ELF: Properly group and place orphan note sections
[deliverable/binutils-gdb.git] / ld / ldlang.c
1 /* Linker command language support.
2 Copyright (C) 1991-2018 Free Software Foundation, Inc.
3
4 This file is part of the GNU Binutils.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include "bfd.h"
23 #include "libiberty.h"
24 #include "filenames.h"
25 #include "safe-ctype.h"
26 #include "obstack.h"
27 #include "bfdlink.h"
28
29 #include "ld.h"
30 #include "ldmain.h"
31 #include "ldexp.h"
32 #include "ldlang.h"
33 #include <ldgram.h>
34 #include "ldlex.h"
35 #include "ldmisc.h"
36 #include "ldctor.h"
37 #include "ldfile.h"
38 #include "ldemul.h"
39 #include "fnmatch.h"
40 #include "demangle.h"
41 #include "hashtab.h"
42 #include "elf-bfd.h"
43 #ifdef ENABLE_PLUGINS
44 #include "plugin.h"
45 #endif /* ENABLE_PLUGINS */
46
47 #ifndef offsetof
48 #define offsetof(TYPE, MEMBER) ((size_t) & (((TYPE*) 0)->MEMBER))
49 #endif
50
51 /* Convert between addresses in bytes and sizes in octets.
52 For currently supported targets, octets_per_byte is always a power
53 of two, so we can use shifts. */
54 #define TO_ADDR(X) ((X) >> opb_shift)
55 #define TO_SIZE(X) ((X) << opb_shift)
56
57 /* Local variables. */
58 static struct obstack stat_obstack;
59 static struct obstack map_obstack;
60
61 #define obstack_chunk_alloc xmalloc
62 #define obstack_chunk_free free
63 static const char *entry_symbol_default = "start";
64 static bfd_boolean map_head_is_link_order = FALSE;
65 static lang_output_section_statement_type *default_common_section;
66 static bfd_boolean map_option_f;
67 static bfd_vma print_dot;
68 static lang_input_statement_type *first_file;
69 static const char *current_target;
70 static lang_statement_list_type statement_list;
71 static lang_statement_list_type *stat_save[10];
72 static lang_statement_list_type **stat_save_ptr = &stat_save[0];
73 static struct unique_sections *unique_section_list;
74 static struct asneeded_minfo *asneeded_list_head;
75 static unsigned int opb_shift = 0;
76
77 /* Forward declarations. */
78 static void exp_init_os (etree_type *);
79 static lang_input_statement_type *lookup_name (const char *);
80 static void insert_undefined (const char *);
81 static bfd_boolean sort_def_symbol (struct bfd_link_hash_entry *, void *);
82 static void print_statement (lang_statement_union_type *,
83 lang_output_section_statement_type *);
84 static void print_statement_list (lang_statement_union_type *,
85 lang_output_section_statement_type *);
86 static void print_statements (void);
87 static void print_input_section (asection *, bfd_boolean);
88 static bfd_boolean lang_one_common (struct bfd_link_hash_entry *, void *);
89 static void lang_record_phdrs (void);
90 static void lang_do_version_exports_section (void);
91 static void lang_finalize_version_expr_head
92 (struct bfd_elf_version_expr_head *);
93 static void lang_do_memory_regions (void);
94
95 /* Exported variables. */
96 const char *output_target;
97 lang_output_section_statement_type *abs_output_section;
98 lang_statement_list_type lang_output_section_statement;
99 lang_statement_list_type *stat_ptr = &statement_list;
100 lang_statement_list_type file_chain = { NULL, NULL };
101 lang_statement_list_type input_file_chain;
102 struct bfd_sym_chain entry_symbol = { NULL, NULL };
103 const char *entry_section = ".text";
104 struct lang_input_statement_flags input_flags;
105 bfd_boolean entry_from_cmdline;
106 bfd_boolean undef_from_cmdline;
107 bfd_boolean lang_has_input_file = FALSE;
108 bfd_boolean had_output_filename = FALSE;
109 bfd_boolean lang_float_flag = FALSE;
110 bfd_boolean delete_output_file_on_failure = FALSE;
111 struct lang_phdr *lang_phdr_list;
112 struct lang_nocrossrefs *nocrossref_list;
113 struct asneeded_minfo **asneeded_list_tail;
114
115 /* Functions that traverse the linker script and might evaluate
116 DEFINED() need to increment this at the start of the traversal. */
117 int lang_statement_iteration = 0;
118
119 /* Return TRUE if the PATTERN argument is a wildcard pattern.
120 Although backslashes are treated specially if a pattern contains
121 wildcards, we do not consider the mere presence of a backslash to
122 be enough to cause the pattern to be treated as a wildcard.
123 That lets us handle DOS filenames more naturally. */
124 #define wildcardp(pattern) (strpbrk ((pattern), "?*[") != NULL)
125
126 #define new_stat(x, y) \
127 (x##_type *) new_statement (x##_enum, sizeof (x##_type), y)
128
129 #define outside_section_address(q) \
130 ((q)->output_offset + (q)->output_section->vma)
131
132 #define outside_symbol_address(q) \
133 ((q)->value + outside_section_address (q->section))
134
135 #define SECTION_NAME_MAP_LENGTH (16)
136
137 void *
138 stat_alloc (size_t size)
139 {
140 return obstack_alloc (&stat_obstack, size);
141 }
142
143 static int
144 name_match (const char *pattern, const char *name)
145 {
146 if (wildcardp (pattern))
147 return fnmatch (pattern, name, 0);
148 return strcmp (pattern, name);
149 }
150
151 /* If PATTERN is of the form archive:file, return a pointer to the
152 separator. If not, return NULL. */
153
154 static char *
155 archive_path (const char *pattern)
156 {
157 char *p = NULL;
158
159 if (link_info.path_separator == 0)
160 return p;
161
162 p = strchr (pattern, link_info.path_separator);
163 #ifdef HAVE_DOS_BASED_FILE_SYSTEM
164 if (p == NULL || link_info.path_separator != ':')
165 return p;
166
167 /* Assume a match on the second char is part of drive specifier,
168 as in "c:\silly.dos". */
169 if (p == pattern + 1 && ISALPHA (*pattern))
170 p = strchr (p + 1, link_info.path_separator);
171 #endif
172 return p;
173 }
174
175 /* Given that FILE_SPEC results in a non-NULL SEP result from archive_path,
176 return whether F matches FILE_SPEC. */
177
178 static bfd_boolean
179 input_statement_is_archive_path (const char *file_spec, char *sep,
180 lang_input_statement_type *f)
181 {
182 bfd_boolean match = FALSE;
183
184 if ((*(sep + 1) == 0
185 || name_match (sep + 1, f->filename) == 0)
186 && ((sep != file_spec)
187 == (f->the_bfd != NULL && f->the_bfd->my_archive != NULL)))
188 {
189 match = TRUE;
190
191 if (sep != file_spec)
192 {
193 const char *aname = f->the_bfd->my_archive->filename;
194 *sep = 0;
195 match = name_match (file_spec, aname) == 0;
196 *sep = link_info.path_separator;
197 }
198 }
199 return match;
200 }
201
202 static bfd_boolean
203 unique_section_p (const asection *sec,
204 const lang_output_section_statement_type *os)
205 {
206 struct unique_sections *unam;
207 const char *secnam;
208
209 if (!link_info.resolve_section_groups
210 && sec->owner != NULL
211 && bfd_is_group_section (sec->owner, sec))
212 return !(os != NULL
213 && strcmp (os->name, DISCARD_SECTION_NAME) == 0);
214
215 secnam = sec->name;
216 for (unam = unique_section_list; unam; unam = unam->next)
217 if (name_match (unam->name, secnam) == 0)
218 return TRUE;
219
220 return FALSE;
221 }
222
223 /* Generic traversal routines for finding matching sections. */
224
225 /* Return true if FILE matches a pattern in EXCLUDE_LIST, otherwise return
226 false. */
227
228 static bfd_boolean
229 walk_wild_file_in_exclude_list (struct name_list *exclude_list,
230 lang_input_statement_type *file)
231 {
232 struct name_list *list_tmp;
233
234 for (list_tmp = exclude_list;
235 list_tmp;
236 list_tmp = list_tmp->next)
237 {
238 char *p = archive_path (list_tmp->name);
239
240 if (p != NULL)
241 {
242 if (input_statement_is_archive_path (list_tmp->name, p, file))
243 return TRUE;
244 }
245
246 else if (name_match (list_tmp->name, file->filename) == 0)
247 return TRUE;
248
249 /* FIXME: Perhaps remove the following at some stage? Matching
250 unadorned archives like this was never documented and has
251 been superceded by the archive:path syntax. */
252 else if (file->the_bfd != NULL
253 && file->the_bfd->my_archive != NULL
254 && name_match (list_tmp->name,
255 file->the_bfd->my_archive->filename) == 0)
256 return TRUE;
257 }
258
259 return FALSE;
260 }
261
262 /* Try processing a section against a wildcard. This just calls
263 the callback unless the filename exclusion list is present
264 and excludes the file. It's hardly ever present so this
265 function is very fast. */
266
267 static void
268 walk_wild_consider_section (lang_wild_statement_type *ptr,
269 lang_input_statement_type *file,
270 asection *s,
271 struct wildcard_list *sec,
272 callback_t callback,
273 void *data)
274 {
275 /* Don't process sections from files which were excluded. */
276 if (walk_wild_file_in_exclude_list (sec->spec.exclude_name_list, file))
277 return;
278
279 (*callback) (ptr, sec, s, ptr->section_flag_list, file, data);
280 }
281
282 /* Lowest common denominator routine that can handle everything correctly,
283 but slowly. */
284
285 static void
286 walk_wild_section_general (lang_wild_statement_type *ptr,
287 lang_input_statement_type *file,
288 callback_t callback,
289 void *data)
290 {
291 asection *s;
292 struct wildcard_list *sec;
293
294 for (s = file->the_bfd->sections; s != NULL; s = s->next)
295 {
296 sec = ptr->section_list;
297 if (sec == NULL)
298 (*callback) (ptr, sec, s, ptr->section_flag_list, file, data);
299
300 while (sec != NULL)
301 {
302 bfd_boolean skip = FALSE;
303
304 if (sec->spec.name != NULL)
305 {
306 const char *sname = bfd_get_section_name (file->the_bfd, s);
307
308 skip = name_match (sec->spec.name, sname) != 0;
309 }
310
311 if (!skip)
312 walk_wild_consider_section (ptr, file, s, sec, callback, data);
313
314 sec = sec->next;
315 }
316 }
317 }
318
319 /* Routines to find a single section given its name. If there's more
320 than one section with that name, we report that. */
321
322 typedef struct
323 {
324 asection *found_section;
325 bfd_boolean multiple_sections_found;
326 } section_iterator_callback_data;
327
328 static bfd_boolean
329 section_iterator_callback (bfd *abfd ATTRIBUTE_UNUSED, asection *s, void *data)
330 {
331 section_iterator_callback_data *d = (section_iterator_callback_data *) data;
332
333 if (d->found_section != NULL)
334 {
335 d->multiple_sections_found = TRUE;
336 return TRUE;
337 }
338
339 d->found_section = s;
340 return FALSE;
341 }
342
343 static asection *
344 find_section (lang_input_statement_type *file,
345 struct wildcard_list *sec,
346 bfd_boolean *multiple_sections_found)
347 {
348 section_iterator_callback_data cb_data = { NULL, FALSE };
349
350 bfd_get_section_by_name_if (file->the_bfd, sec->spec.name,
351 section_iterator_callback, &cb_data);
352 *multiple_sections_found = cb_data.multiple_sections_found;
353 return cb_data.found_section;
354 }
355
356 /* Code for handling simple wildcards without going through fnmatch,
357 which can be expensive because of charset translations etc. */
358
359 /* A simple wild is a literal string followed by a single '*',
360 where the literal part is at least 4 characters long. */
361
362 static bfd_boolean
363 is_simple_wild (const char *name)
364 {
365 size_t len = strcspn (name, "*?[");
366 return len >= 4 && name[len] == '*' && name[len + 1] == '\0';
367 }
368
369 static bfd_boolean
370 match_simple_wild (const char *pattern, const char *name)
371 {
372 /* The first four characters of the pattern are guaranteed valid
373 non-wildcard characters. So we can go faster. */
374 if (pattern[0] != name[0] || pattern[1] != name[1]
375 || pattern[2] != name[2] || pattern[3] != name[3])
376 return FALSE;
377
378 pattern += 4;
379 name += 4;
380 while (*pattern != '*')
381 if (*name++ != *pattern++)
382 return FALSE;
383
384 return TRUE;
385 }
386
387 /* Return the numerical value of the init_priority attribute from
388 section name NAME. */
389
390 static unsigned long
391 get_init_priority (const char *name)
392 {
393 char *end;
394 unsigned long init_priority;
395
396 /* GCC uses the following section names for the init_priority
397 attribute with numerical values 101 and 65535 inclusive. A
398 lower value means a higher priority.
399
400 1: .init_array.NNNN/.fini_array.NNNN: Where NNNN is the
401 decimal numerical value of the init_priority attribute.
402 The order of execution in .init_array is forward and
403 .fini_array is backward.
404 2: .ctors.NNNN/.dtors.NNNN: Where NNNN is 65535 minus the
405 decimal numerical value of the init_priority attribute.
406 The order of execution in .ctors is backward and .dtors
407 is forward.
408 */
409 if (strncmp (name, ".init_array.", 12) == 0
410 || strncmp (name, ".fini_array.", 12) == 0)
411 {
412 init_priority = strtoul (name + 12, &end, 10);
413 return *end ? 0 : init_priority;
414 }
415 else if (strncmp (name, ".ctors.", 7) == 0
416 || strncmp (name, ".dtors.", 7) == 0)
417 {
418 init_priority = strtoul (name + 7, &end, 10);
419 return *end ? 0 : 65535 - init_priority;
420 }
421
422 return 0;
423 }
424
425 /* Compare sections ASEC and BSEC according to SORT. */
426
427 static int
428 compare_section (sort_type sort, asection *asec, asection *bsec)
429 {
430 int ret;
431 unsigned long ainit_priority, binit_priority;
432
433 switch (sort)
434 {
435 default:
436 abort ();
437
438 case by_init_priority:
439 ainit_priority
440 = get_init_priority (bfd_get_section_name (asec->owner, asec));
441 binit_priority
442 = get_init_priority (bfd_get_section_name (bsec->owner, bsec));
443 if (ainit_priority == 0 || binit_priority == 0)
444 goto sort_by_name;
445 ret = ainit_priority - binit_priority;
446 if (ret)
447 break;
448 else
449 goto sort_by_name;
450
451 case by_alignment_name:
452 ret = (bfd_section_alignment (bsec->owner, bsec)
453 - bfd_section_alignment (asec->owner, asec));
454 if (ret)
455 break;
456 /* Fall through. */
457
458 case by_name:
459 sort_by_name:
460 ret = strcmp (bfd_get_section_name (asec->owner, asec),
461 bfd_get_section_name (bsec->owner, bsec));
462 break;
463
464 case by_name_alignment:
465 ret = strcmp (bfd_get_section_name (asec->owner, asec),
466 bfd_get_section_name (bsec->owner, bsec));
467 if (ret)
468 break;
469 /* Fall through. */
470
471 case by_alignment:
472 ret = (bfd_section_alignment (bsec->owner, bsec)
473 - bfd_section_alignment (asec->owner, asec));
474 break;
475 }
476
477 return ret;
478 }
479
480 /* Build a Binary Search Tree to sort sections, unlike insertion sort
481 used in wild_sort(). BST is considerably faster if the number of
482 of sections are large. */
483
484 static lang_section_bst_type **
485 wild_sort_fast (lang_wild_statement_type *wild,
486 struct wildcard_list *sec,
487 lang_input_statement_type *file ATTRIBUTE_UNUSED,
488 asection *section)
489 {
490 lang_section_bst_type **tree;
491
492 tree = &wild->tree;
493 if (!wild->filenames_sorted
494 && (sec == NULL || sec->spec.sorted == none))
495 {
496 /* Append at the right end of tree. */
497 while (*tree)
498 tree = &((*tree)->right);
499 return tree;
500 }
501
502 while (*tree)
503 {
504 /* Find the correct node to append this section. */
505 if (compare_section (sec->spec.sorted, section, (*tree)->section) < 0)
506 tree = &((*tree)->left);
507 else
508 tree = &((*tree)->right);
509 }
510
511 return tree;
512 }
513
514 /* Use wild_sort_fast to build a BST to sort sections. */
515
516 static void
517 output_section_callback_fast (lang_wild_statement_type *ptr,
518 struct wildcard_list *sec,
519 asection *section,
520 struct flag_info *sflag_list ATTRIBUTE_UNUSED,
521 lang_input_statement_type *file,
522 void *output)
523 {
524 lang_section_bst_type *node;
525 lang_section_bst_type **tree;
526 lang_output_section_statement_type *os;
527
528 os = (lang_output_section_statement_type *) output;
529
530 if (unique_section_p (section, os))
531 return;
532
533 node = (lang_section_bst_type *) xmalloc (sizeof (lang_section_bst_type));
534 node->left = 0;
535 node->right = 0;
536 node->section = section;
537
538 tree = wild_sort_fast (ptr, sec, file, section);
539 if (tree != NULL)
540 *tree = node;
541 }
542
543 /* Convert a sorted sections' BST back to list form. */
544
545 static void
546 output_section_callback_tree_to_list (lang_wild_statement_type *ptr,
547 lang_section_bst_type *tree,
548 void *output)
549 {
550 if (tree->left)
551 output_section_callback_tree_to_list (ptr, tree->left, output);
552
553 lang_add_section (&ptr->children, tree->section, NULL,
554 (lang_output_section_statement_type *) output);
555
556 if (tree->right)
557 output_section_callback_tree_to_list (ptr, tree->right, output);
558
559 free (tree);
560 }
561
562 /* Specialized, optimized routines for handling different kinds of
563 wildcards */
564
565 static void
566 walk_wild_section_specs1_wild0 (lang_wild_statement_type *ptr,
567 lang_input_statement_type *file,
568 callback_t callback,
569 void *data)
570 {
571 /* We can just do a hash lookup for the section with the right name.
572 But if that lookup discovers more than one section with the name
573 (should be rare), we fall back to the general algorithm because
574 we would otherwise have to sort the sections to make sure they
575 get processed in the bfd's order. */
576 bfd_boolean multiple_sections_found;
577 struct wildcard_list *sec0 = ptr->handler_data[0];
578 asection *s0 = find_section (file, sec0, &multiple_sections_found);
579
580 if (multiple_sections_found)
581 walk_wild_section_general (ptr, file, callback, data);
582 else if (s0)
583 walk_wild_consider_section (ptr, file, s0, sec0, callback, data);
584 }
585
586 static void
587 walk_wild_section_specs1_wild1 (lang_wild_statement_type *ptr,
588 lang_input_statement_type *file,
589 callback_t callback,
590 void *data)
591 {
592 asection *s;
593 struct wildcard_list *wildsec0 = ptr->handler_data[0];
594
595 for (s = file->the_bfd->sections; s != NULL; s = s->next)
596 {
597 const char *sname = bfd_get_section_name (file->the_bfd, s);
598 bfd_boolean skip = !match_simple_wild (wildsec0->spec.name, sname);
599
600 if (!skip)
601 walk_wild_consider_section (ptr, file, s, wildsec0, callback, data);
602 }
603 }
604
605 static void
606 walk_wild_section_specs2_wild1 (lang_wild_statement_type *ptr,
607 lang_input_statement_type *file,
608 callback_t callback,
609 void *data)
610 {
611 asection *s;
612 struct wildcard_list *sec0 = ptr->handler_data[0];
613 struct wildcard_list *wildsec1 = ptr->handler_data[1];
614 bfd_boolean multiple_sections_found;
615 asection *s0 = find_section (file, sec0, &multiple_sections_found);
616
617 if (multiple_sections_found)
618 {
619 walk_wild_section_general (ptr, file, callback, data);
620 return;
621 }
622
623 /* Note that if the section was not found, s0 is NULL and
624 we'll simply never succeed the s == s0 test below. */
625 for (s = file->the_bfd->sections; s != NULL; s = s->next)
626 {
627 /* Recall that in this code path, a section cannot satisfy more
628 than one spec, so if s == s0 then it cannot match
629 wildspec1. */
630 if (s == s0)
631 walk_wild_consider_section (ptr, file, s, sec0, callback, data);
632 else
633 {
634 const char *sname = bfd_get_section_name (file->the_bfd, s);
635 bfd_boolean skip = !match_simple_wild (wildsec1->spec.name, sname);
636
637 if (!skip)
638 walk_wild_consider_section (ptr, file, s, wildsec1, callback,
639 data);
640 }
641 }
642 }
643
644 static void
645 walk_wild_section_specs3_wild2 (lang_wild_statement_type *ptr,
646 lang_input_statement_type *file,
647 callback_t callback,
648 void *data)
649 {
650 asection *s;
651 struct wildcard_list *sec0 = ptr->handler_data[0];
652 struct wildcard_list *wildsec1 = ptr->handler_data[1];
653 struct wildcard_list *wildsec2 = ptr->handler_data[2];
654 bfd_boolean multiple_sections_found;
655 asection *s0 = find_section (file, sec0, &multiple_sections_found);
656
657 if (multiple_sections_found)
658 {
659 walk_wild_section_general (ptr, file, callback, data);
660 return;
661 }
662
663 for (s = file->the_bfd->sections; s != NULL; s = s->next)
664 {
665 if (s == s0)
666 walk_wild_consider_section (ptr, file, s, sec0, callback, data);
667 else
668 {
669 const char *sname = bfd_get_section_name (file->the_bfd, s);
670 bfd_boolean skip = !match_simple_wild (wildsec1->spec.name, sname);
671
672 if (!skip)
673 walk_wild_consider_section (ptr, file, s, wildsec1, callback, data);
674 else
675 {
676 skip = !match_simple_wild (wildsec2->spec.name, sname);
677 if (!skip)
678 walk_wild_consider_section (ptr, file, s, wildsec2, callback,
679 data);
680 }
681 }
682 }
683 }
684
685 static void
686 walk_wild_section_specs4_wild2 (lang_wild_statement_type *ptr,
687 lang_input_statement_type *file,
688 callback_t callback,
689 void *data)
690 {
691 asection *s;
692 struct wildcard_list *sec0 = ptr->handler_data[0];
693 struct wildcard_list *sec1 = ptr->handler_data[1];
694 struct wildcard_list *wildsec2 = ptr->handler_data[2];
695 struct wildcard_list *wildsec3 = ptr->handler_data[3];
696 bfd_boolean multiple_sections_found;
697 asection *s0 = find_section (file, sec0, &multiple_sections_found), *s1;
698
699 if (multiple_sections_found)
700 {
701 walk_wild_section_general (ptr, file, callback, data);
702 return;
703 }
704
705 s1 = find_section (file, sec1, &multiple_sections_found);
706 if (multiple_sections_found)
707 {
708 walk_wild_section_general (ptr, file, callback, data);
709 return;
710 }
711
712 for (s = file->the_bfd->sections; s != NULL; s = s->next)
713 {
714 if (s == s0)
715 walk_wild_consider_section (ptr, file, s, sec0, callback, data);
716 else
717 if (s == s1)
718 walk_wild_consider_section (ptr, file, s, sec1, callback, data);
719 else
720 {
721 const char *sname = bfd_get_section_name (file->the_bfd, s);
722 bfd_boolean skip = !match_simple_wild (wildsec2->spec.name,
723 sname);
724
725 if (!skip)
726 walk_wild_consider_section (ptr, file, s, wildsec2, callback,
727 data);
728 else
729 {
730 skip = !match_simple_wild (wildsec3->spec.name, sname);
731 if (!skip)
732 walk_wild_consider_section (ptr, file, s, wildsec3,
733 callback, data);
734 }
735 }
736 }
737 }
738
739 static void
740 walk_wild_section (lang_wild_statement_type *ptr,
741 lang_input_statement_type *file,
742 callback_t callback,
743 void *data)
744 {
745 if (file->flags.just_syms)
746 return;
747
748 (*ptr->walk_wild_section_handler) (ptr, file, callback, data);
749 }
750
751 /* Returns TRUE when name1 is a wildcard spec that might match
752 something name2 can match. We're conservative: we return FALSE
753 only if the prefixes of name1 and name2 are different up to the
754 first wildcard character. */
755
756 static bfd_boolean
757 wild_spec_can_overlap (const char *name1, const char *name2)
758 {
759 size_t prefix1_len = strcspn (name1, "?*[");
760 size_t prefix2_len = strcspn (name2, "?*[");
761 size_t min_prefix_len;
762
763 /* Note that if there is no wildcard character, then we treat the
764 terminating 0 as part of the prefix. Thus ".text" won't match
765 ".text." or ".text.*", for example. */
766 if (name1[prefix1_len] == '\0')
767 prefix1_len++;
768 if (name2[prefix2_len] == '\0')
769 prefix2_len++;
770
771 min_prefix_len = prefix1_len < prefix2_len ? prefix1_len : prefix2_len;
772
773 return memcmp (name1, name2, min_prefix_len) == 0;
774 }
775
776 /* Select specialized code to handle various kinds of wildcard
777 statements. */
778
779 static void
780 analyze_walk_wild_section_handler (lang_wild_statement_type *ptr)
781 {
782 int sec_count = 0;
783 int wild_name_count = 0;
784 struct wildcard_list *sec;
785 int signature;
786 int data_counter;
787
788 ptr->walk_wild_section_handler = walk_wild_section_general;
789 ptr->handler_data[0] = NULL;
790 ptr->handler_data[1] = NULL;
791 ptr->handler_data[2] = NULL;
792 ptr->handler_data[3] = NULL;
793 ptr->tree = NULL;
794
795 /* Count how many wildcard_specs there are, and how many of those
796 actually use wildcards in the name. Also, bail out if any of the
797 wildcard names are NULL. (Can this actually happen?
798 walk_wild_section used to test for it.) And bail out if any
799 of the wildcards are more complex than a simple string
800 ending in a single '*'. */
801 for (sec = ptr->section_list; sec != NULL; sec = sec->next)
802 {
803 ++sec_count;
804 if (sec->spec.name == NULL)
805 return;
806 if (wildcardp (sec->spec.name))
807 {
808 ++wild_name_count;
809 if (!is_simple_wild (sec->spec.name))
810 return;
811 }
812 }
813
814 /* The zero-spec case would be easy to optimize but it doesn't
815 happen in practice. Likewise, more than 4 specs doesn't
816 happen in practice. */
817 if (sec_count == 0 || sec_count > 4)
818 return;
819
820 /* Check that no two specs can match the same section. */
821 for (sec = ptr->section_list; sec != NULL; sec = sec->next)
822 {
823 struct wildcard_list *sec2;
824 for (sec2 = sec->next; sec2 != NULL; sec2 = sec2->next)
825 {
826 if (wild_spec_can_overlap (sec->spec.name, sec2->spec.name))
827 return;
828 }
829 }
830
831 signature = (sec_count << 8) + wild_name_count;
832 switch (signature)
833 {
834 case 0x0100:
835 ptr->walk_wild_section_handler = walk_wild_section_specs1_wild0;
836 break;
837 case 0x0101:
838 ptr->walk_wild_section_handler = walk_wild_section_specs1_wild1;
839 break;
840 case 0x0201:
841 ptr->walk_wild_section_handler = walk_wild_section_specs2_wild1;
842 break;
843 case 0x0302:
844 ptr->walk_wild_section_handler = walk_wild_section_specs3_wild2;
845 break;
846 case 0x0402:
847 ptr->walk_wild_section_handler = walk_wild_section_specs4_wild2;
848 break;
849 default:
850 return;
851 }
852
853 /* Now fill the data array with pointers to the specs, first the
854 specs with non-wildcard names, then the specs with wildcard
855 names. It's OK to process the specs in different order from the
856 given order, because we've already determined that no section
857 will match more than one spec. */
858 data_counter = 0;
859 for (sec = ptr->section_list; sec != NULL; sec = sec->next)
860 if (!wildcardp (sec->spec.name))
861 ptr->handler_data[data_counter++] = sec;
862 for (sec = ptr->section_list; sec != NULL; sec = sec->next)
863 if (wildcardp (sec->spec.name))
864 ptr->handler_data[data_counter++] = sec;
865 }
866
867 /* Handle a wild statement for a single file F. */
868
869 static void
870 walk_wild_file (lang_wild_statement_type *s,
871 lang_input_statement_type *f,
872 callback_t callback,
873 void *data)
874 {
875 if (walk_wild_file_in_exclude_list (s->exclude_name_list, f))
876 return;
877
878 if (f->the_bfd == NULL
879 || !bfd_check_format (f->the_bfd, bfd_archive))
880 walk_wild_section (s, f, callback, data);
881 else
882 {
883 bfd *member;
884
885 /* This is an archive file. We must map each member of the
886 archive separately. */
887 member = bfd_openr_next_archived_file (f->the_bfd, NULL);
888 while (member != NULL)
889 {
890 /* When lookup_name is called, it will call the add_symbols
891 entry point for the archive. For each element of the
892 archive which is included, BFD will call ldlang_add_file,
893 which will set the usrdata field of the member to the
894 lang_input_statement. */
895 if (member->usrdata != NULL)
896 {
897 walk_wild_section (s,
898 (lang_input_statement_type *) member->usrdata,
899 callback, data);
900 }
901
902 member = bfd_openr_next_archived_file (f->the_bfd, member);
903 }
904 }
905 }
906
907 static void
908 walk_wild (lang_wild_statement_type *s, callback_t callback, void *data)
909 {
910 const char *file_spec = s->filename;
911 char *p;
912
913 if (file_spec == NULL)
914 {
915 /* Perform the iteration over all files in the list. */
916 LANG_FOR_EACH_INPUT_STATEMENT (f)
917 {
918 walk_wild_file (s, f, callback, data);
919 }
920 }
921 else if ((p = archive_path (file_spec)) != NULL)
922 {
923 LANG_FOR_EACH_INPUT_STATEMENT (f)
924 {
925 if (input_statement_is_archive_path (file_spec, p, f))
926 walk_wild_file (s, f, callback, data);
927 }
928 }
929 else if (wildcardp (file_spec))
930 {
931 LANG_FOR_EACH_INPUT_STATEMENT (f)
932 {
933 if (fnmatch (file_spec, f->filename, 0) == 0)
934 walk_wild_file (s, f, callback, data);
935 }
936 }
937 else
938 {
939 lang_input_statement_type *f;
940
941 /* Perform the iteration over a single file. */
942 f = lookup_name (file_spec);
943 if (f)
944 walk_wild_file (s, f, callback, data);
945 }
946 }
947
948 /* lang_for_each_statement walks the parse tree and calls the provided
949 function for each node, except those inside output section statements
950 with constraint set to -1. */
951
952 void
953 lang_for_each_statement_worker (void (*func) (lang_statement_union_type *),
954 lang_statement_union_type *s)
955 {
956 for (; s != NULL; s = s->header.next)
957 {
958 func (s);
959
960 switch (s->header.type)
961 {
962 case lang_constructors_statement_enum:
963 lang_for_each_statement_worker (func, constructor_list.head);
964 break;
965 case lang_output_section_statement_enum:
966 if (s->output_section_statement.constraint != -1)
967 lang_for_each_statement_worker
968 (func, s->output_section_statement.children.head);
969 break;
970 case lang_wild_statement_enum:
971 lang_for_each_statement_worker (func,
972 s->wild_statement.children.head);
973 break;
974 case lang_group_statement_enum:
975 lang_for_each_statement_worker (func,
976 s->group_statement.children.head);
977 break;
978 case lang_data_statement_enum:
979 case lang_reloc_statement_enum:
980 case lang_object_symbols_statement_enum:
981 case lang_output_statement_enum:
982 case lang_target_statement_enum:
983 case lang_input_section_enum:
984 case lang_input_statement_enum:
985 case lang_assignment_statement_enum:
986 case lang_padding_statement_enum:
987 case lang_address_statement_enum:
988 case lang_fill_statement_enum:
989 case lang_insert_statement_enum:
990 break;
991 default:
992 FAIL ();
993 break;
994 }
995 }
996 }
997
998 void
999 lang_for_each_statement (void (*func) (lang_statement_union_type *))
1000 {
1001 lang_for_each_statement_worker (func, statement_list.head);
1002 }
1003
1004 /*----------------------------------------------------------------------*/
1005
1006 void
1007 lang_list_init (lang_statement_list_type *list)
1008 {
1009 list->head = NULL;
1010 list->tail = &list->head;
1011 }
1012
1013 void
1014 push_stat_ptr (lang_statement_list_type *new_ptr)
1015 {
1016 if (stat_save_ptr >= stat_save + sizeof (stat_save) / sizeof (stat_save[0]))
1017 abort ();
1018 *stat_save_ptr++ = stat_ptr;
1019 stat_ptr = new_ptr;
1020 }
1021
1022 void
1023 pop_stat_ptr (void)
1024 {
1025 if (stat_save_ptr <= stat_save)
1026 abort ();
1027 stat_ptr = *--stat_save_ptr;
1028 }
1029
1030 /* Build a new statement node for the parse tree. */
1031
1032 static lang_statement_union_type *
1033 new_statement (enum statement_enum type,
1034 size_t size,
1035 lang_statement_list_type *list)
1036 {
1037 lang_statement_union_type *new_stmt;
1038
1039 new_stmt = (lang_statement_union_type *) stat_alloc (size);
1040 new_stmt->header.type = type;
1041 new_stmt->header.next = NULL;
1042 lang_statement_append (list, new_stmt, &new_stmt->header.next);
1043 return new_stmt;
1044 }
1045
1046 /* Build a new input file node for the language. There are several
1047 ways in which we treat an input file, eg, we only look at symbols,
1048 or prefix it with a -l etc.
