma)
132
133 #define outside_symbol_address(q) \
134 ((q)->value + outside_section_address (q->section))
135
136 #define SECTION_NAME_MAP_LENGTH (16)
137
138 void *
139 stat_alloc (size_t size)
140 {
141 return obstack_alloc (&stat_obstack, size);
142 }
143
144 static int
145 name_match (const char *pattern, const char *name)
146 {
147 if (wildcardp (pattern))
148 return fnmatch (pattern, name, 0);
149 return strcmp (pattern, name);
150 }
151
152 /* If PATTERN is of the form archive:file, return a pointer to the
153 separator. If not, return NULL. */
154
155 static char *
156 archive_path (const char *pattern)
157 {
158 char *p = NULL;
159
160 if (link_info.path_separator == 0)
161 return p;
162
163 p = strchr (pattern, link_info.path_separator);
164 #ifdef HAVE_DOS_BASED_FILE_SYSTEM
165 if (p == NULL || link_info.path_separator != ':')
166 return p;
167
168 /* Assume a match on the second char is part of drive specifier,
169 as in "c:\silly.dos". */
170 if (p == pattern + 1 && ISALPHA (*pattern))
171 p = strchr (p + 1, link_info.path_separator);
172 #endif
173 return p;
174 }
175
176 /* Given that FILE_SPEC results in a non-NULL SEP result from archive_path,
177 return whether F matches FILE_SPEC. */
178
179 static bfd_boolean
180 input_statement_is_archive_path (const char *file_spec, char *sep,
181 lang_input_statement_type *f)
182 {
183 bfd_boolean match = FALSE;
184
185 if ((*(sep + 1) == 0
186 || name_match (sep + 1, f->filename) == 0)
187 && ((sep != file_spec)
188 == (f->the_bfd != NULL && f->the_bfd->my_archive != NULL)))
189 {
190 match = TRUE;
191
192 if (sep != file_spec)
193 {
194 const char *aname = f->the_bfd->my_archive->filename;
195 *sep = 0;
196 match = name_match (file_spec, aname) == 0;
197 *sep = link_info.path_separator;
198 }
199 }
200 return match;
201 }
202
203 static bfd_boolean
204 unique_section_p (const asection *sec,
205 const lang_output_section_statement_type *os)
206 {
207 struct unique_sections *unam;
208 const char *secnam;
209
210 if (bfd_link_relocatable (&link_info)
211 && sec->owner != NULL
212 && bfd_is_group_section (sec->owner, sec))
213 return !(os != NULL
214 && strcmp (os->name, DISCARD_SECTION_NAME) == 0);
215
216 secnam = sec->name;
217 for (unam = unique_section_list; unam; unam = unam->next)
218 if (name_match (unam->name, secnam) == 0)
219 return TRUE;
220
221 return FALSE;
222 }
223
224 /* Generic traversal routines for finding matching sections. */
225
226 /* Return true if FILE matches a pattern in EXCLUDE_LIST, otherwise return
227 false. */
228
229 static bfd_boolean
230 walk_wild_file_in_exclude_list (struct name_list *exclude_list,
231 lang_input_statement_type *file)
232 {
233 struct name_list *list_tmp;
234
235 for (list_tmp = exclude_list;
236 list_tmp;
237 list_tmp = list_tmp->next)
238 {
239 char *p = archive_path (list_tmp->name);
240
241 if (p != NULL)
242 {
243 if (input_statement_is_archive_path (list_tmp->name, p, file))
244 return TRUE;
245 }
246
247 else if (name_match (list_tmp->name, file->filename) == 0)
248 return TRUE;
249
250 /* FIXME: Perhaps remove the following at some stage? Matching
251 unadorned archives like this was never documented and has
252 been superceded by the archive:path syntax. */
253 else if (file->the_bfd != NULL
254 && file->the_bfd->my_archive != NULL
255 && name_match (list_tmp->name,
256 file->the_bfd->my_archive->filename) == 0)
257 return TRUE;
258 }
259
260 return FALSE;
261 }
262
263 /* Try processing a section against a wildcard. This just calls
264 the callback unless the filename exclusion list is present
265 and excludes the file. It's hardly ever present so this
266 function is very fast. */
267
268 static void
269 walk_wild_consider_section (lang_wild_statement_type *ptr,
270 lang_input_statement_type *file,
271 asection *s,
272 struct wildcard_list *sec,
273 callback_t callback,
274 void *data)
275 {
276 /* Don't process sections from files which were excluded. */
277 if (walk_wild_file_in_exclude_list (sec->spec.exclude_name_list, file))
278 return;
279
280 (*callback) (ptr, sec, s, ptr->section_flag_list, file, data);
281 }
282
283 /* Lowest common denominator routine that can handle everything correctly,
284 but slowly. */
285
286 static void
287 walk_wild_section_general (lang_wild_statement_type *ptr,
288 lang_input_statement_type *file,
289 callback_t callback,
290 void *data)
291 {
292 asection *s;
293 struct wildcard_list *sec;
294
295 for (s = file->the_bfd->sections; s != NULL; s = s->next)
296 {
297 sec = ptr->section_list;
298 if (sec == NULL)
299 (*callback) (ptr, sec, s, ptr->section_flag_list, file, data);
300
301 while (sec != NULL)
302 {
303 bfd_boolean skip = FALSE;
304
305 if (sec->spec.name != NULL)
306 {
307 const char *sname = bfd_get_section_name (file->the_bfd, s);
308
309 skip = name_match (sec->spec.name, sname) != 0;
310 }
311
312 if (!skip)
313 walk_wild_consider_section (ptr, file, s, sec, callback, data);
314
315 sec = sec->next;
316 }
317 }
318 }
319
320 /* Routines to find a single section given its name. If there's more
321 than one section with that name, we report that. */
322
323 typedef struct
324 {
325 asection *found_section;
326 bfd_boolean multiple_sections_found;
327 } section_iterator_callback_data;
328
329 static bfd_boolean
330 section_iterator_callback (bfd *abfd ATTRIBUTE_UNUSED, asection *s, void *data)
331 {
332 section_iterator_callback_data *d = (section_iterator_callback_data *) data;
333
334 if (d->found_section != NULL)
335 {
336 d->multiple_sections_found = TRUE;
337 return TRUE;
338 }
339
340 d->found_section = s;
341 return FALSE;
342 }
343
344 static asection *
345 find_section (lang_input_statement_type *file,
346 struct wildcard_list *sec,
347 bfd_boolean *multiple_sections_found)
348 {
349 section_iterator_callback_data cb_data = { NULL, FALSE };
350
351 bfd_get_section_by_name_if (file->the_bfd, sec->spec.name,
352 section_iterator_callback, &cb_data);
353 *multiple_sections_found = cb_data.multiple_sections_found;
354 return cb_data.found_section;
355 }
356
357 /* Code for handling simple wildcards without going through fnmatch,
358 which can be expensive because of charset translations etc. */
359
360 /* A simple wild is a literal string followed by a single '*',
361 where the literal part is at least 4 characters long. */
362
363 static bfd_boolean
364 is_simple_wild (const char *name)
365 {
366 size_t len = strcspn (name, "*?[");
367 return len >= 4 && name[len] == '*' && name[len + 1] == '\0';
368 }
369
370 static bfd_boolean
371 match_simple_wild (const char *pattern, const char *name)
372 {
373 /* The first four characters of the pattern are guaranteed valid
374 non-wildcard characters. So we can go faster. */
375 if (pattern[0] != name[0] || pattern[1] != name[1]
376 || pattern[2] != name[2] || pattern[3] != name[3])
377 return FALSE;
378
379 pattern += 4;
380 name += 4;
381 while (*pattern != '*')
382 if (*name++ != *pattern++)
383 return FALSE;
384
385 return TRUE;
386 }
387
388 /* Return the numerical value of the init_priority attribute from
389 section name NAME. */
390
391 static unsigned long
392 get_init_priority (const char *name)
393 {
394 char *end;
395 unsigned long init_priority;
396
397 /* GCC uses the following section names for the init_priority
398 attribute with numerical values 101 and 65535 inclusive. A
399 lower value means a higher priority.
400
401 1: .init_array.NNNN/.fini_array.NNNN: Where NNNN is the
402 decimal numerical value of the init_priority attribute.
403 The order of execution in .init_array is forward and
404 .fini_array is backward.
405 2: .ctors.NNNN/.dtors.NNNN: Where NNNN is 65535 minus the
406 decimal numerical value of the init_priority attribute.
407 The order of execution in .ctors is backward and .dtors
408 is forward.
409 */
410 if (strncmp (name, ".init_array.", 12) == 0
411 || strncmp (name, ".fini_array.", 12) == 0)
412 {
413 init_priority = strtoul (name + 12, &end, 10);
414 return *end ? 0 : init_priority;
415 }
416 else if (strncmp (name, ".ctors.", 7) == 0
417 || strncmp (name, ".dtors.", 7) == 0)
418 {
419 init_priority = strtoul (name + 7, &end, 10);
420 return *end ? 0 : 65535 - init_priority;
421 }
422
423 return 0;
424 }
425
426 /* Compare sections ASEC and BSEC according to SORT. */
427
428 static int
429 compare_section (sort_type sort, asection *asec, asection *bsec)
430 {
431 int ret;
432 unsigned long ainit_priority, binit_priority;
433
434 switch (sort)
435 {
436 default:
437 abort ();
438
439 case by_init_priority:
440 ainit_priority
441 = get_init_priority (bfd_get_section_name (asec->owner, asec));
442 binit_priority
443 = get_init_priority (bfd_get_section_name (bsec->owner, bsec));
444 if (ainit_priority == 0 || binit_priority == 0)
445 goto sort_by_name;
446 ret = ainit_priority - binit_priority;
447 if (ret)
448 break;
449 else
450 goto sort_by_name;
451
452 case by_alignment_name:
453 ret = (bfd_section_alignment (bsec->owner, bsec)
454 - bfd_section_alignment (asec->owner, asec));
455 if (ret)
456 break;
457 /* Fall through. */
458
459 case by_name:
460 sort_by_name:
461 ret = strcmp (bfd_get_section_name (asec->owner, asec),
462 bfd_get_section_name (bsec->owner, bsec));
463 break;
464
465 case by_name_alignment:
466 ret = strcmp (bfd_get_section_name (asec->owner, asec),
467 bfd_get_section_name (bsec->owner, bsec));
468 if (ret)
469 break;
470 /* Fall through. */
471
472 case by_alignment:
473 ret = (bfd_section_alignment (bsec->owner, bsec)
474 - bfd_section_alignment (asec->owner, asec));
475 break;
476 }
477
478 return ret;
479 }
480
481 /* Build a Binary Search Tree to sort sections, unlike insertion sort
482 used in wild_sort(). BST is considerably faster if the number of
483 of sections are large. */
484
485 static lang_section_bst_type **
486 wild_sort_fast (lang_wild_statement_type *wild,
487 struct wildcard_list *sec,
488 lang_input_statement_type *file ATTRIBUTE_UNUSED,
489 asection *section)
490 {
491 lang_section_bst_type **tree;
492
493 tree = &wild->tree;
494 if (!wild->filenames_sorted
495 && (sec == NULL || sec->spec.sorted == none))
496 {
497 /* Append at the right end of tree. */
498 while (*tree)
499 tree = &((*tree)->right);
500 return tree;
501 }
502
503 while (*tree)
504 {
505 /* Find the correct node to append this section. */
506 if (compare_section (sec->spec.sorted, section, (*tree)->section) < 0)
507 tree = &((*tree)->left);
508 else
509 tree = &((*tree)->right);
510 }
511
512 return tree;
513 }
514
515 /* Use wild_sort_fast to build a BST to sort sections. */
516
517 static void
518 output_section_callback_fast (lang_wild_statement_type *ptr,
519 struct wildcard_list *sec,
520 asection *section,
521 struct flag_info *sflag_list ATTRIBUTE_UNUSED,
522 lang_input_statement_type *file,
523 void *output)
524 {
525 lang_section_bst_type *node;
526 lang_section_bst_type **tree;
527 lang_output_section_statement_type *os;
528
529 os = (lang_output_section_statement_type *) output;
530
531 if (unique_section_p (section, os))
532 return;
533
534 node = (lang_section_bst_type *) xmalloc (sizeof (lang_section_bst_type));
535 node->left = 0;
536 node->right = 0;
537 node->section = section;
538
539 tree = wild_sort_fast (ptr, sec, file, section);
540 if (tree != NULL)
541 *tree = node;
542 }
543
544 /* Convert a sorted sections' BST back to list form. */
545
546 static void
547 output_section_callback_tree_to_list (lang_wild_statement_type *ptr,
548 lang_section_bst_type *tree,
549 void *output)
550 {
551 if (tree->left)
552 output_section_callback_tree_to_list (ptr, tree->left, output);
553
554 lang_add_section (&ptr->children, tree->section, NULL,
555 (lang_output_section_statement_type *) output);
556
557 if (tree->right)
558 output_section_callback_tree_to_list (ptr, tree->right, output);
559
560 free (tree);
561 }
562
563 /* Specialized, optimized routines for handling different kinds of
564 wildcards */
565
566 static void
567 walk_wild_section_specs1_wild0 (lang_wild_statement_type *ptr,
568 lang_input_statement_type *file,
569 callback_t callback,
570 void *data)
571 {
572 /* We can just do a hash lookup for the section with the right name.
573 But if that lookup discovers more than one section with the name
574 (should be rare), we fall back to the general algorithm because
575 we would otherwise have to sort the sections to make sure they
576 get processed in the bfd's order. */
577 bfd_boolean multiple_sections_found;
578 struct wildcard_list *sec0 = ptr->handler_data[0];
579 asection *s0 = find_section (file, sec0, &multiple_sections_found);
580
581 if (multiple_sections_found)
582 walk_wild_section_general (ptr, file, callback, data);
583 else if (s0)
584 walk_wild_consider_section (ptr, file, s0, sec0, callback, data);
585 }
586
587 static void
588 walk_wild_section_specs1_wild1 (lang_wild_statement_type *ptr,
589 lang_input_statement_type *file,
590 callback_t callback,
591 void *data)
592 {
593 asection *s;
594 struct wildcard_list *wildsec0 = ptr->handler_data[0];
595
596 for (s = file->the_bfd->sections; s != NULL; s = s->next)
597 {
598 const char *sname = bfd_get_section_name (file->the_bfd, s);
599 bfd_boolean skip = !match_simple_wild (wildsec0->spec.name, sname);
600
601 if (!skip)
602 walk_wild_consider_section (ptr, file, s, wildsec0, callback, data);
603 }
604 }
605
606 static void
607 walk_wild_section_specs2_wild1 (lang_wild_statement_type *ptr,
608 lang_input_statement_type *file,
609 callback_t callback,
610 void *data)
611 {
612 asection *s;
613 struct wildcard_list *sec0 = ptr->handler_data[0];
614 struct wildcard_list *wildsec1 = ptr->handler_data[1];
615 bfd_boolean multiple_sections_found;
616 asection *s0 = find_section (file, sec0, &multiple_sections_found);
617
618 if (multiple_sections_found)
619 {
620 walk_wild_section_general (ptr, file, callback, data);
621 return;
622 }
623
624 /* Note that if the section was not found, s0 is NULL and
625 we'll simply never succeed the s == s0 test below. */
626 for (s = file->the_bfd->sections; s != NULL; s = s->next)
627 {
628 /* Recall that in this code path, a section cannot satisfy more
629 than one spec, so if s == s0 then it cannot match
630 wildspec1. */
631 if (s == s0)
632 walk_wild_consider_section (ptr, file, s, sec0, callback, data);
633 else
634 {
635 const char *sname = bfd_get_section_name (file->the_bfd, s);
636 bfd_boolean skip = !match_simple_wild (wildsec1->spec.name, sname);
637
638 if (!skip)
639 walk_wild_consider_section (ptr, file, s, wildsec1, callback,
640 data);
641 }
642 }
643 }
644
645 static void
646 walk_wild_section_specs3_wild2 (lang_wild_statement_type *ptr,
647 lang_input_statement_type *file,
648 callback_t callback,
649 void *data)
650 {
651 asection *s;
652 struct wildcard_list *sec0 = ptr->handler_data[0];
653 struct wildcard_list *wildsec1 = ptr->handler_data[1];
654 struct wildcard_list *wildsec2 = ptr->handler_data[2];
655 bfd_boolean multiple_sections_found;
656 asection *s0 = find_section (file, sec0, &multiple_sections_found);
657
658 if (multiple_sections_found)
659 {
660 walk_wild_section_general (ptr, file, callback, data);
661 return;
662 }
663
664 for (s = file->the_bfd->sections; s != NULL; s = s->next)
665 {
666 if (s == s0)
667 walk_wild_consider_section (ptr, file, s, sec0, callback, data);
668 else
669 {
670 const char *sname = bfd_get_section_name (file->the_bfd, s);
671 bfd_boolean skip = !match_simple_wild (wildsec1->spec.name, sname);
672
673 if (!skip)
674 walk_wild_consider_section (ptr, file, s, wildsec1, callback, data);
675 else
676 {
677 skip = !match_simple_wild (wildsec2->spec.name, sname);
678 if (!skip)
679 walk_wild_consider_section (ptr, file, s, wildsec2, callback,
680 data);
681 }
682 }
683 }
684 }
685
686 static void
687 walk_wild_section_specs4_wild2 (lang_wild_statement_type *ptr,
688 lang_input_statement_type *file,
689 callback_t callback,
690 void *data)
691 {
692 asection *s;
693 struct wildcard_list *sec0 = ptr->handler_data[0];
694 struct wildcard_list *sec1 = ptr->handler_data[1];
695 struct wildcard_list *wildsec2 = ptr->handler_data[2];
696 struct wildcard_list *wildsec3 = ptr->handler_data[3];
697 bfd_boolean multiple_sections_found;
698 asection *s0 = find_section (file, sec0, &multiple_sections_found), *s1;
699
700 if (multiple_sections_found)
701 {
702 walk_wild_section_general (ptr, file, callback, data);
703 return;
704 }
705
706 s1 = find_section (file, sec1, &multiple_sections_found);
707 if (multiple_sections_found)
708 {
709 walk_wild_section_general (ptr, file, callback, data);
710 return;
711 }
712
713 for (s = file->the_bfd->sections; s != NULL; s = s->next)
714 {
715 if (s == s0)
716 walk_wild_consider_section (ptr, file, s, sec0, callback, data);
717 else
718 if (s == s1)
719 walk_wild_consider_section (ptr, file, s, sec1, callback, data);
720 else
721 {
722 const char *sname = bfd_get_section_name (file->the_bfd, s);
723 bfd_boolean skip = !match_simple_wild (wildsec2->spec.name,
724 sname);
725
726 if (!skip)
727 walk_wild_consider_section (ptr, file, s, wildsec2, callback,
728 data);
729 else
730 {
731 skip = !match_simple_wild (wildsec3->spec.name, sname);
732 if (!skip)
733 walk_wild_consider_section (ptr, file, s, wildsec3,
734 callback, data);
735 }
736 }
737 }
738 }
739
740 static void
741 walk_wild_section (lang_wild_statement_type *ptr,
742 lang_input_statement_type *file,
743 callback_t callback,
744 void *data)
745 {
746 if (file->flags.just_syms)
747 return;
748
749 (*ptr->walk_wild_section_handler) (ptr, file, callback, data);
750 }
751
752 /* Returns TRUE when name1 is a wildcard spec that might match
753 something name2 can match. We're conservative: we return FALSE
754 only if the prefixes of name1 and name2 are different up to the
755 first wildcard character. */
756
757 static bfd_boolean
758 wild_spec_can_overlap (const char *name1, const char *name2)
759 {
760 size_t prefix1_len = strcspn (name1, "?*[");
761 size_t prefix2_len = strcspn (name2, "?*[");
762 size_t min_prefix_len;
763
764 /* Note that if there is no wildcard character, then we treat the
765 terminating 0 as part of the prefix. Thus ".text" won't match
766 ".text." or ".text.*", for example. */
767 if (name1[prefix1_len] == '\0')
768 prefix1_len++;
769 if (name2[prefix2_len] == '\0')
770 prefix2_len++;
771
772 min_prefix_len = prefix1_len < prefix2_len ? prefix1_len : prefix2_len;
773
774 return memcmp (name1, name2, min_prefix_len) == 0;
775 }
776
777 /* Select specialized code to handle various kinds of wildcard
778 statements. */
779
780 static void
781 analyze_walk_wild_section_handler (lang_wild_statement_type *ptr)
782 {
783 int sec_count = 0;
784 int wild_name_count = 0;
785 struct wildcard_list *sec;
786 int signature;
787 int data_counter;
788
789 ptr->walk_wild_section_handler = walk_wild_section_general;
790 ptr->handler_data[0] = NULL;
791 ptr->handler_data[1] = NULL;
792 ptr->handler_data[2] = NULL;
793 ptr->handler_data[3] = NULL;
794 ptr->tree = NULL;
795
796 /* Count how many wildcard_specs there are, and how many of those
797 actually use wildcards in the name. Also, bail out if any of the
798 wildcard names are NULL. (Can this actually happen?
799 walk_wild_section used to test for it.) And bail out if any
800 of the wildcards are more complex than a simple string
801 ending in a single '*'. */
802 for (sec = ptr->section_list; sec != NULL; sec = sec->next)
803 {
804 ++sec_count;
805 if (sec->spec.name == NULL)
806 return;
807 if (wildcardp (sec->spec.name))
808 {
809 ++wild_name_count;
810 if (!is_simple_wild (sec->spec.name))
811 return;
812 }
813 }
814
815 /* The zero-spec case would be easy to optimize but it doesn't
816 happen in practice. Likewise, more than 4 specs doesn't
817 happen in practice. */
818 if (sec_count == 0 || sec_count > 4)
819 return;
820
821 /* Check that no two specs can match the same section. */
822 for (sec = ptr->section_list; sec != NULL; sec = sec->next)
823 {
824 struct wildcard_list *sec2;
825 for (sec2 = sec->next; sec2 != NULL; sec2 = sec2->next)
826 {
827 if (wild_spec_can_overlap (sec->spec.name, sec2->spec.name))
828 return;
829 }
830 }
831
832 signature = (sec_count << 8) + wild_name_count;
833 switch (signature)
834 {
835 case 0x0100:
836 ptr->walk_wild_section_handler = walk_wild_section_specs1_wild0;
837 break;
838 case 0x0101:
839 ptr->walk_wild_section_handler = walk_wild_section_specs1_wild1;
840 break;
841 case 0x0201:
842 ptr->walk_wild_section_handler = walk_wild_section_specs2_wild1;
843 break;
844 case 0x0302:
845 ptr->walk_wild_section_handler = walk_wild_section_specs3_wild2;
846 break;
847 case 0x0402:
848 ptr->walk_wild_section_handler = walk_wild_section_specs4_wild2;
849 break;
850 default:
851 return;
852 }
853
854 /* Now fill the data array with pointers to the specs, first the
855 specs with non-wildcard names, then the specs with wildcard
856 names. It's OK to process the specs in different order from the
857 given order, because we've already determined that no section
858 will match more than one spec. */
859 data_counter = 0;
860 for (sec = ptr->section_list; sec != NULL; sec = sec->next)
861 if (!wildcardp (sec->spec.name))
862 ptr->handler_data[data_counter++] = sec;
863 for (sec = ptr->section_list; sec != NULL; sec = sec->next)
864 if (wildcardp (sec->spec.name))
865 ptr->handler_data[data_counter++] = sec;
866 }
867
868 /* Handle a wild statement for a single file F. */
869
870 static void
871 walk_wild_file (lang_wild_statement_type *s,
872 lang_input_statement_type *f,
873 callback_t callback,
874 void *data)
875 {
876 if (walk_wild_file_in_exclude_list (s->exclude_name_list, f))
877 return;
878
879 if (f->the_bfd == NULL
880 || !bfd_check_format (f->the_bfd, bfd_archive))
881 walk_wild_section (s, f, callback, data);
882 else
883 {
884 bfd *member;
885
886 /* This is an archive file. We must map each member of the
887 archive separately. */
888 member = bfd_openr_next_archived_file (f->the_bfd, NULL);
889 while (member != NULL)
890 {
891 /* When lookup_name is called, it will call the add_symbols
892 entry point for the archive. For each element of the
893 archive which is included, BFD will call ldlang_add_file,
894 which will set the usrdata field of the member to the
895 lang_input_statement. */
896 if (member->usrdata != NULL)
897 {
898 walk_wild_section (s,
899 (lang_input_statement_type *) member->usrdata,
900 callback, data);
901 }
902
903 member = bfd_openr_next_archived_file (f->the_bfd, member);
904 }
905 }
906 }
907
908 static void
909 walk_wild (lang_wild_statement_type *s, callback_t callback, void *data)
910 {
911 const char *file_spec = s->filename;
912 char *p;
913
914 if (file_spec == NULL)
915 {
916 /* Perform the iteration over all files in the list. */
917 LANG_FOR_EACH_INPUT_STATEMENT (f)
918 {
919 walk_wild_file (s, f, callback, data);
920 }
921 }
922 else if ((p = archive_path (file_spec)) != NULL)
923 {
924 LANG_FOR_EACH_INPUT_STATEMENT (f)
925 {
926 if (input_statement_is_archive_path (file_spec, p, f))
927 walk_wild_file (s, f, callback, data);
928 }
929 }
930 else if (wildcardp (file_spec))
931 {
932 LANG_FOR_EACH_INPUT_STATEMENT (f)
933 {
934 if (fnmatch (file_spec, f->filename, 0) == 0)
935 walk_wild_file (s, f, callback, data);
936 }
937 }
938 else
939 {
940 lang_input_statement_type *f;
941
942 /* Perform the iteration over a single file. */
943 f = lookup_name (file_spec);
944 if (f)
945 walk_wild_file (s, f, callback, data);
946 }
947 }
948
949 /* lang_for_each_statement walks the parse tree and calls the provided
950 function for each node, except those inside output section statements
951 with constraint set to -1. */
952
953 void
954 lang_for_each_statement_worker (void (*func) (lang_statement_union_type *),
955 lang_statement_union_type *s)
956 {
957 for (; s != NULL; s = s->header.next)
958 {
959 func (s);
960
961 switch (s->header.type)
962 {
963 case lang_constructors_statement_enum:
964 lang_for_each_statement_worker (func, constructor_list.head);
965 break;
966 case lang_output_section_statement_enum:
967 if (s->output_section_statement.constraint != -1)
968 lang_for_each_statement_worker
969 (func, s->output_section_statement.children.head);
970 break;
971 case lang_wild_statement_enum:
972 lang_for_each_statement_worker (func,
973 s->wild_statement.children.head);
974 break;
975 case lang_group_statement_enum:
976 lang_for_each_statement_worker (func,
977 s->group_statement.children.head);
978 break;
979 case lang_data_statement_enum:
980 case lang_reloc_statement_enum:
981 case lang_object_symbols_statement_enum:
982 case lang_output_statement_enum:
983 case lang_target_statement_enum:
984 case lang_input_section_enum:
985 case lang_input_statement_enum:
986 case lang_assignment_statement_enum:
987 case lang_padding_statement_enum:
988 case lang_address_statement_enum:
989 case lang_fill_statement_enum:
990 case lang_insert_statement_enum:
991 break;
992 default:
993 FAIL ();
994 break;
995 }
996 }
997 }
998
999 void
1000 lang_for_each_statement (void (*func) (lang_statement_union_type *))
1001 {
1002 lang_for_each_statement_worker (func, statement_list.head);
1003 }
1004
1005 /*----------------------------------------------------------------------*/
1006
1007 void
1008 lang_list_init (lang_statement_list_type *list)
1009 {
1010 list->head = NULL;
1011 list->tail = &list->head;
1012 }
1013
1014 void
1015 push_stat_ptr (lang_statement_list_type *new_ptr)
1016 {
1017 if (stat_save_ptr >= stat_save + sizeof (stat_save) / sizeof (stat_save[0]))
1018 abort ();
1019 *stat_save_ptr++ = stat_ptr;
1020 stat_ptr = new_ptr;
1021 }
1022
1023 void
1024 pop_stat_ptr (void)
1025 {
1026 if (stat_save_ptr <= stat_save)
1027 abort ();
1028 stat_ptr = *--stat_save_ptr;
1029 }
1030
1031 /* Build a new statement node for the parse tree. */
1032
1033 static lang_statement_union_type *
1034 new_statement (enum statement_enum type,
1035 size_t size,
1036 lang_statement_list_type *list)
1037 {
1038 lang_statement_union_type *new_stmt;
1039
1040 new_stmt = (lang_statement_union_type *) stat_alloc (size);
1041 new_stmt->header.type = type;
1042 new_stmt->header.next = NULL;
1043 lang_statement_append (list, new_stmt, &new_stmt->header.next);
1044 return new_stmt;
1045 }
1046
1047 /* Build a new input file node for the language. There are several
1048 ways in which we treat an input file, eg, we only look at symbols,
1049 or prefix it with a -l etc.
1050
1051 We can be supplied with requests for input files more than once;
1052 they may, for example be split over several lines like foo.o(.text)
1053 foo.o(.data) etc, so when asked for a file we check that we haven't
1054 got it already so we don't duplicate the bfd. */
1055
1056 static lang_input_statement_type *
1057 new_afile (const char *name,
1058 lang_input_file_enum_type file_type,
1059 const char *target,
1060 bfd_boolean add_to_list)
1061 {
1062 lang_input_statement_type *p;
1063
1064 lang_has_input_file = TRUE;
1065
1066 if (add_to_list)
1067 p = (lang_input_statement_type *) new_stat (lang_input_statement, stat_ptr);
1068 else
1069 {
1070 p = (lang_input_statement_type *)
1071 stat_alloc (sizeof (lang_input_statement_type));
1072 p->header.type = lang_input_statement_enum;
1073 p->header.next = NULL;
1074 }
1075
1076 memset (&p->the_bfd, 0,
1077 sizeof (*p) - offsetof (lang_input_statement_type, the_bfd));
1078 p->target = target;
1079 p->flags.dynamic = input_flags.dynamic;
1080 p->flags.add_DT_NEEDED_for_dynamic = input_flags.add_DT_NEEDED_for_dynamic;
1081 p->flags.add_DT_NEEDED_for_regular = input_flags.add_DT_NEEDED_for_regular;
1082 p->flags.whole_archive = input_flags.whole_archive;
1083 p->flags.sysrooted = input_flags.sysrooted;
1084
1085 switch (file_type)
1086 {
1087 case lang_input_file_is_symbols_only_enum:
1088 p->filename = name;
1089 p->local_sym_name = name;
1090 p->flags.real = TRUE;
1091 p->flags.just_syms = TRUE;
1092 break;
1093 case lang_input_file_is_fake_enum:
1094 p->filename = name;
1095 p->local_sym_name = name;
1096 break;
1097 case lang_input_file_is_l_enum:
1098 if (name[0] == ':' && name[1] != '\0')
1099 {
1100 p->filename = name + 1;
1101 p->flags.full_name_provided = TRUE;
1102 }
1103 else
1104 p->filename = name;
1105 p->local_sym_name = concat ("-l", name, (const char *) NULL);
1106 p->flags.maybe_archive = TRUE;
1107 p->flags.real = TRUE;
1108 p->flags.search_dirs = TRUE;
1109 break;
1110 case lang_input_file_is_marker_enum:
1111 p->filename = name;
1112 p->local_sym_name = name;
1113 p->flags.search_dirs = TRUE;
1114 break;
1115 case lang_input_file_is_search_file_enum:
1116 p->filename = name;
1117 p->local_sym_name = name;
1118 p->flags.real = TRUE;
1119 p->flags.search_dirs = TRUE;
1120 break;
1121 case lang_input_file_is_file_enum:
1122 p->filename = name;
1123 p->local_sym_name = name;
1124 p->flags.real = TRUE;
1125 break;
1126 default:
1127 FAIL ();
1128 }
1129
1130 lang_statement_append (&input_file_chain,
1131 (lang_statement_union_type *) p,
1132 &p->next_real_file);
1133 return p;
1134 }
1135
1136 lang_input_statement_type *
1137 lang_add_input_file (const char *name,
1138 lang_input_file_enum_type file_type,
1139 const char *target)
1140 {
1141 if (name != NULL && *name == '=')
1142 {
1143 lang_input_statement_type *ret;
1144 char *sysrooted_name
1145 = concat (ld_sysroot, name + 1, (const char *) NULL);
1146
1147 /* We've now forcibly prepended the sysroot, making the input
1148 file independent of the context. Therefore, temporarily
1149 force a non-sysrooted context for this statement, so it won't
1150 get the sysroot prepended again when opened. (N.B. if it's a
1151 script, any child nodes with input files starting with "/"
1152 will be handled as "sysrooted" as they'll be found to be
1153 within the sysroot subdirectory.) */
1154 unsigned int outer_sysrooted = input_flags.sysrooted;
1155 input_flags.sysrooted = 0;
1156 ret = new_afile (sysrooted_name, file_type, target, TRUE);
1157 input_flags.sysrooted = outer_sysrooted;
1158 return ret;
1159 }
1160
1161 return new_afile (name, file_type, target, TRUE);
1162 }
1163
1164 struct out_section_hash_entry
1165 {
1166 struct bfd_hash_entry root;
1167 lang_statement_union_type s;
1168 };
1169
1170 /* The hash table. */
1171
1172 static struct bfd_hash_table output_section_statement_table;
1173
1174 /* Support routines for the hash table used by lang_output_section_find,
1175 initialize the table, fill in an entry and remove the table. */
1176
1177 static struct bfd_hash_entry *
1178 output_section_statement_newfunc (struct bfd_hash_entry *entry,
1179 struct bfd_hash_table *table,
1180 const char *string)
1181 {
1182 lang_output_section_statement_type **nextp;
1183 struct out_section_hash_entry *ret;
1184
1185 if (entry == NULL)
1186 {
1187 entry = (struct bfd_hash_entry *) bfd_hash_allocate (table,
1188 sizeof (*ret));
1189 if (entry == NULL)
1190 return entry;
1191 }
1192
1193 entry = bfd_hash_newfunc (entry, table, string);
1194 if (entry == NULL)
1195 return entry;
1196
1197 ret = (struct out_section_hash_entry *) entry;
1198 memset (&ret->s, 0, sizeof (ret->s));
1199 ret->s.header.type = lang_output_section_statement_enum;
1200 ret->s.output_section_statement.subsection_alignment = -1;
1201 ret->s.output_section_statement.section_alignment = -1;
1202 ret->s.output_section_statement.block_value = 1;
1203 lang_list_init (&ret->s.output_section_statement.children);
1204 lang_statement_append (stat_ptr, &ret->s, &ret->s.header.next);
1205
1206 /* For every output section statement added to the list, except the
1207 first one, lang_output_section_statement.tail points to the "next"
1208 field of the last element of the list. */
1209 if (lang_output_section_statement.head != NULL)
1210 ret->s.output_section_statement.prev
1211 = ((lang_output_section_statement_type *)
1212 ((char *) lang_output_section_statement.tail
1213 - offsetof (lang_output_section_statement_type, next)));
1214
1215 /* GCC's strict aliasing rules prevent us from just casting the
1216 address, so we store the pointer in a variable and cast that
1217 instead. */
1218 nextp = &ret->s.output_section_statement.next;
1219 lang_statement_append (&lang_output_section_statement,
1220 &ret->s,
1221 (lang_statement_union_type **) nextp);
1222 return &ret->root;
1223 }
1224
1225 static void
1226 output_section_statement_table_init (void)
1227 {
1228 if (!bfd_hash_table_init_n (&output_section_statement_table,
1229 output_section_statement_newfunc,
1230 sizeof (struct out_section_hash_entry),
1231 61))
1232 einfo (_("%P%F: can not create hash table: %E\n"));
1233 }
1234
1235 static void
1236 output_section_statement_table_free (void)
1237 {
1238 bfd_hash_table_free (&output_section_statement_table);
1239 }
1240
1241 /* Build enough state so that the parser can build its tree. */
1242
1243 void
1244 lang_init (void)
1245 {
1246 obstack_begin (&stat_obstack, 1000);
1247
1248 stat_ptr = &statement_list;
1249
1250 output_section_statement_table_init ();
1251
1252 lang_list_init (stat_ptr);
1253
1254 lang_list_init (&input_file_chain);
1255 lang_list_init (&lang_output_section_statement);
1256 lang_list_init (&file_chain);
1257 first_file = lang_add_input_file (NULL, lang_input_file_is_marker_enum,
1258 NULL);
1259 abs_output_section =
1260 lang_output_section_statement_lookup (BFD_ABS_SECTION_NAME, 0, TRUE);
1261
1262 abs_output_section->bfd_section = bfd_abs_section_ptr;
1263
1264 asneeded_list_head = NULL;
1265 asneeded_list_tail = &asneeded_list_head;
1266 }
1267
1268 void
1269 lang_finish (void)
1270 {
1271 output_section_statement_table_free ();
1272 }
1273
1274 /*----------------------------------------------------------------------
1275 A region is an area of memory declared with the
1276 MEMORY { name:org=exp, len=exp ... }
1277 syntax.
