Add SORT_BY_INIT_PRIORITY.
[deliverable/binutils-gdb.git] / ld / ldlang.c
1 /* Linker command language support.
2 Copyright 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
3 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
5
6 This file is part of the GNU Binutils.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 MA 02110-1301, USA. */
22
23 #include "sysdep.h"
24 #include "bfd.h"
25 #include "libiberty.h"
26 #include "safe-ctype.h"
27 #include "obstack.h"
28 #include "bfdlink.h"
29
30 #include "ld.h"
31 #include "ldmain.h"
32 #include "ldexp.h"
33 #include "ldlang.h"
34 #include <ldgram.h>
35 #include "ldlex.h"
36 #include "ldmisc.h"
37 #include "ldctor.h"
38 #include "ldfile.h"
39 #include "ldemul.h"
40 #include "fnmatch.h"
41 #include "demangle.h"
42 #include "hashtab.h"
43 #include "libbfd.h"
44 #ifdef ENABLE_PLUGINS
45 #include "plugin.h"
46 #endif /* ENABLE_PLUGINS */
47
48 #ifndef offsetof
49 #define offsetof(TYPE, MEMBER) ((size_t) & (((TYPE*) 0)->MEMBER))
50 #endif
51
52 /* Locals variables. */
53 static struct obstack stat_obstack;
54 static struct obstack map_obstack;
55
56 #define obstack_chunk_alloc xmalloc
57 #define obstack_chunk_free free
58 static const char *startup_file;
59 static const char *entry_symbol_default = "start";
60 static bfd_boolean placed_commons = FALSE;
61 static bfd_boolean stripped_excluded_sections = FALSE;
62 static lang_output_section_statement_type *default_common_section;
63 static bfd_boolean map_option_f;
64 static bfd_vma print_dot;
65 static lang_input_statement_type *first_file;
66 static const char *current_target;
67 static lang_statement_list_type statement_list;
68 static struct bfd_hash_table lang_definedness_table;
69 static lang_statement_list_type *stat_save[10];
70 static lang_statement_list_type **stat_save_ptr = &stat_save[0];
71 static struct unique_sections *unique_section_list;
72 static bfd_boolean ldlang_sysrooted_script = FALSE;
73
74 /* Forward declarations. */
75 static void exp_init_os (etree_type *);
76 static void init_map_userdata (bfd *, asection *, void *);
77 static lang_input_statement_type *lookup_name (const char *);
78 static struct bfd_hash_entry *lang_definedness_newfunc
79 (struct bfd_hash_entry *, struct bfd_hash_table *, const char *);
80 static void insert_undefined (const char *);
81 static bfd_boolean sort_def_symbol (struct bfd_link_hash_entry *, void *);
82 static void print_statement (lang_statement_union_type *,
83 lang_output_section_statement_type *);
84 static void print_statement_list (lang_statement_union_type *,
85 lang_output_section_statement_type *);
86 static void print_statements (void);
87 static void print_input_section (asection *, bfd_boolean);
88 static bfd_boolean lang_one_common (struct bfd_link_hash_entry *, void *);
89 static void lang_record_phdrs (void);
90 static void lang_do_version_exports_section (void);
91 static void lang_finalize_version_expr_head
92 (struct bfd_elf_version_expr_head *);
93
94 /* Exported variables. */
95 const char *output_target;
96 lang_output_section_statement_type *abs_output_section;
97 lang_statement_list_type lang_output_section_statement;
98 lang_statement_list_type *stat_ptr = &statement_list;
99 lang_statement_list_type file_chain = { NULL, NULL };
100 lang_statement_list_type input_file_chain;
101 struct bfd_sym_chain entry_symbol = { NULL, NULL };
102 const char *entry_section = ".text";
103 bfd_boolean entry_from_cmdline;
104 bfd_boolean undef_from_cmdline;
105 bfd_boolean lang_has_input_file = FALSE;
106 bfd_boolean had_output_filename = FALSE;
107 bfd_boolean lang_float_flag = FALSE;
108 bfd_boolean delete_output_file_on_failure = FALSE;
109 struct lang_phdr *lang_phdr_list;
110 struct lang_nocrossrefs *nocrossref_list;
111 bfd_boolean missing_file = FALSE;
112
113 /* Functions that traverse the linker script and might evaluate
114 DEFINED() need to increment this. */
115 int lang_statement_iteration = 0;
116
117 etree_type *base; /* Relocation base - or null */
118
119 /* Return TRUE if the PATTERN argument is a wildcard pattern.
120 Although backslashes are treated specially if a pattern contains
121 wildcards, we do not consider the mere presence of a backslash to
122 be enough to cause the pattern to be treated as a wildcard.
123 That lets us handle DOS filenames more naturally. */
124 #define wildcardp(pattern) (strpbrk ((pattern), "?*[") != NULL)
125
126 #define new_stat(x, y) \
127 (x##_type *) new_statement (x##_enum, sizeof (x##_type), y)
128
129 #define outside_section_address(q) \
130 ((q)->output_offset + (q)->output_section->vma)
131
132 #define outside_symbol_address(q) \
133 ((q)->value + outside_section_address (q->section))
134
135 #define SECTION_NAME_MAP_LENGTH (16)
136
137 void *
138 stat_alloc (size_t size)
139 {
140 return obstack_alloc (&stat_obstack, size);
141 }
142
143 static int
144 name_match (const char *pattern, const char *name)
145 {
146 if (wildcardp (pattern))
147 return fnmatch (pattern, name, 0);
148 return strcmp (pattern, name);
149 }
150
151 /* If PATTERN is of the form archive:file, return a pointer to the
152 separator. If not, return NULL. */
153
154 static char *
155 archive_path (const char *pattern)
156 {
157 char *p = NULL;
158
159 if (link_info.path_separator == 0)
160 return p;
161
162 p = strchr (pattern, link_info.path_separator);
163 #ifdef HAVE_DOS_BASED_FILE_SYSTEM
164 if (p == NULL || link_info.path_separator != ':')
165 return p;
166
167 /* Assume a match on the second char is part of drive specifier,
168 as in "c:\silly.dos". */
169 if (p == pattern + 1 && ISALPHA (*pattern))
170 p = strchr (p + 1, link_info.path_separator);
171 #endif
172 return p;
173 }
174
175 /* Given that FILE_SPEC results in a non-NULL SEP result from archive_path,
176 return whether F matches FILE_SPEC. */
177
178 static bfd_boolean
179 input_statement_is_archive_path (const char *file_spec, char *sep,
180 lang_input_statement_type *f)
181 {
182 bfd_boolean match = FALSE;
183
184 if ((*(sep + 1) == 0
185 || name_match (sep + 1, f->filename) == 0)
186 && ((sep != file_spec)
187 == (f->the_bfd != NULL && f->the_bfd->my_archive != NULL)))
188 {
189 match = TRUE;
190
191 if (sep != file_spec)
192 {
193 const char *aname = f->the_bfd->my_archive->filename;
194 *sep = 0;
195 match = name_match (file_spec, aname) == 0;
196 *sep = link_info.path_separator;
197 }
198 }
199 return match;
200 }
201
202 static bfd_boolean
203 unique_section_p (const asection *sec,
204 const lang_output_section_statement_type *os)
205 {
206 struct unique_sections *unam;
207 const char *secnam;
208
209 if (link_info.relocatable
210 && sec->owner != NULL
211 && bfd_is_group_section (sec->owner, sec))
212 return !(os != NULL
213 && strcmp (os->name, DISCARD_SECTION_NAME) == 0);
214
215 secnam = sec->name;
216 for (unam = unique_section_list; unam; unam = unam->next)
217 if (name_match (unam->name, secnam) == 0)
218 return TRUE;
219
220 return FALSE;
221 }
222
223 /* Generic traversal routines for finding matching sections. */
224
225 /* Try processing a section against a wildcard. This just calls
226 the callback unless the filename exclusion list is present
227 and excludes the file. It's hardly ever present so this
228 function is very fast. */
229
230 static void
231 walk_wild_consider_section (lang_wild_statement_type *ptr,
232 lang_input_statement_type *file,
233 asection *s,
234 struct wildcard_list *sec,
235 callback_t callback,
236 void *data)
237 {
238 struct name_list *list_tmp;
239
240 /* Don't process sections from files which were excluded. */
241 for (list_tmp = sec->spec.exclude_name_list;
242 list_tmp;
243 list_tmp = list_tmp->next)
244 {
245 char *p = archive_path (list_tmp->name);
246
247 if (p != NULL)
248 {
249 if (input_statement_is_archive_path (list_tmp->name, p, file))
250 return;
251 }
252
253 else if (name_match (list_tmp->name, file->filename) == 0)
254 return;
255
256 /* FIXME: Perhaps remove the following at some stage? Matching
257 unadorned archives like this was never documented and has
258 been superceded by the archive:path syntax. */
259 else if (file->the_bfd != NULL
260 && file->the_bfd->my_archive != NULL
261 && name_match (list_tmp->name,
262 file->the_bfd->my_archive->filename) == 0)
263 return;
264 }
265
266 (*callback) (ptr, sec, s, file, data);
267 }
268
269 /* Lowest common denominator routine that can handle everything correctly,
270 but slowly. */
271
272 static void
273 walk_wild_section_general (lang_wild_statement_type *ptr,
274 lang_input_statement_type *file,
275 callback_t callback,
276 void *data)
277 {
278 asection *s;
279 struct wildcard_list *sec;
280
281 for (s = file->the_bfd->sections; s != NULL; s = s->next)
282 {
283 sec = ptr->section_list;
284 if (sec == NULL)
285 (*callback) (ptr, sec, s, file, data);
286
287 while (sec != NULL)
288 {
289 bfd_boolean skip = FALSE;
290
291 if (sec->spec.name != NULL)
292 {
293 const char *sname = bfd_get_section_name (file->the_bfd, s);
294
295 skip = name_match (sec->spec.name, sname) != 0;
296 }
297
298 if (!skip)
299 walk_wild_consider_section (ptr, file, s, sec, callback, data);
300
301 sec = sec->next;
302 }
303 }
304 }
305
306 /* Routines to find a single section given its name. If there's more
307 than one section with that name, we report that. */
308
309 typedef struct
310 {
311 asection *found_section;
312 bfd_boolean multiple_sections_found;
313 } section_iterator_callback_data;
314
315 static bfd_boolean
316 section_iterator_callback (bfd *abfd ATTRIBUTE_UNUSED, asection *s, void *data)
317 {
318 section_iterator_callback_data *d = (section_iterator_callback_data *) data;
319
320 if (d->found_section != NULL)
321 {
322 d->multiple_sections_found = TRUE;
323 return TRUE;
324 }
325
326 d->found_section = s;
327 return FALSE;
328 }
329
330 static asection *
331 find_section (lang_input_statement_type *file,
332 struct wildcard_list *sec,
333 bfd_boolean *multiple_sections_found)
334 {
335 section_iterator_callback_data cb_data = { NULL, FALSE };
336
337 bfd_get_section_by_name_if (file->the_bfd, sec->spec.name,
338 section_iterator_callback, &cb_data);
339 *multiple_sections_found = cb_data.multiple_sections_found;
340 return cb_data.found_section;
341 }
342
343 /* Code for handling simple wildcards without going through fnmatch,
344 which can be expensive because of charset translations etc. */
345
346 /* A simple wild is a literal string followed by a single '*',
347 where the literal part is at least 4 characters long. */
348
349 static bfd_boolean
350 is_simple_wild (const char *name)
351 {
352 size_t len = strcspn (name, "*?[");
353 return len >= 4 && name[len] == '*' && name[len + 1] == '\0';
354 }
355
356 static bfd_boolean
357 match_simple_wild (const char *pattern, const char *name)
358 {
359 /* The first four characters of the pattern are guaranteed valid
360 non-wildcard characters. So we can go faster. */
361 if (pattern[0] != name[0] || pattern[1] != name[1]
362 || pattern[2] != name[2] || pattern[3] != name[3])
363 return FALSE;
364
365 pattern += 4;
366 name += 4;
367 while (*pattern != '*')
368 if (*name++ != *pattern++)
369 return FALSE;
370
371 return TRUE;
372 }
373
374 /* Return the numerical value of the init_priority attribute from
375 section name NAME. */
376
377 static unsigned long
378 get_init_priority (const char *name)
379 {
380 char *end;
381 unsigned long init_priority;
382
383 /* GCC uses the following section names for the init_priority
384 attribute with numerical values 101 and 65535 inclusive. A
385 lower value means a higher priority.
386
387 1: .init_array.NNNN/.fini_array.NNNN: Where NNNN is the
388 decimal numerical value of the init_priority attribute.
389 The order of execution in .init_array is forward and
390 .fini_array is backward.
391 2: .ctors.NNNN/.ctors.NNNN: Where NNNN is 65535 minus the
392 decimal numerical value of the init_priority attribute.
393 The order of execution in .ctors is backward and .dtors
394 is forward.
395 */
396 if (strncmp (name, ".init_array.", 12) == 0
397 || strncmp (name, ".fini_array.", 12) == 0)
398 {
399 init_priority = strtoul (name + 12, &end, 10);
400 return *end ? 0 : init_priority;
401 }
402 else if (strncmp (name, ".ctors.", 7) == 0
403 || strncmp (name, ".dtors.", 7) == 0)
404 {
405 init_priority = strtoul (name + 7, &end, 10);
406 return *end ? 0 : 65535 - init_priority;
407 }
408
409 return 0;
410 }
411
412 /* Compare sections ASEC and BSEC according to SORT. */
413
414 static int
415 compare_section (sort_type sort, asection *asec, asection *bsec)
416 {
417 int ret;
418 unsigned long ainit_priority, binit_priority;
419
420 switch (sort)
421 {
422 default:
423 abort ();
424
425 case by_init_priority:
426 ainit_priority
427 = get_init_priority (bfd_get_section_name (asec->owner, asec));
428 binit_priority
429 = get_init_priority (bfd_get_section_name (bsec->owner, bsec));
430 if (ainit_priority == 0 || binit_priority == 0)
431 goto sort_by_name;
432 ret = ainit_priority - binit_priority;
433 if (ret)
434 break;
435 else
436 goto sort_by_name;
437
438 case by_alignment_name:
439 ret = (bfd_section_alignment (bsec->owner, bsec)
440 - bfd_section_alignment (asec->owner, asec));
441 if (ret)
442 break;
443 /* Fall through. */
444
445 case by_name:
446 sort_by_name:
447 ret = strcmp (bfd_get_section_name (asec->owner, asec),
448 bfd_get_section_name (bsec->owner, bsec));
449 break;
450
451 case by_name_alignment:
452 ret = strcmp (bfd_get_section_name (asec->owner, asec),
453 bfd_get_section_name (bsec->owner, bsec));
454 if (ret)
455 break;
456 /* Fall through. */
457
458 case by_alignment:
459 ret = (bfd_section_alignment (bsec->owner, bsec)
460 - bfd_section_alignment (asec->owner, asec));
461 break;
462 }
463
464 return ret;
465 }
466
467 /* Build a Binary Search Tree to sort sections, unlike insertion sort
468 used in wild_sort(). BST is considerably faster if the number of
469 of sections are large. */
470
471 static lang_section_bst_type **
472 wild_sort_fast (lang_wild_statement_type *wild,
473 struct wildcard_list *sec,
474 lang_input_statement_type *file ATTRIBUTE_UNUSED,
475 asection *section)
476 {
477 lang_section_bst_type **tree;
478
479 tree = &wild->tree;
480 if (!wild->filenames_sorted
481 && (sec == NULL || sec->spec.sorted == none))
482 {
483 /* Append at the right end of tree. */
484 while (*tree)
485 tree = &((*tree)->right);
486 return tree;
487 }
488
489 while (*tree)
490 {
491 /* Find the correct node to append this section. */
492 if (compare_section (sec->spec.sorted, section, (*tree)->section) < 0)
493 tree = &((*tree)->left);
494 else
495 tree = &((*tree)->right);
496 }
497
498 return tree;
499 }
500
501 /* Use wild_sort_fast to build a BST to sort sections. */
502
503 static void
504 output_section_callback_fast (lang_wild_statement_type *ptr,
505 struct wildcard_list *sec,
506 asection *section,
507 lang_input_statement_type *file,
508 void *output)
509 {
510 lang_section_bst_type *node;
511 lang_section_bst_type **tree;
512 lang_output_section_statement_type *os;
513
514 os = (lang_output_section_statement_type *) output;
515
516 if (unique_section_p (section, os))
517 return;
518
519 node = (lang_section_bst_type *) xmalloc (sizeof (lang_section_bst_type));
520 node->left = 0;
521 node->right = 0;
522 node->section = section;
523
524 tree = wild_sort_fast (ptr, sec, file, section);
525 if (tree != NULL)
526 *tree = node;
527 }
528
529 /* Convert a sorted sections' BST back to list form. */
530
531 static void
532 output_section_callback_tree_to_list (lang_wild_statement_type *ptr,
533 lang_section_bst_type *tree,
534 void *output)
535 {
536 if (tree->left)
537 output_section_callback_tree_to_list (ptr, tree->left, output);
538
539 lang_add_section (&ptr->children, tree->section,
540 (lang_output_section_statement_type *) output);
541
542 if (tree->right)
543 output_section_callback_tree_to_list (ptr, tree->right, output);
544
545 free (tree);
546 }
547
548 /* Specialized, optimized routines for handling different kinds of
549 wildcards */
550
551 static void
552 walk_wild_section_specs1_wild0 (lang_wild_statement_type *ptr,
553 lang_input_statement_type *file,
554 callback_t callback,
555 void *data)
556 {
557 /* We can just do a hash lookup for the section with the right name.
558 But if that lookup discovers more than one section with the name
559 (should be rare), we fall back to the general algorithm because
560 we would otherwise have to sort the sections to make sure they
561 get processed in the bfd's order. */
562 bfd_boolean multiple_sections_found;
563 struct wildcard_list *sec0 = ptr->handler_data[0];
564 asection *s0 = find_section (file, sec0, &multiple_sections_found);
565
566 if (multiple_sections_found)
567 walk_wild_section_general (ptr, file, callback, data);
568 else if (s0)
569 walk_wild_consider_section (ptr, file, s0, sec0, callback, data);
570 }
571
572 static void
573 walk_wild_section_specs1_wild1 (lang_wild_statement_type *ptr,
574 lang_input_statement_type *file,
575 callback_t callback,
576 void *data)
577 {
578 asection *s;
579 struct wildcard_list *wildsec0 = ptr->handler_data[0];
580
581 for (s = file->the_bfd->sections; s != NULL; s = s->next)
582 {
583 const char *sname = bfd_get_section_name (file->the_bfd, s);
584 bfd_boolean skip = !match_simple_wild (wildsec0->spec.name, sname);
585
586 if (!skip)
587 walk_wild_consider_section (ptr, file, s, wildsec0, callback, data);
588 }
589 }
590
591 static void
592 walk_wild_section_specs2_wild1 (lang_wild_statement_type *ptr,
593 lang_input_statement_type *file,
594 callback_t callback,
595 void *data)
596 {
597 asection *s;
598 struct wildcard_list *sec0 = ptr->handler_data[0];
599 struct wildcard_list *wildsec1 = ptr->handler_data[1];
600 bfd_boolean multiple_sections_found;
601 asection *s0 = find_section (file, sec0, &multiple_sections_found);
602
603 if (multiple_sections_found)
604 {
605 walk_wild_section_general (ptr, file, callback, data);
606 return;
607 }
608
609 /* Note that if the section was not found, s0 is NULL and
610 we'll simply never succeed the s == s0 test below. */
611 for (s = file->the_bfd->sections; s != NULL; s = s->next)
612 {
613 /* Recall that in this code path, a section cannot satisfy more
614 than one spec, so if s == s0 then it cannot match
615 wildspec1. */
616 if (s == s0)
617 walk_wild_consider_section (ptr, file, s, sec0, callback, data);
618 else
619 {
620 const char *sname = bfd_get_section_name (file->the_bfd, s);
621 bfd_boolean skip = !match_simple_wild (wildsec1->spec.name, sname);
622
623 if (!skip)
624 walk_wild_consider_section (ptr, file, s, wildsec1, callback,
625 data);
626 }
627 }
628 }
629
630 static void
631 walk_wild_section_specs3_wild2 (lang_wild_statement_type *ptr,
632 lang_input_statement_type *file,
633 callback_t callback,
634 void *data)
635 {
636 asection *s;
637 struct wildcard_list *sec0 = ptr->handler_data[0];
638 struct wildcard_list *wildsec1 = ptr->handler_data[1];
639 struct wildcard_list *wildsec2 = ptr->handler_data[2];
640 bfd_boolean multiple_sections_found;
641 asection *s0 = find_section (file, sec0, &multiple_sections_found);
642
643 if (multiple_sections_found)
644 {
645 walk_wild_section_general (ptr, file, callback, data);
646 return;
647 }
648
649 for (s = file->the_bfd->sections; s != NULL; s = s->next)
650 {
651 if (s == s0)
652 walk_wild_consider_section (ptr, file, s, sec0, callback, data);
653 else
654 {
655 const char *sname = bfd_get_section_name (file->the_bfd, s);
656 bfd_boolean skip = !match_simple_wild (wildsec1->spec.name, sname);
657
658 if (!skip)
659 walk_wild_consider_section (ptr, file, s, wildsec1, callback, data);
660 else
661 {
662 skip = !match_simple_wild (wildsec2->spec.name, sname);
663 if (!skip)
664 walk_wild_consider_section (ptr, file, s, wildsec2, callback,
665 data);
666 }
667 }
668 }
669 }
670
671 static void
672 walk_wild_section_specs4_wild2 (lang_wild_statement_type *ptr,
673 lang_input_statement_type *file,
674 callback_t callback,
675 void *data)
676 {
677 asection *s;
678 struct wildcard_list *sec0 = ptr->handler_data[0];
679 struct wildcard_list *sec1 = ptr->handler_data[1];
680 struct wildcard_list *wildsec2 = ptr->handler_data[2];
681 struct wildcard_list *wildsec3 = ptr->handler_data[3];
682 bfd_boolean multiple_sections_found;
683 asection *s0 = find_section (file, sec0, &multiple_sections_found), *s1;
684
685 if (multiple_sections_found)
686 {
687 walk_wild_section_general (ptr, file, callback, data);
688 return;
689 }
690
691 s1 = find_section (file, sec1, &multiple_sections_found);
692 if (multiple_sections_found)
693 {
694 walk_wild_section_general (ptr, file, callback, data);
695 return;
696 }
697
698 for (s = file->the_bfd->sections; s != NULL; s = s->next)
699 {
700 if (s == s0)
701 walk_wild_consider_section (ptr, file, s, sec0, callback, data);
702 else
703 if (s == s1)
704 walk_wild_consider_section (ptr, file, s, sec1, callback, data);
705 else
706 {
707 const char *sname = bfd_get_section_name (file->the_bfd, s);
708 bfd_boolean skip = !match_simple_wild (wildsec2->spec.name,
709 sname);
710
711 if (!skip)
712 walk_wild_consider_section (ptr, file, s, wildsec2, callback,
713 data);
714 else
715 {
716 skip = !match_simple_wild (wildsec3->spec.name, sname);
717 if (!skip)
718 walk_wild_consider_section (ptr, file, s, wildsec3,
719 callback, data);
720 }
721 }
722 }
723 }
724
725 static void
726 walk_wild_section (lang_wild_statement_type *ptr,
727 lang_input_statement_type *file,
728 callback_t callback,
729 void *data)
730 {
731 if (file->just_syms_flag)
732 return;
733
734 (*ptr->walk_wild_section_handler) (ptr, file, callback, data);
735 }
736
737 /* Returns TRUE when name1 is a wildcard spec that might match
738 something name2 can match. We're conservative: we return FALSE
739 only if the prefixes of name1 and name2 are different up to the
740 first wildcard character. */
741
742 static bfd_boolean
743 wild_spec_can_overlap (const char *name1, const char *name2)
744 {
745 size_t prefix1_len = strcspn (name1, "?*[");
746 size_t prefix2_len = strcspn (name2, "?*[");
747 size_t min_prefix_len;
748
749 /* Note that if there is no wildcard character, then we treat the
750 terminating 0 as part of the prefix. Thus ".text" won't match
751 ".text." or ".text.*", for example. */
752 if (name1[prefix1_len] == '\0')
753 prefix1_len++;
754 if (name2[prefix2_len] == '\0')
755 prefix2_len++;
756
757 min_prefix_len = prefix1_len < prefix2_len ? prefix1_len : prefix2_len;
758
759 return memcmp (name1, name2, min_prefix_len) == 0;
760 }
761
762 /* Select specialized code to handle various kinds of wildcard
763 statements. */
764
765 static void
766 analyze_walk_wild_section_handler (lang_wild_statement_type *ptr)
767 {
768 int sec_count = 0;
769 int wild_name_count = 0;
770 struct wildcard_list *sec;
771 int signature;
772 int data_counter;
773
774 ptr->walk_wild_section_handler = walk_wild_section_general;
775 ptr->handler_data[0] = NULL;
776 ptr->handler_data[1] = NULL;
777 ptr->handler_data[2] = NULL;
778 ptr->handler_data[3] = NULL;
779 ptr->tree = NULL;
780
781 /* Count how many wildcard_specs there are, and how many of those
782 actually use wildcards in the name. Also, bail out if any of the
783 wildcard names are NULL. (Can this actually happen?
784 walk_wild_section used to test for it.) And bail out if any
785 of the wildcards are more complex than a simple string
786 ending in a single '*'. */
787 for (sec = ptr->section_list; sec != NULL; sec = sec->next)
788 {
789 ++sec_count;
790 if (sec->spec.name == NULL)
791 return;
792 if (wildcardp (sec->spec.name))
793 {
794 ++wild_name_count;
795 if (!is_simple_wild (sec->spec.name))
796 return;
797 }
798 }
799
800 /* The zero-spec case would be easy to optimize but it doesn't
801 happen in practice. Likewise, more than 4 specs doesn't
802 happen in practice. */
803 if (sec_count == 0 || sec_count > 4)
804 return;
805
806 /* Check that no two specs can match the same section. */
807 for (sec = ptr->section_list; sec != NULL; sec = sec->next)
808 {
809 struct wildcard_list *sec2;
810 for (sec2 = sec->next; sec2 != NULL; sec2 = sec2->next)
811 {
812 if (wild_spec_can_overlap (sec->spec.name, sec2->spec.name))
813 return;
814 }
815 }
816
817 signature = (sec_count << 8) + wild_name_count;
818 switch (signature)
819 {
820 case 0x0100:
821 ptr->walk_wild_section_handler = walk_wild_section_specs1_wild0;
822 break;
823 case 0x0101:
824 ptr->walk_wild_section_handler = walk_wild_section_specs1_wild1;
825 break;
826 case 0x0201:
827 ptr->walk_wild_section_handler = walk_wild_section_specs2_wild1;
828 break;
829 case 0x0302:
830 ptr->walk_wild_section_handler = walk_wild_section_specs3_wild2;
831 break;
832 case 0x0402:
833 ptr->walk_wild_section_handler = walk_wild_section_specs4_wild2;
834 break;
835 default:
836 return;
837 }
838
839 /* Now fill the data array with pointers to the specs, first the
840 specs with non-wildcard names, then the specs with wildcard
841 names. It's OK to process the specs in different order from the
842 given order, because we've already determined that no section
843 will match more than one spec. */
844 data_counter = 0;
845 for (sec = ptr->section_list; sec != NULL; sec = sec->next)
846 if (!wildcardp (sec->spec.name))
847 ptr->handler_data[data_counter++] = sec;
848 for (sec = ptr->section_list; sec != NULL; sec = sec->next)
849 if (wildcardp (sec->spec.name))
850 ptr->handler_data[data_counter++] = sec;
851 }
852
853 /* Handle a wild statement for a single file F. */
854
855 static void
856 walk_wild_file (lang_wild_statement_type *s,
857 lang_input_statement_type *f,
858 callback_t callback,
859 void *data)
860 {
861 if (f->the_bfd == NULL
862 || ! bfd_check_format (f->the_bfd, bfd_archive))
863 walk_wild_section (s, f, callback, data);
864 else
865 {
866 bfd *member;
867
868 /* This is an archive file. We must map each member of the
869 archive separately. */
870 member = bfd_openr_next_archived_file (f->the_bfd, NULL);
871 while (member != NULL)
872 {
873 /* When lookup_name is called, it will call the add_symbols
874 entry point for the archive. For each element of the
875 archive which is included, BFD will call ldlang_add_file,
876 which will set the usrdata field of the member to the
877 lang_input_statement. */
878 if (member->usrdata != NULL)
879 {
880 walk_wild_section (s,
881 (lang_input_statement_type *) member->usrdata,
882 callback, data);
883 }
884
885 member = bfd_openr_next_archived_file (f->the_bfd, member);
886 }
887 }
888 }
889
890 static void
891 walk_wild (lang_wild_statement_type *s, callback_t callback, void *data)
892 {
893 const char *file_spec = s->filename;
894 char *p;
895
896 if (file_spec == NULL)
897 {
898 /* Perform the iteration over all files in the list. */
899 LANG_FOR_EACH_INPUT_STATEMENT (f)
900 {
901 walk_wild_file (s, f, callback, data);
902 }
903 }
904 else if ((p = archive_path (file_spec)) != NULL)
905 {
906 LANG_FOR_EACH_INPUT_STATEMENT (f)
907 {
908 if (input_statement_is_archive_path (file_spec, p, f))
909 walk_wild_file (s, f, callback, data);
910 }
911 }
912 else if (wildcardp (file_spec))
913 {
914 LANG_FOR_EACH_INPUT_STATEMENT (f)
915 {
916 if (fnmatch (file_spec, f->filename, 0) == 0)
917 walk_wild_file (s, f, callback, data);
918 }
919 }
920 else
921 {
922 lang_input_statement_type *f;
923
924 /* Perform the iteration over a single file. */
925 f = lookup_name (file_spec);
926 if (f)
927 walk_wild_file (s, f, callback, data);
928 }
929 }
930
931 /* lang_for_each_statement walks the parse tree and calls the provided
932 function for each node, except those inside output section statements
933 with constraint set to -1. */
934
935 void
936 lang_for_each_statement_worker (void (*func) (lang_statement_union_type *),
937 lang_statement_union_type *s)
938 {
939 for (; s != NULL; s = s->header.next)
940 {
941 func (s);
942
943 switch (s->header.type)
944 {
945 case lang_constructors_statement_enum:
946 lang_for_each_statement_worker (func, constructor_list.head);
947 break;
948 case lang_output_section_statement_enum:
949 if (s->output_section_statement.constraint != -1)
950 lang_for_each_statement_worker
951 (func, s->output_section_statement.children.head);
952 break;
953 case lang_wild_statement_enum:
954 lang_for_each_statement_worker (func,
955 s->wild_statement.children.head);
956 break;
957 case lang_group_statement_enum:
958 lang_for_each_statement_worker (func,
959 s->group_statement.children.head);
960 break;
961 case lang_data_statement_enum:
962 case lang_reloc_statement_enum:
963 case lang_object_symbols_statement_enum:
964 case lang_output_statement_enum:
965 case lang_target_statement_enum:
966 case lang_input_section_enum:
967 case lang_input_statement_enum:
968 case lang_assignment_statement_enum:
969 case lang_padding_statement_enum:
970 case lang_address_statement_enum:
971 case lang_fill_statement_enum:
972 case lang_insert_statement_enum:
973 break;
974 default:
975 FAIL ();
976 break;
977 }
978 }
979 }
980
981 void
982 lang_for_each_statement (void (*func) (lang_statement_union_type *))
983 {
984 lang_for_each_statement_worker (func, statement_list.head);
985 }
986
987 /*----------------------------------------------------------------------*/
988
989 void
990 lang_list_init (lang_statement_list_type *list)
991 {
992 list->head = NULL;
993 list->tail = &list->head;
994 }
995
996 void
997 push_stat_ptr (lang_statement_list_type *new_ptr)
998 {
999 if (stat_save_ptr >= stat_save + sizeof (stat_save) / sizeof (stat_save[0]))
1000 abort ();
1001 *stat_save_ptr++ = stat_ptr;
1002 stat_ptr = new_ptr;
1003 }
1004
1005 void
1006 pop_stat_ptr (void)
1007 {
1008 if (stat_save_ptr <= stat_save)
1009 abort ();
1010 stat_ptr = *--stat_save_ptr;
1011 }
1012
1013 /* Build a new statement node for the parse tree. */
1014
1015 static lang_statement_union_type *
1016 new_statement (enum statement_enum type,
1017 size_t size,
1018 lang_statement_list_type *list)
1019 {
1020 lang_statement_union_type *new_stmt;
1021
1022 new_stmt = (lang_statement_union_type *) stat_alloc (size);
1023 new_stmt->header.type = type;
1024 new_stmt->header.next = NULL;
1025 lang_statement_append (list, new_stmt, &new_stmt->header.next);
1026 return new_stmt;
1027 }
1028
1029 /* Build a new input file node for the language. There are several
1030 ways in which we treat an input file, eg, we only look at symbols,
1031 or prefix it with a -l etc.