1049
1050 We can be supplied with requests for input files more than once;
1051 they may, for example be split over several lines like foo.o(.text)
1052 foo.o(.data) etc, so when asked for a file we check that we haven't
1053 got it already so we don't duplicate the bfd. */
1054
1055 static lang_input_statement_type *
1056 new_afile (const char *name,
1057 lang_input_file_enum_type file_type,
1058 const char *target,
1059 bfd_boolean add_to_list)
1060 {
1061 lang_input_statement_type *p;
1062
1063 lang_has_input_file = TRUE;
1064
1065 if (add_to_list)
1066 p = (lang_input_statement_type *) new_stat (lang_input_statement, stat_ptr);
1067 else
1068 {
1069 p = (lang_input_statement_type *)
1070 stat_alloc (sizeof (lang_input_statement_type));
1071 p->header.type = lang_input_statement_enum;
1072 p->header.next = NULL;
1073 }
1074
1075 memset (&p->the_bfd, 0,
1076 sizeof (*p) - offsetof (lang_input_statement_type, the_bfd));
1077 p->target = target;
1078 p->flags.dynamic = input_flags.dynamic;
1079 p->flags.add_DT_NEEDED_for_dynamic = input_flags.add_DT_NEEDED_for_dynamic;
1080 p->flags.add_DT_NEEDED_for_regular = input_flags.add_DT_NEEDED_for_regular;
1081 p->flags.whole_archive = input_flags.whole_archive;
1082 p->flags.sysrooted = input_flags.sysrooted;
1083
1084 switch (file_type)
1085 {
1086 case lang_input_file_is_symbols_only_enum:
1087 p->filename = name;
1088 p->local_sym_name = name;
1089 p->flags.real = TRUE;
1090 p->flags.just_syms = TRUE;
1091 break;
1092 case lang_input_file_is_fake_enum:
1093 p->filename = name;
1094 p->local_sym_name = name;
1095 break;
1096 case lang_input_file_is_l_enum:
1097 if (name[0] == ':' && name[1] != '\0')
1098 {
1099 p->filename = name + 1;
1100 p->flags.full_name_provided = TRUE;
1101 }
1102 else
1103 p->filename = name;
1104 p->local_sym_name = concat ("-l", name, (const char *) NULL);
1105 p->flags.maybe_archive = TRUE;
1106 p->flags.real = TRUE;
1107 p->flags.search_dirs = TRUE;
1108 break;
1109 case lang_input_file_is_marker_enum:
1110 p->filename = name;
1111 p->local_sym_name = name;
1112 p->flags.search_dirs = TRUE;
1113 break;
1114 case lang_input_file_is_search_file_enum:
1115 p->filename = name;
1116 p->local_sym_name = name;
1117 p->flags.real = TRUE;
1118 p->flags.search_dirs = TRUE;
1119 break;
1120 case lang_input_file_is_file_enum:
1121 p->filename = name;
1122 p->local_sym_name = name;
1123 p->flags.real = TRUE;
1124 break;
1125 default:
1126 FAIL ();
1127 }
1128
1129 lang_statement_append (&input_file_chain,
1130 (lang_statement_union_type *) p,
1131 &p->next_real_file);
1132 return p;
1133 }
1134
1135 lang_input_statement_type *
1136 lang_add_input_file (const char *name,
1137 lang_input_file_enum_type file_type,
1138 const char *target)
1139 {
1140 if (name != NULL
1141 && (*name == '=' || CONST_STRNEQ (name, "$SYSROOT")))
1142 {
1143 lang_input_statement_type *ret;
1144 char *sysrooted_name
1145 = concat (ld_sysroot,
1146 name + (*name == '=' ? 1 : strlen ("$SYSROOT")),
1147 (const char *) NULL);
1148
1149 /* We've now forcibly prepended the sysroot, making the input
1150 file independent of the context. Therefore, temporarily
1151 force a non-sysrooted context for this statement, so it won't
1152 get the sysroot prepended again when opened. (N.B. if it's a
1153 script, any child nodes with input files starting with "/"
1154 will be handled as "sysrooted" as they'll be found to be
1155 within the sysroot subdirectory.) */
1156 unsigned int outer_sysrooted = input_flags.sysrooted;
1157 input_flags.sysrooted = 0;
1158 ret = new_afile (sysrooted_name, file_type, target, TRUE);
1159 input_flags.sysrooted = outer_sysrooted;
1160 return ret;
1161 }
1162
1163 return new_afile (name, file_type, target, TRUE);
1164 }
1165
1166 struct out_section_hash_entry
1167 {
1168 struct bfd_hash_entry root;
1169 lang_statement_union_type s;
1170 };
1171
1172 /* The hash table. */
1173
1174 static struct bfd_hash_table output_section_statement_table;
1175
1176 /* Support routines for the hash table used by lang_output_section_find,
1177 initialize the table, fill in an entry and remove the table. */
1178
1179 static struct bfd_hash_entry *
1180 output_section_statement_newfunc (struct bfd_hash_entry *entry,
1181 struct bfd_hash_table *table,
1182 const char *string)
1183 {
1184 lang_output_section_statement_type **nextp;
1185 struct out_section_hash_entry *ret;
1186
1187 if (entry == NULL)
1188 {
1189 entry = (struct bfd_hash_entry *) bfd_hash_allocate (table,
1190 sizeof (*ret));
1191 if (entry == NULL)
1192 return entry;
1193 }
1194
1195 entry = bfd_hash_newfunc (entry, table, string);
1196 if (entry == NULL)
1197 return entry;
1198
1199 ret = (struct out_section_hash_entry *) entry;
1200 memset (&ret->s, 0, sizeof (ret->s));
1201 ret->s.header.type = lang_output_section_statement_enum;
1202 ret->s.output_section_statement.subsection_alignment = NULL;
1203 ret->s.output_section_statement.section_alignment = NULL;
1204 ret->s.output_section_statement.block_value = 1;
1205 lang_list_init (&ret->s.output_section_statement.children);
1206 lang_statement_append (stat_ptr, &ret->s, &ret->s.header.next);
1207
1208 /* For every output section statement added to the list, except the
1209 first one, lang_output_section_statement.tail points to the "next"
1210 field of the last element of the list. */
1211 if (lang_output_section_statement.head != NULL)
1212 ret->s.output_section_statement.prev
1213 = ((lang_output_section_statement_type *)
1214 ((char *) lang_output_section_statement.tail
1215 - offsetof (lang_output_section_statement_type, next)));
1216
1217 /* GCC's strict aliasing rules prevent us from just casting the
1218 address, so we store the pointer in a variable and cast that
1219 instead. */
1220 nextp = &ret->s.output_section_statement.next;
1221 lang_statement_append (&lang_output_section_statement,
1222 &ret->s,
1223 (lang_statement_union_type **) nextp);
1224 return &ret->root;
1225 }
1226
1227 static void
1228 output_section_statement_table_init (void)
1229 {
1230 if (!bfd_hash_table_init_n (&output_section_statement_table,
1231 output_section_statement_newfunc,
1232 sizeof (struct out_section_hash_entry),
1233 61))
1234 einfo (_("%F%P: can not create hash table: %E\n"));
1235 }
1236
1237 static void
1238 output_section_statement_table_free (void)
1239 {
1240 bfd_hash_table_free (&output_section_statement_table);
1241 }
1242
1243 /* Build enough state so that the parser can build its tree. */
1244
1245 void
1246 lang_init (void)
1247 {
1248 obstack_begin (&stat_obstack, 1000);
1249
1250 stat_ptr = &statement_list;
1251
1252 output_section_statement_table_init ();
1253
1254 lang_list_init (stat_ptr);
1255
1256 lang_list_init (&input_file_chain);
1257 lang_list_init (&lang_output_section_statement);
1258 lang_list_init (&file_chain);
1259 first_file = lang_add_input_file (NULL, lang_input_file_is_marker_enum,
1260 NULL);
1261 abs_output_section =
1262 lang_output_section_statement_lookup (BFD_ABS_SECTION_NAME, 0, TRUE);
1263
1264 abs_output_section->bfd_section = bfd_abs_section_ptr;
1265
1266 asneeded_list_head = NULL;
1267 asneeded_list_tail = &asneeded_list_head;
1268 }
1269
1270 void
1271 lang_finish (void)
1272 {
1273 output_section_statement_table_free ();
1274 }
1275
1276 /*----------------------------------------------------------------------
1277 A region is an area of memory declared with the
1278 MEMORY { name:org=exp, len=exp ... }
1279 syntax.
1280
1281 We maintain a list of all the regions here.
1282
1283 If no regions are specified in the script, then the default is used
1284 which is created when looked up to be the entire data space.
1285
1286 If create is true we are creating a region inside a MEMORY block.
1287 In this case it is probably an error to create a region that has
1288 already been created. If we are not inside a MEMORY block it is
1289 dubious to use an undeclared region name (except DEFAULT_MEMORY_REGION)
1290 and so we issue a warning.
1291
1292 Each region has at least one name. The first name is either
1293 DEFAULT_MEMORY_REGION or the name given in the MEMORY block. You can add
1294 alias names to an existing region within a script with
1295 REGION_ALIAS (alias, region_name). Each name corresponds to at most one
1296 region. */
1297
1298 static lang_memory_region_type *lang_memory_region_list;
1299 static lang_memory_region_type **lang_memory_region_list_tail
1300 = &lang_memory_region_list;
1301
1302 lang_memory_region_type *
1303 lang_memory_region_lookup (const char *const name, bfd_boolean create)
1304 {
1305 lang_memory_region_name *n;
1306 lang_memory_region_type *r;
1307 lang_memory_region_type *new_region;
1308
1309 /* NAME is NULL for LMA memspecs if no region was specified. */
1310 if (name == NULL)
1311 return NULL;
1312
1313 for (r = lang_memory_region_list; r != NULL; r = r->next)
1314 for (n = &r->name_list; n != NULL; n = n->next)
1315 if (strcmp (n->name, name) == 0)
1316 {
1317 if (create)
1318 einfo (_("%P:%pS: warning: redeclaration of memory region `%s'\n"),
1319 NULL, name);
1320 return r;
1321 }
1322
1323 if (!create && strcmp (name, DEFAULT_MEMORY_REGION))
1324 einfo (_("%P:%pS: warning: memory region `%s' not declared\n"),
1325 NULL, name);
1326
1327 new_region = (lang_memory_region_type *)
1328 stat_alloc (sizeof (lang_memory_region_type));
1329
1330 new_region->name_list.name = xstrdup (name);
1331 new_region->name_list.next = NULL;
1332 new_region->next = NULL;
1333 new_region->origin_exp = NULL;
1334 new_region->origin = 0;
1335 new_region->length_exp = NULL;
1336 new_region->length = ~(bfd_size_type) 0;
1337 new_region->current = 0;
1338 new_region->last_os = NULL;
1339 new_region->flags = 0;
1340 new_region->not_flags = 0;
1341 new_region->had_full_message = FALSE;
1342
1343 *lang_memory_region_list_tail = new_region;
1344 lang_memory_region_list_tail = &new_region->next;
1345
1346 return new_region;
1347 }
1348
1349 void
1350 lang_memory_region_alias (const char *alias, const char *region_name)
1351 {
1352 lang_memory_region_name *n;
1353 lang_memory_region_type *r;
1354 lang_memory_region_type *region;
1355
1356 /* The default region must be unique. This ensures that it is not necessary
1357 to iterate through the name list if someone wants the check if a region is
1358 the default memory region. */
1359 if (strcmp (region_name, DEFAULT_MEMORY_REGION) == 0
1360 || strcmp (alias, DEFAULT_MEMORY_REGION) == 0)
1361 einfo (_("%F%P:%pS: error: alias for default memory region\n"), NULL);
1362
1363 /* Look for the target region and check if the alias is not already
1364 in use. */
1365 region = NULL;
1366 for (r = lang_memory_region_list; r != NULL; r = r->next)
1367 for (n = &r->name_list; n != NULL; n = n->next)
1368 {
1369 if (region == NULL && strcmp (n->name, region_name) == 0)
1370 region = r;
1371 if (strcmp (n->name, alias) == 0)
1372 einfo (_("%F%P:%pS: error: redefinition of memory region "
1373 "alias `%s'\n"),
1374 NULL, alias);
1375 }
1376
1377 /* Check if the target region exists. */
1378 if (region == NULL)
1379 einfo (_("%F%P:%pS: error: memory region `%s' "
1380 "for alias `%s' does not exist\n"),
1381 NULL, region_name, alias);
1382
1383 /* Add alias to region name list. */
1384 n = (lang_memory_region_name *) stat_alloc (sizeof (lang_memory_region_name));
1385 n->name = xstrdup (alias);
1386 n->next = region->name_list.next;
1387 region->name_list.next = n;
1388 }
1389
1390 static lang_memory_region_type *
1391 lang_memory_default (asection *section)
1392 {
1393 lang_memory_region_type *p;
1394
1395 flagword sec_flags = section->flags;
1396
1397 /* Override SEC_DATA to mean a writable section. */
1398 if ((sec_flags & (SEC_ALLOC | SEC_READONLY | SEC_CODE)) == SEC_ALLOC)
1399 sec_flags |= SEC_DATA;
1400
1401 for (p = lang_memory_region_list; p != NULL; p = p->next)
1402 {
1403 if ((p->flags & sec_flags) != 0
1404 && (p->not_flags & sec_flags) == 0)
1405 {
1406 return p;
1407 }
1408 }
1409 return lang_memory_region_lookup (DEFAULT_MEMORY_REGION, FALSE);
1410 }
1411
1412 /* Get the output section statement directly from the userdata. */
1413
1414 lang_output_section_statement_type *
1415 lang_output_section_get (const asection *output_section)
1416 {
1417 return get_userdata (output_section);
1418 }
1419
1420 /* Find or create an output_section_statement with the given NAME.
1421 If CONSTRAINT is non-zero match one with that constraint, otherwise
1422 match any non-negative constraint. If CREATE, always make a
1423 new output_section_statement for SPECIAL CONSTRAINT. */
1424
1425 lang_output_section_statement_type *
1426 lang_output_section_statement_lookup (const char *name,
1427 int constraint,
1428 bfd_boolean create)
1429 {
1430 struct out_section_hash_entry *entry;
1431
1432 entry = ((struct out_section_hash_entry *)
1433 bfd_hash_lookup (&output_section_statement_table, name,
1434 create, FALSE));
1435 if (entry == NULL)
1436 {
1437 if (create)
1438 einfo (_("%F%P: failed creating section `%s': %E\n"), name);
1439 return NULL;
1440 }
1441
1442 if (entry->s.output_section_statement.name != NULL)
1443 {
1444 /* We have a section of this name, but it might not have the correct
1445 constraint. */
1446 struct out_section_hash_entry *last_ent;
1447
1448 name = entry->s.output_section_statement.name;
1449 if (create && constraint == SPECIAL)
1450 /* Not traversing to the end reverses the order of the second
1451 and subsequent SPECIAL sections in the hash table chain,
1452 but that shouldn't matter. */
1453 last_ent = entry;
1454 else
1455 do
1456 {
1457 if (constraint == entry->s.output_section_statement.constraint
1458 || (constraint == 0
1459 && entry->s.output_section_statement.constraint >= 0))
1460 return &entry->s.output_section_statement;
1461 last_ent = entry;
1462 entry = (struct out_section_hash_entry *) entry->root.next;
1463 }
1464 while (entry != NULL
1465 && name == entry->s.output_section_statement.name);
1466
1467 if (!create)
1468 return NULL;
1469
1470 entry
1471 = ((struct out_section_hash_entry *)
1472 output_section_statement_newfunc (NULL,
1473 &output_section_statement_table,
1474 name));
1475 if (entry == NULL)
1476 {
1477 einfo (_("%F%P: failed creating section `%s': %E\n"), name);
1478 return NULL;
1479 }
1480 entry->root = last_ent->root;
1481 last_ent->root.next = &entry->root;
1482 }
1483
1484 entry->s.output_section_statement.name = name;
1485 entry->s.output_section_statement.constraint = constraint;
1486 return &entry->s.output_section_statement;
1487 }
1488
1489 /* Find the next output_section_statement with the same name as OS.
1490 If CONSTRAINT is non-zero, find one with that constraint otherwise
1491 match any non-negative constraint. */
1492
1493 lang_output_section_statement_type *
1494 next_matching_output_section_statement (lang_output_section_statement_type *os,
1495 int constraint)
1496 {
1497 /* All output_section_statements are actually part of a
1498 struct out_section_hash_entry. */
1499 struct out_section_hash_entry *entry = (struct out_section_hash_entry *)
1500 ((char *) os
1501 - offsetof (struct out_section_hash_entry, s.output_section_statement));
1502 const char *name = os->name;
1503
1504 ASSERT (name == entry->root.string);
1505 do
1506 {
1507 entry = (struct out_section_hash_entry *) entry->root.next;
1508 if (entry == NULL
1509 || name != entry->s.output_section_statement.name)
1510 return NULL;
1511 }
1512 while (constraint != entry->s.output_section_statement.constraint
1513 && (constraint != 0
1514 || entry->s.output_section_statement.constraint < 0));
1515
1516 return &entry->s.output_section_statement;
1517 }
1518
1519 /* A variant of lang_output_section_find used by place_orphan.
1520 Returns the output statement that should precede a new output
1521 statement for SEC. If an exact match is found on certain flags,
1522 sets *EXACT too. */
1523
1524 lang_output_section_statement_type *
1525 lang_output_section_find_by_flags (const asection *sec,
1526 flagword sec_flags,
1527 lang_output_section_statement_type **exact,
1528 lang_match_sec_type_func match_type)
1529 {
1530 lang_output_section_statement_type *first, *look, *found;
1531 flagword look_flags, differ;
1532
1533 /* We know the first statement on this list is *ABS*. May as well
1534 skip it. */
1535 first = &lang_output_section_statement.head->output_section_statement;
1536 first = first->next;
1537
1538 /* First try for an exact match. */
1539 found = NULL;
1540 for (look = first; look; look = look->next)
1541 {
1542 look_flags = look->flags;
1543 if (look->bfd_section != NULL)
1544 {
1545 look_flags = look->bfd_section->flags;
1546 if (match_type && !match_type (link_info.output_bfd,
1547 look->bfd_section,
1548 sec->owner, sec))
1549 continue;
1550 }
1551 differ = look_flags ^ sec_flags;
1552 if (!(differ & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD | SEC_READONLY
1553 | SEC_CODE | SEC_SMALL_DATA | SEC_THREAD_LOCAL)))
1554 found = look;
1555 }
1556 if (found != NULL)
1557 {
1558 if (exact != NULL)
1559 *exact = found;
1560 return found;
1561 }
1562
1563 if ((sec_flags & SEC_CODE) != 0
1564 && (sec_flags & SEC_ALLOC) != 0)
1565 {
1566 /* Try for a rw code section. */
1567 for (look = first; look; look = look->next)
1568 {
1569 look_flags = look->flags;
1570 if (look->bfd_section != NULL)
1571 {
1572 look_flags = look->bfd_section->flags;
1573 if (match_type && !match_type (link_info.output_bfd,
1574 look->bfd_section,
1575 sec->owner, sec))
1576 continue;
1577 }
1578 differ = look_flags ^ sec_flags;
1579 if (!(differ & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD
1580 | SEC_CODE | SEC_SMALL_DATA | SEC_THREAD_LOCAL)))
1581 found = look;
1582 }
1583 }
1584 else if ((sec_flags & SEC_READONLY) != 0
1585 && (sec_flags & SEC_ALLOC) != 0)
1586 {
1587 /* .rodata can go after .text, .sdata2 after .rodata. */
1588 for (look = first; look; look = look->next)
1589 {
1590 look_flags = look->flags;
1591 if (look->bfd_section != NULL)
1592 {
1593 look_flags = look->bfd_section->flags;
1594 if (match_type && !match_type (link_info.output_bfd,
1595 look->bfd_section,
1596 sec->owner, sec))
1597 continue;
1598 }
1599 differ = look_flags ^ sec_flags;
1600 if (!(differ & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD
1601 | SEC_READONLY | SEC_SMALL_DATA))
1602 || (!(differ & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD
1603 | SEC_READONLY))
1604 && !(look_flags & SEC_SMALL_DATA)))
1605 found = look;
1606 }
1607 }
1608 else if ((sec_flags & SEC_THREAD_LOCAL) != 0
1609 && (sec_flags & SEC_ALLOC) != 0)
1610 {
1611 /* .tdata can go after .data, .tbss after .tdata. Treat .tbss
1612 as if it were a loaded section, and don't use match_type. */
1613 bfd_boolean seen_thread_local = FALSE;
1614
1615 match_type = NULL;
1616 for (look = first; look; look = look->next)
1617 {
1618 look_flags = look->flags;
1619 if (look->bfd_section != NULL)
1620 look_flags = look->bfd_section->flags;
1621
1622 differ = look_flags ^ (sec_flags | SEC_LOAD | SEC_HAS_CONTENTS);
1623 if (!(differ & (SEC_THREAD_LOCAL | SEC_ALLOC)))
1624 {
1625 /* .tdata and .tbss must be adjacent and in that order. */
1626 if (!(look_flags & SEC_LOAD)
1627 && (sec_flags & SEC_LOAD))
1628 /* ..so if we're at a .tbss section and we're placing
1629 a .tdata section stop looking and return the
1630 previous section. */
1631 break;
1632 found = look;
1633 seen_thread_local = TRUE;
1634 }
1635 else if (seen_thread_local)
1636 break;
1637 else if (!(differ & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD)))
1638 found = look;
1639 }
1640 }
1641 else if ((sec_flags & SEC_SMALL_DATA) != 0
1642 && (sec_flags & SEC_ALLOC) != 0)
1643 {
1644 /* .sdata goes after .data, .sbss after .sdata. */
1645 for (look = first; look; look = look->next)
1646 {
1647 look_flags = look->flags;
1648 if (look->bfd_section != NULL)
1649 {
1650 look_flags = look->bfd_section->flags;
1651 if (match_type && !match_type (link_info.output_bfd,
1652 look->bfd_section,
1653 sec->owner, sec))
1654 continue;
1655 }
1656 differ = look_flags ^ sec_flags;
1657 if (!(differ & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD
1658 | SEC_THREAD_LOCAL))
1659 || ((look_flags & SEC_SMALL_DATA)
1660 && !(sec_flags & SEC_HAS_CONTENTS)))
1661 found = look;
1662 }
1663 }
1664 else if ((sec_flags & SEC_HAS_CONTENTS) != 0
1665 && (sec_flags & SEC_ALLOC) != 0)
1666 {
1667 /* .data goes after .rodata. */
1668 for (look = first; look; look = look->next)
1669 {
1670 look_flags = look->flags;
1671 if (look->bfd_section != NULL)
1672 {
1673 look_flags = look->bfd_section->flags;
1674 if (match_type && !match_type (link_info.output_bfd,
1675 look->bfd_section,
1676 sec->owner, sec))
1677 continue;
1678 }
1679 differ = look_flags ^ sec_flags;
1680 if (!(differ & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD
1681 | SEC_SMALL_DATA | SEC_THREAD_LOCAL)))
1682 found = look;
1683 }
1684 }
1685 else if ((sec_flags & SEC_ALLOC) != 0)
1686 {
1687 /* .bss goes after any other alloc section. */
1688 for (look = first; look; look = look->next)
1689 {
1690 look_flags = look->flags;
1691 if (look->bfd_section != NULL)
1692 {
1693 look_flags = look->bfd_section->flags;
1694 if (match_type && !match_type (link_info.output_bfd,
1695 look->bfd_section,
1696 sec->owner, sec))
1697 continue;
1698 }
1699 differ = look_flags ^ sec_flags;
1700 if (!(differ & SEC_ALLOC))
1701 found = look;
1702 }
1703 }
1704 else
1705 {
1706 /* non-alloc go last. */
1707 for (look = first; look; look = look->next)
1708 {
1709 look_flags = look->flags;
1710 if (look->bfd_section != NULL)
1711 look_flags = look->bfd_section->flags;
1712 differ = look_flags ^ sec_flags;
1713 if (!(differ & SEC_DEBUGGING))
1714 found = look;
1715 }
1716 return found;
1717 }
1718
1719 if (found || !match_type)
1720 return found;
1721
1722 return lang_output_section_find_by_flags (sec, sec_flags, NULL, NULL);
1723 }
1724
1725 /* Find the last output section before given output statement.
1726 Used by place_orphan. */
1727
1728 static asection *
1729 output_prev_sec_find (lang_output_section_statement_type *os)
1730 {
1731 lang_output_section_statement_type *lookup;
1732
1733 for (lookup = os->prev; lookup != NULL; lookup = lookup->prev)
1734 {
1735 if (lookup->constraint < 0)
1736 continue;
1737
1738 if (lookup->bfd_section != NULL && lookup->bfd_section->owner != NULL)
1739 return lookup->bfd_section;
1740 }
1741
1742 return NULL;
1743 }
1744
1745 /* Look for a suitable place for a new output section statement. The
1746 idea is to skip over anything that might be inside a SECTIONS {}
1747 statement in a script, before we find another output section
1748 statement. Assignments to "dot" before an output section statement
1749 are assumed to belong to it, except in two cases; The first
1750 assignment to dot, and assignments before non-alloc sections.
1751 Otherwise we might put an orphan before . = . + SIZEOF_HEADERS or
1752 similar assignments that set the initial address, or we might
1753 insert non-alloc note sections among assignments setting end of
1754 image symbols. */
1755
1756 static lang_statement_union_type **
1757 insert_os_after (lang_output_section_statement_type *after)
1758 {
1759 lang_statement_union_type **where;
1760 lang_statement_union_type **assign = NULL;
1761 bfd_boolean ignore_first;
1762
1763 ignore_first
1764 = after == &lang_output_section_statement.head->output_section_statement;
1765
1766 for (where = &after->header.next;
1767 *where != NULL;
1768 where = &(*where)->header.next)
1769 {
1770 switch ((*where)->header.type)
1771 {
1772 case lang_assignment_statement_enum:
1773 if (assign == NULL)
1774 {
1775 lang_assignment_statement_type *ass;
1776
1777 ass = &(*where)->assignment_statement;
1778 if (ass->exp->type.node_class != etree_assert
1779 && ass->exp->assign.dst[0] == '.'
1780 && ass->exp->assign.dst[1] == 0)
1781 {
1782 if (!ignore_first)
1783 assign = where;
1784 ignore_first = FALSE;
1785 }
1786 }
1787 continue;
1788 case lang_wild_statement_enum:
1789 case lang_input_section_enum:
1790 case lang_object_symbols_statement_enum:
1791 case lang_fill_statement_enum:
1792 case lang_data_statement_enum:
1793 case lang_reloc_statement_enum:
1794 case lang_padding_statement_enum:
1795 case lang_constructors_statement_enum:
1796 assign = NULL;
1797 ignore_first = FALSE;
1798 continue;
1799 case lang_output_section_statement_enum:
1800 if (assign != NULL)
1801 {
1802 asection *s = (*where)->output_section_statement.bfd_section;
1803
1804 if (s == NULL
1805 || s->map_head.s == NULL
1806 || (s->flags & SEC_ALLOC) != 0)
1807 where = assign;
1808 }
1809 break;
1810 case lang_input_statement_enum:
1811 case lang_address_statement_enum:
1812 case lang_target_statement_enum:
1813 case lang_output_statement_enum:
1814 case lang_group_statement_enum:
1815 case lang_insert_statement_enum:
1816 continue;
1817 }
1818 break;
1819 }
1820
1821 return where;
1822 }
1823
1824 lang_output_section_statement_type *
1825 lang_insert_orphan (asection *s,
1826 const char *secname,
1827 int constraint,
1828 lang_output_section_statement_type *after,
1829 struct orphan_save *place,
1830 etree_type *address,
1831 lang_statement_list_type *add_child)
1832 {
1833 lang_statement_list_type add;
1834 lang_output_section_statement_type *os;
1835 lang_output_section_statement_type **os_tail;
1836
1837 /* If we have found an appropriate place for the output section
1838 statements for this orphan, add them to our own private list,
1839 inserting them later into the global statement list. */
1840 if (after != NULL)
1841 {
1842 lang_list_init (&add);
1843 push_stat_ptr (&add);
1844 }
1845
1846 if (bfd_link_relocatable (&link_info)
1847 || (s->flags & (SEC_LOAD | SEC_ALLOC)) == 0)
1848 address = exp_intop (0);
1849
1850 os_tail = ((lang_output_section_statement_type **)
1851 lang_output_section_statement.tail);
1852 os = lang_enter_output_section_statement (secname, address, normal_section,
1853 NULL, NULL, NULL, constraint, 0);
1854
1855 if (add_child == NULL)
1856 add_child = &os->children;
1857 lang_add_section (add_child, s, NULL, os);
1858
1859 if (after && (s->flags & (SEC_LOAD | SEC_ALLOC)) != 0)
1860 {
1861 const char *region = (after->region
1862 ? after->region->name_list.name
1863 : DEFAULT_MEMORY_REGION);
1864 const char *lma_region = (after->lma_region
1865 ? after->lma_region->name_list.name
1866 : NULL);
1867 lang_leave_output_section_statement (NULL, region, after->phdrs,
1868 lma_region);
1869 }
1870 else
1871 lang_leave_output_section_statement (NULL, DEFAULT_MEMORY_REGION, NULL,
1872 NULL);
1873
1874 /* Restore the global list pointer. */
1875 if (after != NULL)
1876 pop_stat_ptr ();
1877
1878 if (after != NULL && os->bfd_section != NULL)
1879 {
1880 asection *snew, *as;
1881 bfd_boolean place_after = place->stmt == NULL;
1882 bfd_boolean insert_after = TRUE;
1883
1884 snew = os->bfd_section;
1885
1886 /* Shuffle the bfd section list to make the output file look
1887 neater. This is really only cosmetic. */
1888 if (place->section == NULL
1889 && after != (&lang_output_section_statement.head
1890 ->output_section_statement))
1891 {
1892 asection *bfd_section = after->bfd_section;
1893
1894 /* If the output statement hasn't been used to place any input
1895 sections (and thus doesn't have an output bfd_section),
1896 look for the closest prior output statement having an
1897 output section. */
1898 if (bfd_section == NULL)
1899 bfd_section = output_prev_sec_find (after);
1900
1901 if (bfd_section != NULL && bfd_section != snew)
1902 place->section = &bfd_section->next;
1903 }
1904
1905 if (place->section == NULL)
1906 place->section = &link_info.output_bfd->sections;
1907
1908 as = *place->section;
1909
1910 if (!as)
1911 {
1912 /* Put the section at the end of the list. */
1913
1914 /* Unlink the section. */
1915 bfd_section_list_remove (link_info.output_bfd, snew);
1916
1917 /* Now tack it back on in the right place. */
1918 bfd_section_list_append (link_info.output_bfd, snew);
1919 }
1920 else if ((bfd_get_flavour (link_info.output_bfd)
1921 == bfd_target_elf_flavour)
1922 && (bfd_get_flavour (s->owner)
1923 == bfd_target_elf_flavour)
1924 && ((elf_section_type (s) == SHT_NOTE
1925 && (s->flags & SEC_LOAD) != 0)
1926 || (elf_section_type (as) == SHT_NOTE
1927 && (as->flags & SEC_LOAD) != 0)))
1928 {
1929 /* Make sure that output note sections are grouped and sorted
1930 by alignments when inserting a note section or insert a
1931 section after a note section, */
1932 asection *sec;
1933 /* A specific section after which the output note section
1934 should be placed. */
1935 asection *after_sec;
1936 /* True if we need to insert the orphan section after a
1937 specific section to maintain output note section order. */
1938 bfd_boolean after_sec_note = FALSE;
1939
1940 static asection *first_orphan_note = NULL;
1941
1942 /* Group and sort output note section by alignments in
1943 ascending order. */
1944 after_sec = NULL;
1945 if (elf_section_type (s) == SHT_NOTE
1946 && (s->flags & SEC_LOAD) != 0)
1947 {
1948 /* Search from the beginning for the last output note
1949 section with equal or larger alignments. NB: Don't
1950 place orphan note section after non-note sections. */
1951
1952 first_orphan_note = NULL;
1953 for (sec = link_info.output_bfd->sections;
1954 (sec != NULL
1955 && !bfd_is_abs_section (sec));
1956 sec = sec->next)
1957 if (sec != snew
1958 && elf_section_type (sec) == SHT_NOTE
1959 && (sec->flags & SEC_LOAD) != 0)
1960 {
1961 if (!first_orphan_note)
1962 first_orphan_note = sec;
1963 if (sec->alignment_power >= s->alignment_power)
1964 after_sec = sec;
1965 }
1966 else if (first_orphan_note)
1967 {
1968 /* Stop if there is non-note section after the first
1969 orphan note section. */
1970 break;
1971 }
1972
1973 /* If this will be the first orphan note section, it can
1974 be placed at the default location. */
1975 after_sec_note = first_orphan_note != NULL;
1976 if (after_sec == NULL && after_sec_note)
1977 {
1978 /* If all output note sections have smaller
1979 alignments, place the section before all
1980 output orphan note sections. */
1981 after_sec = first_orphan_note;
1982 insert_after = FALSE;
1983 }
1984 }
1985 else if (first_orphan_note)
1986 {
1987 /* Don't place non-note sections in the middle of orphan
1988 note sections. */
1989 after_sec_note = TRUE;
1990 after_sec = as;
1991 for (sec = as->next;
1992 (sec != NULL
1993 && !bfd_is_abs_section (sec));
1994 sec = sec->next)
1995 if (elf_section_type (sec) == SHT_NOTE
1996 && (sec->flags & SEC_LOAD) != 0)
1997 after_sec = sec;
1998 }
1999
2000 if (after_sec_note)
2001 {
2002 if (after_sec)
2003 {
2004 /* Search forward to insert OS after AFTER_SEC output
2005 statement. */
2006 lang_output_section_statement_type *stmt, *next;
2007 bfd_boolean found = FALSE;
2008 for (stmt = after; stmt != NULL; stmt = next)
2009 {
2010 next = stmt->next;
2011 if (insert_after)
2012 {
2013 if (stmt->bfd_section == after_sec)
2014 {
2015 place_after = TRUE;
2016 found = TRUE;
2017 after = stmt;
2018 break;
2019 }
2020 }
2021 else
2022 {
2023 /* If INSERT_AFTER is FALSE, place OS before
2024 AFTER_SEC output statement. */
2025 if (next && next->bfd_section == after_sec)
2026 {
2027 place_after = TRUE;
2028 found = TRUE;
2029 after = stmt;
2030 break;
2031 }
2032 }
2033 }
2034
2035 /* Search backward to insert OS after AFTER_SEC output
2036 statement. */
2037 if (!found)
2038 for (stmt = after; stmt != NULL; stmt = stmt->prev)
2039 {
2040 if (insert_after)
2041 {
2042 if (stmt->bfd_section == after_sec)
2043 {
2044 place_after = TRUE;
2045 after = stmt;
2046 break;
2047 }
2048 }
2049 else
2050 {
2051 /* If INSERT_AFTER is FALSE, place OS before
2052 AFTER_SEC output statement. */
2053 if (stmt->next->bfd_section == after_sec)
2054 {
2055 place_after = TRUE;
2056 after = stmt;
2057 break;
2058 }
2059 }
2060 }
2061 }
2062
2063 if (after_sec == NULL
2064 || (insert_after && after_sec->next != snew)
2065 || (!insert_after && after_sec->prev != snew))
2066 {
2067 /* Unlink the section. */
2068 bfd_section_list_remove (link_info.output_bfd, snew);
2069
2070 /* Place SNEW after AFTER_SEC. If AFTER_SEC is NULL,
2071 prepend SNEW. */
2072 if (after_sec)
2073 {
2074 if (insert_after)
2075 bfd_section_list_insert_after (link_info.output_bfd,
2076 after_sec, snew);
2077 else
2078 bfd_section_list_insert_before (link_info.output_bfd,
2079 after_sec, snew);
2080 }
2081 else
2082 bfd_section_list_prepend (link_info.output_bfd, snew);
2083 }
2084 }
2085 else if (as != snew && as->prev != snew)
2086 {
2087 /* Unlink the section. */
2088 bfd_section_list_remove (link_info.output_bfd, snew);
2089
2090 /* Now tack it back on in the right place. */
2091 bfd_section_list_insert_before (link_info.output_bfd,
2092 as, snew);
2093 }
2094 }
2095 else if (as != snew && as->prev != snew)
2096 {
2097 /* Unlink the section. */
2098 bfd_section_list_remove (link_info.output_bfd, snew);
2099
2100 /* Now tack it back on in the right place. */
2101 bfd_section_list_insert_before (link_info.output_bfd, as, snew);
2102 }
2103
2104 /* Save the end of this list. Further ophans of this type will
2105 follow the one we've just added. */
2106 place->section = &snew->next;
2107
2108 /* The following is non-cosmetic. We try to put the output
2109 statements in some sort of reasonable order here, because they
2110 determine the final load addresses of the orphan sections.
2111 In addition, placing output statements in the wrong order may
2112 require extra segments. For instance, given a typical
2113 situation of all read-only sections placed in one segment and
2114 following that a segment containing all the read-write
2115 sections, we wouldn't want to place an orphan read/write
2116 section before or amongst the read-only ones. */
2117 if (add.head != NULL)
2118 {
2119 lang_output_section_statement_type *newly_added_os;
2120
2121 /* Place OS after AFTER if AFTER_NOTE is TRUE. */
2122 if (place_after)
2123 {
2124 lang_statement_union_type **where = insert_os_after (after);
2125
2126 *add.tail = *where;
2127 *where = add.head;
2128
2129 place->os_tail = &after->next;
2130 }
2131 else
2132 {
2133 /* Put it after the last orphan statement we added. */
2134 *add.tail = *place->stmt;
2135 *place->stmt = add.head;
2136 }
2137
2138 /* Fix the global list pointer if we happened to tack our
2139 new list at the tail. */
2140 if (*stat_ptr->tail == add.head)
2141 stat_ptr->tail = add.tail;
2142
2143 /* Save the end of this list. */
2144 place->stmt = add.tail;
2145
2146 /* Do the same for the list of output section statements. */
2147 newly_added_os = *os_tail;
2148 *os_tail = NULL;
2149 newly_added_os->prev = (lang_output_section_statement_type *)
2150 ((char *) place->os_tail
2151 - offsetof (lang_output_section_statement_type, next));
2152 newly_added_os->next = *place->os_tail;
2153 if (newly_added_os->next != NULL)
2154 newly_added_os->next->prev = newly_added_os;
2155 *place->os_tail = newly_added_os;
2156 place->os_tail = &newly_added_os->next;
2157
2158 /* Fixing the global list pointer here is a little different.