1278
1279 We maintain a list of all the regions here.
1280
1281 If no regions are specified in the script, then the default is used
1282 which is created when looked up to be the entire data space.
1283
1284 If create is true we are creating a region inside a MEMORY block.
1285 In this case it is probably an error to create a region that has
1286 already been created. If we are not inside a MEMORY block it is
1287 dubious to use an undeclared region name (except DEFAULT_MEMORY_REGION)
1288 and so we issue a warning.
1289
1290 Each region has at least one name. The first name is either
1291 DEFAULT_MEMORY_REGION or the name given in the MEMORY block. You can add
1292 alias names to an existing region within a script with
1293 REGION_ALIAS (alias, region_name). Each name corresponds to at most one
1294 region. */
1295
1296 static lang_memory_region_type *lang_memory_region_list;
1297 static lang_memory_region_type **lang_memory_region_list_tail
1298 = &lang_memory_region_list;
1299
1300 lang_memory_region_type *
1301 lang_memory_region_lookup (const char *const name, bfd_boolean create)
1302 {
1303 lang_memory_region_name *n;
1304 lang_memory_region_type *r;
1305 lang_memory_region_type *new_region;
1306
1307 /* NAME is NULL for LMA memspecs if no region was specified. */
1308 if (name == NULL)
1309 return NULL;
1310
1311 for (r = lang_memory_region_list; r != NULL; r = r->next)
1312 for (n = &r->name_list; n != NULL; n = n->next)
1313 if (strcmp (n->name, name) == 0)
1314 {
1315 if (create)
1316 einfo (_("%P:%S: warning: redeclaration of memory region `%s'\n"),
1317 NULL, name);
1318 return r;
1319 }
1320
1321 if (!create && strcmp (name, DEFAULT_MEMORY_REGION))
1322 einfo (_("%P:%S: warning: memory region `%s' not declared\n"),
1323 NULL, name);
1324
1325 new_region = (lang_memory_region_type *)
1326 stat_alloc (sizeof (lang_memory_region_type));
1327
1328 new_region->name_list.name = xstrdup (name);
1329 new_region->name_list.next = NULL;
1330 new_region->next = NULL;
1331 new_region->origin_exp = NULL;
1332 new_region->origin = 0;
1333 new_region->length_exp = NULL;
1334 new_region->length = ~(bfd_size_type) 0;
1335 new_region->current = 0;
1336 new_region->last_os = NULL;
1337 new_region->flags = 0;
1338 new_region->not_flags = 0;
1339 new_region->had_full_message = FALSE;
1340
1341 *lang_memory_region_list_tail = new_region;
1342 lang_memory_region_list_tail = &new_region->next;
1343
1344 return new_region;
1345 }
1346
1347 void
1348 lang_memory_region_alias (const char *alias, const char *region_name)
1349 {
1350 lang_memory_region_name *n;
1351 lang_memory_region_type *r;
1352 lang_memory_region_type *region;
1353
1354 /* The default region must be unique. This ensures that it is not necessary
1355 to iterate through the name list if someone wants the check if a region is
1356 the default memory region. */
1357 if (strcmp (region_name, DEFAULT_MEMORY_REGION) == 0
1358 || strcmp (alias, DEFAULT_MEMORY_REGION) == 0)
1359 einfo (_("%F%P:%S: error: alias for default memory region\n"), NULL);
1360
1361 /* Look for the target region and check if the alias is not already
1362 in use. */
1363 region = NULL;
1364 for (r = lang_memory_region_list; r != NULL; r = r->next)
1365 for (n = &r->name_list; n != NULL; n = n->next)
1366 {
1367 if (region == NULL && strcmp (n->name, region_name) == 0)
1368 region = r;
1369 if (strcmp (n->name, alias) == 0)
1370 einfo (_("%F%P:%S: error: redefinition of memory region "
1371 "alias `%s'\n"),
1372 NULL, alias);
1373 }
1374
1375 /* Check if the target region exists. */
1376 if (region == NULL)
1377 einfo (_("%F%P:%S: error: memory region `%s' "
1378 "for alias `%s' does not exist\n"),
1379 NULL, region_name, alias);
1380
1381 /* Add alias to region name list. */
1382 n = (lang_memory_region_name *) stat_alloc (sizeof (lang_memory_region_name));
1383 n->name = xstrdup (alias);
1384 n->next = region->name_list.next;
1385 region->name_list.next = n;
1386 }
1387
1388 static lang_memory_region_type *
1389 lang_memory_default (asection *section)
1390 {
1391 lang_memory_region_type *p;
1392
1393 flagword sec_flags = section->flags;
1394
1395 /* Override SEC_DATA to mean a writable section. */
1396 if ((sec_flags & (SEC_ALLOC | SEC_READONLY | SEC_CODE)) == SEC_ALLOC)
1397 sec_flags |= SEC_DATA;
1398
1399 for (p = lang_memory_region_list; p != NULL; p = p->next)
1400 {
1401 if ((p->flags & sec_flags) != 0
1402 && (p->not_flags & sec_flags) == 0)
1403 {
1404 return p;
1405 }
1406 }
1407 return lang_memory_region_lookup (DEFAULT_MEMORY_REGION, FALSE);
1408 }
1409
1410 /* Get the output section statement directly from the userdata. */
1411
1412 lang_output_section_statement_type *
1413 lang_output_section_get (const asection *output_section)
1414 {
1415 return get_userdata (output_section);
1416 }
1417
1418 /* Find or create an output_section_statement with the given NAME.
1419 If CONSTRAINT is non-zero match one with that constraint, otherwise
1420 match any non-negative constraint. If CREATE, always make a
1421 new output_section_statement for SPECIAL CONSTRAINT. */
1422
1423 lang_output_section_statement_type *
1424 lang_output_section_statement_lookup (const char *name,
1425 int constraint,
1426 bfd_boolean create)
1427 {
1428 struct out_section_hash_entry *entry;
1429
1430 entry = ((struct out_section_hash_entry *)
1431 bfd_hash_lookup (&output_section_statement_table, name,
1432 create, FALSE));
1433 if (entry == NULL)
1434 {
1435 if (create)
1436 einfo (_("%P%F: failed creating section `%s': %E\n"), name);
1437 return NULL;
1438 }
1439
1440 if (entry->s.output_section_statement.name != NULL)
1441 {
1442 /* We have a section of this name, but it might not have the correct
1443 constraint. */
1444 struct out_section_hash_entry *last_ent;
1445
1446 name = entry->s.output_section_statement.name;
1447 if (create && constraint == SPECIAL)
1448 /* Not traversing to the end reverses the order of the second
1449 and subsequent SPECIAL sections in the hash table chain,
1450 but that shouldn't matter. */
1451 last_ent = entry;
1452 else
1453 do
1454 {
1455 if (constraint == entry->s.output_section_statement.constraint
1456 || (constraint == 0
1457 && entry->s.output_section_statement.constraint >= 0))
1458 return &entry->s.output_section_statement;
1459 last_ent = entry;
1460 entry = (struct out_section_hash_entry *) entry->root.next;
1461 }
1462 while (entry != NULL
1463 && name == entry->s.output_section_statement.name);
1464
1465 if (!create)
1466 return NULL;
1467
1468 entry
1469 = ((struct out_section_hash_entry *)
1470 output_section_statement_newfunc (NULL,
1471 &output_section_statement_table,
1472 name));
1473 if (entry == NULL)
1474 {
1475 einfo (_("%P%F: failed creating section `%s': %E\n"), name);
1476 return NULL;
1477 }
1478 entry->root = last_ent->root;
1479 last_ent->root.next = &entry->root;
1480 }
1481
1482 entry->s.output_section_statement.name = name;
1483 entry->s.output_section_statement.constraint = constraint;
1484 return &entry->s.output_section_statement;
1485 }
1486
1487 /* Find the next output_section_statement with the same name as OS.
1488 If CONSTRAINT is non-zero, find one with that constraint otherwise
1489 match any non-negative constraint. */
1490
1491 lang_output_section_statement_type *
1492 next_matching_output_section_statement (lang_output_section_statement_type *os,
1493 int constraint)
1494 {
1495 /* All output_section_statements are actually part of a
1496 struct out_section_hash_entry. */
1497 struct out_section_hash_entry *entry = (struct out_section_hash_entry *)
1498 ((char *) os
1499 - offsetof (struct out_section_hash_entry, s.output_section_statement));
1500 const char *name = os->name;
1501
1502 ASSERT (name == entry->root.string);
1503 do
1504 {
1505 entry = (struct out_section_hash_entry *) entry->root.next;
1506 if (entry == NULL
1507 || name != entry->s.output_section_statement.name)
1508 return NULL;
1509 }
1510 while (constraint != entry->s.output_section_statement.constraint
1511 && (constraint != 0
1512 || entry->s.output_section_statement.constraint < 0));
1513
1514 return &entry->s.output_section_statement;
1515 }
1516
1517 /* A variant of lang_output_section_find used by place_orphan.
1518 Returns the output statement that should precede a new output
1519 statement for SEC. If an exact match is found on certain flags,
1520 sets *EXACT too. */
1521
1522 lang_output_section_statement_type *
1523 lang_output_section_find_by_flags (const asection *sec,
1524 flagword sec_flags,
1525 lang_output_section_statement_type **exact,
1526 lang_match_sec_type_func match_type)
1527 {
1528 lang_output_section_statement_type *first, *look, *found;
1529 flagword look_flags, differ;
1530
1531 /* We know the first statement on this list is *ABS*. May as well
1532 skip it. */
1533 first = &lang_output_section_statement.head->output_section_statement;
1534 first = first->next;
1535
1536 /* First try for an exact match. */
1537 found = NULL;
1538 for (look = first; look; look = look->next)
1539 {
1540 look_flags = look->flags;
1541 if (look->bfd_section != NULL)
1542 {
1543 look_flags = look->bfd_section->flags;
1544 if (match_type && !match_type (link_info.output_bfd,
1545 look->bfd_section,
1546 sec->owner, sec))
1547 continue;
1548 }
1549 differ = look_flags ^ sec_flags;
1550 if (!(differ & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD | SEC_READONLY
1551 | SEC_CODE | SEC_SMALL_DATA | SEC_THREAD_LOCAL)))
1552 found = look;
1553 }
1554 if (found != NULL)
1555 {
1556 if (exact != NULL)
1557 *exact = found;
1558 return found;
1559 }
1560
1561 if ((sec_flags & SEC_CODE) != 0
1562 && (sec_flags & SEC_ALLOC) != 0)
1563 {
1564 /* Try for a rw code section. */
1565 for (look = first; look; look = look->next)
1566 {
1567 look_flags = look->flags;
1568 if (look->bfd_section != NULL)
1569 {
1570 look_flags = look->bfd_section->flags;
1571 if (match_type && !match_type (link_info.output_bfd,
1572 look->bfd_section,
1573 sec->owner, sec))
1574 continue;
1575 }
1576 differ = look_flags ^ sec_flags;
1577 if (!(differ & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD
1578 | SEC_CODE | SEC_SMALL_DATA | SEC_THREAD_LOCAL)))
1579 found = look;
1580 }
1581 }
1582 else if ((sec_flags & SEC_READONLY) != 0
1583 && (sec_flags & SEC_ALLOC) != 0)
1584 {
1585 /* .rodata can go after .text, .sdata2 after .rodata. */
1586 for (look = first; look; look = look->next)
1587 {
1588 look_flags = look->flags;
1589 if (look->bfd_section != NULL)
1590 {
1591 look_flags = look->bfd_section->flags;
1592 if (match_type && !match_type (link_info.output_bfd,
1593 look->bfd_section,
1594 sec->owner, sec))
1595 continue;
1596 }
1597 differ = look_flags ^ sec_flags;
1598 if (!(differ & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD
1599 | SEC_READONLY | SEC_SMALL_DATA))
1600 || (!(differ & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD
1601 | SEC_READONLY))
1602 && !(look_flags & SEC_SMALL_DATA)))
1603 found = look;
1604 }
1605 }
1606 else if ((sec_flags & SEC_THREAD_LOCAL) != 0
1607 && (sec_flags & SEC_ALLOC) != 0)
1608 {
1609 /* .tdata can go after .data, .tbss after .tdata. Treat .tbss
1610 as if it were a loaded section, and don't use match_type. */
1611 bfd_boolean seen_thread_local = FALSE;
1612
1613 match_type = NULL;
1614 for (look = first; look; look = look->next)
1615 {
1616 look_flags = look->flags;
1617 if (look->bfd_section != NULL)
1618 look_flags = look->bfd_section->flags;
1619
1620 differ = look_flags ^ (sec_flags | SEC_LOAD | SEC_HAS_CONTENTS);
1621 if (!(differ & (SEC_THREAD_LOCAL | SEC_ALLOC)))
1622 {
1623 /* .tdata and .tbss must be adjacent and in that order. */
1624 if (!(look_flags & SEC_LOAD)
1625 && (sec_flags & SEC_LOAD))
1626 /* ..so if we're at a .tbss section and we're placing
1627 a .tdata section stop looking and return the
1628 previous section. */
1629 break;
1630 found = look;
1631 seen_thread_local = TRUE;
1632 }
1633 else if (seen_thread_local)
1634 break;
1635 else if (!(differ & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD)))
1636 found = look;
1637 }
1638 }
1639 else if ((sec_flags & SEC_SMALL_DATA) != 0
1640 && (sec_flags & SEC_ALLOC) != 0)
1641 {
1642 /* .sdata goes after .data, .sbss after .sdata. */
1643 for (look = first; look; look = look->next)
1644 {
1645 look_flags = look->flags;
1646 if (look->bfd_section != NULL)
1647 {
1648 look_flags = look->bfd_section->flags;
1649 if (match_type && !match_type (link_info.output_bfd,
1650 look->bfd_section,
1651 sec->owner, sec))
1652 continue;
1653 }
1654 differ = look_flags ^ sec_flags;
1655 if (!(differ & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD
1656 | SEC_THREAD_LOCAL))
1657 || ((look_flags & SEC_SMALL_DATA)
1658 && !(sec_flags & SEC_HAS_CONTENTS)))
1659 found = look;
1660 }
1661 }
1662 else if ((sec_flags & SEC_HAS_CONTENTS) != 0
1663 && (sec_flags & SEC_ALLOC) != 0)
1664 {
1665 /* .data goes after .rodata. */
1666 for (look = first; look; look = look->next)
1667 {
1668 look_flags = look->flags;
1669 if (look->bfd_section != NULL)
1670 {
1671 look_flags = look->bfd_section->flags;
1672 if (match_type && !match_type (link_info.output_bfd,
1673 look->bfd_section,
1674 sec->owner, sec))
1675 continue;
1676 }
1677 differ = look_flags ^ sec_flags;
1678 if (!(differ & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD
1679 | SEC_SMALL_DATA | SEC_THREAD_LOCAL)))
1680 found = look;
1681 }
1682 }
1683 else if ((sec_flags & SEC_ALLOC) != 0)
1684 {
1685 /* .bss goes after any other alloc section. */
1686 for (look = first; look; look = look->next)
1687 {
1688 look_flags = look->flags;
1689 if (look->bfd_section != NULL)
1690 {
1691 look_flags = look->bfd_section->flags;
1692 if (match_type && !match_type (link_info.output_bfd,
1693 look->bfd_section,
1694 sec->owner, sec))
1695 continue;
1696 }
1697 differ = look_flags ^ sec_flags;
1698 if (!(differ & SEC_ALLOC))
1699 found = look;
1700 }
1701 }
1702 else
1703 {
1704 /* non-alloc go last. */
1705 for (look = first; look; look = look->next)
1706 {
1707 look_flags = look->flags;
1708 if (look->bfd_section != NULL)
1709 look_flags = look->bfd_section->flags;
1710 differ = look_flags ^ sec_flags;
1711 if (!(differ & SEC_DEBUGGING))
1712 found = look;
1713 }
1714 return found;
1715 }
1716
1717 if (found || !match_type)
1718 return found;
1719
1720 return lang_output_section_find_by_flags (sec, sec_flags, NULL, NULL);
1721 }
1722
1723 /* Find the last output section before given output statement.
1724 Used by place_orphan. */
1725
1726 static asection *
1727 output_prev_sec_find (lang_output_section_statement_type *os)
1728 {
1729 lang_output_section_statement_type *lookup;
1730
1731 for (lookup = os->prev; lookup != NULL; lookup = lookup->prev)
1732 {
1733 if (lookup->constraint < 0)
1734 continue;
1735
1736 if (lookup->bfd_section != NULL && lookup->bfd_section->owner != NULL)
1737 return lookup->bfd_section;
1738 }
1739
1740 return NULL;
1741 }
1742
1743 /* Look for a suitable place for a new output section statement. The
1744 idea is to skip over anything that might be inside a SECTIONS {}
1745 statement in a script, before we find another output section
1746 statement. Assignments to "dot" before an output section statement
1747 are assumed to belong to it, except in two cases; The first
1748 assignment to dot, and assignments before non-alloc sections.
1749 Otherwise we might put an orphan before . = . + SIZEOF_HEADERS or
1750 similar assignments that set the initial address, or we might
1751 insert non-alloc note sections among assignments setting end of
1752 image symbols. */
1753
1754 static lang_statement_union_type **
1755 insert_os_after (lang_output_section_statement_type *after)
1756 {
1757 lang_statement_union_type **where;
1758 lang_statement_union_type **assign = NULL;
1759 bfd_boolean ignore_first;
1760
1761 ignore_first
1762 = after == &lang_output_section_statement.head->output_section_statement;
1763
1764 for (where = &after->header.next;
1765 *where != NULL;
1766 where = &(*where)->header.next)
1767 {
1768 switch ((*where)->header.type)
1769 {
1770 case lang_assignment_statement_enum:
1771 if (assign == NULL)
1772 {
1773 lang_assignment_statement_type *ass;
1774
1775 ass = &(*where)->assignment_statement;
1776 if (ass->exp->type.node_class != etree_assert
1777 && ass->exp->assign.dst[0] == '.'
1778 && ass->exp->assign.dst[1] == 0
1779 && !ignore_first)
1780 assign = where;
1781 }
1782 ignore_first = FALSE;
1783 continue;
1784 case lang_wild_statement_enum:
1785 case lang_input_section_enum:
1786 case lang_object_symbols_statement_enum:
1787 case lang_fill_statement_enum:
1788 case lang_data_statement_enum:
1789 case lang_reloc_statement_enum:
1790 case lang_padding_statement_enum:
1791 case lang_constructors_statement_enum:
1792 assign = NULL;
1793 continue;
1794 case lang_output_section_statement_enum:
1795 if (assign != NULL)
1796 {
1797 asection *s = (*where)->output_section_statement.bfd_section;
1798
1799 if (s == NULL
1800 || s->map_head.s == NULL
1801 || (s->flags & SEC_ALLOC) != 0)
1802 where = assign;
1803 }
1804 break;
1805 case lang_input_statement_enum:
1806 case lang_address_statement_enum:
1807 case lang_target_statement_enum:
1808 case lang_output_statement_enum:
1809 case lang_group_statement_enum:
1810 case lang_insert_statement_enum:
1811 continue;
1812 }
1813 break;
1814 }
1815
1816 return where;
1817 }
1818
1819 lang_output_section_statement_type *
1820 lang_insert_orphan (asection *s,
1821 const char *secname,
1822 int constraint,
1823 lang_output_section_statement_type *after,
1824 struct orphan_save *place,
1825 etree_type *address,
1826 lang_statement_list_type *add_child)
1827 {
1828 lang_statement_list_type add;
1829 const char *ps;
1830 lang_assignment_statement_type *start_assign;
1831 lang_output_section_statement_type *os;
1832 lang_output_section_statement_type **os_tail;
1833
1834 /* If we have found an appropriate place for the output section
1835 statements for this orphan, add them to our own private list,
1836 inserting them later into the global statement list. */
1837 if (after != NULL)
1838 {
1839 lang_list_init (&add);
1840 push_stat_ptr (&add);
1841 }
1842
1843 if (bfd_link_relocatable (&link_info)
1844 || (s->flags & (SEC_LOAD | SEC_ALLOC)) == 0)
1845 address = exp_intop (0);
1846
1847 os_tail = ((lang_output_section_statement_type **)
1848 lang_output_section_statement.tail);
1849 os = lang_enter_output_section_statement (secname, address, normal_section,
1850 NULL, NULL, NULL, constraint, 0);
1851
1852 ps = NULL;
1853 start_assign = NULL;
1854 if (config.build_constructors && *os_tail == os)
1855 {
1856 /* If the name of the section is representable in C, then create
1857 symbols to mark the start and the end of the section. */
1858 for (ps = secname; *ps != '\0'; ps++)
1859 if (!ISALNUM ((unsigned char) *ps) && *ps != '_')
1860 break;
1861 if (*ps == '\0')
1862 {
1863 char *symname;
1864
1865 symname = (char *) xmalloc (ps - secname + sizeof "__start_" + 1);
1866 symname[0] = bfd_get_symbol_leading_char (link_info.output_bfd);
1867 sprintf (symname + (symname[0] != 0), "__start_%s", secname);
1868 start_assign
1869 = lang_add_assignment (exp_provide (symname,
1870 exp_nameop (NAME, "."),
1871 FALSE));
1872 }
1873 }
1874
1875 if (add_child == NULL)
1876 add_child = &os->children;
1877 lang_add_section (add_child, s, NULL, os);
1878
1879 if (after && (s->flags & (SEC_LOAD | SEC_ALLOC)) != 0)
1880 {
1881 const char *region = (after->region
1882 ? after->region->name_list.name
1883 : DEFAULT_MEMORY_REGION);
1884 const char *lma_region = (after->lma_region
1885 ? after->lma_region->name_list.name
1886 : NULL);
1887 lang_leave_output_section_statement (NULL, region, after->phdrs,
1888 lma_region);
1889 }
1890 else
1891 lang_leave_output_section_statement (NULL, DEFAULT_MEMORY_REGION, NULL,
1892 NULL);
1893
1894 if (start_assign != NULL)
1895 {
1896 char *symname;
1897 lang_assignment_statement_type *stop_assign;
1898 bfd_vma dot;
1899
1900 symname = (char *) xmalloc (ps - secname + sizeof "__stop_" + 1);
1901 symname[0] = bfd_get_symbol_leading_char (link_info.output_bfd);
1902 sprintf (symname + (symname[0] != 0), "__stop_%s", secname);
1903 stop_assign
1904 = lang_add_assignment (exp_provide (symname,
1905 exp_nameop (NAME, "."),
1906 FALSE));
1907 /* Evaluate the expression to define the symbol if referenced,
1908 before sizing dynamic sections. */
1909 dot = os->bfd_section->vma;
1910 exp_fold_tree (start_assign->exp, os->bfd_section, &dot);
1911 dot += TO_ADDR (s->size);
1912 exp_fold_tree (stop_assign->exp, os->bfd_section, &dot);
1913 }
1914
1915 /* Restore the global list pointer. */
1916 if (after != NULL)
1917 pop_stat_ptr ();
1918
1919 if (after != NULL && os->bfd_section != NULL)
1920 {
1921 asection *snew, *as;
1922
1923 snew = os->bfd_section;
1924
1925 /* Shuffle the bfd section list to make the output file look
1926 neater. This is really only cosmetic. */
1927 if (place->section == NULL
1928 && after != (&lang_output_section_statement.head
1929 ->output_section_statement))
1930 {
1931 asection *bfd_section = after->bfd_section;
1932
1933 /* If the output statement hasn't been used to place any input
1934 sections (and thus doesn't have an output bfd_section),
1935 look for the closest prior output statement having an
1936 output section. */
1937 if (bfd_section == NULL)
1938 bfd_section = output_prev_sec_find (after);
1939
1940 if (bfd_section != NULL && bfd_section != snew)
1941 place->section = &bfd_section->next;
1942 }
1943
1944 if (place->section == NULL)
1945 place->section = &link_info.output_bfd->sections;
1946
1947 as = *place->section;
1948
1949 if (!as)
1950 {
1951 /* Put the section at the end of the list. */
1952
1953 /* Unlink the section. */
1954 bfd_section_list_remove (link_info.output_bfd, snew);
1955
1956 /* Now tack it back on in the right place. */
1957 bfd_section_list_append (link_info.output_bfd, snew);
1958 }
1959 else if (as != snew && as->prev != snew)
1960 {
1961 /* Unlink the section. */
1962 bfd_section_list_remove (link_info.output_bfd, snew);
1963
1964 /* Now tack it back on in the right place. */
1965 bfd_section_list_insert_before (link_info.output_bfd, as, snew);
1966 }
1967
1968 /* Save the end of this list. Further ophans of this type will
1969 follow the one we've just added. */
1970 place->section = &snew->next;
1971
1972 /* The following is non-cosmetic. We try to put the output
1973 statements in some sort of reasonable order here, because they
1974 determine the final load addresses of the orphan sections.
1975 In addition, placing output statements in the wrong order may
1976 require extra segments. For instance, given a typical
1977 situation of all read-only sections placed in one segment and
1978 following that a segment containing all the read-write
1979 sections, we wouldn't want to place an orphan read/write
1980 section before or amongst the read-only ones. */
1981 if (add.head != NULL)
1982 {
1983 lang_output_section_statement_type *newly_added_os;
1984
1985 if (place->stmt == NULL)
1986 {
1987 lang_statement_union_type **where = insert_os_after (after);
1988
1989 *add.tail = *where;
1990 *where = add.head;
1991
1992 place->os_tail = &after->next;
1993 }
1994 else
1995 {
1996 /* Put it after the last orphan statement we added. */
1997 *add.tail = *place->stmt;
1998 *place->stmt = add.head;
1999 }
2000
2001 /* Fix the global list pointer if we happened to tack our
2002 new list at the tail. */
2003 if (*stat_ptr->tail == add.head)
2004 stat_ptr->tail = add.tail;
2005
2006 /* Save the end of this list. */
2007 place->stmt = add.tail;
2008
2009 /* Do the same for the list of output section statements. */
2010 newly_added_os = *os_tail;
2011 *os_tail = NULL;
2012 newly_added_os->prev = (lang_output_section_statement_type *)
2013 ((char *) place->os_tail
2014 - offsetof (lang_output_section_statement_type, next));
2015 newly_added_os->next = *place->os_tail;
2016 if (newly_added_os->next != NULL)
2017 newly_added_os->next->prev = newly_added_os;
2018 *place->os_tail = newly_added_os;
2019 place->os_tail = &newly_added_os->next;
2020
2021 /* Fixing the global list pointer here is a little different.
2022 We added to the list in lang_enter_output_section_statement,
2023 trimmed off the new output_section_statment above when
2024 assigning *os_tail = NULL, but possibly added it back in
2025 the same place when assigning *place->os_tail. */
2026 if (*os_tail == NULL)
2027 lang_output_section_statement.tail
2028 = (lang_statement_union_type **) os_tail;
2029 }
2030 }
2031 return os;
2032 }
2033
2034 static void
2035 lang_print_asneeded (void)
2036 {
2037 struct asneeded_minfo *m;
2038
2039 if (asneeded_list_head == NULL)
2040 return;
2041
2042 minfo (_("\nAs-needed library included to satisfy reference by file (symbol)\n\n"));
2043
2044 for (m = asneeded_list_head; m != NULL; m = m->next)
2045 {
2046 size_t len;
2047
2048 minfo ("%s", m->soname);
2049 len = strlen (m->soname);
2050
2051 if (len >= 29)
2052 {
2053 print_nl ();
2054 len = 0;
2055 }
2056 while (len < 30)
2057 {
2058 print_space ();
2059 ++len;
2060 }
2061
2062 if (m->ref != NULL)
2063 minfo ("%B ", m->ref);
2064 minfo ("(%T)\n", m->name);
2065 }
2066 }
2067
2068 static void
2069 lang_map_flags (flagword flag)
2070 {
2071 if (flag & SEC_ALLOC)
2072 minfo ("a");
2073
2074 if (flag & SEC_CODE)
2075 minfo ("x");
2076
2077 if (flag & SEC_READONLY)
2078 minfo ("r");
2079
2080 if (flag & SEC_DATA)
2081 minfo ("w");
2082
2083 if (flag & SEC_LOAD)
2084 minfo ("l");
2085 }
2086
2087 void
2088 lang_map (void)
2089 {
2090 lang_memory_region_type *m;
2091 bfd_boolean dis_header_printed = FALSE;
2092
2093 LANG_FOR_EACH_INPUT_STATEMENT (file)
2094 {
2095 asection *s;
2096
2097 if ((file->the_bfd->flags & (BFD_LINKER_CREATED | DYNAMIC)) != 0
2098 || file->flags.just_syms)
2099 continue;
2100
2101 for (s = file->the_bfd->sections; s != NULL; s = s->next)
2102 if ((s->output_section == NULL
2103 || s->output_section->owner != link_info.output_bfd)
2104 && (s->flags & (SEC_LINKER_CREATED | SEC_KEEP)) == 0)
2105 {
2106 if (!dis_header_printed)
2107 {
2108 fprintf (config.map_file, _("\nDiscarded input sections\n\n"));
2109 dis_header_printed = TRUE;
2110 }
2111
2112 print_input_section (s, TRUE);
2113 }
2114 }
2115
2116 minfo (_("\nMemory Configuration\n\n"));
2117 fprintf (config.map_file, "%-16s %-18s %-18s %s\n",
2118 _("Name"), _("Origin"), _("Length"), _("Attributes"));
2119
2120 for (m = lang_memory_region_list; m != NULL; m = m->next)
2121 {
2122 char buf[100];
2123 int len;
2124
2125 fprintf (config.map_file, "%-16s ", m->name_list.name);
2126
2127 sprintf_vma (buf, m->origin);
2128 minfo ("0x%s ", buf);
2129 len = strlen (buf);
2130 while (len < 16)
2131 {
2132 print_space ();
2133 ++len;
2134 }
2135
2136 minfo ("0x%V", m->length);
2137 if (m->flags || m->not_flags)
2138 {
2139 #ifndef BFD64
2140 minfo (" ");
2141 #endif
2142 if (m->flags)
2143 {
2144 print_space ();
2145 lang_map_flags (m->flags);
2146 }
2147
2148 if (m->not_flags)
2149 {
2150 minfo (" !");
2151 lang_map_flags (m->not_flags);
2152 }
2153 }
2154
2155 print_nl ();
2156 }
2157
2158 fprintf (config.map_file, _("\nLinker script and memory map\n\n"));
2159
2160 if (!link_info.reduce_memory_overheads)
2161 {
2162 obstack_begin (&map_obstack, 1000);
2163 bfd_link_hash_traverse (link_info.hash, sort_def_symbol, 0);
2164 }
2165 lang_statement_iteration++;
2166 print_statements ();
2167
2168 ldemul_extra_map_file_text (link_info.output_bfd, &link_info,
2169 config.map_file);
2170 }
2171
2172 static bfd_boolean
2173 sort_def_symbol (struct bfd_link_hash_entry *hash_entry,
2174 void *info ATTRIBUTE_UNUSED)
2175 {
2176 if ((hash_entry->type == bfd_link_hash_defined
2177 || hash_entry->type == bfd_link_hash_defweak)
2178 && hash_entry->u.def.section->owner != link_info.output_bfd
2179 && hash_entry->u.def.section->owner != NULL)
2180 {
2181 input_section_userdata_type *ud;
2182 struct map_symbol_def *def;
2183
2184 ud = ((input_section_userdata_type *)
2185 get_userdata (hash_entry->u.def.section));
2186 if (!ud)
2187 {
2188 ud = (input_section_userdata_type *) stat_alloc (sizeof (*ud));
2189 get_userdata (hash_entry->u.def.section) = ud;
2190 ud->map_symbol_def_tail = &ud->map_symbol_def_head;
2191 ud->map_symbol_def_count = 0;
2192 }
2193 else if (!ud->map_symbol_def_tail)
2194 ud->map_symbol_def_tail = &ud->map_symbol_def_head;
2195
2196 def = (struct map_symbol_def *) obstack_alloc (&map_obstack, sizeof *def);
2197 def->entry = hash_entry;
2198 *(ud->map_symbol_def_tail) = def;
2199 ud->map_symbol_def_tail = &def->next;
2200 ud->map_symbol_def_count++;
2201 }
2202 return TRUE;
2203 }
2204
2205 /* Initialize an output section. */
2206
2207 static void
2208 init_os (lang_output_section_statement_type *s, flagword flags)
2209 {
2210 if (strcmp (s->name, DISCARD_SECTION_NAME) == 0)
2211 einfo (_("%P%F: Illegal use of `%s' section\n"), DISCARD_SECTION_NAME);
2212
2213 if (s->constraint != SPECIAL)
2214 s->bfd_section = bfd_get_section_by_name (link_info.output_bfd, s->name);
2215 if (s->bfd_section == NULL)
2216 s->bfd_section = bfd_make_section_anyway_with_flags (link_info.output_bfd,
2217 s->name, flags);
2218 if (s->bfd_section == NULL)
2219 {
2220 einfo (_("%P%F: output format %s cannot represent section"
2221 " called %s: %E\n"),
2222 link_info.output_bfd->xvec->name, s->name);
2223 }
2224 s->bfd_section->output_section = s->bfd_section;
2225 s->bfd_section->output_offset = 0;
2226
2227 /* Set the userdata of the output section to the output section
2228 statement to avoid lookup. */
2229 get_userdata (s->bfd_section) = s;
2230
2231 /* If there is a base address, make sure that any sections it might
2232 mention are initialized. */
2233 if (s->addr_tree != NULL)
2234 exp_init_os (s->addr_tree);
2235
2236 if (s->load_base != NULL)
2237 exp_init_os (s->load_base);
2238
2239 /* If supplied an alignment, set it. */
2240 if (s->section_alignment != -1)
2241 s->bfd_section->alignment_power = s->section_alignment;
2242 }
2243
2244 /* Make sure that all output sections mentioned in an expression are
2245 initialized. */
2246
2247 static void
2248 exp_init_os (etree_type *exp)
2249 {
2250 switch (exp->type.node_class)
2251 {
2252 case etree_assign:
2253 case etree_provide:
2254 exp_init_os (exp->assign.src);
2255 break;
2256
2257 case etree_binary:
2258 exp_init_os (exp->binary.lhs);
2259 exp_init_os (exp->binary.rhs);
2260 break;
2261
2262 case etree_trinary:
2263 exp_init_os (exp->trinary.cond);
2264 exp_init_os (exp->trinary.lhs);
2265 exp_init_os (exp->trinary.rhs);
2266 break;
2267
2268 case etree_assert:
2269 exp_init_os (exp->assert_s.child);
2270 break;
2271
2272 case etree_unary:
2273 exp_init_os (exp->unary.child);
2274 break;
2275
2276 case etree_name:
2277 switch (exp->type.node_code)
2278 {
2279 case ADDR:
2280 case LOADADDR:
2281 case SIZEOF:
2282 {
2283 lang_output_section_statement_type *os;
2284
2285 os = lang_output_section_find (exp->name.name);
2286 if (os != NULL && os->bfd_section == NULL)
2287 init_os (os, 0);
2288 }
2289 }
2290 break;
2291
2292 default:
2293 break;
2294 }
2295 }
2296 \f
2297 static void
2298 section_already_linked (bfd *abfd, asection *sec, void *data)
2299 {
2300 lang_input_statement_type *entry = (lang_input_statement_type *) data;
2301
2302 /* If we are only reading symbols from this object, then we want to
2303 discard all sections. */
2304 if (entry->flags.just_syms)
2305 {
2306 bfd_link_just_syms (abfd, sec, &link_info);
2307 return;
2308 }
2309
2310 /* Deal with SHF_EXCLUDE ELF sections. */
2311 if (!bfd_link_relocatable (&link_info)
2312 && (abfd->flags & BFD_PLUGIN) == 0
2313 && (sec->flags & (SEC_GROUP | SEC_KEEP | SEC_EXCLUDE)) == SEC_EXCLUDE)
2314 sec->output_section = bfd_abs_section_ptr;
2315
2316 if (!(abfd->flags & DYNAMIC))
2317 bfd_section_already_linked (abfd, sec, &link_info);
2318 }
2319 \f
2320 /* The wild routines.