1032
1033 We can be supplied with requests for input files more than once;
1034 they may, for example be split over several lines like foo.o(.text)
1035 foo.o(.data) etc, so when asked for a file we check that we haven't
1036 got it already so we don't duplicate the bfd. */
1037
1038 static lang_input_statement_type *
1039 new_afile (const char *name,
1040 lang_input_file_enum_type file_type,
1041 const char *target,
1042 bfd_boolean add_to_list)
1043 {
1044 lang_input_statement_type *p;
1045
1046 if (add_to_list)
1047 p = (lang_input_statement_type *) new_stat (lang_input_statement, stat_ptr);
1048 else
1049 {
1050 p = (lang_input_statement_type *)
1051 stat_alloc (sizeof (lang_input_statement_type));
1052 p->header.type = lang_input_statement_enum;
1053 p->header.next = NULL;
1054 }
1055
1056 lang_has_input_file = TRUE;
1057 p->target = target;
1058 p->sysrooted = FALSE;
1059
1060 if (file_type == lang_input_file_is_l_enum
1061 && name[0] == ':' && name[1] != '\0')
1062 {
1063 file_type = lang_input_file_is_search_file_enum;
1064 name = name + 1;
1065 }
1066
1067 switch (file_type)
1068 {
1069 case lang_input_file_is_symbols_only_enum:
1070 p->filename = name;
1071 p->maybe_archive = FALSE;
1072 p->real = TRUE;
1073 p->local_sym_name = name;
1074 p->just_syms_flag = TRUE;
1075 p->search_dirs_flag = FALSE;
1076 break;
1077 case lang_input_file_is_fake_enum:
1078 p->filename = name;
1079 p->maybe_archive = FALSE;
1080 p->real = FALSE;
1081 p->local_sym_name = name;
1082 p->just_syms_flag = FALSE;
1083 p->search_dirs_flag = FALSE;
1084 break;
1085 case lang_input_file_is_l_enum:
1086 p->maybe_archive = TRUE;
1087 p->filename = name;
1088 p->real = TRUE;
1089 p->local_sym_name = concat ("-l", name, (const char *) NULL);
1090 p->just_syms_flag = FALSE;
1091 p->search_dirs_flag = TRUE;
1092 break;
1093 case lang_input_file_is_marker_enum:
1094 p->filename = name;
1095 p->maybe_archive = FALSE;
1096 p->real = FALSE;
1097 p->local_sym_name = name;
1098 p->just_syms_flag = FALSE;
1099 p->search_dirs_flag = TRUE;
1100 break;
1101 case lang_input_file_is_search_file_enum:
1102 p->sysrooted = ldlang_sysrooted_script;
1103 p->filename = name;
1104 p->maybe_archive = FALSE;
1105 p->real = TRUE;
1106 p->local_sym_name = name;
1107 p->just_syms_flag = FALSE;
1108 p->search_dirs_flag = TRUE;
1109 break;
1110 case lang_input_file_is_file_enum:
1111 p->filename = name;
1112 p->maybe_archive = FALSE;
1113 p->real = TRUE;
1114 p->local_sym_name = name;
1115 p->just_syms_flag = FALSE;
1116 p->search_dirs_flag = FALSE;
1117 break;
1118 default:
1119 FAIL ();
1120 }
1121 p->the_bfd = NULL;
1122 p->next_real_file = NULL;
1123 p->next = NULL;
1124 p->dynamic = config.dynamic_link;
1125 p->add_DT_NEEDED_for_dynamic = add_DT_NEEDED_for_dynamic;
1126 p->add_DT_NEEDED_for_regular = add_DT_NEEDED_for_regular;
1127 p->whole_archive = whole_archive;
1128 p->loaded = FALSE;
1129 p->missing_file = FALSE;
1130
1131 lang_statement_append (&input_file_chain,
1132 (lang_statement_union_type *) p,
1133 &p->next_real_file);
1134 return p;
1135 }
1136
1137 lang_input_statement_type *
1138 lang_add_input_file (const char *name,
1139 lang_input_file_enum_type file_type,
1140 const char *target)
1141 {
1142 return new_afile (name, file_type, target, TRUE);
1143 }
1144
1145 struct out_section_hash_entry
1146 {
1147 struct bfd_hash_entry root;
1148 lang_statement_union_type s;
1149 };
1150
1151 /* The hash table. */
1152
1153 static struct bfd_hash_table output_section_statement_table;
1154
1155 /* Support routines for the hash table used by lang_output_section_find,
1156 initialize the table, fill in an entry and remove the table. */
1157
1158 static struct bfd_hash_entry *
1159 output_section_statement_newfunc (struct bfd_hash_entry *entry,
1160 struct bfd_hash_table *table,
1161 const char *string)
1162 {
1163 lang_output_section_statement_type **nextp;
1164 struct out_section_hash_entry *ret;
1165
1166 if (entry == NULL)
1167 {
1168 entry = (struct bfd_hash_entry *) bfd_hash_allocate (table,
1169 sizeof (*ret));
1170 if (entry == NULL)
1171 return entry;
1172 }
1173
1174 entry = bfd_hash_newfunc (entry, table, string);
1175 if (entry == NULL)
1176 return entry;
1177
1178 ret = (struct out_section_hash_entry *) entry;
1179 memset (&ret->s, 0, sizeof (ret->s));
1180 ret->s.header.type = lang_output_section_statement_enum;
1181 ret->s.output_section_statement.subsection_alignment = -1;
1182 ret->s.output_section_statement.section_alignment = -1;
1183 ret->s.output_section_statement.block_value = 1;
1184 lang_list_init (&ret->s.output_section_statement.children);
1185 lang_statement_append (stat_ptr, &ret->s, &ret->s.header.next);
1186
1187 /* For every output section statement added to the list, except the
1188 first one, lang_output_section_statement.tail points to the "next"
1189 field of the last element of the list. */
1190 if (lang_output_section_statement.head != NULL)
1191 ret->s.output_section_statement.prev
1192 = ((lang_output_section_statement_type *)
1193 ((char *) lang_output_section_statement.tail
1194 - offsetof (lang_output_section_statement_type, next)));
1195
1196 /* GCC's strict aliasing rules prevent us from just casting the
1197 address, so we store the pointer in a variable and cast that
1198 instead. */
1199 nextp = &ret->s.output_section_statement.next;
1200 lang_statement_append (&lang_output_section_statement,
1201 &ret->s,
1202 (lang_statement_union_type **) nextp);
1203 return &ret->root;
1204 }
1205
1206 static void
1207 output_section_statement_table_init (void)
1208 {
1209 if (!bfd_hash_table_init_n (&output_section_statement_table,
1210 output_section_statement_newfunc,
1211 sizeof (struct out_section_hash_entry),
1212 61))
1213 einfo (_("%P%F: can not create hash table: %E\n"));
1214 }
1215
1216 static void
1217 output_section_statement_table_free (void)
1218 {
1219 bfd_hash_table_free (&output_section_statement_table);
1220 }
1221
1222 /* Build enough state so that the parser can build its tree. */
1223
1224 void
1225 lang_init (void)
1226 {
1227 obstack_begin (&stat_obstack, 1000);
1228
1229 stat_ptr = &statement_list;
1230
1231 output_section_statement_table_init ();
1232
1233 lang_list_init (stat_ptr);
1234
1235 lang_list_init (&input_file_chain);
1236 lang_list_init (&lang_output_section_statement);
1237 lang_list_init (&file_chain);
1238 first_file = lang_add_input_file (NULL, lang_input_file_is_marker_enum,
1239 NULL);
1240 abs_output_section =
1241 lang_output_section_statement_lookup (BFD_ABS_SECTION_NAME, 0, TRUE);
1242
1243 abs_output_section->bfd_section = bfd_abs_section_ptr;
1244
1245 /* The value "3" is ad-hoc, somewhat related to the expected number of
1246 DEFINED expressions in a linker script. For most default linker
1247 scripts, there are none. Why a hash table then? Well, it's somewhat
1248 simpler to re-use working machinery than using a linked list in terms
1249 of code-complexity here in ld, besides the initialization which just
1250 looks like other code here. */
1251 if (!bfd_hash_table_init_n (&lang_definedness_table,
1252 lang_definedness_newfunc,
1253 sizeof (struct lang_definedness_hash_entry),
1254 3))
1255 einfo (_("%P%F: can not create hash table: %E\n"));
1256 }
1257
1258 void
1259 lang_finish (void)
1260 {
1261 output_section_statement_table_free ();
1262 }
1263
1264 /*----------------------------------------------------------------------
1265 A region is an area of memory declared with the
1266 MEMORY { name:org=exp, len=exp ... }
1267 syntax.
1268
1269 We maintain a list of all the regions here.
1270
1271 If no regions are specified in the script, then the default is used
1272 which is created when looked up to be the entire data space.
1273
1274 If create is true we are creating a region inside a MEMORY block.
1275 In this case it is probably an error to create a region that has
1276 already been created. If we are not inside a MEMORY block it is
1277 dubious to use an undeclared region name (except DEFAULT_MEMORY_REGION)
1278 and so we issue a warning.
1279
1280 Each region has at least one name. The first name is either
1281 DEFAULT_MEMORY_REGION or the name given in the MEMORY block. You can add
1282 alias names to an existing region within a script with
1283 REGION_ALIAS (alias, region_name). Each name corresponds to at most one
1284 region. */
1285
1286 static lang_memory_region_type *lang_memory_region_list;
1287 static lang_memory_region_type **lang_memory_region_list_tail
1288 = &lang_memory_region_list;
1289
1290 lang_memory_region_type *
1291 lang_memory_region_lookup (const char *const name, bfd_boolean create)
1292 {
1293 lang_memory_region_name *n;
1294 lang_memory_region_type *r;
1295 lang_memory_region_type *new_region;
1296
1297 /* NAME is NULL for LMA memspecs if no region was specified. */
1298 if (name == NULL)
1299 return NULL;
1300
1301 for (r = lang_memory_region_list; r != NULL; r = r->next)
1302 for (n = &r->name_list; n != NULL; n = n->next)
1303 if (strcmp (n->name, name) == 0)
1304 {
1305 if (create)
1306 einfo (_("%P:%S: warning: redeclaration of memory region `%s'\n"),
1307 name);
1308 return r;
1309 }
1310
1311 if (!create && strcmp (name, DEFAULT_MEMORY_REGION))
1312 einfo (_("%P:%S: warning: memory region `%s' not declared\n"), name);
1313
1314 new_region = (lang_memory_region_type *)
1315 stat_alloc (sizeof (lang_memory_region_type));
1316
1317 new_region->name_list.name = xstrdup (name);
1318 new_region->name_list.next = NULL;
1319 new_region->next = NULL;
1320 new_region->origin = 0;
1321 new_region->length = ~(bfd_size_type) 0;
1322 new_region->current = 0;
1323 new_region->last_os = NULL;
1324 new_region->flags = 0;
1325 new_region->not_flags = 0;
1326 new_region->had_full_message = FALSE;
1327
1328 *lang_memory_region_list_tail = new_region;
1329 lang_memory_region_list_tail = &new_region->next;
1330
1331 return new_region;
1332 }
1333
1334 void
1335 lang_memory_region_alias (const char * alias, const char * region_name)
1336 {
1337 lang_memory_region_name * n;
1338 lang_memory_region_type * r;
1339 lang_memory_region_type * region;
1340
1341 /* The default region must be unique. This ensures that it is not necessary
1342 to iterate through the name list if someone wants the check if a region is
1343 the default memory region. */
1344 if (strcmp (region_name, DEFAULT_MEMORY_REGION) == 0
1345 || strcmp (alias, DEFAULT_MEMORY_REGION) == 0)
1346 einfo (_("%F%P:%S: error: alias for default memory region\n"));
1347
1348 /* Look for the target region and check if the alias is not already
1349 in use. */
1350 region = NULL;
1351 for (r = lang_memory_region_list; r != NULL; r = r->next)
1352 for (n = &r->name_list; n != NULL; n = n->next)
1353 {
1354 if (region == NULL && strcmp (n->name, region_name) == 0)
1355 region = r;
1356 if (strcmp (n->name, alias) == 0)
1357 einfo (_("%F%P:%S: error: redefinition of memory region "
1358 "alias `%s'\n"),
1359 alias);
1360 }
1361
1362 /* Check if the target region exists. */
1363 if (region == NULL)
1364 einfo (_("%F%P:%S: error: memory region `%s' "
1365 "for alias `%s' does not exist\n"),
1366 region_name,
1367 alias);
1368
1369 /* Add alias to region name list. */
1370 n = (lang_memory_region_name *) stat_alloc (sizeof (lang_memory_region_name));
1371 n->name = xstrdup (alias);
1372 n->next = region->name_list.next;
1373 region->name_list.next = n;
1374 }
1375
1376 static lang_memory_region_type *
1377 lang_memory_default (asection * section)
1378 {
1379 lang_memory_region_type *p;
1380
1381 flagword sec_flags = section->flags;
1382
1383 /* Override SEC_DATA to mean a writable section. */
1384 if ((sec_flags & (SEC_ALLOC | SEC_READONLY | SEC_CODE)) == SEC_ALLOC)
1385 sec_flags |= SEC_DATA;
1386
1387 for (p = lang_memory_region_list; p != NULL; p = p->next)
1388 {
1389 if ((p->flags & sec_flags) != 0
1390 && (p->not_flags & sec_flags) == 0)
1391 {
1392 return p;
1393 }
1394 }
1395 return lang_memory_region_lookup (DEFAULT_MEMORY_REGION, FALSE);
1396 }
1397
1398 /* Find or create an output_section_statement with the given NAME.
1399 If CONSTRAINT is non-zero match one with that constraint, otherwise
1400 match any non-negative constraint. If CREATE, always make a
1401 new output_section_statement for SPECIAL CONSTRAINT. */
1402
1403 lang_output_section_statement_type *
1404 lang_output_section_statement_lookup (const char *name,
1405 int constraint,
1406 bfd_boolean create)
1407 {
1408 struct out_section_hash_entry *entry;
1409
1410 entry = ((struct out_section_hash_entry *)
1411 bfd_hash_lookup (&output_section_statement_table, name,
1412 create, FALSE));
1413 if (entry == NULL)
1414 {
1415 if (create)
1416 einfo (_("%P%F: failed creating section `%s': %E\n"), name);
1417 return NULL;
1418 }
1419
1420 if (entry->s.output_section_statement.name != NULL)
1421 {
1422 /* We have a section of this name, but it might not have the correct
1423 constraint. */
1424 struct out_section_hash_entry *last_ent;
1425
1426 name = entry->s.output_section_statement.name;
1427 if (create && constraint == SPECIAL)
1428 /* Not traversing to the end reverses the order of the second
1429 and subsequent SPECIAL sections in the hash table chain,
1430 but that shouldn't matter. */
1431 last_ent = entry;
1432 else
1433 do
1434 {
1435 if (constraint == entry->s.output_section_statement.constraint
1436 || (constraint == 0
1437 && entry->s.output_section_statement.constraint >= 0))
1438 return &entry->s.output_section_statement;
1439 last_ent = entry;
1440 entry = (struct out_section_hash_entry *) entry->root.next;
1441 }
1442 while (entry != NULL
1443 && name == entry->s.output_section_statement.name);
1444
1445 if (!create)
1446 return NULL;
1447
1448 entry
1449 = ((struct out_section_hash_entry *)
1450 output_section_statement_newfunc (NULL,
1451 &output_section_statement_table,
1452 name));
1453 if (entry == NULL)
1454 {
1455 einfo (_("%P%F: failed creating section `%s': %E\n"), name);
1456 return NULL;
1457 }
1458 entry->root = last_ent->root;
1459 last_ent->root.next = &entry->root;
1460 }
1461
1462 entry->s.output_section_statement.name = name;
1463 entry->s.output_section_statement.constraint = constraint;
1464 return &entry->s.output_section_statement;
1465 }
1466
1467 /* Find the next output_section_statement with the same name as OS.
1468 If CONSTRAINT is non-zero, find one with that constraint otherwise
1469 match any non-negative constraint. */
1470
1471 lang_output_section_statement_type *
1472 next_matching_output_section_statement (lang_output_section_statement_type *os,
1473 int constraint)
1474 {
1475 /* All output_section_statements are actually part of a
1476 struct out_section_hash_entry. */
1477 struct out_section_hash_entry *entry = (struct out_section_hash_entry *)
1478 ((char *) os
1479 - offsetof (struct out_section_hash_entry, s.output_section_statement));
1480 const char *name = os->name;
1481
1482 ASSERT (name == entry->root.string);
1483 do
1484 {
1485 entry = (struct out_section_hash_entry *) entry->root.next;
1486 if (entry == NULL
1487 || name != entry->s.output_section_statement.name)
1488 return NULL;
1489 }
1490 while (constraint != entry->s.output_section_statement.constraint
1491 && (constraint != 0
1492 || entry->s.output_section_statement.constraint < 0));
1493
1494 return &entry->s.output_section_statement;
1495 }
1496
1497 /* A variant of lang_output_section_find used by place_orphan.
1498 Returns the output statement that should precede a new output
1499 statement for SEC. If an exact match is found on certain flags,
1500 sets *EXACT too. */
1501
1502 lang_output_section_statement_type *
1503 lang_output_section_find_by_flags (const asection *sec,
1504 lang_output_section_statement_type **exact,
1505 lang_match_sec_type_func match_type)
1506 {
1507 lang_output_section_statement_type *first, *look, *found;
1508 flagword flags;
1509
1510 /* We know the first statement on this list is *ABS*. May as well
1511 skip it. */
1512 first = &lang_output_section_statement.head->output_section_statement;
1513 first = first->next;
1514
1515 /* First try for an exact match. */
1516 found = NULL;
1517 for (look = first; look; look = look->next)
1518 {
1519 flags = look->flags;
1520 if (look->bfd_section != NULL)
1521 {
1522 flags = look->bfd_section->flags;
1523 if (match_type && !match_type (link_info.output_bfd,
1524 look->bfd_section,
1525 sec->owner, sec))
1526 continue;
1527 }
1528 flags ^= sec->flags;
1529 if (!(flags & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD | SEC_READONLY
1530 | SEC_CODE | SEC_SMALL_DATA | SEC_THREAD_LOCAL)))
1531 found = look;
1532 }
1533 if (found != NULL)
1534 {
1535 if (exact != NULL)
1536 *exact = found;
1537 return found;
1538 }
1539
1540 if ((sec->flags & SEC_CODE) != 0
1541 && (sec->flags & SEC_ALLOC) != 0)
1542 {
1543 /* Try for a rw code section. */
1544 for (look = first; look; look = look->next)
1545 {
1546 flags = look->flags;
1547 if (look->bfd_section != NULL)
1548 {
1549 flags = look->bfd_section->flags;
1550 if (match_type && !match_type (link_info.output_bfd,
1551 look->bfd_section,
1552 sec->owner, sec))
1553 continue;
1554 }
1555 flags ^= sec->flags;
1556 if (!(flags & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD
1557 | SEC_CODE | SEC_SMALL_DATA | SEC_THREAD_LOCAL)))
1558 found = look;
1559 }
1560 }
1561 else if ((sec->flags & (SEC_READONLY | SEC_THREAD_LOCAL)) != 0
1562 && (sec->flags & SEC_ALLOC) != 0)
1563 {
1564 /* .rodata can go after .text, .sdata2 after .rodata. */
1565 for (look = first; look; look = look->next)
1566 {
1567 flags = look->flags;
1568 if (look->bfd_section != NULL)
1569 {
1570 flags = look->bfd_section->flags;
1571 if (match_type && !match_type (link_info.output_bfd,
1572 look->bfd_section,
1573 sec->owner, sec))
1574 continue;
1575 }
1576 flags ^= sec->flags;
1577 if (!(flags & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD
1578 | SEC_READONLY))
1579 && !(look->flags & (SEC_SMALL_DATA | SEC_THREAD_LOCAL)))
1580 found = look;
1581 }
1582 }
1583 else if ((sec->flags & SEC_SMALL_DATA) != 0
1584 && (sec->flags & SEC_ALLOC) != 0)
1585 {
1586 /* .sdata goes after .data, .sbss after .sdata. */
1587 for (look = first; look; look = look->next)
1588 {
1589 flags = look->flags;
1590 if (look->bfd_section != NULL)
1591 {
1592 flags = look->bfd_section->flags;
1593 if (match_type && !match_type (link_info.output_bfd,
1594 look->bfd_section,
1595 sec->owner, sec))
1596 continue;
1597 }
1598 flags ^= sec->flags;
1599 if (!(flags & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD
1600 | SEC_THREAD_LOCAL))
1601 || ((look->flags & SEC_SMALL_DATA)
1602 && !(sec->flags & SEC_HAS_CONTENTS)))
1603 found = look;
1604 }
1605 }
1606 else if ((sec->flags & SEC_HAS_CONTENTS) != 0
1607 && (sec->flags & SEC_ALLOC) != 0)
1608 {
1609 /* .data goes after .rodata. */
1610 for (look = first; look; look = look->next)
1611 {
1612 flags = look->flags;
1613 if (look->bfd_section != NULL)
1614 {
1615 flags = look->bfd_section->flags;
1616 if (match_type && !match_type (link_info.output_bfd,
1617 look->bfd_section,
1618 sec->owner, sec))
1619 continue;
1620 }
1621 flags ^= sec->flags;
1622 if (!(flags & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD
1623 | SEC_SMALL_DATA | SEC_THREAD_LOCAL)))
1624 found = look;
1625 }
1626 }
1627 else if ((sec->flags & SEC_ALLOC) != 0)
1628 {
1629 /* .bss goes after any other alloc section. */
1630 for (look = first; look; look = look->next)
1631 {
1632 flags = look->flags;
1633 if (look->bfd_section != NULL)
1634 {
1635 flags = look->bfd_section->flags;
1636 if (match_type && !match_type (link_info.output_bfd,
1637 look->bfd_section,
1638 sec->owner, sec))
1639 continue;
1640 }
1641 flags ^= sec->flags;
1642 if (!(flags & SEC_ALLOC))
1643 found = look;
1644 }
1645 }
1646 else
1647 {
1648 /* non-alloc go last. */
1649 for (look = first; look; look = look->next)
1650 {
1651 flags = look->flags;
1652 if (look->bfd_section != NULL)
1653 flags = look->bfd_section->flags;
1654 flags ^= sec->flags;
1655 if (!(flags & SEC_DEBUGGING))
1656 found = look;
1657 }
1658 return found;
1659 }
1660
1661 if (found || !match_type)
1662 return found;
1663
1664 return lang_output_section_find_by_flags (sec, NULL, NULL);
1665 }
1666
1667 /* Find the last output section before given output statement.
1668 Used by place_orphan. */
1669
1670 static asection *
1671 output_prev_sec_find (lang_output_section_statement_type *os)
1672 {
1673 lang_output_section_statement_type *lookup;
1674
1675 for (lookup = os->prev; lookup != NULL; lookup = lookup->prev)
1676 {
1677 if (lookup->constraint < 0)
1678 continue;
1679
1680 if (lookup->bfd_section != NULL && lookup->bfd_section->owner != NULL)
1681 return lookup->bfd_section;
1682 }
1683
1684 return NULL;
1685 }
1686
1687 /* Look for a suitable place for a new output section statement. The
1688 idea is to skip over anything that might be inside a SECTIONS {}
1689 statement in a script, before we find another output section
1690 statement. Assignments to "dot" before an output section statement
1691 are assumed to belong to it, except in two cases; The first
1692 assignment to dot, and assignments before non-alloc sections.
1693 Otherwise we might put an orphan before . = . + SIZEOF_HEADERS or
1694 similar assignments that set the initial address, or we might
1695 insert non-alloc note sections among assignments setting end of
1696 image symbols. */
1697
1698 static lang_statement_union_type **
1699 insert_os_after (lang_output_section_statement_type *after)
1700 {
1701 lang_statement_union_type **where;
1702 lang_statement_union_type **assign = NULL;
1703 bfd_boolean ignore_first;
1704
1705 ignore_first
1706 = after == &lang_output_section_statement.head->output_section_statement;
1707
1708 for (where = &after->header.next;
1709 *where != NULL;
1710 where = &(*where)->header.next)
1711 {
1712 switch ((*where)->header.type)
1713 {
1714 case lang_assignment_statement_enum:
1715 if (assign == NULL)
1716 {
1717 lang_assignment_statement_type *ass;
1718
1719 ass = &(*where)->assignment_statement;
1720 if (ass->exp->type.node_class != etree_assert
1721 && ass->exp->assign.dst[0] == '.'
1722 && ass->exp->assign.dst[1] == 0
1723 && !ignore_first)
1724 assign = where;
1725 }
1726 ignore_first = FALSE;
1727 continue;
1728 case lang_wild_statement_enum:
1729 case lang_input_section_enum:
1730 case lang_object_symbols_statement_enum:
1731 case lang_fill_statement_enum:
1732 case lang_data_statement_enum:
1733 case lang_reloc_statement_enum:
1734 case lang_padding_statement_enum:
1735 case lang_constructors_statement_enum:
1736 assign = NULL;
1737 continue;
1738 case lang_output_section_statement_enum:
1739 if (assign != NULL)
1740 {
1741 asection *s = (*where)->output_section_statement.bfd_section;
1742
1743 if (s == NULL
1744 || s->map_head.s == NULL
1745 || (s->flags & SEC_ALLOC) != 0)
1746 where = assign;
1747 }
1748 break;
1749 case lang_input_statement_enum:
1750 case lang_address_statement_enum:
1751 case lang_target_statement_enum:
1752 case lang_output_statement_enum:
1753 case lang_group_statement_enum:
1754 case lang_insert_statement_enum:
1755 continue;
1756 }
1757 break;
1758 }
1759
1760 return where;
1761 }
1762
1763 lang_output_section_statement_type *
1764 lang_insert_orphan (asection *s,
1765 const char *secname,
1766 int constraint,
1767 lang_output_section_statement_type *after,
1768 struct orphan_save *place,
1769 etree_type *address,
1770 lang_statement_list_type *add_child)
1771 {
1772 lang_statement_list_type add;
1773 const char *ps;
1774 lang_output_section_statement_type *os;
1775 lang_output_section_statement_type **os_tail;
1776
1777 /* If we have found an appropriate place for the output section
1778 statements for this orphan, add them to our own private list,
1779 inserting them later into the global statement list. */
1780 if (after != NULL)
1781 {
1782 lang_list_init (&add);
1783 push_stat_ptr (&add);
1784 }
1785
1786 if (link_info.relocatable || (s->flags & (SEC_LOAD | SEC_ALLOC)) == 0)
1787 address = exp_intop (0);
1788
1789 os_tail = ((lang_output_section_statement_type **)
1790 lang_output_section_statement.tail);
1791 os = lang_enter_output_section_statement (secname, address, normal_section,
1792 NULL, NULL, NULL, constraint);
1793
1794 ps = NULL;
1795 if (config.build_constructors && *os_tail == os)
1796 {
1797 /* If the name of the section is representable in C, then create
1798 symbols to mark the start and the end of the section. */
1799 for (ps = secname; *ps != '\0'; ps++)
1800 if (! ISALNUM ((unsigned char) *ps) && *ps != '_')
1801 break;
1802 if (*ps == '\0')
1803 {
1804 char *symname;
1805 etree_type *e_align;
1806
1807 symname = (char *) xmalloc (ps - secname + sizeof "__start_" + 1);
1808 symname[0] = bfd_get_symbol_leading_char (link_info.output_bfd);
1809 sprintf (symname + (symname[0] != 0), "__start_%s", secname);
1810 e_align = exp_unop (ALIGN_K,
1811 exp_intop ((bfd_vma) 1 << s->alignment_power));
1812 lang_add_assignment (exp_assop ('=', ".", e_align));
1813 lang_add_assignment (exp_provide (symname,
1814 exp_unop (ABSOLUTE,
1815 exp_nameop (NAME, ".")),
1816 FALSE));
1817 }
1818 }
1819
1820 if (add_child == NULL)
1821 add_child = &os->children;
1822 lang_add_section (add_child, s, os);
1823
1824 if (after && (s->flags & (SEC_LOAD | SEC_ALLOC)) != 0)
1825 {
1826 const char *region = (after->region
1827 ? after->region->name_list.name
1828 : DEFAULT_MEMORY_REGION);
1829 const char *lma_region = (after->lma_region
1830 ? after->lma_region->name_list.name
1831 : NULL);
1832 lang_leave_output_section_statement (NULL, region, after->phdrs,
1833 lma_region);
1834 }
1835 else
1836 lang_leave_output_section_statement (NULL, DEFAULT_MEMORY_REGION, NULL,
1837 NULL);
1838
1839 if (ps != NULL && *ps == '\0')
1840 {
1841 char *symname;
1842
1843 symname = (char *) xmalloc (ps - secname + sizeof "__stop_" + 1);
1844 symname[0] = bfd_get_symbol_leading_char (link_info.output_bfd);
1845 sprintf (symname + (symname[0] != 0), "__stop_%s", secname);
1846 lang_add_assignment (exp_provide (symname,
1847 exp_nameop (NAME, "."),
1848 FALSE));
1849 }
1850
1851 /* Restore the global list pointer. */
1852 if (after != NULL)
1853 pop_stat_ptr ();
1854
1855 if (after != NULL && os->bfd_section != NULL)
1856 {
1857 asection *snew, *as;
1858
1859 snew = os->bfd_section;
1860
1861 /* Shuffle the bfd section list to make the output file look
1862 neater. This is really only cosmetic. */
1863 if (place->section == NULL
1864 && after != (&lang_output_section_statement.head
1865 ->output_section_statement))
1866 {
1867 asection *bfd_section = after->bfd_section;
1868
1869 /* If the output statement hasn't been used to place any input
1870 sections (and thus doesn't have an output bfd_section),
1871 look for the closest prior output statement having an
1872 output section. */
1873 if (bfd_section == NULL)
1874 bfd_section = output_prev_sec_find (after);
1875
1876 if (bfd_section != NULL && bfd_section != snew)
1877 place->section = &bfd_section->next;
1878 }
1879
1880 if (place->section == NULL)
1881 place->section = &link_info.output_bfd->sections;
1882
1883 as = *place->section;
1884
1885 if (!as)
1886 {
1887 /* Put the section at the end of the list. */
1888
1889 /* Unlink the section. */
1890 bfd_section_list_remove (link_info.output_bfd, snew);
1891
1892 /* Now tack it back on in the right place. */
1893 bfd_section_list_append (link_info.output_bfd, snew);
1894 }
1895 else if (as != snew && as->prev != snew)
1896 {
1897 /* Unlink the section. */
1898 bfd_section_list_remove (link_info.output_bfd, snew);
1899
1900 /* Now tack it back on in the right place. */
1901 bfd_section_list_insert_before (link_info.output_bfd, as, snew);
1902 }
1903
1904 /* Save the end of this list. Further ophans of this type will
1905 follow the one we've just added. */
1906 place->section = &snew->next;
1907
1908 /* The following is non-cosmetic. We try to put the output
1909 statements in some sort of reasonable order here, because they
1910 determine the final load addresses of the orphan sections.
1911 In addition, placing output statements in the wrong order may
1912 require extra segments. For instance, given a typical
1913 situation of all read-only sections placed in one segment and
1914 following that a segment containing all the read-write
1915 sections, we wouldn't want to place an orphan read/write
1916 section before or amongst the read-only ones. */
1917 if (add.head != NULL)
1918 {
1919 lang_output_section_statement_type *newly_added_os;
1920
1921 if (place->stmt == NULL)
1922 {
1923 lang_statement_union_type **where = insert_os_after (after);
1924
1925 *add.tail = *where;
1926 *where = add.head;
1927
1928 place->os_tail = &after->next;
1929 }
1930 else
1931 {
1932 /* Put it after the last orphan statement we added. */
1933 *add.tail = *place->stmt;
1934 *place->stmt = add.head;
1935 }
1936
1937 /* Fix the global list pointer if we happened to tack our
1938 new list at the tail. */
1939 if (*stat_ptr->tail == add.head)
1940 stat_ptr->tail = add.tail;
1941
1942 /* Save the end of this list. */
1943 place->stmt = add.tail;
1944
1945 /* Do the same for the list of output section statements. */
1946 newly_added_os = *os_tail;
1947 *os_tail = NULL;
1948 newly_added_os->prev = (lang_output_section_statement_type *)
1949 ((char *) place->os_tail
1950 - offsetof (lang_output_section_statement_type, next));
1951 newly_added_os->next = *place->os_tail;
1952 if (newly_added_os->next != NULL)
1953 newly_added_os->next->prev = newly_added_os;
1954 *place->os_tail = newly_added_os;
1955 place->os_tail = &newly_added_os->next;
1956
1957 /* Fixing the global list pointer here is a little different.