2159 We added to the list in lang_enter_output_section_statement,
2160 trimmed off the new output_section_statment above when
2161 assigning *os_tail = NULL, but possibly added it back in
2162 the same place when assigning *place->os_tail. */
2163 if (*os_tail == NULL)
2164 lang_output_section_statement.tail
2165 = (lang_statement_union_type **) os_tail;
2166 }
2167 }
2168 return os;
2169 }
2170
2171 static void
2172 lang_print_asneeded (void)
2173 {
2174 struct asneeded_minfo *m;
2175
2176 if (asneeded_list_head == NULL)
2177 return;
2178
2179 minfo (_("\nAs-needed library included to satisfy reference by file (symbol)\n\n"));
2180
2181 for (m = asneeded_list_head; m != NULL; m = m->next)
2182 {
2183 size_t len;
2184
2185 minfo ("%s", m->soname);
2186 len = strlen (m->soname);
2187
2188 if (len >= 29)
2189 {
2190 print_nl ();
2191 len = 0;
2192 }
2193 while (len < 30)
2194 {
2195 print_space ();
2196 ++len;
2197 }
2198
2199 if (m->ref != NULL)
2200 minfo ("%pB ", m->ref);
2201 minfo ("(%pT)\n", m->name);
2202 }
2203 }
2204
2205 static void
2206 lang_map_flags (flagword flag)
2207 {
2208 if (flag & SEC_ALLOC)
2209 minfo ("a");
2210
2211 if (flag & SEC_CODE)
2212 minfo ("x");
2213
2214 if (flag & SEC_READONLY)
2215 minfo ("r");
2216
2217 if (flag & SEC_DATA)
2218 minfo ("w");
2219
2220 if (flag & SEC_LOAD)
2221 minfo ("l");
2222 }
2223
2224 void
2225 lang_map (void)
2226 {
2227 lang_memory_region_type *m;
2228 bfd_boolean dis_header_printed = FALSE;
2229
2230 LANG_FOR_EACH_INPUT_STATEMENT (file)
2231 {
2232 asection *s;
2233
2234 if ((file->the_bfd->flags & (BFD_LINKER_CREATED | DYNAMIC)) != 0
2235 || file->flags.just_syms)
2236 continue;
2237
2238 for (s = file->the_bfd->sections; s != NULL; s = s->next)
2239 if ((s->output_section == NULL
2240 || s->output_section->owner != link_info.output_bfd)
2241 && (s->flags & (SEC_LINKER_CREATED | SEC_KEEP)) == 0)
2242 {
2243 if (!dis_header_printed)
2244 {
2245 fprintf (config.map_file, _("\nDiscarded input sections\n\n"));
2246 dis_header_printed = TRUE;
2247 }
2248
2249 print_input_section (s, TRUE);
2250 }
2251 }
2252
2253 minfo (_("\nMemory Configuration\n\n"));
2254 fprintf (config.map_file, "%-16s %-18s %-18s %s\n",
2255 _("Name"), _("Origin"), _("Length"), _("Attributes"));
2256
2257 for (m = lang_memory_region_list; m != NULL; m = m->next)
2258 {
2259 char buf[100];
2260 int len;
2261
2262 fprintf (config.map_file, "%-16s ", m->name_list.name);
2263
2264 sprintf_vma (buf, m->origin);
2265 minfo ("0x%s ", buf);
2266 len = strlen (buf);
2267 while (len < 16)
2268 {
2269 print_space ();
2270 ++len;
2271 }
2272
2273 minfo ("0x%V", m->length);
2274 if (m->flags || m->not_flags)
2275 {
2276 #ifndef BFD64
2277 minfo (" ");
2278 #endif
2279 if (m->flags)
2280 {
2281 print_space ();
2282 lang_map_flags (m->flags);
2283 }
2284
2285 if (m->not_flags)
2286 {
2287 minfo (" !");
2288 lang_map_flags (m->not_flags);
2289 }
2290 }
2291
2292 print_nl ();
2293 }
2294
2295 fprintf (config.map_file, _("\nLinker script and memory map\n\n"));
2296
2297 if (!link_info.reduce_memory_overheads)
2298 {
2299 obstack_begin (&map_obstack, 1000);
2300 bfd_link_hash_traverse (link_info.hash, sort_def_symbol, 0);
2301 }
2302 lang_statement_iteration++;
2303 print_statements ();
2304
2305 ldemul_extra_map_file_text (link_info.output_bfd, &link_info,
2306 config.map_file);
2307 }
2308
2309 static bfd_boolean
2310 sort_def_symbol (struct bfd_link_hash_entry *hash_entry,
2311 void *info ATTRIBUTE_UNUSED)
2312 {
2313 if ((hash_entry->type == bfd_link_hash_defined
2314 || hash_entry->type == bfd_link_hash_defweak)
2315 && hash_entry->u.def.section->owner != link_info.output_bfd
2316 && hash_entry->u.def.section->owner != NULL)
2317 {
2318 input_section_userdata_type *ud;
2319 struct map_symbol_def *def;
2320
2321 ud = ((input_section_userdata_type *)
2322 get_userdata (hash_entry->u.def.section));
2323 if (!ud)
2324 {
2325 ud = (input_section_userdata_type *) stat_alloc (sizeof (*ud));
2326 get_userdata (hash_entry->u.def.section) = ud;
2327 ud->map_symbol_def_tail = &ud->map_symbol_def_head;
2328 ud->map_symbol_def_count = 0;
2329 }
2330 else if (!ud->map_symbol_def_tail)
2331 ud->map_symbol_def_tail = &ud->map_symbol_def_head;
2332
2333 def = (struct map_symbol_def *) obstack_alloc (&map_obstack, sizeof *def);
2334 def->entry = hash_entry;
2335 *(ud->map_symbol_def_tail) = def;
2336 ud->map_symbol_def_tail = &def->next;
2337 ud->map_symbol_def_count++;
2338 }
2339 return TRUE;
2340 }
2341
2342 /* Initialize an output section. */
2343
2344 static void
2345 init_os (lang_output_section_statement_type *s, flagword flags)
2346 {
2347 if (strcmp (s->name, DISCARD_SECTION_NAME) == 0)
2348 einfo (_("%F%P: illegal use of `%s' section\n"), DISCARD_SECTION_NAME);
2349
2350 if (s->constraint != SPECIAL)
2351 s->bfd_section = bfd_get_section_by_name (link_info.output_bfd, s->name);
2352 if (s->bfd_section == NULL)
2353 s->bfd_section = bfd_make_section_anyway_with_flags (link_info.output_bfd,
2354 s->name, flags);
2355 if (s->bfd_section == NULL)
2356 {
2357 einfo (_("%F%P: output format %s cannot represent section"
2358 " called %s: %E\n"),
2359 link_info.output_bfd->xvec->name, s->name);
2360 }
2361 s->bfd_section->output_section = s->bfd_section;
2362 s->bfd_section->output_offset = 0;
2363
2364 /* Set the userdata of the output section to the output section
2365 statement to avoid lookup. */
2366 get_userdata (s->bfd_section) = s;
2367
2368 /* If there is a base address, make sure that any sections it might
2369 mention are initialized. */
2370 if (s->addr_tree != NULL)
2371 exp_init_os (s->addr_tree);
2372
2373 if (s->load_base != NULL)
2374 exp_init_os (s->load_base);
2375
2376 /* If supplied an alignment, set it. */
2377 if (s->section_alignment != NULL)
2378 s->bfd_section->alignment_power = exp_get_power (s->section_alignment,
2379 "section alignment");
2380 }
2381
2382 /* Make sure that all output sections mentioned in an expression are
2383 initialized. */
2384
2385 static void
2386 exp_init_os (etree_type *exp)
2387 {
2388 switch (exp->type.node_class)
2389 {
2390 case etree_assign:
2391 case etree_provide:
2392 case etree_provided:
2393 exp_init_os (exp->assign.src);
2394 break;
2395
2396 case etree_binary:
2397 exp_init_os (exp->binary.lhs);
2398 exp_init_os (exp->binary.rhs);
2399 break;
2400
2401 case etree_trinary:
2402 exp_init_os (exp->trinary.cond);
2403 exp_init_os (exp->trinary.lhs);
2404 exp_init_os (exp->trinary.rhs);
2405 break;
2406
2407 case etree_assert:
2408 exp_init_os (exp->assert_s.child);
2409 break;
2410
2411 case etree_unary:
2412 exp_init_os (exp->unary.child);
2413 break;
2414
2415 case etree_name:
2416 switch (exp->type.node_code)
2417 {
2418 case ADDR:
2419 case LOADADDR:
2420 case SIZEOF:
2421 {
2422 lang_output_section_statement_type *os;
2423
2424 os = lang_output_section_find (exp->name.name);
2425 if (os != NULL && os->bfd_section == NULL)
2426 init_os (os, 0);
2427 }
2428 }
2429 break;
2430
2431 default:
2432 break;
2433 }
2434 }
2435 \f
2436 static void
2437 section_already_linked (bfd *abfd, asection *sec, void *data)
2438 {
2439 lang_input_statement_type *entry = (lang_input_statement_type *) data;
2440
2441 /* If we are only reading symbols from this object, then we want to
2442 discard all sections. */
2443 if (entry->flags.just_syms)
2444 {
2445 bfd_link_just_syms (abfd, sec, &link_info);
2446 return;
2447 }
2448
2449 /* Deal with SHF_EXCLUDE ELF sections. */
2450 if (!bfd_link_relocatable (&link_info)
2451 && (abfd->flags & BFD_PLUGIN) == 0
2452 && (sec->flags & (SEC_GROUP | SEC_KEEP | SEC_EXCLUDE)) == SEC_EXCLUDE)
2453 sec->output_section = bfd_abs_section_ptr;
2454
2455 if (!(abfd->flags & DYNAMIC))
2456 bfd_section_already_linked (abfd, sec, &link_info);
2457 }
2458 \f
2459
2460 /* Returns true if SECTION is one we know will be discarded based on its
2461 section flags, otherwise returns false. */
2462
2463 static bfd_boolean
2464 lang_discard_section_p (asection *section)
2465 {
2466 bfd_boolean discard;
2467 flagword flags = section->flags;
2468
2469 /* Discard sections marked with SEC_EXCLUDE. */
2470 discard = (flags & SEC_EXCLUDE) != 0;
2471
2472 /* Discard the group descriptor sections when we're finally placing the
2473 sections from within the group. */
2474 if ((flags & SEC_GROUP) != 0
2475 && link_info.resolve_section_groups)
2476 discard = TRUE;
2477
2478 /* Discard debugging sections if we are stripping debugging
2479 information. */
2480 if ((link_info.strip == strip_debugger || link_info.strip == strip_all)
2481 && (flags & SEC_DEBUGGING) != 0)
2482 discard = TRUE;
2483
2484 return discard;
2485 }
2486
2487 /* The wild routines.
2488
2489 These expand statements like *(.text) and foo.o to a list of
2490 explicit actions, like foo.o(.text), bar.o(.text) and
2491 foo.o(.text, .data). */
2492
2493 /* Add SECTION to the output section OUTPUT. Do this by creating a
2494 lang_input_section statement which is placed at PTR. */
2495
2496 void
2497 lang_add_section (lang_statement_list_type *ptr,
2498 asection *section,
2499 struct flag_info *sflag_info,
2500 lang_output_section_statement_type *output)
2501 {
2502 flagword flags = section->flags;
2503
2504 bfd_boolean discard;
2505 lang_input_section_type *new_section;
2506 bfd *abfd = link_info.output_bfd;
2507
2508 /* Is this section one we know should be discarded? */
2509 discard = lang_discard_section_p (section);
2510
2511 /* Discard input sections which are assigned to a section named
2512 DISCARD_SECTION_NAME. */
2513 if (strcmp (output->name, DISCARD_SECTION_NAME) == 0)
2514 discard = TRUE;
2515
2516 if (discard)
2517 {
2518 if (section->output_section == NULL)
2519 {
2520 /* This prevents future calls from assigning this section. */
2521 section->output_section = bfd_abs_section_ptr;
2522 }
2523 return;
2524 }
2525
2526 if (sflag_info)
2527 {
2528 bfd_boolean keep;
2529
2530 keep = bfd_lookup_section_flags (&link_info, sflag_info, section);
2531 if (!keep)
2532 return;
2533 }
2534
2535 if (section->output_section != NULL)
2536 return;
2537
2538 /* We don't copy the SEC_NEVER_LOAD flag from an input section
2539 to an output section, because we want to be able to include a
2540 SEC_NEVER_LOAD section in the middle of an otherwise loaded
2541 section (I don't know why we want to do this, but we do).
2542 build_link_order in ldwrite.c handles this case by turning
2543 the embedded SEC_NEVER_LOAD section into a fill. */
2544 flags &= ~ SEC_NEVER_LOAD;
2545
2546 /* If final link, don't copy the SEC_LINK_ONCE flags, they've
2547 already been processed. One reason to do this is that on pe
2548 format targets, .text$foo sections go into .text and it's odd
2549 to see .text with SEC_LINK_ONCE set. */
2550 if ((flags & (SEC_LINK_ONCE | SEC_GROUP)) == (SEC_LINK_ONCE | SEC_GROUP))
2551 {
2552 if (link_info.resolve_section_groups)
2553 flags &= ~(SEC_LINK_ONCE | SEC_LINK_DUPLICATES | SEC_RELOC);
2554 else
2555 flags &= ~(SEC_LINK_DUPLICATES | SEC_RELOC);
2556 }
2557 else if (!bfd_link_relocatable (&link_info))
2558 flags &= ~(SEC_LINK_ONCE | SEC_LINK_DUPLICATES | SEC_RELOC);
2559
2560 switch (output->sectype)
2561 {
2562 case normal_section:
2563 case overlay_section:
2564 break;
2565 case noalloc_section:
2566 flags &= ~SEC_ALLOC;
2567 break;
2568 case noload_section:
2569 flags &= ~SEC_LOAD;
2570 flags |= SEC_NEVER_LOAD;
2571 /* Unfortunately GNU ld has managed to evolve two different
2572 meanings to NOLOAD in scripts. ELF gets a .bss style noload,
2573 alloc, no contents section. All others get a noload, noalloc
2574 section. */
2575 if (bfd_get_flavour (link_info.output_bfd) == bfd_target_elf_flavour)
2576 flags &= ~SEC_HAS_CONTENTS;
2577 else
2578 flags &= ~SEC_ALLOC;
2579 break;
2580 }
2581
2582 if (output->bfd_section == NULL)
2583 init_os (output, flags);
2584
2585 /* If SEC_READONLY is not set in the input section, then clear
2586 it from the output section. */
2587 output->bfd_section->flags &= flags | ~SEC_READONLY;
2588
2589 if (output->bfd_section->linker_has_input)
2590 {
2591 /* Only set SEC_READONLY flag on the first input section. */
2592 flags &= ~ SEC_READONLY;
2593
2594 /* Keep SEC_MERGE and SEC_STRINGS only if they are the same. */
2595 if ((output->bfd_section->flags & (SEC_MERGE | SEC_STRINGS))
2596 != (flags & (SEC_MERGE | SEC_STRINGS))
2597 || ((flags & SEC_MERGE) != 0
2598 && output->bfd_section->entsize != section->entsize))
2599 {
2600 output->bfd_section->flags &= ~ (SEC_MERGE | SEC_STRINGS);
2601 flags &= ~ (SEC_MERGE | SEC_STRINGS);
2602 }
2603 }
2604 output->bfd_section->flags |= flags;
2605
2606 if (!output->bfd_section->linker_has_input)
2607 {
2608 output->bfd_section->linker_has_input = 1;
2609 /* This must happen after flags have been updated. The output
2610 section may have been created before we saw its first input
2611 section, eg. for a data statement. */
2612 bfd_init_private_section_data (section->owner, section,
2613 link_info.output_bfd,
2614 output->bfd_section,
2615 &link_info);
2616 if ((flags & SEC_MERGE) != 0)
2617 output->bfd_section->entsize = section->entsize;
2618 }
2619
2620 if ((flags & SEC_TIC54X_BLOCK) != 0
2621 && bfd_get_arch (section->owner) == bfd_arch_tic54x)
2622 {
2623 /* FIXME: This value should really be obtained from the bfd... */
2624 output->block_value = 128;
2625 }
2626
2627 if (section->alignment_power > output->bfd_section->alignment_power)
2628 output->bfd_section->alignment_power = section->alignment_power;
2629
2630 section->output_section = output->bfd_section;
2631
2632 if (!map_head_is_link_order)
2633 {
2634 asection *s = output->bfd_section->map_tail.s;
2635 output->bfd_section->map_tail.s = section;
2636 section->map_head.s = NULL;
2637 section->map_tail.s = s;
2638 if (s != NULL)
2639 s->map_head.s = section;
2640 else
2641 output->bfd_section->map_head.s = section;
2642 }
2643
2644 /* Add a section reference to the list. */
2645 new_section = new_stat (lang_input_section, ptr);
2646 new_section->section = section;
2647 }
2648
2649 /* Handle wildcard sorting. This returns the lang_input_section which
2650 should follow the one we are going to create for SECTION and FILE,
2651 based on the sorting requirements of WILD. It returns NULL if the
2652 new section should just go at the end of the current list. */
2653
2654 static lang_statement_union_type *
2655 wild_sort (lang_wild_statement_type *wild,
2656 struct wildcard_list *sec,
2657 lang_input_statement_type *file,
2658 asection *section)
2659 {
2660 lang_statement_union_type *l;
2661
2662 if (!wild->filenames_sorted
2663 && (sec == NULL || sec->spec.sorted == none))
2664 return NULL;
2665
2666 for (l = wild->children.head; l != NULL; l = l->header.next)
2667 {
2668 lang_input_section_type *ls;
2669
2670 if (l->header.type != lang_input_section_enum)
2671 continue;
2672 ls = &l->input_section;
2673
2674 /* Sorting by filename takes precedence over sorting by section
2675 name. */
2676
2677 if (wild->filenames_sorted)
2678 {
2679 const char *fn, *ln;
2680 bfd_boolean fa, la;
2681 int i;
2682
2683 /* The PE support for the .idata section as generated by
2684 dlltool assumes that files will be sorted by the name of
2685 the archive and then the name of the file within the
2686 archive. */
2687
2688 if (file->the_bfd != NULL
2689 && file->the_bfd->my_archive != NULL)
2690 {
2691 fn = bfd_get_filename (file->the_bfd->my_archive);
2692 fa = TRUE;
2693 }
2694 else
2695 {
2696 fn = file->filename;
2697 fa = FALSE;
2698 }
2699
2700 if (ls->section->owner->my_archive != NULL)
2701 {
2702 ln = bfd_get_filename (ls->section->owner->my_archive);
2703 la = TRUE;
2704 }
2705 else
2706 {
2707 ln = ls->section->owner->filename;
2708 la = FALSE;
2709 }
2710
2711 i = filename_cmp (fn, ln);
2712 if (i > 0)
2713 continue;
2714 else if (i < 0)
2715 break;
2716
2717 if (fa || la)
2718 {
2719 if (fa)
2720 fn = file->filename;
2721 if (la)
2722 ln = ls->section->owner->filename;
2723
2724 i = filename_cmp (fn, ln);
2725 if (i > 0)
2726 continue;
2727 else if (i < 0)
2728 break;
2729 }
2730 }
2731
2732 /* Here either the files are not sorted by name, or we are
2733 looking at the sections for this file. */
2734
2735 if (sec != NULL
2736 && sec->spec.sorted != none
2737 && sec->spec.sorted != by_none)
2738 if (compare_section (sec->spec.sorted, section, ls->section) < 0)
2739 break;
2740 }
2741
2742 return l;
2743 }
2744
2745 /* Expand a wild statement for a particular FILE. SECTION may be
2746 NULL, in which case it is a wild card. */
2747
2748 static void
2749 output_section_callback (lang_wild_statement_type *ptr,
2750 struct wildcard_list *sec,
2751 asection *section,
2752 struct flag_info *sflag_info,
2753 lang_input_statement_type *file,
2754 void *output)
2755 {
2756 lang_statement_union_type *before;
2757 lang_output_section_statement_type *os;
2758
2759 os = (lang_output_section_statement_type *) output;
2760
2761 /* Exclude sections that match UNIQUE_SECTION_LIST. */
2762 if (unique_section_p (section, os))
2763 return;
2764
2765 before = wild_sort (ptr, sec, file, section);
2766
2767 /* Here BEFORE points to the lang_input_section which
2768 should follow the one we are about to add. If BEFORE
2769 is NULL, then the section should just go at the end
2770 of the current list. */
2771
2772 if (before == NULL)
2773 lang_add_section (&ptr->children, section, sflag_info, os);
2774 else
2775 {
2776 lang_statement_list_type list;
2777 lang_statement_union_type **pp;
2778
2779 lang_list_init (&list);
2780 lang_add_section (&list, section, sflag_info, os);
2781
2782 /* If we are discarding the section, LIST.HEAD will
2783 be NULL. */
2784 if (list.head != NULL)
2785 {
2786 ASSERT (list.head->header.next == NULL);
2787
2788 for (pp = &ptr->children.head;
2789 *pp != before;
2790 pp = &(*pp)->header.next)
2791 ASSERT (*pp != NULL);
2792
2793 list.head->header.next = *pp;
2794 *pp = list.head;
2795 }
2796 }
2797 }
2798
2799 /* Check if all sections in a wild statement for a particular FILE
2800 are readonly. */
2801
2802 static void
2803 check_section_callback (lang_wild_statement_type *ptr ATTRIBUTE_UNUSED,
2804 struct wildcard_list *sec ATTRIBUTE_UNUSED,
2805 asection *section,
2806 struct flag_info *sflag_info ATTRIBUTE_UNUSED,
2807 lang_input_statement_type *file ATTRIBUTE_UNUSED,
2808 void *output)
2809 {
2810 lang_output_section_statement_type *os;
2811
2812 os = (lang_output_section_statement_type *) output;
2813
2814 /* Exclude sections that match UNIQUE_SECTION_LIST. */
2815 if (unique_section_p (section, os))
2816 return;
2817
2818 if (section->output_section == NULL && (section->flags & SEC_READONLY) == 0)
2819 os->all_input_readonly = FALSE;
2820 }
2821
2822 /* This is passed a file name which must have been seen already and
2823 added to the statement tree. We will see if it has been opened
2824 already and had its symbols read. If not then we'll read it. */
2825
2826 static lang_input_statement_type *
2827 lookup_name (const char *name)
2828 {
2829 lang_input_statement_type *search;
2830
2831 for (search = (lang_input_statement_type *) input_file_chain.head;
2832 search != NULL;
2833 search = (lang_input_statement_type *) search->next_real_file)
2834 {
2835 /* Use the local_sym_name as the name of the file that has
2836 already been loaded as filename might have been transformed
2837 via the search directory lookup mechanism. */
2838 const char *filename = search->local_sym_name;
2839
2840 if (filename != NULL
2841 && filename_cmp (filename, name) == 0)
2842 break;
2843 }
2844
2845 if (search == NULL)
2846 search = new_afile (name, lang_input_file_is_search_file_enum,
2847 default_target, FALSE);
2848
2849 /* If we have already added this file, or this file is not real
2850 don't add this file. */
2851 if (search->flags.loaded || !search->flags.real)
2852 return search;
2853
2854 if (!load_symbols (search, NULL))
2855 return NULL;
2856
2857 return search;
2858 }
2859
2860 /* Save LIST as a list of libraries whose symbols should not be exported. */
2861
2862 struct excluded_lib
2863 {
2864 char *name;
2865 struct excluded_lib *next;
2866 };
2867 static struct excluded_lib *excluded_libs;
2868
2869 void
2870 add_excluded_libs (const char *list)
2871 {
2872 const char *p = list, *end;
2873
2874 while (*p != '\0')
2875 {
2876 struct excluded_lib *entry;
2877 end = strpbrk (p, ",:");
2878 if (end == NULL)
2879 end = p + strlen (p);
2880 entry = (struct excluded_lib *) xmalloc (sizeof (*entry));
2881 entry->next = excluded_libs;
2882 entry->name = (char *) xmalloc (end - p + 1);
2883 memcpy (entry->name, p, end - p);
2884 entry->name[end - p] = '\0';
2885 excluded_libs = entry;
2886 if (*end == '\0')
2887 break;
2888 p = end + 1;
2889 }
2890 }
2891
2892 static void
2893 check_excluded_libs (bfd *abfd)
2894 {
2895 struct excluded_lib *lib = excluded_libs;
2896
2897 while (lib)
2898 {
2899 int len = strlen (lib->name);
2900 const char *filename = lbasename (abfd->filename);
2901
2902 if (strcmp (lib->name, "ALL") == 0)
2903 {
2904 abfd->no_export = TRUE;
2905 return;
2906 }
2907
2908 if (filename_ncmp (lib->name, filename, len) == 0
2909 && (filename[len] == '\0'
2910 || (filename[len] == '.' && filename[len + 1] == 'a'
2911 && filename[len + 2] == '\0')))
2912 {
2913 abfd->no_export = TRUE;
2914 return;
2915 }
2916
2917 lib = lib->next;
2918 }
2919 }
2920
2921 /* Get the symbols for an input file. */
2922
2923 bfd_boolean
2924 load_symbols (lang_input_statement_type *entry,
2925 lang_statement_list_type *place)
2926 {
2927 char **matching;
2928
2929 if (entry->flags.loaded)
2930 return TRUE;
2931
2932 ldfile_open_file (entry);
2933
2934 /* Do not process further if the file was missing. */
2935 if (entry->flags.missing_file)
2936 return TRUE;
2937
2938 if (!bfd_check_format (entry->the_bfd, bfd_archive)
2939 && !bfd_check_format_matches (entry->the_bfd, bfd_object, &matching))
2940 {
2941 bfd_error_type err;
2942 struct lang_input_statement_flags save_flags;
2943 extern FILE *yyin;
2944
2945 err = bfd_get_error ();
2946
2947 /* See if the emulation has some special knowledge. */
2948 if (ldemul_unrecognized_file (entry))
2949 return TRUE;
2950
2951 if (err == bfd_error_file_ambiguously_recognized)
2952 {
2953 char **p;
2954
2955 einfo (_("%P: %pB: file not recognized: %E;"
2956 " matching formats:"), entry->the_bfd);
2957 for (p = matching; *p != NULL; p++)
2958 einfo (" %s", *p);
2959 einfo ("%F\n");
2960 }
2961 else if (err != bfd_error_file_not_recognized
2962 || place == NULL)
2963 einfo (_("%F%P: %pB: file not recognized: %E\n"), entry->the_bfd);
2964
2965 bfd_close (entry->the_bfd);
2966 entry->the_bfd = NULL;
2967
2968 /* Try to interpret the file as a linker script. */
2969 save_flags = input_flags;
2970 ldfile_open_command_file (entry->filename);
2971
2972 push_stat_ptr (place);
2973 input_flags.add_DT_NEEDED_for_regular
2974 = entry->flags.add_DT_NEEDED_for_regular;
2975 input_flags.add_DT_NEEDED_for_dynamic
2976 = entry->flags.add_DT_NEEDED_for_dynamic;
2977 input_flags.whole_archive = entry->flags.whole_archive;
2978 input_flags.dynamic = entry->flags.dynamic;
2979
2980 ldfile_assumed_script = TRUE;
2981 parser_input = input_script;
2982 yyparse ();
2983 ldfile_assumed_script = FALSE;
2984
2985 /* missing_file is sticky. sysrooted will already have been
2986 restored when seeing EOF in yyparse, but no harm to restore
2987 again. */
2988 save_flags.missing_file |= input_flags.missing_file;
2989 input_flags = save_flags;
2990 pop_stat_ptr ();
2991 fclose (yyin);
2992 yyin = NULL;
2993 entry->flags.loaded = TRUE;
2994
2995 return TRUE;
2996 }
2997
2998 if (ldemul_recognized_file (entry))
2999 return TRUE;
3000
3001 /* We don't call ldlang_add_file for an archive. Instead, the
3002 add_symbols entry point will call ldlang_add_file, via the
3003 add_archive_element callback, for each element of the archive
3004 which is used. */
3005 switch (bfd_get_format (entry->the_bfd))
3006 {
3007 default:
3008 break;
3009
3010 case bfd_object:
3011 if (!entry->flags.reload)
3012 ldlang_add_file (entry);
3013 if (trace_files || verbose)
3014 info_msg ("%pI\n", entry);
3015 break;
3016
3017 case bfd_archive:
3018 check_excluded_libs (entry->the_bfd);
3019
3020 entry->the_bfd->usrdata = entry;
3021 if (entry->flags.whole_archive)
3022 {
3023 bfd *member = NULL;
3024 bfd_boolean loaded = TRUE;
3025
3026 for (;;)
3027 {
3028 bfd *subsbfd;
3029 member = bfd_openr_next_archived_file (entry->the_bfd, member);
3030
3031 if (member == NULL)
3032 break;
3033
3034 if (!bfd_check_format (member, bfd_object))
3035 {
3036 einfo (_("%F%P: %pB: member %pB in archive is not an object\n"),
3037 entry->the_bfd, member);
3038 loaded = FALSE;
3039 }
3040
3041 subsbfd = member;
3042 if (!(*link_info.callbacks
3043 ->add_archive_element) (&link_info, member,
3044 "--whole-archive", &subsbfd))
3045 abort ();
3046
3047 /* Potentially, the add_archive_element hook may have set a
3048 substitute BFD for us. */
3049 if (!bfd_link_add_symbols (subsbfd, &link_info))
3050 {
3051 einfo (_("%F%P: %pB: error adding symbols: %E\n"), member);
3052 loaded = FALSE;
3053 }
3054 }
3055
3056 entry->flags.loaded = loaded;
3057 return loaded;
3058 }
3059 break;
3060 }
3061
3062 if (bfd_link_add_symbols (entry->the_bfd, &link_info))
3063 entry->flags.loaded = TRUE;
3064 else
3065 einfo (_("%F%P: %pB: error adding symbols: %E\n"), entry->the_bfd);
3066
3067 return entry->flags.loaded;
3068 }
3069
3070 /* Handle a wild statement. S->FILENAME or S->SECTION_LIST or both
3071 may be NULL, indicating that it is a wildcard. Separate
3072 lang_input_section statements are created for each part of the
3073 expansion; they are added after the wild statement S. OUTPUT is
3074 the output section. */
3075
3076 static void
3077 wild (lang_wild_statement_type *s,
3078 const char *target ATTRIBUTE_UNUSED,
3079 lang_output_section_statement_type *output)
3080 {
3081 struct wildcard_list *sec;
3082
3083 if (s->handler_data[0]
3084 && s->handler_data[0]->spec.sorted == by_name
3085 && !s->filenames_sorted)
3086 {
3087 lang_section_bst_type *tree;
3088
3089 walk_wild (s, output_section_callback_fast, output);
3090
3091 tree = s->tree;
3092 if (tree)
3093 {
3094 output_section_callback_tree_to_list (s, tree, output);
3095 s->tree = NULL;
3096 }
3097 }
3098 else
3099 walk_wild (s, output_section_callback, output);
3100
3101 if (default_common_section == NULL)
3102 for (sec = s->section_list; sec != NULL; sec = sec->next)
3103 if (sec->spec.name != NULL && strcmp (sec->spec.name, "COMMON") == 0)
3104 {
3105 /* Remember the section that common is going to in case we
3106 later get something which doesn't know where to put it. */
3107 default_common_section = output;
3108 break;
3109 }
3110 }
3111
3112 /* Return TRUE iff target is the sought target. */
3113
3114 static int
3115 get_target (const bfd_target *target, void *data)
3116 {
3117 const char *sought = (const char *) data;
3118
3119 return strcmp (target->name, sought) == 0;
3120 }
3121
3122 /* Like strcpy() but convert to lower case as well. */
3123
3124 static void
3125 stricpy (char *dest, char *src)
3126 {
3127 char c;
3128
3129 while ((c = *src++) != 0)
3130 *dest++ = TOLOWER (c);
3131
3132 *dest = 0;
3133 }
3134
3135 /* Remove the first occurrence of needle (if any) in haystack
3136 from haystack. */
3137
3138 static void
3139 strcut (char *haystack, char *needle)
3140 {
3141 haystack = strstr (haystack, needle);
3142
3143 if (haystack)
3144 {
3145 char *src;
3146
3147 for (src = haystack + strlen (needle); *src;)
3148 *haystack++ = *src++;
3149
3150 *haystack = 0;
3151 }
3152 }
3153
3154 /* Compare two target format name strings.
3155 Return a value indicating how "similar" they are. */
3156
3157 static int
3158 name_compare (char *first, char *second)
3159 {
3160 char *copy1;
3161 char *copy2;
3162 int result;
3163
3164 copy1 = (char *) xmalloc (strlen (first) + 1);
3165 copy2 = (char *) xmalloc (strlen (second) + 1);
3166
3167 /* Convert the names to lower case. */
3168 stricpy (copy1, first);
3169 stricpy (copy2, second);
3170
3171 /* Remove size and endian strings from the name. */
3172 strcut (copy1, "big");
3173 strcut (copy1, "little");
3174 strcut (copy2, "big");
3175 strcut (copy2, "little");
3176
3177 /* Return a value based on how many characters match,
3178 starting from the beginning. If both strings are
3179 the same then return 10 * their length. */
3180 for (result = 0; copy1[result] == copy2[result]; result++)
3181 if (copy1[result] == 0)
3182 {
3183 result *= 10;
3184 break;
3185 }
3186
3187 free (copy1);
3188 free (copy2);
3189
3190 return result;
3191 }
3192
3193 /* Set by closest_target_match() below. */
3194 static const bfd_target *winner;
3195
3196 /* Scan all the valid bfd targets looking for one that has the endianness
3197 requirement that was specified on the command line, and is the nearest
3198 match to the original output target. */
3199
3200 static int
3201 closest_target_match (const bfd_target *target, void *data)
3202 {
3203 const bfd_target *original = (const bfd_target *) data;
3204
3205 if (command_line.endian == ENDIAN_BIG
3206 && target->byteorder != BFD_ENDIAN_BIG)
3207 return 0;
3208
3209 if (command_line.endian == ENDIAN_LITTLE
3210 && target->byteorder != BFD_ENDIAN_LITTLE)
3211 return 0;
3212
3213 /* Must be the same flavour. */
3214 if (target->flavour != original->flavour)
3215 return 0;
3216
3217 /* Ignore generic big and little endian elf vectors. */
3218 if (strcmp (target->name, "elf32-big") == 0
3219 || strcmp (target->name, "elf64-big") == 0
3220 || strcmp (target->name, "elf32-little") == 0
3221 || strcmp (target->name, "elf64-little") == 0)
3222 return 0;
3223
3224 /* If we have not found a potential winner yet, then record this one. */
3225 if (winner == NULL)
3226 {
3227 winner = target;
3228 return 0;
3229 }
3230
3231 /* Oh dear, we now have two potential candidates for a successful match.
3232 Compare their names and choose the better one. */
3233 if (name_compare (target->name, original->name)
3234 > name_compare (winner->name, original->name))
3235 winner = target;
3236
3237 /* Keep on searching until wqe have checked them all. */
3238 return 0;
3239 }
3240
3241 /* Return the BFD target format of the first input file. */
3242
3243 static char *
3244 get_first_input_target (void)
3245 {
3246 char *target = NULL;
3247
3248 LANG_FOR_EACH_INPUT_STATEMENT (s)
3249 {
3250 if (s->header.type == lang_input_statement_enum
3251 && s->flags.real)
3252 {
3253 ldfile_open_file (s);
3254
3255 if (s->the_bfd != NULL
3256 && bfd_check_format (s->the_bfd, bfd_object))
3257 {
3258 target = bfd_get_target (s->the_bfd);
3259
3260 if (target != NULL)
3261 break;
3262 }
3263 }
3264 }
3265
3266 return target;
3267 }
3268
3269 const char *
3270 lang_get_output_target (void)
3271 {
3272 const char *target;
3273
3274 /* Has the user told us which output format to use? */
3275 if (output_target != NULL)
3276 return output_target;
3277
3278 /* No - has the current target been set to something other than
3279 the default? */
3280 if (current_target != default_target && current_target != NULL)
3281 return current_target;
3282
3283 /* No - can we determine the format of the first input file? */
3284 target = get_first_input_target ();
3285 if (target != NULL)
3286 return target;
3287
3288 /* Failed - use the default output target. */
3289 return default_target;
3290 }
3291
3292 /* Open the output file. */
3293
3294 static void
3295 open_output (const char *name)
3296 {
3297 output_target = lang_get_output_target ();
3298
3299 /* Has the user requested a particular endianness on the command
3300 line? */
3301 if (command_line.endian != ENDIAN_UNSET)
3302 {
3303 /* Get the chosen target. */
3304 const bfd_target *target
3305 = bfd_iterate_over_targets (get_target, (void *) output_target);
3306
3307 /* If the target is not supported, we cannot do anything. */
3308 if (target != NULL)
3309 {
3310 enum bfd_endian desired_endian;
3311
3312 if (command_line.endian == ENDIAN_BIG)
3313 desired_endian = BFD_ENDIAN_BIG;
3314 else
3315 desired_endian = BFD_ENDIAN_LITTLE;
3316
3317 /* See if the target has the wrong endianness. This should
3318 not happen if the linker script has provided big and
3319 little endian alternatives, but some scrips don't do
3320 this. */
3321 if (target->byteorder != desired_endian)
3322 {
3323 /* If it does, then see if the target provides
3324 an alternative with the correct endianness. */
3325 if (target->alternative_target != NULL
3326 && (target->alternative_target->byteorder == desired_endian))
3327 output_target = target->alternative_target->name;
3328 else
3329 {
3330 /* Try to find a target as similar as possible to
3331 the default target, but which has the desired
3332 endian characteristic. */
3333 bfd_iterate_over_targets (closest_target_match,
3334 (void *) target);
3335
3336 /* Oh dear - we could not find any targets that
3337 satisfy our requirements. */
3338 if (winner == NULL)
3339 einfo (_("%P: warning: could not find any targets"
3340 " that match endianness requirement\n"));
3341 else
3342 output_target = winner->name;
3343 }
3344 }
3345 }
3346 }
3347
3348 link_info.output_bfd = bfd_openw (name, output_target);
3349
3350 if (link_info.output_bfd == NULL)
3351 {
3352 if (bfd_get_error () == bfd_error_invalid_target)
3353 einfo (_("%F%P: target %s not found\n"), output_target);
3354
3355 einfo (_("%F%P: cannot open output file %s: %E\n"), name);
3356 }
3357
3358 delete_output_file_on_failure = TRUE;
3359
3360 if (!bfd_set_format (link_info.output_bfd, bfd_object))
3361 einfo (_("%F%P: %s: can not make object file: %E\n"), name);
3362 if (!bfd_set_arch_mach (link_info.output_bfd,
3363 ldfile_output_architecture,
3364 ldfile_output_machine))
3365 einfo (_("%F%P: %s: can not set architecture: %E\n"), name);
3366
3367 link_info.hash = bfd_link_hash_table_create (link_info.output_bfd);
3368 if (link_info.hash == NULL)
3369 einfo (_("%F%P: can not create hash table: %E\n"));
3370
3371 bfd_set_gp_size (link_info.output_bfd, g_switch_value);
3372 }
3373
3374 static void
3375 ldlang_open_output (lang_statement_union_type *statement)
3376 {
3377 switch (statement->header.type)
3378 {
3379 case lang_output_statement_enum:
3380 ASSERT (link_info.output_bfd == NULL);
3381 open_output (statement->output_statement.name);
3382 ldemul_set_output_arch ();
3383 if (config.magic_demand_paged
3384 && !bfd_link_relocatable (&link_info))
3385 link_info.output_bfd->flags |= D_PAGED;
3386 else
3387 link_info.output_bfd->flags &= ~D_PAGED;
3388 if (config.text_read_only)
3389 link_info.output_bfd->flags |= WP_TEXT;
3390 else
3391 link_info.output_bfd->flags &= ~WP_TEXT;
3392 if (link_info.traditional_format)
3393 link_info.output_bfd->flags |= BFD_TRADITIONAL_FORMAT;
3394 else
3395 link_info.output_bfd->flags &= ~BFD_TRADITIONAL_FORMAT;
3396 break;
3397
3398 case lang_target_statement_enum:
3399 current_target = statement->target_statement.target;
3400 break;
3401 default:
3402 break;
3403 }
3404 }
3405
3406 static void
3407 init_opb (void)
3408 {
3409 unsigned x = bfd_arch_mach_octets_per_byte (ldfile_output_architecture,
3410 ldfile_output_machine);
3411 opb_shift = 0;
3412 if (x > 1)
3413 while ((x & 1) == 0)
3414 {
3415 x >>= 1;
3416 ++opb_shift;
3417 }
3418 ASSERT (x == 1);
3419 }
3420
3421 /* Open all the input files. */
3422
3423 enum open_bfd_mode
3424 {
3425 OPEN_BFD_NORMAL = 0,
3426 OPEN_BFD_FORCE = 1,
3427 OPEN_BFD_RESCAN = 2
3428 };
3429 #ifdef ENABLE_PLUGINS
3430 static lang_input_statement_type *plugin_insert = NULL;
3431 #endif
3432
3433 static void
3434 open_input_bfds (lang_statement_union_type *s, enum open_bfd_mode mode)
3435 {
3436 for (; s != NULL; s = s->header.next)
3437 {
3438 switch (s->header.type)
3439 {
3440 case lang_constructors_statement_enum:
3441 open_input_bfds (constructor_list.head, mode);
3442 break;
3443 case lang_output_section_statement_enum:
3444 open_input_bfds (s->output_section_statement.children.head, mode);
3445 break;
3446 case lang_wild_statement_enum:
3447 /* Maybe we should load the file's symbols. */
3448 if ((mode & OPEN_BFD_RESCAN) == 0
3449 && s->wild_statement.filename
3450 && !wildcardp (s->wild_statement.filename)
3451 && !archive_path (s->wild_statement.filename))
3452 lookup_name (s->wild_statement.filename);
3453 open_input_bfds (s->wild_statement.children.head, mode);
3454 break;
3455 case lang_group_statement_enum:
3456 {
3457 struct bfd_link_hash_entry *undefs;
3458
3459 /* We must continually search the entries in the group
3460 until no new symbols are added to the list of undefined
3461 symbols. */
3462
3463 do
3464 {
3465 undefs = link_info.hash->undefs_tail;
3466 open_input_bfds (s->group_statement.children.head,
3467 mode | OPEN_BFD_FORCE);
3468 }
3469 while (undefs != link_info.hash->undefs_tail);
3470 }
3471 break;
3472 case lang_target_statement_enum:
3473 current_target = s->target_statement.target;
3474 break;
3475 case lang_input_statement_enum:
3476 if (s->input_statement.flags.real)
3477 {
3478 lang_statement_union_type **os_tail;
3479 lang_statement_list_type add;
3480 bfd *abfd;
3481
3482 s->input_statement.target = current_target;
3483
3484 /* If we are being called from within a group, and this
3485 is an archive which has already been searched, then
3486 force it to be researched unless the whole archive
3487 has been loaded already. Do the same for a rescan.