2321
2322 These expand statements like *(.text) and foo.o to a list of
2323 explicit actions, like foo.o(.text), bar.o(.text) and
2324 foo.o(.text, .data). */
2325
2326 /* Add SECTION to the output section OUTPUT. Do this by creating a
2327 lang_input_section statement which is placed at PTR. */
2328
2329 void
2330 lang_add_section (lang_statement_list_type *ptr,
2331 asection *section,
2332 struct flag_info *sflag_info,
2333 lang_output_section_statement_type *output)
2334 {
2335 flagword flags = section->flags;
2336
2337 bfd_boolean discard;
2338 lang_input_section_type *new_section;
2339 bfd *abfd = link_info.output_bfd;
2340
2341 /* Discard sections marked with SEC_EXCLUDE. */
2342 discard = (flags & SEC_EXCLUDE) != 0;
2343
2344 /* Discard input sections which are assigned to a section named
2345 DISCARD_SECTION_NAME. */
2346 if (strcmp (output->name, DISCARD_SECTION_NAME) == 0)
2347 discard = TRUE;
2348
2349 /* Discard debugging sections if we are stripping debugging
2350 information. */
2351 if ((link_info.strip == strip_debugger || link_info.strip == strip_all)
2352 && (flags & SEC_DEBUGGING) != 0)
2353 discard = TRUE;
2354
2355 if (discard)
2356 {
2357 if (section->output_section == NULL)
2358 {
2359 /* This prevents future calls from assigning this section. */
2360 section->output_section = bfd_abs_section_ptr;
2361 }
2362 return;
2363 }
2364
2365 if (sflag_info)
2366 {
2367 bfd_boolean keep;
2368
2369 keep = bfd_lookup_section_flags (&link_info, sflag_info, section);
2370 if (!keep)
2371 return;
2372 }
2373
2374 if (section->output_section != NULL)
2375 return;
2376
2377 /* We don't copy the SEC_NEVER_LOAD flag from an input section
2378 to an output section, because we want to be able to include a
2379 SEC_NEVER_LOAD section in the middle of an otherwise loaded
2380 section (I don't know why we want to do this, but we do).
2381 build_link_order in ldwrite.c handles this case by turning
2382 the embedded SEC_NEVER_LOAD section into a fill. */
2383 flags &= ~ SEC_NEVER_LOAD;
2384
2385 /* If final link, don't copy the SEC_LINK_ONCE flags, they've
2386 already been processed. One reason to do this is that on pe
2387 format targets, .text$foo sections go into .text and it's odd
2388 to see .text with SEC_LINK_ONCE set. */
2389
2390 if (!bfd_link_relocatable (&link_info))
2391 flags &= ~(SEC_LINK_ONCE | SEC_LINK_DUPLICATES | SEC_RELOC);
2392
2393 switch (output->sectype)
2394 {
2395 case normal_section:
2396 case overlay_section:
2397 break;
2398 case noalloc_section:
2399 flags &= ~SEC_ALLOC;
2400 break;
2401 case noload_section:
2402 flags &= ~SEC_LOAD;
2403 flags |= SEC_NEVER_LOAD;
2404 /* Unfortunately GNU ld has managed to evolve two different
2405 meanings to NOLOAD in scripts. ELF gets a .bss style noload,
2406 alloc, no contents section. All others get a noload, noalloc
2407 section. */
2408 if (bfd_get_flavour (link_info.output_bfd) == bfd_target_elf_flavour)
2409 flags &= ~SEC_HAS_CONTENTS;
2410 else
2411 flags &= ~SEC_ALLOC;
2412 break;
2413 }
2414
2415 if (output->bfd_section == NULL)
2416 init_os (output, flags);
2417
2418 /* If SEC_READONLY is not set in the input section, then clear
2419 it from the output section. */
2420 output->bfd_section->flags &= flags | ~SEC_READONLY;
2421
2422 if (output->bfd_section->linker_has_input)
2423 {
2424 /* Only set SEC_READONLY flag on the first input section. */
2425 flags &= ~ SEC_READONLY;
2426
2427 /* Keep SEC_MERGE and SEC_STRINGS only if they are the same. */
2428 if ((output->bfd_section->flags & (SEC_MERGE | SEC_STRINGS))
2429 != (flags & (SEC_MERGE | SEC_STRINGS))
2430 || ((flags & SEC_MERGE) != 0
2431 && output->bfd_section->entsize != section->entsize))
2432 {
2433 output->bfd_section->flags &= ~ (SEC_MERGE | SEC_STRINGS);
2434 flags &= ~ (SEC_MERGE | SEC_STRINGS);
2435 }
2436 }
2437 output->bfd_section->flags |= flags;
2438
2439 if (!output->bfd_section->linker_has_input)
2440 {
2441 output->bfd_section->linker_has_input = 1;
2442 /* This must happen after flags have been updated. The output
2443 section may have been created before we saw its first input
2444 section, eg. for a data statement. */
2445 bfd_init_private_section_data (section->owner, section,
2446 link_info.output_bfd,
2447 output->bfd_section,
2448 &link_info);
2449 if ((flags & SEC_MERGE) != 0)
2450 output->bfd_section->entsize = section->entsize;
2451 }
2452
2453 if ((flags & SEC_TIC54X_BLOCK) != 0
2454 && bfd_get_arch (section->owner) == bfd_arch_tic54x)
2455 {
2456 /* FIXME: This value should really be obtained from the bfd... */
2457 output->block_value = 128;
2458 }
2459
2460 if (section->alignment_power > output->bfd_section->alignment_power)
2461 output->bfd_section->alignment_power = section->alignment_power;
2462
2463 section->output_section = output->bfd_section;
2464
2465 if (!map_head_is_link_order)
2466 {
2467 asection *s = output->bfd_section->map_tail.s;
2468 output->bfd_section->map_tail.s = section;
2469 section->map_head.s = NULL;
2470 section->map_tail.s = s;
2471 if (s != NULL)
2472 s->map_head.s = section;
2473 else
2474 output->bfd_section->map_head.s = section;
2475 }
2476
2477 /* Add a section reference to the list. */
2478 new_section = new_stat (lang_input_section, ptr);
2479 new_section->section = section;
2480 }
2481
2482 /* Handle wildcard sorting. This returns the lang_input_section which
2483 should follow the one we are going to create for SECTION and FILE,
2484 based on the sorting requirements of WILD. It returns NULL if the
2485 new section should just go at the end of the current list. */
2486
2487 static lang_statement_union_type *
2488 wild_sort (lang_wild_statement_type *wild,
2489 struct wildcard_list *sec,
2490 lang_input_statement_type *file,
2491 asection *section)
2492 {
2493 lang_statement_union_type *l;
2494
2495 if (!wild->filenames_sorted
2496 && (sec == NULL || sec->spec.sorted == none))
2497 return NULL;
2498
2499 for (l = wild->children.head; l != NULL; l = l->header.next)
2500 {
2501 lang_input_section_type *ls;
2502
2503 if (l->header.type != lang_input_section_enum)
2504 continue;
2505 ls = &l->input_section;
2506
2507 /* Sorting by filename takes precedence over sorting by section
2508 name. */
2509
2510 if (wild->filenames_sorted)
2511 {
2512 const char *fn, *ln;
2513 bfd_boolean fa, la;
2514 int i;
2515
2516 /* The PE support for the .idata section as generated by
2517 dlltool assumes that files will be sorted by the name of
2518 the archive and then the name of the file within the
2519 archive. */
2520
2521 if (file->the_bfd != NULL
2522 && file->the_bfd->my_archive != NULL)
2523 {
2524 fn = bfd_get_filename (file->the_bfd->my_archive);
2525 fa = TRUE;
2526 }
2527 else
2528 {
2529 fn = file->filename;
2530 fa = FALSE;
2531 }
2532
2533 if (ls->section->owner->my_archive != NULL)
2534 {
2535 ln = bfd_get_filename (ls->section->owner->my_archive);
2536 la = TRUE;
2537 }
2538 else
2539 {
2540 ln = ls->section->owner->filename;
2541 la = FALSE;
2542 }
2543
2544 i = filename_cmp (fn, ln);
2545 if (i > 0)
2546 continue;
2547 else if (i < 0)
2548 break;
2549
2550 if (fa || la)
2551 {
2552 if (fa)
2553 fn = file->filename;
2554 if (la)
2555 ln = ls->section->owner->filename;
2556
2557 i = filename_cmp (fn, ln);
2558 if (i > 0)
2559 continue;
2560 else if (i < 0)
2561 break;
2562 }
2563 }
2564
2565 /* Here either the files are not sorted by name, or we are
2566 looking at the sections for this file. */
2567
2568 if (sec != NULL
2569 && sec->spec.sorted != none
2570 && sec->spec.sorted != by_none)
2571 if (compare_section (sec->spec.sorted, section, ls->section) < 0)
2572 break;
2573 }
2574
2575 return l;
2576 }
2577
2578 /* Expand a wild statement for a particular FILE. SECTION may be
2579 NULL, in which case it is a wild card. */
2580
2581 static void
2582 output_section_callback (lang_wild_statement_type *ptr,
2583 struct wildcard_list *sec,
2584 asection *section,
2585 struct flag_info *sflag_info,
2586 lang_input_statement_type *file,
2587 void *output)
2588 {
2589 lang_statement_union_type *before;
2590 lang_output_section_statement_type *os;
2591
2592 os = (lang_output_section_statement_type *) output;
2593
2594 /* Exclude sections that match UNIQUE_SECTION_LIST. */
2595 if (unique_section_p (section, os))
2596 return;
2597
2598 before = wild_sort (ptr, sec, file, section);
2599
2600 /* Here BEFORE points to the lang_input_section which
2601 should follow the one we are about to add. If BEFORE
2602 is NULL, then the section should just go at the end
2603 of the current list. */
2604
2605 if (before == NULL)
2606 lang_add_section (&ptr->children, section, sflag_info, os);
2607 else
2608 {
2609 lang_statement_list_type list;
2610 lang_statement_union_type **pp;
2611
2612 lang_list_init (&list);
2613 lang_add_section (&list, section, sflag_info, os);
2614
2615 /* If we are discarding the section, LIST.HEAD will
2616 be NULL. */
2617 if (list.head != NULL)
2618 {
2619 ASSERT (list.head->header.next == NULL);
2620
2621 for (pp = &ptr->children.head;
2622 *pp != before;
2623 pp = &(*pp)->header.next)
2624 ASSERT (*pp != NULL);
2625
2626 list.head->header.next = *pp;
2627 *pp = list.head;
2628 }
2629 }
2630 }
2631
2632 /* Check if all sections in a wild statement for a particular FILE
2633 are readonly. */
2634
2635 static void
2636 check_section_callback (lang_wild_statement_type *ptr ATTRIBUTE_UNUSED,
2637 struct wildcard_list *sec ATTRIBUTE_UNUSED,
2638 asection *section,
2639 struct flag_info *sflag_info ATTRIBUTE_UNUSED,
2640 lang_input_statement_type *file ATTRIBUTE_UNUSED,
2641 void *output)
2642 {
2643 lang_output_section_statement_type *os;
2644
2645 os = (lang_output_section_statement_type *) output;
2646
2647 /* Exclude sections that match UNIQUE_SECTION_LIST. */
2648 if (unique_section_p (section, os))
2649 return;
2650
2651 if (section->output_section == NULL && (section->flags & SEC_READONLY) == 0)
2652 os->all_input_readonly = FALSE;
2653 }
2654
2655 /* This is passed a file name which must have been seen already and
2656 added to the statement tree. We will see if it has been opened
2657 already and had its symbols read. If not then we'll read it. */
2658
2659 static lang_input_statement_type *
2660 lookup_name (const char *name)
2661 {
2662 lang_input_statement_type *search;
2663
2664 for (search = (lang_input_statement_type *) input_file_chain.head;
2665 search != NULL;
2666 search = (lang_input_statement_type *) search->next_real_file)
2667 {
2668 /* Use the local_sym_name as the name of the file that has
2669 already been loaded as filename might have been transformed
2670 via the search directory lookup mechanism. */
2671 const char *filename = search->local_sym_name;
2672
2673 if (filename != NULL
2674 && filename_cmp (filename, name) == 0)
2675 break;
2676 }
2677
2678 if (search == NULL)
2679 search = new_afile (name, lang_input_file_is_search_file_enum,
2680 default_target, FALSE);
2681
2682 /* If we have already added this file, or this file is not real
2683 don't add this file. */
2684 if (search->flags.loaded || !search->flags.real)
2685 return search;
2686
2687 if (!load_symbols (search, NULL))
2688 return NULL;
2689
2690 return search;
2691 }
2692
2693 /* Save LIST as a list of libraries whose symbols should not be exported. */
2694
2695 struct excluded_lib
2696 {
2697 char *name;
2698 struct excluded_lib *next;
2699 };
2700 static struct excluded_lib *excluded_libs;
2701
2702 void
2703 add_excluded_libs (const char *list)
2704 {
2705 const char *p = list, *end;
2706
2707 while (*p != '\0')
2708 {
2709 struct excluded_lib *entry;
2710 end = strpbrk (p, ",:");
2711 if (end == NULL)
2712 end = p + strlen (p);
2713 entry = (struct excluded_lib *) xmalloc (sizeof (*entry));
2714 entry->next = excluded_libs;
2715 entry->name = (char *) xmalloc (end - p + 1);
2716 memcpy (entry->name, p, end - p);
2717 entry->name[end - p] = '\0';
2718 excluded_libs = entry;
2719 if (*end == '\0')
2720 break;
2721 p = end + 1;
2722 }
2723 }
2724
2725 static void
2726 check_excluded_libs (bfd *abfd)
2727 {
2728 struct excluded_lib *lib = excluded_libs;
2729
2730 while (lib)
2731 {
2732 int len = strlen (lib->name);
2733 const char *filename = lbasename (abfd->filename);
2734
2735 if (strcmp (lib->name, "ALL") == 0)
2736 {
2737 abfd->no_export = TRUE;
2738 return;
2739 }
2740
2741 if (filename_ncmp (lib->name, filename, len) == 0
2742 && (filename[len] == '\0'
2743 || (filename[len] == '.' && filename[len + 1] == 'a'
2744 && filename[len + 2] == '\0')))
2745 {
2746 abfd->no_export = TRUE;
2747 return;
2748 }
2749
2750 lib = lib->next;
2751 }
2752 }
2753
2754 /* Get the symbols for an input file. */
2755
2756 bfd_boolean
2757 load_symbols (lang_input_statement_type *entry,
2758 lang_statement_list_type *place)
2759 {
2760 char **matching;
2761
2762 if (entry->flags.loaded)
2763 return TRUE;
2764
2765 ldfile_open_file (entry);
2766
2767 /* Do not process further if the file was missing. */
2768 if (entry->flags.missing_file)
2769 return TRUE;
2770
2771 if (!bfd_check_format (entry->the_bfd, bfd_archive)
2772 && !bfd_check_format_matches (entry->the_bfd, bfd_object, &matching))
2773 {
2774 bfd_error_type err;
2775 struct lang_input_statement_flags save_flags;
2776 extern FILE *yyin;
2777
2778 err = bfd_get_error ();
2779
2780 /* See if the emulation has some special knowledge. */
2781 if (ldemul_unrecognized_file (entry))
2782 return TRUE;
2783
2784 if (err == bfd_error_file_ambiguously_recognized)
2785 {
2786 char **p;
2787
2788 einfo (_("%B: file not recognized: %E\n"), entry->the_bfd);
2789 einfo (_("%B: matching formats:"), entry->the_bfd);
2790 for (p = matching; *p != NULL; p++)
2791 einfo (" %s", *p);
2792 einfo ("%F\n");
2793 }
2794 else if (err != bfd_error_file_not_recognized
2795 || place == NULL)
2796 einfo (_("%F%B: file not recognized: %E\n"), entry->the_bfd);
2797
2798 bfd_close (entry->the_bfd);
2799 entry->the_bfd = NULL;
2800
2801 /* Try to interpret the file as a linker script. */
2802 save_flags = input_flags;
2803 ldfile_open_command_file (entry->filename);
2804
2805 push_stat_ptr (place);
2806 input_flags.add_DT_NEEDED_for_regular
2807 = entry->flags.add_DT_NEEDED_for_regular;
2808 input_flags.add_DT_NEEDED_for_dynamic
2809 = entry->flags.add_DT_NEEDED_for_dynamic;
2810 input_flags.whole_archive = entry->flags.whole_archive;
2811 input_flags.dynamic = entry->flags.dynamic;
2812
2813 ldfile_assumed_script = TRUE;
2814 parser_input = input_script;
2815 yyparse ();
2816 ldfile_assumed_script = FALSE;
2817
2818 /* missing_file is sticky. sysrooted will already have been
2819 restored when seeing EOF in yyparse, but no harm to restore
2820 again. */
2821 save_flags.missing_file |= input_flags.missing_file;
2822 input_flags = save_flags;
2823 pop_stat_ptr ();
2824 fclose (yyin);
2825 yyin = NULL;
2826 entry->flags.loaded = TRUE;
2827
2828 return TRUE;
2829 }
2830
2831 if (ldemul_recognized_file (entry))
2832 return TRUE;
2833
2834 /* We don't call ldlang_add_file for an archive. Instead, the
2835 add_symbols entry point will call ldlang_add_file, via the
2836 add_archive_element callback, for each element of the archive
2837 which is used. */
2838 switch (bfd_get_format (entry->the_bfd))
2839 {
2840 default:
2841 break;
2842
2843 case bfd_object:
2844 if (!entry->flags.reload)
2845 ldlang_add_file (entry);
2846 if (trace_files || verbose)
2847 info_msg ("%I\n", entry);
2848 break;
2849
2850 case bfd_archive:
2851 check_excluded_libs (entry->the_bfd);
2852
2853 if (entry->flags.whole_archive)
2854 {
2855 bfd *member = NULL;
2856 bfd_boolean loaded = TRUE;
2857
2858 for (;;)
2859 {
2860 bfd *subsbfd;
2861 member = bfd_openr_next_archived_file (entry->the_bfd, member);
2862
2863 if (member == NULL)
2864 break;
2865
2866 if (!bfd_check_format (member, bfd_object))
2867 {
2868 einfo (_("%F%B: member %B in archive is not an object\n"),
2869 entry->the_bfd, member);
2870 loaded = FALSE;
2871 }
2872
2873 subsbfd = member;
2874 if (!(*link_info.callbacks
2875 ->add_archive_element) (&link_info, member,
2876 "--whole-archive", &subsbfd))
2877 abort ();
2878
2879 /* Potentially, the add_archive_element hook may have set a
2880 substitute BFD for us. */
2881 if (!bfd_link_add_symbols (subsbfd, &link_info))
2882 {
2883 einfo (_("%F%B: error adding symbols: %E\n"), member);
2884 loaded = FALSE;
2885 }
2886 }
2887
2888 entry->flags.loaded = loaded;
2889 return loaded;
2890 }
2891 break;
2892 }
2893
2894 if (bfd_link_add_symbols (entry->the_bfd, &link_info))
2895 entry->flags.loaded = TRUE;
2896 else
2897 einfo (_("%F%B: error adding symbols: %E\n"), entry->the_bfd);
2898
2899 return entry->flags.loaded;
2900 }
2901
2902 /* Handle a wild statement. S->FILENAME or S->SECTION_LIST or both
2903 may be NULL, indicating that it is a wildcard. Separate
2904 lang_input_section statements are created for each part of the
2905 expansion; they are added after the wild statement S. OUTPUT is
2906 the output section. */
2907
2908 static void
2909 wild (lang_wild_statement_type *s,
2910 const char *target ATTRIBUTE_UNUSED,
2911 lang_output_section_statement_type *output)
2912 {
2913 struct wildcard_list *sec;
2914
2915 if (s->handler_data[0]
2916 && s->handler_data[0]->spec.sorted == by_name
2917 && !s->filenames_sorted)
2918 {
2919 lang_section_bst_type *tree;
2920
2921 walk_wild (s, output_section_callback_fast, output);
2922
2923 tree = s->tree;
2924 if (tree)
2925 {
2926 output_section_callback_tree_to_list (s, tree, output);
2927 s->tree = NULL;
2928 }
2929 }
2930 else
2931 walk_wild (s, output_section_callback, output);
2932
2933 if (default_common_section == NULL)
2934 for (sec = s->section_list; sec != NULL; sec = sec->next)
2935 if (sec->spec.name != NULL && strcmp (sec->spec.name, "COMMON") == 0)
2936 {
2937 /* Remember the section that common is going to in case we
2938 later get something which doesn't know where to put it. */
2939 default_common_section = output;
2940 break;
2941 }
2942 }
2943
2944 /* Return TRUE iff target is the sought target. */
2945
2946 static int
2947 get_target (const bfd_target *target, void *data)
2948 {
2949 const char *sought = (const char *) data;
2950
2951 return strcmp (target->name, sought) == 0;
2952 }
2953
2954 /* Like strcpy() but convert to lower case as well. */
2955
2956 static void
2957 stricpy (char *dest, char *src)
2958 {
2959 char c;
2960
2961 while ((c = *src++) != 0)
2962 *dest++ = TOLOWER (c);
2963
2964 *dest = 0;
2965 }
2966
2967 /* Remove the first occurrence of needle (if any) in haystack
2968 from haystack. */
2969
2970 static void
2971 strcut (char *haystack, char *needle)
2972 {
2973 haystack = strstr (haystack, needle);
2974
2975 if (haystack)
2976 {
2977 char *src;
2978
2979 for (src = haystack + strlen (needle); *src;)
2980 *haystack++ = *src++;
2981
2982 *haystack = 0;
2983 }
2984 }
2985
2986 /* Compare two target format name strings.
2987 Return a value indicating how "similar" they are. */
2988
2989 static int
2990 name_compare (char *first, char *second)
2991 {
2992 char *copy1;
2993 char *copy2;
2994 int result;
2995
2996 copy1 = (char *) xmalloc (strlen (first) + 1);
2997 copy2 = (char *) xmalloc (strlen (second) + 1);
2998
2999 /* Convert the names to lower case. */
3000 stricpy (copy1, first);
3001 stricpy (copy2, second);
3002
3003 /* Remove size and endian strings from the name. */
3004 strcut (copy1, "big");
3005 strcut (copy1, "little");
3006 strcut (copy2, "big");
3007 strcut (copy2, "little");
3008
3009 /* Return a value based on how many characters match,
3010 starting from the beginning. If both strings are
3011 the same then return 10 * their length. */
3012 for (result = 0; copy1[result] == copy2[result]; result++)
3013 if (copy1[result] == 0)
3014 {
3015 result *= 10;
3016 break;
3017 }
3018
3019 free (copy1);
3020 free (copy2);
3021
3022 return result;
3023 }
3024
3025 /* Set by closest_target_match() below. */
3026 static const bfd_target *winner;
3027
3028 /* Scan all the valid bfd targets looking for one that has the endianness
3029 requirement that was specified on the command line, and is the nearest
3030 match to the original output target. */
3031
3032 static int
3033 closest_target_match (const bfd_target *target, void *data)
3034 {
3035 const bfd_target *original = (const bfd_target *) data;
3036
3037 if (command_line.endian == ENDIAN_BIG
3038 && target->byteorder != BFD_ENDIAN_BIG)
3039 return 0;
3040
3041 if (command_line.endian == ENDIAN_LITTLE
3042 && target->byteorder != BFD_ENDIAN_LITTLE)
3043 return 0;
3044
3045 /* Must be the same flavour. */
3046 if (target->flavour != original->flavour)
3047 return 0;
3048
3049 /* Ignore generic big and little endian elf vectors. */
3050 if (strcmp (target->name, "elf32-big") == 0
3051 || strcmp (target->name, "elf64-big") == 0
3052 || strcmp (target->name, "elf32-little") == 0
3053 || strcmp (target->name, "elf64-little") == 0)
3054 return 0;
3055
3056 /* If we have not found a potential winner yet, then record this one. */
3057 if (winner == NULL)
3058 {
3059 winner = target;
3060 return 0;
3061 }
3062
3063 /* Oh dear, we now have two potential candidates for a successful match.
3064 Compare their names and choose the better one. */
3065 if (name_compare (target->name, original->name)
3066 > name_compare (winner->name, original->name))
3067 winner = target;
3068
3069 /* Keep on searching until wqe have checked them all. */
3070 return 0;
3071 }
3072
3073 /* Return the BFD target format of the first input file. */
3074
3075 static char *
3076 get_first_input_target (void)
3077 {
3078 char *target = NULL;
3079
3080 LANG_FOR_EACH_INPUT_STATEMENT (s)
3081 {
3082 if (s->header.type == lang_input_statement_enum
3083 && s->flags.real)
3084 {
3085 ldfile_open_file (s);
3086
3087 if (s->the_bfd != NULL
3088 && bfd_check_format (s->the_bfd, bfd_object))
3089 {
3090 target = bfd_get_target (s->the_bfd);
3091
3092 if (target != NULL)
3093 break;
3094 }
3095 }
3096 }
3097
3098 return target;
3099 }
3100
3101 const char *
3102 lang_get_output_target (void)
3103 {
3104 const char *target;
3105
3106 /* Has the user told us which output format to use? */
3107 if (output_target != NULL)
3108 return output_target;
3109
3110 /* No - has the current target been set to something other than
3111 the default? */
3112 if (current_target != default_target && current_target != NULL)
3113 return current_target;
3114
3115 /* No - can we determine the format of the first input file? */
3116 target = get_first_input_target ();
3117 if (target != NULL)
3118 return target;
3119
3120 /* Failed - use the default output target. */
3121 return default_target;
3122 }
3123
3124 /* Open the output file. */
3125
3126 static void
3127 open_output (const char *name)
3128 {
3129 output_target = lang_get_output_target ();
3130
3131 /* Has the user requested a particular endianness on the command
3132 line? */
3133 if (command_line.endian != ENDIAN_UNSET)
3134 {
3135 /* Get the chosen target. */
3136 const bfd_target *target
3137 = bfd_iterate_over_targets (get_target, (void *) output_target);
3138
3139 /* If the target is not supported, we cannot do anything. */
3140 if (target != NULL)
3141 {
3142 enum bfd_endian desired_endian;
3143
3144 if (command_line.endian == ENDIAN_BIG)
3145 desired_endian = BFD_ENDIAN_BIG;
3146 else
3147 desired_endian = BFD_ENDIAN_LITTLE;
3148
3149 /* See if the target has the wrong endianness. This should
3150 not happen if the linker script has provided big and
3151 little endian alternatives, but some scrips don't do
3152 this. */
3153 if (target->byteorder != desired_endian)
3154 {
3155 /* If it does, then see if the target provides
3156 an alternative with the correct endianness. */
3157 if (target->alternative_target != NULL
3158 && (target->alternative_target->byteorder == desired_endian))
3159 output_target = target->alternative_target->name;
3160 else
3161 {
3162 /* Try to find a target as similar as possible to
3163 the default target, but which has the desired
3164 endian characteristic. */
3165 bfd_iterate_over_targets (closest_target_match,
3166 (void *) target);
3167
3168 /* Oh dear - we could not find any targets that
3169 satisfy our requirements. */
3170 if (winner == NULL)
3171 einfo (_("%P: warning: could not find any targets"
3172 " that match endianness requirement\n"));
3173 else
3174 output_target = winner->name;
3175 }
3176 }
3177 }
3178 }
3179
3180 link_info.output_bfd = bfd_openw (name, output_target);
3181
3182 if (link_info.output_bfd == NULL)
3183 {
3184 if (bfd_get_error () == bfd_error_invalid_target)
3185 einfo (_("%P%F: target %s not found\n"), output_target);
3186
3187 einfo (_("%P%F: cannot open output file %s: %E\n"), name);
3188 }
3189
3190 delete_output_file_on_failure = TRUE;
3191
3192 if (!bfd_set_format (link_info.output_bfd, bfd_object))
3193 einfo (_("%P%F:%s: can not make object file: %E\n"), name);
3194 if (!bfd_set_arch_mach (link_info.output_bfd,
3195 ldfile_output_architecture,
3196 ldfile_output_machine))
3197 einfo (_("%P%F:%s: can not set architecture: %E\n"), name);
3198
3199 link_info.hash = bfd_link_hash_table_create (link_info.output_bfd);
3200 if (link_info.hash == NULL)
3201 einfo (_("%P%F: can not create hash table: %E\n"));
3202
3203 bfd_set_gp_size (link_info.output_bfd, g_switch_value);
3204 }
3205
3206 static void
3207 ldlang_open_output (lang_statement_union_type *statement)
3208 {
3209 switch (statement->header.type)
3210 {
3211 case lang_output_statement_enum:
3212 ASSERT (link_info.output_bfd == NULL);
3213 open_output (statement->output_statement.name);
3214 ldemul_set_output_arch ();
3215 if (config.magic_demand_paged
3216 && !bfd_link_relocatable (&link_info))
3217 link_info.output_bfd->flags |= D_PAGED;
3218 else
3219 link_info.output_bfd->flags &= ~D_PAGED;
3220 if (config.text_read_only)
3221 link_info.output_bfd->flags |= WP_TEXT;
3222 else
3223 link_info.output_bfd->flags &= ~WP_TEXT;
3224 if (link_info.traditional_format)
3225 link_info.output_bfd->flags |= BFD_TRADITIONAL_FORMAT;
3226 else
3227 link_info.output_bfd->flags &= ~BFD_TRADITIONAL_FORMAT;
3228 break;
3229
3230 case lang_target_statement_enum:
3231 current_target = statement->target_statement.target;
3232 break;
3233 default:
3234 break;
3235 }
3236 }
3237
3238 static void
3239 init_opb (void)
3240 {
3241 unsigned x = bfd_arch_mach_octets_per_byte (ldfile_output_architecture,
3242 ldfile_output_machine);
3243 opb_shift = 0;
3244 if (x > 1)
3245 while ((x & 1) == 0)
3246 {
3247 x >>= 1;
3248 ++opb_shift;
3249 }
3250 ASSERT (x == 1);
3251 }
3252
3253 /* Open all the input files. */
3254
3255 enum open_bfd_mode
3256 {
3257 OPEN_BFD_NORMAL = 0,
3258 OPEN_BFD_FORCE = 1,
3259 OPEN_BFD_RESCAN = 2
3260 };
3261 #ifdef ENABLE_PLUGINS
3262 static lang_input_statement_type *plugin_insert = NULL;
3263 #endif
3264
3265 static void
3266 open_input_bfds (lang_statement_union_type *s, enum open_bfd_mode mode)
3267 {
3268 for (; s != NULL; s = s->header.next)
3269 {
3270 switch (s->header.type)
3271 {
3272 case lang_constructors_statement_enum:
3273 open_input_bfds (constructor_list.head, mode);
3274 break;
3275 case lang_output_section_statement_enum:
3276 open_input_bfds (s->output_section_statement.children.head, mode);
3277 break;
3278 case lang_wild_statement_enum:
3279 /* Maybe we should load the file's symbols. */
3280 if ((mode & OPEN_BFD_RESCAN) == 0
3281 && s->wild_statement.filename
3282 && !wildcardp (s->wild_statement.filename)
3283 && !archive_path (s->wild_statement.filename))
3284 lookup_name (s->wild_statement.filename);
3285 open_input_bfds (s->wild_statement.children.head, mode);
3286 break;
3287 case lang_group_statement_enum:
3288 {
3289 struct bfd_link_hash_entry *undefs;
3290
3291 /* We must continually search the entries in the group
3292 until no new symbols are added to the list of undefined
3293 symbols. */
3294
3295 do
3296 {
3297 undefs = link_info.hash->undefs_tail;
3298 open_input_bfds (s->group_statement.children.head,
3299 mode | OPEN_BFD_FORCE);
3300 }
3301 while (undefs != link_info.hash->undefs_tail);
3302 }
3303 break;
3304 case lang_target_statement_enum:
3305 current_target = s->target_statement.target;
3306 break;
3307 case lang_input_statement_enum:
3308 if (s->input_statement.flags.real)
3309 {
3310 lang_statement_union_type **os_tail;
3311 lang_statement_list_type add;
3312 bfd *abfd;
3313
3314 s->input_statement.target = current_target;
3315
3316 /* If we are being called from within a group, and this
3317 is an archive which has already been searched, then
3318 force it to be researched unless the whole archive
3319 has been loaded already. Do the same for a rescan.