1958 We added to the list in lang_enter_output_section_statement,
1959 trimmed off the new output_section_statment above when
1960 assigning *os_tail = NULL, but possibly added it back in
1961 the same place when assigning *place->os_tail. */
1962 if (*os_tail == NULL)
1963 lang_output_section_statement.tail
1964 = (lang_statement_union_type **) os_tail;
1965 }
1966 }
1967 return os;
1968 }
1969
1970 static void
1971 lang_map_flags (flagword flag)
1972 {
1973 if (flag & SEC_ALLOC)
1974 minfo ("a");
1975
1976 if (flag & SEC_CODE)
1977 minfo ("x");
1978
1979 if (flag & SEC_READONLY)
1980 minfo ("r");
1981
1982 if (flag & SEC_DATA)
1983 minfo ("w");
1984
1985 if (flag & SEC_LOAD)
1986 minfo ("l");
1987 }
1988
1989 void
1990 lang_map (void)
1991 {
1992 lang_memory_region_type *m;
1993 bfd_boolean dis_header_printed = FALSE;
1994 bfd *p;
1995
1996 LANG_FOR_EACH_INPUT_STATEMENT (file)
1997 {
1998 asection *s;
1999
2000 if ((file->the_bfd->flags & (BFD_LINKER_CREATED | DYNAMIC)) != 0
2001 || file->just_syms_flag)
2002 continue;
2003
2004 for (s = file->the_bfd->sections; s != NULL; s = s->next)
2005 if ((s->output_section == NULL
2006 || s->output_section->owner != link_info.output_bfd)
2007 && (s->flags & (SEC_LINKER_CREATED | SEC_KEEP)) == 0)
2008 {
2009 if (! dis_header_printed)
2010 {
2011 fprintf (config.map_file, _("\nDiscarded input sections\n\n"));
2012 dis_header_printed = TRUE;
2013 }
2014
2015 print_input_section (s, TRUE);
2016 }
2017 }
2018
2019 minfo (_("\nMemory Configuration\n\n"));
2020 fprintf (config.map_file, "%-16s %-18s %-18s %s\n",
2021 _("Name"), _("Origin"), _("Length"), _("Attributes"));
2022
2023 for (m = lang_memory_region_list; m != NULL; m = m->next)
2024 {
2025 char buf[100];
2026 int len;
2027
2028 fprintf (config.map_file, "%-16s ", m->name_list.name);
2029
2030 sprintf_vma (buf, m->origin);
2031 minfo ("0x%s ", buf);
2032 len = strlen (buf);
2033 while (len < 16)
2034 {
2035 print_space ();
2036 ++len;
2037 }
2038
2039 minfo ("0x%V", m->length);
2040 if (m->flags || m->not_flags)
2041 {
2042 #ifndef BFD64
2043 minfo (" ");
2044 #endif
2045 if (m->flags)
2046 {
2047 print_space ();
2048 lang_map_flags (m->flags);
2049 }
2050
2051 if (m->not_flags)
2052 {
2053 minfo (" !");
2054 lang_map_flags (m->not_flags);
2055 }
2056 }
2057
2058 print_nl ();
2059 }
2060
2061 fprintf (config.map_file, _("\nLinker script and memory map\n\n"));
2062
2063 if (! link_info.reduce_memory_overheads)
2064 {
2065 obstack_begin (&map_obstack, 1000);
2066 for (p = link_info.input_bfds; p != (bfd *) NULL; p = p->link_next)
2067 bfd_map_over_sections (p, init_map_userdata, 0);
2068 bfd_link_hash_traverse (link_info.hash, sort_def_symbol, 0);
2069 }
2070 lang_statement_iteration ++;
2071 print_statements ();
2072 }
2073
2074 static void
2075 init_map_userdata (bfd *abfd ATTRIBUTE_UNUSED,
2076 asection *sec,
2077 void *data ATTRIBUTE_UNUSED)
2078 {
2079 fat_section_userdata_type *new_data
2080 = ((fat_section_userdata_type *) (stat_alloc
2081 (sizeof (fat_section_userdata_type))));
2082
2083 ASSERT (get_userdata (sec) == NULL);
2084 get_userdata (sec) = new_data;
2085 new_data->map_symbol_def_tail = &new_data->map_symbol_def_head;
2086 new_data->map_symbol_def_count = 0;
2087 }
2088
2089 static bfd_boolean
2090 sort_def_symbol (struct bfd_link_hash_entry *hash_entry,
2091 void *info ATTRIBUTE_UNUSED)
2092 {
2093 if (hash_entry->type == bfd_link_hash_defined
2094 || hash_entry->type == bfd_link_hash_defweak)
2095 {
2096 struct fat_user_section_struct *ud;
2097 struct map_symbol_def *def;
2098
2099 ud = (struct fat_user_section_struct *)
2100 get_userdata (hash_entry->u.def.section);
2101 if (! ud)
2102 {
2103 /* ??? What do we have to do to initialize this beforehand? */
2104 /* The first time we get here is bfd_abs_section... */
2105 init_map_userdata (0, hash_entry->u.def.section, 0);
2106 ud = (struct fat_user_section_struct *)
2107 get_userdata (hash_entry->u.def.section);
2108 }
2109 else if (!ud->map_symbol_def_tail)
2110 ud->map_symbol_def_tail = &ud->map_symbol_def_head;
2111
2112 def = (struct map_symbol_def *) obstack_alloc (&map_obstack, sizeof *def);
2113 def->entry = hash_entry;
2114 *(ud->map_symbol_def_tail) = def;
2115 ud->map_symbol_def_tail = &def->next;
2116 ud->map_symbol_def_count++;
2117 }
2118 return TRUE;
2119 }
2120
2121 /* Initialize an output section. */
2122
2123 static void
2124 init_os (lang_output_section_statement_type *s, flagword flags)
2125 {
2126 if (strcmp (s->name, DISCARD_SECTION_NAME) == 0)
2127 einfo (_("%P%F: Illegal use of `%s' section\n"), DISCARD_SECTION_NAME);
2128
2129 if (s->constraint != SPECIAL)
2130 s->bfd_section = bfd_get_section_by_name (link_info.output_bfd, s->name);
2131 if (s->bfd_section == NULL)
2132 s->bfd_section = bfd_make_section_anyway_with_flags (link_info.output_bfd,
2133 s->name, flags);
2134 if (s->bfd_section == NULL)
2135 {
2136 einfo (_("%P%F: output format %s cannot represent section called %s\n"),
2137 link_info.output_bfd->xvec->name, s->name);
2138 }
2139 s->bfd_section->output_section = s->bfd_section;
2140 s->bfd_section->output_offset = 0;
2141
2142 if (!link_info.reduce_memory_overheads)
2143 {
2144 fat_section_userdata_type *new_userdata = (fat_section_userdata_type *)
2145 stat_alloc (sizeof (fat_section_userdata_type));
2146 memset (new_userdata, 0, sizeof (fat_section_userdata_type));
2147 get_userdata (s->bfd_section) = new_userdata;
2148 }
2149
2150 /* If there is a base address, make sure that any sections it might
2151 mention are initialized. */
2152 if (s->addr_tree != NULL)
2153 exp_init_os (s->addr_tree);
2154
2155 if (s->load_base != NULL)
2156 exp_init_os (s->load_base);
2157
2158 /* If supplied an alignment, set it. */
2159 if (s->section_alignment != -1)
2160 s->bfd_section->alignment_power = s->section_alignment;
2161 }
2162
2163 /* Make sure that all output sections mentioned in an expression are
2164 initialized. */
2165
2166 static void
2167 exp_init_os (etree_type *exp)
2168 {
2169 switch (exp->type.node_class)
2170 {
2171 case etree_assign:
2172 case etree_provide:
2173 exp_init_os (exp->assign.src);
2174 break;
2175
2176 case etree_binary:
2177 exp_init_os (exp->binary.lhs);
2178 exp_init_os (exp->binary.rhs);
2179 break;
2180
2181 case etree_trinary:
2182 exp_init_os (exp->trinary.cond);
2183 exp_init_os (exp->trinary.lhs);
2184 exp_init_os (exp->trinary.rhs);
2185 break;
2186
2187 case etree_assert:
2188 exp_init_os (exp->assert_s.child);
2189 break;
2190
2191 case etree_unary:
2192 exp_init_os (exp->unary.child);
2193 break;
2194
2195 case etree_name:
2196 switch (exp->type.node_code)
2197 {
2198 case ADDR:
2199 case LOADADDR:
2200 case SIZEOF:
2201 {
2202 lang_output_section_statement_type *os;
2203
2204 os = lang_output_section_find (exp->name.name);
2205 if (os != NULL && os->bfd_section == NULL)
2206 init_os (os, 0);
2207 }
2208 }
2209 break;
2210
2211 default:
2212 break;
2213 }
2214 }
2215 \f
2216 static void
2217 section_already_linked (bfd *abfd, asection *sec, void *data)
2218 {
2219 lang_input_statement_type *entry = (lang_input_statement_type *) data;
2220
2221 /* If we are only reading symbols from this object, then we want to
2222 discard all sections. */
2223 if (entry->just_syms_flag)
2224 {
2225 bfd_link_just_syms (abfd, sec, &link_info);
2226 return;
2227 }
2228
2229 if (!(abfd->flags & DYNAMIC))
2230 bfd_section_already_linked (abfd, sec, &link_info);
2231 }
2232 \f
2233 /* The wild routines.
2234
2235 These expand statements like *(.text) and foo.o to a list of
2236 explicit actions, like foo.o(.text), bar.o(.text) and
2237 foo.o(.text, .data). */
2238
2239 /* Add SECTION to the output section OUTPUT. Do this by creating a
2240 lang_input_section statement which is placed at PTR. FILE is the
2241 input file which holds SECTION. */
2242
2243 void
2244 lang_add_section (lang_statement_list_type *ptr,
2245 asection *section,
2246 lang_output_section_statement_type *output)
2247 {
2248 flagword flags = section->flags;
2249 bfd_boolean discard;
2250 lang_input_section_type *new_section;
2251
2252 /* Discard sections marked with SEC_EXCLUDE. */
2253 discard = (flags & SEC_EXCLUDE) != 0;
2254
2255 /* Discard input sections which are assigned to a section named
2256 DISCARD_SECTION_NAME. */
2257 if (strcmp (output->name, DISCARD_SECTION_NAME) == 0)
2258 discard = TRUE;
2259
2260 /* Discard debugging sections if we are stripping debugging
2261 information. */
2262 if ((link_info.strip == strip_debugger || link_info.strip == strip_all)
2263 && (flags & SEC_DEBUGGING) != 0)
2264 discard = TRUE;
2265
2266 if (discard)
2267 {
2268 if (section->output_section == NULL)
2269 {
2270 /* This prevents future calls from assigning this section. */
2271 section->output_section = bfd_abs_section_ptr;
2272 }
2273 return;
2274 }
2275
2276 if (section->output_section != NULL)
2277 return;
2278
2279 /* We don't copy the SEC_NEVER_LOAD flag from an input section
2280 to an output section, because we want to be able to include a
2281 SEC_NEVER_LOAD section in the middle of an otherwise loaded
2282 section (I don't know why we want to do this, but we do).
2283 build_link_order in ldwrite.c handles this case by turning
2284 the embedded SEC_NEVER_LOAD section into a fill. */
2285 flags &= ~ SEC_NEVER_LOAD;
2286
2287 /* If final link, don't copy the SEC_LINK_ONCE flags, they've
2288 already been processed. One reason to do this is that on pe
2289 format targets, .text$foo sections go into .text and it's odd
2290 to see .text with SEC_LINK_ONCE set. */
2291
2292 if (!link_info.relocatable)
2293 flags &= ~(SEC_LINK_ONCE | SEC_LINK_DUPLICATES | SEC_RELOC);
2294
2295 switch (output->sectype)
2296 {
2297 case normal_section:
2298 case overlay_section:
2299 break;
2300 case noalloc_section:
2301 flags &= ~SEC_ALLOC;
2302 break;
2303 case noload_section:
2304 flags &= ~SEC_LOAD;
2305 flags |= SEC_NEVER_LOAD;
2306 /* Unfortunately GNU ld has managed to evolve two different
2307 meanings to NOLOAD in scripts. ELF gets a .bss style noload,
2308 alloc, no contents section. All others get a noload, noalloc
2309 section. */
2310 if (bfd_get_flavour (link_info.output_bfd) == bfd_target_elf_flavour)
2311 flags &= ~SEC_HAS_CONTENTS;
2312 else
2313 flags &= ~SEC_ALLOC;
2314 break;
2315 }
2316
2317 if (output->bfd_section == NULL)
2318 init_os (output, flags);
2319
2320 /* If SEC_READONLY is not set in the input section, then clear
2321 it from the output section. */
2322 output->bfd_section->flags &= flags | ~SEC_READONLY;
2323
2324 if (output->bfd_section->linker_has_input)
2325 {
2326 /* Only set SEC_READONLY flag on the first input section. */
2327 flags &= ~ SEC_READONLY;
2328
2329 /* Keep SEC_MERGE and SEC_STRINGS only if they are the same. */
2330 if ((output->bfd_section->flags & (SEC_MERGE | SEC_STRINGS))
2331 != (flags & (SEC_MERGE | SEC_STRINGS))
2332 || ((flags & SEC_MERGE) != 0
2333 && output->bfd_section->entsize != section->entsize))
2334 {
2335 output->bfd_section->flags &= ~ (SEC_MERGE | SEC_STRINGS);
2336 flags &= ~ (SEC_MERGE | SEC_STRINGS);
2337 }
2338 }
2339 output->bfd_section->flags |= flags;
2340
2341 if (!output->bfd_section->linker_has_input)
2342 {
2343 output->bfd_section->linker_has_input = 1;
2344 /* This must happen after flags have been updated. The output
2345 section may have been created before we saw its first input
2346 section, eg. for a data statement. */
2347 bfd_init_private_section_data (section->owner, section,
2348 link_info.output_bfd,
2349 output->bfd_section,
2350 &link_info);
2351 if ((flags & SEC_MERGE) != 0)
2352 output->bfd_section->entsize = section->entsize;
2353 }
2354
2355 if ((flags & SEC_TIC54X_BLOCK) != 0
2356 && bfd_get_arch (section->owner) == bfd_arch_tic54x)
2357 {
2358 /* FIXME: This value should really be obtained from the bfd... */
2359 output->block_value = 128;
2360 }
2361
2362 if (section->alignment_power > output->bfd_section->alignment_power)
2363 output->bfd_section->alignment_power = section->alignment_power;
2364
2365 section->output_section = output->bfd_section;
2366
2367 if (!link_info.relocatable
2368 && !stripped_excluded_sections)
2369 {
2370 asection *s = output->bfd_section->map_tail.s;
2371 output->bfd_section->map_tail.s = section;
2372 section->map_head.s = NULL;
2373 section->map_tail.s = s;
2374 if (s != NULL)
2375 s->map_head.s = section;
2376 else
2377 output->bfd_section->map_head.s = section;
2378 }
2379
2380 /* Add a section reference to the list. */
2381 new_section = new_stat (lang_input_section, ptr);
2382 new_section->section = section;
2383 }
2384
2385 /* Handle wildcard sorting. This returns the lang_input_section which
2386 should follow the one we are going to create for SECTION and FILE,
2387 based on the sorting requirements of WILD. It returns NULL if the
2388 new section should just go at the end of the current list. */
2389
2390 static lang_statement_union_type *
2391 wild_sort (lang_wild_statement_type *wild,
2392 struct wildcard_list *sec,
2393 lang_input_statement_type *file,
2394 asection *section)
2395 {
2396 lang_statement_union_type *l;
2397
2398 if (!wild->filenames_sorted
2399 && (sec == NULL || sec->spec.sorted == none))
2400 return NULL;
2401
2402 for (l = wild->children.head; l != NULL; l = l->header.next)
2403 {
2404 lang_input_section_type *ls;
2405
2406 if (l->header.type != lang_input_section_enum)
2407 continue;
2408 ls = &l->input_section;
2409
2410 /* Sorting by filename takes precedence over sorting by section
2411 name. */
2412
2413 if (wild->filenames_sorted)
2414 {
2415 const char *fn, *ln;
2416 bfd_boolean fa, la;
2417 int i;
2418
2419 /* The PE support for the .idata section as generated by
2420 dlltool assumes that files will be sorted by the name of
2421 the archive and then the name of the file within the
2422 archive. */
2423
2424 if (file->the_bfd != NULL
2425 && bfd_my_archive (file->the_bfd) != NULL)
2426 {
2427 fn = bfd_get_filename (bfd_my_archive (file->the_bfd));
2428 fa = TRUE;
2429 }
2430 else
2431 {
2432 fn = file->filename;
2433 fa = FALSE;
2434 }
2435
2436 if (bfd_my_archive (ls->section->owner) != NULL)
2437 {
2438 ln = bfd_get_filename (bfd_my_archive (ls->section->owner));
2439 la = TRUE;
2440 }
2441 else
2442 {
2443 ln = ls->section->owner->filename;
2444 la = FALSE;
2445 }
2446
2447 i = strcmp (fn, ln);
2448 if (i > 0)
2449 continue;
2450 else if (i < 0)
2451 break;
2452
2453 if (fa || la)
2454 {
2455 if (fa)
2456 fn = file->filename;
2457 if (la)
2458 ln = ls->section->owner->filename;
2459
2460 i = strcmp (fn, ln);
2461 if (i > 0)
2462 continue;
2463 else if (i < 0)
2464 break;
2465 }
2466 }
2467
2468 /* Here either the files are not sorted by name, or we are
2469 looking at the sections for this file. */
2470
2471 if (sec != NULL && sec->spec.sorted != none)
2472 if (compare_section (sec->spec.sorted, section, ls->section) < 0)
2473 break;
2474 }
2475
2476 return l;
2477 }
2478
2479 /* Expand a wild statement for a particular FILE. SECTION may be
2480 NULL, in which case it is a wild card. */
2481
2482 static void
2483 output_section_callback (lang_wild_statement_type *ptr,
2484 struct wildcard_list *sec,
2485 asection *section,
2486 lang_input_statement_type *file,
2487 void *output)
2488 {
2489 lang_statement_union_type *before;
2490 lang_output_section_statement_type *os;
2491
2492 os = (lang_output_section_statement_type *) output;
2493
2494 /* Exclude sections that match UNIQUE_SECTION_LIST. */
2495 if (unique_section_p (section, os))
2496 return;
2497
2498 before = wild_sort (ptr, sec, file, section);
2499
2500 /* Here BEFORE points to the lang_input_section which
2501 should follow the one we are about to add. If BEFORE
2502 is NULL, then the section should just go at the end
2503 of the current list. */
2504
2505 if (before == NULL)
2506 lang_add_section (&ptr->children, section, os);
2507 else
2508 {
2509 lang_statement_list_type list;
2510 lang_statement_union_type **pp;
2511
2512 lang_list_init (&list);
2513 lang_add_section (&list, section, os);
2514
2515 /* If we are discarding the section, LIST.HEAD will
2516 be NULL. */
2517 if (list.head != NULL)
2518 {
2519 ASSERT (list.head->header.next == NULL);
2520
2521 for (pp = &ptr->children.head;
2522 *pp != before;
2523 pp = &(*pp)->header.next)
2524 ASSERT (*pp != NULL);
2525
2526 list.head->header.next = *pp;
2527 *pp = list.head;
2528 }
2529 }
2530 }
2531
2532 /* Check if all sections in a wild statement for a particular FILE
2533 are readonly. */
2534
2535 static void
2536 check_section_callback (lang_wild_statement_type *ptr ATTRIBUTE_UNUSED,
2537 struct wildcard_list *sec ATTRIBUTE_UNUSED,
2538 asection *section,
2539 lang_input_statement_type *file ATTRIBUTE_UNUSED,
2540 void *output)
2541 {
2542 lang_output_section_statement_type *os;
2543
2544 os = (lang_output_section_statement_type *) output;
2545
2546 /* Exclude sections that match UNIQUE_SECTION_LIST. */
2547 if (unique_section_p (section, os))
2548 return;
2549
2550 if (section->output_section == NULL && (section->flags & SEC_READONLY) == 0)
2551 os->all_input_readonly = FALSE;
2552 }
2553
2554 /* This is passed a file name which must have been seen already and
2555 added to the statement tree. We will see if it has been opened
2556 already and had its symbols read. If not then we'll read it. */
2557
2558 static lang_input_statement_type *
2559 lookup_name (const char *name)
2560 {
2561 lang_input_statement_type *search;
2562
2563 for (search = (lang_input_statement_type *) input_file_chain.head;
2564 search != NULL;
2565 search = (lang_input_statement_type *) search->next_real_file)
2566 {
2567 /* Use the local_sym_name as the name of the file that has
2568 already been loaded as filename might have been transformed
2569 via the search directory lookup mechanism. */
2570 const char *filename = search->local_sym_name;
2571
2572 if (filename != NULL
2573 && strcmp (filename, name) == 0)
2574 break;
2575 }
2576
2577 if (search == NULL)
2578 search = new_afile (name, lang_input_file_is_search_file_enum,
2579 default_target, FALSE);
2580
2581 /* If we have already added this file, or this file is not real
2582 don't add this file. */
2583 if (search->loaded || !search->real)
2584 return search;
2585
2586 if (! load_symbols (search, NULL))
2587 return NULL;
2588
2589 return search;
2590 }
2591
2592 /* Save LIST as a list of libraries whose symbols should not be exported. */
2593
2594 struct excluded_lib
2595 {
2596 char *name;
2597 struct excluded_lib *next;
2598 };
2599 static struct excluded_lib *excluded_libs;
2600
2601 void
2602 add_excluded_libs (const char *list)
2603 {
2604 const char *p = list, *end;
2605
2606 while (*p != '\0')
2607 {
2608 struct excluded_lib *entry;
2609 end = strpbrk (p, ",:");
2610 if (end == NULL)
2611 end = p + strlen (p);
2612 entry = (struct excluded_lib *) xmalloc (sizeof (*entry));
2613 entry->next = excluded_libs;
2614 entry->name = (char *) xmalloc (end - p + 1);
2615 memcpy (entry->name, p, end - p);
2616 entry->name[end - p] = '\0';
2617 excluded_libs = entry;
2618 if (*end == '\0')
2619 break;
2620 p = end + 1;
2621 }
2622 }
2623
2624 static void
2625 check_excluded_libs (bfd *abfd)
2626 {
2627 struct excluded_lib *lib = excluded_libs;
2628
2629 while (lib)
2630 {
2631 int len = strlen (lib->name);
2632 const char *filename = lbasename (abfd->filename);
2633
2634 if (strcmp (lib->name, "ALL") == 0)
2635 {
2636 abfd->no_export = TRUE;
2637 return;
2638 }
2639
2640 if (strncmp (lib->name, filename, len) == 0
2641 && (filename[len] == '\0'
2642 || (filename[len] == '.' && filename[len + 1] == 'a'
2643 && filename[len + 2] == '\0')))
2644 {
2645 abfd->no_export = TRUE;
2646 return;
2647 }
2648
2649 lib = lib->next;
2650 }
2651 }
2652
2653 /* Get the symbols for an input file. */
2654
2655 bfd_boolean
2656 load_symbols (lang_input_statement_type *entry,
2657 lang_statement_list_type *place)
2658 {
2659 char **matching;
2660
2661 if (entry->loaded)
2662 return TRUE;
2663
2664 ldfile_open_file (entry);
2665
2666 /* Do not process further if the file was missing. */
2667 if (entry->missing_file)
2668 return TRUE;
2669
2670 if (! bfd_check_format (entry->the_bfd, bfd_archive)
2671 && ! bfd_check_format_matches (entry->the_bfd, bfd_object, &matching))
2672 {
2673 bfd_error_type err;
2674 bfd_boolean save_ldlang_sysrooted_script;
2675 bfd_boolean save_add_DT_NEEDED_for_regular;
2676 bfd_boolean save_add_DT_NEEDED_for_dynamic;
2677 bfd_boolean save_whole_archive;
2678
2679 err = bfd_get_error ();
2680
2681 /* See if the emulation has some special knowledge. */
2682 if (ldemul_unrecognized_file (entry))
2683 return TRUE;
2684
2685 if (err == bfd_error_file_ambiguously_recognized)
2686 {
2687 char **p;
2688
2689 einfo (_("%B: file not recognized: %E\n"), entry->the_bfd);
2690 einfo (_("%B: matching formats:"), entry->the_bfd);
2691 for (p = matching; *p != NULL; p++)
2692 einfo (" %s", *p);
2693 einfo ("%F\n");
2694 }
2695 else if (err != bfd_error_file_not_recognized
2696 || place == NULL)
2697 einfo (_("%F%B: file not recognized: %E\n"), entry->the_bfd);
2698
2699 bfd_close (entry->the_bfd);
2700 entry->the_bfd = NULL;
2701
2702 /* Try to interpret the file as a linker script. */
2703 ldfile_open_command_file (entry->filename);
2704
2705 push_stat_ptr (place);
2706 save_ldlang_sysrooted_script = ldlang_sysrooted_script;
2707 ldlang_sysrooted_script = entry->sysrooted;
2708 save_add_DT_NEEDED_for_regular = add_DT_NEEDED_for_regular;
2709 add_DT_NEEDED_for_regular = entry->add_DT_NEEDED_for_regular;
2710 save_add_DT_NEEDED_for_dynamic = add_DT_NEEDED_for_dynamic;
2711 add_DT_NEEDED_for_dynamic = entry->add_DT_NEEDED_for_dynamic;
2712 save_whole_archive = whole_archive;
2713 whole_archive = entry->whole_archive;
2714
2715 ldfile_assumed_script = TRUE;
2716 parser_input = input_script;
2717 /* We want to use the same -Bdynamic/-Bstatic as the one for
2718 ENTRY. */
2719 config.dynamic_link = entry->dynamic;
2720 yyparse ();
2721 ldfile_assumed_script = FALSE;
2722
2723 ldlang_sysrooted_script = save_ldlang_sysrooted_script;
2724 add_DT_NEEDED_for_regular = save_add_DT_NEEDED_for_regular;
2725 add_DT_NEEDED_for_dynamic = save_add_DT_NEEDED_for_dynamic;
2726 whole_archive = save_whole_archive;
2727 pop_stat_ptr ();
2728
2729 return TRUE;
2730 }
2731
2732 if (ldemul_recognized_file (entry))
2733 return TRUE;
2734
2735 /* We don't call ldlang_add_file for an archive. Instead, the
2736 add_symbols entry point will call ldlang_add_file, via the
2737 add_archive_element callback, for each element of the archive
2738 which is used. */
2739 switch (bfd_get_format (entry->the_bfd))
2740 {
2741 default:
2742 break;
2743
2744 case bfd_object:
2745 ldlang_add_file (entry);
2746 if (trace_files || trace_file_tries)
2747 info_msg ("%I\n", entry);
2748 break;
2749
2750 case bfd_archive:
2751 check_excluded_libs (entry->the_bfd);
2752
2753 if (entry->whole_archive)
2754 {
2755 bfd *member = NULL;
2756 bfd_boolean loaded = TRUE;
2757
2758 for (;;)
2759 {
2760 bfd *subsbfd;
2761 member = bfd_openr_next_archived_file (entry->the_bfd, member);
2762
2763 if (member == NULL)
2764 break;
2765
2766 if (! bfd_check_format (member, bfd_object))
2767 {
2768 einfo (_("%F%B: member %B in archive is not an object\n"),
2769 entry->the_bfd, member);
2770 loaded = FALSE;
2771 }
2772
2773 subsbfd = member;
2774 if (!(*link_info.callbacks
2775 ->add_archive_element) (&link_info, member,
2776 "--whole-archive", &subsbfd))
2777 abort ();
2778
2779 /* Potentially, the add_archive_element hook may have set a
2780 substitute BFD for us. */
2781 if (!bfd_link_add_symbols (subsbfd, &link_info))
2782 {
2783 einfo (_("%F%B: could not read symbols: %E\n"), member);
2784 loaded = FALSE;
2785 }
2786 }
2787
2788 entry->loaded = loaded;
2789 return loaded;
2790 }
2791 break;
2792 }
2793
2794 if (bfd_link_add_symbols (entry->the_bfd, &link_info))
2795 entry->loaded = TRUE;
2796 else
2797 einfo (_("%F%B: could not read symbols: %E\n"), entry->the_bfd);
2798
2799 return entry->loaded;
2800 }
2801
2802 /* Handle a wild statement. S->FILENAME or S->SECTION_LIST or both
2803 may be NULL, indicating that it is a wildcard. Separate
2804 lang_input_section statements are created for each part of the
2805 expansion; they are added after the wild statement S. OUTPUT is
2806 the output section. */
2807
2808 static void
2809 wild (lang_wild_statement_type *s,
2810 const char *target ATTRIBUTE_UNUSED,
2811 lang_output_section_statement_type *output)
2812 {
2813 struct wildcard_list *sec;
2814
2815 if (s->handler_data[0]
2816 && s->handler_data[0]->spec.sorted == by_name
2817 && !s->filenames_sorted)
2818 {
2819 lang_section_bst_type *tree;
2820
2821 walk_wild (s, output_section_callback_fast, output);
2822
2823 tree = s->tree;
2824 if (tree)
2825 {
2826 output_section_callback_tree_to_list (s, tree, output);
2827 s->tree = NULL;
2828 }
2829 }
2830 else
2831 walk_wild (s, output_section_callback, output);
2832
2833 if (default_common_section == NULL)
2834 for (sec = s->section_list; sec != NULL; sec = sec->next)
2835 if (sec->spec.name != NULL && strcmp (sec->spec.name, "COMMON") == 0)
2836 {
2837 /* Remember the section that common is going to in case we
2838 later get something which doesn't know where to put it. */
2839 default_common_section = output;
2840 break;
2841 }
2842 }
2843
2844 /* Return TRUE iff target is the sought target. */
2845
2846 static int
2847 get_target (const bfd_target *target, void *data)
2848 {
2849 const char *sought = (const char *) data;
2850
2851 return strcmp (target->name, sought) == 0;
2852 }
2853
2854 /* Like strcpy() but convert to lower case as well. */
2855
2856 static void
2857 stricpy (char *dest, char *src)
2858 {
2859 char c;
2860
2861 while ((c = *src++) != 0)
2862 *dest++ = TOLOWER (c);
2863
2864 *dest = 0;
2865 }
2866
2867 /* Remove the first occurrence of needle (if any) in haystack
2868 from haystack. */
2869
2870 static void
2871 strcut (char *haystack, char *needle)
2872 {
2873 haystack = strstr (haystack, needle);
2874
2875 if (haystack)
2876 {
2877 char *src;
2878
2879 for (src = haystack + strlen (needle); *src;)
2880 *haystack++ = *src++;
2881
2882 *haystack = 0;
2883 }
2884 }
2885
2886 /* Compare two target format name strings.
2887 Return a value indicating how "similar" they are. */
2888
2889 static int
2890 name_compare (char *first, char *second)
2891 {
2892 char *copy1;
2893 char *copy2;
2894 int result;
2895
2896 copy1 = (char *) xmalloc (strlen (first) + 1);
2897 copy2 = (char *) xmalloc (strlen (second) + 1);
2898
2899 /* Convert the names to lower case. */
2900 stricpy (copy1, first);
2901 stricpy (copy2, second);
2902
2903 /* Remove size and endian strings from the name. */
2904 strcut (copy1, "big");
2905 strcut (copy1, "little");
2906 strcut (copy2, "big");
2907 strcut (copy2, "little");
2908
2909 /* Return a value based on how many characters match,
2910 starting from the beginning. If both strings are
2911 the same then return 10 * their length. */
2912 for (result = 0; copy1[result] == copy2[result]; result++)
2913 if (copy1[result] == 0)
2914 {
2915 result *= 10;
2916 break;
2917 }
2918
2919 free (copy1);
2920 free (copy2);
2921
2922 return result;
2923 }
2924
2925 /* Set by closest_target_match() below. */
2926 static const bfd_target *winner;
2927
2928 /* Scan all the valid bfd targets looking for one that has the endianness
2929 requirement that was specified on the command line, and is the nearest
2930 match to the original output target. */
2931
2932 static int
2933 closest_target_match (const bfd_target *target, void *data)
2934 {
2935 const bfd_target *original = (const bfd_target *) data;
2936
2937 if (command_line.endian == ENDIAN_BIG
2938 && target->byteorder != BFD_ENDIAN_BIG)
2939 return 0;
2940
2941 if (command_line.endian == ENDIAN_LITTLE
2942 && target->byteorder != BFD_ENDIAN_LITTLE)
2943 return 0;
2944
2945 /* Must be the same flavour. */
2946 if (target->flavour != original->flavour)
2947 return 0;
2948
2949 /* Ignore generic big and little endian elf vectors. */
2950 if (strcmp (target->name, "elf32-big") == 0
2951 || strcmp (target->name, "elf64-big") == 0
2952 || strcmp (target->name, "elf32-little") == 0
2953 || strcmp (target->name, "elf64-little") == 0)
2954 return 0;
2955
2956 /* If we have not found a potential winner yet, then record this one. */
2957 if (winner == NULL)
2958 {
2959 winner = target;
2960 return 0;
2961 }
2962
2963 /* Oh dear, we now have two potential candidates for a successful match.