3488 Likewise reload --as-needed shared libs. */
3489 if (mode != OPEN_BFD_NORMAL
3490 #ifdef ENABLE_PLUGINS
3491 && ((mode & OPEN_BFD_RESCAN) == 0
3492 || plugin_insert == NULL)
3493 #endif
3494 && s->input_statement.flags.loaded
3495 && (abfd = s->input_statement.the_bfd) != NULL
3496 && ((bfd_get_format (abfd) == bfd_archive
3497 && !s->input_statement.flags.whole_archive)
3498 || (bfd_get_format (abfd) == bfd_object
3499 && ((abfd->flags) & DYNAMIC) != 0
3500 && s->input_statement.flags.add_DT_NEEDED_for_regular
3501 && bfd_get_flavour (abfd) == bfd_target_elf_flavour
3502 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)))
3503 {
3504 s->input_statement.flags.loaded = FALSE;
3505 s->input_statement.flags.reload = TRUE;
3506 }
3507
3508 os_tail = lang_output_section_statement.tail;
3509 lang_list_init (&add);
3510
3511 if (!load_symbols (&s->input_statement, &add))
3512 config.make_executable = FALSE;
3513
3514 if (add.head != NULL)
3515 {
3516 /* If this was a script with output sections then
3517 tack any added statements on to the end of the
3518 list. This avoids having to reorder the output
3519 section statement list. Very likely the user
3520 forgot -T, and whatever we do here will not meet
3521 naive user expectations. */
3522 if (os_tail != lang_output_section_statement.tail)
3523 {
3524 einfo (_("%P: warning: %s contains output sections;"
3525 " did you forget -T?\n"),
3526 s->input_statement.filename);
3527 *stat_ptr->tail = add.head;
3528 stat_ptr->tail = add.tail;
3529 }
3530 else
3531 {
3532 *add.tail = s->header.next;
3533 s->header.next = add.head;
3534 }
3535 }
3536 }
3537 #ifdef ENABLE_PLUGINS
3538 /* If we have found the point at which a plugin added new
3539 files, clear plugin_insert to enable archive rescan. */
3540 if (&s->input_statement == plugin_insert)
3541 plugin_insert = NULL;
3542 #endif
3543 break;
3544 case lang_assignment_statement_enum:
3545 if (s->assignment_statement.exp->type.node_class != etree_assert)
3546 exp_fold_tree_no_dot (s->assignment_statement.exp);
3547 break;
3548 default:
3549 break;
3550 }
3551 }
3552
3553 /* Exit if any of the files were missing. */
3554 if (input_flags.missing_file)
3555 einfo ("%F");
3556 }
3557
3558 /* Add the supplied name to the symbol table as an undefined reference.
3559 This is a two step process as the symbol table doesn't even exist at
3560 the time the ld command line is processed. First we put the name
3561 on a list, then, once the output file has been opened, transfer the
3562 name to the symbol table. */
3563
3564 typedef struct bfd_sym_chain ldlang_undef_chain_list_type;
3565
3566 #define ldlang_undef_chain_list_head entry_symbol.next
3567
3568 void
3569 ldlang_add_undef (const char *const name, bfd_boolean cmdline)
3570 {
3571 ldlang_undef_chain_list_type *new_undef;
3572
3573 undef_from_cmdline = undef_from_cmdline || cmdline;
3574 new_undef = (ldlang_undef_chain_list_type *) stat_alloc (sizeof (*new_undef));
3575 new_undef->next = ldlang_undef_chain_list_head;
3576 ldlang_undef_chain_list_head = new_undef;
3577
3578 new_undef->name = xstrdup (name);
3579
3580 if (link_info.output_bfd != NULL)
3581 insert_undefined (new_undef->name);
3582 }
3583
3584 /* Insert NAME as undefined in the symbol table. */
3585
3586 static void
3587 insert_undefined (const char *name)
3588 {
3589 struct bfd_link_hash_entry *h;
3590
3591 h = bfd_link_hash_lookup (link_info.hash, name, TRUE, FALSE, TRUE);
3592 if (h == NULL)
3593 einfo (_("%F%P: bfd_link_hash_lookup failed: %E\n"));
3594 if (h->type == bfd_link_hash_new)
3595 {
3596 h->type = bfd_link_hash_undefined;
3597 h->u.undef.abfd = NULL;
3598 h->non_ir_ref_regular = TRUE;
3599 if (is_elf_hash_table (link_info.hash))
3600 ((struct elf_link_hash_entry *) h)->mark = 1;
3601 bfd_link_add_undef (link_info.hash, h);
3602 }
3603 }
3604
3605 /* Run through the list of undefineds created above and place them
3606 into the linker hash table as undefined symbols belonging to the
3607 script file. */
3608
3609 static void
3610 lang_place_undefineds (void)
3611 {
3612 ldlang_undef_chain_list_type *ptr;
3613
3614 for (ptr = ldlang_undef_chain_list_head; ptr != NULL; ptr = ptr->next)
3615 insert_undefined (ptr->name);
3616 }
3617
3618 /* Structure used to build the list of symbols that the user has required
3619 be defined. */
3620
3621 struct require_defined_symbol
3622 {
3623 const char *name;
3624 struct require_defined_symbol *next;
3625 };
3626
3627 /* The list of symbols that the user has required be defined. */
3628
3629 static struct require_defined_symbol *require_defined_symbol_list;
3630
3631 /* Add a new symbol NAME to the list of symbols that are required to be
3632 defined. */
3633
3634 void
3635 ldlang_add_require_defined (const char *const name)
3636 {
3637 struct require_defined_symbol *ptr;
3638
3639 ldlang_add_undef (name, TRUE);
3640 ptr = (struct require_defined_symbol *) stat_alloc (sizeof (*ptr));
3641 ptr->next = require_defined_symbol_list;
3642 ptr->name = strdup (name);
3643 require_defined_symbol_list = ptr;
3644 }
3645
3646 /* Check that all symbols the user required to be defined, are defined,
3647 raise an error if we find a symbol that is not defined. */
3648
3649 static void
3650 ldlang_check_require_defined_symbols (void)
3651 {
3652 struct require_defined_symbol *ptr;
3653
3654 for (ptr = require_defined_symbol_list; ptr != NULL; ptr = ptr->next)
3655 {
3656 struct bfd_link_hash_entry *h;
3657
3658 h = bfd_link_hash_lookup (link_info.hash, ptr->name,
3659 FALSE, FALSE, TRUE);
3660 if (h == NULL
3661 || (h->type != bfd_link_hash_defined
3662 && h->type != bfd_link_hash_defweak))
3663 einfo(_("%X%P: required symbol `%s' not defined\n"), ptr->name);
3664 }
3665 }
3666
3667 /* Check for all readonly or some readwrite sections. */
3668
3669 static void
3670 check_input_sections
3671 (lang_statement_union_type *s,
3672 lang_output_section_statement_type *output_section_statement)
3673 {
3674 for (; s != (lang_statement_union_type *) NULL; s = s->header.next)
3675 {
3676 switch (s->header.type)
3677 {
3678 case lang_wild_statement_enum:
3679 walk_wild (&s->wild_statement, check_section_callback,
3680 output_section_statement);
3681 if (!output_section_statement->all_input_readonly)
3682 return;
3683 break;
3684 case lang_constructors_statement_enum:
3685 check_input_sections (constructor_list.head,
3686 output_section_statement);
3687 if (!output_section_statement->all_input_readonly)
3688 return;
3689 break;
3690 case lang_group_statement_enum:
3691 check_input_sections (s->group_statement.children.head,
3692 output_section_statement);
3693 if (!output_section_statement->all_input_readonly)
3694 return;
3695 break;
3696 default:
3697 break;
3698 }
3699 }
3700 }
3701
3702 /* Update wildcard statements if needed. */
3703
3704 static void
3705 update_wild_statements (lang_statement_union_type *s)
3706 {
3707 struct wildcard_list *sec;
3708
3709 switch (sort_section)
3710 {
3711 default:
3712 FAIL ();
3713
3714 case none:
3715 break;
3716
3717 case by_name:
3718 case by_alignment:
3719 for (; s != NULL; s = s->header.next)
3720 {
3721 switch (s->header.type)
3722 {
3723 default:
3724 break;
3725
3726 case lang_wild_statement_enum:
3727 for (sec = s->wild_statement.section_list; sec != NULL;
3728 sec = sec->next)
3729 {
3730 switch (sec->spec.sorted)
3731 {
3732 case none:
3733 sec->spec.sorted = sort_section;
3734 break;
3735 case by_name:
3736 if (sort_section == by_alignment)
3737 sec->spec.sorted = by_name_alignment;
3738 break;
3739 case by_alignment:
3740 if (sort_section == by_name)
3741 sec->spec.sorted = by_alignment_name;
3742 break;
3743 default:
3744 break;
3745 }
3746 }
3747 break;
3748
3749 case lang_constructors_statement_enum:
3750 update_wild_statements (constructor_list.head);
3751 break;
3752
3753 case lang_output_section_statement_enum:
3754 /* Don't sort .init/.fini sections. */
3755 if (strcmp (s->output_section_statement.name, ".init") != 0
3756 && strcmp (s->output_section_statement.name, ".fini") != 0)
3757 update_wild_statements
3758 (s->output_section_statement.children.head);
3759 break;
3760
3761 case lang_group_statement_enum:
3762 update_wild_statements (s->group_statement.children.head);
3763 break;
3764 }
3765 }
3766 break;
3767 }
3768 }
3769
3770 /* Open input files and attach to output sections. */
3771
3772 static void
3773 map_input_to_output_sections
3774 (lang_statement_union_type *s, const char *target,
3775 lang_output_section_statement_type *os)
3776 {
3777 for (; s != NULL; s = s->header.next)
3778 {
3779 lang_output_section_statement_type *tos;
3780 flagword flags;
3781
3782 switch (s->header.type)
3783 {
3784 case lang_wild_statement_enum:
3785 wild (&s->wild_statement, target, os);
3786 break;
3787 case lang_constructors_statement_enum:
3788 map_input_to_output_sections (constructor_list.head,
3789 target,
3790 os);
3791 break;
3792 case lang_output_section_statement_enum:
3793 tos = &s->output_section_statement;
3794 if (tos->constraint != 0)
3795 {
3796 if (tos->constraint != ONLY_IF_RW
3797 && tos->constraint != ONLY_IF_RO)
3798 break;
3799 tos->all_input_readonly = TRUE;
3800 check_input_sections (tos->children.head, tos);
3801 if (tos->all_input_readonly != (tos->constraint == ONLY_IF_RO))
3802 {
3803 tos->constraint = -1;
3804 break;
3805 }
3806 }
3807 map_input_to_output_sections (tos->children.head,
3808 target,
3809 tos);
3810 break;
3811 case lang_output_statement_enum:
3812 break;
3813 case lang_target_statement_enum:
3814 target = s->target_statement.target;
3815 break;
3816 case lang_group_statement_enum:
3817 map_input_to_output_sections (s->group_statement.children.head,
3818 target,
3819 os);
3820 break;
3821 case lang_data_statement_enum:
3822 /* Make sure that any sections mentioned in the expression
3823 are initialized. */
3824 exp_init_os (s->data_statement.exp);
3825 /* The output section gets CONTENTS, ALLOC and LOAD, but
3826 these may be overridden by the script. */
3827 flags = SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD;
3828 switch (os->sectype)
3829 {
3830 case normal_section:
3831 case overlay_section:
3832 break;
3833 case noalloc_section:
3834 flags = SEC_HAS_CONTENTS;
3835 break;
3836 case noload_section:
3837 if (bfd_get_flavour (link_info.output_bfd)
3838 == bfd_target_elf_flavour)
3839 flags = SEC_NEVER_LOAD | SEC_ALLOC;
3840 else
3841 flags = SEC_NEVER_LOAD | SEC_HAS_CONTENTS;
3842 break;
3843 }
3844 if (os->bfd_section == NULL)
3845 init_os (os, flags);
3846 else
3847 os->bfd_section->flags |= flags;
3848 break;
3849 case lang_input_section_enum:
3850 break;
3851 case lang_fill_statement_enum:
3852 case lang_object_symbols_statement_enum:
3853 case lang_reloc_statement_enum:
3854 case lang_padding_statement_enum:
3855 case lang_input_statement_enum:
3856 if (os != NULL && os->bfd_section == NULL)
3857 init_os (os, 0);
3858 break;
3859 case lang_assignment_statement_enum:
3860 if (os != NULL && os->bfd_section == NULL)
3861 init_os (os, 0);
3862
3863 /* Make sure that any sections mentioned in the assignment
3864 are initialized. */
3865 exp_init_os (s->assignment_statement.exp);
3866 break;
3867 case lang_address_statement_enum:
3868 /* Mark the specified section with the supplied address.
3869 If this section was actually a segment marker, then the
3870 directive is ignored if the linker script explicitly
3871 processed the segment marker. Originally, the linker
3872 treated segment directives (like -Ttext on the
3873 command-line) as section directives. We honor the
3874 section directive semantics for backwards compatibility;
3875 linker scripts that do not specifically check for
3876 SEGMENT_START automatically get the old semantics. */
3877 if (!s->address_statement.segment
3878 || !s->address_statement.segment->used)
3879 {
3880 const char *name = s->address_statement.section_name;
3881
3882 /* Create the output section statement here so that
3883 orphans with a set address will be placed after other
3884 script sections. If we let the orphan placement code
3885 place them in amongst other sections then the address
3886 will affect following script sections, which is
3887 likely to surprise naive users. */
3888 tos = lang_output_section_statement_lookup (name, 0, TRUE);
3889 tos->addr_tree = s->address_statement.address;
3890 if (tos->bfd_section == NULL)
3891 init_os (tos, 0);
3892 }
3893 break;
3894 case lang_insert_statement_enum:
3895 break;
3896 }
3897 }
3898 }
3899
3900 /* An insert statement snips out all the linker statements from the
3901 start of the list and places them after the output section
3902 statement specified by the insert. This operation is complicated
3903 by the fact that we keep a doubly linked list of output section
3904 statements as well as the singly linked list of all statements. */
3905
3906 static void
3907 process_insert_statements (void)
3908 {
3909 lang_statement_union_type **s;
3910 lang_output_section_statement_type *first_os = NULL;
3911 lang_output_section_statement_type *last_os = NULL;
3912 lang_output_section_statement_type *os;
3913
3914 /* "start of list" is actually the statement immediately after
3915 the special abs_section output statement, so that it isn't
3916 reordered. */
3917 s = &lang_output_section_statement.head;
3918 while (*(s = &(*s)->header.next) != NULL)
3919 {
3920 if ((*s)->header.type == lang_output_section_statement_enum)
3921 {
3922 /* Keep pointers to the first and last output section
3923 statement in the sequence we may be about to move. */
3924 os = &(*s)->output_section_statement;
3925
3926 ASSERT (last_os == NULL || last_os->next == os);
3927 last_os = os;
3928
3929 /* Set constraint negative so that lang_output_section_find
3930 won't match this output section statement. At this
3931 stage in linking constraint has values in the range
3932 [-1, ONLY_IN_RW]. */
3933 last_os->constraint = -2 - last_os->constraint;
3934 if (first_os == NULL)
3935 first_os = last_os;
3936 }
3937 else if ((*s)->header.type == lang_insert_statement_enum)
3938 {
3939 lang_insert_statement_type *i = &(*s)->insert_statement;
3940 lang_output_section_statement_type *where;
3941 lang_statement_union_type **ptr;
3942 lang_statement_union_type *first;
3943
3944 where = lang_output_section_find (i->where);
3945 if (where != NULL && i->is_before)
3946 {
3947 do
3948 where = where->prev;
3949 while (where != NULL && where->constraint < 0);
3950 }
3951 if (where == NULL)
3952 {
3953 einfo (_("%F%P: %s not found for insert\n"), i->where);
3954 return;
3955 }
3956
3957 /* Deal with reordering the output section statement list. */
3958 if (last_os != NULL)
3959 {
3960 asection *first_sec, *last_sec;
3961 struct lang_output_section_statement_struct **next;
3962
3963 /* Snip out the output sections we are moving. */
3964 first_os->prev->next = last_os->next;
3965 if (last_os->next == NULL)
3966 {
3967 next = &first_os->prev->next;
3968 lang_output_section_statement.tail
3969 = (lang_statement_union_type **) next;
3970 }
3971 else
3972 last_os->next->prev = first_os->prev;
3973 /* Add them in at the new position. */
3974 last_os->next = where->next;
3975 if (where->next == NULL)
3976 {
3977 next = &last_os->next;
3978 lang_output_section_statement.tail
3979 = (lang_statement_union_type **) next;
3980 }
3981 else
3982 where->next->prev = last_os;
3983 first_os->prev = where;
3984 where->next = first_os;
3985
3986 /* Move the bfd sections in the same way. */
3987 first_sec = NULL;
3988 last_sec = NULL;
3989 for (os = first_os; os != NULL; os = os->next)
3990 {
3991 os->constraint = -2 - os->constraint;
3992 if (os->bfd_section != NULL
3993 && os->bfd_section->owner != NULL)
3994 {
3995 last_sec = os->bfd_section;
3996 if (first_sec == NULL)
3997 first_sec = last_sec;
3998 }
3999 if (os == last_os)
4000 break;
4001 }
4002 if (last_sec != NULL)
4003 {
4004 asection *sec = where->bfd_section;
4005 if (sec == NULL)
4006 sec = output_prev_sec_find (where);
4007
4008 /* The place we want to insert must come after the
4009 sections we are moving. So if we find no
4010 section or if the section is the same as our
4011 last section, then no move is needed. */
4012 if (sec != NULL && sec != last_sec)
4013 {
4014 /* Trim them off. */
4015 if (first_sec->prev != NULL)
4016 first_sec->prev->next = last_sec->next;
4017 else
4018 link_info.output_bfd->sections = last_sec->next;
4019 if (last_sec->next != NULL)
4020 last_sec->next->prev = first_sec->prev;
4021 else
4022 link_info.output_bfd->section_last = first_sec->prev;
4023 /* Add back. */
4024 last_sec->next = sec->next;
4025 if (sec->next != NULL)
4026 sec->next->prev = last_sec;
4027 else
4028 link_info.output_bfd->section_last = last_sec;
4029 first_sec->prev = sec;
4030 sec->next = first_sec;
4031 }
4032 }
4033
4034 first_os = NULL;
4035 last_os = NULL;
4036 }
4037
4038 ptr = insert_os_after (where);
4039 /* Snip everything after the abs_section output statement we
4040 know is at the start of the list, up to and including
4041 the insert statement we are currently processing. */
4042 first = lang_output_section_statement.head->header.next;
4043 lang_output_section_statement.head->header.next = (*s)->header.next;
4044 /* Add them back where they belong. */
4045 *s = *ptr;
4046 if (*s == NULL)
4047 statement_list.tail = s;
4048 *ptr = first;
4049 s = &lang_output_section_statement.head;
4050 }
4051 }
4052
4053 /* Undo constraint twiddling. */
4054 for (os = first_os; os != NULL; os = os->next)
4055 {
4056 os->constraint = -2 - os->constraint;
4057 if (os == last_os)
4058 break;
4059 }
4060 }
4061
4062 /* An output section might have been removed after its statement was
4063 added. For example, ldemul_before_allocation can remove dynamic
4064 sections if they turn out to be not needed. Clean them up here. */
4065
4066 void
4067 strip_excluded_output_sections (void)
4068 {
4069 lang_output_section_statement_type *os;
4070
4071 /* Run lang_size_sections (if not already done). */
4072 if (expld.phase != lang_mark_phase_enum)
4073 {
4074 expld.phase = lang_mark_phase_enum;
4075 expld.dataseg.phase = exp_seg_none;
4076 one_lang_size_sections_pass (NULL, FALSE);
4077 lang_reset_memory_regions ();
4078 }
4079
4080 for (os = &lang_output_section_statement.head->output_section_statement;
4081 os != NULL;
4082 os = os->next)
4083 {
4084 asection *output_section;
4085 bfd_boolean exclude;
4086
4087 if (os->constraint < 0)
4088 continue;
4089
4090 output_section = os->bfd_section;
4091 if (output_section == NULL)
4092 continue;
4093
4094 exclude = (output_section->rawsize == 0
4095 && (output_section->flags & SEC_KEEP) == 0
4096 && !bfd_section_removed_from_list (link_info.output_bfd,
4097 output_section));
4098
4099 /* Some sections have not yet been sized, notably .gnu.version,
4100 .dynsym, .dynstr and .hash. These all have SEC_LINKER_CREATED
4101 input sections, so don't drop output sections that have such
4102 input sections unless they are also marked SEC_EXCLUDE. */
4103 if (exclude && output_section->map_head.s != NULL)
4104 {
4105 asection *s;
4106
4107 for (s = output_section->map_head.s; s != NULL; s = s->map_head.s)
4108 if ((s->flags & SEC_EXCLUDE) == 0
4109 && ((s->flags & SEC_LINKER_CREATED) != 0
4110 || link_info.emitrelocations))
4111 {
4112 exclude = FALSE;
4113 break;
4114 }
4115 }
4116
4117 if (exclude)
4118 {
4119 /* We don't set bfd_section to NULL since bfd_section of the
4120 removed output section statement may still be used. */
4121 if (!os->update_dot)
4122 os->ignored = TRUE;
4123 output_section->flags |= SEC_EXCLUDE;
4124 bfd_section_list_remove (link_info.output_bfd, output_section);
4125 link_info.output_bfd->section_count--;
4126 }
4127 }
4128 }
4129
4130 /* Called from ldwrite to clear out asection.map_head and
4131 asection.map_tail for use as link_orders in ldwrite. */
4132
4133 void
4134 lang_clear_os_map (void)
4135 {
4136 lang_output_section_statement_type *os;
4137
4138 if (map_head_is_link_order)
4139 return;
4140
4141 for (os = &lang_output_section_statement.head->output_section_statement;
4142 os != NULL;
4143 os = os->next)
4144 {
4145 asection *output_section;
4146
4147 if (os->constraint < 0)
4148 continue;
4149
4150 output_section = os->bfd_section;
4151 if (output_section == NULL)
4152 continue;
4153
4154 /* TODO: Don't just junk map_head.s, turn them into link_orders. */
4155 output_section->map_head.link_order = NULL;
4156 output_section->map_tail.link_order = NULL;
4157 }
4158
4159 /* Stop future calls to lang_add_section from messing with map_head
4160 and map_tail link_order fields. */
4161 map_head_is_link_order = TRUE;
4162 }
4163
4164 static void
4165 print_output_section_statement
4166 (lang_output_section_statement_type *output_section_statement)
4167 {
4168 asection *section = output_section_statement->bfd_section;
4169 int len;
4170
4171 if (output_section_statement != abs_output_section)
4172 {
4173 minfo ("\n%s", output_section_statement->name);
4174
4175 if (section != NULL)
4176 {
4177 print_dot = section->vma;
4178
4179 len = strlen (output_section_statement->name);
4180 if (len >= SECTION_NAME_MAP_LENGTH - 1)
4181 {
4182 print_nl ();
4183 len = 0;
4184 }
4185 while (len < SECTION_NAME_MAP_LENGTH)
4186 {
4187 print_space ();
4188 ++len;
4189 }
4190
4191 minfo ("0x%V %W", section->vma, TO_ADDR (section->size));
4192
4193 if (section->vma != section->lma)
4194 minfo (_(" load address 0x%V"), section->lma);
4195
4196 if (output_section_statement->update_dot_tree != NULL)
4197 exp_fold_tree (output_section_statement->update_dot_tree,
4198 bfd_abs_section_ptr, &print_dot);
4199 }
4200
4201 print_nl ();
4202 }
4203
4204 print_statement_list (output_section_statement->children.head,
4205 output_section_statement);
4206 }
4207
4208 static void
4209 print_assignment (lang_assignment_statement_type *assignment,
4210 lang_output_section_statement_type *output_section)
4211 {
4212 unsigned int i;
4213 bfd_boolean is_dot;
4214 etree_type *tree;
4215 asection *osec;
4216
4217 for (i = 0; i < SECTION_NAME_MAP_LENGTH; i++)
4218 print_space ();
4219
4220 if (assignment->exp->type.node_class == etree_assert)
4221 {
4222 is_dot = FALSE;
4223 tree = assignment->exp->assert_s.child;
4224 }
4225 else
4226 {
4227 const char *dst = assignment->exp->assign.dst;
4228
4229 is_dot = (dst[0] == '.' && dst[1] == 0);
4230 if (!is_dot)
4231 expld.assign_name = dst;
4232 tree = assignment->exp->assign.src;
4233 }
4234
4235 osec = output_section->bfd_section;
4236 if (osec == NULL)
4237 osec = bfd_abs_section_ptr;
4238
4239 if (assignment->exp->type.node_class != etree_provide)
4240 exp_fold_tree (tree, osec, &print_dot);
4241 else
4242 expld.result.valid_p = FALSE;
4243
4244 if (expld.result.valid_p)
4245 {
4246 bfd_vma value;
4247
4248 if (assignment->exp->type.node_class == etree_assert
4249 || is_dot
4250 || expld.assign_name != NULL)
4251 {
4252 value = expld.result.value;
4253
4254 if (expld.result.section != NULL)
4255 value += expld.result.section->vma;
4256
4257 minfo ("0x%V", value);
4258 if (is_dot)
4259 print_dot = value;
4260 }
4261 else
4262 {
4263 struct bfd_link_hash_entry *h;
4264
4265 h = bfd_link_hash_lookup (link_info.hash, assignment->exp->assign.dst,
4266 FALSE, FALSE, TRUE);
4267 if (h)
4268 {
4269 value = h->u.def.value;
4270 value += h->u.def.section->output_section->vma;
4271 value += h->u.def.section->output_offset;
4272
4273 minfo ("[0x%V]", value);
4274 }
4275 else
4276 minfo ("[unresolved]");
4277 }
4278 }
4279 else
4280 {
4281 if (assignment->exp->type.node_class == etree_provide)
4282 minfo ("[!provide]");
4283 else
4284 minfo ("*undef* ");
4285 #ifdef BFD64
4286 minfo (" ");
4287 #endif
4288 }
4289 expld.assign_name = NULL;
4290
4291 minfo (" ");
4292 exp_print_tree (assignment->exp);
4293 print_nl ();
4294 }
4295
4296 static void
4297 print_input_statement (lang_input_statement_type *statm)
4298 {
4299 if (statm->filename != NULL
4300 && (statm->the_bfd == NULL
4301 || (statm->the_bfd->flags & BFD_LINKER_CREATED) == 0))
4302 fprintf (config.map_file, "LOAD %s\n", statm->filename);
4303 }
4304
4305 /* Print all symbols defined in a particular section. This is called
4306 via bfd_link_hash_traverse, or by print_all_symbols. */
4307
4308 static bfd_boolean
4309 print_one_symbol (struct bfd_link_hash_entry *hash_entry, void *ptr)
4310 {
4311 asection *sec = (asection *) ptr;
4312
4313 if ((hash_entry->type == bfd_link_hash_defined
4314 || hash_entry->type == bfd_link_hash_defweak)
4315 && sec == hash_entry->u.def.section)
4316 {
4317 int i;
4318
4319 for (i = 0; i < SECTION_NAME_MAP_LENGTH; i++)
4320 print_space ();
4321 minfo ("0x%V ",
4322 (hash_entry->u.def.value
4323 + hash_entry->u.def.section->output_offset
4324 + hash_entry->u.def.section->output_section->vma));
4325
4326 minfo (" %pT\n", hash_entry->root.string);
4327 }
4328
4329 return TRUE;
4330 }
4331
4332 static int
4333 hash_entry_addr_cmp (const void *a, const void *b)
4334 {
4335 const struct bfd_link_hash_entry *l = *(const struct bfd_link_hash_entry **)a;
4336 const struct bfd_link_hash_entry *r = *(const struct bfd_link_hash_entry **)b;
4337
4338 if (l->u.def.value < r->u.def.value)
4339 return -1;
4340 else if (l->u.def.value > r->u.def.value)
4341 return 1;
4342 else
4343 return 0;
4344 }
4345
4346 static void
4347 print_all_symbols (asection *sec)
4348 {
4349 input_section_userdata_type *ud
4350 = (input_section_userdata_type *) get_userdata (sec);
4351 struct map_symbol_def *def;
4352 struct bfd_link_hash_entry **entries;
4353 unsigned int i;
4354
4355 if (!ud)
4356 return;
4357
4358 *ud->map_symbol_def_tail = 0;
4359
4360 /* Sort the symbols by address. */
4361 entries = (struct bfd_link_hash_entry **)
4362 obstack_alloc (&map_obstack,
4363 ud->map_symbol_def_count * sizeof (*entries));
4364
4365 for (i = 0, def = ud->map_symbol_def_head; def; def = def->next, i++)
4366 entries[i] = def->entry;
4367
4368 qsort (entries, ud->map_symbol_def_count, sizeof (*entries),
4369 hash_entry_addr_cmp);
4370
4371 /* Print the symbols. */
4372 for (i = 0; i < ud->map_symbol_def_count; i++)
4373 print_one_symbol (entries[i], sec);
4374
4375 obstack_free (&map_obstack, entries);
4376 }
4377
4378 /* Print information about an input section to the map file. */
4379
4380 static void
4381 print_input_section (asection *i, bfd_boolean is_discarded)
4382 {
4383 bfd_size_type size = i->size;
4384 int len;
4385 bfd_vma addr;
4386
4387 init_opb ();
4388
4389 print_space ();
4390 minfo ("%s", i->name);
4391
4392 len = 1 + strlen (i->name);
4393 if (len >= SECTION_NAME_MAP_LENGTH - 1)
4394 {
4395 print_nl ();
4396 len = 0;
4397 }
4398 while (len < SECTION_NAME_MAP_LENGTH)
4399 {
4400 print_space ();
4401 ++len;
4402 }
4403
4404 if (i->output_section != NULL
4405 && i->output_section->owner == link_info.output_bfd)
4406 addr = i->output_section->vma + i->output_offset;
4407 else
4408 {
4409 addr = print_dot;
4410 if (!is_discarded)
4411 size = 0;
4412 }
4413
4414 minfo ("0x%V %W %pB\n", addr, size, i->owner);
4415
4416 if (size != i->rawsize && i->rawsize != 0)
4417 {
4418 len = SECTION_NAME_MAP_LENGTH + 3;
4419 #ifdef BFD64
4420 len += 16;
4421 #else
4422 len += 8;
4423 #endif
4424 while (len > 0)
4425 {
4426 print_space ();
4427 --len;
4428 }
4429
4430 minfo (_("%W (size before relaxing)\n"), i->rawsize);
4431 }
4432
4433 if (i->output_section != NULL
4434 && i->output_section->owner == link_info.output_bfd)
4435 {
4436 if (link_info.reduce_memory_overheads)
4437 bfd_link_hash_traverse (link_info.hash, print_one_symbol, i);
4438 else
4439 print_all_symbols (i);
4440
4441 /* Update print_dot, but make sure that we do not move it
4442 backwards - this could happen if we have overlays and a
4443 later overlay is shorter than an earier one. */
4444 if (addr + TO_ADDR (size) > print_dot)
4445 print_dot = addr + TO_ADDR (size);
4446 }
4447 }
4448
4449 static void
4450 print_fill_statement (lang_fill_statement_type *fill)
4451 {
4452 size_t size;
4453 unsigned char *p;
4454 fputs (" FILL mask 0x", config.map_file);
4455 for (p = fill->fill->data, size = fill->fill->size; size != 0; p++, size--)
4456 fprintf (config.map_file, "%02x", *p);
4457 fputs ("\n", config.map_file);
4458 }
4459
4460 static void
4461 print_data_statement (lang_data_statement_type *data)
4462 {
4463 int i;
4464 bfd_vma addr;
4465 bfd_size_type size;
4466 const char *name;
4467
4468 init_opb ();
4469 for (i = 0; i < SECTION_NAME_MAP_LENGTH; i++)
4470 print_space ();
4471
4472 addr = data->output_offset;
4473 if (data->output_section != NULL)
4474 addr += data->output_section->vma;
4475
4476 switch (data->type)
4477 {
4478 default:
4479 abort ();
4480 case BYTE:
4481 size = BYTE_SIZE;
4482 name = "BYTE";
4483 break;
4484 case SHORT:
4485 size = SHORT_SIZE;
4486 name = "SHORT";
4487 break;
4488 case LONG:
4489 size = LONG_SIZE;
4490 name = "LONG";
4491 break;
4492 case QUAD:
4493 size = QUAD_SIZE;
4494 name = "QUAD";
4495 break;
4496 case SQUAD:
4497 size = QUAD_SIZE;
4498 name = "SQUAD";
4499 break;
4500 }
4501
4502 if (size < TO_SIZE ((unsigned) 1))
4503 size = TO_SIZE ((unsigned) 1);
4504 minfo ("0x%V %W %s 0x%v", addr, TO_ADDR (size), name, data->value);
4505
4506 if (data->exp->type.node_class != etree_value)
4507 {
4508 print_space ();
4509 exp_print_tree (data->exp);
4510 }
4511
4512 print_nl ();
4513
4514 print_dot = addr + TO_ADDR (size);
4515 }
4516
4517 /* Print an address statement. These are generated by options like
4518 -Ttext. */
4519
4520 static void
4521 print_address_statement (lang_address_statement_type *address)
4522 {
4523 minfo (_("Address of section %s set to "), address->section_name);
4524 exp_print_tree (address->address);
4525 print_nl ();
4526 }
4527
4528 /* Print a reloc statement. */
4529
4530 static void
4531 print_reloc_statement (lang_reloc_statement_type *reloc)
4532 {
4533 int i;
4534 bfd_vma addr;
4535 bfd_size_type size;
4536
4537 init_opb ();
4538 for (i = 0; i < SECTION_NAME_MAP_LENGTH; i++)
4539 print_space ();
4540
4541 addr = reloc->output_offset;
4542 if (reloc->output_section != NULL)
4543 addr += reloc->output_section->vma;
4544
4545 size = bfd_get_reloc_size (reloc->howto);
4546
4547 minfo ("0x%V %W RELOC %s ", addr, TO_ADDR (size), reloc->howto->name);
4548
4549 if (reloc->name != NULL)
4550 minfo ("%s+", reloc->name);
4551 else
4552 minfo ("%s+", reloc->section->name);
4553
4554 exp_print_tree (reloc->addend_exp);
4555
4556 print_nl ();
4557
4558 print_dot = addr + TO_ADDR (size);
4559 }
4560
4561 static void
4562 print_padding_statement (lang_padding_statement_type *s)
4563 {
4564 int len;
4565 bfd_vma addr;
4566
4567 init_opb ();
4568 minfo (" *fill*");
4569
4570 len = sizeof " *fill*" - 1;
4571 while (len < SECTION_NAME_MAP_LENGTH)
4572 {
4573 print_space ();
4574 ++len;
4575 }
4576
4577 addr = s->output_offset;
4578 if (s->output_section != NULL)
4579 addr += s->output_section->vma;
4580 minfo ("0x%V %W ", addr, TO_ADDR (s->size));
4581
4582 if (s->fill->size != 0)
4583 {
4584 size_t size;
4585 unsigned char *p;
4586 for (p = s->fill->data, size = s->fill->size; size != 0; p++, size--)
4587 fprintf (config.map_file, "%02x", *p);
4588 }
4589
4590 print_nl ();
4591
4592 print_dot = addr + TO_ADDR (s->size);
4593 }
4594
4595 static void
4596 print_wild_statement (lang_wild_statement_type *w,
4597 lang_output_section_statement_type *os)
4598 {
4599 struct wildcard_list *sec;
4600
4601 print_space ();
4602
4603 if (w->exclude_name_list)
4604 {
4605 name_list *tmp;
4606 minfo ("EXCLUDE_FILE(%s", w->exclude_name_list->name);
4607 for (tmp = w->exclude_name_list->next; tmp; tmp = tmp->next)
4608 minfo (" %s", tmp->name);
4609 minfo (") ");
4610 }
4611
4612 if (w->filenames_sorted)
4613 minfo ("SORT_BY_NAME(");
4614 if (w->filename != NULL)
4615 minfo ("%s", w->filename);
4616 else
4617 minfo ("*");
4618 if (w->filenames_sorted)
4619 minfo (")");
4620
4621 minfo ("(");
4622 for (sec = w->section_list; sec; sec = sec->next)
4623 {
4624 int closing_paren = 0;
4625
4626 switch (sec->spec.sorted)
4627 {
4628 case none:
4629 break;
4630
4631 case by_name:
4632 minfo ("SORT_BY_NAME(");
4633 closing_paren = 1;
4634 break;
4635
4636 case by_alignment:
4637 minfo ("SORT_BY_ALIGNMENT(");
4638 closing_paren = 1;
4639 break;
4640
4641 case by_name_alignment:
4642 minfo ("SORT_BY_NAME(SORT_BY_ALIGNMENT(");
4643 closing_paren = 2;
4644 break;
4645
4646 case by_alignment_name:
4647 minfo ("SORT_BY_ALIGNMENT(SORT_BY_NAME(");
4648 closing_paren = 2;
4649 break;
4650
4651 case by_none:
4652 minfo ("SORT_NONE(");
4653 closing_paren = 1;
4654 break;
4655
4656 case by_init_priority:
4657 minfo ("SORT_BY_INIT_PRIORITY(");
4658 closing_paren = 1;
4659 break;
4660 }
4661
4662 if (sec->spec.exclude_name_list != NULL)
4663 {
4664 name_list *tmp;
4665 minfo ("EXCLUDE_FILE(%s", sec->spec.exclude_name_list->name);
4666 for (tmp = sec->spec.exclude_name_list->next; tmp; tmp = tmp->next)
4667 minfo (" %s", tmp->name);
4668 minfo (") ");
4669 }
4670 if (sec->spec.name != NULL)
4671 minfo ("%s", sec->spec.name);
4672 else
4673 minfo ("*");
4674 for (;closing_paren > 0; closing_paren--)
4675 minfo (")");
4676 if (sec->next)
4677 minfo (" ");
4678 }
4679 minfo (")");
4680
4681 print_nl ();
4682
4683 print_statement_list (w->children.head, os);
4684 }
4685
4686 /* Print a group statement. */
4687
4688 static void
4689 print_group (lang_group_statement_type *s,
4690 lang_output_section_statement_type *os)
4691 {
4692 fprintf (config.map_file, "START GROUP\n");
4693 print_statement_list (s->children.head, os);
4694 fprintf (config.map_file, "END GROUP\n");
4695 }
4696
4697 /* Print the list of statements in S.