3320 Likewise reload --as-needed shared libs. */
3321 if (mode != OPEN_BFD_NORMAL
3322 #ifdef ENABLE_PLUGINS
3323 && ((mode & OPEN_BFD_RESCAN) == 0
3324 || plugin_insert == NULL)
3325 #endif
3326 && s->input_statement.flags.loaded
3327 && (abfd = s->input_statement.the_bfd) != NULL
3328 && ((bfd_get_format (abfd) == bfd_archive
3329 && !s->input_statement.flags.whole_archive)
3330 || (bfd_get_format (abfd) == bfd_object
3331 && ((abfd->flags) & DYNAMIC) != 0
3332 && s->input_statement.flags.add_DT_NEEDED_for_regular
3333 && bfd_get_flavour (abfd) == bfd_target_elf_flavour
3334 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)))
3335 {
3336 s->input_statement.flags.loaded = FALSE;
3337 s->input_statement.flags.reload = TRUE;
3338 }
3339
3340 os_tail = lang_output_section_statement.tail;
3341 lang_list_init (&add);
3342
3343 if (!load_symbols (&s->input_statement, &add))
3344 config.make_executable = FALSE;
3345
3346 if (add.head != NULL)
3347 {
3348 /* If this was a script with output sections then
3349 tack any added statements on to the end of the
3350 list. This avoids having to reorder the output
3351 section statement list. Very likely the user
3352 forgot -T, and whatever we do here will not meet
3353 naive user expectations. */
3354 if (os_tail != lang_output_section_statement.tail)
3355 {
3356 einfo (_("%P: warning: %s contains output sections;"
3357 " did you forget -T?\n"),
3358 s->input_statement.filename);
3359 *stat_ptr->tail = add.head;
3360 stat_ptr->tail = add.tail;
3361 }
3362 else
3363 {
3364 *add.tail = s->header.next;
3365 s->header.next = add.head;
3366 }
3367 }
3368 }
3369 #ifdef ENABLE_PLUGINS
3370 /* If we have found the point at which a plugin added new
3371 files, clear plugin_insert to enable archive rescan. */
3372 if (&s->input_statement == plugin_insert)
3373 plugin_insert = NULL;
3374 #endif
3375 break;
3376 case lang_assignment_statement_enum:
3377 if (s->assignment_statement.exp->assign.defsym)
3378 /* This is from a --defsym on the command line. */
3379 exp_fold_tree_no_dot (s->assignment_statement.exp);
3380 break;
3381 default:
3382 break;
3383 }
3384 }
3385
3386 /* Exit if any of the files were missing. */
3387 if (input_flags.missing_file)
3388 einfo ("%F");
3389 }
3390
3391 /* Add the supplied name to the symbol table as an undefined reference.
3392 This is a two step process as the symbol table doesn't even exist at
3393 the time the ld command line is processed. First we put the name
3394 on a list, then, once the output file has been opened, transfer the
3395 name to the symbol table. */
3396
3397 typedef struct bfd_sym_chain ldlang_undef_chain_list_type;
3398
3399 #define ldlang_undef_chain_list_head entry_symbol.next
3400
3401 void
3402 ldlang_add_undef (const char *const name, bfd_boolean cmdline)
3403 {
3404 ldlang_undef_chain_list_type *new_undef;
3405
3406 undef_from_cmdline = undef_from_cmdline || cmdline;
3407 new_undef = (ldlang_undef_chain_list_type *) stat_alloc (sizeof (*new_undef));
3408 new_undef->next = ldlang_undef_chain_list_head;
3409 ldlang_undef_chain_list_head = new_undef;
3410
3411 new_undef->name = xstrdup (name);
3412
3413 if (link_info.output_bfd != NULL)
3414 insert_undefined (new_undef->name);
3415 }
3416
3417 /* Insert NAME as undefined in the symbol table. */
3418
3419 static void
3420 insert_undefined (const char *name)
3421 {
3422 struct bfd_link_hash_entry *h;
3423
3424 h = bfd_link_hash_lookup (link_info.hash, name, TRUE, FALSE, TRUE);
3425 if (h == NULL)
3426 einfo (_("%P%F: bfd_link_hash_lookup failed: %E\n"));
3427 if (h->type == bfd_link_hash_new)
3428 {
3429 h->type = bfd_link_hash_undefined;
3430 h->u.undef.abfd = NULL;
3431 bfd_link_add_undef (link_info.hash, h);
3432 }
3433 }
3434
3435 /* Run through the list of undefineds created above and place them
3436 into the linker hash table as undefined symbols belonging to the
3437 script file. */
3438
3439 static void
3440 lang_place_undefineds (void)
3441 {
3442 ldlang_undef_chain_list_type *ptr;
3443
3444 for (ptr = ldlang_undef_chain_list_head; ptr != NULL; ptr = ptr->next)
3445 insert_undefined (ptr->name);
3446 }
3447
3448 /* Structure used to build the list of symbols that the user has required
3449 be defined. */
3450
3451 struct require_defined_symbol
3452 {
3453 const char *name;
3454 struct require_defined_symbol *next;
3455 };
3456
3457 /* The list of symbols that the user has required be defined. */
3458
3459 static struct require_defined_symbol *require_defined_symbol_list;
3460
3461 /* Add a new symbol NAME to the list of symbols that are required to be
3462 defined. */
3463
3464 void
3465 ldlang_add_require_defined (const char *const name)
3466 {
3467 struct require_defined_symbol *ptr;
3468
3469 ldlang_add_undef (name, TRUE);
3470 ptr = (struct require_defined_symbol *) stat_alloc (sizeof (*ptr));
3471 ptr->next = require_defined_symbol_list;
3472 ptr->name = strdup (name);
3473 require_defined_symbol_list = ptr;
3474 }
3475
3476 /* Check that all symbols the user required to be defined, are defined,
3477 raise an error if we find a symbol that is not defined. */
3478
3479 static void
3480 ldlang_check_require_defined_symbols (void)
3481 {
3482 struct require_defined_symbol *ptr;
3483
3484 for (ptr = require_defined_symbol_list; ptr != NULL; ptr = ptr->next)
3485 {
3486 struct bfd_link_hash_entry *h;
3487
3488 h = bfd_link_hash_lookup (link_info.hash, ptr->name,
3489 FALSE, FALSE, TRUE);
3490 if (h == NULL
3491 || (h->type != bfd_link_hash_defined
3492 && h->type != bfd_link_hash_defweak))
3493 einfo(_("%P%X: required symbol `%s' not defined\n"), ptr->name);
3494 }
3495 }
3496
3497 /* Check for all readonly or some readwrite sections. */
3498
3499 static void
3500 check_input_sections
3501 (lang_statement_union_type *s,
3502 lang_output_section_statement_type *output_section_statement)
3503 {
3504 for (; s != (lang_statement_union_type *) NULL; s = s->header.next)
3505 {
3506 switch (s->header.type)
3507 {
3508 case lang_wild_statement_enum:
3509 walk_wild (&s->wild_statement, check_section_callback,
3510 output_section_statement);
3511 if (!output_section_statement->all_input_readonly)
3512 return;
3513 break;
3514 case lang_constructors_statement_enum:
3515 check_input_sections (constructor_list.head,
3516 output_section_statement);
3517 if (!output_section_statement->all_input_readonly)
3518 return;
3519 break;
3520 case lang_group_statement_enum:
3521 check_input_sections (s->group_statement.children.head,
3522 output_section_statement);
3523 if (!output_section_statement->all_input_readonly)
3524 return;
3525 break;
3526 default:
3527 break;
3528 }
3529 }
3530 }
3531
3532 /* Update wildcard statements if needed. */
3533
3534 static void
3535 update_wild_statements (lang_statement_union_type *s)
3536 {
3537 struct wildcard_list *sec;
3538
3539 switch (sort_section)
3540 {
3541 default:
3542 FAIL ();
3543
3544 case none:
3545 break;
3546
3547 case by_name:
3548 case by_alignment:
3549 for (; s != NULL; s = s->header.next)
3550 {
3551 switch (s->header.type)
3552 {
3553 default:
3554 break;
3555
3556 case lang_wild_statement_enum:
3557 for (sec = s->wild_statement.section_list; sec != NULL;
3558 sec = sec->next)
3559 {
3560 switch (sec->spec.sorted)
3561 {
3562 case none:
3563 sec->spec.sorted = sort_section;
3564 break;
3565 case by_name:
3566 if (sort_section == by_alignment)
3567 sec->spec.sorted = by_name_alignment;
3568 break;
3569 case by_alignment:
3570 if (sort_section == by_name)
3571 sec->spec.sorted = by_alignment_name;
3572 break;
3573 default:
3574 break;
3575 }
3576 }
3577 break;
3578
3579 case lang_constructors_statement_enum:
3580 update_wild_statements (constructor_list.head);
3581 break;
3582
3583 case lang_output_section_statement_enum:
3584 /* Don't sort .init/.fini sections. */
3585 if (strcmp (s->output_section_statement.name, ".init") != 0
3586 && strcmp (s->output_section_statement.name, ".fini") != 0)
3587 update_wild_statements
3588 (s->output_section_statement.children.head);
3589 break;
3590
3591 case lang_group_statement_enum:
3592 update_wild_statements (s->group_statement.children.head);
3593 break;
3594 }
3595 }
3596 break;
3597 }
3598 }
3599
3600 /* Open input files and attach to output sections. */
3601
3602 static void
3603 map_input_to_output_sections
3604 (lang_statement_union_type *s, const char *target,
3605 lang_output_section_statement_type *os)
3606 {
3607 for (; s != NULL; s = s->header.next)
3608 {
3609 lang_output_section_statement_type *tos;
3610 flagword flags;
3611
3612 switch (s->header.type)
3613 {
3614 case lang_wild_statement_enum:
3615 wild (&s->wild_statement, target, os);
3616 break;
3617 case lang_constructors_statement_enum:
3618 map_input_to_output_sections (constructor_list.head,
3619 target,
3620 os);
3621 break;
3622 case lang_output_section_statement_enum:
3623 tos = &s->output_section_statement;
3624 if (tos->constraint != 0)
3625 {
3626 if (tos->constraint != ONLY_IF_RW
3627 && tos->constraint != ONLY_IF_RO)
3628 break;
3629 tos->all_input_readonly = TRUE;
3630 check_input_sections (tos->children.head, tos);
3631 if (tos->all_input_readonly != (tos->constraint == ONLY_IF_RO))
3632 {
3633 tos->constraint = -1;
3634 break;
3635 }
3636 }
3637 map_input_to_output_sections (tos->children.head,
3638 target,
3639 tos);
3640 break;
3641 case lang_output_statement_enum:
3642 break;
3643 case lang_target_statement_enum:
3644 target = s->target_statement.target;
3645 break;
3646 case lang_group_statement_enum:
3647 map_input_to_output_sections (s->group_statement.children.head,
3648 target,
3649 os);
3650 break;
3651 case lang_data_statement_enum:
3652 /* Make sure that any sections mentioned in the expression
3653 are initialized. */
3654 exp_init_os (s->data_statement.exp);
3655 /* The output section gets CONTENTS, ALLOC and LOAD, but
3656 these may be overridden by the script. */
3657 flags = SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD;
3658 switch (os->sectype)
3659 {
3660 case normal_section:
3661 case overlay_section:
3662 break;
3663 case noalloc_section:
3664 flags = SEC_HAS_CONTENTS;
3665 break;
3666 case noload_section:
3667 if (bfd_get_flavour (link_info.output_bfd)
3668 == bfd_target_elf_flavour)
3669 flags = SEC_NEVER_LOAD | SEC_ALLOC;
3670 else
3671 flags = SEC_NEVER_LOAD | SEC_HAS_CONTENTS;
3672 break;
3673 }
3674 if (os->bfd_section == NULL)
3675 init_os (os, flags);
3676 else
3677 os->bfd_section->flags |= flags;
3678 break;
3679 case lang_input_section_enum:
3680 break;
3681 case lang_fill_statement_enum:
3682 case lang_object_symbols_statement_enum:
3683 case lang_reloc_statement_enum:
3684 case lang_padding_statement_enum:
3685 case lang_input_statement_enum:
3686 if (os != NULL && os->bfd_section == NULL)
3687 init_os (os, 0);
3688 break;
3689 case lang_assignment_statement_enum:
3690 if (os != NULL && os->bfd_section == NULL)
3691 init_os (os, 0);
3692
3693 /* Make sure that any sections mentioned in the assignment
3694 are initialized. */
3695 exp_init_os (s->assignment_statement.exp);
3696 break;
3697 case lang_address_statement_enum:
3698 /* Mark the specified section with the supplied address.
3699 If this section was actually a segment marker, then the
3700 directive is ignored if the linker script explicitly
3701 processed the segment marker. Originally, the linker
3702 treated segment directives (like -Ttext on the
3703 command-line) as section directives. We honor the
3704 section directive semantics for backwards compatibility;
3705 linker scripts that do not specifically check for
3706 SEGMENT_START automatically get the old semantics. */
3707 if (!s->address_statement.segment
3708 || !s->address_statement.segment->used)
3709 {
3710 const char *name = s->address_statement.section_name;
3711
3712 /* Create the output section statement here so that
3713 orphans with a set address will be placed after other
3714 script sections. If we let the orphan placement code
3715 place them in amongst other sections then the address
3716 will affect following script sections, which is
3717 likely to surprise naive users. */
3718 tos = lang_output_section_statement_lookup (name, 0, TRUE);
3719 tos->addr_tree = s->address_statement.address;
3720 if (tos->bfd_section == NULL)
3721 init_os (tos, 0);
3722 }
3723 break;
3724 case lang_insert_statement_enum:
3725 break;
3726 }
3727 }
3728 }
3729
3730 /* An insert statement snips out all the linker statements from the
3731 start of the list and places them after the output section
3732 statement specified by the insert. This operation is complicated
3733 by the fact that we keep a doubly linked list of output section
3734 statements as well as the singly linked list of all statements. */
3735
3736 static void
3737 process_insert_statements (void)
3738 {
3739 lang_statement_union_type **s;
3740 lang_output_section_statement_type *first_os = NULL;
3741 lang_output_section_statement_type *last_os = NULL;
3742 lang_output_section_statement_type *os;
3743
3744 /* "start of list" is actually the statement immediately after
3745 the special abs_section output statement, so that it isn't
3746 reordered. */
3747 s = &lang_output_section_statement.head;
3748 while (*(s = &(*s)->header.next) != NULL)
3749 {
3750 if ((*s)->header.type == lang_output_section_statement_enum)
3751 {
3752 /* Keep pointers to the first and last output section
3753 statement in the sequence we may be about to move. */
3754 os = &(*s)->output_section_statement;
3755
3756 ASSERT (last_os == NULL || last_os->next == os);
3757 last_os = os;
3758
3759 /* Set constraint negative so that lang_output_section_find
3760 won't match this output section statement. At this
3761 stage in linking constraint has values in the range
3762 [-1, ONLY_IN_RW]. */
3763 last_os->constraint = -2 - last_os->constraint;
3764 if (first_os == NULL)
3765 first_os = last_os;
3766 }
3767 else if ((*s)->header.type == lang_insert_statement_enum)
3768 {
3769 lang_insert_statement_type *i = &(*s)->insert_statement;
3770 lang_output_section_statement_type *where;
3771 lang_statement_union_type **ptr;
3772 lang_statement_union_type *first;
3773
3774 where = lang_output_section_find (i->where);
3775 if (where != NULL && i->is_before)
3776 {
3777 do
3778 where = where->prev;
3779 while (where != NULL && where->constraint < 0);
3780 }
3781 if (where == NULL)
3782 {
3783 einfo (_("%F%P: %s not found for insert\n"), i->where);
3784 return;
3785 }
3786
3787 /* Deal with reordering the output section statement list. */
3788 if (last_os != NULL)
3789 {
3790 asection *first_sec, *last_sec;
3791 struct lang_output_section_statement_struct **next;
3792
3793 /* Snip out the output sections we are moving. */
3794 first_os->prev->next = last_os->next;
3795 if (last_os->next == NULL)
3796 {
3797 next = &first_os->prev->next;
3798 lang_output_section_statement.tail
3799 = (lang_statement_union_type **) next;
3800 }
3801 else
3802 last_os->next->prev = first_os->prev;
3803 /* Add them in at the new position. */
3804 last_os->next = where->next;
3805 if (where->next == NULL)
3806 {
3807 next = &last_os->next;
3808 lang_output_section_statement.tail
3809 = (lang_statement_union_type **) next;
3810 }
3811 else
3812 where->next->prev = last_os;
3813 first_os->prev = where;
3814 where->next = first_os;
3815
3816 /* Move the bfd sections in the same way. */
3817 first_sec = NULL;
3818 last_sec = NULL;
3819 for (os = first_os; os != NULL; os = os->next)
3820 {
3821 os->constraint = -2 - os->constraint;
3822 if (os->bfd_section != NULL
3823 && os->bfd_section->owner != NULL)
3824 {
3825 last_sec = os->bfd_section;
3826 if (first_sec == NULL)
3827 first_sec = last_sec;
3828 }
3829 if (os == last_os)
3830 break;
3831 }
3832 if (last_sec != NULL)
3833 {
3834 asection *sec = where->bfd_section;
3835 if (sec == NULL)
3836 sec = output_prev_sec_find (where);
3837
3838 /* The place we want to insert must come after the
3839 sections we are moving. So if we find no
3840 section or if the section is the same as our
3841 last section, then no move is needed. */
3842 if (sec != NULL && sec != last_sec)
3843 {
3844 /* Trim them off. */
3845 if (first_sec->prev != NULL)
3846 first_sec->prev->next = last_sec->next;
3847 else
3848 link_info.output_bfd->sections = last_sec->next;
3849 if (last_sec->next != NULL)
3850 last_sec->next->prev = first_sec->prev;
3851 else
3852 link_info.output_bfd->section_last = first_sec->prev;
3853 /* Add back. */
3854 last_sec->next = sec->next;
3855 if (sec->next != NULL)
3856 sec->next->prev = last_sec;
3857 else
3858 link_info.output_bfd->section_last = last_sec;
3859 first_sec->prev = sec;
3860 sec->next = first_sec;
3861 }
3862 }
3863
3864 first_os = NULL;
3865 last_os = NULL;
3866 }
3867
3868 ptr = insert_os_after (where);
3869 /* Snip everything after the abs_section output statement we
3870 know is at the start of the list, up to and including
3871 the insert statement we are currently processing. */
3872 first = lang_output_section_statement.head->header.next;
3873 lang_output_section_statement.head->header.next = (*s)->header.next;
3874 /* Add them back where they belong. */
3875 *s = *ptr;
3876 if (*s == NULL)
3877 statement_list.tail = s;
3878 *ptr = first;
3879 s = &lang_output_section_statement.head;
3880 }
3881 }
3882
3883 /* Undo constraint twiddling. */
3884 for (os = first_os; os != NULL; os = os->next)
3885 {
3886 os->constraint = -2 - os->constraint;
3887 if (os == last_os)
3888 break;
3889 }
3890 }
3891
3892 /* An output section might have been removed after its statement was
3893 added. For example, ldemul_before_allocation can remove dynamic
3894 sections if they turn out to be not needed. Clean them up here. */
3895
3896 void
3897 strip_excluded_output_sections (void)
3898 {
3899 lang_output_section_statement_type *os;
3900
3901 /* Run lang_size_sections (if not already done). */
3902 if (expld.phase != lang_mark_phase_enum)
3903 {
3904 expld.phase = lang_mark_phase_enum;
3905 expld.dataseg.phase = exp_dataseg_none;
3906 one_lang_size_sections_pass (NULL, FALSE);
3907 lang_reset_memory_regions ();
3908 }
3909
3910 for (os = &lang_output_section_statement.head->output_section_statement;
3911 os != NULL;
3912 os = os->next)
3913 {
3914 asection *output_section;
3915 bfd_boolean exclude;
3916
3917 if (os->constraint < 0)
3918 continue;
3919
3920 output_section = os->bfd_section;
3921 if (output_section == NULL)
3922 continue;
3923
3924 exclude = (output_section->rawsize == 0
3925 && (output_section->flags & SEC_KEEP) == 0
3926 && !bfd_section_removed_from_list (link_info.output_bfd,
3927 output_section));
3928
3929 /* Some sections have not yet been sized, notably .gnu.version,
3930 .dynsym, .dynstr and .hash. These all have SEC_LINKER_CREATED
3931 input sections, so don't drop output sections that have such
3932 input sections unless they are also marked SEC_EXCLUDE. */
3933 if (exclude && output_section->map_head.s != NULL)
3934 {
3935 asection *s;
3936
3937 for (s = output_section->map_head.s; s != NULL; s = s->map_head.s)
3938 if ((s->flags & SEC_EXCLUDE) == 0
3939 && ((s->flags & SEC_LINKER_CREATED) != 0
3940 || link_info.emitrelocations))
3941 {
3942 exclude = FALSE;
3943 break;
3944 }
3945 }
3946
3947 if (exclude)
3948 {
3949 /* We don't set bfd_section to NULL since bfd_section of the
3950 removed output section statement may still be used. */
3951 if (!os->update_dot)
3952 os->ignored = TRUE;
3953 output_section->flags |= SEC_EXCLUDE;
3954 bfd_section_list_remove (link_info.output_bfd, output_section);
3955 link_info.output_bfd->section_count--;
3956 }
3957 }
3958 }
3959
3960 /* Called from ldwrite to clear out asection.map_head and
3961 asection.map_tail for use as link_orders in ldwrite.
3962 FIXME: Except for sh64elf.em which starts creating link_orders in
3963 its after_allocation routine so needs to call it early. */
3964
3965 void
3966 lang_clear_os_map (void)
3967 {
3968 lang_output_section_statement_type *os;
3969
3970 if (map_head_is_link_order)
3971 return;
3972
3973 for (os = &lang_output_section_statement.head->output_section_statement;
3974 os != NULL;
3975 os = os->next)
3976 {
3977 asection *output_section;
3978
3979 if (os->constraint < 0)
3980 continue;
3981
3982 output_section = os->bfd_section;
3983 if (output_section == NULL)
3984 continue;
3985
3986 /* TODO: Don't just junk map_head.s, turn them into link_orders. */
3987 output_section->map_head.link_order = NULL;
3988 output_section->map_tail.link_order = NULL;
3989 }
3990
3991 /* Stop future calls to lang_add_section from messing with map_head
3992 and map_tail link_order fields. */
3993 map_head_is_link_order = TRUE;
3994 }
3995
3996 static void
3997 print_output_section_statement
3998 (lang_output_section_statement_type *output_section_statement)
3999 {
4000 asection *section = output_section_statement->bfd_section;
4001 int len;
4002
4003 if (output_section_statement != abs_output_section)
4004 {
4005 minfo ("\n%s", output_section_statement->name);
4006
4007 if (section != NULL)
4008 {
4009 print_dot = section->vma;
4010
4011 len = strlen (output_section_statement->name);
4012 if (len >= SECTION_NAME_MAP_LENGTH - 1)
4013 {
4014 print_nl ();
4015 len = 0;
4016 }
4017 while (len < SECTION_NAME_MAP_LENGTH)
4018 {
4019 print_space ();
4020 ++len;
4021 }
4022
4023 minfo ("0x%V %W", section->vma, TO_ADDR (section->size));
4024
4025 if (section->vma != section->lma)
4026 minfo (_(" load address 0x%V"), section->lma);
4027
4028 if (output_section_statement->update_dot_tree != NULL)
4029 exp_fold_tree (output_section_statement->update_dot_tree,
4030 bfd_abs_section_ptr, &print_dot);
4031 }
4032
4033 print_nl ();
4034 }
4035
4036 print_statement_list (output_section_statement->children.head,
4037 output_section_statement);
4038 }
4039
4040 static void
4041 print_assignment (lang_assignment_statement_type *assignment,
4042 lang_output_section_statement_type *output_section)
4043 {
4044 unsigned int i;
4045 bfd_boolean is_dot;
4046 etree_type *tree;
4047 asection *osec;
4048
4049 for (i = 0; i < SECTION_NAME_MAP_LENGTH; i++)
4050 print_space ();
4051
4052 if (assignment->exp->type.node_class == etree_assert)
4053 {
4054 is_dot = FALSE;
4055 tree = assignment->exp->assert_s.child;
4056 }
4057 else
4058 {
4059 const char *dst = assignment->exp->assign.dst;
4060
4061 is_dot = (dst[0] == '.' && dst[1] == 0);
4062 if (!is_dot)
4063 expld.assign_name = dst;
4064 tree = assignment->exp->assign.src;
4065 }
4066
4067 osec = output_section->bfd_section;
4068 if (osec == NULL)
4069 osec = bfd_abs_section_ptr;
4070
4071 if (assignment->exp->type.node_class != etree_provide)
4072 exp_fold_tree (tree, osec, &print_dot);
4073 else
4074 expld.result.valid_p = FALSE;
4075
4076 if (expld.result.valid_p)
4077 {
4078 bfd_vma value;
4079
4080 if (assignment->exp->type.node_class == etree_assert
4081 || is_dot
4082 || expld.assign_name != NULL)
4083 {
4084 value = expld.result.value;
4085
4086 if (expld.result.section != NULL)
4087 value += expld.result.section->vma;
4088
4089 minfo ("0x%V", value);
4090 if (is_dot)
4091 print_dot = value;
4092 }
4093 else
4094 {
4095 struct bfd_link_hash_entry *h;
4096
4097 h = bfd_link_hash_lookup (link_info.hash, assignment->exp->assign.dst,
4098 FALSE, FALSE, TRUE);
4099 if (h)
4100 {
4101 value = h->u.def.value;
4102 value += h->u.def.section->output_section->vma;
4103 value += h->u.def.section->output_offset;
4104
4105 minfo ("[0x%V]", value);
4106 }
4107 else
4108 minfo ("[unresolved]");
4109 }
4110 }
4111 else
4112 {
4113 if (assignment->exp->type.node_class == etree_provide)
4114 minfo ("[!provide]");
4115 else
4116 minfo ("*undef* ");
4117 #ifdef BFD64
4118 minfo (" ");
4119 #endif
4120 }
4121 expld.assign_name = NULL;
4122
4123 minfo (" ");
4124 exp_print_tree (assignment->exp);
4125 print_nl ();
4126 }
4127
4128 static void
4129 print_input_statement (lang_input_statement_type *statm)
4130 {
4131 if (statm->filename != NULL
4132 && (statm->the_bfd == NULL
4133 || (statm->the_bfd->flags & BFD_LINKER_CREATED) == 0))
4134 fprintf (config.map_file, "LOAD %s\n", statm->filename);
4135 }
4136
4137 /* Print all symbols defined in a particular section. This is called
4138 via bfd_link_hash_traverse, or by print_all_symbols. */
4139
4140 static bfd_boolean
4141 print_one_symbol (struct bfd_link_hash_entry *hash_entry, void *ptr)
4142 {
4143 asection *sec = (asection *) ptr;
4144
4145 if ((hash_entry->type == bfd_link_hash_defined
4146 || hash_entry->type == bfd_link_hash_defweak)
4147 && sec == hash_entry->u.def.section)
4148 {
4149 int i;
4150
4151 for (i = 0; i < SECTION_NAME_MAP_LENGTH; i++)
4152 print_space ();
4153 minfo ("0x%V ",
4154 (hash_entry->u.def.value
4155 + hash_entry->u.def.section->output_offset
4156 + hash_entry->u.def.section->output_section->vma));
4157
4158 minfo (" %T\n", hash_entry->root.string);
4159 }
4160
4161 return TRUE;
4162 }
4163
4164 static int
4165 hash_entry_addr_cmp (const void *a, const void *b)
4166 {
4167 const struct bfd_link_hash_entry *l = *(const struct bfd_link_hash_entry **)a;
4168 const struct bfd_link_hash_entry *r = *(const struct bfd_link_hash_entry **)b;
4169
4170 if (l->u.def.value < r->u.def.value)
4171 return -1;
4172 else if (l->u.def.value > r->u.def.value)
4173 return 1;
4174 else
4175 return 0;
4176 }
4177
4178 static void
4179 print_all_symbols (asection *sec)
4180 {
4181 input_section_userdata_type *ud
4182 = (input_section_userdata_type *) get_userdata (sec);
4183 struct map_symbol_def *def;
4184 struct bfd_link_hash_entry **entries;
4185 unsigned int i;
4186
4187 if (!ud)
4188 return;
4189
4190 *ud->map_symbol_def_tail = 0;
4191
4192 /* Sort the symbols by address. */
4193 entries = (struct bfd_link_hash_entry **)
4194 obstack_alloc (&map_obstack,
4195 ud->map_symbol_def_count * sizeof (*entries));
4196
4197 for (i = 0, def = ud->map_symbol_def_head; def; def = def->next, i++)
4198 entries[i] = def->entry;
4199
4200 qsort (entries, ud->map_symbol_def_count, sizeof (*entries),
4201 hash_entry_addr_cmp);
4202
4203 /* Print the symbols. */
4204 for (i = 0; i < ud->map_symbol_def_count; i++)
4205 print_one_symbol (entries[i], sec);
4206
4207 obstack_free (&map_obstack, entries);
4208 }
4209
4210 /* Print information about an input section to the map file. */
4211
4212 static void
4213 print_input_section (asection *i, bfd_boolean is_discarded)
4214 {
4215 bfd_size_type size = i->size;
4216 int len;
4217 bfd_vma addr;
4218
4219 init_opb ();
4220
4221 print_space ();
4222 minfo ("%s", i->name);
4223
4224 len = 1 + strlen (i->name);
4225 if (len >= SECTION_NAME_MAP_LENGTH - 1)
4226 {
4227 print_nl ();
4228 len = 0;
4229 }
4230 while (len < SECTION_NAME_MAP_LENGTH)
4231 {
4232 print_space ();
4233 ++len;
4234 }
4235
4236 if (i->output_section != NULL
4237 && i->output_section->owner == link_info.output_bfd)
4238 addr = i->output_section->vma + i->output_offset;
4239 else
4240 {
4241 addr = print_dot;
4242 if (!is_discarded)
4243 size = 0;
4244 }
4245
4246 minfo ("0x%V %W %B\n", addr, size, i->owner);
4247
4248 if (size != i->rawsize && i->rawsize != 0)
4249 {
4250 len = SECTION_NAME_MAP_LENGTH + 3;
4251 #ifdef BFD64
4252 len += 16;
4253 #else
4254 len += 8;
4255 #endif
4256 while (len > 0)
4257 {
4258 print_space ();
4259 --len;
4260 }
4261
4262 minfo (_("%W (size before relaxing)\n"), i->rawsize);
4263 }
4264
4265 if (i->output_section != NULL
4266 && i->output_section->owner == link_info.output_bfd)
4267 {
4268 if (link_info.reduce_memory_overheads)
4269 bfd_link_hash_traverse (link_info.hash, print_one_symbol, i);
4270 else
4271 print_all_symbols (i);
4272
4273 /* Update print_dot, but make sure that we do not move it
4274 backwards - this could happen if we have overlays and a
4275 later overlay is shorter than an earier one. */
4276 if (addr + TO_ADDR (size) > print_dot)
4277 print_dot = addr + TO_ADDR (size);
4278 }
4279 }
4280
4281 static void
4282 print_fill_statement (lang_fill_statement_type *fill)
4283 {
4284 size_t size;
4285 unsigned char *p;
4286 fputs (" FILL mask 0x", config.map_file);
4287 for (p = fill->fill->data, size = fill->fill->size; size != 0; p++, size--)
4288 fprintf (config.map_file, "%02x", *p);
4289 fputs ("\n", config.map_file);
4290 }
4291
4292 static void
4293 print_data_statement (lang_data_statement_type *data)
4294 {
4295 int i;
4296 bfd_vma addr;
4297 bfd_size_type size;
4298 const char *name;
4299
4300 init_opb ();
4301 for (i = 0; i < SECTION_NAME_MAP_LENGTH; i++)
4302 print_space ();
4303
4304 addr = data->output_offset;
4305 if (data->output_section != NULL)
4306 addr += data->output_section->vma;
4307
4308 switch (data->type)
4309 {
4310 default:
4311 abort ();
4312 case BYTE:
4313 size = BYTE_SIZE;
4314 name = "BYTE";
4315 break;
4316 case SHORT:
4317 size = SHORT_SIZE;
4318 name = "SHORT";
4319 break;
4320 case LONG:
4321 size = LONG_SIZE;
4322 name = "LONG";
4323 break;
4324 case QUAD:
4325 size = QUAD_SIZE;
4326 name = "QUAD";
4327 break;
4328 case SQUAD:
4329 size = QUAD_SIZE;
4330 name = "SQUAD";
4331 break;
4332 }
4333
4334 if (size < TO_SIZE ((unsigned) 1))
4335 size = TO_SIZE ((unsigned) 1);
4336 minfo ("0x%V %W %s 0x%v", addr, TO_ADDR (size), name, data->value);
4337
4338 if (data->exp->type.node_class != etree_value)
4339 {
4340 print_space ();
4341 exp_print_tree (data->exp);
4342 }
4343
4344 print_nl ();
4345
4346 print_dot = addr + TO_ADDR (size);
4347 }
4348
4349 /* Print an address statement. These are generated by options like
4350 -Ttext. */
4351
4352 static void
4353 print_address_statement (lang_address_statement_type *address)
4354 {
4355 minfo (_("Address of section %s set to "), address->section_name);
4356 exp_print_tree (address->address);
4357 print_nl ();
4358 }
4359
4360 /* Print a reloc statement. */
4361
4362 static void
4363 print_reloc_statement (lang_reloc_statement_type *reloc)
4364 {
4365 int i;
4366 bfd_vma addr;
4367 bfd_size_type size;
4368
4369 init_opb ();
4370 for (i = 0; i < SECTION_NAME_MAP_LENGTH; i++)
4371 print_space ();
4372
4373 addr = reloc->output_offset;
4374 if (reloc->output_section != NULL)
4375 addr += reloc->output_section->vma;
4376
4377 size = bfd_get_reloc_size (reloc->howto);
4378
4379 minfo ("0x%V %W RELOC %s ", addr, TO_ADDR (size), reloc->howto->name);
4380
4381 if (reloc->name != NULL)
4382 minfo ("%s+", reloc->name);
4383 else
4384 minfo ("%s+", reloc->section->name);
4385
4386 exp_print_tree (reloc->addend_exp);
4387
4388 print_nl ();
4389
4390 print_dot = addr + TO_ADDR (size);
4391 }
4392
4393 static void
4394 print_padding_statement (lang_padding_statement_type *s)
4395 {
4396 int len;
4397 bfd_vma addr;
4398
4399 init_opb ();
4400 minfo (" *fill*");
4401
4402 len = sizeof " *fill*" - 1;
4403 while (len < SECTION_NAME_MAP_LENGTH)
4404 {
4405 print_space ();
4406 ++len;
4407 }
4408
4409 addr = s->output_offset;
4410 if (s->output_section != NULL)
4411 addr += s->output_section->vma;
4412 minfo ("0x%V %W ", addr, TO_ADDR (s->size));
4413
4414 if (s->fill->size != 0)
4415 {
4416 size_t size;
4417 unsigned char *p;
4418 for (p = s->fill->data, size = s->fill->size; size != 0; p++, size--)
4419 fprintf (config.map_file, "%02x", *p);
4420 }
4421
4422 print_nl ();
4423
4424 print_dot = addr + TO_ADDR (s->size);
4425 }
4426
4427 static void
4428 print_wild_statement (lang_wild_statement_type *w,
4429 lang_output_section_statement_type *os)
4430 {
4431 struct wildcard_list *sec;
4432
4433 print_space ();
4434
4435 if (w->exclude_name_list)
4436 {
4437 name_list *tmp;
4438 minfo ("EXCLUDE_FILE(%s", w->exclude_name_list->name);
4439 for (tmp = w->exclude_name_list->next; tmp; tmp = tmp->next)
4440 minfo (" %s", tmp->name);
4441 minfo (") ");
4442 }
4443
4444 if (w->filenames_sorted)
4445 minfo ("SORT(");
4446 if (w->filename != NULL)
4447 minfo ("%s", w->filename);
4448 else
4449 minfo ("*");
4450 if (w->filenames_sorted)
4451 minfo (")");
4452
4453 minfo ("(");
4454 for (sec = w->section_list; sec; sec = sec->next)
4455 {
4456 if (sec->spec.sorted)
4457 minfo ("SORT(");
4458 if (sec->spec.exclude_name_list != NULL)
4459 {
4460 name_list *tmp;
4461 minfo ("EXCLUDE_FILE(%s", sec->spec.exclude_name_list->name);
4462 for (tmp = sec->spec.exclude_name_list->next; tmp; tmp = tmp->next)
4463 minfo (" %s", tmp->name);
4464 minfo (") ");
4465 }
4466 if (sec->spec.name != NULL)
4467 minfo ("%s", sec->spec.name);
4468 else
4469 minfo ("*");
4470 if (sec->spec.sorted)
4471 minfo (")");
4472 if (sec->next)
4473 minfo (" ");
4474 }
4475 minfo (")");
4476
4477 print_nl ();
4478
4479 print_statement_list (w->children.head, os);
4480 }
4481
4482 /* Print a group statement. */
4483
4484 static void
4485 print_group (lang_group_statement_type *s,
4486 lang_output_section_statement_type *os)
4487 {
4488 fprintf (config.map_file, "START GROUP\n");
4489 print_statement_list (s->children.head, os);
4490 fprintf (config.map_file, "END GROUP\n");
4491 }
4492
4493 /* Print the list of statements in S.