2964 Compare their names and choose the better one. */
2965 if (name_compare (target->name, original->name)
2966 > name_compare (winner->name, original->name))
2967 winner = target;
2968
2969 /* Keep on searching until wqe have checked them all. */
2970 return 0;
2971 }
2972
2973 /* Return the BFD target format of the first input file. */
2974
2975 static char *
2976 get_first_input_target (void)
2977 {
2978 char *target = NULL;
2979
2980 LANG_FOR_EACH_INPUT_STATEMENT (s)
2981 {
2982 if (s->header.type == lang_input_statement_enum
2983 && s->real)
2984 {
2985 ldfile_open_file (s);
2986
2987 if (s->the_bfd != NULL
2988 && bfd_check_format (s->the_bfd, bfd_object))
2989 {
2990 target = bfd_get_target (s->the_bfd);
2991
2992 if (target != NULL)
2993 break;
2994 }
2995 }
2996 }
2997
2998 return target;
2999 }
3000
3001 const char *
3002 lang_get_output_target (void)
3003 {
3004 const char *target;
3005
3006 /* Has the user told us which output format to use? */
3007 if (output_target != NULL)
3008 return output_target;
3009
3010 /* No - has the current target been set to something other than
3011 the default? */
3012 if (current_target != default_target)
3013 return current_target;
3014
3015 /* No - can we determine the format of the first input file? */
3016 target = get_first_input_target ();
3017 if (target != NULL)
3018 return target;
3019
3020 /* Failed - use the default output target. */
3021 return default_target;
3022 }
3023
3024 /* Open the output file. */
3025
3026 static void
3027 open_output (const char *name)
3028 {
3029 output_target = lang_get_output_target ();
3030
3031 /* Has the user requested a particular endianness on the command
3032 line? */
3033 if (command_line.endian != ENDIAN_UNSET)
3034 {
3035 const bfd_target *target;
3036 enum bfd_endian desired_endian;
3037
3038 /* Get the chosen target. */
3039 target = bfd_search_for_target (get_target, (void *) output_target);
3040
3041 /* If the target is not supported, we cannot do anything. */
3042 if (target != NULL)
3043 {
3044 if (command_line.endian == ENDIAN_BIG)
3045 desired_endian = BFD_ENDIAN_BIG;
3046 else
3047 desired_endian = BFD_ENDIAN_LITTLE;
3048
3049 /* See if the target has the wrong endianness. This should
3050 not happen if the linker script has provided big and
3051 little endian alternatives, but some scrips don't do
3052 this. */
3053 if (target->byteorder != desired_endian)
3054 {
3055 /* If it does, then see if the target provides
3056 an alternative with the correct endianness. */
3057 if (target->alternative_target != NULL
3058 && (target->alternative_target->byteorder == desired_endian))
3059 output_target = target->alternative_target->name;
3060 else
3061 {
3062 /* Try to find a target as similar as possible to
3063 the default target, but which has the desired
3064 endian characteristic. */
3065 bfd_search_for_target (closest_target_match,
3066 (void *) target);
3067
3068 /* Oh dear - we could not find any targets that
3069 satisfy our requirements. */
3070 if (winner == NULL)
3071 einfo (_("%P: warning: could not find any targets"
3072 " that match endianness requirement\n"));
3073 else
3074 output_target = winner->name;
3075 }
3076 }
3077 }
3078 }
3079
3080 link_info.output_bfd = bfd_openw (name, output_target);
3081
3082 if (link_info.output_bfd == NULL)
3083 {
3084 if (bfd_get_error () == bfd_error_invalid_target)
3085 einfo (_("%P%F: target %s not found\n"), output_target);
3086
3087 einfo (_("%P%F: cannot open output file %s: %E\n"), name);
3088 }
3089
3090 delete_output_file_on_failure = TRUE;
3091
3092 if (! bfd_set_format (link_info.output_bfd, bfd_object))
3093 einfo (_("%P%F:%s: can not make object file: %E\n"), name);
3094 if (! bfd_set_arch_mach (link_info.output_bfd,
3095 ldfile_output_architecture,
3096 ldfile_output_machine))
3097 einfo (_("%P%F:%s: can not set architecture: %E\n"), name);
3098
3099 link_info.hash = bfd_link_hash_table_create (link_info.output_bfd);
3100 if (link_info.hash == NULL)
3101 einfo (_("%P%F: can not create hash table: %E\n"));
3102
3103 bfd_set_gp_size (link_info.output_bfd, g_switch_value);
3104 }
3105
3106 static void
3107 ldlang_open_output (lang_statement_union_type *statement)
3108 {
3109 switch (statement->header.type)
3110 {
3111 case lang_output_statement_enum:
3112 ASSERT (link_info.output_bfd == NULL);
3113 open_output (statement->output_statement.name);
3114 ldemul_set_output_arch ();
3115 if (config.magic_demand_paged && !link_info.relocatable)
3116 link_info.output_bfd->flags |= D_PAGED;
3117 else
3118 link_info.output_bfd->flags &= ~D_PAGED;
3119 if (config.text_read_only)
3120 link_info.output_bfd->flags |= WP_TEXT;
3121 else
3122 link_info.output_bfd->flags &= ~WP_TEXT;
3123 if (link_info.traditional_format)
3124 link_info.output_bfd->flags |= BFD_TRADITIONAL_FORMAT;
3125 else
3126 link_info.output_bfd->flags &= ~BFD_TRADITIONAL_FORMAT;
3127 break;
3128
3129 case lang_target_statement_enum:
3130 current_target = statement->target_statement.target;
3131 break;
3132 default:
3133 break;
3134 }
3135 }
3136
3137 /* Convert between addresses in bytes and sizes in octets.
3138 For currently supported targets, octets_per_byte is always a power
3139 of two, so we can use shifts. */
3140 #define TO_ADDR(X) ((X) >> opb_shift)
3141 #define TO_SIZE(X) ((X) << opb_shift)
3142
3143 /* Support the above. */
3144 static unsigned int opb_shift = 0;
3145
3146 static void
3147 init_opb (void)
3148 {
3149 unsigned x = bfd_arch_mach_octets_per_byte (ldfile_output_architecture,
3150 ldfile_output_machine);
3151 opb_shift = 0;
3152 if (x > 1)
3153 while ((x & 1) == 0)
3154 {
3155 x >>= 1;
3156 ++opb_shift;
3157 }
3158 ASSERT (x == 1);
3159 }
3160
3161 /* Open all the input files. */
3162
3163 static void
3164 open_input_bfds (lang_statement_union_type *s, bfd_boolean force)
3165 {
3166 for (; s != NULL; s = s->header.next)
3167 {
3168 switch (s->header.type)
3169 {
3170 case lang_constructors_statement_enum:
3171 open_input_bfds (constructor_list.head, force);
3172 break;
3173 case lang_output_section_statement_enum:
3174 open_input_bfds (s->output_section_statement.children.head, force);
3175 break;
3176 case lang_wild_statement_enum:
3177 /* Maybe we should load the file's symbols. */
3178 if (s->wild_statement.filename
3179 && !wildcardp (s->wild_statement.filename)
3180 && !archive_path (s->wild_statement.filename))
3181 lookup_name (s->wild_statement.filename);
3182 open_input_bfds (s->wild_statement.children.head, force);
3183 break;
3184 case lang_group_statement_enum:
3185 {
3186 struct bfd_link_hash_entry *undefs;
3187
3188 /* We must continually search the entries in the group
3189 until no new symbols are added to the list of undefined
3190 symbols. */
3191
3192 do
3193 {
3194 undefs = link_info.hash->undefs_tail;
3195 open_input_bfds (s->group_statement.children.head, TRUE);
3196 }
3197 while (undefs != link_info.hash->undefs_tail);
3198 }
3199 break;
3200 case lang_target_statement_enum:
3201 current_target = s->target_statement.target;
3202 break;
3203 case lang_input_statement_enum:
3204 if (s->input_statement.real)
3205 {
3206 lang_statement_union_type **os_tail;
3207 lang_statement_list_type add;
3208
3209 s->input_statement.target = current_target;
3210
3211 /* If we are being called from within a group, and this
3212 is an archive which has already been searched, then
3213 force it to be researched unless the whole archive
3214 has been loaded already. */
3215 if (force
3216 && !s->input_statement.whole_archive
3217 && s->input_statement.loaded
3218 && bfd_check_format (s->input_statement.the_bfd,
3219 bfd_archive))
3220 s->input_statement.loaded = FALSE;
3221
3222 os_tail = lang_output_section_statement.tail;
3223 lang_list_init (&add);
3224
3225 if (! load_symbols (&s->input_statement, &add))
3226 config.make_executable = FALSE;
3227
3228 if (add.head != NULL)
3229 {
3230 /* If this was a script with output sections then
3231 tack any added statements on to the end of the
3232 list. This avoids having to reorder the output
3233 section statement list. Very likely the user
3234 forgot -T, and whatever we do here will not meet
3235 naive user expectations. */
3236 if (os_tail != lang_output_section_statement.tail)
3237 {
3238 einfo (_("%P: warning: %s contains output sections;"
3239 " did you forget -T?\n"),
3240 s->input_statement.filename);
3241 *stat_ptr->tail = add.head;
3242 stat_ptr->tail = add.tail;
3243 }
3244 else
3245 {
3246 *add.tail = s->header.next;
3247 s->header.next = add.head;
3248 }
3249 }
3250 }
3251 break;
3252 default:
3253 break;
3254 }
3255 }
3256
3257 /* Exit if any of the files were missing. */
3258 if (missing_file)
3259 einfo ("%F");
3260 }
3261
3262 /* Add a symbol to a hash of symbols used in DEFINED (NAME) expressions. */
3263
3264 void
3265 lang_track_definedness (const char *name)
3266 {
3267 if (bfd_hash_lookup (&lang_definedness_table, name, TRUE, FALSE) == NULL)
3268 einfo (_("%P%F: bfd_hash_lookup failed creating symbol %s\n"), name);
3269 }
3270
3271 /* New-function for the definedness hash table. */
3272
3273 static struct bfd_hash_entry *
3274 lang_definedness_newfunc (struct bfd_hash_entry *entry,
3275 struct bfd_hash_table *table ATTRIBUTE_UNUSED,
3276 const char *name ATTRIBUTE_UNUSED)
3277 {
3278 struct lang_definedness_hash_entry *ret
3279 = (struct lang_definedness_hash_entry *) entry;
3280
3281 if (ret == NULL)
3282 ret = (struct lang_definedness_hash_entry *)
3283 bfd_hash_allocate (table, sizeof (struct lang_definedness_hash_entry));
3284
3285 if (ret == NULL)
3286 einfo (_("%P%F: bfd_hash_allocate failed creating symbol %s\n"), name);
3287
3288 ret->iteration = -1;
3289 return &ret->root;
3290 }
3291
3292 /* Return the iteration when the definition of NAME was last updated. A
3293 value of -1 means that the symbol is not defined in the linker script
3294 or the command line, but may be defined in the linker symbol table. */
3295
3296 int
3297 lang_symbol_definition_iteration (const char *name)
3298 {
3299 struct lang_definedness_hash_entry *defentry
3300 = (struct lang_definedness_hash_entry *)
3301 bfd_hash_lookup (&lang_definedness_table, name, FALSE, FALSE);
3302
3303 /* We've already created this one on the presence of DEFINED in the
3304 script, so it can't be NULL unless something is borked elsewhere in
3305 the code. */
3306 if (defentry == NULL)
3307 FAIL ();
3308
3309 return defentry->iteration;
3310 }
3311
3312 /* Update the definedness state of NAME. */
3313
3314 void
3315 lang_update_definedness (const char *name, struct bfd_link_hash_entry *h)
3316 {
3317 struct lang_definedness_hash_entry *defentry
3318 = (struct lang_definedness_hash_entry *)
3319 bfd_hash_lookup (&lang_definedness_table, name, FALSE, FALSE);
3320
3321 /* We don't keep track of symbols not tested with DEFINED. */
3322 if (defentry == NULL)
3323 return;
3324
3325 /* If the symbol was already defined, and not from an earlier statement
3326 iteration, don't update the definedness iteration, because that'd
3327 make the symbol seem defined in the linker script at this point, and
3328 it wasn't; it was defined in some object. If we do anyway, DEFINED
3329 would start to yield false before this point and the construct "sym =
3330 DEFINED (sym) ? sym : X;" would change sym to X despite being defined
3331 in an object. */
3332 if (h->type != bfd_link_hash_undefined
3333 && h->type != bfd_link_hash_common
3334 && h->type != bfd_link_hash_new
3335 && defentry->iteration == -1)
3336 return;
3337
3338 defentry->iteration = lang_statement_iteration;
3339 }
3340
3341 /* Add the supplied name to the symbol table as an undefined reference.
3342 This is a two step process as the symbol table doesn't even exist at
3343 the time the ld command line is processed. First we put the name
3344 on a list, then, once the output file has been opened, transfer the
3345 name to the symbol table. */
3346
3347 typedef struct bfd_sym_chain ldlang_undef_chain_list_type;
3348
3349 #define ldlang_undef_chain_list_head entry_symbol.next
3350
3351 void
3352 ldlang_add_undef (const char *const name, bfd_boolean cmdline)
3353 {
3354 ldlang_undef_chain_list_type *new_undef;
3355
3356 undef_from_cmdline = undef_from_cmdline || cmdline;
3357 new_undef = (ldlang_undef_chain_list_type *) stat_alloc (sizeof (*new_undef));
3358 new_undef->next = ldlang_undef_chain_list_head;
3359 ldlang_undef_chain_list_head = new_undef;
3360
3361 new_undef->name = xstrdup (name);
3362
3363 if (link_info.output_bfd != NULL)
3364 insert_undefined (new_undef->name);
3365 }
3366
3367 /* Insert NAME as undefined in the symbol table. */
3368
3369 static void
3370 insert_undefined (const char *name)
3371 {
3372 struct bfd_link_hash_entry *h;
3373
3374 h = bfd_link_hash_lookup (link_info.hash, name, TRUE, FALSE, TRUE);
3375 if (h == NULL)
3376 einfo (_("%P%F: bfd_link_hash_lookup failed: %E\n"));
3377 if (h->type == bfd_link_hash_new)
3378 {
3379 h->type = bfd_link_hash_undefined;
3380 h->u.undef.abfd = NULL;
3381 bfd_link_add_undef (link_info.hash, h);
3382 }
3383 }
3384
3385 /* Run through the list of undefineds created above and place them
3386 into the linker hash table as undefined symbols belonging to the
3387 script file. */
3388
3389 static void
3390 lang_place_undefineds (void)
3391 {
3392 ldlang_undef_chain_list_type *ptr;
3393
3394 for (ptr = ldlang_undef_chain_list_head; ptr != NULL; ptr = ptr->next)
3395 insert_undefined (ptr->name);
3396 }
3397
3398 typedef struct bfd_sym_chain ldlang_def_chain_list_type;
3399
3400 static ldlang_def_chain_list_type ldlang_def_chain_list_head;
3401
3402 /* Insert NAME as defined in the symbol table. */
3403
3404 static void
3405 insert_defined (const char *name)
3406 {
3407 struct bfd_link_hash_entry *h;
3408
3409 h = bfd_link_hash_lookup (link_info.hash, name, TRUE, FALSE, TRUE);
3410 if (h == NULL)
3411 einfo (_("%P%F: bfd_link_hash_lookup failed: %E\n"));
3412 if (h->type == bfd_link_hash_new
3413 || h->type == bfd_link_hash_undefined
3414 || h->type == bfd_link_hash_undefweak)
3415 {
3416 h->type = bfd_link_hash_defined;
3417 h->u.def.section = bfd_abs_section_ptr;
3418 h->u.def.value = 0;
3419 }
3420 }
3421
3422 /* Like lang_add_undef, but this time for symbols defined on the
3423 command line. */
3424
3425 static void
3426 ldlang_add_def (const char *const name)
3427 {
3428 if (link_info.output_bfd != NULL)
3429 insert_defined (xstrdup (name));
3430 else
3431 {
3432 ldlang_def_chain_list_type *new_def;
3433
3434 new_def = (ldlang_def_chain_list_type *) stat_alloc (sizeof (*new_def));
3435 new_def->next = ldlang_def_chain_list_head.next;
3436 ldlang_def_chain_list_head.next = new_def;
3437
3438 new_def->name = xstrdup (name);
3439 }
3440 }
3441
3442 /* Run through the list of defineds created above and place them
3443 into the linker hash table as defined symbols belonging to the
3444 script file. */
3445
3446 static void
3447 lang_place_defineds (void)
3448 {
3449 ldlang_def_chain_list_type *ptr;
3450
3451 for (ptr = ldlang_def_chain_list_head.next;
3452 ptr != NULL;
3453 ptr = ptr->next)
3454 insert_defined (ptr->name);
3455 }
3456
3457 /* Check for all readonly or some readwrite sections. */
3458
3459 static void
3460 check_input_sections
3461 (lang_statement_union_type *s,
3462 lang_output_section_statement_type *output_section_statement)
3463 {
3464 for (; s != (lang_statement_union_type *) NULL; s = s->header.next)
3465 {
3466 switch (s->header.type)
3467 {
3468 case lang_wild_statement_enum:
3469 walk_wild (&s->wild_statement, check_section_callback,
3470 output_section_statement);
3471 if (! output_section_statement->all_input_readonly)
3472 return;
3473 break;
3474 case lang_constructors_statement_enum:
3475 check_input_sections (constructor_list.head,
3476 output_section_statement);
3477 if (! output_section_statement->all_input_readonly)
3478 return;
3479 break;
3480 case lang_group_statement_enum:
3481 check_input_sections (s->group_statement.children.head,
3482 output_section_statement);
3483 if (! output_section_statement->all_input_readonly)
3484 return;
3485 break;
3486 default:
3487 break;
3488 }
3489 }
3490 }
3491
3492 /* Update wildcard statements if needed. */
3493
3494 static void
3495 update_wild_statements (lang_statement_union_type *s)
3496 {
3497 struct wildcard_list *sec;
3498
3499 switch (sort_section)
3500 {
3501 default:
3502 FAIL ();
3503
3504 case none:
3505 break;
3506
3507 case by_name:
3508 case by_alignment:
3509 for (; s != NULL; s = s->header.next)
3510 {
3511 switch (s->header.type)
3512 {
3513 default:
3514 break;
3515
3516 case lang_wild_statement_enum:
3517 sec = s->wild_statement.section_list;
3518 for (sec = s->wild_statement.section_list; sec != NULL;
3519 sec = sec->next)
3520 {
3521 switch (sec->spec.sorted)
3522 {
3523 case none:
3524 sec->spec.sorted = sort_section;
3525 break;
3526 case by_name:
3527 if (sort_section == by_alignment)
3528 sec->spec.sorted = by_name_alignment;
3529 break;
3530 case by_alignment:
3531 if (sort_section == by_name)
3532 sec->spec.sorted = by_alignment_name;
3533 break;
3534 default:
3535 break;
3536 }
3537 }
3538 break;
3539
3540 case lang_constructors_statement_enum:
3541 update_wild_statements (constructor_list.head);
3542 break;
3543
3544 case lang_output_section_statement_enum:
3545 update_wild_statements
3546 (s->output_section_statement.children.head);
3547 break;
3548
3549 case lang_group_statement_enum:
3550 update_wild_statements (s->group_statement.children.head);
3551 break;
3552 }
3553 }
3554 break;
3555 }
3556 }
3557
3558 /* Open input files and attach to output sections. */
3559
3560 static void
3561 map_input_to_output_sections
3562 (lang_statement_union_type *s, const char *target,
3563 lang_output_section_statement_type *os)
3564 {
3565 for (; s != NULL; s = s->header.next)
3566 {
3567 lang_output_section_statement_type *tos;
3568 flagword flags;
3569
3570 switch (s->header.type)
3571 {
3572 case lang_wild_statement_enum:
3573 wild (&s->wild_statement, target, os);
3574 break;
3575 case lang_constructors_statement_enum:
3576 map_input_to_output_sections (constructor_list.head,
3577 target,
3578 os);
3579 break;
3580 case lang_output_section_statement_enum:
3581 tos = &s->output_section_statement;
3582 if (tos->constraint != 0)
3583 {
3584 if (tos->constraint != ONLY_IF_RW
3585 && tos->constraint != ONLY_IF_RO)
3586 break;
3587 tos->all_input_readonly = TRUE;
3588 check_input_sections (tos->children.head, tos);
3589 if (tos->all_input_readonly != (tos->constraint == ONLY_IF_RO))
3590 {
3591 tos->constraint = -1;
3592 break;
3593 }
3594 }
3595 map_input_to_output_sections (tos->children.head,
3596 target,
3597 tos);
3598 break;
3599 case lang_output_statement_enum:
3600 break;
3601 case lang_target_statement_enum:
3602 target = s->target_statement.target;
3603 break;
3604 case lang_group_statement_enum:
3605 map_input_to_output_sections (s->group_statement.children.head,
3606 target,
3607 os);
3608 break;
3609 case lang_data_statement_enum:
3610 /* Make sure that any sections mentioned in the expression
3611 are initialized. */
3612 exp_init_os (s->data_statement.exp);
3613 /* The output section gets CONTENTS, ALLOC and LOAD, but
3614 these may be overridden by the script. */
3615 flags = SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD;
3616 switch (os->sectype)
3617 {
3618 case normal_section:
3619 case overlay_section:
3620 break;
3621 case noalloc_section:
3622 flags = SEC_HAS_CONTENTS;
3623 break;
3624 case noload_section:
3625 if (bfd_get_flavour (link_info.output_bfd)
3626 == bfd_target_elf_flavour)
3627 flags = SEC_NEVER_LOAD | SEC_ALLOC;
3628 else
3629 flags = SEC_NEVER_LOAD | SEC_HAS_CONTENTS;
3630 break;
3631 }
3632 if (os->bfd_section == NULL)
3633 init_os (os, flags);
3634 else
3635 os->bfd_section->flags |= flags;
3636 break;
3637 case lang_input_section_enum:
3638 break;
3639 case lang_fill_statement_enum:
3640 case lang_object_symbols_statement_enum:
3641 case lang_reloc_statement_enum:
3642 case lang_padding_statement_enum:
3643 case lang_input_statement_enum:
3644 if (os != NULL && os->bfd_section == NULL)
3645 init_os (os, 0);
3646 break;
3647 case lang_assignment_statement_enum:
3648 if (os != NULL && os->bfd_section == NULL)
3649 init_os (os, 0);
3650
3651 /* Make sure that any sections mentioned in the assignment
3652 are initialized. */
3653 exp_init_os (s->assignment_statement.exp);
3654 break;
3655 case lang_address_statement_enum:
3656 /* Mark the specified section with the supplied address.
3657 If this section was actually a segment marker, then the
3658 directive is ignored if the linker script explicitly
3659 processed the segment marker. Originally, the linker
3660 treated segment directives (like -Ttext on the
3661 command-line) as section directives. We honor the
3662 section directive semantics for backwards compatibilty;
3663 linker scripts that do not specifically check for
3664 SEGMENT_START automatically get the old semantics. */
3665 if (!s->address_statement.segment
3666 || !s->address_statement.segment->used)
3667 {
3668 const char *name = s->address_statement.section_name;
3669
3670 /* Create the output section statement here so that
3671 orphans with a set address will be placed after other
3672 script sections. If we let the orphan placement code
3673 place them in amongst other sections then the address
3674 will affect following script sections, which is
3675 likely to surprise naive users. */
3676 tos = lang_output_section_statement_lookup (name, 0, TRUE);
3677 tos->addr_tree = s->address_statement.address;
3678 if (tos->bfd_section == NULL)
3679 init_os (tos, 0);
3680 }
3681 break;
3682 case lang_insert_statement_enum:
3683 break;
3684 }
3685 }
3686 }
3687
3688 /* An insert statement snips out all the linker statements from the
3689 start of the list and places them after the output section
3690 statement specified by the insert. This operation is complicated
3691 by the fact that we keep a doubly linked list of output section
3692 statements as well as the singly linked list of all statements. */
3693
3694 static void
3695 process_insert_statements (void)
3696 {
3697 lang_statement_union_type **s;
3698 lang_output_section_statement_type *first_os = NULL;
3699 lang_output_section_statement_type *last_os = NULL;
3700 lang_output_section_statement_type *os;
3701
3702 /* "start of list" is actually the statement immediately after
3703 the special abs_section output statement, so that it isn't
3704 reordered. */
3705 s = &lang_output_section_statement.head;
3706 while (*(s = &(*s)->header.next) != NULL)
3707 {
3708 if ((*s)->header.type == lang_output_section_statement_enum)
3709 {
3710 /* Keep pointers to the first and last output section
3711 statement in the sequence we may be about to move. */
3712 os = &(*s)->output_section_statement;
3713
3714 ASSERT (last_os == NULL || last_os->next == os);
3715 last_os = os;
3716
3717 /* Set constraint negative so that lang_output_section_find
3718 won't match this output section statement. At this
3719 stage in linking constraint has values in the range
3720 [-1, ONLY_IN_RW]. */
3721 last_os->constraint = -2 - last_os->constraint;
3722 if (first_os == NULL)
3723 first_os = last_os;
3724 }
3725 else if ((*s)->header.type == lang_insert_statement_enum)
3726 {
3727 lang_insert_statement_type *i = &(*s)->insert_statement;
3728 lang_output_section_statement_type *where;
3729 lang_statement_union_type **ptr;
3730 lang_statement_union_type *first;
3731
3732 where = lang_output_section_find (i->where);
3733 if (where != NULL && i->is_before)
3734 {
3735 do
3736 where = where->prev;
3737 while (where != NULL && where->constraint < 0);
3738 }
3739 if (where == NULL)
3740 {
3741 einfo (_("%F%P: %s not found for insert\n"), i->where);
3742 return;
3743 }
3744
3745 /* Deal with reordering the output section statement list. */
3746 if (last_os != NULL)
3747 {
3748 asection *first_sec, *last_sec;
3749 struct lang_output_section_statement_struct **next;
3750
3751 /* Snip out the output sections we are moving. */
3752 first_os->prev->next = last_os->next;
3753 if (last_os->next == NULL)
3754 {
3755 next = &first_os->prev->next;
3756 lang_output_section_statement.tail
3757 = (lang_statement_union_type **) next;
3758 }
3759 else
3760 last_os->next->prev = first_os->prev;
3761 /* Add them in at the new position. */
3762 last_os->next = where->next;
3763 if (where->next == NULL)
3764 {
3765 next = &last_os->next;
3766 lang_output_section_statement.tail
3767 = (lang_statement_union_type **) next;
3768 }
3769 else
3770 where->next->prev = last_os;
3771 first_os->prev = where;
3772 where->next = first_os;
3773
3774 /* Move the bfd sections in the same way. */
3775 first_sec = NULL;
3776 last_sec = NULL;
3777 for (os = first_os; os != NULL; os = os->next)
3778 {
3779 os->constraint = -2 - os->constraint;
3780 if (os->bfd_section != NULL
3781 && os->bfd_section->owner != NULL)
3782 {
3783 last_sec = os->bfd_section;
3784 if (first_sec == NULL)
3785 first_sec = last_sec;
3786 }
3787 if (os == last_os)
3788 break;
3789 }
3790 if (last_sec != NULL)
3791 {
3792 asection *sec = where->bfd_section;
3793 if (sec == NULL)
3794 sec = output_prev_sec_find (where);
3795
3796 /* The place we want to insert must come after the
3797 sections we are moving. So if we find no
3798 section or if the section is the same as our
3799 last section, then no move is needed. */
3800 if (sec != NULL && sec != last_sec)
3801 {
3802 /* Trim them off. */
3803 if (first_sec->prev != NULL)
3804 first_sec->prev->next = last_sec->next;
3805 else
3806 link_info.output_bfd->sections = last_sec->next;
3807 if (last_sec->next != NULL)
3808 last_sec->next->prev = first_sec->prev;
3809 else
3810 link_info.output_bfd->section_last = first_sec->prev;
3811 /* Add back. */
3812 last_sec->next = sec->next;
3813 if (sec->next != NULL)
3814 sec->next->prev = last_sec;
3815 else
3816 link_info.output_bfd->section_last = last_sec;
3817 first_sec->prev = sec;
3818 sec->next = first_sec;
3819 }
3820 }
3821
3822 first_os = NULL;
3823 last_os = NULL;
3824 }
3825
3826 ptr = insert_os_after (where);
3827 /* Snip everything after the abs_section output statement we
3828 know is at the start of the list, up to and including
3829 the insert statement we are currently processing. */
3830 first = lang_output_section_statement.head->header.next;
3831 lang_output_section_statement.head->header.next = (*s)->header.next;
3832 /* Add them back where they belong. */
3833 *s = *ptr;
3834 if (*s == NULL)
3835 statement_list.tail = s;
3836 *ptr = first;
3837 s = &lang_output_section_statement.head;
3838 }
3839 }
3840
3841 /* Undo constraint twiddling. */
3842 for (os = first_os; os != NULL; os = os->next)
3843 {
3844 os->constraint = -2 - os->constraint;
3845 if (os == last_os)
3846 break;
3847 }
3848 }
3849
3850 /* An output section might have been removed after its statement was
3851 added. For example, ldemul_before_allocation can remove dynamic
3852 sections if they turn out to be not needed. Clean them up here. */
3853
3854 void
3855 strip_excluded_output_sections (void)
3856 {
3857 lang_output_section_statement_type *os;
3858
3859 /* Run lang_size_sections (if not already done). */
3860 if (expld.phase != lang_mark_phase_enum)
3861 {
3862 expld.phase = lang_mark_phase_enum;
3863 expld.dataseg.phase = exp_dataseg_none;
3864 one_lang_size_sections_pass (NULL, FALSE);
3865 lang_reset_memory_regions ();
3866 }
3867
3868 for (os = &lang_output_section_statement.head->output_section_statement;
3869 os != NULL;
3870 os = os->next)
3871 {
3872 asection *output_section;
3873 bfd_boolean exclude;
3874
3875 if (os->constraint < 0)
3876 continue;
3877
3878 output_section = os->bfd_section;
3879 if (output_section == NULL)
3880 continue;
3881
3882 exclude = (output_section->rawsize == 0
3883 && (output_section->flags & SEC_KEEP) == 0
3884 && !bfd_section_removed_from_list (link_info.output_bfd,
3885 output_section));
3886
3887 /* Some sections have not yet been sized, notably .gnu.version,
3888 .dynsym, .dynstr and .hash. These all have SEC_LINKER_CREATED
3889 input sections, so don't drop output sections that have such
3890 input sections unless they are also marked SEC_EXCLUDE. */
3891 if (exclude && output_section->map_head.s != NULL)
3892 {
3893 asection *s;
3894
3895 for (s = output_section->map_head.s; s != NULL; s = s->map_head.s)
3896 if ((s->flags & SEC_LINKER_CREATED) != 0
3897 && (s->flags & SEC_EXCLUDE) == 0)
3898 {
3899 exclude = FALSE;
3900 break;
3901 }
3902 }
3903
3904 /* TODO: Don't just junk map_head.s, turn them into link_orders. */
3905 output_section->map_head.link_order = NULL;
3906 output_section->map_tail.link_order = NULL;
3907
3908 if (exclude)
3909 {
3910 /* We don't set bfd_section to NULL since bfd_section of the
3911 removed output section statement may still be used. */
3912 if (!os->section_relative_symbol
3913 && !os->update_dot_tree)
3914 os->ignored = TRUE;
3915 output_section->flags |= SEC_EXCLUDE;
3916 bfd_section_list_remove (link_info.output_bfd, output_section);
3917 link_info.output_bfd->section_count--;
3918 }
3919 }
3920
3921 /* Stop future calls to lang_add_section from messing with map_head
3922 and map_tail link_order fields. */
3923 stripped_excluded_sections = TRUE;
3924 }
3925
3926 static void
3927 print_output_section_statement
3928 (lang_output_section_statement_type *output_section_statement)
3929 {
3930 asection *section = output_section_statement->bfd_section;
3931 int len;
3932
3933 if (output_section_statement != abs_output_section)
3934 {
3935 minfo ("\n%s", output_section_statement->name);
3936
3937 if (section != NULL)
3938 {
3939 print_dot = section->vma;
3940
3941 len = strlen (output_section_statement->name);
3942 if (len >= SECTION_NAME_MAP_LENGTH - 1)
3943 {
3944 print_nl ();
3945 len = 0;
3946 }
3947 while (len < SECTION_NAME_MAP_LENGTH)
3948 {
3949 print_space ();
3950 ++len;
3951 }
3952
3953 minfo ("0x%V %W", section->vma, section->size);
3954
3955 if (section->vma != section->lma)
3956 minfo (_(" load address 0x%V"), section->lma);
3957
3958 if (output_section_statement->update_dot_tree != NULL)
3959 exp_fold_tree (output_section_statement->update_dot_tree,
3960 bfd_abs_section_ptr, &print_dot);
3961 }
3962
3963 print_nl ();
3964 }
3965
3966 print_statement_list (output_section_statement->children.head,
3967 output_section_statement);
3968 }
3969
3970 /* Scan for the use of the destination in the right hand side
3971 of an expression. In such cases we will not compute the