4698 This can be called for any statement type. */
4699
4700 static void
4701 print_statement_list (lang_statement_union_type *s,
4702 lang_output_section_statement_type *os)
4703 {
4704 while (s != NULL)
4705 {
4706 print_statement (s, os);
4707 s = s->header.next;
4708 }
4709 }
4710
4711 /* Print the first statement in statement list S.
4712 This can be called for any statement type. */
4713
4714 static void
4715 print_statement (lang_statement_union_type *s,
4716 lang_output_section_statement_type *os)
4717 {
4718 switch (s->header.type)
4719 {
4720 default:
4721 fprintf (config.map_file, _("Fail with %d\n"), s->header.type);
4722 FAIL ();
4723 break;
4724 case lang_constructors_statement_enum:
4725 if (constructor_list.head != NULL)
4726 {
4727 if (constructors_sorted)
4728 minfo (" SORT (CONSTRUCTORS)\n");
4729 else
4730 minfo (" CONSTRUCTORS\n");
4731 print_statement_list (constructor_list.head, os);
4732 }
4733 break;
4734 case lang_wild_statement_enum:
4735 print_wild_statement (&s->wild_statement, os);
4736 break;
4737 case lang_address_statement_enum:
4738 print_address_statement (&s->address_statement);
4739 break;
4740 case lang_object_symbols_statement_enum:
4741 minfo (" CREATE_OBJECT_SYMBOLS\n");
4742 break;
4743 case lang_fill_statement_enum:
4744 print_fill_statement (&s->fill_statement);
4745 break;
4746 case lang_data_statement_enum:
4747 print_data_statement (&s->data_statement);
4748 break;
4749 case lang_reloc_statement_enum:
4750 print_reloc_statement (&s->reloc_statement);
4751 break;
4752 case lang_input_section_enum:
4753 print_input_section (s->input_section.section, FALSE);
4754 break;
4755 case lang_padding_statement_enum:
4756 print_padding_statement (&s->padding_statement);
4757 break;
4758 case lang_output_section_statement_enum:
4759 print_output_section_statement (&s->output_section_statement);
4760 break;
4761 case lang_assignment_statement_enum:
4762 print_assignment (&s->assignment_statement, os);
4763 break;
4764 case lang_target_statement_enum:
4765 fprintf (config.map_file, "TARGET(%s)\n", s->target_statement.target);
4766 break;
4767 case lang_output_statement_enum:
4768 minfo ("OUTPUT(%s", s->output_statement.name);
4769 if (output_target != NULL)
4770 minfo (" %s", output_target);
4771 minfo (")\n");
4772 break;
4773 case lang_input_statement_enum:
4774 print_input_statement (&s->input_statement);
4775 break;
4776 case lang_group_statement_enum:
4777 print_group (&s->group_statement, os);
4778 break;
4779 case lang_insert_statement_enum:
4780 minfo ("INSERT %s %s\n",
4781 s->insert_statement.is_before ? "BEFORE" : "AFTER",
4782 s->insert_statement.where);
4783 break;
4784 }
4785 }
4786
4787 static void
4788 print_statements (void)
4789 {
4790 print_statement_list (statement_list.head, abs_output_section);
4791 }
4792
4793 /* Print the first N statements in statement list S to STDERR.
4794 If N == 0, nothing is printed.
4795 If N < 0, the entire list is printed.
4796 Intended to be called from GDB. */
4797
4798 void
4799 dprint_statement (lang_statement_union_type *s, int n)
4800 {
4801 FILE *map_save = config.map_file;
4802
4803 config.map_file = stderr;
4804
4805 if (n < 0)
4806 print_statement_list (s, abs_output_section);
4807 else
4808 {
4809 while (s && --n >= 0)
4810 {
4811 print_statement (s, abs_output_section);
4812 s = s->header.next;
4813 }
4814 }
4815
4816 config.map_file = map_save;
4817 }
4818
4819 static void
4820 insert_pad (lang_statement_union_type **ptr,
4821 fill_type *fill,
4822 bfd_size_type alignment_needed,
4823 asection *output_section,
4824 bfd_vma dot)
4825 {
4826 static fill_type zero_fill;
4827 lang_statement_union_type *pad = NULL;
4828
4829 if (ptr != &statement_list.head)
4830 pad = ((lang_statement_union_type *)
4831 ((char *) ptr - offsetof (lang_statement_union_type, header.next)));
4832 if (pad != NULL
4833 && pad->header.type == lang_padding_statement_enum
4834 && pad->padding_statement.output_section == output_section)
4835 {
4836 /* Use the existing pad statement. */
4837 }
4838 else if ((pad = *ptr) != NULL
4839 && pad->header.type == lang_padding_statement_enum
4840 && pad->padding_statement.output_section == output_section)
4841 {
4842 /* Use the existing pad statement. */
4843 }
4844 else
4845 {
4846 /* Make a new padding statement, linked into existing chain. */
4847 pad = (lang_statement_union_type *)
4848 stat_alloc (sizeof (lang_padding_statement_type));
4849 pad->header.next = *ptr;
4850 *ptr = pad;
4851 pad->header.type = lang_padding_statement_enum;
4852 pad->padding_statement.output_section = output_section;
4853 if (fill == NULL)
4854 fill = &zero_fill;
4855 pad->padding_statement.fill = fill;
4856 }
4857 pad->padding_statement.output_offset = dot - output_section->vma;
4858 pad->padding_statement.size = alignment_needed;
4859 if (!(output_section->flags & SEC_FIXED_SIZE))
4860 output_section->size = TO_SIZE (dot + TO_ADDR (alignment_needed)
4861 - output_section->vma);
4862 }
4863
4864 /* Work out how much this section will move the dot point. */
4865
4866 static bfd_vma
4867 size_input_section
4868 (lang_statement_union_type **this_ptr,
4869 lang_output_section_statement_type *output_section_statement,
4870 fill_type *fill,
4871 bfd_vma dot)
4872 {
4873 lang_input_section_type *is = &((*this_ptr)->input_section);
4874 asection *i = is->section;
4875 asection *o = output_section_statement->bfd_section;
4876
4877 if (i->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
4878 i->output_offset = i->vma - o->vma;
4879 else if (((i->flags & SEC_EXCLUDE) != 0)
4880 || output_section_statement->ignored)
4881 i->output_offset = dot - o->vma;
4882 else
4883 {
4884 bfd_size_type alignment_needed;
4885
4886 /* Align this section first to the input sections requirement,
4887 then to the output section's requirement. If this alignment
4888 is greater than any seen before, then record it too. Perform
4889 the alignment by inserting a magic 'padding' statement. */
4890
4891 if (output_section_statement->subsection_alignment != NULL)
4892 i->alignment_power
4893 = exp_get_power (output_section_statement->subsection_alignment,
4894 "subsection alignment");
4895
4896 if (o->alignment_power < i->alignment_power)
4897 o->alignment_power = i->alignment_power;
4898
4899 alignment_needed = align_power (dot, i->alignment_power) - dot;
4900
4901 if (alignment_needed != 0)
4902 {
4903 insert_pad (this_ptr, fill, TO_SIZE (alignment_needed), o, dot);
4904 dot += alignment_needed;
4905 }
4906
4907 /* Remember where in the output section this input section goes. */
4908 i->output_offset = dot - o->vma;
4909
4910 /* Mark how big the output section must be to contain this now. */
4911 dot += TO_ADDR (i->size);
4912 if (!(o->flags & SEC_FIXED_SIZE))
4913 o->size = TO_SIZE (dot - o->vma);
4914 }
4915
4916 return dot;
4917 }
4918
4919 struct check_sec
4920 {
4921 asection *sec;
4922 bfd_boolean warned;
4923 };
4924
4925 static int
4926 sort_sections_by_lma (const void *arg1, const void *arg2)
4927 {
4928 const asection *sec1 = ((const struct check_sec *) arg1)->sec;
4929 const asection *sec2 = ((const struct check_sec *) arg2)->sec;
4930
4931 if (sec1->lma < sec2->lma)
4932 return -1;
4933 else if (sec1->lma > sec2->lma)
4934 return 1;
4935 else if (sec1->id < sec2->id)
4936 return -1;
4937 else if (sec1->id > sec2->id)
4938 return 1;
4939
4940 return 0;
4941 }
4942
4943 static int
4944 sort_sections_by_vma (const void *arg1, const void *arg2)
4945 {
4946 const asection *sec1 = ((const struct check_sec *) arg1)->sec;
4947 const asection *sec2 = ((const struct check_sec *) arg2)->sec;
4948
4949 if (sec1->vma < sec2->vma)
4950 return -1;
4951 else if (sec1->vma > sec2->vma)
4952 return 1;
4953 else if (sec1->id < sec2->id)
4954 return -1;
4955 else if (sec1->id > sec2->id)
4956 return 1;
4957
4958 return 0;
4959 }
4960
4961 #define IS_TBSS(s) \
4962 ((s->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == SEC_THREAD_LOCAL)
4963
4964 #define IGNORE_SECTION(s) \
4965 ((s->flags & SEC_ALLOC) == 0 || IS_TBSS (s))
4966
4967 /* Check to see if any allocated sections overlap with other allocated
4968 sections. This can happen if a linker script specifies the output
4969 section addresses of the two sections. Also check whether any memory
4970 region has overflowed. */
4971
4972 static void
4973 lang_check_section_addresses (void)
4974 {
4975 asection *s, *p;
4976 struct check_sec *sections;
4977 size_t i, count;
4978 bfd_vma addr_mask;
4979 bfd_vma s_start;
4980 bfd_vma s_end;
4981 bfd_vma p_start = 0;
4982 bfd_vma p_end = 0;
4983 lang_memory_region_type *m;
4984 bfd_boolean overlays;
4985
4986 /* Detect address space overflow on allocated sections. */
4987 addr_mask = ((bfd_vma) 1 <<
4988 (bfd_arch_bits_per_address (link_info.output_bfd) - 1)) - 1;
4989 addr_mask = (addr_mask << 1) + 1;
4990 for (s = link_info.output_bfd->sections; s != NULL; s = s->next)
4991 if ((s->flags & SEC_ALLOC) != 0)
4992 {
4993 s_end = (s->vma + s->size) & addr_mask;
4994 if (s_end != 0 && s_end < (s->vma & addr_mask))
4995 einfo (_("%X%P: section %s VMA wraps around address space\n"),
4996 s->name);
4997 else
4998 {
4999 s_end = (s->lma + s->size) & addr_mask;
5000 if (s_end != 0 && s_end < (s->lma & addr_mask))
5001 einfo (_("%X%P: section %s LMA wraps around address space\n"),
5002 s->name);
5003 }
5004 }
5005
5006 if (bfd_count_sections (link_info.output_bfd) <= 1)
5007 return;
5008
5009 count = bfd_count_sections (link_info.output_bfd);
5010 sections = XNEWVEC (struct check_sec, count);
5011
5012 /* Scan all sections in the output list. */
5013 count = 0;
5014 for (s = link_info.output_bfd->sections; s != NULL; s = s->next)
5015 {
5016 if (IGNORE_SECTION (s)
5017 || s->size == 0)
5018 continue;
5019
5020 sections[count].sec = s;
5021 sections[count].warned = FALSE;
5022 count++;
5023 }
5024
5025 if (count <= 1)
5026 {
5027 free (sections);
5028 return;
5029 }
5030
5031 qsort (sections, count, sizeof (*sections), sort_sections_by_lma);
5032
5033 /* First check section LMAs. There should be no overlap of LMAs on
5034 loadable sections, even with overlays. */
5035 for (p = NULL, i = 0; i < count; i++)
5036 {
5037 s = sections[i].sec;
5038 if ((s->flags & SEC_LOAD) != 0)
5039 {
5040 s_start = s->lma;
5041 s_end = s_start + TO_ADDR (s->size) - 1;
5042
5043 /* Look for an overlap. We have sorted sections by lma, so
5044 we know that s_start >= p_start. Besides the obvious
5045 case of overlap when the current section starts before
5046 the previous one ends, we also must have overlap if the
5047 previous section wraps around the address space. */
5048 if (p != NULL
5049 && (s_start <= p_end
5050 || p_end < p_start))
5051 {
5052 einfo (_("%X%P: section %s LMA [%V,%V]"
5053 " overlaps section %s LMA [%V,%V]\n"),
5054 s->name, s_start, s_end, p->name, p_start, p_end);
5055 sections[i].warned = TRUE;
5056 }
5057 p = s;
5058 p_start = s_start;
5059 p_end = s_end;
5060 }
5061 }
5062
5063 /* If any non-zero size allocated section (excluding tbss) starts at
5064 exactly the same VMA as another such section, then we have
5065 overlays. Overlays generated by the OVERLAY keyword will have
5066 this property. It is possible to intentionally generate overlays
5067 that fail this test, but it would be unusual. */
5068 qsort (sections, count, sizeof (*sections), sort_sections_by_vma);
5069 overlays = FALSE;
5070 p_start = sections[0].sec->vma;
5071 for (i = 1; i < count; i++)
5072 {
5073 s_start = sections[i].sec->vma;
5074 if (p_start == s_start)
5075 {
5076 overlays = TRUE;
5077 break;
5078 }
5079 p_start = s_start;
5080 }
5081
5082 /* Now check section VMAs if no overlays were detected. */
5083 if (!overlays)
5084 {
5085 for (p = NULL, i = 0; i < count; i++)
5086 {
5087 s = sections[i].sec;
5088 s_start = s->vma;
5089 s_end = s_start + TO_ADDR (s->size) - 1;
5090
5091 if (p != NULL
5092 && !sections[i].warned
5093 && (s_start <= p_end
5094 || p_end < p_start))
5095 einfo (_("%X%P: section %s VMA [%V,%V]"
5096 " overlaps section %s VMA [%V,%V]\n"),
5097 s->name, s_start, s_end, p->name, p_start, p_end);
5098 p = s;
5099 p_start = s_start;
5100 p_end = s_end;
5101 }
5102 }
5103
5104 free (sections);
5105
5106 /* If any memory region has overflowed, report by how much.
5107 We do not issue this diagnostic for regions that had sections
5108 explicitly placed outside their bounds; os_region_check's
5109 diagnostics are adequate for that case.
5110
5111 FIXME: It is conceivable that m->current - (m->origin + m->length)
5112 might overflow a 32-bit integer. There is, alas, no way to print
5113 a bfd_vma quantity in decimal. */
5114 for (m = lang_memory_region_list; m; m = m->next)
5115 if (m->had_full_message)
5116 {
5117 unsigned long over = m->current - (m->origin + m->length);
5118 einfo (ngettext ("%X%P: region `%s' overflowed by %lu byte\n",
5119 "%X%P: region `%s' overflowed by %lu bytes\n",
5120 over),
5121 m->name_list.name, over);
5122 }
5123 }
5124
5125 /* Make sure the new address is within the region. We explicitly permit the
5126 current address to be at the exact end of the region when the address is
5127 non-zero, in case the region is at the end of addressable memory and the
5128 calculation wraps around. */
5129
5130 static void
5131 os_region_check (lang_output_section_statement_type *os,
5132 lang_memory_region_type *region,
5133 etree_type *tree,
5134 bfd_vma rbase)
5135 {
5136 if ((region->current < region->origin
5137 || (region->current - region->origin > region->length))
5138 && ((region->current != region->origin + region->length)
5139 || rbase == 0))
5140 {
5141 if (tree != NULL)
5142 {
5143 einfo (_("%X%P: address 0x%v of %pB section `%s'"
5144 " is not within region `%s'\n"),
5145 region->current,
5146 os->bfd_section->owner,
5147 os->bfd_section->name,
5148 region->name_list.name);
5149 }
5150 else if (!region->had_full_message)
5151 {
5152 region->had_full_message = TRUE;
5153
5154 einfo (_("%X%P: %pB section `%s' will not fit in region `%s'\n"),
5155 os->bfd_section->owner,
5156 os->bfd_section->name,
5157 region->name_list.name);
5158 }
5159 }
5160 }
5161
5162 static void
5163 ldlang_check_relro_region (lang_statement_union_type *s,
5164 seg_align_type *seg)
5165 {
5166 if (seg->relro == exp_seg_relro_start)
5167 {
5168 if (!seg->relro_start_stat)
5169 seg->relro_start_stat = s;
5170 else
5171 {
5172 ASSERT (seg->relro_start_stat == s);
5173 }
5174 }
5175 else if (seg->relro == exp_seg_relro_end)
5176 {
5177 if (!seg->relro_end_stat)
5178 seg->relro_end_stat = s;
5179 else
5180 {
5181 ASSERT (seg->relro_end_stat == s);
5182 }
5183 }
5184 }
5185
5186 /* Set the sizes for all the output sections. */
5187
5188 static bfd_vma
5189 lang_size_sections_1
5190 (lang_statement_union_type **prev,
5191 lang_output_section_statement_type *output_section_statement,
5192 fill_type *fill,
5193 bfd_vma dot,
5194 bfd_boolean *relax,
5195 bfd_boolean check_regions)
5196 {
5197 lang_statement_union_type *s;
5198
5199 /* Size up the sections from their constituent parts. */
5200 for (s = *prev; s != NULL; s = s->header.next)
5201 {
5202 switch (s->header.type)
5203 {
5204 case lang_output_section_statement_enum:
5205 {
5206 bfd_vma newdot, after, dotdelta;
5207 lang_output_section_statement_type *os;
5208 lang_memory_region_type *r;
5209 int section_alignment = 0;
5210
5211 os = &s->output_section_statement;
5212 if (os->constraint == -1)
5213 break;
5214
5215 /* FIXME: We shouldn't need to zero section vmas for ld -r
5216 here, in lang_insert_orphan, or in the default linker scripts.
5217 This is covering for coff backend linker bugs. See PR6945. */
5218 if (os->addr_tree == NULL
5219 && bfd_link_relocatable (&link_info)
5220 && (bfd_get_flavour (link_info.output_bfd)
5221 == bfd_target_coff_flavour))
5222 os->addr_tree = exp_intop (0);
5223 if (os->addr_tree != NULL)
5224 {
5225 os->processed_vma = FALSE;
5226 exp_fold_tree (os->addr_tree, bfd_abs_section_ptr, &dot);
5227
5228 if (expld.result.valid_p)
5229 {
5230 dot = expld.result.value;
5231 if (expld.result.section != NULL)
5232 dot += expld.result.section->vma;
5233 }
5234 else if (expld.phase != lang_mark_phase_enum)
5235 einfo (_("%F%P:%pS: non constant or forward reference"
5236 " address expression for section %s\n"),
5237 os->addr_tree, os->name);
5238 }
5239
5240 if (os->bfd_section == NULL)
5241 /* This section was removed or never actually created. */
5242 break;
5243
5244 /* If this is a COFF shared library section, use the size and
5245 address from the input section. FIXME: This is COFF
5246 specific; it would be cleaner if there were some other way
5247 to do this, but nothing simple comes to mind. */
5248 if (((bfd_get_flavour (link_info.output_bfd)
5249 == bfd_target_ecoff_flavour)
5250 || (bfd_get_flavour (link_info.output_bfd)
5251 == bfd_target_coff_flavour))
5252 && (os->bfd_section->flags & SEC_COFF_SHARED_LIBRARY) != 0)
5253 {
5254 asection *input;
5255
5256 if (os->children.head == NULL
5257 || os->children.head->header.next != NULL
5258 || (os->children.head->header.type
5259 != lang_input_section_enum))
5260 einfo (_("%X%P: internal error on COFF shared library"
5261 " section %s\n"), os->name);
5262
5263 input = os->children.head->input_section.section;
5264 bfd_set_section_vma (os->bfd_section->owner,
5265 os->bfd_section,
5266 bfd_section_vma (input->owner, input));
5267 if (!(os->bfd_section->flags & SEC_FIXED_SIZE))
5268 os->bfd_section->size = input->size;
5269 break;
5270 }
5271
5272 newdot = dot;
5273 dotdelta = 0;
5274 if (bfd_is_abs_section (os->bfd_section))
5275 {
5276 /* No matter what happens, an abs section starts at zero. */
5277 ASSERT (os->bfd_section->vma == 0);
5278 }
5279 else
5280 {
5281 if (os->addr_tree == NULL)
5282 {
5283 /* No address specified for this section, get one
5284 from the region specification. */
5285 if (os->region == NULL
5286 || ((os->bfd_section->flags & (SEC_ALLOC | SEC_LOAD))
5287 && os->region->name_list.name[0] == '*'
5288 && strcmp (os->region->name_list.name,
5289 DEFAULT_MEMORY_REGION) == 0))
5290 {
5291 os->region = lang_memory_default (os->bfd_section);
5292 }
5293
5294 /* If a loadable section is using the default memory
5295 region, and some non default memory regions were
5296 defined, issue an error message. */
5297 if (!os->ignored
5298 && !IGNORE_SECTION (os->bfd_section)
5299 && !bfd_link_relocatable (&link_info)
5300 && check_regions
5301 && strcmp (os->region->name_list.name,
5302 DEFAULT_MEMORY_REGION) == 0
5303 && lang_memory_region_list != NULL
5304 && (strcmp (lang_memory_region_list->name_list.name,
5305 DEFAULT_MEMORY_REGION) != 0
5306 || lang_memory_region_list->next != NULL)
5307 && expld.phase != lang_mark_phase_enum)
5308 {
5309 /* By default this is an error rather than just a
5310 warning because if we allocate the section to the
5311 default memory region we can end up creating an
5312 excessively large binary, or even seg faulting when
5313 attempting to perform a negative seek. See
5314 sources.redhat.com/ml/binutils/2003-04/msg00423.html
5315 for an example of this. This behaviour can be
5316 overridden by the using the --no-check-sections
5317 switch. */
5318 if (command_line.check_section_addresses)
5319 einfo (_("%F%P: error: no memory region specified"
5320 " for loadable section `%s'\n"),
5321 bfd_get_section_name (link_info.output_bfd,
5322 os->bfd_section));
5323 else
5324 einfo (_("%P: warning: no memory region specified"
5325 " for loadable section `%s'\n"),
5326 bfd_get_section_name (link_info.output_bfd,
5327 os->bfd_section));
5328 }
5329
5330 newdot = os->region->current;
5331 section_alignment = os->bfd_section->alignment_power;
5332 }
5333 else
5334 section_alignment = exp_get_power (os->section_alignment,
5335 "section alignment");
5336
5337 /* Align to what the section needs. */
5338 if (section_alignment > 0)
5339 {
5340 bfd_vma savedot = newdot;
5341 newdot = align_power (newdot, section_alignment);
5342
5343 dotdelta = newdot - savedot;
5344 if (dotdelta != 0
5345 && (config.warn_section_align
5346 || os->addr_tree != NULL)
5347 && expld.phase != lang_mark_phase_enum)
5348 einfo (ngettext ("%P: warning: changing start of "
5349 "section %s by %lu byte\n",
5350 "%P: warning: changing start of "
5351 "section %s by %lu bytes\n",
5352 (unsigned long) dotdelta),
5353 os->name, (unsigned long) dotdelta);
5354 }
5355
5356 bfd_set_section_vma (0, os->bfd_section, newdot);
5357
5358 os->bfd_section->output_offset = 0;
5359 }
5360
5361 lang_size_sections_1 (&os->children.head, os,
5362 os->fill, newdot, relax, check_regions);
5363
5364 os->processed_vma = TRUE;
5365
5366 if (bfd_is_abs_section (os->bfd_section) || os->ignored)
5367 /* Except for some special linker created sections,
5368 no output section should change from zero size
5369 after strip_excluded_output_sections. A non-zero
5370 size on an ignored section indicates that some
5371 input section was not sized early enough. */
5372 ASSERT (os->bfd_section->size == 0);
5373 else
5374 {
5375 dot = os->bfd_section->vma;
5376
5377 /* Put the section within the requested block size, or
5378 align at the block boundary. */
5379 after = ((dot
5380 + TO_ADDR (os->bfd_section->size)
5381 + os->block_value - 1)
5382 & - (bfd_vma) os->block_value);
5383
5384 if (!(os->bfd_section->flags & SEC_FIXED_SIZE))
5385 os->bfd_section->size = TO_SIZE (after
5386 - os->bfd_section->vma);
5387 }
5388
5389 /* Set section lma. */
5390 r = os->region;
5391 if (r == NULL)
5392 r = lang_memory_region_lookup (DEFAULT_MEMORY_REGION, FALSE);
5393
5394 if (os->load_base)
5395 {
5396 bfd_vma lma = exp_get_abs_int (os->load_base, 0, "load base");
5397 os->bfd_section->lma = lma;
5398 }
5399 else if (os->lma_region != NULL)
5400 {
5401 bfd_vma lma = os->lma_region->current;
5402
5403 if (os->align_lma_with_input)
5404 lma += dotdelta;
5405 else
5406 {
5407 /* When LMA_REGION is the same as REGION, align the LMA
5408 as we did for the VMA, possibly including alignment
5409 from the bfd section. If a different region, then
5410 only align according to the value in the output
5411 statement. */
5412 if (os->lma_region != os->region)
5413 section_alignment = exp_get_power (os->section_alignment,
5414 "section alignment");
5415 if (section_alignment > 0)
5416 lma = align_power (lma, section_alignment);
5417 }
5418 os->bfd_section->lma = lma;
5419 }
5420 else if (r->last_os != NULL
5421 && (os->bfd_section->flags & SEC_ALLOC) != 0)
5422 {
5423 bfd_vma lma;
5424 asection *last;
5425
5426 last = r->last_os->output_section_statement.bfd_section;
5427
5428 /* A backwards move of dot should be accompanied by
5429 an explicit assignment to the section LMA (ie.
5430 os->load_base set) because backwards moves can
5431 create overlapping LMAs. */
5432 if (dot < last->vma
5433 && os->bfd_section->size != 0
5434 && dot + TO_ADDR (os->bfd_section->size) <= last->vma)
5435 {
5436 /* If dot moved backwards then leave lma equal to
5437 vma. This is the old default lma, which might
5438 just happen to work when the backwards move is
5439 sufficiently large. Nag if this changes anything,
5440 so people can fix their linker scripts. */
5441
5442 if (last->vma != last->lma)
5443 einfo (_("%P: warning: dot moved backwards "
5444 "before `%s'\n"), os->name);
5445 }
5446 else
5447 {
5448 /* If this is an overlay, set the current lma to that
5449 at the end of the previous section. */
5450 if (os->sectype == overlay_section)
5451 lma = last->lma + TO_ADDR (last->size);
5452
5453 /* Otherwise, keep the same lma to vma relationship
5454 as the previous section. */
5455 else
5456 lma = dot + last->lma - last->vma;
5457
5458 if (section_alignment > 0)
5459 lma = align_power (lma, section_alignment);
5460 os->bfd_section->lma = lma;
5461 }
5462 }
5463 os->processed_lma = TRUE;
5464
5465 /* Keep track of normal sections using the default
5466 lma region. We use this to set the lma for
5467 following sections. Overlays or other linker
5468 script assignment to lma might mean that the
5469 default lma == vma is incorrect.
5470 To avoid warnings about dot moving backwards when using
5471 -Ttext, don't start tracking sections until we find one
5472 of non-zero size or with lma set differently to vma.
5473 Do this tracking before we short-cut the loop so that we
5474 track changes for the case where the section size is zero,
5475 but the lma is set differently to the vma. This is
5476 important, if an orphan section is placed after an
5477 otherwise empty output section that has an explicit lma
5478 set, we want that lma reflected in the orphans lma. */
5479 if (!IGNORE_SECTION (os->bfd_section)
5480 && (os->bfd_section->size != 0
5481 || (r->last_os == NULL
5482 && os->bfd_section->vma != os->bfd_section->lma)
5483 || (r->last_os != NULL
5484 && dot >= (r->last_os->output_section_statement
5485 .bfd_section->vma)))
5486 && os->lma_region == NULL
5487 && !bfd_link_relocatable (&link_info))
5488 r->last_os = s;
5489
5490 if (bfd_is_abs_section (os->bfd_section) || os->ignored)
5491 break;
5492
5493 /* .tbss sections effectively have zero size. */
5494 if (!IS_TBSS (os->bfd_section)
5495 || bfd_link_relocatable (&link_info))
5496 dotdelta = TO_ADDR (os->bfd_section->size);
5497 else
5498 dotdelta = 0;
5499 dot += dotdelta;
5500
5501 if (os->update_dot_tree != 0)
5502 exp_fold_tree (os->update_dot_tree, bfd_abs_section_ptr, &dot);
5503
5504 /* Update dot in the region ?
5505 We only do this if the section is going to be allocated,
5506 since unallocated sections do not contribute to the region's
5507 overall size in memory. */
5508 if (os->region != NULL
5509 && (os->bfd_section->flags & (SEC_ALLOC | SEC_LOAD)))
5510 {
5511 os->region->current = dot;
5512
5513 if (check_regions)
5514 /* Make sure the new address is within the region. */
5515 os_region_check (os, os->region, os->addr_tree,
5516 os->bfd_section->vma);
5517
5518 if (os->lma_region != NULL && os->lma_region != os->region
5519 && ((os->bfd_section->flags & SEC_LOAD)
5520 || os->align_lma_with_input))
5521 {
5522 os->lma_region->current = os->bfd_section->lma + dotdelta;
5523
5524 if (check_regions)
5525 os_region_check (os, os->lma_region, NULL,
5526 os->bfd_section->lma);
5527 }
5528 }
5529 }
5530 break;
5531
5532 case lang_constructors_statement_enum:
5533 dot = lang_size_sections_1 (&constructor_list.head,
5534 output_section_statement,
5535 fill, dot, relax, check_regions);
5536 break;
5537
5538 case lang_data_statement_enum:
5539 {
5540 unsigned int size = 0;
5541
5542 s->data_statement.output_offset =
5543 dot - output_section_statement->bfd_section->vma;
5544 s->data_statement.output_section =
5545 output_section_statement->bfd_section;
5546
5547 /* We might refer to provided symbols in the expression, and
5548 need to mark them as needed. */
5549 exp_fold_tree (s->data_statement.exp, bfd_abs_section_ptr, &dot);
5550
5551 switch (s->data_statement.type)
5552 {
5553 default:
5554 abort ();
5555 case QUAD:
5556 case SQUAD:
5557 size = QUAD_SIZE;
5558 break;
5559 case LONG:
5560 size = LONG_SIZE;
5561 break;
5562 case SHORT:
5563 size = SHORT_SIZE;
5564 break;
5565 case BYTE:
5566 size = BYTE_SIZE;
5567 break;
5568 }
5569 if (size < TO_SIZE ((unsigned) 1))
5570 size = TO_SIZE ((unsigned) 1);
5571 dot += TO_ADDR (size);
5572 if (!(output_section_statement->bfd_section->flags
5573 & SEC_FIXED_SIZE))
5574 output_section_statement->bfd_section->size
5575 = TO_SIZE (dot - output_section_statement->bfd_section->vma);
5576
5577 }
5578 break;
5579
5580 case lang_reloc_statement_enum:
5581 {
5582 int size;
5583
5584 s->reloc_statement.output_offset =
5585 dot - output_section_statement->bfd_section->vma;
5586 s->reloc_statement.output_section =
5587 output_section_statement->bfd_section;
5588 size = bfd_get_reloc_size (s->reloc_statement.howto);
5589 dot += TO_ADDR (size);
5590 if (!(output_section_statement->bfd_section->flags
5591 & SEC_FIXED_SIZE))
5592 output_section_statement->bfd_section->size
5593 = TO_SIZE (dot - output_section_statement->bfd_section->vma);
5594 }
5595 break;
5596
5597 case lang_wild_statement_enum:
5598 dot = lang_size_sections_1 (&s->wild_statement.children.head,
5599 output_section_statement,
5600 fill, dot, relax, check_regions);
5601 break;
5602
5603 case lang_object_symbols_statement_enum:
5604 link_info.create_object_symbols_section =
5605 output_section_statement->bfd_section;
5606 break;
5607
5608 case lang_output_statement_enum:
5609 case lang_target_statement_enum:
5610 break;
5611
5612 case lang_input_section_enum:
5613 {
5614 asection *i;
5615
5616 i = s->input_section.section;
5617 if (relax)
5618 {
5619 bfd_boolean again;
5620
5621 if (!bfd_relax_section (i->owner, i, &link_info, &again))
5622 einfo (_("%F%P: can't relax section: %E\n"));
5623 if (again)
5624 *relax = TRUE;
5625 }
5626 dot = size_input_section (prev, output_section_statement,
5627 fill, dot);
5628 }
5629 break;
5630
5631 case lang_input_statement_enum:
5632 break;
5633
5634 case lang_fill_statement_enum:
5635 s->fill_statement.output_section =
5636 output_section_statement->bfd_section;
5637
5638 fill = s->fill_statement.fill;
5639 break;
5640
5641 case lang_assignment_statement_enum:
5642 {
5643 bfd_vma newdot = dot;
5644 etree_type *tree = s->assignment_statement.exp;
5645
5646 expld.dataseg.relro = exp_seg_relro_none;
5647
5648 exp_fold_tree (tree,
5649 output_section_statement->bfd_section,
5650 &newdot);
5651
5652 ldlang_check_relro_region (s, &expld.dataseg);
5653
5654 expld.dataseg.relro = exp_seg_relro_none;
5655
5656 /* This symbol may be relative to this section. */
5657 if ((tree->type.node_class == etree_provided
5658 || tree->type.node_class == etree_assign)
5659 && (tree->assign.dst [0] != '.'