4494 This can be called for any statement type. */
4495
4496 static void
4497 print_statement_list (lang_statement_union_type *s,
4498 lang_output_section_statement_type *os)
4499 {
4500 while (s != NULL)
4501 {
4502 print_statement (s, os);
4503 s = s->header.next;
4504 }
4505 }
4506
4507 /* Print the first statement in statement list S.
4508 This can be called for any statement type. */
4509
4510 static void
4511 print_statement (lang_statement_union_type *s,
4512 lang_output_section_statement_type *os)
4513 {
4514 switch (s->header.type)
4515 {
4516 default:
4517 fprintf (config.map_file, _("Fail with %d\n"), s->header.type);
4518 FAIL ();
4519 break;
4520 case lang_constructors_statement_enum:
4521 if (constructor_list.head != NULL)
4522 {
4523 if (constructors_sorted)
4524 minfo (" SORT (CONSTRUCTORS)\n");
4525 else
4526 minfo (" CONSTRUCTORS\n");
4527 print_statement_list (constructor_list.head, os);
4528 }
4529 break;
4530 case lang_wild_statement_enum:
4531 print_wild_statement (&s->wild_statement, os);
4532 break;
4533 case lang_address_statement_enum:
4534 print_address_statement (&s->address_statement);
4535 break;
4536 case lang_object_symbols_statement_enum:
4537 minfo (" CREATE_OBJECT_SYMBOLS\n");
4538 break;
4539 case lang_fill_statement_enum:
4540 print_fill_statement (&s->fill_statement);
4541 break;
4542 case lang_data_statement_enum:
4543 print_data_statement (&s->data_statement);
4544 break;
4545 case lang_reloc_statement_enum:
4546 print_reloc_statement (&s->reloc_statement);
4547 break;
4548 case lang_input_section_enum:
4549 print_input_section (s->input_section.section, FALSE);
4550 break;
4551 case lang_padding_statement_enum:
4552 print_padding_statement (&s->padding_statement);
4553 break;
4554 case lang_output_section_statement_enum:
4555 print_output_section_statement (&s->output_section_statement);
4556 break;
4557 case lang_assignment_statement_enum:
4558 print_assignment (&s->assignment_statement, os);
4559 break;
4560 case lang_target_statement_enum:
4561 fprintf (config.map_file, "TARGET(%s)\n", s->target_statement.target);
4562 break;
4563 case lang_output_statement_enum:
4564 minfo ("OUTPUT(%s", s->output_statement.name);
4565 if (output_target != NULL)
4566 minfo (" %s", output_target);
4567 minfo (")\n");
4568 break;
4569 case lang_input_statement_enum:
4570 print_input_statement (&s->input_statement);
4571 break;
4572 case lang_group_statement_enum:
4573 print_group (&s->group_statement, os);
4574 break;
4575 case lang_insert_statement_enum:
4576 minfo ("INSERT %s %s\n",
4577 s->insert_statement.is_before ? "BEFORE" : "AFTER",
4578 s->insert_statement.where);
4579 break;
4580 }
4581 }
4582
4583 static void
4584 print_statements (void)
4585 {
4586 print_statement_list (statement_list.head, abs_output_section);
4587 }
4588
4589 /* Print the first N statements in statement list S to STDERR.
4590 If N == 0, nothing is printed.
4591 If N < 0, the entire list is printed.
4592 Intended to be called from GDB. */
4593
4594 void
4595 dprint_statement (lang_statement_union_type *s, int n)
4596 {
4597 FILE *map_save = config.map_file;
4598
4599 config.map_file = stderr;
4600
4601 if (n < 0)
4602 print_statement_list (s, abs_output_section);
4603 else
4604 {
4605 while (s && --n >= 0)
4606 {
4607 print_statement (s, abs_output_section);
4608 s = s->header.next;
4609 }
4610 }
4611
4612 config.map_file = map_save;
4613 }
4614
4615 static void
4616 insert_pad (lang_statement_union_type **ptr,
4617 fill_type *fill,
4618 bfd_size_type alignment_needed,
4619 asection *output_section,
4620 bfd_vma dot)
4621 {
4622 static fill_type zero_fill;
4623 lang_statement_union_type *pad = NULL;
4624
4625 if (ptr != &statement_list.head)
4626 pad = ((lang_statement_union_type *)
4627 ((char *) ptr - offsetof (lang_statement_union_type, header.next)));
4628 if (pad != NULL
4629 && pad->header.type == lang_padding_statement_enum
4630 && pad->padding_statement.output_section == output_section)
4631 {
4632 /* Use the existing pad statement. */
4633 }
4634 else if ((pad = *ptr) != NULL
4635 && pad->header.type == lang_padding_statement_enum
4636 && pad->padding_statement.output_section == output_section)
4637 {
4638 /* Use the existing pad statement. */
4639 }
4640 else
4641 {
4642 /* Make a new padding statement, linked into existing chain. */
4643 pad = (lang_statement_union_type *)
4644 stat_alloc (sizeof (lang_padding_statement_type));
4645 pad->header.next = *ptr;
4646 *ptr = pad;
4647 pad->header.type = lang_padding_statement_enum;
4648 pad->padding_statement.output_section = output_section;
4649 if (fill == NULL)
4650 fill = &zero_fill;
4651 pad->padding_statement.fill = fill;
4652 }
4653 pad->padding_statement.output_offset = dot - output_section->vma;
4654 pad->padding_statement.size = alignment_needed;
4655 output_section->size = TO_SIZE (dot + TO_ADDR (alignment_needed)
4656 - output_section->vma);
4657 }
4658
4659 /* Work out how much this section will move the dot point. */
4660
4661 static bfd_vma
4662 size_input_section
4663 (lang_statement_union_type **this_ptr,
4664 lang_output_section_statement_type *output_section_statement,
4665 fill_type *fill,
4666 bfd_vma dot)
4667 {
4668 lang_input_section_type *is = &((*this_ptr)->input_section);
4669 asection *i = is->section;
4670 asection *o = output_section_statement->bfd_section;
4671
4672 if (i->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
4673 i->output_offset = i->vma - o->vma;
4674 else if (((i->flags & SEC_EXCLUDE) != 0)
4675 || output_section_statement->ignored)
4676 i->output_offset = dot - o->vma;
4677 else
4678 {
4679 bfd_size_type alignment_needed;
4680
4681 /* Align this section first to the input sections requirement,
4682 then to the output section's requirement. If this alignment
4683 is greater than any seen before, then record it too. Perform
4684 the alignment by inserting a magic 'padding' statement. */
4685
4686 if (output_section_statement->subsection_alignment != -1)
4687 i->alignment_power = output_section_statement->subsection_alignment;
4688
4689 if (o->alignment_power < i->alignment_power)
4690 o->alignment_power = i->alignment_power;
4691
4692 alignment_needed = align_power (dot, i->alignment_power) - dot;
4693
4694 if (alignment_needed != 0)
4695 {
4696 insert_pad (this_ptr, fill, TO_SIZE (alignment_needed), o, dot);
4697 dot += alignment_needed;
4698 }
4699
4700 /* Remember where in the output section this input section goes. */
4701 i->output_offset = dot - o->vma;
4702
4703 /* Mark how big the output section must be to contain this now. */
4704 dot += TO_ADDR (i->size);
4705 o->size = TO_SIZE (dot - o->vma);
4706 }
4707
4708 return dot;
4709 }
4710
4711 struct check_sec
4712 {
4713 asection *sec;
4714 bfd_boolean warned;
4715 };
4716
4717 static int
4718 sort_sections_by_lma (const void *arg1, const void *arg2)
4719 {
4720 const asection *sec1 = ((const struct check_sec *) arg1)->sec;
4721 const asection *sec2 = ((const struct check_sec *) arg2)->sec;
4722
4723 if (sec1->lma < sec2->lma)
4724 return -1;
4725 else if (sec1->lma > sec2->lma)
4726 return 1;
4727 else if (sec1->id < sec2->id)
4728 return -1;
4729 else if (sec1->id > sec2->id)
4730 return 1;
4731
4732 return 0;
4733 }
4734
4735 static int
4736 sort_sections_by_vma (const void *arg1, const void *arg2)
4737 {
4738 const asection *sec1 = ((const struct check_sec *) arg1)->sec;
4739 const asection *sec2 = ((const struct check_sec *) arg2)->sec;
4740
4741 if (sec1->vma < sec2->vma)
4742 return -1;
4743 else if (sec1->vma > sec2->vma)
4744 return 1;
4745 else if (sec1->id < sec2->id)
4746 return -1;
4747 else if (sec1->id > sec2->id)
4748 return 1;
4749
4750 return 0;
4751 }
4752
4753 #define IS_TBSS(s) \
4754 ((s->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == SEC_THREAD_LOCAL)
4755
4756 #define IGNORE_SECTION(s) \
4757 ((s->flags & SEC_ALLOC) == 0 || IS_TBSS (s))
4758
4759 /* Check to see if any allocated sections overlap with other allocated
4760 sections. This can happen if a linker script specifies the output
4761 section addresses of the two sections. Also check whether any memory
4762 region has overflowed. */
4763
4764 static void
4765 lang_check_section_addresses (void)
4766 {
4767 asection *s, *p;
4768 struct check_sec *sections;
4769 size_t i, count;
4770 bfd_vma s_start;
4771 bfd_vma s_end;
4772 bfd_vma p_start = 0;
4773 bfd_vma p_end = 0;
4774 lang_memory_region_type *m;
4775 bfd_boolean overlays;
4776
4777 if (bfd_count_sections (link_info.output_bfd) <= 1)
4778 return;
4779
4780 count = bfd_count_sections (link_info.output_bfd);
4781 sections = XNEWVEC (struct check_sec, count);
4782
4783 /* Scan all sections in the output list. */
4784 count = 0;
4785 for (s = link_info.output_bfd->sections; s != NULL; s = s->next)
4786 {
4787 if (IGNORE_SECTION (s)
4788 || s->size == 0)
4789 continue;
4790
4791 sections[count].sec = s;
4792 sections[count].warned = FALSE;
4793 count++;
4794 }
4795
4796 if (count <= 1)
4797 {
4798 free (sections);
4799 return;
4800 }
4801
4802 qsort (sections, count, sizeof (*sections), sort_sections_by_lma);
4803
4804 /* First check section LMAs. There should be no overlap of LMAs on
4805 loadable sections, even with overlays. */
4806 for (p = NULL, i = 0; i < count; i++)
4807 {
4808 s = sections[i].sec;
4809 if ((s->flags & SEC_LOAD) != 0)
4810 {
4811 s_start = s->lma;
4812 s_end = s_start + TO_ADDR (s->size) - 1;
4813
4814 /* Look for an overlap. We have sorted sections by lma, so
4815 we know that s_start >= p_start. Besides the obvious
4816 case of overlap when the current section starts before
4817 the previous one ends, we also must have overlap if the
4818 previous section wraps around the address space. */
4819 if (p != NULL
4820 && (s_start <= p_end
4821 || p_end < p_start))
4822 {
4823 einfo (_("%X%P: section %s LMA [%V,%V]"
4824 " overlaps section %s LMA [%V,%V]\n"),
4825 s->name, s_start, s_end, p->name, p_start, p_end);
4826 sections[i].warned = TRUE;
4827 }
4828 p = s;
4829 p_start = s_start;
4830 p_end = s_end;
4831 }
4832 }
4833
4834 /* If any non-zero size allocated section (excluding tbss) starts at
4835 exactly the same VMA as another such section, then we have
4836 overlays. Overlays generated by the OVERLAY keyword will have
4837 this property. It is possible to intentionally generate overlays
4838 that fail this test, but it would be unusual. */
4839 qsort (sections, count, sizeof (*sections), sort_sections_by_vma);
4840 overlays = FALSE;
4841 p_start = sections[0].sec->vma;
4842 for (i = 1; i < count; i++)
4843 {
4844 s_start = sections[i].sec->vma;
4845 if (p_start == s_start)
4846 {
4847 overlays = TRUE;
4848 break;
4849 }
4850 p_start = s_start;
4851 }
4852
4853 /* Now check section VMAs if no overlays were detected. */
4854 if (!overlays)
4855 {
4856 for (p = NULL, i = 0; i < count; i++)
4857 {
4858 s = sections[i].sec;
4859 s_start = s->vma;
4860 s_end = s_start + TO_ADDR (s->size) - 1;
4861
4862 if (p != NULL
4863 && !sections[i].warned
4864 && (s_start <= p_end
4865 || p_end < p_start))
4866 einfo (_("%X%P: section %s VMA [%V,%V]"
4867 " overlaps section %s VMA [%V,%V]\n"),
4868 s->name, s_start, s_end, p->name, p_start, p_end);
4869 p = s;
4870 p_start = s_start;
4871 p_end = s_end;
4872 }
4873 }
4874
4875 free (sections);
4876
4877 /* If any memory region has overflowed, report by how much.
4878 We do not issue this diagnostic for regions that had sections
4879 explicitly placed outside their bounds; os_region_check's
4880 diagnostics are adequate for that case.
4881
4882 FIXME: It is conceivable that m->current - (m->origin + m->length)
4883 might overflow a 32-bit integer. There is, alas, no way to print
4884 a bfd_vma quantity in decimal. */
4885 for (m = lang_memory_region_list; m; m = m->next)
4886 if (m->had_full_message)
4887 einfo (_("%X%P: region `%s' overflowed by %ld bytes\n"),
4888 m->name_list.name, (long)(m->current - (m->origin + m->length)));
4889 }
4890
4891 /* Make sure the new address is within the region. We explicitly permit the
4892 current address to be at the exact end of the region when the address is
4893 non-zero, in case the region is at the end of addressable memory and the
4894 calculation wraps around. */
4895
4896 static void
4897 os_region_check (lang_output_section_statement_type *os,
4898 lang_memory_region_type *region,
4899 etree_type *tree,
4900 bfd_vma rbase)
4901 {
4902 if ((region->current < region->origin
4903 || (region->current - region->origin > region->length))
4904 && ((region->current != region->origin + region->length)
4905 || rbase == 0))
4906 {
4907 if (tree != NULL)
4908 {
4909 einfo (_("%X%P: address 0x%v of %B section `%s'"
4910 " is not within region `%s'\n"),
4911 region->current,
4912 os->bfd_section->owner,
4913 os->bfd_section->name,
4914 region->name_list.name);
4915 }
4916 else if (!region->had_full_message)
4917 {
4918 region->had_full_message = TRUE;
4919
4920 einfo (_("%X%P: %B section `%s' will not fit in region `%s'\n"),
4921 os->bfd_section->owner,
4922 os->bfd_section->name,
4923 region->name_list.name);
4924 }
4925 }
4926 }
4927
4928 /* Set the sizes for all the output sections. */
4929
4930 static bfd_vma
4931 lang_size_sections_1
4932 (lang_statement_union_type **prev,
4933 lang_output_section_statement_type *output_section_statement,
4934 fill_type *fill,
4935 bfd_vma dot,
4936 bfd_boolean *relax,
4937 bfd_boolean check_regions)
4938 {
4939 lang_statement_union_type *s;
4940
4941 /* Size up the sections from their constituent parts. */
4942 for (s = *prev; s != NULL; s = s->header.next)
4943 {
4944 switch (s->header.type)
4945 {
4946 case lang_output_section_statement_enum:
4947 {
4948 bfd_vma newdot, after, dotdelta;
4949 lang_output_section_statement_type *os;
4950 lang_memory_region_type *r;
4951 int section_alignment = 0;
4952
4953 os = &s->output_section_statement;
4954 if (os->constraint == -1)
4955 break;
4956
4957 /* FIXME: We shouldn't need to zero section vmas for ld -r
4958 here, in lang_insert_orphan, or in the default linker scripts.
4959 This is covering for coff backend linker bugs. See PR6945. */
4960 if (os->addr_tree == NULL
4961 && bfd_link_relocatable (&link_info)
4962 && (bfd_get_flavour (link_info.output_bfd)
4963 == bfd_target_coff_flavour))
4964 os->addr_tree = exp_intop (0);
4965 if (os->addr_tree != NULL)
4966 {
4967 os->processed_vma = FALSE;
4968 exp_fold_tree (os->addr_tree, bfd_abs_section_ptr, &dot);
4969
4970 if (expld.result.valid_p)
4971 {
4972 dot = expld.result.value;
4973 if (expld.result.section != NULL)
4974 dot += expld.result.section->vma;
4975 }
4976 else if (expld.phase != lang_mark_phase_enum)
4977 einfo (_("%F%S: non constant or forward reference"
4978 " address expression for section %s\n"),
4979 os->addr_tree, os->name);
4980 }
4981
4982 if (os->bfd_section == NULL)
4983 /* This section was removed or never actually created. */
4984 break;
4985
4986 /* If this is a COFF shared library section, use the size and
4987 address from the input section. FIXME: This is COFF
4988 specific; it would be cleaner if there were some other way
4989 to do this, but nothing simple comes to mind. */
4990 if (((bfd_get_flavour (link_info.output_bfd)
4991 == bfd_target_ecoff_flavour)
4992 || (bfd_get_flavour (link_info.output_bfd)
4993 == bfd_target_coff_flavour))
4994 && (os->bfd_section->flags & SEC_COFF_SHARED_LIBRARY) != 0)
4995 {
4996 asection *input;
4997
4998 if (os->children.head == NULL
4999 || os->children.head->header.next != NULL
5000 || (os->children.head->header.type
5001 != lang_input_section_enum))
5002 einfo (_("%P%X: Internal error on COFF shared library"
5003 " section %s\n"), os->name);
5004
5005 input = os->children.head->input_section.section;
5006 bfd_set_section_vma (os->bfd_section->owner,
5007 os->bfd_section,
5008 bfd_section_vma (input->owner, input));
5009 os->bfd_section->size = input->size;
5010 break;
5011 }
5012
5013 newdot = dot;
5014 dotdelta = 0;
5015 if (bfd_is_abs_section (os->bfd_section))
5016 {
5017 /* No matter what happens, an abs section starts at zero. */
5018 ASSERT (os->bfd_section->vma == 0);
5019 }
5020 else
5021 {
5022 if (os->addr_tree == NULL)
5023 {
5024 /* No address specified for this section, get one
5025 from the region specification. */
5026 if (os->region == NULL
5027 || ((os->bfd_section->flags & (SEC_ALLOC | SEC_LOAD))
5028 && os->region->name_list.name[0] == '*'
5029 && strcmp (os->region->name_list.name,
5030 DEFAULT_MEMORY_REGION) == 0))
5031 {
5032 os->region = lang_memory_default (os->bfd_section);
5033 }
5034
5035 /* If a loadable section is using the default memory
5036 region, and some non default memory regions were
5037 defined, issue an error message. */
5038 if (!os->ignored
5039 && !IGNORE_SECTION (os->bfd_section)
5040 && !bfd_link_relocatable (&link_info)
5041 && check_regions
5042 && strcmp (os->region->name_list.name,
5043 DEFAULT_MEMORY_REGION) == 0
5044 && lang_memory_region_list != NULL
5045 && (strcmp (lang_memory_region_list->name_list.name,
5046 DEFAULT_MEMORY_REGION) != 0
5047 || lang_memory_region_list->next != NULL)
5048 && expld.phase != lang_mark_phase_enum)
5049 {
5050 /* By default this is an error rather than just a
5051 warning because if we allocate the section to the
5052 default memory region we can end up creating an
5053 excessively large binary, or even seg faulting when
5054 attempting to perform a negative seek. See
5055 sources.redhat.com/ml/binutils/2003-04/msg00423.html
5056 for an example of this. This behaviour can be
5057 overridden by the using the --no-check-sections
5058 switch. */
5059 if (command_line.check_section_addresses)
5060 einfo (_("%P%F: error: no memory region specified"
5061 " for loadable section `%s'\n"),
5062 bfd_get_section_name (link_info.output_bfd,
5063 os->bfd_section));
5064 else
5065 einfo (_("%P: warning: no memory region specified"
5066 " for loadable section `%s'\n"),
5067 bfd_get_section_name (link_info.output_bfd,
5068 os->bfd_section));
5069 }
5070
5071 newdot = os->region->current;
5072 section_alignment = os->bfd_section->alignment_power;
5073 }
5074 else
5075 section_alignment = os->section_alignment;
5076
5077 /* Align to what the section needs. */
5078 if (section_alignment > 0)
5079 {
5080 bfd_vma savedot = newdot;
5081 newdot = align_power (newdot, section_alignment);
5082
5083 dotdelta = newdot - savedot;
5084 if (dotdelta != 0
5085 && (config.warn_section_align
5086 || os->addr_tree != NULL)
5087 && expld.phase != lang_mark_phase_enum)
5088 einfo (_("%P: warning: changing start of section"
5089 " %s by %lu bytes\n"),
5090 os->name, (unsigned long) dotdelta);
5091 }
5092
5093 bfd_set_section_vma (0, os->bfd_section, newdot);
5094
5095 os->bfd_section->output_offset = 0;
5096 }
5097
5098 lang_size_sections_1 (&os->children.head, os,
5099 os->fill, newdot, relax, check_regions);
5100
5101 os->processed_vma = TRUE;
5102
5103 if (bfd_is_abs_section (os->bfd_section) || os->ignored)
5104 /* Except for some special linker created sections,
5105 no output section should change from zero size
5106 after strip_excluded_output_sections. A non-zero
5107 size on an ignored section indicates that some
5108 input section was not sized early enough. */
5109 ASSERT (os->bfd_section->size == 0);
5110 else
5111 {
5112 dot = os->bfd_section->vma;
5113
5114 /* Put the section within the requested block size, or
5115 align at the block boundary. */
5116 after = ((dot
5117 + TO_ADDR (os->bfd_section->size)
5118 + os->block_value - 1)
5119 & - (bfd_vma) os->block_value);
5120
5121 os->bfd_section->size = TO_SIZE (after - os->bfd_section->vma);
5122 }
5123
5124 /* Set section lma. */
5125 r = os->region;
5126 if (r == NULL)
5127 r = lang_memory_region_lookup (DEFAULT_MEMORY_REGION, FALSE);
5128
5129 if (os->load_base)
5130 {
5131 bfd_vma lma = exp_get_abs_int (os->load_base, 0, "load base");
5132 os->bfd_section->lma = lma;
5133 }
5134 else if (os->lma_region != NULL)
5135 {
5136 bfd_vma lma = os->lma_region->current;
5137
5138 if (os->align_lma_with_input)
5139 lma += dotdelta;
5140 else
5141 {
5142 /* When LMA_REGION is the same as REGION, align the LMA
5143 as we did for the VMA, possibly including alignment
5144 from the bfd section. If a different region, then
5145 only align according to the value in the output
5146 statement. */
5147 if (os->lma_region != os->region)
5148 section_alignment = os->section_alignment;
5149 if (section_alignment > 0)
5150 lma = align_power (lma, section_alignment);
5151 }
5152 os->bfd_section->lma = lma;
5153 }
5154 else if (r->last_os != NULL
5155 && (os->bfd_section->flags & SEC_ALLOC) != 0)
5156 {
5157 bfd_vma lma;
5158 asection *last;
5159
5160 last = r->last_os->output_section_statement.bfd_section;
5161
5162 /* A backwards move of dot should be accompanied by
5163 an explicit assignment to the section LMA (ie.
5164 os->load_base set) because backwards moves can
5165 create overlapping LMAs. */
5166 if (dot < last->vma
5167 && os->bfd_section->size != 0
5168 && dot + TO_ADDR (os->bfd_section->size) <= last->vma)
5169 {
5170 /* If dot moved backwards then leave lma equal to
5171 vma. This is the old default lma, which might
5172 just happen to work when the backwards move is
5173 sufficiently large. Nag if this changes anything,
5174 so people can fix their linker scripts. */
5175
5176 if (last->vma != last->lma)
5177 einfo (_("%P: warning: dot moved backwards "
5178 "before `%s'\n"), os->name);
5179 }
5180 else
5181 {
5182 /* If this is an overlay, set the current lma to that
5183 at the end of the previous section. */
5184 if (os->sectype == overlay_section)
5185 lma = last->lma + TO_ADDR (last->size);
5186
5187 /* Otherwise, keep the same lma to vma relationship
5188 as the previous section. */
5189 else
5190 lma = dot + last->lma - last->vma;
5191
5192 if (section_alignment > 0)
5193 lma = align_power (lma, section_alignment);
5194 os->bfd_section->lma = lma;
5195 }
5196 }
5197 os->processed_lma = TRUE;
5198
5199 if (bfd_is_abs_section (os->bfd_section) || os->ignored)
5200 break;
5201
5202 /* Keep track of normal sections using the default
5203 lma region. We use this to set the lma for
5204 following sections. Overlays or other linker
5205 script assignment to lma might mean that the
5206 default lma == vma is incorrect.
5207 To avoid warnings about dot moving backwards when using
5208 -Ttext, don't start tracking sections until we find one
5209 of non-zero size or with lma set differently to vma. */
5210 if (!IGNORE_SECTION (os->bfd_section)
5211 && (os->bfd_section->size != 0
5212 || (r->last_os == NULL
5213 && os->bfd_section->vma != os->bfd_section->lma)
5214 || (r->last_os != NULL
5215 && dot >= (r->last_os->output_section_statement
5216 .bfd_section->vma)))
5217 && os->lma_region == NULL
5218 && !bfd_link_relocatable (&link_info))
5219 r->last_os = s;
5220
5221 /* .tbss sections effectively have zero size. */
5222 if (!IS_TBSS (os->bfd_section)
5223 || bfd_link_relocatable (&link_info))
5224 dotdelta = TO_ADDR (os->bfd_section->size);
5225 else
5226 dotdelta = 0;
5227 dot += dotdelta;
5228
5229 if (os->update_dot_tree != 0)
5230 exp_fold_tree (os->update_dot_tree, bfd_abs_section_ptr, &dot);
5231
5232 /* Update dot in the region ?
5233 We only do this if the section is going to be allocated,
5234 since unallocated sections do not contribute to the region's
5235 overall size in memory. */
5236 if (os->region != NULL
5237 && (os->bfd_section->flags & (SEC_ALLOC | SEC_LOAD)))
5238 {
5239 os->region->current = dot;
5240
5241 if (check_regions)
5242 /* Make sure the new address is within the region. */
5243 os_region_check (os, os->region, os->addr_tree,
5244 os->bfd_section->vma);
5245
5246 if (os->lma_region != NULL && os->lma_region != os->region
5247 && ((os->bfd_section->flags & SEC_LOAD)
5248 || os->align_lma_with_input))
5249 {
5250 os->lma_region->current = os->bfd_section->lma + dotdelta;
5251
5252 if (check_regions)
5253 os_region_check (os, os->lma_region, NULL,
5254 os->bfd_section->lma);
5255 }
5256 }
5257 }
5258 break;
5259
5260 case lang_constructors_statement_enum:
5261 dot = lang_size_sections_1 (&constructor_list.head,
5262 output_section_statement,
5263 fill, dot, relax, check_regions);
5264 break;
5265
5266 case lang_data_statement_enum:
5267 {
5268 unsigned int size = 0;
5269
5270 s->data_statement.output_offset =
5271 dot - output_section_statement->bfd_section->vma;
5272 s->data_statement.output_section =
5273 output_section_statement->bfd_section;
5274
5275 /* We might refer to provided symbols in the expression, and
5276 need to mark them as needed. */
5277 exp_fold_tree (s->data_statement.exp, bfd_abs_section_ptr, &dot);
5278
5279 switch (s->data_statement.type)
5280 {
5281 default:
5282 abort ();
5283 case QUAD:
5284 case SQUAD:
5285 size = QUAD_SIZE;
5286 break;
5287 case LONG:
5288 size = LONG_SIZE;
5289 break;
5290 case SHORT:
5291 size = SHORT_SIZE;
5292 break;
5293 case BYTE:
5294 size = BYTE_SIZE;
5295 break;
5296 }
5297 if (size < TO_SIZE ((unsigned) 1))
5298 size = TO_SIZE ((unsigned) 1);
5299 dot += TO_ADDR (size);
5300 output_section_statement->bfd_section->size
5301 = TO_SIZE (dot - output_section_statement->bfd_section->vma);
5302
5303 }
5304 break;
5305
5306 case lang_reloc_statement_enum:
5307 {
5308 int size;
5309
5310 s->reloc_statement.output_offset =
5311 dot - output_section_statement->bfd_section->vma;
5312 s->reloc_statement.output_section =
5313 output_section_statement->bfd_section;
5314 size = bfd_get_reloc_size (s->reloc_statement.howto);
5315 dot += TO_ADDR (size);
5316 output_section_statement->bfd_section->size
5317 = TO_SIZE (dot - output_section_statement->bfd_section->vma);
5318 }
5319 break;
5320
5321 case lang_wild_statement_enum:
5322 dot = lang_size_sections_1 (&s->wild_statement.children.head,
5323 output_section_statement,
5324 fill, dot, relax, check_regions);
5325 break;
5326
5327 case lang_object_symbols_statement_enum:
5328 link_info.create_object_symbols_section =
5329 output_section_statement->bfd_section;
5330 break;
5331
5332 case lang_output_statement_enum:
5333 case lang_target_statement_enum:
5334 break;
5335
5336 case lang_input_section_enum:
5337 {
5338 asection *i;
5339
5340 i = s->input_section.section;
5341 if (relax)
5342 {
5343 bfd_boolean again;
5344
5345 if (!bfd_relax_section (i->owner, i, &link_info, &again))
5346 einfo (_("%P%F: can't relax section: %E\n"));
5347 if (again)
5348 *relax = TRUE;
5349 }
5350 dot = size_input_section (prev, output_section_statement,
5351 fill, dot);
5352 }
5353 break;
5354
5355 case lang_input_statement_enum:
5356 break;
5357
5358 case lang_fill_statement_enum:
5359 s->fill_statement.output_section =
5360 output_section_statement->bfd_section;
5361
5362 fill = s->fill_statement.fill;
5363 break;
5364
5365 case lang_assignment_statement_enum:
5366 {
5367 bfd_vma newdot = dot;
5368 etree_type *tree = s->assignment_statement.exp;
5369
5370 expld.dataseg.relro = exp_dataseg_relro_none;
5371
5372 exp_fold_tree (tree,
5373 output_section_statement->bfd_section,
5374 &newdot);
5375
5376 if (expld.dataseg.relro == exp_dataseg_relro_start)
5377 {
5378 if (!expld.dataseg.relro_start_stat)
5379 expld.dataseg.relro_start_stat = s;
5380 else
5381 {
5382 ASSERT (expld.dataseg.relro_start_stat == s);
5383 }
5384 }
5385 else if (expld.dataseg.relro == exp_dataseg_relro_end)
5386 {
5387 if (!expld.dataseg.relro_end_stat)
5388 expld.dataseg.relro_end_stat = s;
5389 else
5390 {
5391 ASSERT (expld.dataseg.relro_end_stat == s);
5392 }
5393 }
5394 expld.dataseg.relro = exp_dataseg_relro_none;
5395
5396 /* This symbol may be relative to this section. */
5397 if ((tree->type.node_class == etree_provided
5398 || tree->type.node_class == etree_assign)
5399 && (tree->assign.dst [0] != '.'