3972 correct expression, since the value of DST that is used on
3973 the right hand side will be its final value, not its value
3974 just before this expression is evaluated. */
3975
3976 static bfd_boolean
3977 scan_for_self_assignment (const char * dst, etree_type * rhs)
3978 {
3979 if (rhs == NULL || dst == NULL)
3980 return FALSE;
3981
3982 switch (rhs->type.node_class)
3983 {
3984 case etree_binary:
3985 return scan_for_self_assignment (dst, rhs->binary.lhs)
3986 || scan_for_self_assignment (dst, rhs->binary.rhs);
3987
3988 case etree_trinary:
3989 return scan_for_self_assignment (dst, rhs->trinary.lhs)
3990 || scan_for_self_assignment (dst, rhs->trinary.rhs);
3991
3992 case etree_assign:
3993 case etree_provided:
3994 case etree_provide:
3995 if (strcmp (dst, rhs->assign.dst) == 0)
3996 return TRUE;
3997 return scan_for_self_assignment (dst, rhs->assign.src);
3998
3999 case etree_unary:
4000 return scan_for_self_assignment (dst, rhs->unary.child);
4001
4002 case etree_value:
4003 if (rhs->value.str)
4004 return strcmp (dst, rhs->value.str) == 0;
4005 return FALSE;
4006
4007 case etree_name:
4008 if (rhs->name.name)
4009 return strcmp (dst, rhs->name.name) == 0;
4010 return FALSE;
4011
4012 default:
4013 break;
4014 }
4015
4016 return FALSE;
4017 }
4018
4019
4020 static void
4021 print_assignment (lang_assignment_statement_type *assignment,
4022 lang_output_section_statement_type *output_section)
4023 {
4024 unsigned int i;
4025 bfd_boolean is_dot;
4026 bfd_boolean computation_is_valid = TRUE;
4027 etree_type *tree;
4028 asection *osec;
4029
4030 for (i = 0; i < SECTION_NAME_MAP_LENGTH; i++)
4031 print_space ();
4032
4033 if (assignment->exp->type.node_class == etree_assert)
4034 {
4035 is_dot = FALSE;
4036 tree = assignment->exp->assert_s.child;
4037 computation_is_valid = TRUE;
4038 }
4039 else
4040 {
4041 const char *dst = assignment->exp->assign.dst;
4042
4043 is_dot = (dst[0] == '.' && dst[1] == 0);
4044 tree = assignment->exp->assign.src;
4045 computation_is_valid = is_dot || (scan_for_self_assignment (dst, tree) == FALSE);
4046 }
4047
4048 osec = output_section->bfd_section;
4049 if (osec == NULL)
4050 osec = bfd_abs_section_ptr;
4051 exp_fold_tree (tree, osec, &print_dot);
4052 if (expld.result.valid_p)
4053 {
4054 bfd_vma value;
4055
4056 if (computation_is_valid)
4057 {
4058 value = expld.result.value;
4059
4060 if (expld.result.section != NULL)
4061 value += expld.result.section->vma;
4062
4063 minfo ("0x%V", value);
4064 if (is_dot)
4065 print_dot = value;
4066 }
4067 else
4068 {
4069 struct bfd_link_hash_entry *h;
4070
4071 h = bfd_link_hash_lookup (link_info.hash, assignment->exp->assign.dst,
4072 FALSE, FALSE, TRUE);
4073 if (h)
4074 {
4075 value = h->u.def.value;
4076
4077 if (expld.result.section != NULL)
4078 value += expld.result.section->vma;
4079
4080 minfo ("[0x%V]", value);
4081 }
4082 else
4083 minfo ("[unresolved]");
4084 }
4085 }
4086 else
4087 {
4088 minfo ("*undef* ");
4089 #ifdef BFD64
4090 minfo (" ");
4091 #endif
4092 }
4093
4094 minfo (" ");
4095 exp_print_tree (assignment->exp);
4096 print_nl ();
4097 }
4098
4099 static void
4100 print_input_statement (lang_input_statement_type *statm)
4101 {
4102 if (statm->filename != NULL
4103 && (statm->the_bfd == NULL
4104 || (statm->the_bfd->flags & BFD_LINKER_CREATED) == 0))
4105 fprintf (config.map_file, "LOAD %s\n", statm->filename);
4106 }
4107
4108 /* Print all symbols defined in a particular section. This is called
4109 via bfd_link_hash_traverse, or by print_all_symbols. */
4110
4111 static bfd_boolean
4112 print_one_symbol (struct bfd_link_hash_entry *hash_entry, void *ptr)
4113 {
4114 asection *sec = (asection *) ptr;
4115
4116 if ((hash_entry->type == bfd_link_hash_defined
4117 || hash_entry->type == bfd_link_hash_defweak)
4118 && sec == hash_entry->u.def.section)
4119 {
4120 int i;
4121
4122 for (i = 0; i < SECTION_NAME_MAP_LENGTH; i++)
4123 print_space ();
4124 minfo ("0x%V ",
4125 (hash_entry->u.def.value
4126 + hash_entry->u.def.section->output_offset
4127 + hash_entry->u.def.section->output_section->vma));
4128
4129 minfo (" %T\n", hash_entry->root.string);
4130 }
4131
4132 return TRUE;
4133 }
4134
4135 static int
4136 hash_entry_addr_cmp (const void *a, const void *b)
4137 {
4138 const struct bfd_link_hash_entry *l = *(const struct bfd_link_hash_entry **)a;
4139 const struct bfd_link_hash_entry *r = *(const struct bfd_link_hash_entry **)b;
4140
4141 if (l->u.def.value < r->u.def.value)
4142 return -1;
4143 else if (l->u.def.value > r->u.def.value)
4144 return 1;
4145 else
4146 return 0;
4147 }
4148
4149 static void
4150 print_all_symbols (asection *sec)
4151 {
4152 struct fat_user_section_struct *ud =
4153 (struct fat_user_section_struct *) get_userdata (sec);
4154 struct map_symbol_def *def;
4155 struct bfd_link_hash_entry **entries;
4156 unsigned int i;
4157
4158 if (!ud)
4159 return;
4160
4161 *ud->map_symbol_def_tail = 0;
4162
4163 /* Sort the symbols by address. */
4164 entries = (struct bfd_link_hash_entry **)
4165 obstack_alloc (&map_obstack, ud->map_symbol_def_count * sizeof (*entries));
4166
4167 for (i = 0, def = ud->map_symbol_def_head; def; def = def->next, i++)
4168 entries[i] = def->entry;
4169
4170 qsort (entries, ud->map_symbol_def_count, sizeof (*entries),
4171 hash_entry_addr_cmp);
4172
4173 /* Print the symbols. */
4174 for (i = 0; i < ud->map_symbol_def_count; i++)
4175 print_one_symbol (entries[i], sec);
4176
4177 obstack_free (&map_obstack, entries);
4178 }
4179
4180 /* Print information about an input section to the map file. */
4181
4182 static void
4183 print_input_section (asection *i, bfd_boolean is_discarded)
4184 {
4185 bfd_size_type size = i->size;
4186 int len;
4187 bfd_vma addr;
4188
4189 init_opb ();
4190
4191 print_space ();
4192 minfo ("%s", i->name);
4193
4194 len = 1 + strlen (i->name);
4195 if (len >= SECTION_NAME_MAP_LENGTH - 1)
4196 {
4197 print_nl ();
4198 len = 0;
4199 }
4200 while (len < SECTION_NAME_MAP_LENGTH)
4201 {
4202 print_space ();
4203 ++len;
4204 }
4205
4206 if (i->output_section != NULL
4207 && i->output_section->owner == link_info.output_bfd)
4208 addr = i->output_section->vma + i->output_offset;
4209 else
4210 {
4211 addr = print_dot;
4212 if (!is_discarded)
4213 size = 0;
4214 }
4215
4216 minfo ("0x%V %W %B\n", addr, TO_ADDR (size), i->owner);
4217
4218 if (size != i->rawsize && i->rawsize != 0)
4219 {
4220 len = SECTION_NAME_MAP_LENGTH + 3;
4221 #ifdef BFD64
4222 len += 16;
4223 #else
4224 len += 8;
4225 #endif
4226 while (len > 0)
4227 {
4228 print_space ();
4229 --len;
4230 }
4231
4232 minfo (_("%W (size before relaxing)\n"), i->rawsize);
4233 }
4234
4235 if (i->output_section != NULL
4236 && i->output_section->owner == link_info.output_bfd)
4237 {
4238 if (link_info.reduce_memory_overheads)
4239 bfd_link_hash_traverse (link_info.hash, print_one_symbol, i);
4240 else
4241 print_all_symbols (i);
4242
4243 /* Update print_dot, but make sure that we do not move it
4244 backwards - this could happen if we have overlays and a
4245 later overlay is shorter than an earier one. */
4246 if (addr + TO_ADDR (size) > print_dot)
4247 print_dot = addr + TO_ADDR (size);
4248 }
4249 }
4250
4251 static void
4252 print_fill_statement (lang_fill_statement_type *fill)
4253 {
4254 size_t size;
4255 unsigned char *p;
4256 fputs (" FILL mask 0x", config.map_file);
4257 for (p = fill->fill->data, size = fill->fill->size; size != 0; p++, size--)
4258 fprintf (config.map_file, "%02x", *p);
4259 fputs ("\n", config.map_file);
4260 }
4261
4262 static void
4263 print_data_statement (lang_data_statement_type *data)
4264 {
4265 int i;
4266 bfd_vma addr;
4267 bfd_size_type size;
4268 const char *name;
4269
4270 init_opb ();
4271 for (i = 0; i < SECTION_NAME_MAP_LENGTH; i++)
4272 print_space ();
4273
4274 addr = data->output_offset;
4275 if (data->output_section != NULL)
4276 addr += data->output_section->vma;
4277
4278 switch (data->type)
4279 {
4280 default:
4281 abort ();
4282 case BYTE:
4283 size = BYTE_SIZE;
4284 name = "BYTE";
4285 break;
4286 case SHORT:
4287 size = SHORT_SIZE;
4288 name = "SHORT";
4289 break;
4290 case LONG:
4291 size = LONG_SIZE;
4292 name = "LONG";
4293 break;
4294 case QUAD:
4295 size = QUAD_SIZE;
4296 name = "QUAD";
4297 break;
4298 case SQUAD:
4299 size = QUAD_SIZE;
4300 name = "SQUAD";
4301 break;
4302 }
4303
4304 minfo ("0x%V %W %s 0x%v", addr, size, name, data->value);
4305
4306 if (data->exp->type.node_class != etree_value)
4307 {
4308 print_space ();
4309 exp_print_tree (data->exp);
4310 }
4311
4312 print_nl ();
4313
4314 print_dot = addr + TO_ADDR (size);
4315 }
4316
4317 /* Print an address statement. These are generated by options like
4318 -Ttext. */
4319
4320 static void
4321 print_address_statement (lang_address_statement_type *address)
4322 {
4323 minfo (_("Address of section %s set to "), address->section_name);
4324 exp_print_tree (address->address);
4325 print_nl ();
4326 }
4327
4328 /* Print a reloc statement. */
4329
4330 static void
4331 print_reloc_statement (lang_reloc_statement_type *reloc)
4332 {
4333 int i;
4334 bfd_vma addr;
4335 bfd_size_type size;
4336
4337 init_opb ();
4338 for (i = 0; i < SECTION_NAME_MAP_LENGTH; i++)
4339 print_space ();
4340
4341 addr = reloc->output_offset;
4342 if (reloc->output_section != NULL)
4343 addr += reloc->output_section->vma;
4344
4345 size = bfd_get_reloc_size (reloc->howto);
4346
4347 minfo ("0x%V %W RELOC %s ", addr, size, reloc->howto->name);
4348
4349 if (reloc->name != NULL)
4350 minfo ("%s+", reloc->name);
4351 else
4352 minfo ("%s+", reloc->section->name);
4353
4354 exp_print_tree (reloc->addend_exp);
4355
4356 print_nl ();
4357
4358 print_dot = addr + TO_ADDR (size);
4359 }
4360
4361 static void
4362 print_padding_statement (lang_padding_statement_type *s)
4363 {
4364 int len;
4365 bfd_vma addr;
4366
4367 init_opb ();
4368 minfo (" *fill*");
4369
4370 len = sizeof " *fill*" - 1;
4371 while (len < SECTION_NAME_MAP_LENGTH)
4372 {
4373 print_space ();
4374 ++len;
4375 }
4376
4377 addr = s->output_offset;
4378 if (s->output_section != NULL)
4379 addr += s->output_section->vma;
4380 minfo ("0x%V %W ", addr, (bfd_vma) s->size);
4381
4382 if (s->fill->size != 0)
4383 {
4384 size_t size;
4385 unsigned char *p;
4386 for (p = s->fill->data, size = s->fill->size; size != 0; p++, size--)
4387 fprintf (config.map_file, "%02x", *p);
4388 }
4389
4390 print_nl ();
4391
4392 print_dot = addr + TO_ADDR (s->size);
4393 }
4394
4395 static void
4396 print_wild_statement (lang_wild_statement_type *w,
4397 lang_output_section_statement_type *os)
4398 {
4399 struct wildcard_list *sec;
4400
4401 print_space ();
4402
4403 if (w->filenames_sorted)
4404 minfo ("SORT(");
4405 if (w->filename != NULL)
4406 minfo ("%s", w->filename);
4407 else
4408 minfo ("*");
4409 if (w->filenames_sorted)
4410 minfo (")");
4411
4412 minfo ("(");
4413 for (sec = w->section_list; sec; sec = sec->next)
4414 {
4415 if (sec->spec.sorted)
4416 minfo ("SORT(");
4417 if (sec->spec.exclude_name_list != NULL)
4418 {
4419 name_list *tmp;
4420 minfo ("EXCLUDE_FILE(%s", sec->spec.exclude_name_list->name);
4421 for (tmp = sec->spec.exclude_name_list->next; tmp; tmp = tmp->next)
4422 minfo (" %s", tmp->name);
4423 minfo (") ");
4424 }
4425 if (sec->spec.name != NULL)
4426 minfo ("%s", sec->spec.name);
4427 else
4428 minfo ("*");
4429 if (sec->spec.sorted)
4430 minfo (")");
4431 if (sec->next)
4432 minfo (" ");
4433 }
4434 minfo (")");
4435
4436 print_nl ();
4437
4438 print_statement_list (w->children.head, os);
4439 }
4440
4441 /* Print a group statement. */
4442
4443 static void
4444 print_group (lang_group_statement_type *s,
4445 lang_output_section_statement_type *os)
4446 {
4447 fprintf (config.map_file, "START GROUP\n");
4448 print_statement_list (s->children.head, os);
4449 fprintf (config.map_file, "END GROUP\n");
4450 }
4451
4452 /* Print the list of statements in S.
4453 This can be called for any statement type. */
4454
4455 static void
4456 print_statement_list (lang_statement_union_type *s,
4457 lang_output_section_statement_type *os)
4458 {
4459 while (s != NULL)
4460 {
4461 print_statement (s, os);
4462 s = s->header.next;
4463 }
4464 }
4465
4466 /* Print the first statement in statement list S.
4467 This can be called for any statement type. */
4468
4469 static void
4470 print_statement (lang_statement_union_type *s,
4471 lang_output_section_statement_type *os)
4472 {
4473 switch (s->header.type)
4474 {
4475 default:
4476 fprintf (config.map_file, _("Fail with %d\n"), s->header.type);
4477 FAIL ();
4478 break;
4479 case lang_constructors_statement_enum:
4480 if (constructor_list.head != NULL)
4481 {
4482 if (constructors_sorted)
4483 minfo (" SORT (CONSTRUCTORS)\n");
4484 else
4485 minfo (" CONSTRUCTORS\n");
4486 print_statement_list (constructor_list.head, os);
4487 }
4488 break;
4489 case lang_wild_statement_enum:
4490 print_wild_statement (&s->wild_statement, os);
4491 break;
4492 case lang_address_statement_enum:
4493 print_address_statement (&s->address_statement);
4494 break;
4495 case lang_object_symbols_statement_enum:
4496 minfo (" CREATE_OBJECT_SYMBOLS\n");
4497 break;
4498 case lang_fill_statement_enum:
4499 print_fill_statement (&s->fill_statement);
4500 break;
4501 case lang_data_statement_enum:
4502 print_data_statement (&s->data_statement);
4503 break;
4504 case lang_reloc_statement_enum:
4505 print_reloc_statement (&s->reloc_statement);
4506 break;
4507 case lang_input_section_enum:
4508 print_input_section (s->input_section.section, FALSE);
4509 break;
4510 case lang_padding_statement_enum:
4511 print_padding_statement (&s->padding_statement);
4512 break;
4513 case lang_output_section_statement_enum:
4514 print_output_section_statement (&s->output_section_statement);
4515 break;
4516 case lang_assignment_statement_enum:
4517 print_assignment (&s->assignment_statement, os);
4518 break;
4519 case lang_target_statement_enum:
4520 fprintf (config.map_file, "TARGET(%s)\n", s->target_statement.target);
4521 break;
4522 case lang_output_statement_enum:
4523 minfo ("OUTPUT(%s", s->output_statement.name);
4524 if (output_target != NULL)
4525 minfo (" %s", output_target);
4526 minfo (")\n");
4527 break;
4528 case lang_input_statement_enum:
4529 print_input_statement (&s->input_statement);
4530 break;
4531 case lang_group_statement_enum:
4532 print_group (&s->group_statement, os);
4533 break;
4534 case lang_insert_statement_enum:
4535 minfo ("INSERT %s %s\n",
4536 s->insert_statement.is_before ? "BEFORE" : "AFTER",
4537 s->insert_statement.where);
4538 break;
4539 }
4540 }
4541
4542 static void
4543 print_statements (void)
4544 {
4545 print_statement_list (statement_list.head, abs_output_section);
4546 }
4547
4548 /* Print the first N statements in statement list S to STDERR.
4549 If N == 0, nothing is printed.
4550 If N < 0, the entire list is printed.
4551 Intended to be called from GDB. */
4552
4553 void
4554 dprint_statement (lang_statement_union_type *s, int n)
4555 {
4556 FILE *map_save = config.map_file;
4557
4558 config.map_file = stderr;
4559
4560 if (n < 0)
4561 print_statement_list (s, abs_output_section);
4562 else
4563 {
4564 while (s && --n >= 0)
4565 {
4566 print_statement (s, abs_output_section);
4567 s = s->header.next;
4568 }
4569 }
4570
4571 config.map_file = map_save;
4572 }
4573
4574 static void
4575 insert_pad (lang_statement_union_type **ptr,
4576 fill_type *fill,
4577 unsigned int alignment_needed,
4578 asection *output_section,
4579 bfd_vma dot)
4580 {
4581 static fill_type zero_fill = { 1, { 0 } };
4582 lang_statement_union_type *pad = NULL;
4583
4584 if (ptr != &statement_list.head)
4585 pad = ((lang_statement_union_type *)
4586 ((char *) ptr - offsetof (lang_statement_union_type, header.next)));
4587 if (pad != NULL
4588 && pad->header.type == lang_padding_statement_enum
4589 && pad->padding_statement.output_section == output_section)
4590 {
4591 /* Use the existing pad statement. */
4592 }
4593 else if ((pad = *ptr) != NULL
4594 && pad->header.type == lang_padding_statement_enum
4595 && pad->padding_statement.output_section == output_section)
4596 {
4597 /* Use the existing pad statement. */
4598 }
4599 else
4600 {
4601 /* Make a new padding statement, linked into existing chain. */
4602 pad = (lang_statement_union_type *)
4603 stat_alloc (sizeof (lang_padding_statement_type));
4604 pad->header.next = *ptr;
4605 *ptr = pad;
4606 pad->header.type = lang_padding_statement_enum;
4607 pad->padding_statement.output_section = output_section;
4608 if (fill == NULL)
4609 fill = &zero_fill;
4610 pad->padding_statement.fill = fill;
4611 }
4612 pad->padding_statement.output_offset = dot - output_section->vma;
4613 pad->padding_statement.size = alignment_needed;
4614 output_section->size += alignment_needed;
4615 }
4616
4617 /* Work out how much this section will move the dot point. */
4618
4619 static bfd_vma
4620 size_input_section
4621 (lang_statement_union_type **this_ptr,
4622 lang_output_section_statement_type *output_section_statement,
4623 fill_type *fill,
4624 bfd_vma dot)
4625 {
4626 lang_input_section_type *is = &((*this_ptr)->input_section);
4627 asection *i = is->section;
4628
4629 if (!((lang_input_statement_type *) i->owner->usrdata)->just_syms_flag
4630 && (i->flags & SEC_EXCLUDE) == 0)
4631 {
4632 unsigned int alignment_needed;
4633 asection *o;
4634
4635 /* Align this section first to the input sections requirement,
4636 then to the output section's requirement. If this alignment
4637 is greater than any seen before, then record it too. Perform
4638 the alignment by inserting a magic 'padding' statement. */
4639
4640 if (output_section_statement->subsection_alignment != -1)
4641 i->alignment_power = output_section_statement->subsection_alignment;
4642
4643 o = output_section_statement->bfd_section;
4644 if (o->alignment_power < i->alignment_power)
4645 o->alignment_power = i->alignment_power;
4646
4647 alignment_needed = align_power (dot, i->alignment_power) - dot;
4648
4649 if (alignment_needed != 0)
4650 {
4651 insert_pad (this_ptr, fill, TO_SIZE (alignment_needed), o, dot);
4652 dot += alignment_needed;
4653 }
4654
4655 /* Remember where in the output section this input section goes. */
4656
4657 i->output_offset = dot - o->vma;
4658
4659 /* Mark how big the output section must be to contain this now. */
4660 dot += TO_ADDR (i->size);
4661 o->size = TO_SIZE (dot - o->vma);
4662 }
4663 else
4664 {
4665 i->output_offset = i->vma - output_section_statement->bfd_section->vma;
4666 }
4667
4668 return dot;
4669 }
4670
4671 static int
4672 sort_sections_by_lma (const void *arg1, const void *arg2)
4673 {
4674 const asection *sec1 = *(const asection **) arg1;
4675 const asection *sec2 = *(const asection **) arg2;
4676
4677 if (bfd_section_lma (sec1->owner, sec1)
4678 < bfd_section_lma (sec2->owner, sec2))
4679 return -1;
4680 else if (bfd_section_lma (sec1->owner, sec1)
4681 > bfd_section_lma (sec2->owner, sec2))
4682 return 1;
4683 else if (sec1->id < sec2->id)
4684 return -1;
4685 else if (sec1->id > sec2->id)
4686 return 1;
4687
4688 return 0;
4689 }
4690
4691 #define IGNORE_SECTION(s) \
4692 ((s->flags & SEC_ALLOC) == 0 \
4693 || ((s->flags & SEC_THREAD_LOCAL) != 0 \
4694 && (s->flags & SEC_LOAD) == 0))
4695
4696 /* Check to see if any allocated sections overlap with other allocated
4697 sections. This can happen if a linker script specifies the output
4698 section addresses of the two sections. Also check whether any memory
4699 region has overflowed. */
4700
4701 static void
4702 lang_check_section_addresses (void)
4703 {
4704 asection *s, *p;
4705 asection **sections, **spp;
4706 unsigned int count;
4707 bfd_vma s_start;
4708 bfd_vma s_end;
4709 bfd_vma p_start;
4710 bfd_vma p_end;
4711 bfd_size_type amt;
4712 lang_memory_region_type *m;
4713
4714 if (bfd_count_sections (link_info.output_bfd) <= 1)
4715 return;
4716
4717 amt = bfd_count_sections (link_info.output_bfd) * sizeof (asection *);
4718 sections = (asection **) xmalloc (amt);
4719
4720 /* Scan all sections in the output list. */
4721 count = 0;
4722 for (s = link_info.output_bfd->sections; s != NULL; s = s->next)
4723 {
4724 /* Only consider loadable sections with real contents. */
4725 if (!(s->flags & SEC_LOAD)
4726 || !(s->flags & SEC_ALLOC)
4727 || s->size == 0)
4728 continue;
4729
4730 sections[count] = s;
4731 count++;
4732 }
4733
4734 if (count <= 1)
4735 return;
4736
4737 qsort (sections, (size_t) count, sizeof (asection *),
4738 sort_sections_by_lma);
4739
4740 spp = sections;
4741 s = *spp++;
4742 s_start = s->lma;
4743 s_end = s_start + TO_ADDR (s->size) - 1;
4744 for (count--; count; count--)
4745 {
4746 /* We must check the sections' LMA addresses not their VMA
4747 addresses because overlay sections can have overlapping VMAs
4748 but they must have distinct LMAs. */
4749 p = s;
4750 p_start = s_start;
4751 p_end = s_end;
4752 s = *spp++;
4753 s_start = s->lma;
4754 s_end = s_start + TO_ADDR (s->size) - 1;
4755
4756 /* Look for an overlap. We have sorted sections by lma, so we
4757 know that s_start >= p_start. Besides the obvious case of
4758 overlap when the current section starts before the previous
4759 one ends, we also must have overlap if the previous section
4760 wraps around the address space. */
4761 if (s_start <= p_end
4762 || p_end < p_start)
4763 einfo (_("%X%P: section %s loaded at [%V,%V] overlaps section %s loaded at [%V,%V]\n"),
4764 s->name, s_start, s_end, p->name, p_start, p_end);
4765 }
4766
4767 free (sections);
4768
4769 /* If any memory region has overflowed, report by how much.
4770 We do not issue this diagnostic for regions that had sections
4771 explicitly placed outside their bounds; os_region_check's
4772 diagnostics are adequate for that case.
4773
4774 FIXME: It is conceivable that m->current - (m->origin + m->length)
4775 might overflow a 32-bit integer. There is, alas, no way to print
4776 a bfd_vma quantity in decimal. */
4777 for (m = lang_memory_region_list; m; m = m->next)
4778 if (m->had_full_message)
4779 einfo (_("%X%P: region `%s' overflowed by %ld bytes\n"),
4780 m->name_list.name, (long)(m->current - (m->origin + m->length)));
4781
4782 }
4783
4784 /* Make sure the new address is within the region. We explicitly permit the
4785 current address to be at the exact end of the region when the address is
4786 non-zero, in case the region is at the end of addressable memory and the
4787 calculation wraps around. */
4788
4789 static void
4790 os_region_check (lang_output_section_statement_type *os,
4791 lang_memory_region_type *region,
4792 etree_type *tree,
4793 bfd_vma rbase)
4794 {
4795 if ((region->current < region->origin
4796 || (region->current - region->origin > region->length))
4797 && ((region->current != region->origin + region->length)
4798 || rbase == 0))
4799 {
4800 if (tree != NULL)
4801 {
4802 einfo (_("%X%P: address 0x%v of %B section `%s'"
4803 " is not within region `%s'\n"),
4804 region->current,
4805 os->bfd_section->owner,
4806 os->bfd_section->name,
4807 region->name_list.name);
4808 }
4809 else if (!region->had_full_message)
4810 {
4811 region->had_full_message = TRUE;
4812
4813 einfo (_("%X%P: %B section `%s' will not fit in region `%s'\n"),
4814 os->bfd_section->owner,
4815 os->bfd_section->name,
4816 region->name_list.name);
4817 }
4818 }
4819 }
4820
4821 /* Set the sizes for all the output sections. */
4822
4823 static bfd_vma
4824 lang_size_sections_1
4825 (lang_statement_union_type **prev,
4826 lang_output_section_statement_type *output_section_statement,
4827 fill_type *fill,
4828 bfd_vma dot,
4829 bfd_boolean *relax,
4830 bfd_boolean check_regions)
4831 {
4832 lang_statement_union_type *s;
4833
4834 /* Size up the sections from their constituent parts. */
4835 for (s = *prev; s != NULL; s = s->header.next)
4836 {
4837 switch (s->header.type)
4838 {
4839 case lang_output_section_statement_enum:
4840 {
4841 bfd_vma newdot, after;
4842 lang_output_section_statement_type *os;
4843 lang_memory_region_type *r;
4844 int section_alignment = 0;
4845
4846 os = &s->output_section_statement;
4847 if (os->constraint == -1)
4848 break;
4849
4850 /* FIXME: We shouldn't need to zero section vmas for ld -r
4851 here, in lang_insert_orphan, or in the default linker scripts.
4852 This is covering for coff backend linker bugs. See PR6945. */
4853 if (os->addr_tree == NULL
4854 && link_info.relocatable
4855 && (bfd_get_flavour (link_info.output_bfd)
4856 == bfd_target_coff_flavour))
4857 os->addr_tree = exp_intop (0);
4858 if (os->addr_tree != NULL)
4859 {
4860 os->processed_vma = FALSE;
4861 exp_fold_tree (os->addr_tree, bfd_abs_section_ptr, &dot);
4862
4863 if (expld.result.valid_p)
4864 {
4865 dot = expld.result.value;
4866 if (expld.result.section != NULL)
4867 dot += expld.result.section->vma;
4868 }
4869 else if (expld.phase != lang_mark_phase_enum)
4870 einfo (_("%F%S: non constant or forward reference"
4871 " address expression for section %s\n"),
4872 os->name);
4873 }
4874
4875 if (os->bfd_section == NULL)
4876 /* This section was removed or never actually created. */
4877 break;
4878
4879 /* If this is a COFF shared library section, use the size and
4880 address from the input section. FIXME: This is COFF
4881 specific; it would be cleaner if there were some other way
4882 to do this, but nothing simple comes to mind. */
4883 if (((bfd_get_flavour (link_info.output_bfd)
4884 == bfd_target_ecoff_flavour)
4885 || (bfd_get_flavour (link_info.output_bfd)
4886 == bfd_target_coff_flavour))
4887 && (os->bfd_section->flags & SEC_COFF_SHARED_LIBRARY) != 0)
4888 {
4889 asection *input;
4890
4891 if (os->children.head == NULL
4892 || os->children.head->header.next != NULL
4893 || (os->children.head->header.type
4894 != lang_input_section_enum))
4895 einfo (_("%P%X: Internal error on COFF shared library"
4896 " section %s\n"), os->name);
4897
4898 input = os->children.head->input_section.section;
4899 bfd_set_section_vma (os->bfd_section->owner,
4900 os->bfd_section,
4901 bfd_section_vma (input->owner, input));
4902 os->bfd_section->size = input->size;
4903 break;
4904 }
4905
4906 newdot = dot;
4907 if (bfd_is_abs_section (os->bfd_section))
4908 {
4909 /* No matter what happens, an abs section starts at zero. */
4910 ASSERT (os->bfd_section->vma == 0);
4911 }
4912 else
4913 {
4914 if (os->addr_tree == NULL)
4915 {
4916 /* No address specified for this section, get one
4917 from the region specification. */
4918 if (os->region == NULL
4919 || ((os->bfd_section->flags & (SEC_ALLOC | SEC_LOAD))
4920 && os->region->name_list.name[0] == '*'
4921 && strcmp (os->region->name_list.name,
4922 DEFAULT_MEMORY_REGION) == 0))
4923 {
4924 os->region = lang_memory_default (os->bfd_section);
4925 }
4926
4927 /* If a loadable section is using the default memory
4928 region, and some non default memory regions were
4929 defined, issue an error message. */
4930 if (!os->ignored
4931 && !IGNORE_SECTION (os->bfd_section)
4932 && ! link_info.relocatable
4933 && check_regions
4934 && strcmp (os->region->name_list.name,
4935 DEFAULT_MEMORY_REGION) == 0
4936 && lang_memory_region_list != NULL
4937 && (strcmp (lang_memory_region_list->name_list.name,
4938 DEFAULT_MEMORY_REGION) != 0
4939 || lang_memory_region_list->next != NULL)
4940 && expld.phase != lang_mark_phase_enum)
4941 {
4942 /* By default this is an error rather than just a
4943 warning because if we allocate the section to the
4944 default memory region we can end up creating an
4945 excessively large binary, or even seg faulting when
4946 attempting to perform a negative seek. See
4947 sources.redhat.com/ml/binutils/2003-04/msg00423.html
4948 for an example of this. This behaviour can be
4949 overridden by the using the --no-check-sections
4950 switch. */
4951 if (command_line.check_section_addresses)
4952 einfo (_("%P%F: error: no memory region specified"
4953 " for loadable section `%s'\n"),
4954 bfd_get_section_name (link_info.output_bfd,
4955 os->bfd_section));
4956 else
4957 einfo (_("%P: warning: no memory region specified"
4958 " for loadable section `%s'\n"),
4959 bfd_get_section_name (link_info.output_bfd,
4960 os->bfd_section));
4961 }
4962
4963 newdot = os->region->current;
4964 section_alignment = os->bfd_section->alignment_power;
4965 }
4966 else
4967 section_alignment = os->section_alignment;
4968
4969 /* Align to what the section needs. */
4970 if (section_alignment > 0)
4971 {
4972 bfd_vma savedot = newdot;
4973 newdot = align_power (newdot, section_alignment);
4974
4975 if (newdot != savedot
4976 && (config.warn_section_align
4977 || os->addr_tree != NULL)
4978 && expld.phase != lang_mark_phase_enum)
4979 einfo (_("%P: warning: changing start of section"
4980 " %s by %lu bytes\n"),
4981 os->name, (unsigned long) (newdot - savedot));
4982 }
4983
4984 bfd_set_section_vma (0, os->bfd_section, newdot);
4985
4986 os->bfd_section->output_offset = 0;
4987 }
4988
4989 lang_size_sections_1 (&os->children.head, os,
4990 os->fill, newdot, relax, check_regions);
4991
4992 os->processed_vma = TRUE;
4993
4994 if (bfd_is_abs_section (os->bfd_section) || os->ignored)
4995 /* Except for some special linker created sections,
4996 no output section should change from zero size
4997 after strip_excluded_output_sections. A non-zero
4998 size on an ignored section indicates that some
4999 input section was not sized early enough. */
5000 ASSERT (os->bfd_section->size == 0);
5001 else
5002 {
5003 dot = os->bfd_section->vma;
5004
5005 /* Put the section within the requested block size, or
5006 align at the block boundary. */
5007 after = ((dot
5008 + TO_ADDR (os->bfd_section->size)
5009 + os->block_value - 1)
5010 & - (bfd_vma) os->block_value);
5011
5012 os->bfd_section->size = TO_SIZE (after - os->bfd_section->vma);
5013 }
5014
5015 /* Set section lma. */
5016 r = os->region;
5017 if (r == NULL)
5018 r = lang_memory_region_lookup (DEFAULT_MEMORY_REGION, FALSE);
5019
5020 if (os->load_base)
5021 {
5022 bfd_vma lma = exp_get_abs_int (os->load_base, 0, "load base");
5023 os->bfd_section->lma = lma;
5024 }
5025 else if (os->lma_region != NULL)
5026 {
5027 bfd_vma lma = os->lma_region->current;
5028
5029 if (section_alignment > 0)
5030 lma = align_power (lma, section_alignment);
5031 os->bfd_section->lma = lma;
5032 }
5033 else if (r->last_os != NULL
5034 && (os->bfd_section->flags & SEC_ALLOC) != 0)
5035 {
5036 bfd_vma lma;
5037 asection *last;
5038
5039 last = r->last_os->output_section_statement.bfd_section;
5040
5041 /* A backwards move of dot should be accompanied by
5042 an explicit assignment to the section LMA (ie.