5660 || tree->assign.dst [1] != '\0'))
5661 output_section_statement->update_dot = 1;
5662
5663 if (!output_section_statement->ignored)
5664 {
5665 if (output_section_statement == abs_output_section)
5666 {
5667 /* If we don't have an output section, then just adjust
5668 the default memory address. */
5669 lang_memory_region_lookup (DEFAULT_MEMORY_REGION,
5670 FALSE)->current = newdot;
5671 }
5672 else if (newdot != dot)
5673 {
5674 /* Insert a pad after this statement. We can't
5675 put the pad before when relaxing, in case the
5676 assignment references dot. */
5677 insert_pad (&s->header.next, fill, TO_SIZE (newdot - dot),
5678 output_section_statement->bfd_section, dot);
5679
5680 /* Don't neuter the pad below when relaxing. */
5681 s = s->header.next;
5682
5683 /* If dot is advanced, this implies that the section
5684 should have space allocated to it, unless the
5685 user has explicitly stated that the section
5686 should not be allocated. */
5687 if (output_section_statement->sectype != noalloc_section
5688 && (output_section_statement->sectype != noload_section
5689 || (bfd_get_flavour (link_info.output_bfd)
5690 == bfd_target_elf_flavour)))
5691 output_section_statement->bfd_section->flags |= SEC_ALLOC;
5692 }
5693 dot = newdot;
5694 }
5695 }
5696 break;
5697
5698 case lang_padding_statement_enum:
5699 /* If this is the first time lang_size_sections is called,
5700 we won't have any padding statements. If this is the
5701 second or later passes when relaxing, we should allow
5702 padding to shrink. If padding is needed on this pass, it
5703 will be added back in. */
5704 s->padding_statement.size = 0;
5705
5706 /* Make sure output_offset is valid. If relaxation shrinks
5707 the section and this pad isn't needed, it's possible to
5708 have output_offset larger than the final size of the
5709 section. bfd_set_section_contents will complain even for
5710 a pad size of zero. */
5711 s->padding_statement.output_offset
5712 = dot - output_section_statement->bfd_section->vma;
5713 break;
5714
5715 case lang_group_statement_enum:
5716 dot = lang_size_sections_1 (&s->group_statement.children.head,
5717 output_section_statement,
5718 fill, dot, relax, check_regions);
5719 break;
5720
5721 case lang_insert_statement_enum:
5722 break;
5723
5724 /* We can only get here when relaxing is turned on. */
5725 case lang_address_statement_enum:
5726 break;
5727
5728 default:
5729 FAIL ();
5730 break;
5731 }
5732 prev = &s->header.next;
5733 }
5734 return dot;
5735 }
5736
5737 /* Callback routine that is used in _bfd_elf_map_sections_to_segments.
5738 The BFD library has set NEW_SEGMENT to TRUE iff it thinks that
5739 CURRENT_SECTION and PREVIOUS_SECTION ought to be placed into different
5740 segments. We are allowed an opportunity to override this decision. */
5741
5742 bfd_boolean
5743 ldlang_override_segment_assignment (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5744 bfd *abfd ATTRIBUTE_UNUSED,
5745 asection *current_section,
5746 asection *previous_section,
5747 bfd_boolean new_segment)
5748 {
5749 lang_output_section_statement_type *cur;
5750 lang_output_section_statement_type *prev;
5751
5752 /* The checks below are only necessary when the BFD library has decided
5753 that the two sections ought to be placed into the same segment. */
5754 if (new_segment)
5755 return TRUE;
5756
5757 /* Paranoia checks. */
5758 if (current_section == NULL || previous_section == NULL)
5759 return new_segment;
5760
5761 /* If this flag is set, the target never wants code and non-code
5762 sections comingled in the same segment. */
5763 if (config.separate_code
5764 && ((current_section->flags ^ previous_section->flags) & SEC_CODE))
5765 return TRUE;
5766
5767 /* Find the memory regions associated with the two sections.
5768 We call lang_output_section_find() here rather than scanning the list
5769 of output sections looking for a matching section pointer because if
5770 we have a large number of sections then a hash lookup is faster. */
5771 cur = lang_output_section_find (current_section->name);
5772 prev = lang_output_section_find (previous_section->name);
5773
5774 /* More paranoia. */
5775 if (cur == NULL || prev == NULL)
5776 return new_segment;
5777
5778 /* If the regions are different then force the sections to live in
5779 different segments. See the email thread starting at the following
5780 URL for the reasons why this is necessary:
5781 http://sourceware.org/ml/binutils/2007-02/msg00216.html */
5782 return cur->region != prev->region;
5783 }
5784
5785 void
5786 one_lang_size_sections_pass (bfd_boolean *relax, bfd_boolean check_regions)
5787 {
5788 lang_statement_iteration++;
5789 lang_size_sections_1 (&statement_list.head, abs_output_section,
5790 0, 0, relax, check_regions);
5791 }
5792
5793 static bfd_boolean
5794 lang_size_segment (seg_align_type *seg)
5795 {
5796 /* If XXX_SEGMENT_ALIGN XXX_SEGMENT_END pair was seen, check whether
5797 a page could be saved in the data segment. */
5798 bfd_vma first, last;
5799
5800 first = -seg->base & (seg->pagesize - 1);
5801 last = seg->end & (seg->pagesize - 1);
5802 if (first && last
5803 && ((seg->base & ~(seg->pagesize - 1))
5804 != (seg->end & ~(seg->pagesize - 1)))
5805 && first + last <= seg->pagesize)
5806 {
5807 seg->phase = exp_seg_adjust;
5808 return TRUE;
5809 }
5810
5811 seg->phase = exp_seg_done;
5812 return FALSE;
5813 }
5814
5815 static bfd_vma
5816 lang_size_relro_segment_1 (seg_align_type *seg)
5817 {
5818 bfd_vma relro_end, desired_end;
5819 asection *sec;
5820
5821 /* Compute the expected PT_GNU_RELRO/PT_LOAD segment end. */
5822 relro_end = ((seg->relro_end + seg->pagesize - 1)
5823 & ~(seg->pagesize - 1));
5824
5825 /* Adjust by the offset arg of XXX_SEGMENT_RELRO_END. */
5826 desired_end = relro_end - seg->relro_offset;
5827
5828 /* For sections in the relro segment.. */
5829 for (sec = link_info.output_bfd->section_last; sec; sec = sec->prev)
5830 if ((sec->flags & SEC_ALLOC) != 0
5831 && sec->vma >= seg->base
5832 && sec->vma < seg->relro_end - seg->relro_offset)
5833 {
5834 /* Where do we want to put this section so that it ends as
5835 desired? */
5836 bfd_vma start, end, bump;
5837
5838 end = start = sec->vma;
5839 if (!IS_TBSS (sec))
5840 end += TO_ADDR (sec->size);
5841 bump = desired_end - end;
5842 /* We'd like to increase START by BUMP, but we must heed
5843 alignment so the increase might be less than optimum. */
5844 start += bump;
5845 start &= ~(((bfd_vma) 1 << sec->alignment_power) - 1);
5846 /* This is now the desired end for the previous section. */
5847 desired_end = start;
5848 }
5849
5850 seg->phase = exp_seg_relro_adjust;
5851 ASSERT (desired_end >= seg->base);
5852 seg->base = desired_end;
5853 return relro_end;
5854 }
5855
5856 static bfd_boolean
5857 lang_size_relro_segment (bfd_boolean *relax, bfd_boolean check_regions)
5858 {
5859 bfd_boolean do_reset = FALSE;
5860 bfd_boolean do_data_relro;
5861 bfd_vma data_initial_base, data_relro_end;
5862
5863 if (link_info.relro && expld.dataseg.relro_end)
5864 {
5865 do_data_relro = TRUE;
5866 data_initial_base = expld.dataseg.base;
5867 data_relro_end = lang_size_relro_segment_1 (&expld.dataseg);
5868 }
5869 else
5870 {
5871 do_data_relro = FALSE;
5872 data_initial_base = data_relro_end = 0;
5873 }
5874
5875 if (do_data_relro)
5876 {
5877 lang_reset_memory_regions ();
5878 one_lang_size_sections_pass (relax, check_regions);
5879
5880 /* Assignments to dot, or to output section address in a user
5881 script have increased padding over the original. Revert. */
5882 if (do_data_relro && expld.dataseg.relro_end > data_relro_end)
5883 {
5884 expld.dataseg.base = data_initial_base;;
5885 do_reset = TRUE;
5886 }
5887 }
5888
5889 if (!do_data_relro && lang_size_segment (&expld.dataseg))
5890 do_reset = TRUE;
5891
5892 return do_reset;
5893 }
5894
5895 void
5896 lang_size_sections (bfd_boolean *relax, bfd_boolean check_regions)
5897 {
5898 expld.phase = lang_allocating_phase_enum;
5899 expld.dataseg.phase = exp_seg_none;
5900
5901 one_lang_size_sections_pass (relax, check_regions);
5902
5903 if (expld.dataseg.phase != exp_seg_end_seen)
5904 expld.dataseg.phase = exp_seg_done;
5905
5906 if (expld.dataseg.phase == exp_seg_end_seen)
5907 {
5908 bfd_boolean do_reset
5909 = lang_size_relro_segment (relax, check_regions);
5910
5911 if (do_reset)
5912 {
5913 lang_reset_memory_regions ();
5914 one_lang_size_sections_pass (relax, check_regions);
5915 }
5916
5917 if (link_info.relro && expld.dataseg.relro_end)
5918 {
5919 link_info.relro_start = expld.dataseg.base;
5920 link_info.relro_end = expld.dataseg.relro_end;
5921 }
5922 }
5923 }
5924
5925 static lang_output_section_statement_type *current_section;
5926 static lang_assignment_statement_type *current_assign;
5927 static bfd_boolean prefer_next_section;
5928
5929 /* Worker function for lang_do_assignments. Recursiveness goes here. */
5930
5931 static bfd_vma
5932 lang_do_assignments_1 (lang_statement_union_type *s,
5933 lang_output_section_statement_type *current_os,
5934 fill_type *fill,
5935 bfd_vma dot,
5936 bfd_boolean *found_end)
5937 {
5938 for (; s != NULL; s = s->header.next)
5939 {
5940 switch (s->header.type)
5941 {
5942 case lang_constructors_statement_enum:
5943 dot = lang_do_assignments_1 (constructor_list.head,
5944 current_os, fill, dot, found_end);
5945 break;
5946
5947 case lang_output_section_statement_enum:
5948 {
5949 lang_output_section_statement_type *os;
5950 bfd_vma newdot;
5951
5952 os = &(s->output_section_statement);
5953 os->after_end = *found_end;
5954 if (os->bfd_section != NULL && !os->ignored)
5955 {
5956 if ((os->bfd_section->flags & SEC_ALLOC) != 0)
5957 {
5958 current_section = os;
5959 prefer_next_section = FALSE;
5960 }
5961 dot = os->bfd_section->vma;
5962 }
5963 newdot = lang_do_assignments_1 (os->children.head,
5964 os, os->fill, dot, found_end);
5965 if (!os->ignored)
5966 {
5967 if (os->bfd_section != NULL)
5968 {
5969 /* .tbss sections effectively have zero size. */
5970 if (!IS_TBSS (os->bfd_section)
5971 || bfd_link_relocatable (&link_info))
5972 dot += TO_ADDR (os->bfd_section->size);
5973
5974 if (os->update_dot_tree != NULL)
5975 exp_fold_tree (os->update_dot_tree,
5976 bfd_abs_section_ptr, &dot);
5977 }
5978 else
5979 dot = newdot;
5980 }
5981 }
5982 break;
5983
5984 case lang_wild_statement_enum:
5985
5986 dot = lang_do_assignments_1 (s->wild_statement.children.head,
5987 current_os, fill, dot, found_end);
5988 break;
5989
5990 case lang_object_symbols_statement_enum:
5991 case lang_output_statement_enum:
5992 case lang_target_statement_enum:
5993 break;
5994
5995 case lang_data_statement_enum:
5996 exp_fold_tree (s->data_statement.exp, bfd_abs_section_ptr, &dot);
5997 if (expld.result.valid_p)
5998 {
5999 s->data_statement.value = expld.result.value;
6000 if (expld.result.section != NULL)
6001 s->data_statement.value += expld.result.section->vma;
6002 }
6003 else if (expld.phase == lang_final_phase_enum)
6004 einfo (_("%F%P: invalid data statement\n"));
6005 {
6006 unsigned int size;
6007 switch (s->data_statement.type)
6008 {
6009 default:
6010 abort ();
6011 case QUAD:
6012 case SQUAD:
6013 size = QUAD_SIZE;
6014 break;
6015 case LONG:
6016 size = LONG_SIZE;
6017 break;
6018 case SHORT:
6019 size = SHORT_SIZE;
6020 break;
6021 case BYTE:
6022 size = BYTE_SIZE;
6023 break;
6024 }
6025 if (size < TO_SIZE ((unsigned) 1))
6026 size = TO_SIZE ((unsigned) 1);
6027 dot += TO_ADDR (size);
6028 }
6029 break;
6030
6031 case lang_reloc_statement_enum:
6032 exp_fold_tree (s->reloc_statement.addend_exp,
6033 bfd_abs_section_ptr, &dot);
6034 if (expld.result.valid_p)
6035 s->reloc_statement.addend_value = expld.result.value;
6036 else if (expld.phase == lang_final_phase_enum)
6037 einfo (_("%F%P: invalid reloc statement\n"));
6038 dot += TO_ADDR (bfd_get_reloc_size (s->reloc_statement.howto));
6039 break;
6040
6041 case lang_input_section_enum:
6042 {
6043 asection *in = s->input_section.section;
6044
6045 if ((in->flags & SEC_EXCLUDE) == 0)
6046 dot += TO_ADDR (in->size);
6047 }
6048 break;
6049
6050 case lang_input_statement_enum:
6051 break;
6052
6053 case lang_fill_statement_enum:
6054 fill = s->fill_statement.fill;
6055 break;
6056
6057 case lang_assignment_statement_enum:
6058 current_assign = &s->assignment_statement;
6059 if (current_assign->exp->type.node_class != etree_assert)
6060 {
6061 const char *p = current_assign->exp->assign.dst;
6062
6063 if (current_os == abs_output_section && p[0] == '.' && p[1] == 0)
6064 prefer_next_section = TRUE;
6065
6066 while (*p == '_')
6067 ++p;
6068 if (strcmp (p, "end") == 0)
6069 *found_end = TRUE;
6070 }
6071 exp_fold_tree (s->assignment_statement.exp,
6072 (current_os->bfd_section != NULL
6073 ? current_os->bfd_section : bfd_und_section_ptr),
6074 &dot);
6075 break;
6076
6077 case lang_padding_statement_enum:
6078 dot += TO_ADDR (s->padding_statement.size);
6079 break;
6080
6081 case lang_group_statement_enum:
6082 dot = lang_do_assignments_1 (s->group_statement.children.head,
6083 current_os, fill, dot, found_end);
6084 break;
6085
6086 case lang_insert_statement_enum:
6087 break;
6088
6089 case lang_address_statement_enum:
6090 break;
6091
6092 default:
6093 FAIL ();
6094 break;
6095 }
6096 }
6097 return dot;
6098 }
6099
6100 void
6101 lang_do_assignments (lang_phase_type phase)
6102 {
6103 bfd_boolean found_end = FALSE;
6104
6105 current_section = NULL;
6106 prefer_next_section = FALSE;
6107 expld.phase = phase;
6108 lang_statement_iteration++;
6109 lang_do_assignments_1 (statement_list.head,
6110 abs_output_section, NULL, 0, &found_end);
6111 }
6112
6113 /* For an assignment statement outside of an output section statement,
6114 choose the best of neighbouring output sections to use for values
6115 of "dot". */
6116
6117 asection *
6118 section_for_dot (void)
6119 {
6120 asection *s;
6121
6122 /* Assignments belong to the previous output section, unless there
6123 has been an assignment to "dot", in which case following
6124 assignments belong to the next output section. (The assumption
6125 is that an assignment to "dot" is setting up the address for the
6126 next output section.) Except that past the assignment to "_end"
6127 we always associate with the previous section. This exception is
6128 for targets like SH that define an alloc .stack or other
6129 weirdness after non-alloc sections. */
6130 if (current_section == NULL || prefer_next_section)
6131 {
6132 lang_statement_union_type *stmt;
6133 lang_output_section_statement_type *os;
6134
6135 for (stmt = (lang_statement_union_type *) current_assign;
6136 stmt != NULL;
6137 stmt = stmt->header.next)
6138 if (stmt->header.type == lang_output_section_statement_enum)
6139 break;
6140
6141 os = &stmt->output_section_statement;
6142 while (os != NULL
6143 && !os->after_end
6144 && (os->bfd_section == NULL
6145 || (os->bfd_section->flags & SEC_EXCLUDE) != 0
6146 || bfd_section_removed_from_list (link_info.output_bfd,
6147 os->bfd_section)))
6148 os = os->next;
6149
6150 if (current_section == NULL || os == NULL || !os->after_end)
6151 {
6152 if (os != NULL)
6153 s = os->bfd_section;
6154 else
6155 s = link_info.output_bfd->section_last;
6156 while (s != NULL
6157 && ((s->flags & SEC_ALLOC) == 0
6158 || (s->flags & SEC_THREAD_LOCAL) != 0))
6159 s = s->prev;
6160 if (s != NULL)
6161 return s;
6162
6163 return bfd_abs_section_ptr;
6164 }
6165 }
6166
6167 s = current_section->bfd_section;
6168
6169 /* The section may have been stripped. */
6170 while (s != NULL
6171 && ((s->flags & SEC_EXCLUDE) != 0
6172 || (s->flags & SEC_ALLOC) == 0
6173 || (s->flags & SEC_THREAD_LOCAL) != 0
6174 || bfd_section_removed_from_list (link_info.output_bfd, s)))
6175 s = s->prev;
6176 if (s == NULL)
6177 s = link_info.output_bfd->sections;
6178 while (s != NULL
6179 && ((s->flags & SEC_ALLOC) == 0
6180 || (s->flags & SEC_THREAD_LOCAL) != 0))
6181 s = s->next;
6182 if (s != NULL)
6183 return s;
6184
6185 return bfd_abs_section_ptr;
6186 }
6187
6188 /* Array of __start/__stop/.startof./.sizeof/ symbols. */
6189
6190 static struct bfd_link_hash_entry **start_stop_syms;
6191 static size_t start_stop_count = 0;
6192 static size_t start_stop_alloc = 0;
6193
6194 /* Give start/stop SYMBOL for SEC a preliminary definition, and add it
6195 to start_stop_syms. */
6196
6197 static void
6198 lang_define_start_stop (const char *symbol, asection *sec)
6199 {
6200 struct bfd_link_hash_entry *h;
6201
6202 h = bfd_define_start_stop (link_info.output_bfd, &link_info, symbol, sec);
6203 if (h != NULL)
6204 {
6205 if (start_stop_count == start_stop_alloc)
6206 {
6207 start_stop_alloc = 2 * start_stop_alloc + 10;
6208 start_stop_syms
6209 = xrealloc (start_stop_syms,
6210 start_stop_alloc * sizeof (*start_stop_syms));
6211 }
6212 start_stop_syms[start_stop_count++] = h;
6213 }
6214 }
6215
6216 /* Check for input sections whose names match references to
6217 __start_SECNAME or __stop_SECNAME symbols. Give the symbols
6218 preliminary definitions. */
6219
6220 static void
6221 lang_init_start_stop (void)
6222 {
6223 bfd *abfd;
6224 asection *s;
6225 char leading_char = bfd_get_symbol_leading_char (link_info.output_bfd);
6226
6227 for (abfd = link_info.input_bfds; abfd != NULL; abfd = abfd->link.next)
6228 for (s = abfd->sections; s != NULL; s = s->next)
6229 {
6230 const char *ps;
6231 const char *secname = s->name;
6232
6233 for (ps = secname; *ps != '\0'; ps++)
6234 if (!ISALNUM ((unsigned char) *ps) && *ps != '_')
6235 break;
6236 if (*ps == '\0')
6237 {
6238 char *symbol = (char *) xmalloc (10 + strlen (secname));
6239
6240 symbol[0] = leading_char;
6241 sprintf (symbol + (leading_char != 0), "__start_%s", secname);
6242 lang_define_start_stop (symbol, s);
6243
6244 symbol[1] = leading_char;
6245 memcpy (symbol + 1 + (leading_char != 0), "__stop", 6);
6246 lang_define_start_stop (symbol + 1, s);
6247
6248 free (symbol);
6249 }
6250 }
6251 }
6252
6253 /* Iterate over start_stop_syms. */
6254
6255 static void
6256 foreach_start_stop (void (*func) (struct bfd_link_hash_entry *))
6257 {
6258 size_t i;
6259
6260 for (i = 0; i < start_stop_count; ++i)
6261 func (start_stop_syms[i]);
6262 }
6263
6264 /* __start and __stop symbols are only supposed to be defined by the
6265 linker for orphan sections, but we now extend that to sections that
6266 map to an output section of the same name. The symbols were
6267 defined early for --gc-sections, before we mapped input to output
6268 sections, so undo those that don't satisfy this rule. */
6269
6270 static void
6271 undef_start_stop (struct bfd_link_hash_entry *h)
6272 {
6273 if (h->ldscript_def)
6274 return;
6275
6276 if (h->u.def.section->output_section == NULL
6277 || h->u.def.section->output_section->owner != link_info.output_bfd
6278 || strcmp (h->u.def.section->name,
6279 h->u.def.section->output_section->name) != 0)
6280 {
6281 asection *sec = bfd_get_section_by_name (link_info.output_bfd,
6282 h->u.def.section->name);
6283 if (sec != NULL)
6284 {
6285 /* When there are more than one input sections with the same
6286 section name, SECNAME, linker picks the first one to define
6287 __start_SECNAME and __stop_SECNAME symbols. When the first
6288 input section is removed by comdat group, we need to check
6289 if there is still an output section with section name
6290 SECNAME. */
6291 asection *i;
6292 for (i = sec->map_head.s; i != NULL; i = i->map_head.s)
6293 if (strcmp (h->u.def.section->name, i->name) == 0)
6294 {
6295 h->u.def.section = i;
6296 return;
6297 }
6298 }
6299 h->type = bfd_link_hash_undefined;
6300 h->u.undef.abfd = NULL;
6301 }
6302 }
6303
6304 static void
6305 lang_undef_start_stop (void)
6306 {
6307 foreach_start_stop (undef_start_stop);
6308 }
6309
6310 /* Check for output sections whose names match references to
6311 .startof.SECNAME or .sizeof.SECNAME symbols. Give the symbols
6312 preliminary definitions. */
6313
6314 static void
6315 lang_init_startof_sizeof (void)
6316 {
6317 asection *s;
6318
6319 for (s = link_info.output_bfd->sections; s != NULL; s = s->next)
6320 {
6321 const char *secname = s->name;
6322 char *symbol = (char *) xmalloc (10 + strlen (secname));
6323
6324 sprintf (symbol, ".startof.%s", secname);
6325 lang_define_start_stop (symbol, s);
6326
6327 memcpy (symbol + 1, ".size", 5);
6328 lang_define_start_stop (symbol + 1, s);
6329 free (symbol);
6330 }
6331 }
6332
6333 /* Set .startof., .sizeof., __start and __stop symbols final values. */
6334
6335 static void
6336 set_start_stop (struct bfd_link_hash_entry *h)
6337 {
6338 if (h->ldscript_def
6339 || h->type != bfd_link_hash_defined)
6340 return;
6341
6342 if (h->root.string[0] == '.')
6343 {
6344 /* .startof. or .sizeof. symbol.
6345 .startof. already has final value. */
6346 if (h->root.string[2] == 'i')
6347 {
6348 /* .sizeof. */
6349 h->u.def.value = TO_ADDR (h->u.def.section->size);
6350 h->u.def.section = bfd_abs_section_ptr;
6351 }
6352 }
6353 else
6354 {
6355 /* __start or __stop symbol. */
6356 int has_lead = bfd_get_symbol_leading_char (link_info.output_bfd) != 0;
6357
6358 h->u.def.section = h->u.def.section->output_section;
6359 if (h->root.string[4 + has_lead] == 'o')
6360 {
6361 /* __stop_ */
6362 h->u.def.value = TO_ADDR (h->u.def.section->size);
6363 }
6364 }
6365 }
6366
6367 static void
6368 lang_finalize_start_stop (void)
6369 {
6370 foreach_start_stop (set_start_stop);
6371 }
6372
6373 static void
6374 lang_end (void)
6375 {
6376 struct bfd_link_hash_entry *h;
6377 bfd_boolean warn;
6378
6379 if ((bfd_link_relocatable (&link_info) && !link_info.gc_sections)
6380 || bfd_link_dll (&link_info))
6381 warn = entry_from_cmdline;
6382 else
6383 warn = TRUE;
6384
6385 /* Force the user to specify a root when generating a relocatable with
6386 --gc-sections. */
6387 if (link_info.gc_sections && bfd_link_relocatable (&link_info)
6388 && !(entry_from_cmdline || undef_from_cmdline))
6389 einfo (_("%F%P: gc-sections requires either an entry or "
6390 "an undefined symbol\n"));
6391
6392 if (entry_symbol.name == NULL)
6393 {
6394 /* No entry has been specified. Look for the default entry, but
6395 don't warn if we don't find it. */
6396 entry_symbol.name = entry_symbol_default;
6397 warn = FALSE;
6398 }
6399
6400 h = bfd_link_hash_lookup (link_info.hash, entry_symbol.name,
6401 FALSE, FALSE, TRUE);
6402 if (h != NULL
6403 && (h->type == bfd_link_hash_defined
6404 || h->type == bfd_link_hash_defweak)
6405 && h->u.def.section->output_section != NULL)
6406 {
6407 bfd_vma val;
6408
6409 val = (h->u.def.value
6410 + bfd_get_section_vma (link_info.output_bfd,
6411 h->u.def.section->output_section)
6412 + h->u.def.section->output_offset);
6413 if (!bfd_set_start_address (link_info.output_bfd, val))
6414 einfo (_("%F%P: %s: can't set start address\n"), entry_symbol.name);
6415 }
6416 else
6417 {
6418 bfd_vma val;
6419 const char *send;
6420
6421 /* We couldn't find the entry symbol. Try parsing it as a
6422 number. */
6423 val = bfd_scan_vma (entry_symbol.name, &send, 0);
6424 if (*send == '\0')
6425 {
6426 if (!bfd_set_start_address (link_info.output_bfd, val))
6427 einfo (_("%F%P: can't set start address\n"));
6428 }
6429 else
6430 {
6431 asection *ts;
6432
6433 /* Can't find the entry symbol, and it's not a number. Use
6434 the first address in the text section. */
6435 ts = bfd_get_section_by_name (link_info.output_bfd, entry_section);
6436 if (ts != NULL)
6437 {
6438 if (warn)
6439 einfo (_("%P: warning: cannot find entry symbol %s;"
6440 " defaulting to %V\n"),
6441 entry_symbol.name,
6442 bfd_get_section_vma (link_info.output_bfd, ts));
6443 if (!(bfd_set_start_address
6444 (link_info.output_bfd,
6445 bfd_get_section_vma (link_info.output_bfd, ts))))
6446 einfo (_("%F%P: can't set start address\n"));
6447 }
6448 else
6449 {
6450 if (warn)
6451 einfo (_("%P: warning: cannot find entry symbol %s;"
6452 " not setting start address\n"),
6453 entry_symbol.name);
6454 }
6455 }
6456 }
6457 }
6458
6459 /* This is a small function used when we want to ignore errors from
6460 BFD. */
6461
6462 static void
6463 ignore_bfd_errors (const char *fmt ATTRIBUTE_UNUSED,
6464 va_list ap ATTRIBUTE_UNUSED)
6465 {
6466 /* Don't do anything. */
6467 }
6468
6469 /* Check that the architecture of all the input files is compatible
6470 with the output file. Also call the backend to let it do any
6471 other checking that is needed. */
6472
6473 static void
6474 lang_check (void)
6475 {
6476 lang_statement_union_type *file;
6477 bfd *input_bfd;
6478 const bfd_arch_info_type *compatible;
6479
6480 for (file = file_chain.head; file != NULL; file = file->input_statement.next)
6481 {
6482 #ifdef ENABLE_PLUGINS
6483 /* Don't check format of files claimed by plugin. */
6484 if (file->input_statement.flags.claimed)
6485 continue;
6486 #endif /* ENABLE_PLUGINS */
6487 input_bfd = file->input_statement.the_bfd;
6488 compatible
6489 = bfd_arch_get_compatible (input_bfd, link_info.output_bfd,
6490 command_line.accept_unknown_input_arch);
6491
6492 /* In general it is not possible to perform a relocatable
6493 link between differing object formats when the input
6494 file has relocations, because the relocations in the
6495 input format may not have equivalent representations in
6496 the output format (and besides BFD does not translate
6497 relocs for other link purposes than a final link). */
6498 if ((bfd_link_relocatable (&link_info)
6499 || link_info.emitrelocations)
6500 && (compatible == NULL
6501 || (bfd_get_flavour (input_bfd)
6502 != bfd_get_flavour (link_info.output_bfd)))
6503 && (bfd_get_file_flags (input_bfd) & HAS_RELOC) != 0)
6504 {
6505 einfo (_("%F%P: relocatable linking with relocations from"
6506 " format %s (%pB) to format %s (%pB) is not supported\n"),
6507 bfd_get_target (input_bfd), input_bfd,
6508 bfd_get_target (link_info.output_bfd), link_info.output_bfd);
6509 /* einfo with %F exits. */
6510 }
6511
6512 if (compatible == NULL)
6513 {
6514 if (command_line.warn_mismatch)
6515 einfo (_("%X%P: %s architecture of input file `%pB'"
6516 " is incompatible with %s output\n"),
6517 bfd_printable_name (input_bfd), input_bfd,
6518 bfd_printable_name (link_info.output_bfd));
6519 }
6520 else if (bfd_count_sections (input_bfd))
6521 {
6522 /* If the input bfd has no contents, it shouldn't set the
6523 private data of the output bfd. */
6524
6525 bfd_error_handler_type pfn = NULL;
6526
6527 /* If we aren't supposed to warn about mismatched input
6528 files, temporarily set the BFD error handler to a
6529 function which will do nothing. We still want to call
6530 bfd_merge_private_bfd_data, since it may set up
6531 information which is needed in the output file. */
6532 if (!command_line.warn_mismatch)
6533 pfn = bfd_set_error_handler (ignore_bfd_errors);
6534 if (!bfd_merge_private_bfd_data (input_bfd, &link_info))
6535 {
6536 if (command_line.warn_mismatch)
6537 einfo (_("%X%P: failed to merge target specific data"
6538 " of file %pB\n"), input_bfd);
6539 }
6540 if (!command_line.warn_mismatch)
6541 bfd_set_error_handler (pfn);
6542 }
6543 }
6544 }
6545
6546 /* Look through all the global common symbols and attach them to the
6547 correct section. The -sort-common command line switch may be used
6548 to roughly sort the entries by alignment. */
6549
6550 static void
6551 lang_common (void)
6552 {
6553 if (link_info.inhibit_common_definition)
6554 return;
6555 if (bfd_link_relocatable (&link_info)
6556 && !command_line.force_common_definition)
6557 return;
6558
6559 if (!config.sort_common)
6560 bfd_link_hash_traverse (link_info.hash, lang_one_common, NULL);
6561 else
6562 {
6563 unsigned int power;
6564
6565 if (config.sort_common == sort_descending)
6566 {
6567 for (power = 4; power > 0; power--)
6568 bfd_link_hash_traverse (link_info.hash, lang_one_common, &power);
6569
6570 power = 0;
6571 bfd_link_hash_traverse (link_info.hash, lang_one_common, &power);
6572 }
6573 else
6574 {
6575 for (power = 0; power <= 4; power++)
6576 bfd_link_hash_traverse (link_info.hash, lang_one_common, &power);
6577
6578 power = (unsigned int) -1;
6579 bfd_link_hash_traverse (link_info.hash, lang_one_common, &power);
6580 }
6581 }
6582 }
6583
6584 /* Place one common symbol in the correct section. */
6585
6586 static bfd_boolean
6587 lang_one_common (struct bfd_link_hash_entry *h, void *info)
6588 {
6589 unsigned int power_of_two;
6590 bfd_vma size;
6591 asection *section;
6592
6593 if (h->type != bfd_link_hash_common)
6594 return TRUE;
6595
6596 size = h->u.c.size;
6597 power_of_two = h->u.c.p->alignment_power;
6598
6599 if (config.sort_common == sort_descending
6600 && power_of_two < *(unsigned int *) info)
6601 return TRUE;
6602 else if (config.sort_common == sort_ascending
6603 && power_of_two > *(unsigned int *) info)
6604 return TRUE;
6605
6606 section = h->u.c.p->section;
6607 if (!bfd_define_common_symbol (link_info.output_bfd, &link_info, h))
6608 einfo (_("%F%P: could not define common symbol `%pT': %E\n"),
6609 h->root.string);
6610
6611 if (config.map_file != NULL)
6612 {
6613 static bfd_boolean header_printed;
6614 int len;
6615 char *name;
6616 char buf[50];
6617
6618 if (!header_printed)
6619 {
6620 minfo (_("\nAllocating common symbols\n"));
6621 minfo (_("Common symbol size file\n\n"));
6622 header_printed = TRUE;
6623 }
6624
6625 name = bfd_demangle (link_info.output_bfd, h->root.string,
6626 DMGL_ANSI | DMGL_PARAMS);
6627 if (name == NULL)
6628 {
6629 minfo ("%s", h->root.string);
6630 len = strlen (h->root.string);
6631 }
6632 else
6633 {
6634 minfo ("%s", name);
6635 len = strlen (name);
6636 free (name);
6637 }
6638
6639 if (len >= 19)
6640 {
6641 print_nl ();
6642 len = 0;
6643 }
6644 while (len < 20)
6645 {
6646 print_space ();
6647 ++len;
6648 }
6649
6650 minfo ("0x");
6651 if (size <= 0xffffffff)
6652 sprintf (buf, "%lx", (unsigned long) size);
6653 else
6654 sprintf_vma (buf, size);
6655 minfo ("%s", buf);
6656 len = strlen (buf);
6657
6658 while (len < 16)
6659 {
6660 print_space ();
6661 ++len;
6662 }
6663
6664 minfo ("%pB\n", section->owner);
6665 }
6666
6667 return TRUE;
6668 }
6669
6670 /* Handle a single orphan section S, placing the orphan into an appropriate
6671 output section. The effects of the --orphan-handling command line
6672 option are handled here. */
6673
6674 static void
6675 ldlang_place_orphan (asection *s)
6676 {
6677 if (config.orphan_handling == orphan_handling_discard)
6678 {
6679 lang_output_section_statement_type *os;
6680 os = lang_output_section_statement_lookup (DISCARD_SECTION_NAME, 0,
6681 TRUE);
6682 if (os->addr_tree == NULL
6683 && (bfd_link_relocatable (&link_info)
6684 || (s->flags & (SEC_LOAD | SEC_ALLOC)) == 0))
6685 os->addr_tree = exp_intop (0);
6686 lang_add_section (&os->children, s, NULL, os);
6687 }
6688 else
6689 {
6690 lang_output_section_statement_type *os;
6691 const char *name = s->name;
6692 int constraint = 0;
6693
6694 if (config.orphan_handling == orphan_handling_error)
6695 einfo (_("%X%P: error: unplaced orphan section `%pA' from `%pB'\n"),
6696 s, s->owner);
6697
6698 if (config.unique_orphan_sections || unique_section_p (s, NULL))
6699 constraint = SPECIAL;
6700
6701 os = ldemul_place_orphan (s, name, constraint);
6702 if (os == NULL)
6703 {
6704 os = lang_output_section_statement_lookup (name, constraint, TRUE);
6705 if (os->addr_tree == NULL
6706 && (bfd_link_relocatable (&link_info)
6707 || (s->flags & (SEC_LOAD | SEC_ALLOC)) == 0))
6708 os->addr_tree = exp_intop (0);
6709 lang_add_section (&os->children, s, NULL, os);
6710 }
6711
6712 if (config.orphan_handling == orphan_handling_warn)
6713 einfo (_("%P: warning: orphan section `%pA' from `%pB' being "
6714 "placed in section `%s'\n"),
6715 s, s->owner, os->name);
6716 }
6717 }
6718
6719 /* Run through the input files and ensure that every input section has
6720 somewhere to go. If one is found without a destination then create
6721 an input request and place it into the statement tree. */
6722
6723 static void
6724 lang_place_orphans (void)
6725 {
6726 LANG_FOR_EACH_INPUT_STATEMENT (file)
6727 {
6728 asection *s;
6729
6730 for (s = file->the_bfd->sections; s != NULL; s = s->next)
6731 {
6732 if (s->output_section == NULL)
6733 {
6734 /* This section of the file is not attached, root
6735 around for a sensible place for it to go. */
6736
6737 if (file->flags.just_syms)
6738 bfd_link_just_syms (file->the_bfd, s, &link_info);
6739 else if (lang_discard_section_p (s))
6740 s->output_section = bfd_abs_section_ptr;
6741 else if (strcmp (s->name, "COMMON") == 0)
6742 {
6743 /* This is a lonely common section which must have
6744 come from an archive. We attach to the section
6745 with the wildcard. */
6746 if (!bfd_link_relocatable (&link_info)
6747 || command_line.force_common_definition)
6748 {
6749 if (default_common_section == NULL)
6750 default_common_section
6751 = lang_output_section_statement_lookup (".bss", 0,
6752 TRUE);
6753 lang_add_section (&default_common_section->children, s,
6754 NULL, default_common_section);
6755 }
6756 }
6757 else
6758 ldlang_place_orphan (s);
6759 }
6760 }
6761 }
6762 }
6763
6764 void