5400 || tree->assign.dst [1] != '\0'))
5401 output_section_statement->update_dot = 1;
5402
5403 if (!output_section_statement->ignored)
5404 {
5405 if (output_section_statement == abs_output_section)
5406 {
5407 /* If we don't have an output section, then just adjust
5408 the default memory address. */
5409 lang_memory_region_lookup (DEFAULT_MEMORY_REGION,
5410 FALSE)->current = newdot;
5411 }
5412 else if (newdot != dot)
5413 {
5414 /* Insert a pad after this statement. We can't
5415 put the pad before when relaxing, in case the
5416 assignment references dot. */
5417 insert_pad (&s->header.next, fill, TO_SIZE (newdot - dot),
5418 output_section_statement->bfd_section, dot);
5419
5420 /* Don't neuter the pad below when relaxing. */
5421 s = s->header.next;
5422
5423 /* If dot is advanced, this implies that the section
5424 should have space allocated to it, unless the
5425 user has explicitly stated that the section
5426 should not be allocated. */
5427 if (output_section_statement->sectype != noalloc_section
5428 && (output_section_statement->sectype != noload_section
5429 || (bfd_get_flavour (link_info.output_bfd)
5430 == bfd_target_elf_flavour)))
5431 output_section_statement->bfd_section->flags |= SEC_ALLOC;
5432 }
5433 dot = newdot;
5434 }
5435 }
5436 break;
5437
5438 case lang_padding_statement_enum:
5439 /* If this is the first time lang_size_sections is called,
5440 we won't have any padding statements. If this is the
5441 second or later passes when relaxing, we should allow
5442 padding to shrink. If padding is needed on this pass, it
5443 will be added back in. */
5444 s->padding_statement.size = 0;
5445
5446 /* Make sure output_offset is valid. If relaxation shrinks
5447 the section and this pad isn't needed, it's possible to
5448 have output_offset larger than the final size of the
5449 section. bfd_set_section_contents will complain even for
5450 a pad size of zero. */
5451 s->padding_statement.output_offset
5452 = dot - output_section_statement->bfd_section->vma;
5453 break;
5454
5455 case lang_group_statement_enum:
5456 dot = lang_size_sections_1 (&s->group_statement.children.head,
5457 output_section_statement,
5458 fill, dot, relax, check_regions);
5459 break;
5460
5461 case lang_insert_statement_enum:
5462 break;
5463
5464 /* We can only get here when relaxing is turned on. */
5465 case lang_address_statement_enum:
5466 break;
5467
5468 default:
5469 FAIL ();
5470 break;
5471 }
5472 prev = &s->header.next;
5473 }
5474 return dot;
5475 }
5476
5477 /* Callback routine that is used in _bfd_elf_map_sections_to_segments.
5478 The BFD library has set NEW_SEGMENT to TRUE iff it thinks that
5479 CURRENT_SECTION and PREVIOUS_SECTION ought to be placed into different
5480 segments. We are allowed an opportunity to override this decision. */
5481
5482 bfd_boolean
5483 ldlang_override_segment_assignment (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5484 bfd *abfd ATTRIBUTE_UNUSED,
5485 asection *current_section,
5486 asection *previous_section,
5487 bfd_boolean new_segment)
5488 {
5489 lang_output_section_statement_type *cur;
5490 lang_output_section_statement_type *prev;
5491
5492 /* The checks below are only necessary when the BFD library has decided
5493 that the two sections ought to be placed into the same segment. */
5494 if (new_segment)
5495 return TRUE;
5496
5497 /* Paranoia checks. */
5498 if (current_section == NULL || previous_section == NULL)
5499 return new_segment;
5500
5501 /* If this flag is set, the target never wants code and non-code
5502 sections comingled in the same segment. */
5503 if (config.separate_code
5504 && ((current_section->flags ^ previous_section->flags) & SEC_CODE))
5505 return TRUE;
5506
5507 /* Find the memory regions associated with the two sections.
5508 We call lang_output_section_find() here rather than scanning the list
5509 of output sections looking for a matching section pointer because if
5510 we have a large number of sections then a hash lookup is faster. */
5511 cur = lang_output_section_find (current_section->name);
5512 prev = lang_output_section_find (previous_section->name);
5513
5514 /* More paranoia. */
5515 if (cur == NULL || prev == NULL)
5516 return new_segment;
5517
5518 /* If the regions are different then force the sections to live in
5519 different segments. See the email thread starting at the following
5520 URL for the reasons why this is necessary:
5521 http://sourceware.org/ml/binutils/2007-02/msg00216.html */
5522 return cur->region != prev->region;
5523 }
5524
5525 void
5526 one_lang_size_sections_pass (bfd_boolean *relax, bfd_boolean check_regions)
5527 {
5528 lang_statement_iteration++;
5529 lang_size_sections_1 (&statement_list.head, abs_output_section,
5530 0, 0, relax, check_regions);
5531 }
5532
5533 void
5534 lang_size_sections (bfd_boolean *relax, bfd_boolean check_regions)
5535 {
5536 expld.phase = lang_allocating_phase_enum;
5537 expld.dataseg.phase = exp_dataseg_none;
5538
5539 one_lang_size_sections_pass (relax, check_regions);
5540 if (expld.dataseg.phase == exp_dataseg_end_seen
5541 && link_info.relro && expld.dataseg.relro_end)
5542 {
5543 bfd_vma initial_base, relro_end, desired_end;
5544 asection *sec;
5545
5546 /* Compute the expected PT_GNU_RELRO segment end. */
5547 relro_end = ((expld.dataseg.relro_end + expld.dataseg.pagesize - 1)
5548 & ~(expld.dataseg.pagesize - 1));
5549
5550 /* Adjust by the offset arg of DATA_SEGMENT_RELRO_END. */
5551 desired_end = relro_end - expld.dataseg.relro_offset;
5552
5553 /* For sections in the relro segment.. */
5554 for (sec = link_info.output_bfd->section_last; sec; sec = sec->prev)
5555 if ((sec->flags & SEC_ALLOC) != 0
5556 && sec->vma >= expld.dataseg.base
5557 && sec->vma < expld.dataseg.relro_end - expld.dataseg.relro_offset)
5558 {
5559 /* Where do we want to put this section so that it ends as
5560 desired? */
5561 bfd_vma start, end, bump;
5562
5563 end = start = sec->vma;
5564 if (!IS_TBSS (sec))
5565 end += TO_ADDR (sec->size);
5566 bump = desired_end - end;
5567 /* We'd like to increase START by BUMP, but we must heed
5568 alignment so the increase might be less than optimum. */
5569 start += bump;
5570 start &= ~(((bfd_vma) 1 << sec->alignment_power) - 1);
5571 /* This is now the desired end for the previous section. */
5572 desired_end = start;
5573 }
5574
5575 expld.dataseg.phase = exp_dataseg_relro_adjust;
5576 ASSERT (desired_end >= expld.dataseg.base);
5577 initial_base = expld.dataseg.base;
5578 expld.dataseg.base = desired_end;
5579 lang_reset_memory_regions ();
5580 one_lang_size_sections_pass (relax, check_regions);
5581
5582 if (expld.dataseg.relro_end > relro_end)
5583 {
5584 /* Assignments to dot, or to output section address in a
5585 user script have increased padding over the original.
5586 Revert. */
5587 expld.dataseg.base = initial_base;
5588 lang_reset_memory_regions ();
5589 one_lang_size_sections_pass (relax, check_regions);
5590 }
5591
5592 link_info.relro_start = expld.dataseg.base;
5593 link_info.relro_end = expld.dataseg.relro_end;
5594 }
5595 else if (expld.dataseg.phase == exp_dataseg_end_seen)
5596 {
5597 /* If DATA_SEGMENT_ALIGN DATA_SEGMENT_END pair was seen, check whether
5598 a page could be saved in the data segment. */
5599 bfd_vma first, last;
5600
5601 first = -expld.dataseg.base & (expld.dataseg.pagesize - 1);
5602 last = expld.dataseg.end & (expld.dataseg.pagesize - 1);
5603 if (first && last
5604 && ((expld.dataseg.base & ~(expld.dataseg.pagesize - 1))
5605 != (expld.dataseg.end & ~(expld.dataseg.pagesize - 1)))
5606 && first + last <= expld.dataseg.pagesize)
5607 {
5608 expld.dataseg.phase = exp_dataseg_adjust;
5609 lang_reset_memory_regions ();
5610 one_lang_size_sections_pass (relax, check_regions);
5611 }
5612 else
5613 expld.dataseg.phase = exp_dataseg_done;
5614 }
5615 else
5616 expld.dataseg.phase = exp_dataseg_done;
5617 }
5618
5619 static lang_output_section_statement_type *current_section;
5620 static lang_assignment_statement_type *current_assign;
5621 static bfd_boolean prefer_next_section;
5622
5623 /* Worker function for lang_do_assignments. Recursiveness goes here. */
5624
5625 static bfd_vma
5626 lang_do_assignments_1 (lang_statement_union_type *s,
5627 lang_output_section_statement_type *current_os,
5628 fill_type *fill,
5629 bfd_vma dot,
5630 bfd_boolean *found_end)
5631 {
5632 for (; s != NULL; s = s->header.next)
5633 {
5634 switch (s->header.type)
5635 {
5636 case lang_constructors_statement_enum:
5637 dot = lang_do_assignments_1 (constructor_list.head,
5638 current_os, fill, dot, found_end);
5639 break;
5640
5641 case lang_output_section_statement_enum:
5642 {
5643 lang_output_section_statement_type *os;
5644 bfd_vma newdot;
5645
5646 os = &(s->output_section_statement);
5647 os->after_end = *found_end;
5648 if (os->bfd_section != NULL && !os->ignored)
5649 {
5650 if ((os->bfd_section->flags & SEC_ALLOC) != 0)
5651 {
5652 current_section = os;
5653 prefer_next_section = FALSE;
5654 }
5655 dot = os->bfd_section->vma;
5656 }
5657 newdot = lang_do_assignments_1 (os->children.head,
5658 os, os->fill, dot, found_end);
5659 if (!os->ignored)
5660 {
5661 if (os->bfd_section != NULL)
5662 {
5663 /* .tbss sections effectively have zero size. */
5664 if (!IS_TBSS (os->bfd_section)
5665 || bfd_link_relocatable (&link_info))
5666 dot += TO_ADDR (os->bfd_section->size);
5667
5668 if (os->update_dot_tree != NULL)
5669 exp_fold_tree (os->update_dot_tree,
5670 bfd_abs_section_ptr, &dot);
5671 }
5672 else
5673 dot = newdot;
5674 }
5675 }
5676 break;
5677
5678 case lang_wild_statement_enum:
5679
5680 dot = lang_do_assignments_1 (s->wild_statement.children.head,
5681 current_os, fill, dot, found_end);
5682 break;
5683
5684 case lang_object_symbols_statement_enum:
5685 case lang_output_statement_enum:
5686 case lang_target_statement_enum:
5687 break;
5688
5689 case lang_data_statement_enum:
5690 exp_fold_tree (s->data_statement.exp, bfd_abs_section_ptr, &dot);
5691 if (expld.result.valid_p)
5692 {
5693 s->data_statement.value = expld.result.value;
5694 if (expld.result.section != NULL)
5695 s->data_statement.value += expld.result.section->vma;
5696 }
5697 else if (expld.phase == lang_final_phase_enum)
5698 einfo (_("%F%P: invalid data statement\n"));
5699 {
5700 unsigned int size;
5701 switch (s->data_statement.type)
5702 {
5703 default:
5704 abort ();
5705 case QUAD:
5706 case SQUAD:
5707 size = QUAD_SIZE;
5708 break;
5709 case LONG:
5710 size = LONG_SIZE;
5711 break;
5712 case SHORT:
5713 size = SHORT_SIZE;
5714 break;
5715 case BYTE:
5716 size = BYTE_SIZE;
5717 break;
5718 }
5719 if (size < TO_SIZE ((unsigned) 1))
5720 size = TO_SIZE ((unsigned) 1);
5721 dot += TO_ADDR (size);
5722 }
5723 break;
5724
5725 case lang_reloc_statement_enum:
5726 exp_fold_tree (s->reloc_statement.addend_exp,
5727 bfd_abs_section_ptr, &dot);
5728 if (expld.result.valid_p)
5729 s->reloc_statement.addend_value = expld.result.value;
5730 else if (expld.phase == lang_final_phase_enum)
5731 einfo (_("%F%P: invalid reloc statement\n"));
5732 dot += TO_ADDR (bfd_get_reloc_size (s->reloc_statement.howto));
5733 break;
5734
5735 case lang_input_section_enum:
5736 {
5737 asection *in = s->input_section.section;
5738
5739 if ((in->flags & SEC_EXCLUDE) == 0)
5740 dot += TO_ADDR (in->size);
5741 }
5742 break;
5743
5744 case lang_input_statement_enum:
5745 break;
5746
5747 case lang_fill_statement_enum:
5748 fill = s->fill_statement.fill;
5749 break;
5750
5751 case lang_assignment_statement_enum:
5752 current_assign = &s->assignment_statement;
5753 if (current_assign->exp->type.node_class != etree_assert)
5754 {
5755 const char *p = current_assign->exp->assign.dst;
5756
5757 if (current_os == abs_output_section && p[0] == '.' && p[1] == 0)
5758 prefer_next_section = TRUE;
5759
5760 while (*p == '_')
5761 ++p;
5762 if (strcmp (p, "end") == 0)
5763 *found_end = TRUE;
5764 }
5765 exp_fold_tree (s->assignment_statement.exp,
5766 (current_os->bfd_section != NULL
5767 ? current_os->bfd_section : bfd_und_section_ptr),
5768 &dot);
5769 break;
5770
5771 case lang_padding_statement_enum:
5772 dot += TO_ADDR (s->padding_statement.size);
5773 break;
5774
5775 case lang_group_statement_enum:
5776 dot = lang_do_assignments_1 (s->group_statement.children.head,
5777 current_os, fill, dot, found_end);
5778 break;
5779
5780 case lang_insert_statement_enum:
5781 break;
5782
5783 case lang_address_statement_enum:
5784 break;
5785
5786 default:
5787 FAIL ();
5788 break;
5789 }
5790 }
5791 return dot;
5792 }
5793
5794 void
5795 lang_do_assignments (lang_phase_type phase)
5796 {
5797 bfd_boolean found_end = FALSE;
5798
5799 current_section = NULL;
5800 prefer_next_section = FALSE;
5801 expld.phase = phase;
5802 lang_statement_iteration++;
5803 lang_do_assignments_1 (statement_list.head,
5804 abs_output_section, NULL, 0, &found_end);
5805 }
5806
5807 /* For an assignment statement outside of an output section statement,
5808 choose the best of neighbouring output sections to use for values
5809 of "dot". */
5810
5811 asection *
5812 section_for_dot (void)
5813 {
5814 asection *s;
5815
5816 /* Assignments belong to the previous output section, unless there
5817 has been an assignment to "dot", in which case following
5818 assignments belong to the next output section. (The assumption
5819 is that an assignment to "dot" is setting up the address for the
5820 next output section.) Except that past the assignment to "_end"
5821 we always associate with the previous section. This exception is
5822 for targets like SH that define an alloc .stack or other
5823 weirdness after non-alloc sections. */
5824 if (current_section == NULL || prefer_next_section)
5825 {
5826 lang_statement_union_type *stmt;
5827 lang_output_section_statement_type *os;
5828
5829 for (stmt = (lang_statement_union_type *) current_assign;
5830 stmt != NULL;
5831 stmt = stmt->header.next)
5832 if (stmt->header.type == lang_output_section_statement_enum)
5833 break;
5834
5835 os = &stmt->output_section_statement;
5836 while (os != NULL
5837 && !os->after_end
5838 && (os->bfd_section == NULL
5839 || (os->bfd_section->flags & SEC_EXCLUDE) != 0
5840 || bfd_section_removed_from_list (link_info.output_bfd,
5841 os->bfd_section)))
5842 os = os->next;
5843
5844 if (current_section == NULL || os == NULL || !os->after_end)
5845 {
5846 if (os != NULL)
5847 s = os->bfd_section;
5848 else
5849 s = link_info.output_bfd->section_last;
5850 while (s != NULL
5851 && ((s->flags & SEC_ALLOC) == 0
5852 || (s->flags & SEC_THREAD_LOCAL) != 0))
5853 s = s->prev;
5854 if (s != NULL)
5855 return s;
5856
5857 return bfd_abs_section_ptr;
5858 }
5859 }
5860
5861 s = current_section->bfd_section;
5862
5863 /* The section may have been stripped. */
5864 while (s != NULL
5865 && ((s->flags & SEC_EXCLUDE) != 0
5866 || (s->flags & SEC_ALLOC) == 0
5867 || (s->flags & SEC_THREAD_LOCAL) != 0
5868 || bfd_section_removed_from_list (link_info.output_bfd, s)))
5869 s = s->prev;
5870 if (s == NULL)
5871 s = link_info.output_bfd->sections;
5872 while (s != NULL
5873 && ((s->flags & SEC_ALLOC) == 0
5874 || (s->flags & SEC_THREAD_LOCAL) != 0))
5875 s = s->next;
5876 if (s != NULL)
5877 return s;
5878
5879 return bfd_abs_section_ptr;
5880 }
5881
5882 /* Fix any .startof. or .sizeof. symbols. When the assemblers see the
5883 operator .startof. (section_name), it produces an undefined symbol
5884 .startof.section_name. Similarly, when it sees
5885 .sizeof. (section_name), it produces an undefined symbol
5886 .sizeof.section_name. For all the output sections, we look for
5887 such symbols, and set them to the correct value. */
5888
5889 static void
5890 lang_set_startof (void)
5891 {
5892 asection *s;
5893
5894 if (bfd_link_relocatable (&link_info))
5895 return;
5896
5897 for (s = link_info.output_bfd->sections; s != NULL; s = s->next)
5898 {
5899 const char *secname;
5900 char *buf;
5901 struct bfd_link_hash_entry *h;
5902
5903 secname = bfd_get_section_name (link_info.output_bfd, s);
5904 buf = (char *) xmalloc (10 + strlen (secname));
5905
5906 sprintf (buf, ".startof.%s", secname);
5907 h = bfd_link_hash_lookup (link_info.hash, buf, FALSE, FALSE, TRUE);
5908 if (h != NULL && h->type == bfd_link_hash_undefined)
5909 {
5910 h->type = bfd_link_hash_defined;
5911 h->u.def.value = 0;
5912 h->u.def.section = s;
5913 }
5914
5915 sprintf (buf, ".sizeof.%s", secname);
5916 h = bfd_link_hash_lookup (link_info.hash, buf, FALSE, FALSE, TRUE);
5917 if (h != NULL && h->type == bfd_link_hash_undefined)
5918 {
5919 h->type = bfd_link_hash_defined;
5920 h->u.def.value = TO_ADDR (s->size);
5921 h->u.def.section = bfd_abs_section_ptr;
5922 }
5923
5924 free (buf);
5925 }
5926 }
5927
5928 static void
5929 lang_end (void)
5930 {
5931 struct bfd_link_hash_entry *h;
5932 bfd_boolean warn;
5933
5934 if ((bfd_link_relocatable (&link_info) && !link_info.gc_sections)
5935 || bfd_link_dll (&link_info))
5936 warn = entry_from_cmdline;
5937 else
5938 warn = TRUE;
5939
5940 /* Force the user to specify a root when generating a relocatable with
5941 --gc-sections. */
5942 if (link_info.gc_sections && bfd_link_relocatable (&link_info)
5943 && !(entry_from_cmdline || undef_from_cmdline))
5944 einfo (_("%P%F: gc-sections requires either an entry or "
5945 "an undefined symbol\n"));
5946
5947 if (entry_symbol.name == NULL)
5948 {
5949 /* No entry has been specified. Look for the default entry, but
5950 don't warn if we don't find it. */
5951 entry_symbol.name = entry_symbol_default;
5952 warn = FALSE;
5953 }
5954
5955 h = bfd_link_hash_lookup (link_info.hash, entry_symbol.name,
5956 FALSE, FALSE, TRUE);
5957 if (h != NULL
5958 && (h->type == bfd_link_hash_defined
5959 || h->type == bfd_link_hash_defweak)
5960 && h->u.def.section->output_section != NULL)
5961 {
5962 bfd_vma val;
5963
5964 val = (h->u.def.value
5965 + bfd_get_section_vma (link_info.output_bfd,
5966 h->u.def.section->output_section)
5967 + h->u.def.section->output_offset);
5968 if (!bfd_set_start_address (link_info.output_bfd, val))
5969 einfo (_("%P%F:%s: can't set start address\n"), entry_symbol.name);
5970 }
5971 else
5972 {
5973 bfd_vma val;
5974 const char *send;
5975
5976 /* We couldn't find the entry symbol. Try parsing it as a
5977 number. */
5978 val = bfd_scan_vma (entry_symbol.name, &send, 0);
5979 if (*send == '\0')
5980 {
5981 if (!bfd_set_start_address (link_info.output_bfd, val))
5982 einfo (_("%P%F: can't set start address\n"));
5983 }
5984 else
5985 {
5986 asection *ts;
5987
5988 /* Can't find the entry symbol, and it's not a number. Use
5989 the first address in the text section. */
5990 ts = bfd_get_section_by_name (link_info.output_bfd, entry_section);
5991 if (ts != NULL)
5992 {
5993 if (warn)
5994 einfo (_("%P: warning: cannot find entry symbol %s;"
5995 " defaulting to %V\n"),
5996 entry_symbol.name,
5997 bfd_get_section_vma (link_info.output_bfd, ts));
5998 if (!(bfd_set_start_address
5999 (link_info.output_bfd,
6000 bfd_get_section_vma (link_info.output_bfd, ts))))
6001 einfo (_("%P%F: can't set start address\n"));
6002 }
6003 else
6004 {
6005 if (warn)
6006 einfo (_("%P: warning: cannot find entry symbol %s;"
6007 " not setting start address\n"),
6008 entry_symbol.name);
6009 }
6010 }
6011 }
6012 }
6013
6014 /* This is a small function used when we want to ignore errors from
6015 BFD. */
6016
6017 static void
6018 ignore_bfd_errors (const char *fmt ATTRIBUTE_UNUSED,
6019 va_list ap ATTRIBUTE_UNUSED)
6020 {
6021 /* Don't do anything. */
6022 }
6023
6024 /* Check that the architecture of all the input files is compatible
6025 with the output file. Also call the backend to let it do any
6026 other checking that is needed. */
6027
6028 static void
6029 lang_check (void)
6030 {
6031 lang_statement_union_type *file;
6032 bfd *input_bfd;
6033 const bfd_arch_info_type *compatible;
6034
6035 for (file = file_chain.head; file != NULL; file = file->input_statement.next)
6036 {
6037 #ifdef ENABLE_PLUGINS
6038 /* Don't check format of files claimed by plugin. */
6039 if (file->input_statement.flags.claimed)
6040 continue;
6041 #endif /* ENABLE_PLUGINS */
6042 input_bfd = file->input_statement.the_bfd;
6043 compatible
6044 = bfd_arch_get_compatible (input_bfd, link_info.output_bfd,
6045 command_line.accept_unknown_input_arch);
6046
6047 /* In general it is not possible to perform a relocatable
6048 link between differing object formats when the input
6049 file has relocations, because the relocations in the
6050 input format may not have equivalent representations in
6051 the output format (and besides BFD does not translate
6052 relocs for other link purposes than a final link). */
6053 if ((bfd_link_relocatable (&link_info)
6054 || link_info.emitrelocations)
6055 && (compatible == NULL
6056 || (bfd_get_flavour (input_bfd)
6057 != bfd_get_flavour (link_info.output_bfd)))
6058 && (bfd_get_file_flags (input_bfd) & HAS_RELOC) != 0)
6059 {
6060 einfo (_("%P%F: Relocatable linking with relocations from"
6061 " format %s (%B) to format %s (%B) is not supported\n"),
6062 bfd_get_target (input_bfd), input_bfd,
6063 bfd_get_target (link_info.output_bfd), link_info.output_bfd);
6064 /* einfo with %F exits. */
6065 }
6066
6067 if (compatible == NULL)
6068 {
6069 if (command_line.warn_mismatch)
6070 einfo (_("%P%X: %s architecture of input file `%B'"
6071 " is incompatible with %s output\n"),
6072 bfd_printable_name (input_bfd), input_bfd,
6073 bfd_printable_name (link_info.output_bfd));
6074 }
6075 else if (bfd_count_sections (input_bfd))
6076 {
6077 /* If the input bfd has no contents, it shouldn't set the
6078 private data of the output bfd. */
6079
6080 bfd_error_handler_type pfn = NULL;
6081
6082 /* If we aren't supposed to warn about mismatched input
6083 files, temporarily set the BFD error handler to a
6084 function which will do nothing. We still want to call
6085 bfd_merge_private_bfd_data, since it may set up
6086 information which is needed in the output file. */
6087 if (!command_line.warn_mismatch)
6088 pfn = bfd_set_error_handler (ignore_bfd_errors);
6089 if (!bfd_merge_private_bfd_data (input_bfd, &link_info))
6090 {
6091 if (command_line.warn_mismatch)
6092 einfo (_("%P%X: failed to merge target specific data"
6093 " of file %B\n"), input_bfd);
6094 }
6095 if (!command_line.warn_mismatch)
6096 bfd_set_error_handler (pfn);
6097 }
6098 }
6099 }
6100
6101 /* Look through all the global common symbols and attach them to the
6102 correct section. The -sort-common command line switch may be used
6103 to roughly sort the entries by alignment. */
6104
6105 static void
6106 lang_common (void)
6107 {
6108 if (command_line.inhibit_common_definition)
6109 return;
6110 if (bfd_link_relocatable (&link_info)
6111 && !command_line.force_common_definition)
6112 return;
6113
6114 if (!config.sort_common)
6115 bfd_link_hash_traverse (link_info.hash, lang_one_common, NULL);
6116 else
6117 {
6118 unsigned int power;
6119
6120 if (config.sort_common == sort_descending)
6121 {
6122 for (power = 4; power > 0; power--)
6123 bfd_link_hash_traverse (link_info.hash, lang_one_common, &power);
6124
6125 power = 0;
6126 bfd_link_hash_traverse (link_info.hash, lang_one_common, &power);
6127 }
6128 else
6129 {
6130 for (power = 0; power <= 4; power++)
6131 bfd_link_hash_traverse (link_info.hash, lang_one_common, &power);
6132
6133 power = (unsigned int) -1;
6134 bfd_link_hash_traverse (link_info.hash, lang_one_common, &power);
6135 }
6136 }
6137 }
6138
6139 /* Place one common symbol in the correct section. */
6140
6141 static bfd_boolean
6142 lang_one_common (struct bfd_link_hash_entry *h, void *info)
6143 {
6144 unsigned int power_of_two;
6145 bfd_vma size;
6146 asection *section;
6147
6148 if (h->type != bfd_link_hash_common)
6149 return TRUE;
6150
6151 size = h->u.c.size;
6152 power_of_two = h->u.c.p->alignment_power;
6153
6154 if (config.sort_common == sort_descending
6155 && power_of_two < *(unsigned int *) info)
6156 return TRUE;
6157 else if (config.sort_common == sort_ascending
6158 && power_of_two > *(unsigned int *) info)
6159 return TRUE;
6160
6161 section = h->u.c.p->section;
6162 if (!bfd_define_common_symbol (link_info.output_bfd, &link_info, h))
6163 einfo (_("%P%F: Could not define common symbol `%T': %E\n"),
6164 h->root.string);
6165
6166 if (config.map_file != NULL)
6167 {
6168 static bfd_boolean header_printed;
6169 int len;
6170 char *name;
6171 char buf[50];
6172
6173 if (!header_printed)
6174 {
6175 minfo (_("\nAllocating common symbols\n"));
6176 minfo (_("Common symbol size file\n\n"));
6177 header_printed = TRUE;
6178 }
6179
6180 name = bfd_demangle (link_info.output_bfd, h->root.string,
6181 DMGL_ANSI | DMGL_PARAMS);
6182 if (name == NULL)
6183 {
6184 minfo ("%s", h->root.string);
6185 len = strlen (h->root.string);
6186 }
6187 else
6188 {
6189 minfo ("%s", name);
6190 len = strlen (name);
6191 free (name);
6192 }
6193
6194 if (len >= 19)
6195 {
6196 print_nl ();
6197 len = 0;
6198 }
6199 while (len < 20)
6200 {
6201 print_space ();
6202 ++len;
6203 }
6204
6205 minfo ("0x");
6206 if (size <= 0xffffffff)
6207 sprintf (buf, "%lx", (unsigned long) size);
6208 else
6209 sprintf_vma (buf, size);
6210 minfo ("%s", buf);
6211 len = strlen (buf);
6212
6213 while (len < 16)
6214 {
6215 print_space ();
6216 ++len;
6217 }
6218
6219 minfo ("%B\n", section->owner);
6220 }
6221
6222 return TRUE;
6223 }
6224
6225 /* Handle a single orphan section S, placing the orphan into an appropriate
6226 output section. The effects of the --orphan-handling command line
6227 option are handled here. */
6228
6229 static void
6230 ldlang_place_orphan (asection *s)
6231 {
6232 if (config.orphan_handling == orphan_handling_discard)
6233 {
6234 lang_output_section_statement_type *os;
6235 os = lang_output_section_statement_lookup (DISCARD_SECTION_NAME, 0,
6236 TRUE);
6237 if (os->addr_tree == NULL
6238 && (bfd_link_relocatable (&link_info)
6239 || (s->flags & (SEC_LOAD | SEC_ALLOC)) == 0))
6240 os->addr_tree = exp_intop (0);
6241 lang_add_section (&os->children, s, NULL, os);
6242 }
6243 else
6244 {
6245 lang_output_section_statement_type *os;
6246 const char *name = s->name;
6247 int constraint = 0;
6248
6249 if (config.orphan_handling == orphan_handling_error)
6250 einfo ("%X%P: error: unplaced orphan section `%A' from `%B'.\n",
6251 s, s->owner);
6252
6253 if (config.unique_orphan_sections || unique_section_p (s, NULL))
6254 constraint = SPECIAL;
6255
6256 os = ldemul_place_orphan (s, name, constraint);
6257 if (os == NULL)
6258 {
6259 os = lang_output_section_statement_lookup (name, constraint, TRUE);
6260 if (os->addr_tree == NULL
6261 && (bfd_link_relocatable (&link_info)
6262 || (s->flags & (SEC_LOAD | SEC_ALLOC)) == 0))
6263 os->addr_tree = exp_intop (0);
6264 lang_add_section (&os->children, s, NULL, os);
6265 }
6266
6267 if (config.orphan_handling == orphan_handling_warn)
6268 einfo ("%P: warning: orphan section `%A' from `%B' being "
6269 "placed in section `%s'.\n",
6270 s, s->owner, os->name);
6271 }
6272 }
6273
6274 /* Run through the input files and ensure that every input section has
6275 somewhere to go. If one is found without a destination then create
6276 an input request and place it into the statement tree. */
6277
6278 static void
6279 lang_place_orphans (void)
6280 {
6281 LANG_FOR_EACH_INPUT_STATEMENT (file)
6282 {
6283 asection *s;
6284
6285 for (s = file->the_bfd->sections; s != NULL; s = s->next)
6286 {
6287 if (s->output_section == NULL)
6288 {
6289 /* This section of the file is not attached, root
6290 around for a sensible place for it to go. */
6291
6292 if (file->flags.just_syms)
6293 bfd_link_just_syms (file->the_bfd, s, &link_info);
6294 else if ((s->flags & SEC_EXCLUDE) != 0)
6295 s->output_section = bfd_abs_section_ptr;
6296 else if (strcmp (s->name, "COMMON") == 0)
6297 {
6298 /* This is a lonely common section which must have
6299 come from an archive. We attach to the section
6300 with the wildcard. */
6301 if (!bfd_link_relocatable (&link_info)
6302 || command_line.force_common_definition)
6303 {
6304 if (default_common_section == NULL)
6305 default_common_section
6306 = lang_output_section_statement_lookup (".bss", 0,
6307 TRUE);
6308 lang_add_section (&default_common_section->children, s,
6309 NULL, default_common_section);
6310 }
6311 }
6312 else
6313 ldlang_place_orphan (s);
6314 }
6315 }
6316 }
6317 }
6318
6319 void
6320 lang_set_flags (lang_memory_region_type *ptr, const char *flags, int invert)
6321 {
6322 flagword *ptr_flags;
6323
6324 ptr_flags = invert ? &ptr->not_flags : &ptr->flags;
6325
6326 while (*flags)
6327 {
6328 switch (*flags)
6329 {
6330 /* PR 17900: An exclamation mark in the attributes reverses
6331 the sense of any of the attributes that follow. */