5043 os->load_base set) because backwards moves can
5044 create overlapping LMAs. */
5045 if (dot < last->vma
5046 && os->bfd_section->size != 0
5047 && dot + os->bfd_section->size <= last->vma)
5048 {
5049 /* If dot moved backwards then leave lma equal to
5050 vma. This is the old default lma, which might
5051 just happen to work when the backwards move is
5052 sufficiently large. Nag if this changes anything,
5053 so people can fix their linker scripts. */
5054
5055 if (last->vma != last->lma)
5056 einfo (_("%P: warning: dot moved backwards before `%s'\n"),
5057 os->name);
5058 }
5059 else
5060 {
5061 /* If this is an overlay, set the current lma to that
5062 at the end of the previous section. */
5063 if (os->sectype == overlay_section)
5064 lma = last->lma + last->size;
5065
5066 /* Otherwise, keep the same lma to vma relationship
5067 as the previous section. */
5068 else
5069 lma = dot + last->lma - last->vma;
5070
5071 if (section_alignment > 0)
5072 lma = align_power (lma, section_alignment);
5073 os->bfd_section->lma = lma;
5074 }
5075 }
5076 os->processed_lma = TRUE;
5077
5078 if (bfd_is_abs_section (os->bfd_section) || os->ignored)
5079 break;
5080
5081 /* Keep track of normal sections using the default
5082 lma region. We use this to set the lma for
5083 following sections. Overlays or other linker
5084 script assignment to lma might mean that the
5085 default lma == vma is incorrect.
5086 To avoid warnings about dot moving backwards when using
5087 -Ttext, don't start tracking sections until we find one
5088 of non-zero size or with lma set differently to vma. */
5089 if (((os->bfd_section->flags & SEC_HAS_CONTENTS) != 0
5090 || (os->bfd_section->flags & SEC_THREAD_LOCAL) == 0)
5091 && (os->bfd_section->flags & SEC_ALLOC) != 0
5092 && (os->bfd_section->size != 0
5093 || (r->last_os == NULL
5094 && os->bfd_section->vma != os->bfd_section->lma)
5095 || (r->last_os != NULL
5096 && dot >= (r->last_os->output_section_statement
5097 .bfd_section->vma)))
5098 && os->lma_region == NULL
5099 && !link_info.relocatable)
5100 r->last_os = s;
5101
5102 /* .tbss sections effectively have zero size. */
5103 if ((os->bfd_section->flags & SEC_HAS_CONTENTS) != 0
5104 || (os->bfd_section->flags & SEC_THREAD_LOCAL) == 0
5105 || link_info.relocatable)
5106 dot += TO_ADDR (os->bfd_section->size);
5107
5108 if (os->update_dot_tree != 0)
5109 exp_fold_tree (os->update_dot_tree, bfd_abs_section_ptr, &dot);
5110
5111 /* Update dot in the region ?
5112 We only do this if the section is going to be allocated,
5113 since unallocated sections do not contribute to the region's
5114 overall size in memory. */
5115 if (os->region != NULL
5116 && (os->bfd_section->flags & (SEC_ALLOC | SEC_LOAD)))
5117 {
5118 os->region->current = dot;
5119
5120 if (check_regions)
5121 /* Make sure the new address is within the region. */
5122 os_region_check (os, os->region, os->addr_tree,
5123 os->bfd_section->vma);
5124
5125 if (os->lma_region != NULL && os->lma_region != os->region
5126 && (os->bfd_section->flags & SEC_LOAD))
5127 {
5128 os->lma_region->current
5129 = os->bfd_section->lma + TO_ADDR (os->bfd_section->size);
5130
5131 if (check_regions)
5132 os_region_check (os, os->lma_region, NULL,
5133 os->bfd_section->lma);
5134 }
5135 }
5136 }
5137 break;
5138
5139 case lang_constructors_statement_enum:
5140 dot = lang_size_sections_1 (&constructor_list.head,
5141 output_section_statement,
5142 fill, dot, relax, check_regions);
5143 break;
5144
5145 case lang_data_statement_enum:
5146 {
5147 unsigned int size = 0;
5148
5149 s->data_statement.output_offset =
5150 dot - output_section_statement->bfd_section->vma;
5151 s->data_statement.output_section =
5152 output_section_statement->bfd_section;
5153
5154 /* We might refer to provided symbols in the expression, and
5155 need to mark them as needed. */
5156 exp_fold_tree (s->data_statement.exp, bfd_abs_section_ptr, &dot);
5157
5158 switch (s->data_statement.type)
5159 {
5160 default:
5161 abort ();
5162 case QUAD:
5163 case SQUAD:
5164 size = QUAD_SIZE;
5165 break;
5166 case LONG:
5167 size = LONG_SIZE;
5168 break;
5169 case SHORT:
5170 size = SHORT_SIZE;
5171 break;
5172 case BYTE:
5173 size = BYTE_SIZE;
5174 break;
5175 }
5176 if (size < TO_SIZE ((unsigned) 1))
5177 size = TO_SIZE ((unsigned) 1);
5178 dot += TO_ADDR (size);
5179 output_section_statement->bfd_section->size += size;
5180 }
5181 break;
5182
5183 case lang_reloc_statement_enum:
5184 {
5185 int size;
5186
5187 s->reloc_statement.output_offset =
5188 dot - output_section_statement->bfd_section->vma;
5189 s->reloc_statement.output_section =
5190 output_section_statement->bfd_section;
5191 size = bfd_get_reloc_size (s->reloc_statement.howto);
5192 dot += TO_ADDR (size);
5193 output_section_statement->bfd_section->size += size;
5194 }
5195 break;
5196
5197 case lang_wild_statement_enum:
5198 dot = lang_size_sections_1 (&s->wild_statement.children.head,
5199 output_section_statement,
5200 fill, dot, relax, check_regions);
5201 break;
5202
5203 case lang_object_symbols_statement_enum:
5204 link_info.create_object_symbols_section =
5205 output_section_statement->bfd_section;
5206 break;
5207
5208 case lang_output_statement_enum:
5209 case lang_target_statement_enum:
5210 break;
5211
5212 case lang_input_section_enum:
5213 {
5214 asection *i;
5215
5216 i = s->input_section.section;
5217 if (relax)
5218 {
5219 bfd_boolean again;
5220
5221 if (! bfd_relax_section (i->owner, i, &link_info, &again))
5222 einfo (_("%P%F: can't relax section: %E\n"));
5223 if (again)
5224 *relax = TRUE;
5225 }
5226 dot = size_input_section (prev, output_section_statement,
5227 output_section_statement->fill, dot);
5228 }
5229 break;
5230
5231 case lang_input_statement_enum:
5232 break;
5233
5234 case lang_fill_statement_enum:
5235 s->fill_statement.output_section =
5236 output_section_statement->bfd_section;
5237
5238 fill = s->fill_statement.fill;
5239 break;
5240
5241 case lang_assignment_statement_enum:
5242 {
5243 bfd_vma newdot = dot;
5244 etree_type *tree = s->assignment_statement.exp;
5245
5246 expld.dataseg.relro = exp_dataseg_relro_none;
5247
5248 exp_fold_tree (tree,
5249 output_section_statement->bfd_section,
5250 &newdot);
5251
5252 if (expld.dataseg.relro == exp_dataseg_relro_start)
5253 {
5254 if (!expld.dataseg.relro_start_stat)
5255 expld.dataseg.relro_start_stat = s;
5256 else
5257 {
5258 ASSERT (expld.dataseg.relro_start_stat == s);
5259 }
5260 }
5261 else if (expld.dataseg.relro == exp_dataseg_relro_end)
5262 {
5263 if (!expld.dataseg.relro_end_stat)
5264 expld.dataseg.relro_end_stat = s;
5265 else
5266 {
5267 ASSERT (expld.dataseg.relro_end_stat == s);
5268 }
5269 }
5270 expld.dataseg.relro = exp_dataseg_relro_none;
5271
5272 /* This symbol is relative to this section. */
5273 if ((tree->type.node_class == etree_provided
5274 || tree->type.node_class == etree_assign)
5275 && (tree->assign.dst [0] != '.'
5276 || tree->assign.dst [1] != '\0'))
5277 output_section_statement->section_relative_symbol = 1;
5278
5279 if (!output_section_statement->ignored)
5280 {
5281 if (output_section_statement == abs_output_section)
5282 {
5283 /* If we don't have an output section, then just adjust
5284 the default memory address. */
5285 lang_memory_region_lookup (DEFAULT_MEMORY_REGION,
5286 FALSE)->current = newdot;
5287 }
5288 else if (newdot != dot)
5289 {
5290 /* Insert a pad after this statement. We can't
5291 put the pad before when relaxing, in case the
5292 assignment references dot. */
5293 insert_pad (&s->header.next, fill, TO_SIZE (newdot - dot),
5294 output_section_statement->bfd_section, dot);
5295
5296 /* Don't neuter the pad below when relaxing. */
5297 s = s->header.next;
5298
5299 /* If dot is advanced, this implies that the section
5300 should have space allocated to it, unless the
5301 user has explicitly stated that the section
5302 should not be allocated. */
5303 if (output_section_statement->sectype != noalloc_section
5304 && (output_section_statement->sectype != noload_section
5305 || (bfd_get_flavour (link_info.output_bfd)
5306 == bfd_target_elf_flavour)))
5307 output_section_statement->bfd_section->flags |= SEC_ALLOC;
5308 }
5309 dot = newdot;
5310 }
5311 }
5312 break;
5313
5314 case lang_padding_statement_enum:
5315 /* If this is the first time lang_size_sections is called,
5316 we won't have any padding statements. If this is the
5317 second or later passes when relaxing, we should allow
5318 padding to shrink. If padding is needed on this pass, it
5319 will be added back in. */
5320 s->padding_statement.size = 0;
5321
5322 /* Make sure output_offset is valid. If relaxation shrinks
5323 the section and this pad isn't needed, it's possible to
5324 have output_offset larger than the final size of the
5325 section. bfd_set_section_contents will complain even for
5326 a pad size of zero. */
5327 s->padding_statement.output_offset
5328 = dot - output_section_statement->bfd_section->vma;
5329 break;
5330
5331 case lang_group_statement_enum:
5332 dot = lang_size_sections_1 (&s->group_statement.children.head,
5333 output_section_statement,
5334 fill, dot, relax, check_regions);
5335 break;
5336
5337 case lang_insert_statement_enum:
5338 break;
5339
5340 /* We can only get here when relaxing is turned on. */
5341 case lang_address_statement_enum:
5342 break;
5343
5344 default:
5345 FAIL ();
5346 break;
5347 }
5348 prev = &s->header.next;
5349 }
5350 return dot;
5351 }
5352
5353 /* Callback routine that is used in _bfd_elf_map_sections_to_segments.
5354 The BFD library has set NEW_SEGMENT to TRUE iff it thinks that
5355 CURRENT_SECTION and PREVIOUS_SECTION ought to be placed into different
5356 segments. We are allowed an opportunity to override this decision. */
5357
5358 bfd_boolean
5359 ldlang_override_segment_assignment (struct bfd_link_info * info ATTRIBUTE_UNUSED,
5360 bfd * abfd ATTRIBUTE_UNUSED,
5361 asection * current_section,
5362 asection * previous_section,
5363 bfd_boolean new_segment)
5364 {
5365 lang_output_section_statement_type * cur;
5366 lang_output_section_statement_type * prev;
5367
5368 /* The checks below are only necessary when the BFD library has decided
5369 that the two sections ought to be placed into the same segment. */
5370 if (new_segment)
5371 return TRUE;
5372
5373 /* Paranoia checks. */
5374 if (current_section == NULL || previous_section == NULL)
5375 return new_segment;
5376
5377 /* Find the memory regions associated with the two sections.
5378 We call lang_output_section_find() here rather than scanning the list
5379 of output sections looking for a matching section pointer because if
5380 we have a large number of sections then a hash lookup is faster. */
5381 cur = lang_output_section_find (current_section->name);
5382 prev = lang_output_section_find (previous_section->name);
5383
5384 /* More paranoia. */
5385 if (cur == NULL || prev == NULL)
5386 return new_segment;
5387
5388 /* If the regions are different then force the sections to live in
5389 different segments. See the email thread starting at the following
5390 URL for the reasons why this is necessary:
5391 http://sourceware.org/ml/binutils/2007-02/msg00216.html */
5392 return cur->region != prev->region;
5393 }
5394
5395 void
5396 one_lang_size_sections_pass (bfd_boolean *relax, bfd_boolean check_regions)
5397 {
5398 lang_statement_iteration++;
5399 lang_size_sections_1 (&statement_list.head, abs_output_section,
5400 0, 0, relax, check_regions);
5401 }
5402
5403 void
5404 lang_size_sections (bfd_boolean *relax, bfd_boolean check_regions)
5405 {
5406 expld.phase = lang_allocating_phase_enum;
5407 expld.dataseg.phase = exp_dataseg_none;
5408
5409 one_lang_size_sections_pass (relax, check_regions);
5410 if (expld.dataseg.phase == exp_dataseg_end_seen
5411 && link_info.relro && expld.dataseg.relro_end)
5412 {
5413 /* If DATA_SEGMENT_ALIGN DATA_SEGMENT_RELRO_END pair was seen, try
5414 to put expld.dataseg.relro on a (common) page boundary. */
5415 bfd_vma min_base, old_base, relro_end, maxpage;
5416
5417 expld.dataseg.phase = exp_dataseg_relro_adjust;
5418 maxpage = expld.dataseg.maxpagesize;
5419 /* MIN_BASE is the absolute minimum address we are allowed to start the
5420 read-write segment (byte before will be mapped read-only). */
5421 min_base = (expld.dataseg.min_base + maxpage - 1) & ~(maxpage - 1);
5422 /* OLD_BASE is the address for a feasible minimum address which will
5423 still not cause a data overlap inside MAXPAGE causing file offset skip
5424 by MAXPAGE. */
5425 old_base = expld.dataseg.base;
5426 expld.dataseg.base += (-expld.dataseg.relro_end
5427 & (expld.dataseg.pagesize - 1));
5428 /* Compute the expected PT_GNU_RELRO segment end. */
5429 relro_end = ((expld.dataseg.relro_end + expld.dataseg.pagesize - 1)
5430 & ~(expld.dataseg.pagesize - 1));
5431 if (min_base + maxpage < expld.dataseg.base)
5432 {
5433 expld.dataseg.base -= maxpage;
5434 relro_end -= maxpage;
5435 }
5436 lang_reset_memory_regions ();
5437 one_lang_size_sections_pass (relax, check_regions);
5438 if (expld.dataseg.relro_end > relro_end)
5439 {
5440 /* The alignment of sections between DATA_SEGMENT_ALIGN
5441 and DATA_SEGMENT_RELRO_END caused huge padding to be
5442 inserted at DATA_SEGMENT_RELRO_END. Try to start a bit lower so
5443 that the section alignments will fit in. */
5444 asection *sec;
5445 unsigned int max_alignment_power = 0;
5446
5447 /* Find maximum alignment power of sections between
5448 DATA_SEGMENT_ALIGN and DATA_SEGMENT_RELRO_END. */
5449 for (sec = link_info.output_bfd->sections; sec; sec = sec->next)
5450 if (sec->vma >= expld.dataseg.base
5451 && sec->vma < expld.dataseg.relro_end
5452 && sec->alignment_power > max_alignment_power)
5453 max_alignment_power = sec->alignment_power;
5454
5455 if (((bfd_vma) 1 << max_alignment_power) < expld.dataseg.pagesize)
5456 {
5457 if (expld.dataseg.base - (1 << max_alignment_power) < old_base)
5458 expld.dataseg.base += expld.dataseg.pagesize;
5459 expld.dataseg.base -= (1 << max_alignment_power);
5460 lang_reset_memory_regions ();
5461 one_lang_size_sections_pass (relax, check_regions);
5462 }
5463 }
5464 link_info.relro_start = expld.dataseg.base;
5465 link_info.relro_end = expld.dataseg.relro_end;
5466 }
5467 else if (expld.dataseg.phase == exp_dataseg_end_seen)
5468 {
5469 /* If DATA_SEGMENT_ALIGN DATA_SEGMENT_END pair was seen, check whether
5470 a page could be saved in the data segment. */
5471 bfd_vma first, last;
5472
5473 first = -expld.dataseg.base & (expld.dataseg.pagesize - 1);
5474 last = expld.dataseg.end & (expld.dataseg.pagesize - 1);
5475 if (first && last
5476 && ((expld.dataseg.base & ~(expld.dataseg.pagesize - 1))
5477 != (expld.dataseg.end & ~(expld.dataseg.pagesize - 1)))
5478 && first + last <= expld.dataseg.pagesize)
5479 {
5480 expld.dataseg.phase = exp_dataseg_adjust;
5481 lang_reset_memory_regions ();
5482 one_lang_size_sections_pass (relax, check_regions);
5483 }
5484 }
5485
5486 expld.phase = lang_final_phase_enum;
5487 }
5488
5489 /* Worker function for lang_do_assignments. Recursiveness goes here. */
5490
5491 static bfd_vma
5492 lang_do_assignments_1 (lang_statement_union_type *s,
5493 lang_output_section_statement_type *current_os,
5494 fill_type *fill,
5495 bfd_vma dot)
5496 {
5497 for (; s != NULL; s = s->header.next)
5498 {
5499 switch (s->header.type)
5500 {
5501 case lang_constructors_statement_enum:
5502 dot = lang_do_assignments_1 (constructor_list.head,
5503 current_os, fill, dot);
5504 break;
5505
5506 case lang_output_section_statement_enum:
5507 {
5508 lang_output_section_statement_type *os;
5509
5510 os = &(s->output_section_statement);
5511 if (os->bfd_section != NULL && !os->ignored)
5512 {
5513 dot = os->bfd_section->vma;
5514
5515 lang_do_assignments_1 (os->children.head, os, os->fill, dot);
5516
5517 /* .tbss sections effectively have zero size. */
5518 if ((os->bfd_section->flags & SEC_HAS_CONTENTS) != 0
5519 || (os->bfd_section->flags & SEC_THREAD_LOCAL) == 0
5520 || link_info.relocatable)
5521 dot += TO_ADDR (os->bfd_section->size);
5522
5523 if (os->update_dot_tree != NULL)
5524 exp_fold_tree (os->update_dot_tree, bfd_abs_section_ptr, &dot);
5525 }
5526 }
5527 break;
5528
5529 case lang_wild_statement_enum:
5530
5531 dot = lang_do_assignments_1 (s->wild_statement.children.head,
5532 current_os, fill, dot);
5533 break;
5534
5535 case lang_object_symbols_statement_enum:
5536 case lang_output_statement_enum:
5537 case lang_target_statement_enum:
5538 break;
5539
5540 case lang_data_statement_enum:
5541 exp_fold_tree (s->data_statement.exp, bfd_abs_section_ptr, &dot);
5542 if (expld.result.valid_p)
5543 {
5544 s->data_statement.value = expld.result.value;
5545 if (expld.result.section != NULL)
5546 s->data_statement.value += expld.result.section->vma;
5547 }
5548 else
5549 einfo (_("%F%P: invalid data statement\n"));
5550 {
5551 unsigned int size;
5552 switch (s->data_statement.type)
5553 {
5554 default:
5555 abort ();
5556 case QUAD:
5557 case SQUAD:
5558 size = QUAD_SIZE;
5559 break;
5560 case LONG:
5561 size = LONG_SIZE;
5562 break;
5563 case SHORT:
5564 size = SHORT_SIZE;
5565 break;
5566 case BYTE:
5567 size = BYTE_SIZE;
5568 break;
5569 }
5570 if (size < TO_SIZE ((unsigned) 1))
5571 size = TO_SIZE ((unsigned) 1);
5572 dot += TO_ADDR (size);
5573 }
5574 break;
5575
5576 case lang_reloc_statement_enum:
5577 exp_fold_tree (s->reloc_statement.addend_exp,
5578 bfd_abs_section_ptr, &dot);
5579 if (expld.result.valid_p)
5580 s->reloc_statement.addend_value = expld.result.value;
5581 else
5582 einfo (_("%F%P: invalid reloc statement\n"));
5583 dot += TO_ADDR (bfd_get_reloc_size (s->reloc_statement.howto));
5584 break;
5585
5586 case lang_input_section_enum:
5587 {
5588 asection *in = s->input_section.section;
5589
5590 if ((in->flags & SEC_EXCLUDE) == 0)
5591 dot += TO_ADDR (in->size);
5592 }
5593 break;
5594
5595 case lang_input_statement_enum:
5596 break;
5597
5598 case lang_fill_statement_enum:
5599 fill = s->fill_statement.fill;
5600 break;
5601
5602 case lang_assignment_statement_enum:
5603 exp_fold_tree (s->assignment_statement.exp,
5604 current_os->bfd_section,
5605 &dot);
5606 break;
5607
5608 case lang_padding_statement_enum:
5609 dot += TO_ADDR (s->padding_statement.size);
5610 break;
5611
5612 case lang_group_statement_enum:
5613 dot = lang_do_assignments_1 (s->group_statement.children.head,
5614 current_os, fill, dot);
5615 break;
5616
5617 case lang_insert_statement_enum:
5618 break;
5619
5620 case lang_address_statement_enum:
5621 break;
5622
5623 default:
5624 FAIL ();
5625 break;
5626 }
5627 }
5628 return dot;
5629 }
5630
5631 void
5632 lang_do_assignments (void)
5633 {
5634 lang_statement_iteration++;
5635 lang_do_assignments_1 (statement_list.head, abs_output_section, NULL, 0);
5636 }
5637
5638 /* Fix any .startof. or .sizeof. symbols. When the assemblers see the
5639 operator .startof. (section_name), it produces an undefined symbol
5640 .startof.section_name. Similarly, when it sees
5641 .sizeof. (section_name), it produces an undefined symbol
5642 .sizeof.section_name. For all the output sections, we look for
5643 such symbols, and set them to the correct value. */
5644
5645 static void
5646 lang_set_startof (void)
5647 {
5648 asection *s;
5649
5650 if (link_info.relocatable)
5651 return;
5652
5653 for (s = link_info.output_bfd->sections; s != NULL; s = s->next)
5654 {
5655 const char *secname;
5656 char *buf;
5657 struct bfd_link_hash_entry *h;
5658
5659 secname = bfd_get_section_name (link_info.output_bfd, s);
5660 buf = (char *) xmalloc (10 + strlen (secname));
5661
5662 sprintf (buf, ".startof.%s", secname);
5663 h = bfd_link_hash_lookup (link_info.hash, buf, FALSE, FALSE, TRUE);
5664 if (h != NULL && h->type == bfd_link_hash_undefined)
5665 {
5666 h->type = bfd_link_hash_defined;
5667 h->u.def.value = bfd_get_section_vma (link_info.output_bfd, s);
5668 h->u.def.section = bfd_abs_section_ptr;
5669 }
5670
5671 sprintf (buf, ".sizeof.%s", secname);
5672 h = bfd_link_hash_lookup (link_info.hash, buf, FALSE, FALSE, TRUE);
5673 if (h != NULL && h->type == bfd_link_hash_undefined)
5674 {
5675 h->type = bfd_link_hash_defined;
5676 h->u.def.value = TO_ADDR (s->size);
5677 h->u.def.section = bfd_abs_section_ptr;
5678 }
5679
5680 free (buf);
5681 }
5682 }
5683
5684 static void
5685 lang_end (void)
5686 {
5687 struct bfd_link_hash_entry *h;
5688 bfd_boolean warn;
5689
5690 if ((link_info.relocatable && !link_info.gc_sections)
5691 || (link_info.shared && !link_info.executable))
5692 warn = entry_from_cmdline;
5693 else
5694 warn = TRUE;
5695
5696 /* Force the user to specify a root when generating a relocatable with
5697 --gc-sections. */
5698 if (link_info.gc_sections && link_info.relocatable
5699 && !(entry_from_cmdline || undef_from_cmdline))
5700 einfo (_("%P%F: gc-sections requires either an entry or "
5701 "an undefined symbol\n"));
5702
5703 if (entry_symbol.name == NULL)
5704 {
5705 /* No entry has been specified. Look for the default entry, but
5706 don't warn if we don't find it. */
5707 entry_symbol.name = entry_symbol_default;
5708 warn = FALSE;
5709 }
5710
5711 h = bfd_link_hash_lookup (link_info.hash, entry_symbol.name,
5712 FALSE, FALSE, TRUE);
5713 if (h != NULL
5714 && (h->type == bfd_link_hash_defined
5715 || h->type == bfd_link_hash_defweak)
5716 && h->u.def.section->output_section != NULL)
5717 {
5718 bfd_vma val;
5719
5720 val = (h->u.def.value
5721 + bfd_get_section_vma (link_info.output_bfd,
5722 h->u.def.section->output_section)
5723 + h->u.def.section->output_offset);
5724 if (! bfd_set_start_address (link_info.output_bfd, val))
5725 einfo (_("%P%F:%s: can't set start address\n"), entry_symbol.name);
5726 }
5727 else
5728 {
5729 bfd_vma val;
5730 const char *send;
5731
5732 /* We couldn't find the entry symbol. Try parsing it as a
5733 number. */
5734 val = bfd_scan_vma (entry_symbol.name, &send, 0);
5735 if (*send == '\0')
5736 {
5737 if (! bfd_set_start_address (link_info.output_bfd, val))
5738 einfo (_("%P%F: can't set start address\n"));
5739 }
5740 else
5741 {
5742 asection *ts;
5743
5744 /* Can't find the entry symbol, and it's not a number. Use
5745 the first address in the text section. */
5746 ts = bfd_get_section_by_name (link_info.output_bfd, entry_section);
5747 if (ts != NULL)
5748 {
5749 if (warn)
5750 einfo (_("%P: warning: cannot find entry symbol %s;"
5751 " defaulting to %V\n"),
5752 entry_symbol.name,
5753 bfd_get_section_vma (link_info.output_bfd, ts));
5754 if (!(bfd_set_start_address
5755 (link_info.output_bfd,
5756 bfd_get_section_vma (link_info.output_bfd, ts))))
5757 einfo (_("%P%F: can't set start address\n"));
5758 }
5759 else
5760 {
5761 if (warn)
5762 einfo (_("%P: warning: cannot find entry symbol %s;"
5763 " not setting start address\n"),
5764 entry_symbol.name);
5765 }
5766 }
5767 }
5768
5769 /* Don't bfd_hash_table_free (&lang_definedness_table);
5770 map file output may result in a call of lang_track_definedness. */
5771 }
5772
5773 /* This is a small function used when we want to ignore errors from
5774 BFD. */
5775
5776 static void
5777 ignore_bfd_errors (const char *s ATTRIBUTE_UNUSED, ...)