6765 lang_set_flags (lang_memory_region_type *ptr, const char *flags, int invert)
6766 {
6767 flagword *ptr_flags;
6768
6769 ptr_flags = invert ? &ptr->not_flags : &ptr->flags;
6770
6771 while (*flags)
6772 {
6773 switch (*flags)
6774 {
6775 /* PR 17900: An exclamation mark in the attributes reverses
6776 the sense of any of the attributes that follow. */
6777 case '!':
6778 invert = !invert;
6779 ptr_flags = invert ? &ptr->not_flags : &ptr->flags;
6780 break;
6781
6782 case 'A': case 'a':
6783 *ptr_flags |= SEC_ALLOC;
6784 break;
6785
6786 case 'R': case 'r':
6787 *ptr_flags |= SEC_READONLY;
6788 break;
6789
6790 case 'W': case 'w':
6791 *ptr_flags |= SEC_DATA;
6792 break;
6793
6794 case 'X': case 'x':
6795 *ptr_flags |= SEC_CODE;
6796 break;
6797
6798 case 'L': case 'l':
6799 case 'I': case 'i':
6800 *ptr_flags |= SEC_LOAD;
6801 break;
6802
6803 default:
6804 einfo (_("%F%P: invalid character %c (%d) in flags\n"),
6805 *flags, *flags);
6806 break;
6807 }
6808 flags++;
6809 }
6810 }
6811
6812 /* Call a function on each input file. This function will be called
6813 on an archive, but not on the elements. */
6814
6815 void
6816 lang_for_each_input_file (void (*func) (lang_input_statement_type *))
6817 {
6818 lang_input_statement_type *f;
6819
6820 for (f = &input_file_chain.head->input_statement;
6821 f != NULL;
6822 f = &f->next_real_file->input_statement)
6823 func (f);
6824 }
6825
6826 /* Call a function on each file. The function will be called on all
6827 the elements of an archive which are included in the link, but will
6828 not be called on the archive file itself. */
6829
6830 void
6831 lang_for_each_file (void (*func) (lang_input_statement_type *))
6832 {
6833 LANG_FOR_EACH_INPUT_STATEMENT (f)
6834 {
6835 func (f);
6836 }
6837 }
6838
6839 void
6840 ldlang_add_file (lang_input_statement_type *entry)
6841 {
6842 lang_statement_append (&file_chain,
6843 (lang_statement_union_type *) entry,
6844 &entry->next);
6845
6846 /* The BFD linker needs to have a list of all input BFDs involved in
6847 a link. */
6848 ASSERT (entry->the_bfd->link.next == NULL);
6849 ASSERT (entry->the_bfd != link_info.output_bfd);
6850
6851 *link_info.input_bfds_tail = entry->the_bfd;
6852 link_info.input_bfds_tail = &entry->the_bfd->link.next;
6853 entry->the_bfd->usrdata = entry;
6854 bfd_set_gp_size (entry->the_bfd, g_switch_value);
6855
6856 /* Look through the sections and check for any which should not be
6857 included in the link. We need to do this now, so that we can
6858 notice when the backend linker tries to report multiple
6859 definition errors for symbols which are in sections we aren't
6860 going to link. FIXME: It might be better to entirely ignore
6861 symbols which are defined in sections which are going to be
6862 discarded. This would require modifying the backend linker for
6863 each backend which might set the SEC_LINK_ONCE flag. If we do
6864 this, we should probably handle SEC_EXCLUDE in the same way. */
6865
6866 bfd_map_over_sections (entry->the_bfd, section_already_linked, entry);
6867 }
6868
6869 void
6870 lang_add_output (const char *name, int from_script)
6871 {
6872 /* Make -o on command line override OUTPUT in script. */
6873 if (!had_output_filename || !from_script)
6874 {
6875 output_filename = name;
6876 had_output_filename = TRUE;
6877 }
6878 }
6879
6880 lang_output_section_statement_type *
6881 lang_enter_output_section_statement (const char *output_section_statement_name,
6882 etree_type *address_exp,
6883 enum section_type sectype,
6884 etree_type *align,
6885 etree_type *subalign,
6886 etree_type *ebase,
6887 int constraint,
6888 int align_with_input)
6889 {
6890 lang_output_section_statement_type *os;
6891
6892 os = lang_output_section_statement_lookup (output_section_statement_name,
6893 constraint, TRUE);
6894 current_section = os;
6895
6896 if (os->addr_tree == NULL)
6897 {
6898 os->addr_tree = address_exp;
6899 }
6900 os->sectype = sectype;
6901 if (sectype != noload_section)
6902 os->flags = SEC_NO_FLAGS;
6903 else
6904 os->flags = SEC_NEVER_LOAD;
6905 os->block_value = 1;
6906
6907 /* Make next things chain into subchain of this. */
6908 push_stat_ptr (&os->children);
6909
6910 os->align_lma_with_input = align_with_input == ALIGN_WITH_INPUT;
6911 if (os->align_lma_with_input && align != NULL)
6912 einfo (_("%F%P:%pS: error: align with input and explicit align specified\n"),
6913 NULL);
6914
6915 os->subsection_alignment = subalign;
6916 os->section_alignment = align;
6917
6918 os->load_base = ebase;
6919 return os;
6920 }
6921
6922 void
6923 lang_final (void)
6924 {
6925 lang_output_statement_type *new_stmt;
6926
6927 new_stmt = new_stat (lang_output_statement, stat_ptr);
6928 new_stmt->name = output_filename;
6929 }
6930
6931 /* Reset the current counters in the regions. */
6932
6933 void
6934 lang_reset_memory_regions (void)
6935 {
6936 lang_memory_region_type *p = lang_memory_region_list;
6937 asection *o;
6938 lang_output_section_statement_type *os;
6939
6940 for (p = lang_memory_region_list; p != NULL; p = p->next)
6941 {
6942 p->current = p->origin;
6943 p->last_os = NULL;
6944 }
6945
6946 for (os = &lang_output_section_statement.head->output_section_statement;
6947 os != NULL;
6948 os = os->next)
6949 {
6950 os->processed_vma = FALSE;
6951 os->processed_lma = FALSE;
6952 }
6953
6954 for (o = link_info.output_bfd->sections; o != NULL; o = o->next)
6955 {
6956 /* Save the last size for possible use by bfd_relax_section. */
6957 o->rawsize = o->size;
6958 if (!(o->flags & SEC_FIXED_SIZE))
6959 o->size = 0;
6960 }
6961 }
6962
6963 /* Worker for lang_gc_sections_1. */
6964
6965 static void
6966 gc_section_callback (lang_wild_statement_type *ptr,
6967 struct wildcard_list *sec ATTRIBUTE_UNUSED,
6968 asection *section,
6969 struct flag_info *sflag_info ATTRIBUTE_UNUSED,
6970 lang_input_statement_type *file ATTRIBUTE_UNUSED,
6971 void *data ATTRIBUTE_UNUSED)
6972 {
6973 /* If the wild pattern was marked KEEP, the member sections
6974 should be as well. */
6975 if (ptr->keep_sections)
6976 section->flags |= SEC_KEEP;
6977 }
6978
6979 /* Iterate over sections marking them against GC. */
6980
6981 static void
6982 lang_gc_sections_1 (lang_statement_union_type *s)
6983 {
6984 for (; s != NULL; s = s->header.next)
6985 {
6986 switch (s->header.type)
6987 {
6988 case lang_wild_statement_enum:
6989 walk_wild (&s->wild_statement, gc_section_callback, NULL);
6990 break;
6991 case lang_constructors_statement_enum:
6992 lang_gc_sections_1 (constructor_list.head);
6993 break;
6994 case lang_output_section_statement_enum:
6995 lang_gc_sections_1 (s->output_section_statement.children.head);
6996 break;
6997 case lang_group_statement_enum:
6998 lang_gc_sections_1 (s->group_statement.children.head);
6999 break;
7000 default:
7001 break;
7002 }
7003 }
7004 }
7005
7006 static void
7007 lang_gc_sections (void)
7008 {
7009 /* Keep all sections so marked in the link script. */
7010 lang_gc_sections_1 (statement_list.head);
7011
7012 /* SEC_EXCLUDE is ignored when doing a relocatable link, except in
7013 the special case of debug info. (See bfd/stabs.c)
7014 Twiddle the flag here, to simplify later linker code. */
7015 if (bfd_link_relocatable (&link_info))
7016 {
7017 LANG_FOR_EACH_INPUT_STATEMENT (f)
7018 {
7019 asection *sec;
7020 #ifdef ENABLE_PLUGINS
7021 if (f->flags.claimed)
7022 continue;
7023 #endif
7024 for (sec = f->the_bfd->sections; sec != NULL; sec = sec->next)
7025 if ((sec->flags & SEC_DEBUGGING) == 0)
7026 sec->flags &= ~SEC_EXCLUDE;
7027 }
7028 }
7029
7030 if (link_info.gc_sections)
7031 bfd_gc_sections (link_info.output_bfd, &link_info);
7032 }
7033
7034 /* Worker for lang_find_relro_sections_1. */
7035
7036 static void
7037 find_relro_section_callback (lang_wild_statement_type *ptr ATTRIBUTE_UNUSED,
7038 struct wildcard_list *sec ATTRIBUTE_UNUSED,
7039 asection *section,
7040 struct flag_info *sflag_info ATTRIBUTE_UNUSED,
7041 lang_input_statement_type *file ATTRIBUTE_UNUSED,
7042 void *data)
7043 {
7044 /* Discarded, excluded and ignored sections effectively have zero
7045 size. */
7046 if (section->output_section != NULL
7047 && section->output_section->owner == link_info.output_bfd
7048 && (section->output_section->flags & SEC_EXCLUDE) == 0
7049 && !IGNORE_SECTION (section)
7050 && section->size != 0)
7051 {
7052 bfd_boolean *has_relro_section = (bfd_boolean *) data;
7053 *has_relro_section = TRUE;
7054 }
7055 }
7056
7057 /* Iterate over sections for relro sections. */
7058
7059 static void
7060 lang_find_relro_sections_1 (lang_statement_union_type *s,
7061 seg_align_type *seg,
7062 bfd_boolean *has_relro_section)
7063 {
7064 if (*has_relro_section)
7065 return;
7066
7067 for (; s != NULL; s = s->header.next)
7068 {
7069 if (s == seg->relro_end_stat)
7070 break;
7071
7072 switch (s->header.type)
7073 {
7074 case lang_wild_statement_enum:
7075 walk_wild (&s->wild_statement,
7076 find_relro_section_callback,
7077 has_relro_section);
7078 break;
7079 case lang_constructors_statement_enum:
7080 lang_find_relro_sections_1 (constructor_list.head,
7081 seg, has_relro_section);
7082 break;
7083 case lang_output_section_statement_enum:
7084 lang_find_relro_sections_1 (s->output_section_statement.children.head,
7085 seg, has_relro_section);
7086 break;
7087 case lang_group_statement_enum:
7088 lang_find_relro_sections_1 (s->group_statement.children.head,
7089 seg, has_relro_section);
7090 break;
7091 default:
7092 break;
7093 }
7094 }
7095 }
7096
7097 static void
7098 lang_find_relro_sections (void)
7099 {
7100 bfd_boolean has_relro_section = FALSE;
7101
7102 /* Check all sections in the link script. */
7103
7104 lang_find_relro_sections_1 (expld.dataseg.relro_start_stat,
7105 &expld.dataseg, &has_relro_section);
7106
7107 if (!has_relro_section)
7108 link_info.relro = FALSE;
7109 }
7110
7111 /* Relax all sections until bfd_relax_section gives up. */
7112
7113 void
7114 lang_relax_sections (bfd_boolean need_layout)
7115 {
7116 if (RELAXATION_ENABLED)
7117 {
7118 /* We may need more than one relaxation pass. */
7119 int i = link_info.relax_pass;
7120
7121 /* The backend can use it to determine the current pass. */
7122 link_info.relax_pass = 0;
7123
7124 while (i--)
7125 {
7126 /* Keep relaxing until bfd_relax_section gives up. */
7127 bfd_boolean relax_again;
7128
7129 link_info.relax_trip = -1;
7130 do
7131 {
7132 link_info.relax_trip++;
7133
7134 /* Note: pe-dll.c does something like this also. If you find
7135 you need to change this code, you probably need to change
7136 pe-dll.c also. DJ */
7137
7138 /* Do all the assignments with our current guesses as to
7139 section sizes. */
7140 lang_do_assignments (lang_assigning_phase_enum);
7141
7142 /* We must do this after lang_do_assignments, because it uses
7143 size. */
7144 lang_reset_memory_regions ();
7145
7146 /* Perform another relax pass - this time we know where the
7147 globals are, so can make a better guess. */
7148 relax_again = FALSE;
7149 lang_size_sections (&relax_again, FALSE);
7150 }
7151 while (relax_again);
7152
7153 link_info.relax_pass++;
7154 }
7155 need_layout = TRUE;
7156 }
7157
7158 if (need_layout)
7159 {
7160 /* Final extra sizing to report errors. */
7161 lang_do_assignments (lang_assigning_phase_enum);
7162 lang_reset_memory_regions ();
7163 lang_size_sections (NULL, TRUE);
7164 }
7165 }
7166
7167 #ifdef ENABLE_PLUGINS
7168 /* Find the insert point for the plugin's replacement files. We
7169 place them after the first claimed real object file, or if the
7170 first claimed object is an archive member, after the last real
7171 object file immediately preceding the archive. In the event
7172 no objects have been claimed at all, we return the first dummy
7173 object file on the list as the insert point; that works, but
7174 the callee must be careful when relinking the file_chain as it
7175 is not actually on that chain, only the statement_list and the
7176 input_file list; in that case, the replacement files must be
7177 inserted at the head of the file_chain. */
7178
7179 static lang_input_statement_type *
7180 find_replacements_insert_point (void)
7181 {
7182 lang_input_statement_type *claim1, *lastobject;
7183 lastobject = &input_file_chain.head->input_statement;
7184 for (claim1 = &file_chain.head->input_statement;
7185 claim1 != NULL;
7186 claim1 = &claim1->next->input_statement)
7187 {
7188 if (claim1->flags.claimed)
7189 return claim1->flags.claim_archive ? lastobject : claim1;
7190 /* Update lastobject if this is a real object file. */
7191 if (claim1->the_bfd != NULL && claim1->the_bfd->my_archive == NULL)
7192 lastobject = claim1;
7193 }
7194 /* No files were claimed by the plugin. Choose the last object
7195 file found on the list (maybe the first, dummy entry) as the
7196 insert point. */
7197 return lastobject;
7198 }
7199
7200 /* Find where to insert ADD, an archive element or shared library
7201 added during a rescan. */
7202
7203 static lang_statement_union_type **
7204 find_rescan_insertion (lang_input_statement_type *add)
7205 {
7206 bfd *add_bfd = add->the_bfd;
7207 lang_input_statement_type *f;
7208 lang_input_statement_type *last_loaded = NULL;
7209 lang_input_statement_type *before = NULL;
7210 lang_statement_union_type **iter = NULL;
7211
7212 if (add_bfd->my_archive != NULL)
7213 add_bfd = add_bfd->my_archive;
7214
7215 /* First look through the input file chain, to find an object file
7216 before the one we've rescanned. Normal object files always
7217 appear on both the input file chain and the file chain, so this
7218 lets us get quickly to somewhere near the correct place on the
7219 file chain if it is full of archive elements. Archives don't
7220 appear on the file chain, but if an element has been extracted
7221 then their input_statement->next points at it. */
7222 for (f = &input_file_chain.head->input_statement;
7223 f != NULL;
7224 f = &f->next_real_file->input_statement)
7225 {
7226 if (f->the_bfd == add_bfd)
7227 {
7228 before = last_loaded;
7229 if (f->next != NULL)
7230 return &f->next->input_statement.next;
7231 }
7232 if (f->the_bfd != NULL && f->next != NULL)
7233 last_loaded = f;
7234 }
7235
7236 for (iter = before ? &before->next : &file_chain.head->input_statement.next;
7237 *iter != NULL;
7238 iter = &(*iter)->input_statement.next)
7239 if (!(*iter)->input_statement.flags.claim_archive
7240 && (*iter)->input_statement.the_bfd->my_archive == NULL)
7241 break;
7242
7243 return iter;
7244 }
7245
7246 /* Insert SRCLIST into DESTLIST after given element by chaining
7247 on FIELD as the next-pointer. (Counterintuitively does not need
7248 a pointer to the actual after-node itself, just its chain field.) */
7249
7250 static void
7251 lang_list_insert_after (lang_statement_list_type *destlist,
7252 lang_statement_list_type *srclist,
7253 lang_statement_union_type **field)
7254 {
7255 *(srclist->tail) = *field;
7256 *field = srclist->head;
7257 if (destlist->tail == field)
7258 destlist->tail = srclist->tail;
7259 }
7260
7261 /* Detach new nodes added to DESTLIST since the time ORIGLIST
7262 was taken as a copy of it and leave them in ORIGLIST. */
7263
7264 static void
7265 lang_list_remove_tail (lang_statement_list_type *destlist,
7266 lang_statement_list_type *origlist)
7267 {
7268 union lang_statement_union **savetail;
7269 /* Check that ORIGLIST really is an earlier state of DESTLIST. */
7270 ASSERT (origlist->head == destlist->head);
7271 savetail = origlist->tail;
7272 origlist->head = *(savetail);
7273 origlist->tail = destlist->tail;
7274 destlist->tail = savetail;
7275 *savetail = NULL;
7276 }
7277 #endif /* ENABLE_PLUGINS */
7278
7279 /* Add NAME to the list of garbage collection entry points. */
7280
7281 void
7282 lang_add_gc_name (const char *name)
7283 {
7284 struct bfd_sym_chain *sym;
7285
7286 if (name == NULL)
7287 return;
7288
7289 sym = (struct bfd_sym_chain *) stat_alloc (sizeof (*sym));
7290
7291 sym->next = link_info.gc_sym_list;
7292 sym->name = name;
7293 link_info.gc_sym_list = sym;
7294 }
7295
7296 /* Check relocations. */
7297
7298 static void
7299 lang_check_relocs (void)
7300 {
7301 if (link_info.check_relocs_after_open_input)
7302 {
7303 bfd *abfd;
7304
7305 for (abfd = link_info.input_bfds;
7306 abfd != (bfd *) NULL; abfd = abfd->link.next)
7307 if (!bfd_link_check_relocs (abfd, &link_info))
7308 {
7309 /* No object output, fail return. */
7310 config.make_executable = FALSE;
7311 /* Note: we do not abort the loop, but rather
7312 continue the scan in case there are other
7313 bad relocations to report. */
7314 }
7315 }
7316 }
7317
7318 /* Look through all output sections looking for places where we can
7319 propagate forward the lma region. */
7320
7321 static void
7322 lang_propagate_lma_regions (void)
7323 {
7324 lang_output_section_statement_type *os;
7325
7326 for (os = &lang_output_section_statement.head->output_section_statement;
7327 os != NULL;
7328 os = os->next)
7329 {
7330 if (os->prev != NULL
7331 && os->lma_region == NULL
7332 && os->load_base == NULL
7333 && os->addr_tree == NULL
7334 && os->region == os->prev->region)
7335 os->lma_region = os->prev->lma_region;
7336 }
7337 }
7338
7339 void
7340 lang_process (void)
7341 {
7342 /* Finalize dynamic list. */
7343 if (link_info.dynamic_list)
7344 lang_finalize_version_expr_head (&link_info.dynamic_list->head);
7345
7346 current_target = default_target;
7347
7348 /* Open the output file. */
7349 lang_for_each_statement (ldlang_open_output);
7350 init_opb ();
7351
7352 ldemul_create_output_section_statements ();
7353
7354 /* Add to the hash table all undefineds on the command line. */
7355 lang_place_undefineds ();
7356
7357 if (!bfd_section_already_linked_table_init ())
7358 einfo (_("%F%P: can not create hash table: %E\n"));
7359
7360 /* Create a bfd for each input file. */
7361 current_target = default_target;
7362 lang_statement_iteration++;
7363 open_input_bfds (statement_list.head, OPEN_BFD_NORMAL);
7364 /* open_input_bfds also handles assignments, so we can give values
7365 to symbolic origin/length now. */
7366 lang_do_memory_regions ();
7367
7368 #ifdef ENABLE_PLUGINS
7369 if (link_info.lto_plugin_active)
7370 {
7371 lang_statement_list_type added;
7372 lang_statement_list_type files, inputfiles;
7373
7374 /* Now all files are read, let the plugin(s) decide if there
7375 are any more to be added to the link before we call the
7376 emulation's after_open hook. We create a private list of
7377 input statements for this purpose, which we will eventually
7378 insert into the global statement list after the first claimed
7379 file. */
7380 added = *stat_ptr;
7381 /* We need to manipulate all three chains in synchrony. */
7382 files = file_chain;
7383 inputfiles = input_file_chain;
7384 if (plugin_call_all_symbols_read ())
7385 einfo (_("%F%P: %s: plugin reported error after all symbols read\n"),
7386 plugin_error_plugin ());
7387 /* Open any newly added files, updating the file chains. */
7388 open_input_bfds (*added.tail, OPEN_BFD_NORMAL);
7389 /* Restore the global list pointer now they have all been added. */
7390 lang_list_remove_tail (stat_ptr, &added);
7391 /* And detach the fresh ends of the file lists. */
7392 lang_list_remove_tail (&file_chain, &files);
7393 lang_list_remove_tail (&input_file_chain, &inputfiles);
7394 /* Were any new files added? */
7395 if (added.head != NULL)
7396 {
7397 /* If so, we will insert them into the statement list immediately
7398 after the first input file that was claimed by the plugin. */
7399 plugin_insert = find_replacements_insert_point ();
7400 /* If a plugin adds input files without having claimed any, we
7401 don't really have a good idea where to place them. Just putting
7402 them at the start or end of the list is liable to leave them
7403 outside the crtbegin...crtend range. */
7404 ASSERT (plugin_insert != NULL);
7405 /* Splice the new statement list into the old one. */
7406 lang_list_insert_after (stat_ptr, &added,
7407 &plugin_insert->header.next);
7408 /* Likewise for the file chains. */
7409 lang_list_insert_after (&input_file_chain, &inputfiles,
7410 &plugin_insert->next_real_file);
7411 /* We must be careful when relinking file_chain; we may need to
7412 insert the new files at the head of the list if the insert
7413 point chosen is the dummy first input file. */
7414 if (plugin_insert->filename)
7415 lang_list_insert_after (&file_chain, &files, &plugin_insert->next);
7416 else
7417 lang_list_insert_after (&file_chain, &files, &file_chain.head);
7418
7419 /* Rescan archives in case new undefined symbols have appeared. */
7420 files = file_chain;
7421 lang_statement_iteration++;
7422 open_input_bfds (statement_list.head, OPEN_BFD_RESCAN);
7423 lang_list_remove_tail (&file_chain, &files);
7424 while (files.head != NULL)
7425 {
7426 lang_statement_union_type **insert;
7427 lang_statement_union_type **iter, *temp;
7428 bfd *my_arch;
7429
7430 insert = find_rescan_insertion (&files.head->input_statement);
7431 /* All elements from an archive can be added at once. */
7432 iter = &files.head->input_statement.next;
7433 my_arch = files.head->input_statement.the_bfd->my_archive;
7434 if (my_arch != NULL)
7435 for (; *iter != NULL; iter = &(*iter)->input_statement.next)
7436 if ((*iter)->input_statement.the_bfd->my_archive != my_arch)
7437 break;
7438 temp = *insert;
7439 *insert = files.head;
7440 files.head = *iter;
7441 *iter = temp;
7442 if (my_arch != NULL)
7443 {
7444 lang_input_statement_type *parent = my_arch->usrdata;
7445 if (parent != NULL)
7446 parent->next = (lang_statement_union_type *)
7447 ((char *) iter
7448 - offsetof (lang_input_statement_type, next));
7449 }
7450 }
7451 }
7452 }
7453 #endif /* ENABLE_PLUGINS */
7454
7455 /* Make sure that nobody has tried to add a symbol to this list
7456 before now. */
7457 ASSERT (link_info.gc_sym_list == NULL);
7458
7459 link_info.gc_sym_list = &entry_symbol;
7460
7461 if (entry_symbol.name == NULL)
7462 {
7463 link_info.gc_sym_list = ldlang_undef_chain_list_head;
7464
7465 /* entry_symbol is normally initialied by a ENTRY definition in the
7466 linker script or the -e command line option. But if neither of
7467 these have been used, the target specific backend may still have
7468 provided an entry symbol via a call to lang_default_entry().
7469 Unfortunately this value will not be processed until lang_end()
7470 is called, long after this function has finished. So detect this
7471 case here and add the target's entry symbol to the list of starting
7472 points for garbage collection resolution. */
7473 lang_add_gc_name (entry_symbol_default);
7474 }
7475
7476 lang_add_gc_name (link_info.init_function);
7477 lang_add_gc_name (link_info.fini_function);
7478
7479 ldemul_after_open ();
7480 if (config.map_file != NULL)
7481 lang_print_asneeded ();
7482
7483 bfd_section_already_linked_table_free ();
7484
7485 /* Make sure that we're not mixing architectures. We call this
7486 after all the input files have been opened, but before we do any
7487 other processing, so that any operations merge_private_bfd_data
7488 does on the output file will be known during the rest of the
7489 link. */
7490 lang_check ();
7491
7492 /* Handle .exports instead of a version script if we're told to do so. */
7493 if (command_line.version_exports_section)
7494 lang_do_version_exports_section ();
7495
7496 /* Build all sets based on the information gathered from the input
7497 files. */
7498 ldctor_build_sets ();
7499
7500 /* Give initial values for __start and __stop symbols, so that ELF
7501 gc_sections will keep sections referenced by these symbols. Must
7502 be done before lang_do_assignments below. */
7503 if (config.build_constructors)
7504 lang_init_start_stop ();
7505
7506 /* PR 13683: We must rerun the assignments prior to running garbage
7507 collection in order to make sure that all symbol aliases are resolved. */
7508 lang_do_assignments (lang_mark_phase_enum);
7509 expld.phase = lang_first_phase_enum;
7510
7511 /* Size up the common data. */
7512 lang_common ();
7513
7514 /* Remove unreferenced sections if asked to. */
7515 lang_gc_sections ();
7516
7517 /* Check relocations. */
7518 lang_check_relocs ();
7519
7520 ldemul_after_check_relocs ();
7521
7522 /* Update wild statements. */
7523 update_wild_statements (statement_list.head);
7524
7525 /* Run through the contours of the script and attach input sections
7526 to the correct output sections. */
7527 lang_statement_iteration++;
7528 map_input_to_output_sections (statement_list.head, NULL, NULL);
7529
7530 process_insert_statements ();
7531
7532 /* Find any sections not attached explicitly and handle them. */
7533 lang_place_orphans ();
7534
7535 if (!bfd_link_relocatable (&link_info))
7536 {
7537 asection *found;
7538
7539 /* Merge SEC_MERGE sections. This has to be done after GC of
7540 sections, so that GCed sections are not merged, but before
7541 assigning dynamic symbols, since removing whole input sections
7542 is hard then. */
7543 bfd_merge_sections (link_info.output_bfd, &link_info);
7544
7545 /* Look for a text section and set the readonly attribute in it. */
7546 found = bfd_get_section_by_name (link_info.output_bfd, ".text");
7547
7548 if (found != NULL)
7549 {
7550 if (config.text_read_only)
7551 found->flags |= SEC_READONLY;
7552 else
7553 found->flags &= ~SEC_READONLY;
7554 }
7555 }
7556
7557 /* Copy forward lma regions for output sections in same lma region. */
7558 lang_propagate_lma_regions ();
7559
7560 /* Defining __start/__stop symbols early for --gc-sections to work
7561 around a glibc build problem can result in these symbols being
7562 defined when they should not be. Fix them now. */
7563 if (config.build_constructors)
7564 lang_undef_start_stop ();
7565
7566 /* Define .startof./.sizeof. symbols with preliminary values before
7567 dynamic symbols are created. */
7568 if (!bfd_link_relocatable (&link_info))
7569 lang_init_startof_sizeof ();
7570
7571 /* Do anything special before sizing sections. This is where ELF
7572 and other back-ends size dynamic sections. */
7573 ldemul_before_allocation ();
7574
7575 /* We must record the program headers before we try to fix the
7576 section positions, since they will affect SIZEOF_HEADERS. */
7577 lang_record_phdrs ();
7578
7579 /* Check relro sections. */
7580 if (link_info.relro && !bfd_link_relocatable (&link_info))
7581 lang_find_relro_sections ();
7582
7583 /* Size up the sections. */
7584 lang_size_sections (NULL, !RELAXATION_ENABLED);
7585
7586 /* See if anything special should be done now we know how big
7587 everything is. This is where relaxation is done. */
7588 ldemul_after_allocation ();
7589
7590 /* Fix any __start, __stop, .startof. or .sizeof. symbols. */
7591 lang_finalize_start_stop ();
7592
7593 /* Do all the assignments again, to report errors. Assignment
7594 statements are processed multiple times, updating symbols; In
7595 open_input_bfds, lang_do_assignments, and lang_size_sections.
7596 Since lang_relax_sections calls lang_do_assignments, symbols are
7597 also updated in ldemul_after_allocation. */
7598 lang_do_assignments (lang_final_phase_enum);
7599
7600 ldemul_finish ();
7601
7602 /* Convert absolute symbols to section relative. */
7603 ldexp_finalize_syms ();
7604
7605 /* Make sure that the section addresses make sense. */
7606 if (command_line.check_section_addresses)
7607 lang_check_section_addresses ();
7608
7609 /* Check any required symbols are known. */
7610 ldlang_check_require_defined_symbols ();
7611
7612 lang_end ();
7613 }
7614
7615 /* EXPORTED TO YACC */
7616
7617 void
7618 lang_add_wild (struct wildcard_spec *filespec,
7619 struct wildcard_list *section_list,
7620 bfd_boolean keep_sections)
7621 {
7622 struct wildcard_list *curr, *next;
7623 lang_wild_statement_type *new_stmt;
7624
7625 /* Reverse the list as the parser puts it back to front. */
7626 for (curr = section_list, section_list = NULL;
7627 curr != NULL;
7628 section_list = curr, curr = next)
7629 {
7630 next = curr->next;
7631 curr->next = section_list;
7632 }
7633
7634 if (filespec != NULL && filespec->name != NULL)
7635 {
7636 if (strcmp (filespec->name, "*") == 0)
7637 filespec->name = NULL;
7638 else if (!wildcardp (filespec->name))
7639 lang_has_input_file = TRUE;
7640 }
7641
7642 new_stmt = new_stat (lang_wild_statement, stat_ptr);
7643 new_stmt->filename = NULL;
7644 new_stmt->filenames_sorted = FALSE;
7645 new_stmt->section_flag_list = NULL;
7646 new_stmt->exclude_name_list = NULL;
7647 if (filespec != NULL)
7648 {
7649 new_stmt->filename = filespec->name;
7650 new_stmt->filenames_sorted = filespec->sorted == by_name;
7651 new_stmt->section_flag_list = filespec->section_flag_list;
7652 new_stmt->exclude_name_list = filespec->exclude_name_list;
7653 }
7654 new_stmt->section_list = section_list;
7655 new_stmt->keep_sections = keep_sections;
7656 lang_list_init (&new_stmt->children);
7657 analyze_walk_wild_section_handler (new_stmt);
7658 }
7659
7660 void
7661 lang_section_start (const char *name, etree_type *address,
7662 const segment_type *segment)
7663 {
7664 lang_address_statement_type *ad;
7665
7666 ad = new_stat (lang_address_statement, stat_ptr);
7667 ad->section_name = name;
7668 ad->address = address;
7669 ad->segment = segment;
7670 }
7671
7672 /* Set the start symbol to NAME. CMDLINE is nonzero if this is called
7673 because of a -e argument on the command line, or zero if this is
7674 called by ENTRY in a linker script. Command line arguments take
7675 precedence. */
7676
7677 void
7678 lang_add_entry (const char *name, bfd_boolean cmdline)
7679 {
7680 if (entry_symbol.name == NULL
7681 || cmdline
7682 || !entry_from_cmdline)
7683 {
7684 entry_symbol.name = name;
7685 entry_from_cmdline = cmdline;
7686 }
7687 }
7688
7689 /* Set the default start symbol to NAME. .em files should use this,
7690 not lang_add_entry, to override the use of "start" if neither the
7691 linker script nor the command line specifies an entry point. NAME
7692 must be permanently allocated. */
7693 void
7694 lang_default_entry (const char *name)
7695 {
7696 entry_symbol_default = name;
7697 }
7698
7699 void
7700 lang_add_target (const char *name)
7701 {
7702 lang_target_statement_type *new_stmt;
7703
7704 new_stmt = new_stat (lang_target_statement, stat_ptr);
7705 new_stmt->target = name;
7706 }
7707
7708 void
7709 lang_add_map (const char *name)
7710 {
7711 while (*name)
7712 {
7713 switch (*name)
7714 {
7715 case 'F':
7716 map_option_f = TRUE;
7717 break;
7718 }
7719 name++;
7720 }
7721 }
7722
7723 void
7724 lang_add_fill (fill_type *fill)
7725 {
7726 lang_fill_statement_type *new_stmt;
7727
7728 new_stmt = new_stat (lang_fill_statement, stat_ptr);
7729 new_stmt->fill = fill;
7730 }
7731
7732 void
7733 lang_add_data (int type, union etree_union *exp)
7734 {
7735 lang_data_statement_type *new_stmt;
7736
7737 new_stmt = new_stat (lang_data_statement, stat_ptr);
7738 new_stmt->exp = exp;
7739 new_stmt->type = type;
7740 }
7741
7742 /* Create a new reloc statement. RELOC is the BFD relocation type to
7743 generate. HOWTO is the corresponding howto structure (we could
7744 look this up, but the caller has already done so). SECTION is the
7745 section to generate a reloc against, or NAME is the name of the
7746 symbol to generate a reloc against. Exactly one of SECTION and
7747 NAME must be NULL. ADDEND is an expression for the addend. */
7748
7749 void
7750 lang_add_reloc (bfd_reloc_code_real_type reloc,
7751 reloc_howto_type *howto,
7752 asection *section,
7753 const char *name,
7754 union etree_union *addend)
7755 {
7756 lang_reloc_statement_type *p = new_stat (lang_reloc_statement, stat_ptr);
7757
7758 p->reloc = reloc;
7759 p->howto = howto;
7760 p->section = section;
7761 p->name = name;
7762 p->addend_exp = addend;
7763
7764 p->addend_value = 0;
7765 p->output_section = NULL;
7766 p->output_offset = 0;
7767 }
7768
7769 lang_assignment_statement_type *
7770 lang_add_assignment (etree_type *exp)
7771 {
7772 lang_assignment_statement_type *new_stmt;
7773
7774 new_stmt = new_stat (lang_assignment_statement, stat_ptr);
7775 new_stmt->exp = exp;
7776 return new_stmt;
7777 }
7778
7779 void
7780 lang_add_attribute (enum statement_enum attribute)
7781 {
7782 new_statement (attribute, sizeof (lang_statement_header_type), stat_ptr);
7783 }
7784
7785 void
7786 lang_startup (const char *name)
7787 {
7788 if (first_file->filename != NULL)
7789 {
7790 einfo (_("%F%P: multiple STARTUP files\n"));
7791 }
7792 first_file->filename = name;
7793 first_file->local_sym_name = name;
7794 first_file->flags.real = TRUE;
7795 }
7796
7797 void
7798 lang_float (bfd_boolean maybe)
7799 {
7800 lang_float_flag = maybe;
7801 }
7802
7803
7804 /* Work out the load- and run-time regions from a script statement, and
7805 store them in *LMA_REGION and *REGION respectively.
7806
7807 MEMSPEC is the name of the run-time region, or the value of
7808 DEFAULT_MEMORY_REGION if the statement didn't specify one.
7809 LMA_MEMSPEC is the name of the load-time region, or null if the
7810 statement didn't specify one.HAVE_LMA_P is TRUE if the statement
7811 had an explicit load address.