6332 case '!':
6333 invert = !invert;
6334 ptr_flags = invert ? &ptr->not_flags : &ptr->flags;
6335 break;
6336
6337 case 'A': case 'a':
6338 *ptr_flags |= SEC_ALLOC;
6339 break;
6340
6341 case 'R': case 'r':
6342 *ptr_flags |= SEC_READONLY;
6343 break;
6344
6345 case 'W': case 'w':
6346 *ptr_flags |= SEC_DATA;
6347 break;
6348
6349 case 'X': case 'x':
6350 *ptr_flags |= SEC_CODE;
6351 break;
6352
6353 case 'L': case 'l':
6354 case 'I': case 'i':
6355 *ptr_flags |= SEC_LOAD;
6356 break;
6357
6358 default:
6359 einfo (_("%P%F: invalid character %c (%d) in flags\n"),
6360 *flags, *flags);
6361 break;
6362 }
6363 flags++;
6364 }
6365 }
6366
6367 /* Call a function on each input file. This function will be called
6368 on an archive, but not on the elements. */
6369
6370 void
6371 lang_for_each_input_file (void (*func) (lang_input_statement_type *))
6372 {
6373 lang_input_statement_type *f;
6374
6375 for (f = (lang_input_statement_type *) input_file_chain.head;
6376 f != NULL;
6377 f = (lang_input_statement_type *) f->next_real_file)
6378 func (f);
6379 }
6380
6381 /* Call a function on each file. The function will be called on all
6382 the elements of an archive which are included in the link, but will
6383 not be called on the archive file itself. */
6384
6385 void
6386 lang_for_each_file (void (*func) (lang_input_statement_type *))
6387 {
6388 LANG_FOR_EACH_INPUT_STATEMENT (f)
6389 {
6390 func (f);
6391 }
6392 }
6393
6394 void
6395 ldlang_add_file (lang_input_statement_type *entry)
6396 {
6397 lang_statement_append (&file_chain,
6398 (lang_statement_union_type *) entry,
6399 &entry->next);
6400
6401 /* The BFD linker needs to have a list of all input BFDs involved in
6402 a link. */
6403 ASSERT (entry->the_bfd->link.next == NULL);
6404 ASSERT (entry->the_bfd != link_info.output_bfd);
6405
6406 *link_info.input_bfds_tail = entry->the_bfd;
6407 link_info.input_bfds_tail = &entry->the_bfd->link.next;
6408 entry->the_bfd->usrdata = entry;
6409 bfd_set_gp_size (entry->the_bfd, g_switch_value);
6410
6411 /* Look through the sections and check for any which should not be
6412 included in the link. We need to do this now, so that we can
6413 notice when the backend linker tries to report multiple
6414 definition errors for symbols which are in sections we aren't
6415 going to link. FIXME: It might be better to entirely ignore
6416 symbols which are defined in sections which are going to be
6417 discarded. This would require modifying the backend linker for
6418 each backend which might set the SEC_LINK_ONCE flag. If we do
6419 this, we should probably handle SEC_EXCLUDE in the same way. */
6420
6421 bfd_map_over_sections (entry->the_bfd, section_already_linked, entry);
6422 }
6423
6424 void
6425 lang_add_output (const char *name, int from_script)
6426 {
6427 /* Make -o on command line override OUTPUT in script. */
6428 if (!had_output_filename || !from_script)
6429 {
6430 output_filename = name;
6431 had_output_filename = TRUE;
6432 }
6433 }
6434
6435 static int
6436 topower (int x)
6437 {
6438 unsigned int i = 1;
6439 int l;
6440
6441 if (x < 0)
6442 return -1;
6443
6444 for (l = 0; l < 32; l++)
6445 {
6446 if (i >= (unsigned int) x)
6447 return l;
6448 i <<= 1;
6449 }
6450
6451 return 0;
6452 }
6453
6454 lang_output_section_statement_type *
6455 lang_enter_output_section_statement (const char *output_section_statement_name,
6456 etree_type *address_exp,
6457 enum section_type sectype,
6458 etree_type *align,
6459 etree_type *subalign,
6460 etree_type *ebase,
6461 int constraint,
6462 int align_with_input)
6463 {
6464 lang_output_section_statement_type *os;
6465
6466 os = lang_output_section_statement_lookup (output_section_statement_name,
6467 constraint, TRUE);
6468 current_section = os;
6469
6470 if (os->addr_tree == NULL)
6471 {
6472 os->addr_tree = address_exp;
6473 }
6474 os->sectype = sectype;
6475 if (sectype != noload_section)
6476 os->flags = SEC_NO_FLAGS;
6477 else
6478 os->flags = SEC_NEVER_LOAD;
6479 os->block_value = 1;
6480
6481 /* Make next things chain into subchain of this. */
6482 push_stat_ptr (&os->children);
6483
6484 os->align_lma_with_input = align_with_input == ALIGN_WITH_INPUT;
6485 if (os->align_lma_with_input && align != NULL)
6486 einfo (_("%F%P:%S: error: align with input and explicit align specified\n"),
6487 NULL);
6488
6489 os->subsection_alignment =
6490 topower (exp_get_value_int (subalign, -1, "subsection alignment"));
6491 os->section_alignment =
6492 topower (exp_get_value_int (align, -1, "section alignment"));
6493
6494 os->load_base = ebase;
6495 return os;
6496 }
6497
6498 void
6499 lang_final (void)
6500 {
6501 lang_output_statement_type *new_stmt;
6502
6503 new_stmt = new_stat (lang_output_statement, stat_ptr);
6504 new_stmt->name = output_filename;
6505 }
6506
6507 /* Reset the current counters in the regions. */
6508
6509 void
6510 lang_reset_memory_regions (void)
6511 {
6512 lang_memory_region_type *p = lang_memory_region_list;
6513 asection *o;
6514 lang_output_section_statement_type *os;
6515
6516 for (p = lang_memory_region_list; p != NULL; p = p->next)
6517 {
6518 p->current = p->origin;
6519 p->last_os = NULL;
6520 }
6521
6522 for (os = &lang_output_section_statement.head->output_section_statement;
6523 os != NULL;
6524 os = os->next)
6525 {
6526 os->processed_vma = FALSE;
6527 os->processed_lma = FALSE;
6528 }
6529
6530 for (o = link_info.output_bfd->sections; o != NULL; o = o->next)
6531 {
6532 /* Save the last size for possible use by bfd_relax_section. */
6533 o->rawsize = o->size;
6534 o->size = 0;
6535 }
6536 }
6537
6538 /* Worker for lang_gc_sections_1. */
6539
6540 static void
6541 gc_section_callback (lang_wild_statement_type *ptr,
6542 struct wildcard_list *sec ATTRIBUTE_UNUSED,
6543 asection *section,
6544 struct flag_info *sflag_info ATTRIBUTE_UNUSED,
6545 lang_input_statement_type *file ATTRIBUTE_UNUSED,
6546 void *data ATTRIBUTE_UNUSED)
6547 {
6548 /* If the wild pattern was marked KEEP, the member sections
6549 should be as well. */
6550 if (ptr->keep_sections)
6551 section->flags |= SEC_KEEP;
6552 }
6553
6554 /* Iterate over sections marking them against GC. */
6555
6556 static void
6557 lang_gc_sections_1 (lang_statement_union_type *s)
6558 {
6559 for (; s != NULL; s = s->header.next)
6560 {
6561 switch (s->header.type)
6562 {
6563 case lang_wild_statement_enum:
6564 walk_wild (&s->wild_statement, gc_section_callback, NULL);
6565 break;
6566 case lang_constructors_statement_enum:
6567 lang_gc_sections_1 (constructor_list.head);
6568 break;
6569 case lang_output_section_statement_enum:
6570 lang_gc_sections_1 (s->output_section_statement.children.head);
6571 break;
6572 case lang_group_statement_enum:
6573 lang_gc_sections_1 (s->group_statement.children.head);
6574 break;
6575 default:
6576 break;
6577 }
6578 }
6579 }
6580
6581 static void
6582 lang_gc_sections (void)
6583 {
6584 /* Keep all sections so marked in the link script. */
6585 lang_gc_sections_1 (statement_list.head);
6586
6587 /* SEC_EXCLUDE is ignored when doing a relocatable link, except in
6588 the special case of debug info. (See bfd/stabs.c)
6589 Twiddle the flag here, to simplify later linker code. */
6590 if (bfd_link_relocatable (&link_info))
6591 {
6592 LANG_FOR_EACH_INPUT_STATEMENT (f)
6593 {
6594 asection *sec;
6595 #ifdef ENABLE_PLUGINS
6596 if (f->flags.claimed)
6597 continue;
6598 #endif
6599 for (sec = f->the_bfd->sections; sec != NULL; sec = sec->next)
6600 if ((sec->flags & SEC_DEBUGGING) == 0)
6601 sec->flags &= ~SEC_EXCLUDE;
6602 }
6603 }
6604
6605 if (link_info.gc_sections)
6606 bfd_gc_sections (link_info.output_bfd, &link_info);
6607 }
6608
6609 /* Worker for lang_find_relro_sections_1. */
6610
6611 static void
6612 find_relro_section_callback (lang_wild_statement_type *ptr ATTRIBUTE_UNUSED,
6613 struct wildcard_list *sec ATTRIBUTE_UNUSED,
6614 asection *section,
6615 struct flag_info *sflag_info ATTRIBUTE_UNUSED,
6616 lang_input_statement_type *file ATTRIBUTE_UNUSED,
6617 void *data)
6618 {
6619 /* Discarded, excluded and ignored sections effectively have zero
6620 size. */
6621 if (section->output_section != NULL
6622 && section->output_section->owner == link_info.output_bfd
6623 && (section->output_section->flags & SEC_EXCLUDE) == 0
6624 && !IGNORE_SECTION (section)
6625 && section->size != 0)
6626 {
6627 bfd_boolean *has_relro_section = (bfd_boolean *) data;
6628 *has_relro_section = TRUE;
6629 }
6630 }
6631
6632 /* Iterate over sections for relro sections. */
6633
6634 static void
6635 lang_find_relro_sections_1 (lang_statement_union_type *s,
6636 bfd_boolean *has_relro_section)
6637 {
6638 if (*has_relro_section)
6639 return;
6640
6641 for (; s != NULL; s = s->header.next)
6642 {
6643 if (s == expld.dataseg.relro_end_stat)
6644 break;
6645
6646 switch (s->header.type)
6647 {
6648 case lang_wild_statement_enum:
6649 walk_wild (&s->wild_statement,
6650 find_relro_section_callback,
6651 has_relro_section);
6652 break;
6653 case lang_constructors_statement_enum:
6654 lang_find_relro_sections_1 (constructor_list.head,
6655 has_relro_section);
6656 break;
6657 case lang_output_section_statement_enum:
6658 lang_find_relro_sections_1 (s->output_section_statement.children.head,
6659 has_relro_section);
6660 break;
6661 case lang_group_statement_enum:
6662 lang_find_relro_sections_1 (s->group_statement.children.head,
6663 has_relro_section);
6664 break;
6665 default:
6666 break;
6667 }
6668 }
6669 }
6670
6671 static void
6672 lang_find_relro_sections (void)
6673 {
6674 bfd_boolean has_relro_section = FALSE;
6675
6676 /* Check all sections in the link script. */
6677
6678 lang_find_relro_sections_1 (expld.dataseg.relro_start_stat,
6679 &has_relro_section);
6680
6681 if (!has_relro_section)
6682 link_info.relro = FALSE;
6683 }
6684
6685 /* Relax all sections until bfd_relax_section gives up. */
6686
6687 void
6688 lang_relax_sections (bfd_boolean need_layout)
6689 {
6690 if (RELAXATION_ENABLED)
6691 {
6692 /* We may need more than one relaxation pass. */
6693 int i = link_info.relax_pass;
6694
6695 /* The backend can use it to determine the current pass. */
6696 link_info.relax_pass = 0;
6697
6698 while (i--)
6699 {
6700 /* Keep relaxing until bfd_relax_section gives up. */
6701 bfd_boolean relax_again;
6702
6703 link_info.relax_trip = -1;
6704 do
6705 {
6706 link_info.relax_trip++;
6707
6708 /* Note: pe-dll.c does something like this also. If you find
6709 you need to change this code, you probably need to change
6710 pe-dll.c also. DJ */
6711
6712 /* Do all the assignments with our current guesses as to
6713 section sizes. */
6714 lang_do_assignments (lang_assigning_phase_enum);
6715
6716 /* We must do this after lang_do_assignments, because it uses
6717 size. */
6718 lang_reset_memory_regions ();
6719
6720 /* Perform another relax pass - this time we know where the
6721 globals are, so can make a better guess. */
6722 relax_again = FALSE;
6723 lang_size_sections (&relax_again, FALSE);
6724 }
6725 while (relax_again);
6726
6727 link_info.relax_pass++;
6728 }
6729 need_layout = TRUE;
6730 }
6731
6732 if (need_layout)
6733 {
6734 /* Final extra sizing to report errors. */
6735 lang_do_assignments (lang_assigning_phase_enum);
6736 lang_reset_memory_regions ();
6737 lang_size_sections (NULL, TRUE);
6738 }
6739 }
6740
6741 #ifdef ENABLE_PLUGINS
6742 /* Find the insert point for the plugin's replacement files. We
6743 place them after the first claimed real object file, or if the
6744 first claimed object is an archive member, after the last real
6745 object file immediately preceding the archive. In the event
6746 no objects have been claimed at all, we return the first dummy
6747 object file on the list as the insert point; that works, but
6748 the callee must be careful when relinking the file_chain as it
6749 is not actually on that chain, only the statement_list and the
6750 input_file list; in that case, the replacement files must be
6751 inserted at the head of the file_chain. */
6752
6753 static lang_input_statement_type *
6754 find_replacements_insert_point (void)
6755 {
6756 lang_input_statement_type *claim1, *lastobject;
6757 lastobject = &input_file_chain.head->input_statement;
6758 for (claim1 = &file_chain.head->input_statement;
6759 claim1 != NULL;
6760 claim1 = &claim1->next->input_statement)
6761 {
6762 if (claim1->flags.claimed)
6763 return claim1->flags.claim_archive ? lastobject : claim1;
6764 /* Update lastobject if this is a real object file. */
6765 if (claim1->the_bfd != NULL && claim1->the_bfd->my_archive == NULL)
6766 lastobject = claim1;
6767 }
6768 /* No files were claimed by the plugin. Choose the last object
6769 file found on the list (maybe the first, dummy entry) as the
6770 insert point. */
6771 return lastobject;
6772 }
6773
6774 /* Insert SRCLIST into DESTLIST after given element by chaining
6775 on FIELD as the next-pointer. (Counterintuitively does not need
6776 a pointer to the actual after-node itself, just its chain field.) */
6777
6778 static void
6779 lang_list_insert_after (lang_statement_list_type *destlist,
6780 lang_statement_list_type *srclist,
6781 lang_statement_union_type **field)
6782 {
6783 *(srclist->tail) = *field;
6784 *field = srclist->head;
6785 if (destlist->tail == field)
6786 destlist->tail = srclist->tail;
6787 }
6788
6789 /* Detach new nodes added to DESTLIST since the time ORIGLIST
6790 was taken as a copy of it and leave them in ORIGLIST. */
6791
6792 static void
6793 lang_list_remove_tail (lang_statement_list_type *destlist,
6794 lang_statement_list_type *origlist)
6795 {
6796 union lang_statement_union **savetail;
6797 /* Check that ORIGLIST really is an earlier state of DESTLIST. */
6798 ASSERT (origlist->head == destlist->head);
6799 savetail = origlist->tail;
6800 origlist->head = *(savetail);
6801 origlist->tail = destlist->tail;
6802 destlist->tail = savetail;
6803 *savetail = NULL;
6804 }
6805 #endif /* ENABLE_PLUGINS */
6806
6807 /* Add NAME to the list of garbage collection entry points. */
6808
6809 void
6810 lang_add_gc_name (const char *name)
6811 {
6812 struct bfd_sym_chain *sym;
6813
6814 if (name == NULL)
6815 return;
6816
6817 sym = (struct bfd_sym_chain *) stat_alloc (sizeof (*sym));
6818
6819 sym->next = link_info.gc_sym_list;
6820 sym->name = name;
6821 link_info.gc_sym_list = sym;
6822 }
6823
6824 /* Check relocations. */
6825
6826 static void
6827 lang_check_relocs (void)
6828 {
6829 if (link_info.check_relocs_after_open_input)
6830 {
6831 bfd *abfd;
6832
6833 for (abfd = link_info.input_bfds;
6834 abfd != (bfd *) NULL; abfd = abfd->link.next)
6835 if (!bfd_link_check_relocs (abfd, &link_info))
6836 {
6837 /* No object output, fail return. */
6838 config.make_executable = FALSE;
6839 /* Note: we do not abort the loop, but rather
6840 continue the scan in case there are other
6841 bad relocations to report. */
6842 }
6843 }
6844 }
6845
6846 void
6847 lang_process (void)
6848 {
6849 /* Finalize dynamic list. */
6850 if (link_info.dynamic_list)
6851 lang_finalize_version_expr_head (&link_info.dynamic_list->head);
6852
6853 current_target = default_target;
6854
6855 /* Open the output file. */
6856 lang_for_each_statement (ldlang_open_output);
6857 init_opb ();
6858
6859 ldemul_create_output_section_statements ();
6860
6861 /* Add to the hash table all undefineds on the command line. */
6862 lang_place_undefineds ();
6863
6864 if (!bfd_section_already_linked_table_init ())
6865 einfo (_("%P%F: Failed to create hash table\n"));
6866
6867 /* Create a bfd for each input file. */
6868 current_target = default_target;
6869 open_input_bfds (statement_list.head, OPEN_BFD_NORMAL);
6870
6871 #ifdef ENABLE_PLUGINS
6872 if (link_info.lto_plugin_active)
6873 {
6874 lang_statement_list_type added;
6875 lang_statement_list_type files, inputfiles;
6876
6877 /* Now all files are read, let the plugin(s) decide if there
6878 are any more to be added to the link before we call the
6879 emulation's after_open hook. We create a private list of
6880 input statements for this purpose, which we will eventually
6881 insert into the global statement list after the first claimed
6882 file. */
6883 added = *stat_ptr;
6884 /* We need to manipulate all three chains in synchrony. */
6885 files = file_chain;
6886 inputfiles = input_file_chain;
6887 if (plugin_call_all_symbols_read ())
6888 einfo (_("%P%F: %s: plugin reported error after all symbols read\n"),
6889 plugin_error_plugin ());
6890 /* Open any newly added files, updating the file chains. */
6891 open_input_bfds (*added.tail, OPEN_BFD_NORMAL);
6892 /* Restore the global list pointer now they have all been added. */
6893 lang_list_remove_tail (stat_ptr, &added);
6894 /* And detach the fresh ends of the file lists. */
6895 lang_list_remove_tail (&file_chain, &files);
6896 lang_list_remove_tail (&input_file_chain, &inputfiles);
6897 /* Were any new files added? */
6898 if (added.head != NULL)
6899 {
6900 /* If so, we will insert them into the statement list immediately
6901 after the first input file that was claimed by the plugin. */
6902 plugin_insert = find_replacements_insert_point ();
6903 /* If a plugin adds input files without having claimed any, we
6904 don't really have a good idea where to place them. Just putting
6905 them at the start or end of the list is liable to leave them
6906 outside the crtbegin...crtend range. */
6907 ASSERT (plugin_insert != NULL);
6908 /* Splice the new statement list into the old one. */
6909 lang_list_insert_after (stat_ptr, &added,
6910 &plugin_insert->header.next);
6911 /* Likewise for the file chains. */
6912 lang_list_insert_after (&input_file_chain, &inputfiles,
6913 &plugin_insert->next_real_file);
6914 /* We must be careful when relinking file_chain; we may need to
6915 insert the new files at the head of the list if the insert
6916 point chosen is the dummy first input file. */
6917 if (plugin_insert->filename)
6918 lang_list_insert_after (&file_chain, &files, &plugin_insert->next);
6919 else
6920 lang_list_insert_after (&file_chain, &files, &file_chain.head);
6921
6922 /* Rescan archives in case new undefined symbols have appeared. */
6923 open_input_bfds (statement_list.head, OPEN_BFD_RESCAN);
6924 }
6925 }
6926 #endif /* ENABLE_PLUGINS */
6927
6928 /* Make sure that nobody has tried to add a symbol to this list
6929 before now. */
6930 ASSERT (link_info.gc_sym_list == NULL);
6931
6932 link_info.gc_sym_list = &entry_symbol;
6933
6934 if (entry_symbol.name == NULL)
6935 {
6936 link_info.gc_sym_list = ldlang_undef_chain_list_head;
6937
6938 /* entry_symbol is normally initialied by a ENTRY definition in the
6939 linker script or the -e command line option. But if neither of
6940 these have been used, the target specific backend may still have
6941 provided an entry symbol via a call to lang_default_entry().
6942 Unfortunately this value will not be processed until lang_end()
6943 is called, long after this function has finished. So detect this
6944 case here and add the target's entry symbol to the list of starting
6945 points for garbage collection resolution. */
6946 lang_add_gc_name (entry_symbol_default);
6947 }
6948
6949 lang_add_gc_name (link_info.init_function);
6950 lang_add_gc_name (link_info.fini_function);
6951
6952 ldemul_after_open ();
6953 if (config.map_file != NULL)
6954 lang_print_asneeded ();
6955
6956 bfd_section_already_linked_table_free ();
6957
6958 /* Make sure that we're not mixing architectures. We call this
6959 after all the input files have been opened, but before we do any
6960 other processing, so that any operations merge_private_bfd_data
6961 does on the output file will be known during the rest of the
6962 link. */
6963 lang_check ();
6964
6965 /* Handle .exports instead of a version script if we're told to do so. */
6966 if (command_line.version_exports_section)
6967 lang_do_version_exports_section ();
6968
6969 /* Build all sets based on the information gathered from the input
6970 files. */
6971 ldctor_build_sets ();
6972
6973 /* PR 13683: We must rerun the assignments prior to running garbage
6974 collection in order to make sure that all symbol aliases are resolved. */
6975 lang_do_assignments (lang_mark_phase_enum);
6976
6977 lang_do_memory_regions();
6978 expld.phase = lang_first_phase_enum;
6979
6980 /* Size up the common data. */
6981 lang_common ();
6982
6983 /* Remove unreferenced sections if asked to. */
6984 lang_gc_sections ();
6985
6986 /* Check relocations. */
6987 lang_check_relocs ();
6988
6989 /* Update wild statements. */
6990 update_wild_statements (statement_list.head);
6991
6992 /* Run through the contours of the script and attach input sections
6993 to the correct output sections. */
6994 lang_statement_iteration++;
6995 map_input_to_output_sections (statement_list.head, NULL, NULL);
6996
6997 process_insert_statements ();
6998
6999 /* Find any sections not attached explicitly and handle them. */
7000 lang_place_orphans ();
7001
7002 if (!bfd_link_relocatable (&link_info))
7003 {
7004 asection *found;
7005
7006 /* Merge SEC_MERGE sections. This has to be done after GC of
7007 sections, so that GCed sections are not merged, but before
7008 assigning dynamic symbols, since removing whole input sections
7009 is hard then. */
7010 bfd_merge_sections (link_info.output_bfd, &link_info);
7011
7012 /* Look for a text section and set the readonly attribute in it. */
7013 found = bfd_get_section_by_name (link_info.output_bfd, ".text");
7014
7015 if (found != NULL)
7016 {
7017 if (config.text_read_only)
7018 found->flags |= SEC_READONLY;
7019 else
7020 found->flags &= ~SEC_READONLY;
7021 }
7022 }
7023
7024 /* Do anything special before sizing sections. This is where ELF
7025 and other back-ends size dynamic sections. */
7026 ldemul_before_allocation ();
7027
7028 /* We must record the program headers before we try to fix the
7029 section positions, since they will affect SIZEOF_HEADERS. */
7030 lang_record_phdrs ();
7031
7032 /* Check relro sections. */
7033 if (link_info.relro && !bfd_link_relocatable (&link_info))
7034 lang_find_relro_sections ();
7035
7036 /* Size up the sections. */
7037 lang_size_sections (NULL, !RELAXATION_ENABLED);
7038
7039 /* See if anything special should be done now we know how big
7040 everything is. This is where relaxation is done. */
7041 ldemul_after_allocation ();
7042
7043 /* Fix any .startof. or .sizeof. symbols. */
7044 lang_set_startof ();
7045
7046 /* Do all the assignments, now that we know the final resting places
7047 of all the symbols. */
7048 lang_do_assignments (lang_final_phase_enum);
7049
7050 ldemul_finish ();
7051
7052 /* Convert absolute symbols to section relative. */
7053 ldexp_finalize_syms ();
7054
7055 /* Make sure that the section addresses make sense. */
7056 if (command_line.check_section_addresses)
7057 lang_check_section_addresses ();
7058
7059 /* Check any required symbols are known. */
7060 ldlang_check_require_defined_symbols ();
7061
7062 lang_end ();
7063 }
7064
7065 /* EXPORTED TO YACC */
7066
7067 void
7068 lang_add_wild (struct wildcard_spec *filespec,
7069 struct wildcard_list *section_list,
7070 bfd_boolean keep_sections)
7071 {
7072 struct wildcard_list *curr, *next;
7073 lang_wild_statement_type *new_stmt;
7074
7075 /* Reverse the list as the parser puts it back to front. */
7076 for (curr = section_list, section_list = NULL;
7077 curr != NULL;
7078 section_list = curr, curr = next)
7079 {
7080 if (curr->spec.name != NULL && strcmp (curr->spec.name, "COMMON") == 0)
7081 placed_commons = TRUE;
7082
7083 next = curr->next;
7084 curr->next = section_list;
7085 }
7086
7087 if (filespec != NULL && filespec->name != NULL)
7088 {
7089 if (strcmp (filespec->name, "*") == 0)
7090 filespec->name = NULL;
7091 else if (!wildcardp (filespec->name))
7092 lang_has_input_file = TRUE;
7093 }
7094
7095 new_stmt = new_stat (lang_wild_statement, stat_ptr);
7096 new_stmt->filename = NULL;
7097 new_stmt->filenames_sorted = FALSE;
7098 new_stmt->section_flag_list = NULL;
7099 new_stmt->exclude_name_list = NULL;
7100 if (filespec != NULL)
7101 {
7102 new_stmt->filename = filespec->name;
7103 new_stmt->filenames_sorted = filespec->sorted == by_name;
7104 new_stmt->section_flag_list = filespec->section_flag_list;
7105 new_stmt->exclude_name_list = filespec->exclude_name_list;
7106 }
7107 new_stmt->section_list = section_list;
7108 new_stmt->keep_sections = keep_sections;
7109 lang_list_init (&new_stmt->children);
7110 analyze_walk_wild_section_handler (new_stmt);
7111 }
7112
7113 void
7114 lang_section_start (const char *name, etree_type *address,
7115 const segment_type *segment)
7116 {
7117 lang_address_statement_type *ad;
7118
7119 ad = new_stat (lang_address_statement, stat_ptr);
7120 ad->section_name = name;
7121 ad->address = address;
7122 ad->segment = segment;
7123 }
7124
7125 /* Set the start symbol to NAME. CMDLINE is nonzero if this is called
7126 because of a -e argument on the command line, or zero if this is
7127 called by ENTRY in a linker script. Command line arguments take
7128 precedence. */
7129
7130 void
7131 lang_add_entry (const char *name, bfd_boolean cmdline)
7132 {
7133 if (entry_symbol.name == NULL
7134 || cmdline
7135 || !entry_from_cmdline)
7136 {
7137 entry_symbol.name = name;
7138 entry_from_cmdline = cmdline;
7139 }
7140 }
7141
7142 /* Set the default start symbol to NAME. .em files should use this,
7143 not lang_add_entry, to override the use of "start" if neither the
7144 linker script nor the command line specifies an entry point. NAME
7145 must be permanently allocated. */
7146 void
7147 lang_default_entry (const char *name)
7148 {
7149 entry_symbol_default = name;
7150 }
7151
7152 void
7153 lang_add_target (const char *name)
7154 {
7155 lang_target_statement_type *new_stmt;
7156
7157 new_stmt = new_stat (lang_target_statement, stat_ptr);
7158 new_stmt->target = name;
7159 }
7160
7161 void
7162 lang_add_map (const char *name)
7163 {
7164 while (*name)
7165 {
7166 switch (*name)
7167 {
7168 case 'F':
7169 map_option_f = TRUE;
7170 break;
7171 }
7172 name++;
7173 }
7174 }
7175
7176 void
7177 lang_add_fill (fill_type *fill)
7178 {
7179 lang_fill_statement_type *new_stmt;
7180
7181 new_stmt = new_stat (lang_fill_statement, stat_ptr);
7182 new_stmt->fill = fill;
7183 }
7184
7185 void
7186 lang_add_data (int type, union etree_union *exp)
7187 {
7188 lang_data_statement_type *new_stmt;
7189
7190 new_stmt = new_stat (lang_data_statement, stat_ptr);
7191 new_stmt->exp = exp;
7192 new_stmt->type = type;
7193 }
7194
7195 /* Create a new reloc statement. RELOC is the BFD relocation type to
7196 generate. HOWTO is the corresponding howto structure (we could
7197 look this up, but the caller has already done so). SECTION is the
7198 section to generate a reloc against, or NAME is the name of the
7199 symbol to generate a reloc against. Exactly one of SECTION and
7200 NAME must be NULL. ADDEND is an expression for the addend. */
7201
7202 void
7203 lang_add_reloc (bfd_reloc_code_real_type reloc,
7204 reloc_howto_type *howto,
7205 asection *section,
7206 const char *name,
7207 union etree_union *addend)
7208 {
7209 lang_reloc_statement_type *p = new_stat (lang_reloc_statement, stat_ptr);
7210
7211 p->reloc = reloc;
7212 p->howto = howto;
7213 p->section = section;
7214 p->name = name;
7215 p->addend_exp = addend;
7216
7217 p->addend_value = 0;
7218 p->output_section = NULL;
7219 p->output_offset = 0;
7220 }
7221
7222 lang_assignment_statement_type *
7223 lang_add_assignment (etree_type *exp)
7224 {
7225 lang_assignment_statement_type *new_stmt;
7226
7227 new_stmt = new_stat (lang_assignment_statement, stat_ptr);
7228 new_stmt->exp = exp;
7229 return new_stmt;
7230 }
7231
7232 void
7233 lang_add_attribute (enum statement_enum attribute)
7234 {
7235 new_statement (attribute, sizeof (lang_statement_header_type), stat_ptr);
7236 }
7237
7238 void
7239 lang_startup (const char *name)
7240 {
7241 if (first_file->filename != NULL)
7242 {
7243 einfo (_("%P%F: multiple STARTUP files\n"));
7244 }
7245 first_file->filename = name;
7246 first_file->local_sym_name = name;
7247 first_file->flags.real = TRUE;
7248 }
7249
7250 void
7251 lang_float (bfd_boolean maybe)
7252 {
7253 lang_float_flag = maybe;
7254 }
7255
7256
7257 /* Work out the load- and run-time regions from a script statement, and
7258 store them in *LMA_REGION and *REGION respectively.
7259
7260 MEMSPEC is the name of the run-time region, or the value of
7261 DEFAULT_MEMORY_REGION if the statement didn't specify one.
7262 LMA_MEMSPEC is the name of the load-time region, or null if the
7263 statement didn't specify one.HAVE_LMA_P is TRUE if the statement
7264 had an explicit load address.