5778 {
5779 /* Don't do anything. */
5780 }
5781
5782 /* Check that the architecture of all the input files is compatible
5783 with the output file. Also call the backend to let it do any
5784 other checking that is needed. */
5785
5786 static void
5787 lang_check (void)
5788 {
5789 lang_statement_union_type *file;
5790 bfd *input_bfd;
5791 const bfd_arch_info_type *compatible;
5792
5793 for (file = file_chain.head; file != NULL; file = file->input_statement.next)
5794 {
5795 input_bfd = file->input_statement.the_bfd;
5796 compatible
5797 = bfd_arch_get_compatible (input_bfd, link_info.output_bfd,
5798 command_line.accept_unknown_input_arch);
5799
5800 /* In general it is not possible to perform a relocatable
5801 link between differing object formats when the input
5802 file has relocations, because the relocations in the
5803 input format may not have equivalent representations in
5804 the output format (and besides BFD does not translate
5805 relocs for other link purposes than a final link). */
5806 if ((link_info.relocatable || link_info.emitrelocations)
5807 && (compatible == NULL
5808 || (bfd_get_flavour (input_bfd)
5809 != bfd_get_flavour (link_info.output_bfd)))
5810 && (bfd_get_file_flags (input_bfd) & HAS_RELOC) != 0)
5811 {
5812 einfo (_("%P%F: Relocatable linking with relocations from"
5813 " format %s (%B) to format %s (%B) is not supported\n"),
5814 bfd_get_target (input_bfd), input_bfd,
5815 bfd_get_target (link_info.output_bfd), link_info.output_bfd);
5816 /* einfo with %F exits. */
5817 }
5818
5819 if (compatible == NULL)
5820 {
5821 if (command_line.warn_mismatch)
5822 einfo (_("%P%X: %s architecture of input file `%B'"
5823 " is incompatible with %s output\n"),
5824 bfd_printable_name (input_bfd), input_bfd,
5825 bfd_printable_name (link_info.output_bfd));
5826 }
5827 else if (bfd_count_sections (input_bfd))
5828 {
5829 /* If the input bfd has no contents, it shouldn't set the
5830 private data of the output bfd. */
5831
5832 bfd_error_handler_type pfn = NULL;
5833
5834 /* If we aren't supposed to warn about mismatched input
5835 files, temporarily set the BFD error handler to a
5836 function which will do nothing. We still want to call
5837 bfd_merge_private_bfd_data, since it may set up
5838 information which is needed in the output file. */
5839 if (! command_line.warn_mismatch)
5840 pfn = bfd_set_error_handler (ignore_bfd_errors);
5841 if (! bfd_merge_private_bfd_data (input_bfd, link_info.output_bfd))
5842 {
5843 if (command_line.warn_mismatch)
5844 einfo (_("%P%X: failed to merge target specific data"
5845 " of file %B\n"), input_bfd);
5846 }
5847 if (! command_line.warn_mismatch)
5848 bfd_set_error_handler (pfn);
5849 }
5850 }
5851 }
5852
5853 /* Look through all the global common symbols and attach them to the
5854 correct section. The -sort-common command line switch may be used
5855 to roughly sort the entries by alignment. */
5856
5857 static void
5858 lang_common (void)
5859 {
5860 if (command_line.inhibit_common_definition)
5861 return;
5862 if (link_info.relocatable
5863 && ! command_line.force_common_definition)
5864 return;
5865
5866 if (! config.sort_common)
5867 bfd_link_hash_traverse (link_info.hash, lang_one_common, NULL);
5868 else
5869 {
5870 unsigned int power;
5871
5872 if (config.sort_common == sort_descending)
5873 {
5874 for (power = 4; power > 0; power--)
5875 bfd_link_hash_traverse (link_info.hash, lang_one_common, &power);
5876
5877 power = 0;
5878 bfd_link_hash_traverse (link_info.hash, lang_one_common, &power);
5879 }
5880 else
5881 {
5882 for (power = 0; power <= 4; power++)
5883 bfd_link_hash_traverse (link_info.hash, lang_one_common, &power);
5884
5885 power = UINT_MAX;
5886 bfd_link_hash_traverse (link_info.hash, lang_one_common, &power);
5887 }
5888 }
5889 }
5890
5891 /* Place one common symbol in the correct section. */
5892
5893 static bfd_boolean
5894 lang_one_common (struct bfd_link_hash_entry *h, void *info)
5895 {
5896 unsigned int power_of_two;
5897 bfd_vma size;
5898 asection *section;
5899
5900 if (h->type != bfd_link_hash_common)
5901 return TRUE;
5902
5903 size = h->u.c.size;
5904 power_of_two = h->u.c.p->alignment_power;
5905
5906 if (config.sort_common == sort_descending
5907 && power_of_two < *(unsigned int *) info)
5908 return TRUE;
5909 else if (config.sort_common == sort_ascending
5910 && power_of_two > *(unsigned int *) info)
5911 return TRUE;
5912
5913 section = h->u.c.p->section;
5914 if (!bfd_define_common_symbol (link_info.output_bfd, &link_info, h))
5915 einfo (_("%P%F: Could not define common symbol `%T': %E\n"),
5916 h->root.string);
5917
5918 if (config.map_file != NULL)
5919 {
5920 static bfd_boolean header_printed;
5921 int len;
5922 char *name;
5923 char buf[50];
5924
5925 if (! header_printed)
5926 {
5927 minfo (_("\nAllocating common symbols\n"));
5928 minfo (_("Common symbol size file\n\n"));
5929 header_printed = TRUE;
5930 }
5931
5932 name = bfd_demangle (link_info.output_bfd, h->root.string,
5933 DMGL_ANSI | DMGL_PARAMS);
5934 if (name == NULL)
5935 {
5936 minfo ("%s", h->root.string);
5937 len = strlen (h->root.string);
5938 }
5939 else
5940 {
5941 minfo ("%s", name);
5942 len = strlen (name);
5943 free (name);
5944 }
5945
5946 if (len >= 19)
5947 {
5948 print_nl ();
5949 len = 0;
5950 }
5951 while (len < 20)
5952 {
5953 print_space ();
5954 ++len;
5955 }
5956
5957 minfo ("0x");
5958 if (size <= 0xffffffff)
5959 sprintf (buf, "%lx", (unsigned long) size);
5960 else
5961 sprintf_vma (buf, size);
5962 minfo ("%s", buf);
5963 len = strlen (buf);
5964
5965 while (len < 16)
5966 {
5967 print_space ();
5968 ++len;
5969 }
5970
5971 minfo ("%B\n", section->owner);
5972 }
5973
5974 return TRUE;
5975 }
5976
5977 /* Run through the input files and ensure that every input section has
5978 somewhere to go. If one is found without a destination then create
5979 an input request and place it into the statement tree. */
5980
5981 static void
5982 lang_place_orphans (void)
5983 {
5984 LANG_FOR_EACH_INPUT_STATEMENT (file)
5985 {
5986 asection *s;
5987
5988 for (s = file->the_bfd->sections; s != NULL; s = s->next)
5989 {
5990 if (s->output_section == NULL)
5991 {
5992 /* This section of the file is not attached, root
5993 around for a sensible place for it to go. */
5994
5995 if (file->just_syms_flag)
5996 bfd_link_just_syms (file->the_bfd, s, &link_info);
5997 else if ((s->flags & SEC_EXCLUDE) != 0)
5998 s->output_section = bfd_abs_section_ptr;
5999 else if (strcmp (s->name, "COMMON") == 0)
6000 {
6001 /* This is a lonely common section which must have
6002 come from an archive. We attach to the section
6003 with the wildcard. */
6004 if (! link_info.relocatable
6005 || command_line.force_common_definition)
6006 {
6007 if (default_common_section == NULL)
6008 default_common_section
6009 = lang_output_section_statement_lookup (".bss", 0,
6010 TRUE);
6011 lang_add_section (&default_common_section->children, s,
6012 default_common_section);
6013 }
6014 }
6015 else
6016 {
6017 const char *name = s->name;
6018 int constraint = 0;
6019
6020 if (config.unique_orphan_sections
6021 || unique_section_p (s, NULL))
6022 constraint = SPECIAL;
6023
6024 if (!ldemul_place_orphan (s, name, constraint))
6025 {
6026 lang_output_section_statement_type *os;
6027 os = lang_output_section_statement_lookup (name,
6028 constraint,
6029 TRUE);
6030 if (os->addr_tree == NULL
6031 && (link_info.relocatable
6032 || (s->flags & (SEC_LOAD | SEC_ALLOC)) == 0))
6033 os->addr_tree = exp_intop (0);
6034 lang_add_section (&os->children, s, os);
6035 }
6036 }
6037 }
6038 }
6039 }
6040 }
6041
6042 void
6043 lang_set_flags (lang_memory_region_type *ptr, const char *flags, int invert)
6044 {
6045 flagword *ptr_flags;
6046
6047 ptr_flags = invert ? &ptr->not_flags : &ptr->flags;
6048 while (*flags)
6049 {
6050 switch (*flags)
6051 {
6052 case 'A': case 'a':
6053 *ptr_flags |= SEC_ALLOC;
6054 break;
6055
6056 case 'R': case 'r':
6057 *ptr_flags |= SEC_READONLY;
6058 break;
6059
6060 case 'W': case 'w':
6061 *ptr_flags |= SEC_DATA;
6062 break;
6063
6064 case 'X': case 'x':
6065 *ptr_flags |= SEC_CODE;
6066 break;
6067
6068 case 'L': case 'l':
6069 case 'I': case 'i':
6070 *ptr_flags |= SEC_LOAD;
6071 break;
6072
6073 default:
6074 einfo (_("%P%F: invalid syntax in flags\n"));
6075 break;
6076 }
6077 flags++;
6078 }
6079 }
6080
6081 /* Call a function on each input file. This function will be called
6082 on an archive, but not on the elements. */
6083
6084 void
6085 lang_for_each_input_file (void (*func) (lang_input_statement_type *))
6086 {
6087 lang_input_statement_type *f;
6088
6089 for (f = (lang_input_statement_type *) input_file_chain.head;
6090 f != NULL;
6091 f = (lang_input_statement_type *) f->next_real_file)
6092 func (f);
6093 }
6094
6095 /* Call a function on each file. The function will be called on all
6096 the elements of an archive which are included in the link, but will
6097 not be called on the archive file itself. */
6098
6099 void
6100 lang_for_each_file (void (*func) (lang_input_statement_type *))
6101 {
6102 LANG_FOR_EACH_INPUT_STATEMENT (f)
6103 {
6104 func (f);
6105 }
6106 }
6107
6108 void
6109 ldlang_add_file (lang_input_statement_type *entry)
6110 {
6111 lang_statement_append (&file_chain,
6112 (lang_statement_union_type *) entry,
6113 &entry->next);
6114
6115 /* The BFD linker needs to have a list of all input BFDs involved in
6116 a link. */
6117 ASSERT (entry->the_bfd->link_next == NULL);
6118 ASSERT (entry->the_bfd != link_info.output_bfd);
6119
6120 *link_info.input_bfds_tail = entry->the_bfd;
6121 link_info.input_bfds_tail = &entry->the_bfd->link_next;
6122 entry->the_bfd->usrdata = entry;
6123 bfd_set_gp_size (entry->the_bfd, g_switch_value);
6124
6125 /* Look through the sections and check for any which should not be
6126 included in the link. We need to do this now, so that we can
6127 notice when the backend linker tries to report multiple
6128 definition errors for symbols which are in sections we aren't
6129 going to link. FIXME: It might be better to entirely ignore
6130 symbols which are defined in sections which are going to be
6131 discarded. This would require modifying the backend linker for
6132 each backend which might set the SEC_LINK_ONCE flag. If we do
6133 this, we should probably handle SEC_EXCLUDE in the same way. */
6134
6135 bfd_map_over_sections (entry->the_bfd, section_already_linked, entry);
6136 }
6137
6138 void
6139 lang_add_output (const char *name, int from_script)
6140 {
6141 /* Make -o on command line override OUTPUT in script. */
6142 if (!had_output_filename || !from_script)
6143 {
6144 output_filename = name;
6145 had_output_filename = TRUE;
6146 }
6147 }
6148
6149 static lang_output_section_statement_type *current_section;
6150
6151 static int
6152 topower (int x)
6153 {
6154 unsigned int i = 1;
6155 int l;
6156
6157 if (x < 0)
6158 return -1;
6159
6160 for (l = 0; l < 32; l++)
6161 {
6162 if (i >= (unsigned int) x)
6163 return l;
6164 i <<= 1;
6165 }
6166
6167 return 0;
6168 }
6169
6170 lang_output_section_statement_type *
6171 lang_enter_output_section_statement (const char *output_section_statement_name,
6172 etree_type *address_exp,
6173 enum section_type sectype,
6174 etree_type *align,
6175 etree_type *subalign,
6176 etree_type *ebase,
6177 int constraint)
6178 {
6179 lang_output_section_statement_type *os;
6180
6181 os = lang_output_section_statement_lookup (output_section_statement_name,
6182 constraint, TRUE);
6183 current_section = os;
6184
6185 if (os->addr_tree == NULL)
6186 {
6187 os->addr_tree = address_exp;
6188 }
6189 os->sectype = sectype;
6190 if (sectype != noload_section)
6191 os->flags = SEC_NO_FLAGS;
6192 else
6193 os->flags = SEC_NEVER_LOAD;
6194 os->block_value = 1;
6195
6196 /* Make next things chain into subchain of this. */
6197 push_stat_ptr (&os->children);
6198
6199 os->subsection_alignment =
6200 topower (exp_get_value_int (subalign, -1, "subsection alignment"));
6201 os->section_alignment =
6202 topower (exp_get_value_int (align, -1, "section alignment"));
6203
6204 os->load_base = ebase;
6205 return os;
6206 }
6207
6208 void
6209 lang_final (void)
6210 {
6211 lang_output_statement_type *new_stmt;
6212
6213 new_stmt = new_stat (lang_output_statement, stat_ptr);
6214 new_stmt->name = output_filename;
6215
6216 }
6217
6218 /* Reset the current counters in the regions. */
6219
6220 void
6221 lang_reset_memory_regions (void)
6222 {
6223 lang_memory_region_type *p = lang_memory_region_list;
6224 asection *o;
6225 lang_output_section_statement_type *os;
6226
6227 for (p = lang_memory_region_list; p != NULL; p = p->next)
6228 {
6229 p->current = p->origin;
6230 p->last_os = NULL;
6231 }
6232
6233 for (os = &lang_output_section_statement.head->output_section_statement;
6234 os != NULL;
6235 os = os->next)
6236 {
6237 os->processed_vma = FALSE;
6238 os->processed_lma = FALSE;
6239 }
6240
6241 for (o = link_info.output_bfd->sections; o != NULL; o = o->next)
6242 {
6243 /* Save the last size for possible use by bfd_relax_section. */
6244 o->rawsize = o->size;
6245 o->size = 0;
6246 }
6247 }
6248
6249 /* Worker for lang_gc_sections_1. */
6250
6251 static void
6252 gc_section_callback (lang_wild_statement_type *ptr,
6253 struct wildcard_list *sec ATTRIBUTE_UNUSED,
6254 asection *section,
6255 lang_input_statement_type *file ATTRIBUTE_UNUSED,
6256 void *data ATTRIBUTE_UNUSED)
6257 {
6258 /* If the wild pattern was marked KEEP, the member sections
6259 should be as well. */
6260 if (ptr->keep_sections)
6261 section->flags |= SEC_KEEP;
6262 }
6263
6264 /* Iterate over sections marking them against GC. */
6265
6266 static void
6267 lang_gc_sections_1 (lang_statement_union_type *s)
6268 {
6269 for (; s != NULL; s = s->header.next)
6270 {
6271 switch (s->header.type)
6272 {
6273 case lang_wild_statement_enum:
6274 walk_wild (&s->wild_statement, gc_section_callback, NULL);
6275 break;
6276 case lang_constructors_statement_enum:
6277 lang_gc_sections_1 (constructor_list.head);
6278 break;
6279 case lang_output_section_statement_enum:
6280 lang_gc_sections_1 (s->output_section_statement.children.head);
6281 break;
6282 case lang_group_statement_enum:
6283 lang_gc_sections_1 (s->group_statement.children.head);
6284 break;
6285 default:
6286 break;
6287 }
6288 }
6289 }
6290
6291 static void
6292 lang_gc_sections (void)
6293 {
6294 /* Keep all sections so marked in the link script. */
6295
6296 lang_gc_sections_1 (statement_list.head);
6297
6298 /* SEC_EXCLUDE is ignored when doing a relocatable link, except in
6299 the special case of debug info. (See bfd/stabs.c)
6300 Twiddle the flag here, to simplify later linker code. */
6301 if (link_info.relocatable)
6302 {
6303 LANG_FOR_EACH_INPUT_STATEMENT (f)
6304 {
6305 asection *sec;
6306 for (sec = f->the_bfd->sections; sec != NULL; sec = sec->next)
6307 if ((sec->flags & SEC_DEBUGGING) == 0)
6308 sec->flags &= ~SEC_EXCLUDE;
6309 }
6310 }
6311
6312 if (link_info.gc_sections)
6313 bfd_gc_sections (link_info.output_bfd, &link_info);
6314 }
6315
6316 /* Worker for lang_find_relro_sections_1. */
6317
6318 static void
6319 find_relro_section_callback (lang_wild_statement_type *ptr ATTRIBUTE_UNUSED,
6320 struct wildcard_list *sec ATTRIBUTE_UNUSED,
6321 asection *section,
6322 lang_input_statement_type *file ATTRIBUTE_UNUSED,
6323 void *data)
6324 {
6325 /* Discarded, excluded and ignored sections effectively have zero
6326 size. */
6327 if (section->output_section != NULL
6328 && section->output_section->owner == link_info.output_bfd
6329 && (section->output_section->flags & SEC_EXCLUDE) == 0
6330 && !IGNORE_SECTION (section)
6331 && section->size != 0)
6332 {
6333 bfd_boolean *has_relro_section = (bfd_boolean *) data;
6334 *has_relro_section = TRUE;
6335 }
6336 }
6337
6338 /* Iterate over sections for relro sections. */
6339
6340 static void
6341 lang_find_relro_sections_1 (lang_statement_union_type *s,
6342 bfd_boolean *has_relro_section)
6343 {
6344 if (*has_relro_section)
6345 return;
6346
6347 for (; s != NULL; s = s->header.next)
6348 {
6349 if (s == expld.dataseg.relro_end_stat)
6350 break;
6351
6352 switch (s->header.type)
6353 {
6354 case lang_wild_statement_enum:
6355 walk_wild (&s->wild_statement,
6356 find_relro_section_callback,
6357 has_relro_section);
6358 break;
6359 case lang_constructors_statement_enum:
6360 lang_find_relro_sections_1 (constructor_list.head,
6361 has_relro_section);
6362 break;
6363 case lang_output_section_statement_enum:
6364 lang_find_relro_sections_1 (s->output_section_statement.children.head,
6365 has_relro_section);
6366 break;
6367 case lang_group_statement_enum:
6368 lang_find_relro_sections_1 (s->group_statement.children.head,
6369 has_relro_section);
6370 break;
6371 default:
6372 break;
6373 }
6374 }
6375 }
6376
6377 static void
6378 lang_find_relro_sections (void)
6379 {
6380 bfd_boolean has_relro_section = FALSE;
6381
6382 /* Check all sections in the link script. */
6383
6384 lang_find_relro_sections_1 (expld.dataseg.relro_start_stat,
6385 &has_relro_section);
6386
6387 if (!has_relro_section)
6388 link_info.relro = FALSE;
6389 }
6390
6391 /* Relax all sections until bfd_relax_section gives up. */
6392
6393 void
6394 lang_relax_sections (bfd_boolean need_layout)
6395 {
6396 if (RELAXATION_ENABLED)
6397 {
6398 /* We may need more than one relaxation pass. */
6399 int i = link_info.relax_pass;
6400
6401 /* The backend can use it to determine the current pass. */
6402 link_info.relax_pass = 0;
6403
6404 while (i--)
6405 {
6406 /* Keep relaxing until bfd_relax_section gives up. */
6407 bfd_boolean relax_again;
6408
6409 link_info.relax_trip = -1;
6410 do
6411 {
6412 link_info.relax_trip++;
6413
6414 /* Note: pe-dll.c does something like this also. If you find
6415 you need to change this code, you probably need to change
6416 pe-dll.c also. DJ */
6417
6418 /* Do all the assignments with our current guesses as to
6419 section sizes. */
6420 lang_do_assignments ();
6421
6422 /* We must do this after lang_do_assignments, because it uses
6423 size. */
6424 lang_reset_memory_regions ();
6425
6426 /* Perform another relax pass - this time we know where the
6427 globals are, so can make a better guess. */
6428 relax_again = FALSE;
6429 lang_size_sections (&relax_again, FALSE);
6430 }
6431 while (relax_again);
6432
6433 link_info.relax_pass++;
6434 }
6435 need_layout = TRUE;
6436 }
6437
6438 if (need_layout)
6439 {
6440 /* Final extra sizing to report errors. */
6441 lang_do_assignments ();
6442 lang_reset_memory_regions ();
6443 lang_size_sections (NULL, TRUE);
6444 }
6445 }
6446
6447 void
6448 lang_process (void)
6449 {
6450 /* Finalize dynamic list. */
6451 if (link_info.dynamic_list)
6452 lang_finalize_version_expr_head (&link_info.dynamic_list->head);
6453
6454 current_target = default_target;
6455
6456 /* Open the output file. */
6457 lang_for_each_statement (ldlang_open_output);
6458 init_opb ();
6459
6460 ldemul_create_output_section_statements ();
6461
6462 /* Add to the hash table all undefineds on the command line. */
6463 lang_place_undefineds ();
6464 lang_place_defineds ();
6465
6466 if (!bfd_section_already_linked_table_init ())
6467 einfo (_("%P%F: Failed to create hash table\n"));
6468
6469 /* Create a bfd for each input file. */
6470 current_target = default_target;
6471 open_input_bfds (statement_list.head, FALSE);
6472
6473 #ifdef ENABLE_PLUGINS
6474 {
6475 union lang_statement_union **listend;
6476 /* Now all files are read, let the plugin(s) decide if there
6477 are any more to be added to the link before we call the
6478 emulation's after_open hook. */
6479 listend = statement_list.tail;
6480 ASSERT (!*listend);
6481 if (plugin_call_all_symbols_read ())
6482 einfo (_("%P%F: %s: plugin reported error after all symbols read\n"),
6483 plugin_error_plugin ());
6484 /* If any new files were added, they will be on the end of the
6485 statement list, and we can open them now by getting open_input_bfds
6486 to carry on from where it ended last time. */
6487 if (*listend)
6488 open_input_bfds (*listend, FALSE);
6489 }
6490 #endif /* ENABLE_PLUGINS */
6491
6492 link_info.gc_sym_list = &entry_symbol;
6493 if (entry_symbol.name == NULL)
6494 link_info.gc_sym_list = ldlang_undef_chain_list_head;
6495
6496 ldemul_after_open ();
6497
6498 bfd_section_already_linked_table_free ();
6499
6500 /* Make sure that we're not mixing architectures. We call this
6501 after all the input files have been opened, but before we do any
6502 other processing, so that any operations merge_private_bfd_data
6503 does on the output file will be known during the rest of the
6504 link. */
6505 lang_check ();
6506
6507 /* Handle .exports instead of a version script if we're told to do so. */
6508 if (command_line.version_exports_section)
6509 lang_do_version_exports_section ();
6510
6511 /* Build all sets based on the information gathered from the input
6512 files. */
6513 ldctor_build_sets ();
6514
6515 /* Remove unreferenced sections if asked to. */
6516 lang_gc_sections ();
6517
6518 /* Size up the common data. */
6519 lang_common ();
6520
6521 /* Update wild statements. */
6522 update_wild_statements (statement_list.head);
6523
6524 /* Run through the contours of the script and attach input sections
6525 to the correct output sections. */
6526 map_input_to_output_sections (statement_list.head, NULL, NULL);
6527
6528 process_insert_statements ();
6529
6530 /* Find any sections not attached explicitly and handle them. */
6531 lang_place_orphans ();
6532
6533 if (! link_info.relocatable)
6534 {
6535 asection *found;
6536
6537 /* Merge SEC_MERGE sections. This has to be done after GC of
6538 sections, so that GCed sections are not merged, but before
6539 assigning dynamic symbols, since removing whole input sections
6540 is hard then. */
6541 bfd_merge_sections (link_info.output_bfd, &link_info);
6542
6543 /* Look for a text section and set the readonly attribute in it. */
6544 found = bfd_get_section_by_name (link_info.output_bfd, ".text");
6545
6546 if (found != NULL)
6547 {
6548 if (config.text_read_only)
6549 found->flags |= SEC_READONLY;
6550 else
6551 found->flags &= ~SEC_READONLY;
6552 }
6553 }
6554
6555 /* Do anything special before sizing sections. This is where ELF
6556 and other back-ends size dynamic sections. */
6557 ldemul_before_allocation ();
6558
6559 /* We must record the program headers before we try to fix the
6560 section positions, since they will affect SIZEOF_HEADERS. */
6561 lang_record_phdrs ();
6562
6563 /* Check relro sections. */
6564 if (link_info.relro && ! link_info.relocatable)
6565 lang_find_relro_sections ();
6566
6567 /* Size up the sections. */
6568 lang_size_sections (NULL, ! RELAXATION_ENABLED);
6569
6570 /* See if anything special should be done now we know how big
6571 everything is. This is where relaxation is done. */
6572 ldemul_after_allocation ();
6573
6574 /* Fix any .startof. or .sizeof. symbols. */
6575 lang_set_startof ();
6576
6577 /* Do all the assignments, now that we know the final resting places
6578 of all the symbols. */
6579
6580 lang_do_assignments ();
6581
6582 ldemul_finish ();
6583
6584 /* Make sure that the section addresses make sense. */
6585 if (command_line.check_section_addresses)
6586 lang_check_section_addresses ();
6587
6588 lang_end ();
6589 }
6590
6591 /* EXPORTED TO YACC */
6592
6593 void
6594 lang_add_wild (struct wildcard_spec *filespec,
6595 struct wildcard_list *section_list,
6596 bfd_boolean keep_sections)
6597 {
6598 struct wildcard_list *curr, *next;
6599 lang_wild_statement_type *new_stmt;
6600
6601 /* Reverse the list as the parser puts it back to front. */
6602 for (curr = section_list, section_list = NULL;
6603 curr != NULL;
6604 section_list = curr, curr = next)
6605 {
6606 if (curr->spec.name != NULL && strcmp (curr->spec.name, "COMMON") == 0)
6607 placed_commons = TRUE;
6608
6609 next = curr->next;
6610 curr->next = section_list;
6611 }
6612
6613 if (filespec != NULL && filespec->name != NULL)
6614 {
6615 if (strcmp (filespec->name, "*") == 0)
6616 filespec->name = NULL;
6617 else if (! wildcardp (filespec->name))
6618 lang_has_input_file = TRUE;
6619 }
6620
6621 new_stmt = new_stat (lang_wild_statement, stat_ptr);
6622 new_stmt->filename = NULL;
6623 new_stmt->filenames_sorted = FALSE;
6624 if (filespec != NULL)
6625 {
6626 new_stmt->filename = filespec->name;
6627 new_stmt->filenames_sorted = filespec->sorted == by_name;
6628 }
6629 new_stmt->section_list = section_list;
6630 new_stmt->keep_sections = keep_sections;
6631 lang_list_init (&new_stmt->children);
6632 analyze_walk_wild_section_handler (new_stmt);
6633 }
6634
6635 void
6636 lang_section_start (const char *name, etree_type *address,
6637 const segment_type *segment)
6638 {
6639 lang_address_statement_type *ad;
6640
6641 ad = new_stat (lang_address_statement, stat_ptr);
6642 ad->section_name = name;
6643 ad->address = address;
6644 ad->segment = segment;
6645 }
6646
6647 /* Set the start symbol to NAME. CMDLINE is nonzero if this is called
6648 because of a -e argument on the command line, or zero if this is
6649 called by ENTRY in a linker script. Command line arguments take
6650 precedence. */
6651
6652 void
6653 lang_add_entry (const char *name, bfd_boolean cmdline)
6654 {
6655 if (entry_symbol.name == NULL
6656 || cmdline
6657 || ! entry_from_cmdline)
6658 {
6659 entry_symbol.name = name;
6660 entry_from_cmdline = cmdline;
6661 }
6662 }
6663
6664 /* Set the default start symbol to NAME. .em files should use this,
6665 not lang_add_entry, to override the use of "start" if neither the
6666 linker script nor the command line specifies an entry point. NAME
6667 must be permanently allocated. */
6668 void
6669 lang_default_entry (const char *name)
6670 {
6671 entry_symbol_default = name;
6672 }
6673
6674 void
6675 lang_add_target (const char *name)
6676 {
6677 lang_target_statement_type *new_stmt;
6678
6679 new_stmt = new_stat (lang_target_statement, stat_ptr);
6680 new_stmt->target = name;
6681 }
6682
6683 void
6684 lang_add_map (const char *name)
6685 {
6686 while (*name)
6687 {
6688 switch (*name)
6689 {
6690 case 'F':
6691 map_option_f = TRUE;
6692 break;
6693 }
6694 name++;
6695 }
6696 }
6697
6698 void
6699 lang_add_fill (fill_type *fill)
6700 {
6701 lang_fill_statement_type *new_stmt;
6702
6703 new_stmt = new_stat (lang_fill_statement, stat_ptr);
6704 new_stmt->fill = fill;
6705 }
6706
6707 void
6708 lang_add_data (int type, union etree_union *exp)
6709 {
6710 lang_data_statement_type *new_stmt;
6711
6712 new_stmt = new_stat (lang_data_statement, stat_ptr);
6713 new_stmt->exp = exp;
6714 new_stmt->type = type;
6715 }
6716
6717 /* Create a new reloc statement. RELOC is the BFD relocation type to
6718 generate. HOWTO is the corresponding howto structure (we could
6719 look this up, but the caller has already done so). SECTION is the
6720 section to generate a reloc against, or NAME is the name of the
6721 symbol to generate a reloc against. Exactly one of SECTION and
6722 NAME must be NULL. ADDEND is an expression for the addend. */
6723
6724 void
6725 lang_add_reloc (bfd_reloc_code_real_type reloc,
6726 reloc_howto_type *howto,
6727 asection *section,
6728 const char *name,
6729 union etree_union *addend)
6730 {
6731 lang_reloc_statement_type *p = new_stat (lang_reloc_statement, stat_ptr);
6732
6733 p->reloc = reloc;
6734 p->howto = howto;
6735 p->section = section;
6736 p->name = name;
6737 p->addend_exp = addend;
6738
6739 p->addend_value = 0;
6740 p->output_section = NULL;
6741 p->output_offset = 0;
6742 }
6743
6744 lang_assignment_statement_type *
6745 lang_add_assignment (etree_type *exp)
6746 {
6747 lang_assignment_statement_type *new_stmt;
6748
6749 extern int parsing_defsym;
6750 if (parsing_defsym)
6751 ldlang_add_def (exp->assign.dst);
6752
6753 new_stmt = new_stat (lang_assignment_statement, stat_ptr);
6754 new_stmt->exp = exp;
6755 return new_stmt;
6756 }
6757
6758 void
6759 lang_add_attribute (enum statement_enum attribute)
6760 {
6761 new_statement (attribute, sizeof (lang_statement_header_type), stat_ptr);
6762 }
6763
6764 void
6765 lang_startup (const char *name)
6766 {
6767 if (startup_file != NULL)
6768 {
6769 einfo (_("%P%F: multiple STARTUP files\n"));
6770 }
6771 first_file->filename = name;
6772 first_file->local_sym_name = name;
6773 first_file->real = TRUE;
6774
6775 startup_file = name;
6776 }
6777
6778 void
6779 lang_float (bfd_boolean maybe)
6780 {
6781 lang_float_flag = maybe;
6782 }
6783
6784
6785 /* Work out the load- and run-time regions from a script statement, and
6786 store them in *LMA_REGION and *REGION respectively.
6787
6788 MEMSPEC is the name of the run-time region, or the value of
6789 DEFAULT_MEMORY_REGION if the statement didn't specify one.
6790 LMA_MEMSPEC is the name of the load-time region, or null if the
6791 statement didn't specify one.HAVE_LMA_P is TRUE if the statement
6792 had an explicit load address.
6793
6794 It is an error to specify both a load region and a load address. */
6795
6796 static void
6797 lang_get_regions (lang_memory_region_type **region,
6798 lang_memory_region_type **lma_region,
6799 const char *memspec,
6800 const char *lma_memspec,
6801 bfd_boolean have_lma,
6802 bfd_boolean have_vma)
6803 {
6804 *lma_region = lang_memory_region_lookup (lma_memspec, FALSE);
6805
6806 /* If no runtime region or VMA has been specified, but the load region
6807 has been specified, then use the load region for the runtime region
6808 as well. */
6809 if (lma_memspec != NULL
6810 && ! have_vma
6811 && strcmp (memspec, DEFAULT_MEMORY_REGION) == 0)
6812 *region = *lma_region;
6813 else
6814 *region = lang_memory_region_lookup (memspec, FALSE);
6815
6816 if (have_lma && lma_memspec != 0)
6817 einfo (_("%X%P:%S: section has both a load address and a load region\n"));
6818 }
6819
6820 void
6821 lang_leave_output_section_statement (fill_type *fill, const char *memspec,
6822 lang_output_section_phdr_list *phdrs,
6823 const char *lma_memspec)
6824 {
6825 lang_get_regions (&current_section->region,
6826 &current_section->lma_region,
6827 memspec, lma_memspec,
6828 current_section->load_base != NULL,
6829 current_section->addr_tree != NULL);
6830
6831 /* If this section has no load region or base, but has the same
6832 region as the previous section, then propagate the previous
6833 section's load region. */
6834
6835 if (!current_section->lma_region && !current_section->load_base
6836 && current_section->region == current_section->prev->region)
6837 current_section->lma_region = current_section->prev->lma_region;
6838
6839 current_section->fill = fill;
6840 current_section->phdrs = phdrs;
6841 pop_stat_ptr ();
6842 }
6843
6844 /* Create an absolute symbol with the given name with the value of the
6845 address of first byte of the section named.
6846
6847 If the symbol already exists, then do nothing. */
6848
6849 void
6850 lang_abs_symbol_at_beginning_of (const char *secname, const char *name)
6851 {
6852 struct bfd_link_hash_entry *h;
6853
6854 h = bfd_link_hash_lookup (link_info.hash, name, TRUE, TRUE, TRUE);
6855 if (h == NULL)
6856 einfo (_("%P%F: bfd_link_hash_lookup failed: %E\n"));
6857
6858 if (h->type == bfd_link_hash_new
6859 || h->type == bfd_link_hash_undefined)
6860 {
6861 asection *sec;
6862
6863 h->type = bfd_link_hash_defined;
6864
6865 sec = bfd_get_section_by_name (link_info.output_bfd, secname);
6866 if (sec == NULL)
6867 h->u.def.value = 0;
6868 else
6869 h->u.def.value = bfd_get_section_vma (link_info.output_bfd, sec);
6870
6871 h->u.def.section = bfd_abs_section_ptr;
6872 }
6873 }
6874
6875 /* Create an absolute symbol with the given name with the value of the
6876 address of the first byte after the end of the section named.