7812
7813 It is an error to specify both a load region and a load address. */
7814
7815 static void
7816 lang_get_regions (lang_memory_region_type **region,
7817 lang_memory_region_type **lma_region,
7818 const char *memspec,
7819 const char *lma_memspec,
7820 bfd_boolean have_lma,
7821 bfd_boolean have_vma)
7822 {
7823 *lma_region = lang_memory_region_lookup (lma_memspec, FALSE);
7824
7825 /* If no runtime region or VMA has been specified, but the load region
7826 has been specified, then use the load region for the runtime region
7827 as well. */
7828 if (lma_memspec != NULL
7829 && !have_vma
7830 && strcmp (memspec, DEFAULT_MEMORY_REGION) == 0)
7831 *region = *lma_region;
7832 else
7833 *region = lang_memory_region_lookup (memspec, FALSE);
7834
7835 if (have_lma && lma_memspec != 0)
7836 einfo (_("%X%P:%pS: section has both a load address and a load region\n"),
7837 NULL);
7838 }
7839
7840 void
7841 lang_leave_output_section_statement (fill_type *fill, const char *memspec,
7842 lang_output_section_phdr_list *phdrs,
7843 const char *lma_memspec)
7844 {
7845 lang_get_regions (&current_section->region,
7846 &current_section->lma_region,
7847 memspec, lma_memspec,
7848 current_section->load_base != NULL,
7849 current_section->addr_tree != NULL);
7850
7851 current_section->fill = fill;
7852 current_section->phdrs = phdrs;
7853 pop_stat_ptr ();
7854 }
7855
7856 void
7857 lang_statement_append (lang_statement_list_type *list,
7858 lang_statement_union_type *element,
7859 lang_statement_union_type **field)
7860 {
7861 *(list->tail) = element;
7862 list->tail = field;
7863 }
7864
7865 /* Set the output format type. -oformat overrides scripts. */
7866
7867 void
7868 lang_add_output_format (const char *format,
7869 const char *big,
7870 const char *little,
7871 int from_script)
7872 {
7873 if (output_target == NULL || !from_script)
7874 {
7875 if (command_line.endian == ENDIAN_BIG
7876 && big != NULL)
7877 format = big;
7878 else if (command_line.endian == ENDIAN_LITTLE
7879 && little != NULL)
7880 format = little;
7881
7882 output_target = format;
7883 }
7884 }
7885
7886 void
7887 lang_add_insert (const char *where, int is_before)
7888 {
7889 lang_insert_statement_type *new_stmt;
7890
7891 new_stmt = new_stat (lang_insert_statement, stat_ptr);
7892 new_stmt->where = where;
7893 new_stmt->is_before = is_before;
7894 saved_script_handle = previous_script_handle;
7895 }
7896
7897 /* Enter a group. This creates a new lang_group_statement, and sets
7898 stat_ptr to build new statements within the group. */
7899
7900 void
7901 lang_enter_group (void)
7902 {
7903 lang_group_statement_type *g;
7904
7905 g = new_stat (lang_group_statement, stat_ptr);
7906 lang_list_init (&g->children);
7907 push_stat_ptr (&g->children);
7908 }
7909
7910 /* Leave a group. This just resets stat_ptr to start writing to the
7911 regular list of statements again. Note that this will not work if
7912 groups can occur inside anything else which can adjust stat_ptr,
7913 but currently they can't. */
7914
7915 void
7916 lang_leave_group (void)
7917 {
7918 pop_stat_ptr ();
7919 }
7920
7921 /* Add a new program header. This is called for each entry in a PHDRS
7922 command in a linker script. */
7923
7924 void
7925 lang_new_phdr (const char *name,
7926 etree_type *type,
7927 bfd_boolean filehdr,
7928 bfd_boolean phdrs,
7929 etree_type *at,
7930 etree_type *flags)
7931 {
7932 struct lang_phdr *n, **pp;
7933 bfd_boolean hdrs;
7934
7935 n = (struct lang_phdr *) stat_alloc (sizeof (struct lang_phdr));
7936 n->next = NULL;
7937 n->name = name;
7938 n->type = exp_get_vma (type, 0, "program header type");
7939 n->filehdr = filehdr;
7940 n->phdrs = phdrs;
7941 n->at = at;
7942 n->flags = flags;
7943
7944 hdrs = n->type == 1 && (phdrs || filehdr);
7945
7946 for (pp = &lang_phdr_list; *pp != NULL; pp = &(*pp)->next)
7947 if (hdrs
7948 && (*pp)->type == 1
7949 && !((*pp)->filehdr || (*pp)->phdrs))
7950 {
7951 einfo (_("%X%P:%pS: PHDRS and FILEHDR are not supported"
7952 " when prior PT_LOAD headers lack them\n"), NULL);
7953 hdrs = FALSE;
7954 }
7955
7956 *pp = n;
7957 }
7958
7959 /* Record the program header information in the output BFD. FIXME: We
7960 should not be calling an ELF specific function here. */
7961
7962 static void
7963 lang_record_phdrs (void)
7964 {
7965 unsigned int alc;
7966 asection **secs;
7967 lang_output_section_phdr_list *last;
7968 struct lang_phdr *l;
7969 lang_output_section_statement_type *os;
7970
7971 alc = 10;
7972 secs = (asection **) xmalloc (alc * sizeof (asection *));
7973 last = NULL;
7974
7975 for (l = lang_phdr_list; l != NULL; l = l->next)
7976 {
7977 unsigned int c;
7978 flagword flags;
7979 bfd_vma at;
7980
7981 c = 0;
7982 for (os = &lang_output_section_statement.head->output_section_statement;
7983 os != NULL;
7984 os = os->next)
7985 {
7986 lang_output_section_phdr_list *pl;
7987
7988 if (os->constraint < 0)
7989 continue;
7990
7991 pl = os->phdrs;
7992 if (pl != NULL)
7993 last = pl;
7994 else
7995 {
7996 if (os->sectype == noload_section
7997 || os->bfd_section == NULL
7998 || (os->bfd_section->flags & SEC_ALLOC) == 0)
7999 continue;
8000
8001 /* Don't add orphans to PT_INTERP header. */
8002 if (l->type == 3)
8003 continue;
8004
8005 if (last == NULL)
8006 {
8007 lang_output_section_statement_type *tmp_os;
8008
8009 /* If we have not run across a section with a program
8010 header assigned to it yet, then scan forwards to find
8011 one. This prevents inconsistencies in the linker's
8012 behaviour when a script has specified just a single
8013 header and there are sections in that script which are
8014 not assigned to it, and which occur before the first
8015 use of that header. See here for more details:
8016 http://sourceware.org/ml/binutils/2007-02/msg00291.html */
8017 for (tmp_os = os; tmp_os; tmp_os = tmp_os->next)
8018 if (tmp_os->phdrs)
8019 {
8020 last = tmp_os->phdrs;
8021 break;
8022 }
8023 if (last == NULL)
8024 einfo (_("%F%P: no sections assigned to phdrs\n"));
8025 }
8026 pl = last;
8027 }
8028
8029 if (os->bfd_section == NULL)
8030 continue;
8031
8032 for (; pl != NULL; pl = pl->next)
8033 {
8034 if (strcmp (pl->name, l->name) == 0)
8035 {
8036 if (c >= alc)
8037 {
8038 alc *= 2;
8039 secs = (asection **) xrealloc (secs,
8040 alc * sizeof (asection *));
8041 }
8042 secs[c] = os->bfd_section;
8043 ++c;
8044 pl->used = TRUE;
8045 }
8046 }
8047 }
8048
8049 if (l->flags == NULL)
8050 flags = 0;
8051 else
8052 flags = exp_get_vma (l->flags, 0, "phdr flags");
8053
8054 if (l->at == NULL)
8055 at = 0;
8056 else
8057 at = exp_get_vma (l->at, 0, "phdr load address");
8058
8059 if (!bfd_record_phdr (link_info.output_bfd, l->type,
8060 l->flags != NULL, flags, l->at != NULL,
8061 at, l->filehdr, l->phdrs, c, secs))
8062 einfo (_("%F%P: bfd_record_phdr failed: %E\n"));
8063 }
8064
8065 free (secs);
8066
8067 /* Make sure all the phdr assignments succeeded. */
8068 for (os = &lang_output_section_statement.head->output_section_statement;
8069 os != NULL;
8070 os = os->next)
8071 {
8072 lang_output_section_phdr_list *pl;
8073
8074 if (os->constraint < 0
8075 || os->bfd_section == NULL)
8076 continue;
8077
8078 for (pl = os->phdrs;
8079 pl != NULL;
8080 pl = pl->next)
8081 if (!pl->used && strcmp (pl->name, "NONE") != 0)
8082 einfo (_("%X%P: section `%s' assigned to non-existent phdr `%s'\n"),
8083 os->name, pl->name);
8084 }
8085 }
8086
8087 /* Record a list of sections which may not be cross referenced. */
8088
8089 void
8090 lang_add_nocrossref (lang_nocrossref_type *l)
8091 {
8092 struct lang_nocrossrefs *n;
8093
8094 n = (struct lang_nocrossrefs *) xmalloc (sizeof *n);
8095 n->next = nocrossref_list;
8096 n->list = l;
8097 n->onlyfirst = FALSE;
8098 nocrossref_list = n;
8099
8100 /* Set notice_all so that we get informed about all symbols. */
8101 link_info.notice_all = TRUE;
8102 }
8103
8104 /* Record a section that cannot be referenced from a list of sections. */
8105
8106 void
8107 lang_add_nocrossref_to (lang_nocrossref_type *l)
8108 {
8109 lang_add_nocrossref (l);
8110 nocrossref_list->onlyfirst = TRUE;
8111 }
8112 \f
8113 /* Overlay handling. We handle overlays with some static variables. */
8114
8115 /* The overlay virtual address. */
8116 static etree_type *overlay_vma;
8117 /* And subsection alignment. */
8118 static etree_type *overlay_subalign;
8119
8120 /* An expression for the maximum section size seen so far. */
8121 static etree_type *overlay_max;
8122
8123 /* A list of all the sections in this overlay. */
8124
8125 struct overlay_list {
8126 struct overlay_list *next;
8127 lang_output_section_statement_type *os;
8128 };
8129
8130 static struct overlay_list *overlay_list;
8131
8132 /* Start handling an overlay. */
8133
8134 void
8135 lang_enter_overlay (etree_type *vma_expr, etree_type *subalign)
8136 {
8137 /* The grammar should prevent nested overlays from occurring. */
8138 ASSERT (overlay_vma == NULL
8139 && overlay_subalign == NULL
8140 && overlay_max == NULL);
8141
8142 overlay_vma = vma_expr;
8143 overlay_subalign = subalign;
8144 }
8145
8146 /* Start a section in an overlay. We handle this by calling
8147 lang_enter_output_section_statement with the correct VMA.
8148 lang_leave_overlay sets up the LMA and memory regions. */
8149
8150 void
8151 lang_enter_overlay_section (const char *name)
8152 {
8153 struct overlay_list *n;
8154 etree_type *size;
8155
8156 lang_enter_output_section_statement (name, overlay_vma, overlay_section,
8157 0, overlay_subalign, 0, 0, 0);
8158
8159 /* If this is the first section, then base the VMA of future
8160 sections on this one. This will work correctly even if `.' is
8161 used in the addresses. */
8162 if (overlay_list == NULL)
8163 overlay_vma = exp_nameop (ADDR, name);
8164
8165 /* Remember the section. */
8166 n = (struct overlay_list *) xmalloc (sizeof *n);
8167 n->os = current_section;
8168 n->next = overlay_list;
8169 overlay_list = n;
8170
8171 size = exp_nameop (SIZEOF, name);
8172
8173 /* Arrange to work out the maximum section end address. */
8174 if (overlay_max == NULL)
8175 overlay_max = size;
8176 else
8177 overlay_max = exp_binop (MAX_K, overlay_max, size);
8178 }
8179
8180 /* Finish a section in an overlay. There isn't any special to do
8181 here. */
8182
8183 void
8184 lang_leave_overlay_section (fill_type *fill,
8185 lang_output_section_phdr_list *phdrs)
8186 {
8187 const char *name;
8188 char *clean, *s2;
8189 const char *s1;
8190 char *buf;
8191
8192 name = current_section->name;
8193
8194 /* For now, assume that DEFAULT_MEMORY_REGION is the run-time memory
8195 region and that no load-time region has been specified. It doesn't
8196 really matter what we say here, since lang_leave_overlay will
8197 override it. */
8198 lang_leave_output_section_statement (fill, DEFAULT_MEMORY_REGION, phdrs, 0);
8199
8200 /* Define the magic symbols. */
8201
8202 clean = (char *) xmalloc (strlen (name) + 1);
8203 s2 = clean;
8204 for (s1 = name; *s1 != '\0'; s1++)
8205 if (ISALNUM (*s1) || *s1 == '_')
8206 *s2++ = *s1;
8207 *s2 = '\0';
8208
8209 buf = (char *) xmalloc (strlen (clean) + sizeof "__load_start_");
8210 sprintf (buf, "__load_start_%s", clean);
8211 lang_add_assignment (exp_provide (buf,
8212 exp_nameop (LOADADDR, name),
8213 FALSE));
8214
8215 buf = (char *) xmalloc (strlen (clean) + sizeof "__load_stop_");
8216 sprintf (buf, "__load_stop_%s", clean);
8217 lang_add_assignment (exp_provide (buf,
8218 exp_binop ('+',
8219 exp_nameop (LOADADDR, name),
8220 exp_nameop (SIZEOF, name)),
8221 FALSE));
8222
8223 free (clean);
8224 }
8225
8226 /* Finish an overlay. If there are any overlay wide settings, this
8227 looks through all the sections in the overlay and sets them. */
8228
8229 void
8230 lang_leave_overlay (etree_type *lma_expr,
8231 int nocrossrefs,
8232 fill_type *fill,
8233 const char *memspec,
8234 lang_output_section_phdr_list *phdrs,
8235 const char *lma_memspec)
8236 {
8237 lang_memory_region_type *region;
8238 lang_memory_region_type *lma_region;
8239 struct overlay_list *l;
8240 lang_nocrossref_type *nocrossref;
8241
8242 lang_get_regions (&region, &lma_region,
8243 memspec, lma_memspec,
8244 lma_expr != NULL, FALSE);
8245
8246 nocrossref = NULL;
8247
8248 /* After setting the size of the last section, set '.' to end of the
8249 overlay region. */
8250 if (overlay_list != NULL)
8251 {
8252 overlay_list->os->update_dot = 1;
8253 overlay_list->os->update_dot_tree
8254 = exp_assign (".", exp_binop ('+', overlay_vma, overlay_max), FALSE);
8255 }
8256
8257 l = overlay_list;
8258 while (l != NULL)
8259 {
8260 struct overlay_list *next;
8261
8262 if (fill != NULL && l->os->fill == NULL)
8263 l->os->fill = fill;
8264
8265 l->os->region = region;
8266 l->os->lma_region = lma_region;
8267
8268 /* The first section has the load address specified in the
8269 OVERLAY statement. The rest are worked out from that.
8270 The base address is not needed (and should be null) if
8271 an LMA region was specified. */
8272 if (l->next == 0)
8273 {
8274 l->os->load_base = lma_expr;
8275 l->os->sectype = normal_section;
8276 }
8277 if (phdrs != NULL && l->os->phdrs == NULL)
8278 l->os->phdrs = phdrs;
8279
8280 if (nocrossrefs)
8281 {
8282 lang_nocrossref_type *nc;
8283
8284 nc = (lang_nocrossref_type *) xmalloc (sizeof *nc);
8285 nc->name = l->os->name;
8286 nc->next = nocrossref;
8287 nocrossref = nc;
8288 }
8289
8290 next = l->next;
8291 free (l);
8292 l = next;
8293 }
8294
8295 if (nocrossref != NULL)
8296 lang_add_nocrossref (nocrossref);
8297
8298 overlay_vma = NULL;
8299 overlay_list = NULL;
8300 overlay_max = NULL;
8301 overlay_subalign = NULL;
8302 }
8303 \f
8304 /* Version handling. This is only useful for ELF. */
8305
8306 /* If PREV is NULL, return first version pattern matching particular symbol.
8307 If PREV is non-NULL, return first version pattern matching particular
8308 symbol after PREV (previously returned by lang_vers_match). */
8309
8310 static struct bfd_elf_version_expr *
8311 lang_vers_match (struct bfd_elf_version_expr_head *head,
8312 struct bfd_elf_version_expr *prev,
8313 const char *sym)
8314 {
8315 const char *c_sym;
8316 const char *cxx_sym = sym;
8317 const char *java_sym = sym;
8318 struct bfd_elf_version_expr *expr = NULL;
8319 enum demangling_styles curr_style;
8320
8321 curr_style = CURRENT_DEMANGLING_STYLE;
8322 cplus_demangle_set_style (no_demangling);
8323 c_sym = bfd_demangle (link_info.output_bfd, sym, DMGL_NO_OPTS);
8324 if (!c_sym)
8325 c_sym = sym;
8326 cplus_demangle_set_style (curr_style);
8327
8328 if (head->mask & BFD_ELF_VERSION_CXX_TYPE)
8329 {
8330 cxx_sym = bfd_demangle (link_info.output_bfd, sym,
8331 DMGL_PARAMS | DMGL_ANSI);
8332 if (!cxx_sym)
8333 cxx_sym = sym;
8334 }
8335 if (head->mask & BFD_ELF_VERSION_JAVA_TYPE)
8336 {
8337 java_sym = bfd_demangle (link_info.output_bfd, sym, DMGL_JAVA);
8338 if (!java_sym)
8339 java_sym = sym;
8340 }
8341
8342 if (head->htab && (prev == NULL || prev->literal))
8343 {
8344 struct bfd_elf_version_expr e;
8345
8346 switch (prev ? prev->mask : 0)
8347 {
8348 case 0:
8349 if (head->mask & BFD_ELF_VERSION_C_TYPE)
8350 {
8351 e.pattern = c_sym;
8352 expr = (struct bfd_elf_version_expr *)
8353 htab_find ((htab_t) head->htab, &e);
8354 while (expr && strcmp (expr->pattern, c_sym) == 0)
8355 if (expr->mask == BFD_ELF_VERSION_C_TYPE)
8356 goto out_ret;
8357 else
8358 expr = expr->next;
8359 }
8360 /* Fallthrough */
8361 case BFD_ELF_VERSION_C_TYPE:
8362 if (head->mask & BFD_ELF_VERSION_CXX_TYPE)
8363 {
8364 e.pattern = cxx_sym;
8365 expr = (struct bfd_elf_version_expr *)
8366 htab_find ((htab_t) head->htab, &e);
8367 while (expr && strcmp (expr->pattern, cxx_sym) == 0)
8368 if (expr->mask == BFD_ELF_VERSION_CXX_TYPE)
8369 goto out_ret;
8370 else
8371 expr = expr->next;
8372 }
8373 /* Fallthrough */
8374 case BFD_ELF_VERSION_CXX_TYPE:
8375 if (head->mask & BFD_ELF_VERSION_JAVA_TYPE)
8376 {
8377 e.pattern = java_sym;
8378 expr = (struct bfd_elf_version_expr *)
8379 htab_find ((htab_t) head->htab, &e);
8380 while (expr && strcmp (expr->pattern, java_sym) == 0)
8381 if (expr->mask == BFD_ELF_VERSION_JAVA_TYPE)
8382 goto out_ret;
8383 else
8384 expr = expr->next;
8385 }
8386 /* Fallthrough */
8387 default:
8388 break;
8389 }
8390 }
8391
8392 /* Finally, try the wildcards. */
8393 if (prev == NULL || prev->literal)
8394 expr = head->remaining;
8395 else
8396 expr = prev->next;
8397 for (; expr; expr = expr->next)
8398 {
8399 const char *s;
8400
8401 if (!expr->pattern)
8402 continue;
8403
8404 if (expr->pattern[0] == '*' && expr->pattern[1] == '\0')
8405 break;
8406
8407 if (expr->mask == BFD_ELF_VERSION_JAVA_TYPE)
8408 s = java_sym;
8409 else if (expr->mask == BFD_ELF_VERSION_CXX_TYPE)
8410 s = cxx_sym;
8411 else
8412 s = c_sym;
8413 if (fnmatch (expr->pattern, s, 0) == 0)
8414 break;
8415 }
8416
8417 out_ret:
8418 if (c_sym != sym)
8419 free ((char *) c_sym);
8420 if (cxx_sym != sym)
8421 free ((char *) cxx_sym);
8422 if (java_sym != sym)
8423 free ((char *) java_sym);
8424 return expr;
8425 }
8426
8427 /* Return NULL if the PATTERN argument is a glob pattern, otherwise,
8428 return a pointer to the symbol name with any backslash quotes removed. */
8429
8430 static const char *
8431 realsymbol (const char *pattern)
8432 {
8433 const char *p;
8434 bfd_boolean changed = FALSE, backslash = FALSE;
8435 char *s, *symbol = (char *) xmalloc (strlen (pattern) + 1);
8436
8437 for (p = pattern, s = symbol; *p != '\0'; ++p)
8438 {
8439 /* It is a glob pattern only if there is no preceding
8440 backslash. */
8441 if (backslash)
8442 {
8443 /* Remove the preceding backslash. */
8444 *(s - 1) = *p;
8445 backslash = FALSE;
8446 changed = TRUE;
8447 }
8448 else
8449 {
8450 if (*p == '?' || *p == '*' || *p == '[')
8451 {
8452 free (symbol);
8453 return NULL;
8454 }
8455
8456 *s++ = *p;
8457 backslash = *p == '\\';
8458 }
8459 }
8460
8461 if (changed)
8462 {
8463 *s = '\0';
8464 return symbol;
8465 }
8466 else
8467 {
8468 free (symbol);
8469 return pattern;
8470 }
8471 }
8472
8473 /* This is called for each variable name or match expression. NEW_NAME is
8474 the name of the symbol to match, or, if LITERAL_P is FALSE, a glob
8475 pattern to be matched against symbol names. */
8476
8477 struct bfd_elf_version_expr *
8478 lang_new_vers_pattern (struct bfd_elf_version_expr *orig,
8479 const char *new_name,
8480 const char *lang,
8481 bfd_boolean literal_p)
8482 {
8483 struct bfd_elf_version_expr *ret;
8484
8485 ret = (struct bfd_elf_version_expr *) xmalloc (sizeof *ret);
8486 ret->next = orig;
8487 ret->symver = 0;
8488 ret->script = 0;
8489 ret->literal = TRUE;
8490 ret->pattern = literal_p ? new_name : realsymbol (new_name);
8491 if (ret->pattern == NULL)
8492 {
8493 ret->pattern = new_name;
8494 ret->literal = FALSE;
8495 }
8496
8497 if (lang == NULL || strcasecmp (lang, "C") == 0)
8498 ret->mask = BFD_ELF_VERSION_C_TYPE;
8499 else if (strcasecmp (lang, "C++") == 0)
8500 ret->mask = BFD_ELF_VERSION_CXX_TYPE;
8501 else if (strcasecmp (lang, "Java") == 0)
8502 ret->mask = BFD_ELF_VERSION_JAVA_TYPE;
8503 else
8504 {
8505 einfo (_("%X%P: unknown language `%s' in version information\n"),
8506 lang);
8507 ret->mask = BFD_ELF_VERSION_C_TYPE;
8508 }
8509
8510 return ldemul_new_vers_pattern (ret);
8511 }
8512
8513 /* This is called for each set of variable names and match
8514 expressions. */
8515
8516 struct bfd_elf_version_tree *
8517 lang_new_vers_node (struct bfd_elf_version_expr *globals,
8518 struct bfd_elf_version_expr *locals)
8519 {
8520 struct bfd_elf_version_tree *ret;
8521
8522 ret = (struct bfd_elf_version_tree *) xcalloc (1, sizeof *ret);
8523 ret->globals.list = globals;
8524 ret->locals.list = locals;
8525 ret->match = lang_vers_match;
8526 ret->name_indx = (unsigned int) -1;
8527 return ret;
8528 }
8529
8530 /* This static variable keeps track of version indices. */
8531
8532 static int version_index;
8533
8534 static hashval_t
8535 version_expr_head_hash (const void *p)
8536 {
8537 const struct bfd_elf_version_expr *e =
8538 (const struct bfd_elf_version_expr *) p;
8539
8540 return htab_hash_string (e->pattern);
8541 }
8542
8543 static int
8544 version_expr_head_eq (const void *p1, const void *p2)
8545 {
8546 const struct bfd_elf_version_expr *e1 =
8547 (const struct bfd_elf_version_expr *) p1;
8548 const struct bfd_elf_version_expr *e2 =
8549 (const struct bfd_elf_version_expr *) p2;
8550
8551 return strcmp (e1->pattern, e2->pattern) == 0;
8552 }
8553
8554 static void
8555 lang_finalize_version_expr_head (struct bfd_elf_version_expr_head *head)
8556 {
8557 size_t count = 0;
8558 struct bfd_elf_version_expr *e, *next;
8559 struct bfd_elf_version_expr **list_loc, **remaining_loc;
8560
8561 for (e = head->list; e; e = e->next)
8562 {
8563 if (e->literal)
8564 count++;
8565 head->mask |= e->mask;
8566 }
8567
8568 if (count)
8569 {
8570 head->htab = htab_create (count * 2, version_expr_head_hash,
8571 version_expr_head_eq, NULL);
8572 list_loc = &head->list;
8573 remaining_loc = &head->remaining;
8574 for (e = head->list; e; e = next)
8575 {
8576 next = e->next;
8577 if (!e->literal)
8578 {
8579 *remaining_loc = e;
8580 remaining_loc = &e->next;
8581 }
8582 else
8583 {
8584 void **loc = htab_find_slot ((htab_t) head->htab, e, INSERT);
8585
8586 if (*loc)
8587 {
8588 struct bfd_elf_version_expr *e1, *last;
8589
8590 e1 = (struct bfd_elf_version_expr *) *loc;
8591 last = NULL;
8592 do
8593 {
8594 if (e1->mask == e->mask)
8595 {
8596 last = NULL;
8597 break;
8598 }
8599 last = e1;
8600 e1 = e1->next;
8601 }
8602 while (e1 && strcmp (e1->pattern, e->pattern) == 0);
8603
8604 if (last == NULL)
8605 {
8606 /* This is a duplicate. */
8607 /* FIXME: Memory leak. Sometimes pattern is not
8608 xmalloced alone, but in larger chunk of memory. */
8609 /* free (e->pattern); */
8610 free (e);
8611 }
8612 else
8613 {
8614 e->next = last->next;
8615 last->next = e;
8616 }
8617 }
8618 else
8619 {
8620 *loc = e;
8621 *list_loc = e;
8622 list_loc = &e->next;
8623 }
8624 }
8625 }
8626 *remaining_loc = NULL;
8627 *list_loc = head->remaining;
8628 }
8629 else
8630 head->remaining = head->list;
8631 }
8632
8633 /* This is called when we know the name and dependencies of the
8634 version. */
8635
8636 void
8637 lang_register_vers_node (const char *name,
8638 struct bfd_elf_version_tree *version,
8639 struct bfd_elf_version_deps *deps)
8640 {
8641 struct bfd_elf_version_tree *t, **pp;
8642 struct bfd_elf_version_expr *e1;
8643
8644 if (name == NULL)
8645 name = "";
8646
8647 if (link_info.version_info != NULL
8648 && (name[0] == '\0' || link_info.version_info->name[0] == '\0'))
8649 {
8650 einfo (_("%X%P: anonymous version tag cannot be combined"
8651 " with other version tags\n"));
8652 free (version);
8653 return;
8654 }
8655
8656 /* Make sure this node has a unique name. */
8657 for (t = link_info.version_info; t != NULL; t = t->next)
8658 if (strcmp (t->name, name) == 0)
8659 einfo (_("%X%P: duplicate version tag `%s'\n"), name);
8660
8661 lang_finalize_version_expr_head (&version->globals);
8662 lang_finalize_version_expr_head (&version->locals);
8663
8664 /* Check the global and local match names, and make sure there
8665 aren't any duplicates. */
8666
8667 for (e1 = version->globals.list; e1 != NULL; e1 = e1->next)
8668 {
8669 for (t = link_info.version_info; t != NULL; t = t->next)
8670 {
8671 struct bfd_elf_version_expr *e2;
8672
8673 if (t->locals.htab && e1->literal)
8674 {
8675 e2 = (struct bfd_elf_version_expr *)
8676 htab_find ((htab_t) t->locals.htab, e1);
8677 while (e2 && strcmp (e1->pattern, e2->pattern) == 0)
8678 {
8679 if (e1->mask == e2->mask)
8680 einfo (_("%X%P: duplicate expression `%s'"
8681 " in version information\n"), e1->pattern);
8682 e2 = e2->next;
8683 }
8684 }
8685 else if (!e1->literal)
8686 for (e2 = t->locals.remaining; e2 != NULL; e2 = e2->next)
8687 if (strcmp (e1->pattern, e2->pattern) == 0
8688 && e1->mask == e2->mask)
8689 einfo (_("%X%P: duplicate expression `%s'"
8690 " in version information\n"), e1->pattern);
8691 }
8692 }
8693
8694 for (e1 = version->locals.list; e1 != NULL; e1 = e1->next)
8695 {
8696 for (t = link_info.version_info; t != NULL; t = t->next)
8697 {
8698 struct bfd_elf_version_expr *e2;
8699
8700 if (t->globals.htab && e1->literal)
8701 {
8702 e2 = (struct bfd_elf_version_expr *)
8703 htab_find ((htab_t) t->globals.htab, e1);
8704 while (e2 && strcmp (e1->pattern, e2->pattern) == 0)
8705 {
8706 if (e1->mask == e2->mask)
8707 einfo (_("%X%P: duplicate expression `%s'"
8708 " in version information\n"),
8709 e1->pattern);
8710 e2 = e2->next;
8711 }
8712 }
8713 else if (!e1->literal)
8714 for (e2 = t->globals.remaining; e2 != NULL; e2 = e2->next)
8715 if (strcmp (e1->pattern, e2->pattern) == 0
8716 && e1->mask == e2->mask)
8717 einfo (_("%X%P: duplicate expression `%s'"
8718 " in version information\n"), e1->pattern);
8719 }
8720 }
8721
8722 version->deps = deps;
8723 version->name = name;
8724 if (name[0] != '\0')
8725 {
8726 ++version_index;
8727 version->vernum = version_index;
8728 }
8729 else
8730 version->vernum = 0;
8731
8732 for (pp = &link_info.version_info; *pp != NULL; pp = &(*pp)->next)
8733 ;
8734 *pp = version;
8735 }
8736
8737 /* This is called when we see a version dependency. */
8738
8739 struct bfd_elf_version_deps *
8740 lang_add_vers_depend (struct bfd_elf_version_deps *list, const char *name)
8741 {
8742 struct bfd_elf_version_deps *ret;
8743 struct bfd_elf_version_tree *t;
8744
8745 ret = (struct bfd_elf_version_deps *) xmalloc (sizeof *ret);
8746 ret->next = list;
8747
8748 for (t = link_info.version_info; t != NULL; t = t->next)
8749 {
8750 if (strcmp (t->name, name) == 0)
8751 {
8752 ret->version_needed = t;
8753 return ret;
8754 }
8755 }
8756
8757 einfo (_("%X%P: unable to find version dependency `%s'\n"), name);
8758
8759 ret->version_needed = NULL;
8760 return ret;
8761 }
8762
8763 static void
8764 lang_do_version_exports_section (void)
8765 {
8766 struct bfd_elf_version_expr *greg = NULL, *lreg;
8767
8768 LANG_FOR_EACH_INPUT_STATEMENT (is)
8769 {
8770 asection *sec = bfd_get_section_by_name (is->the_bfd, ".exports");
8771 char *contents, *p;
8772 bfd_size_type len;
8773
8774 if (sec == NULL)
8775 continue;
8776
8777 len = sec->size;
8778 contents = (char *) xmalloc (len);
8779 if (!bfd_get_section_contents (is->the_bfd, sec, contents, 0, len))
8780 einfo (_("%X%P: unable to read .exports section contents\n"), sec);
8781
8782 p = contents;
8783 while (p < contents + len)
8784 {
8785 greg = lang_new_vers_pattern (greg, p, NULL, FALSE);
8786 p = strchr (p, '\0') + 1;
8787 }
8788
8789 /* Do not free the contents, as we used them creating the regex. */
8790
8791 /* Do not include this section in the link. */
8792 sec->flags |= SEC_EXCLUDE | SEC_KEEP;
8793 }
8794
8795 lreg = lang_new_vers_pattern (NULL, "*", NULL, FALSE);
8796 lang_register_vers_node (command_line.version_exports_section,
8797 lang_new_vers_node (greg, lreg), NULL);
8798 }
8799
8800 /* Evaluate LENGTH and ORIGIN parts of MEMORY spec */
8801
8802 static void
8803 lang_do_memory_regions (void)
8804 {
8805 lang_memory_region_type *r = lang_memory_region_list;
8806
8807 for (; r != NULL; r = r->next)
8808 {
8809 if (r->origin_exp)
8810 {
8811 exp_fold_tree_no_dot (r->origin_exp);
8812 if (expld.result.valid_p)
8813 {
8814 r->origin = expld.result.value;
8815 r->current = r->origin;
8816 }
8817 else
8818 einfo (_("%F%P: invalid origin for memory region %s\n"),
8819 r->name_list.name);
8820 }
8821 if (r->length_exp)
8822 {
8823 exp_fold_tree_no_dot (r->length_exp);
8824 if (expld.result.valid_p)
8825 r->length = expld.result.value;
8826 else
8827 einfo (_("%F%P: invalid length for memory region %s\n"),
8828 r->name_list.name);
8829 }
8830 }
8831 }
8832
8833 void
8834 lang_add_unique (const char *name)
8835 {
8836 struct unique_sections *ent;
8837
8838 for (ent = unique_section_list; ent; ent = ent->next)
8839 if (strcmp (ent->name, name) == 0)
8840 return;
8841
8842 ent = (struct unique_sections *) xmalloc (sizeof *ent);
8843 ent->name = xstrdup (name);
8844 ent->next = unique_section_list;
8845 unique_section_list = ent;
8846 }
8847
8848 /* Append the list of dynamic symbols to the existing one. */
8849
8850 void
8851 lang_append_dynamic_list (struct bfd_elf_version_expr *dynamic)
8852 {
8853 if (link_info.dynamic_list)
8854 {
8855 struct bfd_elf_version_expr *tail;
8856 for (tail = dynamic; tail->next != NULL; tail = tail->next)
8857 ;
8858 tail->next = link_info.dynamic_list->head.list;
8859 link_info.dynamic_list->head.list = dynamic;
8860 }
8861 else
8862 {
8863 struct bfd_elf_dynamic_list *d;
8864
8865 d = (struct bfd_elf_dynamic_list *) xcalloc (1, sizeof *d);
8866 d->head.list = dynamic;
8867 d->match = lang_vers_match;
8868 link_info.dynamic_list = d;
8869 }
8870 }
8871
8872 /* Append the list of C++ typeinfo dynamic symbols to the existing
8873 one. */
8874
8875 void
8876 lang_append_dynamic_list_cpp_typeinfo (void)
8877 {
8878 const char *symbols[] =
8879 {
8880 "typeinfo name for*",
8881 "typeinfo for*"
8882 };
8883 struct bfd_elf_version_expr *dynamic = NULL;
8884 unsigned int i;
8885
8886 for (i = 0; i < ARRAY_SIZE (symbols); i++)
8887 dynamic = lang_new_vers_pattern (dynamic, symbols [i], "C++",
8888 FALSE);
8889
8890 lang_append_dynamic_list (dynamic);
8891 }
8892
8893 /* Append the list of C++ operator new and delete dynamic symbols to the
8894 existing one. */
8895
8896 void
8897 lang_append_dynamic_list_cpp_new (void)
8898 {
8899 const char *symbols[] =
8900 {
8901 "operator new*",
8902 "operator delete*"
8903 };
8904 struct bfd_elf_version_expr *dynamic = NULL;
8905 unsigned int i;
8906
8907 for (i = 0; i < ARRAY_SIZE (symbols); i++)
8908 dynamic = lang_new_vers_pattern (dynamic, symbols [i], "C++",
8909 FALSE);
8910
8911 lang_append_dynamic_list (dynamic);
8912 }
8913
8914 /* Scan a space and/or comma separated string of features. */
8915
8916 void
8917 lang_ld_feature (char *str)
8918 {
8919 char *p, *q;
8920
8921 p = str;
8922 while (*p)
8923 {
8924 char sep;
8925 while (*p == ',' || ISSPACE (*p))
8926 ++p;
8927 if (!*p)
8928 break;
8929 q = p + 1;
8930 while (*q && *q != ',' && !ISSPACE (*q))
8931 ++q;
8932 sep = *q;
8933 *q = 0;
8934 if (strcasecmp (p, "SANE_EXPR") == 0)
8935 config.sane_expr = TRUE;
8936 else
8937 einfo (_("%X%P: unknown feature `%s'\n"), p);
8938 *q = sep;
8939 p = q;
8940 }
8941 }
8942
8943 /* Pretty print memory amount. */
8944
8945 static void
8946 lang_print_memory_size (bfd_vma sz)
8947 {
8948 if ((sz & 0x3fffffff) == 0)
8949 printf ("%10" BFD_VMA_FMT "u GB", sz >> 30);
8950 else if ((sz & 0xfffff) == 0)
8951 printf ("%10" BFD_VMA_FMT "u MB", sz >> 20);
8952 else if ((sz & 0x3ff) == 0)
8953 printf ("%10" BFD_VMA_FMT "u KB", sz >> 10);
8954 else
8955 printf (" %10" BFD_VMA_FMT "u B", sz);
8956 }
8957
8958 /* Implement --print-memory-usage: disply per region memory usage. */
8959
8960 void
8961 lang_print_memory_usage (void)
8962 {
8963 lang_memory_region_type *r;
8964
8965 printf ("Memory region Used Size Region Size %%age Used\n");
8966 for (r = lang_memory_region_list; r->next != NULL; r = r->next)
8967 {
8968 bfd_vma used_length = r->current - r->origin;
8969 double percent;
8970
8971 printf ("%16s: ",r->name_list.name);
8972 lang_print_memory_size (used_length);
8973 lang_print_memory_size ((bfd_vma) r->length);
8974
8975 percent = used_length * 100.0 / r->length;
8976
8977 printf (" %6.2f%%\n", percent);
8978 }
8979 }
This page took 0.25611 seconds and 4 git commands to generate.