7265
7266 It is an error to specify both a load region and a load address. */
7267
7268 static void
7269 lang_get_regions (lang_memory_region_type **region,
7270 lang_memory_region_type **lma_region,
7271 const char *memspec,
7272 const char *lma_memspec,
7273 bfd_boolean have_lma,
7274 bfd_boolean have_vma)
7275 {
7276 *lma_region = lang_memory_region_lookup (lma_memspec, FALSE);
7277
7278 /* If no runtime region or VMA has been specified, but the load region
7279 has been specified, then use the load region for the runtime region
7280 as well. */
7281 if (lma_memspec != NULL
7282 && !have_vma
7283 && strcmp (memspec, DEFAULT_MEMORY_REGION) == 0)
7284 *region = *lma_region;
7285 else
7286 *region = lang_memory_region_lookup (memspec, FALSE);
7287
7288 if (have_lma && lma_memspec != 0)
7289 einfo (_("%X%P:%S: section has both a load address and a load region\n"),
7290 NULL);
7291 }
7292
7293 void
7294 lang_leave_output_section_statement (fill_type *fill, const char *memspec,
7295 lang_output_section_phdr_list *phdrs,
7296 const char *lma_memspec)
7297 {
7298 lang_get_regions (&current_section->region,
7299 &current_section->lma_region,
7300 memspec, lma_memspec,
7301 current_section->load_base != NULL,
7302 current_section->addr_tree != NULL);
7303
7304 /* If this section has no load region or base, but uses the same
7305 region as the previous section, then propagate the previous
7306 section's load region. */
7307
7308 if (current_section->lma_region == NULL
7309 && current_section->load_base == NULL
7310 && current_section->addr_tree == NULL
7311 && current_section->region == current_section->prev->region)
7312 current_section->lma_region = current_section->prev->lma_region;
7313
7314 current_section->fill = fill;
7315 current_section->phdrs = phdrs;
7316 pop_stat_ptr ();
7317 }
7318
7319 void
7320 lang_statement_append (lang_statement_list_type *list,
7321 lang_statement_union_type *element,
7322 lang_statement_union_type **field)
7323 {
7324 *(list->tail) = element;
7325 list->tail = field;
7326 }
7327
7328 /* Set the output format type. -oformat overrides scripts. */
7329
7330 void
7331 lang_add_output_format (const char *format,
7332 const char *big,
7333 const char *little,
7334 int from_script)
7335 {
7336 if (output_target == NULL || !from_script)
7337 {
7338 if (command_line.endian == ENDIAN_BIG
7339 && big != NULL)
7340 format = big;
7341 else if (command_line.endian == ENDIAN_LITTLE
7342 && little != NULL)
7343 format = little;
7344
7345 output_target = format;
7346 }
7347 }
7348
7349 void
7350 lang_add_insert (const char *where, int is_before)
7351 {
7352 lang_insert_statement_type *new_stmt;
7353
7354 new_stmt = new_stat (lang_insert_statement, stat_ptr);
7355 new_stmt->where = where;
7356 new_stmt->is_before = is_before;
7357 saved_script_handle = previous_script_handle;
7358 }
7359
7360 /* Enter a group. This creates a new lang_group_statement, and sets
7361 stat_ptr to build new statements within the group. */
7362
7363 void
7364 lang_enter_group (void)
7365 {
7366 lang_group_statement_type *g;
7367
7368 g = new_stat (lang_group_statement, stat_ptr);
7369 lang_list_init (&g->children);
7370 push_stat_ptr (&g->children);
7371 }
7372
7373 /* Leave a group. This just resets stat_ptr to start writing to the
7374 regular list of statements again. Note that this will not work if
7375 groups can occur inside anything else which can adjust stat_ptr,
7376 but currently they can't. */
7377
7378 void
7379 lang_leave_group (void)
7380 {
7381 pop_stat_ptr ();
7382 }
7383
7384 /* Add a new program header. This is called for each entry in a PHDRS
7385 command in a linker script. */
7386
7387 void
7388 lang_new_phdr (const char *name,
7389 etree_type *type,
7390 bfd_boolean filehdr,
7391 bfd_boolean phdrs,
7392 etree_type *at,
7393 etree_type *flags)
7394 {
7395 struct lang_phdr *n, **pp;
7396 bfd_boolean hdrs;
7397
7398 n = (struct lang_phdr *) stat_alloc (sizeof (struct lang_phdr));
7399 n->next = NULL;
7400 n->name = name;
7401 n->type = exp_get_value_int (type, 0, "program header type");
7402 n->filehdr = filehdr;
7403 n->phdrs = phdrs;
7404 n->at = at;
7405 n->flags = flags;
7406
7407 hdrs = n->type == 1 && (phdrs || filehdr);
7408
7409 for (pp = &lang_phdr_list; *pp != NULL; pp = &(*pp)->next)
7410 if (hdrs
7411 && (*pp)->type == 1
7412 && !((*pp)->filehdr || (*pp)->phdrs))
7413 {
7414 einfo (_("%X%P:%S: PHDRS and FILEHDR are not supported"
7415 " when prior PT_LOAD headers lack them\n"), NULL);
7416 hdrs = FALSE;
7417 }
7418
7419 *pp = n;
7420 }
7421
7422 /* Record the program header information in the output BFD. FIXME: We
7423 should not be calling an ELF specific function here. */
7424
7425 static void
7426 lang_record_phdrs (void)
7427 {
7428 unsigned int alc;
7429 asection **secs;
7430 lang_output_section_phdr_list *last;
7431 struct lang_phdr *l;
7432 lang_output_section_statement_type *os;
7433
7434 alc = 10;
7435 secs = (asection **) xmalloc (alc * sizeof (asection *));
7436 last = NULL;
7437
7438 for (l = lang_phdr_list; l != NULL; l = l->next)
7439 {
7440 unsigned int c;
7441 flagword flags;
7442 bfd_vma at;
7443
7444 c = 0;
7445 for (os = &lang_output_section_statement.head->output_section_statement;
7446 os != NULL;
7447 os = os->next)
7448 {
7449 lang_output_section_phdr_list *pl;
7450
7451 if (os->constraint < 0)
7452 continue;
7453
7454 pl = os->phdrs;
7455 if (pl != NULL)
7456 last = pl;
7457 else
7458 {
7459 if (os->sectype == noload_section
7460 || os->bfd_section == NULL
7461 || (os->bfd_section->flags & SEC_ALLOC) == 0)
7462 continue;
7463
7464 /* Don't add orphans to PT_INTERP header. */
7465 if (l->type == 3)
7466 continue;
7467
7468 if (last == NULL)
7469 {
7470 lang_output_section_statement_type *tmp_os;
7471
7472 /* If we have not run across a section with a program
7473 header assigned to it yet, then scan forwards to find
7474 one. This prevents inconsistencies in the linker's
7475 behaviour when a script has specified just a single
7476 header and there are sections in that script which are
7477 not assigned to it, and which occur before the first
7478 use of that header. See here for more details:
7479 http://sourceware.org/ml/binutils/2007-02/msg00291.html */
7480 for (tmp_os = os; tmp_os; tmp_os = tmp_os->next)
7481 if (tmp_os->phdrs)
7482 {
7483 last = tmp_os->phdrs;
7484 break;
7485 }
7486 if (last == NULL)
7487 einfo (_("%F%P: no sections assigned to phdrs\n"));
7488 }
7489 pl = last;
7490 }
7491
7492 if (os->bfd_section == NULL)
7493 continue;
7494
7495 for (; pl != NULL; pl = pl->next)
7496 {
7497 if (strcmp (pl->name, l->name) == 0)
7498 {
7499 if (c >= alc)
7500 {
7501 alc *= 2;
7502 secs = (asection **) xrealloc (secs,
7503 alc * sizeof (asection *));
7504 }
7505 secs[c] = os->bfd_section;
7506 ++c;
7507 pl->used = TRUE;
7508 }
7509 }
7510 }
7511
7512 if (l->flags == NULL)
7513 flags = 0;
7514 else
7515 flags = exp_get_vma (l->flags, 0, "phdr flags");
7516
7517 if (l->at == NULL)
7518 at = 0;
7519 else
7520 at = exp_get_vma (l->at, 0, "phdr load address");
7521
7522 if (!bfd_record_phdr (link_info.output_bfd, l->type,
7523 l->flags != NULL, flags, l->at != NULL,
7524 at, l->filehdr, l->phdrs, c, secs))
7525 einfo (_("%F%P: bfd_record_phdr failed: %E\n"));
7526 }
7527
7528 free (secs);
7529
7530 /* Make sure all the phdr assignments succeeded. */
7531 for (os = &lang_output_section_statement.head->output_section_statement;
7532 os != NULL;
7533 os = os->next)
7534 {
7535 lang_output_section_phdr_list *pl;
7536
7537 if (os->constraint < 0
7538 || os->bfd_section == NULL)
7539 continue;
7540
7541 for (pl = os->phdrs;
7542 pl != NULL;
7543 pl = pl->next)
7544 if (!pl->used && strcmp (pl->name, "NONE") != 0)
7545 einfo (_("%X%P: section `%s' assigned to non-existent phdr `%s'\n"),
7546 os->name, pl->name);
7547 }
7548 }
7549
7550 /* Record a list of sections which may not be cross referenced. */
7551
7552 void
7553 lang_add_nocrossref (lang_nocrossref_type *l)
7554 {
7555 struct lang_nocrossrefs *n;
7556
7557 n = (struct lang_nocrossrefs *) xmalloc (sizeof *n);
7558 n->next = nocrossref_list;
7559 n->list = l;
7560 n->onlyfirst = FALSE;
7561 nocrossref_list = n;
7562
7563 /* Set notice_all so that we get informed about all symbols. */
7564 link_info.notice_all = TRUE;
7565 }
7566
7567 /* Record a section that cannot be referenced from a list of sections. */
7568
7569 void
7570 lang_add_nocrossref_to (lang_nocrossref_type *l)
7571 {
7572 lang_add_nocrossref (l);
7573 nocrossref_list->onlyfirst = TRUE;
7574 }
7575 \f
7576 /* Overlay handling. We handle overlays with some static variables. */
7577
7578 /* The overlay virtual address. */
7579 static etree_type *overlay_vma;
7580 /* And subsection alignment. */
7581 static etree_type *overlay_subalign;
7582
7583 /* An expression for the maximum section size seen so far. */
7584 static etree_type *overlay_max;
7585
7586 /* A list of all the sections in this overlay. */
7587
7588 struct overlay_list {
7589 struct overlay_list *next;
7590 lang_output_section_statement_type *os;
7591 };
7592
7593 static struct overlay_list *overlay_list;
7594
7595 /* Start handling an overlay. */
7596
7597 void
7598 lang_enter_overlay (etree_type *vma_expr, etree_type *subalign)
7599 {
7600 /* The grammar should prevent nested overlays from occurring. */
7601 ASSERT (overlay_vma == NULL
7602 && overlay_subalign == NULL
7603 && overlay_max == NULL);
7604
7605 overlay_vma = vma_expr;
7606 overlay_subalign = subalign;
7607 }
7608
7609 /* Start a section in an overlay. We handle this by calling
7610 lang_enter_output_section_statement with the correct VMA.
7611 lang_leave_overlay sets up the LMA and memory regions. */
7612
7613 void
7614 lang_enter_overlay_section (const char *name)
7615 {
7616 struct overlay_list *n;
7617 etree_type *size;
7618
7619 lang_enter_output_section_statement (name, overlay_vma, overlay_section,
7620 0, overlay_subalign, 0, 0, 0);
7621
7622 /* If this is the first section, then base the VMA of future
7623 sections on this one. This will work correctly even if `.' is
7624 used in the addresses. */
7625 if (overlay_list == NULL)
7626 overlay_vma = exp_nameop (ADDR, name);
7627
7628 /* Remember the section. */
7629 n = (struct overlay_list *) xmalloc (sizeof *n);
7630 n->os = current_section;
7631 n->next = overlay_list;
7632 overlay_list = n;
7633
7634 size = exp_nameop (SIZEOF, name);
7635
7636 /* Arrange to work out the maximum section end address. */
7637 if (overlay_max == NULL)
7638 overlay_max = size;
7639 else
7640 overlay_max = exp_binop (MAX_K, overlay_max, size);
7641 }
7642
7643 /* Finish a section in an overlay. There isn't any special to do
7644 here. */
7645
7646 void
7647 lang_leave_overlay_section (fill_type *fill,
7648 lang_output_section_phdr_list *phdrs)
7649 {
7650 const char *name;
7651 char *clean, *s2;
7652 const char *s1;
7653 char *buf;
7654
7655 name = current_section->name;
7656
7657 /* For now, assume that DEFAULT_MEMORY_REGION is the run-time memory
7658 region and that no load-time region has been specified. It doesn't
7659 really matter what we say here, since lang_leave_overlay will
7660 override it. */
7661 lang_leave_output_section_statement (fill, DEFAULT_MEMORY_REGION, phdrs, 0);
7662
7663 /* Define the magic symbols. */
7664
7665 clean = (char *) xmalloc (strlen (name) + 1);
7666 s2 = clean;
7667 for (s1 = name; *s1 != '\0'; s1++)
7668 if (ISALNUM (*s1) || *s1 == '_')
7669 *s2++ = *s1;
7670 *s2 = '\0';
7671
7672 buf = (char *) xmalloc (strlen (clean) + sizeof "__load_start_");
7673 sprintf (buf, "__load_start_%s", clean);
7674 lang_add_assignment (exp_provide (buf,
7675 exp_nameop (LOADADDR, name),
7676 FALSE));
7677
7678 buf = (char *) xmalloc (strlen (clean) + sizeof "__load_stop_");
7679 sprintf (buf, "__load_stop_%s", clean);
7680 lang_add_assignment (exp_provide (buf,
7681 exp_binop ('+',
7682 exp_nameop (LOADADDR, name),
7683 exp_nameop (SIZEOF, name)),
7684 FALSE));
7685
7686 free (clean);
7687 }
7688
7689 /* Finish an overlay. If there are any overlay wide settings, this
7690 looks through all the sections in the overlay and sets them. */
7691
7692 void
7693 lang_leave_overlay (etree_type *lma_expr,
7694 int nocrossrefs,
7695 fill_type *fill,
7696 const char *memspec,
7697 lang_output_section_phdr_list *phdrs,
7698 const char *lma_memspec)
7699 {
7700 lang_memory_region_type *region;
7701 lang_memory_region_type *lma_region;
7702 struct overlay_list *l;
7703 lang_nocrossref_type *nocrossref;
7704
7705 lang_get_regions (&region, &lma_region,
7706 memspec, lma_memspec,
7707 lma_expr != NULL, FALSE);
7708
7709 nocrossref = NULL;
7710
7711 /* After setting the size of the last section, set '.' to end of the
7712 overlay region. */
7713 if (overlay_list != NULL)
7714 {
7715 overlay_list->os->update_dot = 1;
7716 overlay_list->os->update_dot_tree
7717 = exp_assign (".", exp_binop ('+', overlay_vma, overlay_max), FALSE);
7718 }
7719
7720 l = overlay_list;
7721 while (l != NULL)
7722 {
7723 struct overlay_list *next;
7724
7725 if (fill != NULL && l->os->fill == NULL)
7726 l->os->fill = fill;
7727
7728 l->os->region = region;
7729 l->os->lma_region = lma_region;
7730
7731 /* The first section has the load address specified in the
7732 OVERLAY statement. The rest are worked out from that.
7733 The base address is not needed (and should be null) if
7734 an LMA region was specified. */
7735 if (l->next == 0)
7736 {
7737 l->os->load_base = lma_expr;
7738 l->os->sectype = normal_section;
7739 }
7740 if (phdrs != NULL && l->os->phdrs == NULL)
7741 l->os->phdrs = phdrs;
7742
7743 if (nocrossrefs)
7744 {
7745 lang_nocrossref_type *nc;
7746
7747 nc = (lang_nocrossref_type *) xmalloc (sizeof *nc);
7748 nc->name = l->os->name;
7749 nc->next = nocrossref;
7750 nocrossref = nc;
7751 }
7752
7753 next = l->next;
7754 free (l);
7755 l = next;
7756 }
7757
7758 if (nocrossref != NULL)
7759 lang_add_nocrossref (nocrossref);
7760
7761 overlay_vma = NULL;
7762 overlay_list = NULL;
7763 overlay_max = NULL;
7764 }
7765 \f
7766 /* Version handling. This is only useful for ELF. */
7767
7768 /* If PREV is NULL, return first version pattern matching particular symbol.
7769 If PREV is non-NULL, return first version pattern matching particular
7770 symbol after PREV (previously returned by lang_vers_match). */
7771
7772 static struct bfd_elf_version_expr *
7773 lang_vers_match (struct bfd_elf_version_expr_head *head,
7774 struct bfd_elf_version_expr *prev,
7775 const char *sym)
7776 {
7777 const char *c_sym;
7778 const char *cxx_sym = sym;
7779 const char *java_sym = sym;
7780 struct bfd_elf_version_expr *expr = NULL;
7781 enum demangling_styles curr_style;
7782
7783 curr_style = CURRENT_DEMANGLING_STYLE;
7784 cplus_demangle_set_style (no_demangling);
7785 c_sym = bfd_demangle (link_info.output_bfd, sym, DMGL_NO_OPTS);
7786 if (!c_sym)
7787 c_sym = sym;
7788 cplus_demangle_set_style (curr_style);
7789
7790 if (head->mask & BFD_ELF_VERSION_CXX_TYPE)
7791 {
7792 cxx_sym = bfd_demangle (link_info.output_bfd, sym,
7793 DMGL_PARAMS | DMGL_ANSI);
7794 if (!cxx_sym)
7795 cxx_sym = sym;
7796 }
7797 if (head->mask & BFD_ELF_VERSION_JAVA_TYPE)
7798 {
7799 java_sym = bfd_demangle (link_info.output_bfd, sym, DMGL_JAVA);
7800 if (!java_sym)
7801 java_sym = sym;
7802 }
7803
7804 if (head->htab && (prev == NULL || prev->literal))
7805 {
7806 struct bfd_elf_version_expr e;
7807
7808 switch (prev ? prev->mask : 0)
7809 {
7810 case 0:
7811 if (head->mask & BFD_ELF_VERSION_C_TYPE)
7812 {
7813 e.pattern = c_sym;
7814 expr = (struct bfd_elf_version_expr *)
7815 htab_find ((htab_t) head->htab, &e);
7816 while (expr && strcmp (expr->pattern, c_sym) == 0)
7817 if (expr->mask == BFD_ELF_VERSION_C_TYPE)
7818 goto out_ret;
7819 else
7820 expr = expr->next;
7821 }
7822 /* Fallthrough */
7823 case BFD_ELF_VERSION_C_TYPE:
7824 if (head->mask & BFD_ELF_VERSION_CXX_TYPE)
7825 {
7826 e.pattern = cxx_sym;
7827 expr = (struct bfd_elf_version_expr *)
7828 htab_find ((htab_t) head->htab, &e);
7829 while (expr && strcmp (expr->pattern, cxx_sym) == 0)
7830 if (expr->mask == BFD_ELF_VERSION_CXX_TYPE)
7831 goto out_ret;
7832 else
7833 expr = expr->next;
7834 }
7835 /* Fallthrough */
7836 case BFD_ELF_VERSION_CXX_TYPE:
7837 if (head->mask & BFD_ELF_VERSION_JAVA_TYPE)
7838 {
7839 e.pattern = java_sym;
7840 expr = (struct bfd_elf_version_expr *)
7841 htab_find ((htab_t) head->htab, &e);
7842 while (expr && strcmp (expr->pattern, java_sym) == 0)
7843 if (expr->mask == BFD_ELF_VERSION_JAVA_TYPE)
7844 goto out_ret;
7845 else
7846 expr = expr->next;
7847 }
7848 /* Fallthrough */
7849 default:
7850 break;
7851 }
7852 }
7853
7854 /* Finally, try the wildcards. */
7855 if (prev == NULL || prev->literal)
7856 expr = head->remaining;
7857 else
7858 expr = prev->next;
7859 for (; expr; expr = expr->next)
7860 {
7861 const char *s;
7862
7863 if (!expr->pattern)
7864 continue;
7865
7866 if (expr->pattern[0] == '*' && expr->pattern[1] == '\0')
7867 break;
7868
7869 if (expr->mask == BFD_ELF_VERSION_JAVA_TYPE)
7870 s = java_sym;
7871 else if (expr->mask == BFD_ELF_VERSION_CXX_TYPE)
7872 s = cxx_sym;
7873 else
7874 s = c_sym;
7875 if (fnmatch (expr->pattern, s, 0) == 0)
7876 break;
7877 }
7878
7879 out_ret:
7880 if (c_sym != sym)
7881 free ((char *) c_sym);
7882 if (cxx_sym != sym)
7883 free ((char *) cxx_sym);
7884 if (java_sym != sym)
7885 free ((char *) java_sym);
7886 return expr;
7887 }
7888
7889 /* Return NULL if the PATTERN argument is a glob pattern, otherwise,
7890 return a pointer to the symbol name with any backslash quotes removed. */
7891
7892 static const char *
7893 realsymbol (const char *pattern)
7894 {
7895 const char *p;
7896 bfd_boolean changed = FALSE, backslash = FALSE;
7897 char *s, *symbol = (char *) xmalloc (strlen (pattern) + 1);
7898
7899 for (p = pattern, s = symbol; *p != '\0'; ++p)
7900 {
7901 /* It is a glob pattern only if there is no preceding
7902 backslash. */
7903 if (backslash)
7904 {
7905 /* Remove the preceding backslash. */
7906 *(s - 1) = *p;
7907 backslash = FALSE;
7908 changed = TRUE;
7909 }
7910 else
7911 {
7912 if (*p == '?' || *p == '*' || *p == '[')
7913 {
7914 free (symbol);
7915 return NULL;
7916 }
7917
7918 *s++ = *p;
7919 backslash = *p == '\\';
7920 }
7921 }
7922
7923 if (changed)
7924 {
7925 *s = '\0';
7926 return symbol;
7927 }
7928 else
7929 {
7930 free (symbol);
7931 return pattern;
7932 }
7933 }
7934
7935 /* This is called for each variable name or match expression. NEW_NAME is
7936 the name of the symbol to match, or, if LITERAL_P is FALSE, a glob
7937 pattern to be matched against symbol names. */
7938
7939 struct bfd_elf_version_expr *
7940 lang_new_vers_pattern (struct bfd_elf_version_expr *orig,
7941 const char *new_name,
7942 const char *lang,
7943 bfd_boolean literal_p)
7944 {
7945 struct bfd_elf_version_expr *ret;
7946
7947 ret = (struct bfd_elf_version_expr *) xmalloc (sizeof *ret);
7948 ret->next = orig;
7949 ret->symver = 0;
7950 ret->script = 0;
7951 ret->literal = TRUE;
7952 ret->pattern = literal_p ? new_name : realsymbol (new_name);
7953 if (ret->pattern == NULL)
7954 {
7955 ret->pattern = new_name;
7956 ret->literal = FALSE;
7957 }
7958
7959 if (lang == NULL || strcasecmp (lang, "C") == 0)
7960 ret->mask = BFD_ELF_VERSION_C_TYPE;
7961 else if (strcasecmp (lang, "C++") == 0)
7962 ret->mask = BFD_ELF_VERSION_CXX_TYPE;
7963 else if (strcasecmp (lang, "Java") == 0)
7964 ret->mask = BFD_ELF_VERSION_JAVA_TYPE;
7965 else
7966 {
7967 einfo (_("%X%P: unknown language `%s' in version information\n"),
7968 lang);
7969 ret->mask = BFD_ELF_VERSION_C_TYPE;
7970 }
7971
7972 return ldemul_new_vers_pattern (ret);
7973 }
7974
7975 /* This is called for each set of variable names and match
7976 expressions. */
7977
7978 struct bfd_elf_version_tree *
7979 lang_new_vers_node (struct bfd_elf_version_expr *globals,
7980 struct bfd_elf_version_expr *locals)
7981 {
7982 struct bfd_elf_version_tree *ret;
7983
7984 ret = (struct bfd_elf_version_tree *) xcalloc (1, sizeof *ret);
7985 ret->globals.list = globals;
7986 ret->locals.list = locals;
7987 ret->match = lang_vers_match;
7988 ret->name_indx = (unsigned int) -1;
7989 return ret;
7990 }
7991
7992 /* This static variable keeps track of version indices. */
7993
7994 static int version_index;
7995
7996 static hashval_t
7997 version_expr_head_hash (const void *p)
7998 {
7999 const struct bfd_elf_version_expr *e =
8000 (const struct bfd_elf_version_expr *) p;
8001
8002 return htab_hash_string (e->pattern);
8003 }
8004
8005 static int
8006 version_expr_head_eq (const void *p1, const void *p2)
8007 {
8008 const struct bfd_elf_version_expr *e1 =
8009 (const struct bfd_elf_version_expr *) p1;
8010 const struct bfd_elf_version_expr *e2 =
8011 (const struct bfd_elf_version_expr *) p2;
8012
8013 return strcmp (e1->pattern, e2->pattern) == 0;
8014 }
8015
8016 static void
8017 lang_finalize_version_expr_head (struct bfd_elf_version_expr_head *head)
8018 {
8019 size_t count = 0;
8020 struct bfd_elf_version_expr *e, *next;
8021 struct bfd_elf_version_expr **list_loc, **remaining_loc;
8022
8023 for (e = head->list; e; e = e->next)
8024 {
8025 if (e->literal)
8026 count++;
8027 head->mask |= e->mask;
8028 }
8029
8030 if (count)
8031 {
8032 head->htab = htab_create (count * 2, version_expr_head_hash,
8033 version_expr_head_eq, NULL);
8034 list_loc = &head->list;
8035 remaining_loc = &head->remaining;
8036 for (e = head->list; e; e = next)
8037 {
8038 next = e->next;
8039 if (!e->literal)
8040 {
8041 *remaining_loc = e;
8042 remaining_loc = &e->next;
8043 }
8044 else
8045 {
8046 void **loc = htab_find_slot ((htab_t) head->htab, e, INSERT);
8047
8048 if (*loc)
8049 {
8050 struct bfd_elf_version_expr *e1, *last;
8051
8052 e1 = (struct bfd_elf_version_expr *) *loc;
8053 last = NULL;
8054 do
8055 {
8056 if (e1->mask == e->mask)
8057 {
8058 last = NULL;
8059 break;
8060 }
8061 last = e1;
8062 e1 = e1->next;
8063 }
8064 while (e1 && strcmp (e1->pattern, e->pattern) == 0);
8065
8066 if (last == NULL)
8067 {
8068 /* This is a duplicate. */
8069 /* FIXME: Memory leak. Sometimes pattern is not
8070 xmalloced alone, but in larger chunk of memory. */
8071 /* free (e->pattern); */
8072 free (e);
8073 }
8074 else
8075 {
8076 e->next = last->next;
8077 last->next = e;
8078 }
8079 }
8080 else
8081 {
8082 *loc = e;
8083 *list_loc = e;
8084 list_loc = &e->next;
8085 }
8086 }
8087 }
8088 *remaining_loc = NULL;
8089 *list_loc = head->remaining;
8090 }
8091 else
8092 head->remaining = head->list;
8093 }
8094
8095 /* This is called when we know the name and dependencies of the
8096 version. */
8097
8098 void
8099 lang_register_vers_node (const char *name,
8100 struct bfd_elf_version_tree *version,
8101 struct bfd_elf_version_deps *deps)
8102 {
8103 struct bfd_elf_version_tree *t, **pp;
8104 struct bfd_elf_version_expr *e1;
8105
8106 if (name == NULL)
8107 name = "";
8108
8109 if (link_info.version_info != NULL
8110 && (name[0] == '\0' || link_info.version_info->name[0] == '\0'))
8111 {
8112 einfo (_("%X%P: anonymous version tag cannot be combined"
8113 " with other version tags\n"));
8114 free (version);
8115 return;
8116 }
8117
8118 /* Make sure this node has a unique name. */
8119 for (t = link_info.version_info; t != NULL; t = t->next)
8120 if (strcmp (t->name, name) == 0)
8121 einfo (_("%X%P: duplicate version tag `%s'\n"), name);
8122
8123 lang_finalize_version_expr_head (&version->globals);
8124 lang_finalize_version_expr_head (&version->locals);
8125
8126 /* Check the global and local match names, and make sure there
8127 aren't any duplicates. */
8128
8129 for (e1 = version->globals.list; e1 != NULL; e1 = e1->next)
8130 {
8131 for (t = link_info.version_info; t != NULL; t = t->next)
8132 {
8133 struct bfd_elf_version_expr *e2;
8134
8135 if (t->locals.htab && e1->literal)
8136 {
8137 e2 = (struct bfd_elf_version_expr *)
8138 htab_find ((htab_t) t->locals.htab, e1);
8139 while (e2 && strcmp (e1->pattern, e2->pattern) == 0)
8140 {
8141 if (e1->mask == e2->mask)
8142 einfo (_("%X%P: duplicate expression `%s'"
8143 " in version information\n"), e1->pattern);
8144 e2 = e2->next;
8145 }
8146 }
8147 else if (!e1->literal)
8148 for (e2 = t->locals.remaining; e2 != NULL; e2 = e2->next)
8149 if (strcmp (e1->pattern, e2->pattern) == 0
8150 && e1->mask == e2->mask)
8151 einfo (_("%X%P: duplicate expression `%s'"
8152 " in version information\n"), e1->pattern);
8153 }
8154 }
8155
8156 for (e1 = version->locals.list; e1 != NULL; e1 = e1->next)
8157 {
8158 for (t = link_info.version_info; t != NULL; t = t->next)
8159 {
8160 struct bfd_elf_version_expr *e2;
8161
8162 if (t->globals.htab && e1->literal)
8163 {
8164 e2 = (struct bfd_elf_version_expr *)
8165 htab_find ((htab_t) t->globals.htab, e1);
8166 while (e2 && strcmp (e1->pattern, e2->pattern) == 0)
8167 {
8168 if (e1->mask == e2->mask)
8169 einfo (_("%X%P: duplicate expression `%s'"
8170 " in version information\n"),
8171 e1->pattern);
8172 e2 = e2->next;
8173 }
8174 }
8175 else if (!e1->literal)
8176 for (e2 = t->globals.remaining; e2 != NULL; e2 = e2->next)
8177 if (strcmp (e1->pattern, e2->pattern) == 0
8178 && e1->mask == e2->mask)
8179 einfo (_("%X%P: duplicate expression `%s'"
8180 " in version information\n"), e1->pattern);
8181 }
8182 }
8183
8184 version->deps = deps;
8185 version->name = name;
8186 if (name[0] != '\0')
8187 {
8188 ++version_index;
8189 version->vernum = version_index;
8190 }
8191 else
8192 version->vernum = 0;
8193
8194 for (pp = &link_info.version_info; *pp != NULL; pp = &(*pp)->next)
8195 ;
8196 *pp = version;
8197 }
8198
8199 /* This is called when we see a version dependency. */
8200
8201 struct bfd_elf_version_deps *
8202 lang_add_vers_depend (struct bfd_elf_version_deps *list, const char *name)
8203 {
8204 struct bfd_elf_version_deps *ret;
8205 struct bfd_elf_version_tree *t;
8206
8207 ret = (struct bfd_elf_version_deps *) xmalloc (sizeof *ret);
8208 ret->next = list;
8209
8210 for (t = link_info.version_info; t != NULL; t = t->next)
8211 {
8212 if (strcmp (t->name, name) == 0)
8213 {
8214 ret->version_needed = t;
8215 return ret;
8216 }
8217 }
8218
8219 einfo (_("%X%P: unable to find version dependency `%s'\n"), name);
8220
8221 ret->version_needed = NULL;
8222 return ret;
8223 }
8224
8225 static void
8226 lang_do_version_exports_section (void)
8227 {
8228 struct bfd_elf_version_expr *greg = NULL, *lreg;
8229
8230 LANG_FOR_EACH_INPUT_STATEMENT (is)
8231 {
8232 asection *sec = bfd_get_section_by_name (is->the_bfd, ".exports");
8233 char *contents, *p;
8234 bfd_size_type len;
8235
8236 if (sec == NULL)
8237 continue;
8238
8239 len = sec->size;
8240 contents = (char *) xmalloc (len);
8241 if (!bfd_get_section_contents (is->the_bfd, sec, contents, 0, len))
8242 einfo (_("%X%P: unable to read .exports section contents\n"), sec);
8243
8244 p = contents;
8245 while (p < contents + len)
8246 {
8247 greg = lang_new_vers_pattern (greg, p, NULL, FALSE);
8248 p = strchr (p, '\0') + 1;
8249 }
8250
8251 /* Do not free the contents, as we used them creating the regex. */
8252
8253 /* Do not include this section in the link. */
8254 sec->flags |= SEC_EXCLUDE | SEC_KEEP;
8255 }
8256
8257 lreg = lang_new_vers_pattern (NULL, "*", NULL, FALSE);
8258 lang_register_vers_node (command_line.version_exports_section,
8259 lang_new_vers_node (greg, lreg), NULL);
8260 }
8261
8262 /* Evaluate LENGTH and ORIGIN parts of MEMORY spec */
8263
8264 static void
8265 lang_do_memory_regions (void)
8266 {
8267 lang_memory_region_type *r = lang_memory_region_list;
8268
8269 for (; r != NULL; r = r->next)
8270 {
8271 if (r->origin_exp)
8272 {
8273 exp_fold_tree_no_dot (r->origin_exp);
8274 if (expld.result.valid_p)
8275 {
8276 r->origin = expld.result.value;
8277 r->current = r->origin;
8278 }
8279 else
8280 einfo (_("%F%P: invalid origin for memory region %s\n"),
8281 r->name_list.name);
8282 }
8283 if (r->length_exp)
8284 {
8285 exp_fold_tree_no_dot (r->length_exp);
8286 if (expld.result.valid_p)
8287 r->length = expld.result.value;
8288 else
8289 einfo (_("%F%P: invalid length for memory region %s\n"),
8290 r->name_list.name);
8291 }
8292 }
8293 }
8294
8295 void
8296 lang_add_unique (const char *name)
8297 {
8298 struct unique_sections *ent;
8299
8300 for (ent = unique_section_list; ent; ent = ent->next)
8301 if (strcmp (ent->name, name) == 0)
8302 return;
8303
8304 ent = (struct unique_sections *) xmalloc (sizeof *ent);
8305 ent->name = xstrdup (name);
8306 ent->next = unique_section_list;
8307 unique_section_list = ent;
8308 }
8309
8310 /* Append the list of dynamic symbols to the existing one. */
8311
8312 void
8313 lang_append_dynamic_list (struct bfd_elf_version_expr *dynamic)
8314 {
8315 if (link_info.dynamic_list)
8316 {
8317 struct bfd_elf_version_expr *tail;
8318 for (tail = dynamic; tail->next != NULL; tail = tail->next)
8319 ;
8320 tail->next = link_info.dynamic_list->head.list;
8321 link_info.dynamic_list->head.list = dynamic;
8322 }
8323 else
8324 {
8325 struct bfd_elf_dynamic_list *d;
8326
8327 d = (struct bfd_elf_dynamic_list *) xcalloc (1, sizeof *d);
8328 d->head.list = dynamic;
8329 d->match = lang_vers_match;
8330 link_info.dynamic_list = d;
8331 }
8332 }
8333
8334 /* Append the list of C++ typeinfo dynamic symbols to the existing
8335 one. */
8336
8337 void
8338 lang_append_dynamic_list_cpp_typeinfo (void)
8339 {
8340 const char *symbols[] =
8341 {
8342 "typeinfo name for*",
8343 "typeinfo for*"
8344 };
8345 struct bfd_elf_version_expr *dynamic = NULL;
8346 unsigned int i;
8347
8348 for (i = 0; i < ARRAY_SIZE (symbols); i++)
8349 dynamic = lang_new_vers_pattern (dynamic, symbols [i], "C++",
8350 FALSE);
8351
8352 lang_append_dynamic_list (dynamic);
8353 }
8354
8355 /* Append the list of C++ operator new and delete dynamic symbols to the
8356 existing one. */
8357
8358 void
8359 lang_append_dynamic_list_cpp_new (void)
8360 {
8361 const char *symbols[] =
8362 {
8363 "operator new*",
8364 "operator delete*"
8365 };
8366 struct bfd_elf_version_expr *dynamic = NULL;
8367 unsigned int i;
8368
8369 for (i = 0; i < ARRAY_SIZE (symbols); i++)
8370 dynamic = lang_new_vers_pattern (dynamic, symbols [i], "C++",
8371 FALSE);
8372
8373 lang_append_dynamic_list (dynamic);
8374 }
8375
8376 /* Scan a space and/or comma separated string of features. */
8377
8378 void
8379 lang_ld_feature (char *str)
8380 {
8381 char *p, *q;
8382
8383 p = str;
8384 while (*p)
8385 {
8386 char sep;
8387 while (*p == ',' || ISSPACE (*p))
8388 ++p;
8389 if (!*p)
8390 break;
8391 q = p + 1;
8392 while (*q && *q != ',' && !ISSPACE (*q))
8393 ++q;
8394 sep = *q;
8395 *q = 0;
8396 if (strcasecmp (p, "SANE_EXPR") == 0)
8397 config.sane_expr = TRUE;
8398 else
8399 einfo (_("%X%P: unknown feature `%s'\n"), p);
8400 *q = sep;
8401 p = q;
8402 }
8403 }
8404
8405 /* Pretty print memory amount. */
8406
8407 static void
8408 lang_print_memory_size (bfd_vma sz)
8409 {
8410 if ((sz & 0x3fffffff) == 0)
8411 printf ("%10" BFD_VMA_FMT "u GB", sz >> 30);
8412 else if ((sz & 0xfffff) == 0)
8413 printf ("%10" BFD_VMA_FMT "u MB", sz >> 20);
8414 else if ((sz & 0x3ff) == 0)
8415 printf ("%10" BFD_VMA_FMT "u KB", sz >> 10);
8416 else
8417 printf (" %10" BFD_VMA_FMT "u B", sz);
8418 }
8419
8420 /* Implement --print-memory-usage: disply per region memory usage. */
8421
8422 void
8423 lang_print_memory_usage (void)
8424 {
8425 lang_memory_region_type *r;
8426
8427 printf ("Memory region Used Size Region Size %%age Used\n");
8428 for (r = lang_memory_region_list; r->next != NULL; r = r->next)
8429 {
8430 bfd_vma used_length = r->current - r->origin;
8431 double percent;
8432
8433 printf ("%16s: ",r->name_list.name);
8434 lang_print_memory_size (used_length);
8435 lang_print_memory_size ((bfd_vma) r->length);
8436
8437 percent = used_length * 100.0 / r->length;
8438
8439 printf (" %6.2f%%\n", percent);
8440 }
8441 }
This page took 0.204938 seconds and 4 git commands to generate.