6877
6878 If the symbol already exists, then do nothing. */
6879
6880 void
6881 lang_abs_symbol_at_end_of (const char *secname, const char *name)
6882 {
6883 struct bfd_link_hash_entry *h;
6884
6885 h = bfd_link_hash_lookup (link_info.hash, name, TRUE, TRUE, TRUE);
6886 if (h == NULL)
6887 einfo (_("%P%F: bfd_link_hash_lookup failed: %E\n"));
6888
6889 if (h->type == bfd_link_hash_new
6890 || h->type == bfd_link_hash_undefined)
6891 {
6892 asection *sec;
6893
6894 h->type = bfd_link_hash_defined;
6895
6896 sec = bfd_get_section_by_name (link_info.output_bfd, secname);
6897 if (sec == NULL)
6898 h->u.def.value = 0;
6899 else
6900 h->u.def.value = (bfd_get_section_vma (link_info.output_bfd, sec)
6901 + TO_ADDR (sec->size));
6902
6903 h->u.def.section = bfd_abs_section_ptr;
6904 }
6905 }
6906
6907 void
6908 lang_statement_append (lang_statement_list_type *list,
6909 lang_statement_union_type *element,
6910 lang_statement_union_type **field)
6911 {
6912 *(list->tail) = element;
6913 list->tail = field;
6914 }
6915
6916 /* Set the output format type. -oformat overrides scripts. */
6917
6918 void
6919 lang_add_output_format (const char *format,
6920 const char *big,
6921 const char *little,
6922 int from_script)
6923 {
6924 if (output_target == NULL || !from_script)
6925 {
6926 if (command_line.endian == ENDIAN_BIG
6927 && big != NULL)
6928 format = big;
6929 else if (command_line.endian == ENDIAN_LITTLE
6930 && little != NULL)
6931 format = little;
6932
6933 output_target = format;
6934 }
6935 }
6936
6937 void
6938 lang_add_insert (const char *where, int is_before)
6939 {
6940 lang_insert_statement_type *new_stmt;
6941
6942 new_stmt = new_stat (lang_insert_statement, stat_ptr);
6943 new_stmt->where = where;
6944 new_stmt->is_before = is_before;
6945 saved_script_handle = previous_script_handle;
6946 }
6947
6948 /* Enter a group. This creates a new lang_group_statement, and sets
6949 stat_ptr to build new statements within the group. */
6950
6951 void
6952 lang_enter_group (void)
6953 {
6954 lang_group_statement_type *g;
6955
6956 g = new_stat (lang_group_statement, stat_ptr);
6957 lang_list_init (&g->children);
6958 push_stat_ptr (&g->children);
6959 }
6960
6961 /* Leave a group. This just resets stat_ptr to start writing to the
6962 regular list of statements again. Note that this will not work if
6963 groups can occur inside anything else which can adjust stat_ptr,
6964 but currently they can't. */
6965
6966 void
6967 lang_leave_group (void)
6968 {
6969 pop_stat_ptr ();
6970 }
6971
6972 /* Add a new program header. This is called for each entry in a PHDRS
6973 command in a linker script. */
6974
6975 void
6976 lang_new_phdr (const char *name,
6977 etree_type *type,
6978 bfd_boolean filehdr,
6979 bfd_boolean phdrs,
6980 etree_type *at,
6981 etree_type *flags)
6982 {
6983 struct lang_phdr *n, **pp;
6984 bfd_boolean hdrs;
6985
6986 n = (struct lang_phdr *) stat_alloc (sizeof (struct lang_phdr));
6987 n->next = NULL;
6988 n->name = name;
6989 n->type = exp_get_value_int (type, 0, "program header type");
6990 n->filehdr = filehdr;
6991 n->phdrs = phdrs;
6992 n->at = at;
6993 n->flags = flags;
6994
6995 hdrs = n->type == 1 && (phdrs || filehdr);
6996
6997 for (pp = &lang_phdr_list; *pp != NULL; pp = &(*pp)->next)
6998 if (hdrs
6999 && (*pp)->type == 1
7000 && !((*pp)->filehdr || (*pp)->phdrs))
7001 {
7002 einfo (_("%X%P:%S: PHDRS and FILEHDR are not supported when prior PT_LOAD headers lack them\n"));
7003 hdrs = FALSE;
7004 }
7005
7006 *pp = n;
7007 }
7008
7009 /* Record the program header information in the output BFD. FIXME: We
7010 should not be calling an ELF specific function here. */
7011
7012 static void
7013 lang_record_phdrs (void)
7014 {
7015 unsigned int alc;
7016 asection **secs;
7017 lang_output_section_phdr_list *last;
7018 struct lang_phdr *l;
7019 lang_output_section_statement_type *os;
7020
7021 alc = 10;
7022 secs = (asection **) xmalloc (alc * sizeof (asection *));
7023 last = NULL;
7024
7025 for (l = lang_phdr_list; l != NULL; l = l->next)
7026 {
7027 unsigned int c;
7028 flagword flags;
7029 bfd_vma at;
7030
7031 c = 0;
7032 for (os = &lang_output_section_statement.head->output_section_statement;
7033 os != NULL;
7034 os = os->next)
7035 {
7036 lang_output_section_phdr_list *pl;
7037
7038 if (os->constraint < 0)
7039 continue;
7040
7041 pl = os->phdrs;
7042 if (pl != NULL)
7043 last = pl;
7044 else
7045 {
7046 if (os->sectype == noload_section
7047 || os->bfd_section == NULL
7048 || (os->bfd_section->flags & SEC_ALLOC) == 0)
7049 continue;
7050
7051 /* Don't add orphans to PT_INTERP header. */
7052 if (l->type == 3)
7053 continue;
7054
7055 if (last == NULL)
7056 {
7057 lang_output_section_statement_type * tmp_os;
7058
7059 /* If we have not run across a section with a program
7060 header assigned to it yet, then scan forwards to find
7061 one. This prevents inconsistencies in the linker's
7062 behaviour when a script has specified just a single
7063 header and there are sections in that script which are
7064 not assigned to it, and which occur before the first
7065 use of that header. See here for more details:
7066 http://sourceware.org/ml/binutils/2007-02/msg00291.html */
7067 for (tmp_os = os; tmp_os; tmp_os = tmp_os->next)
7068 if (tmp_os->phdrs)
7069 {
7070 last = tmp_os->phdrs;
7071 break;
7072 }
7073 if (last == NULL)
7074 einfo (_("%F%P: no sections assigned to phdrs\n"));
7075 }
7076 pl = last;
7077 }
7078
7079 if (os->bfd_section == NULL)
7080 continue;
7081
7082 for (; pl != NULL; pl = pl->next)
7083 {
7084 if (strcmp (pl->name, l->name) == 0)
7085 {
7086 if (c >= alc)
7087 {
7088 alc *= 2;
7089 secs = (asection **) xrealloc (secs,
7090 alc * sizeof (asection *));
7091 }
7092 secs[c] = os->bfd_section;
7093 ++c;
7094 pl->used = TRUE;
7095 }
7096 }
7097 }
7098
7099 if (l->flags == NULL)
7100 flags = 0;
7101 else
7102 flags = exp_get_vma (l->flags, 0, "phdr flags");
7103
7104 if (l->at == NULL)
7105 at = 0;
7106 else
7107 at = exp_get_vma (l->at, 0, "phdr load address");
7108
7109 if (! bfd_record_phdr (link_info.output_bfd, l->type,
7110 l->flags != NULL, flags, l->at != NULL,
7111 at, l->filehdr, l->phdrs, c, secs))
7112 einfo (_("%F%P: bfd_record_phdr failed: %E\n"));
7113 }
7114
7115 free (secs);
7116
7117 /* Make sure all the phdr assignments succeeded. */
7118 for (os = &lang_output_section_statement.head->output_section_statement;
7119 os != NULL;
7120 os = os->next)
7121 {
7122 lang_output_section_phdr_list *pl;
7123
7124 if (os->constraint < 0
7125 || os->bfd_section == NULL)
7126 continue;
7127
7128 for (pl = os->phdrs;
7129 pl != NULL;
7130 pl = pl->next)
7131 if (! pl->used && strcmp (pl->name, "NONE") != 0)
7132 einfo (_("%X%P: section `%s' assigned to non-existent phdr `%s'\n"),
7133 os->name, pl->name);
7134 }
7135 }
7136
7137 /* Record a list of sections which may not be cross referenced. */
7138
7139 void
7140 lang_add_nocrossref (lang_nocrossref_type *l)
7141 {
7142 struct lang_nocrossrefs *n;
7143
7144 n = (struct lang_nocrossrefs *) xmalloc (sizeof *n);
7145 n->next = nocrossref_list;
7146 n->list = l;
7147 nocrossref_list = n;
7148
7149 /* Set notice_all so that we get informed about all symbols. */
7150 link_info.notice_all = TRUE;
7151 }
7152 \f
7153 /* Overlay handling. We handle overlays with some static variables. */
7154
7155 /* The overlay virtual address. */
7156 static etree_type *overlay_vma;
7157 /* And subsection alignment. */
7158 static etree_type *overlay_subalign;
7159
7160 /* An expression for the maximum section size seen so far. */
7161 static etree_type *overlay_max;
7162
7163 /* A list of all the sections in this overlay. */
7164
7165 struct overlay_list {
7166 struct overlay_list *next;
7167 lang_output_section_statement_type *os;
7168 };
7169
7170 static struct overlay_list *overlay_list;
7171
7172 /* Start handling an overlay. */
7173
7174 void
7175 lang_enter_overlay (etree_type *vma_expr, etree_type *subalign)
7176 {
7177 /* The grammar should prevent nested overlays from occurring. */
7178 ASSERT (overlay_vma == NULL
7179 && overlay_subalign == NULL
7180 && overlay_max == NULL);
7181
7182 overlay_vma = vma_expr;
7183 overlay_subalign = subalign;
7184 }
7185
7186 /* Start a section in an overlay. We handle this by calling
7187 lang_enter_output_section_statement with the correct VMA.
7188 lang_leave_overlay sets up the LMA and memory regions. */
7189
7190 void
7191 lang_enter_overlay_section (const char *name)
7192 {
7193 struct overlay_list *n;
7194 etree_type *size;
7195
7196 lang_enter_output_section_statement (name, overlay_vma, overlay_section,
7197 0, overlay_subalign, 0, 0);
7198
7199 /* If this is the first section, then base the VMA of future
7200 sections on this one. This will work correctly even if `.' is
7201 used in the addresses. */
7202 if (overlay_list == NULL)
7203 overlay_vma = exp_nameop (ADDR, name);
7204
7205 /* Remember the section. */
7206 n = (struct overlay_list *) xmalloc (sizeof *n);
7207 n->os = current_section;
7208 n->next = overlay_list;
7209 overlay_list = n;
7210
7211 size = exp_nameop (SIZEOF, name);
7212
7213 /* Arrange to work out the maximum section end address. */
7214 if (overlay_max == NULL)
7215 overlay_max = size;
7216 else
7217 overlay_max = exp_binop (MAX_K, overlay_max, size);
7218 }
7219
7220 /* Finish a section in an overlay. There isn't any special to do
7221 here. */
7222
7223 void
7224 lang_leave_overlay_section (fill_type *fill,
7225 lang_output_section_phdr_list *phdrs)
7226 {
7227 const char *name;
7228 char *clean, *s2;
7229 const char *s1;
7230 char *buf;
7231
7232 name = current_section->name;
7233
7234 /* For now, assume that DEFAULT_MEMORY_REGION is the run-time memory
7235 region and that no load-time region has been specified. It doesn't
7236 really matter what we say here, since lang_leave_overlay will
7237 override it. */
7238 lang_leave_output_section_statement (fill, DEFAULT_MEMORY_REGION, phdrs, 0);
7239
7240 /* Define the magic symbols. */
7241
7242 clean = (char *) xmalloc (strlen (name) + 1);
7243 s2 = clean;
7244 for (s1 = name; *s1 != '\0'; s1++)
7245 if (ISALNUM (*s1) || *s1 == '_')
7246 *s2++ = *s1;
7247 *s2 = '\0';
7248
7249 buf = (char *) xmalloc (strlen (clean) + sizeof "__load_start_");
7250 sprintf (buf, "__load_start_%s", clean);
7251 lang_add_assignment (exp_provide (buf,
7252 exp_nameop (LOADADDR, name),
7253 FALSE));
7254
7255 buf = (char *) xmalloc (strlen (clean) + sizeof "__load_stop_");
7256 sprintf (buf, "__load_stop_%s", clean);
7257 lang_add_assignment (exp_provide (buf,
7258 exp_binop ('+',
7259 exp_nameop (LOADADDR, name),
7260 exp_nameop (SIZEOF, name)),
7261 FALSE));
7262
7263 free (clean);
7264 }
7265
7266 /* Finish an overlay. If there are any overlay wide settings, this
7267 looks through all the sections in the overlay and sets them. */
7268
7269 void
7270 lang_leave_overlay (etree_type *lma_expr,
7271 int nocrossrefs,
7272 fill_type *fill,
7273 const char *memspec,
7274 lang_output_section_phdr_list *phdrs,
7275 const char *lma_memspec)
7276 {
7277 lang_memory_region_type *region;
7278 lang_memory_region_type *lma_region;
7279 struct overlay_list *l;
7280 lang_nocrossref_type *nocrossref;
7281
7282 lang_get_regions (&region, &lma_region,
7283 memspec, lma_memspec,
7284 lma_expr != NULL, FALSE);
7285
7286 nocrossref = NULL;
7287
7288 /* After setting the size of the last section, set '.' to end of the
7289 overlay region. */
7290 if (overlay_list != NULL)
7291 overlay_list->os->update_dot_tree
7292 = exp_assop ('=', ".", exp_binop ('+', overlay_vma, overlay_max));
7293
7294 l = overlay_list;
7295 while (l != NULL)
7296 {
7297 struct overlay_list *next;
7298
7299 if (fill != NULL && l->os->fill == NULL)
7300 l->os->fill = fill;
7301
7302 l->os->region = region;
7303 l->os->lma_region = lma_region;
7304
7305 /* The first section has the load address specified in the
7306 OVERLAY statement. The rest are worked out from that.
7307 The base address is not needed (and should be null) if
7308 an LMA region was specified. */
7309 if (l->next == 0)
7310 {
7311 l->os->load_base = lma_expr;
7312 l->os->sectype = normal_section;
7313 }
7314 if (phdrs != NULL && l->os->phdrs == NULL)
7315 l->os->phdrs = phdrs;
7316
7317 if (nocrossrefs)
7318 {
7319 lang_nocrossref_type *nc;
7320
7321 nc = (lang_nocrossref_type *) xmalloc (sizeof *nc);
7322 nc->name = l->os->name;
7323 nc->next = nocrossref;
7324 nocrossref = nc;
7325 }
7326
7327 next = l->next;
7328 free (l);
7329 l = next;
7330 }
7331
7332 if (nocrossref != NULL)
7333 lang_add_nocrossref (nocrossref);
7334
7335 overlay_vma = NULL;
7336 overlay_list = NULL;
7337 overlay_max = NULL;
7338 }
7339 \f
7340 /* Version handling. This is only useful for ELF. */
7341
7342 /* This global variable holds the version tree that we build. */
7343
7344 struct bfd_elf_version_tree *lang_elf_version_info;
7345
7346 /* If PREV is NULL, return first version pattern matching particular symbol.
7347 If PREV is non-NULL, return first version pattern matching particular
7348 symbol after PREV (previously returned by lang_vers_match). */
7349
7350 static struct bfd_elf_version_expr *
7351 lang_vers_match (struct bfd_elf_version_expr_head *head,
7352 struct bfd_elf_version_expr *prev,
7353 const char *sym)
7354 {
7355 const char *cxx_sym = sym;
7356 const char *java_sym = sym;
7357 struct bfd_elf_version_expr *expr = NULL;
7358
7359 if (head->mask & BFD_ELF_VERSION_CXX_TYPE)
7360 {
7361 cxx_sym = cplus_demangle (sym, DMGL_PARAMS | DMGL_ANSI);
7362 if (!cxx_sym)
7363 cxx_sym = sym;
7364 }
7365 if (head->mask & BFD_ELF_VERSION_JAVA_TYPE)
7366 {
7367 java_sym = cplus_demangle (sym, DMGL_JAVA);
7368 if (!java_sym)
7369 java_sym = sym;
7370 }
7371
7372 if (head->htab && (prev == NULL || prev->literal))
7373 {
7374 struct bfd_elf_version_expr e;
7375
7376 switch (prev ? prev->mask : 0)
7377 {
7378 case 0:
7379 if (head->mask & BFD_ELF_VERSION_C_TYPE)
7380 {
7381 e.pattern = sym;
7382 expr = (struct bfd_elf_version_expr *)
7383 htab_find ((htab_t) head->htab, &e);
7384 while (expr && strcmp (expr->pattern, sym) == 0)
7385 if (expr->mask == BFD_ELF_VERSION_C_TYPE)
7386 goto out_ret;
7387 else
7388 expr = expr->next;
7389 }
7390 /* Fallthrough */
7391 case BFD_ELF_VERSION_C_TYPE:
7392 if (head->mask & BFD_ELF_VERSION_CXX_TYPE)
7393 {
7394 e.pattern = cxx_sym;
7395 expr = (struct bfd_elf_version_expr *)
7396 htab_find ((htab_t) head->htab, &e);
7397 while (expr && strcmp (expr->pattern, cxx_sym) == 0)
7398 if (expr->mask == BFD_ELF_VERSION_CXX_TYPE)
7399 goto out_ret;
7400 else
7401 expr = expr->next;
7402 }
7403 /* Fallthrough */
7404 case BFD_ELF_VERSION_CXX_TYPE:
7405 if (head->mask & BFD_ELF_VERSION_JAVA_TYPE)
7406 {
7407 e.pattern = java_sym;
7408 expr = (struct bfd_elf_version_expr *)
7409 htab_find ((htab_t) head->htab, &e);
7410 while (expr && strcmp (expr->pattern, java_sym) == 0)
7411 if (expr->mask == BFD_ELF_VERSION_JAVA_TYPE)
7412 goto out_ret;
7413 else
7414 expr = expr->next;
7415 }
7416 /* Fallthrough */
7417 default:
7418 break;
7419 }
7420 }
7421
7422 /* Finally, try the wildcards. */
7423 if (prev == NULL || prev->literal)
7424 expr = head->remaining;
7425 else
7426 expr = prev->next;
7427 for (; expr; expr = expr->next)
7428 {
7429 const char *s;
7430
7431 if (!expr->pattern)
7432 continue;
7433
7434 if (expr->pattern[0] == '*' && expr->pattern[1] == '\0')
7435 break;
7436
7437 if (expr->mask == BFD_ELF_VERSION_JAVA_TYPE)
7438 s = java_sym;
7439 else if (expr->mask == BFD_ELF_VERSION_CXX_TYPE)
7440 s = cxx_sym;
7441 else
7442 s = sym;
7443 if (fnmatch (expr->pattern, s, 0) == 0)
7444 break;
7445 }
7446
7447 out_ret:
7448 if (cxx_sym != sym)
7449 free ((char *) cxx_sym);
7450 if (java_sym != sym)
7451 free ((char *) java_sym);
7452 return expr;
7453 }
7454
7455 /* Return NULL if the PATTERN argument is a glob pattern, otherwise,
7456 return a pointer to the symbol name with any backslash quotes removed. */
7457
7458 static const char *
7459 realsymbol (const char *pattern)
7460 {
7461 const char *p;
7462 bfd_boolean changed = FALSE, backslash = FALSE;
7463 char *s, *symbol = (char *) xmalloc (strlen (pattern) + 1);
7464
7465 for (p = pattern, s = symbol; *p != '\0'; ++p)
7466 {
7467 /* It is a glob pattern only if there is no preceding
7468 backslash. */
7469 if (backslash)
7470 {
7471 /* Remove the preceding backslash. */
7472 *(s - 1) = *p;
7473 backslash = FALSE;
7474 changed = TRUE;
7475 }
7476 else
7477 {
7478 if (*p == '?' || *p == '*' || *p == '[')
7479 {
7480 free (symbol);
7481 return NULL;
7482 }
7483
7484 *s++ = *p;
7485 backslash = *p == '\\';
7486 }
7487 }
7488
7489 if (changed)
7490 {
7491 *s = '\0';
7492 return symbol;
7493 }
7494 else
7495 {
7496 free (symbol);
7497 return pattern;
7498 }
7499 }
7500
7501 /* This is called for each variable name or match expression. NEW_NAME is
7502 the name of the symbol to match, or, if LITERAL_P is FALSE, a glob
7503 pattern to be matched against symbol names. */
7504
7505 struct bfd_elf_version_expr *
7506 lang_new_vers_pattern (struct bfd_elf_version_expr *orig,
7507 const char *new_name,
7508 const char *lang,
7509 bfd_boolean literal_p)
7510 {
7511 struct bfd_elf_version_expr *ret;
7512
7513 ret = (struct bfd_elf_version_expr *) xmalloc (sizeof *ret);
7514 ret->next = orig;
7515 ret->symver = 0;
7516 ret->script = 0;
7517 ret->literal = TRUE;
7518 ret->pattern = literal_p ? new_name : realsymbol (new_name);
7519 if (ret->pattern == NULL)
7520 {
7521 ret->pattern = new_name;
7522 ret->literal = FALSE;
7523 }
7524
7525 if (lang == NULL || strcasecmp (lang, "C") == 0)
7526 ret->mask = BFD_ELF_VERSION_C_TYPE;
7527 else if (strcasecmp (lang, "C++") == 0)
7528 ret->mask = BFD_ELF_VERSION_CXX_TYPE;
7529 else if (strcasecmp (lang, "Java") == 0)
7530 ret->mask = BFD_ELF_VERSION_JAVA_TYPE;
7531 else
7532 {
7533 einfo (_("%X%P: unknown language `%s' in version information\n"),
7534 lang);
7535 ret->mask = BFD_ELF_VERSION_C_TYPE;
7536 }
7537
7538 return ldemul_new_vers_pattern (ret);
7539 }
7540
7541 /* This is called for each set of variable names and match
7542 expressions. */
7543
7544 struct bfd_elf_version_tree *
7545 lang_new_vers_node (struct bfd_elf_version_expr *globals,
7546 struct bfd_elf_version_expr *locals)
7547 {
7548 struct bfd_elf_version_tree *ret;
7549
7550 ret = (struct bfd_elf_version_tree *) xcalloc (1, sizeof *ret);
7551 ret->globals.list = globals;
7552 ret->locals.list = locals;
7553 ret->match = lang_vers_match;
7554 ret->name_indx = (unsigned int) -1;
7555 return ret;
7556 }
7557
7558 /* This static variable keeps track of version indices. */
7559
7560 static int version_index;
7561
7562 static hashval_t
7563 version_expr_head_hash (const void *p)
7564 {
7565 const struct bfd_elf_version_expr *e =
7566 (const struct bfd_elf_version_expr *) p;
7567
7568 return htab_hash_string (e->pattern);
7569 }
7570
7571 static int
7572 version_expr_head_eq (const void *p1, const void *p2)
7573 {
7574 const struct bfd_elf_version_expr *e1 =
7575 (const struct bfd_elf_version_expr *) p1;
7576 const struct bfd_elf_version_expr *e2 =
7577 (const struct bfd_elf_version_expr *) p2;
7578
7579 return strcmp (e1->pattern, e2->pattern) == 0;
7580 }
7581
7582 static void
7583 lang_finalize_version_expr_head (struct bfd_elf_version_expr_head *head)
7584 {
7585 size_t count = 0;
7586 struct bfd_elf_version_expr *e, *next;
7587 struct bfd_elf_version_expr **list_loc, **remaining_loc;
7588
7589 for (e = head->list; e; e = e->next)
7590 {
7591 if (e->literal)
7592 count++;
7593 head->mask |= e->mask;
7594 }
7595
7596 if (count)
7597 {
7598 head->htab = htab_create (count * 2, version_expr_head_hash,
7599 version_expr_head_eq, NULL);
7600 list_loc = &head->list;
7601 remaining_loc = &head->remaining;
7602 for (e = head->list; e; e = next)
7603 {
7604 next = e->next;
7605 if (!e->literal)
7606 {
7607 *remaining_loc = e;
7608 remaining_loc = &e->next;
7609 }
7610 else
7611 {
7612 void **loc = htab_find_slot ((htab_t) head->htab, e, INSERT);
7613
7614 if (*loc)
7615 {
7616 struct bfd_elf_version_expr *e1, *last;
7617
7618 e1 = (struct bfd_elf_version_expr *) *loc;
7619 last = NULL;
7620 do
7621 {
7622 if (e1->mask == e->mask)
7623 {
7624 last = NULL;
7625 break;
7626 }
7627 last = e1;
7628 e1 = e1->next;
7629 }
7630 while (e1 && strcmp (e1->pattern, e->pattern) == 0);
7631
7632 if (last == NULL)
7633 {
7634 /* This is a duplicate. */
7635 /* FIXME: Memory leak. Sometimes pattern is not
7636 xmalloced alone, but in larger chunk of memory. */
7637 /* free (e->pattern); */
7638 free (e);
7639 }
7640 else
7641 {
7642 e->next = last->next;
7643 last->next = e;
7644 }
7645 }
7646 else
7647 {
7648 *loc = e;
7649 *list_loc = e;
7650 list_loc = &e->next;
7651 }
7652 }
7653 }
7654 *remaining_loc = NULL;
7655 *list_loc = head->remaining;
7656 }
7657 else
7658 head->remaining = head->list;
7659 }
7660
7661 /* This is called when we know the name and dependencies of the
7662 version. */
7663
7664 void
7665 lang_register_vers_node (const char *name,
7666 struct bfd_elf_version_tree *version,
7667 struct bfd_elf_version_deps *deps)
7668 {
7669 struct bfd_elf_version_tree *t, **pp;
7670 struct bfd_elf_version_expr *e1;
7671
7672 if (name == NULL)
7673 name = "";
7674
7675 if ((name[0] == '\0' && lang_elf_version_info != NULL)
7676 || (lang_elf_version_info && lang_elf_version_info->name[0] == '\0'))
7677 {
7678 einfo (_("%X%P: anonymous version tag cannot be combined"
7679 " with other version tags\n"));
7680 free (version);
7681 return;
7682 }
7683
7684 /* Make sure this node has a unique name. */
7685 for (t = lang_elf_version_info; t != NULL; t = t->next)
7686 if (strcmp (t->name, name) == 0)
7687 einfo (_("%X%P: duplicate version tag `%s'\n"), name);
7688
7689 lang_finalize_version_expr_head (&version->globals);
7690 lang_finalize_version_expr_head (&version->locals);
7691
7692 /* Check the global and local match names, and make sure there
7693 aren't any duplicates. */
7694
7695 for (e1 = version->globals.list; e1 != NULL; e1 = e1->next)
7696 {
7697 for (t = lang_elf_version_info; t != NULL; t = t->next)
7698 {
7699 struct bfd_elf_version_expr *e2;
7700
7701 if (t->locals.htab && e1->literal)
7702 {
7703 e2 = (struct bfd_elf_version_expr *)
7704 htab_find ((htab_t) t->locals.htab, e1);
7705 while (e2 && strcmp (e1->pattern, e2->pattern) == 0)
7706 {
7707 if (e1->mask == e2->mask)
7708 einfo (_("%X%P: duplicate expression `%s'"
7709 " in version information\n"), e1->pattern);
7710 e2 = e2->next;
7711 }
7712 }
7713 else if (!e1->literal)
7714 for (e2 = t->locals.remaining; e2 != NULL; e2 = e2->next)
7715 if (strcmp (e1->pattern, e2->pattern) == 0
7716 && e1->mask == e2->mask)
7717 einfo (_("%X%P: duplicate expression `%s'"
7718 " in version information\n"), e1->pattern);
7719 }
7720 }
7721
7722 for (e1 = version->locals.list; e1 != NULL; e1 = e1->next)
7723 {
7724 for (t = lang_elf_version_info; t != NULL; t = t->next)
7725 {
7726 struct bfd_elf_version_expr *e2;
7727
7728 if (t->globals.htab && e1->literal)
7729 {
7730 e2 = (struct bfd_elf_version_expr *)
7731 htab_find ((htab_t) t->globals.htab, e1);
7732 while (e2 && strcmp (e1->pattern, e2->pattern) == 0)
7733 {
7734 if (e1->mask == e2->mask)
7735 einfo (_("%X%P: duplicate expression `%s'"
7736 " in version information\n"),
7737 e1->pattern);
7738 e2 = e2->next;
7739 }
7740 }
7741 else if (!e1->literal)
7742 for (e2 = t->globals.remaining; e2 != NULL; e2 = e2->next)
7743 if (strcmp (e1->pattern, e2->pattern) == 0
7744 && e1->mask == e2->mask)
7745 einfo (_("%X%P: duplicate expression `%s'"
7746 " in version information\n"), e1->pattern);
7747 }
7748 }
7749
7750 version->deps = deps;
7751 version->name = name;
7752 if (name[0] != '\0')
7753 {
7754 ++version_index;
7755 version->vernum = version_index;
7756 }
7757 else
7758 version->vernum = 0;
7759
7760 for (pp = &lang_elf_version_info; *pp != NULL; pp = &(*pp)->next)
7761 ;
7762 *pp = version;
7763 }
7764
7765 /* This is called when we see a version dependency. */
7766
7767 struct bfd_elf_version_deps *
7768 lang_add_vers_depend (struct bfd_elf_version_deps *list, const char *name)
7769 {
7770 struct bfd_elf_version_deps *ret;
7771 struct bfd_elf_version_tree *t;
7772
7773 ret = (struct bfd_elf_version_deps *) xmalloc (sizeof *ret);
7774 ret->next = list;
7775
7776 for (t = lang_elf_version_info; t != NULL; t = t->next)
7777 {
7778 if (strcmp (t->name, name) == 0)
7779 {
7780 ret->version_needed = t;
7781 return ret;
7782 }
7783 }
7784
7785 einfo (_("%X%P: unable to find version dependency `%s'\n"), name);
7786
7787 ret->version_needed = NULL;
7788 return ret;
7789 }
7790
7791 static void
7792 lang_do_version_exports_section (void)
7793 {
7794 struct bfd_elf_version_expr *greg = NULL, *lreg;
7795
7796 LANG_FOR_EACH_INPUT_STATEMENT (is)
7797 {
7798 asection *sec = bfd_get_section_by_name (is->the_bfd, ".exports");
7799 char *contents, *p;
7800 bfd_size_type len;
7801
7802 if (sec == NULL)
7803 continue;
7804
7805 len = sec->size;
7806 contents = (char *) xmalloc (len);
7807 if (!bfd_get_section_contents (is->the_bfd, sec, contents, 0, len))
7808 einfo (_("%X%P: unable to read .exports section contents\n"), sec);
7809
7810 p = contents;
7811 while (p < contents + len)
7812 {
7813 greg = lang_new_vers_pattern (greg, p, NULL, FALSE);
7814 p = strchr (p, '\0') + 1;
7815 }
7816
7817 /* Do not free the contents, as we used them creating the regex. */
7818
7819 /* Do not include this section in the link. */
7820 sec->flags |= SEC_EXCLUDE | SEC_KEEP;
7821 }
7822
7823 lreg = lang_new_vers_pattern (NULL, "*", NULL, FALSE);
7824 lang_register_vers_node (command_line.version_exports_section,
7825 lang_new_vers_node (greg, lreg), NULL);
7826 }
7827
7828 void
7829 lang_add_unique (const char *name)
7830 {
7831 struct unique_sections *ent;
7832
7833 for (ent = unique_section_list; ent; ent = ent->next)
7834 if (strcmp (ent->name, name) == 0)
7835 return;
7836
7837 ent = (struct unique_sections *) xmalloc (sizeof *ent);
7838 ent->name = xstrdup (name);
7839 ent->next = unique_section_list;
7840 unique_section_list = ent;
7841 }
7842
7843 /* Append the list of dynamic symbols to the existing one. */
7844
7845 void
7846 lang_append_dynamic_list (struct bfd_elf_version_expr *dynamic)
7847 {
7848 if (link_info.dynamic_list)
7849 {
7850 struct bfd_elf_version_expr *tail;
7851 for (tail = dynamic; tail->next != NULL; tail = tail->next)
7852 ;
7853 tail->next = link_info.dynamic_list->head.list;
7854 link_info.dynamic_list->head.list = dynamic;
7855 }
7856 else
7857 {
7858 struct bfd_elf_dynamic_list *d;
7859
7860 d = (struct bfd_elf_dynamic_list *) xcalloc (1, sizeof *d);
7861 d->head.list = dynamic;
7862 d->match = lang_vers_match;
7863 link_info.dynamic_list = d;
7864 }
7865 }
7866
7867 /* Append the list of C++ typeinfo dynamic symbols to the existing
7868 one. */
7869
7870 void
7871 lang_append_dynamic_list_cpp_typeinfo (void)
7872 {
7873 const char * symbols [] =
7874 {
7875 "typeinfo name for*",
7876 "typeinfo for*"
7877 };
7878 struct bfd_elf_version_expr *dynamic = NULL;
7879 unsigned int i;
7880
7881 for (i = 0; i < ARRAY_SIZE (symbols); i++)
7882 dynamic = lang_new_vers_pattern (dynamic, symbols [i], "C++",
7883 FALSE);
7884
7885 lang_append_dynamic_list (dynamic);
7886 }
7887
7888 /* Append the list of C++ operator new and delete dynamic symbols to the
7889 existing one. */
7890
7891 void
7892 lang_append_dynamic_list_cpp_new (void)
7893 {
7894 const char * symbols [] =
7895 {
7896 "operator new*",
7897 "operator delete*"
7898 };
7899 struct bfd_elf_version_expr *dynamic = NULL;
7900 unsigned int i;
7901
7902 for (i = 0; i < ARRAY_SIZE (symbols); i++)
7903 dynamic = lang_new_vers_pattern (dynamic, symbols [i], "C++",
7904 FALSE);
7905
7906 lang_append_dynamic_list (dynamic);
7907 }
This page took 0.195377 seconds and 4 git commands to generate.