* linux-arm-low.c: Include <signal.h>.
[deliverable/binutils-gdb.git] / ld / ldlang.c
1 /* Linker command language support.
2 Copyright 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
3 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
4 Free Software Foundation, Inc.
5
6 This file is part of the GNU Binutils.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 MA 02110-1301, USA. */
22
23 #include "sysdep.h"
24 #include "bfd.h"
25 #include "libiberty.h"
26 #include "filenames.h"
27 #include "safe-ctype.h"
28 #include "obstack.h"
29 #include "bfdlink.h"
30
31 #include "ld.h"
32 #include "ldmain.h"
33 #include "ldexp.h"
34 #include "ldlang.h"
35 #include <ldgram.h>
36 #include "ldlex.h"
37 #include "ldmisc.h"
38 #include "ldctor.h"
39 #include "ldfile.h"
40 #include "ldemul.h"
41 #include "fnmatch.h"
42 #include "demangle.h"
43 #include "hashtab.h"
44 #include "libbfd.h"
45 #ifdef ENABLE_PLUGINS
46 #include "plugin.h"
47 #endif /* ENABLE_PLUGINS */
48
49 #ifndef offsetof
50 #define offsetof(TYPE, MEMBER) ((size_t) & (((TYPE*) 0)->MEMBER))
51 #endif
52
53 /* Locals variables. */
54 static struct obstack stat_obstack;
55 static struct obstack map_obstack;
56
57 #define obstack_chunk_alloc xmalloc
58 #define obstack_chunk_free free
59 static const char *entry_symbol_default = "start";
60 static bfd_boolean placed_commons = FALSE;
61 static bfd_boolean stripped_excluded_sections = FALSE;
62 static lang_output_section_statement_type *default_common_section;
63 static bfd_boolean map_option_f;
64 static bfd_vma print_dot;
65 static lang_input_statement_type *first_file;
66 static const char *current_target;
67 static lang_statement_list_type statement_list;
68 static struct bfd_hash_table lang_definedness_table;
69 static lang_statement_list_type *stat_save[10];
70 static lang_statement_list_type **stat_save_ptr = &stat_save[0];
71 static struct unique_sections *unique_section_list;
72 static bfd_boolean ldlang_sysrooted_script = FALSE;
73
74 /* Forward declarations. */
75 static void exp_init_os (etree_type *);
76 static void init_map_userdata (bfd *, asection *, void *);
77 static lang_input_statement_type *lookup_name (const char *);
78 static struct bfd_hash_entry *lang_definedness_newfunc
79 (struct bfd_hash_entry *, struct bfd_hash_table *, const char *);
80 static void insert_undefined (const char *);
81 static bfd_boolean sort_def_symbol (struct bfd_link_hash_entry *, void *);
82 static void print_statement (lang_statement_union_type *,
83 lang_output_section_statement_type *);
84 static void print_statement_list (lang_statement_union_type *,
85 lang_output_section_statement_type *);
86 static void print_statements (void);
87 static void print_input_section (asection *, bfd_boolean);
88 static bfd_boolean lang_one_common (struct bfd_link_hash_entry *, void *);
89 static void lang_record_phdrs (void);
90 static void lang_do_version_exports_section (void);
91 static void lang_finalize_version_expr_head
92 (struct bfd_elf_version_expr_head *);
93
94 /* Exported variables. */
95 const char *output_target;
96 lang_output_section_statement_type *abs_output_section;
97 lang_statement_list_type lang_output_section_statement;
98 lang_statement_list_type *stat_ptr = &statement_list;
99 lang_statement_list_type file_chain = { NULL, NULL };
100 lang_statement_list_type input_file_chain;
101 struct bfd_sym_chain entry_symbol = { NULL, NULL };
102 const char *entry_section = ".text";
103 bfd_boolean entry_from_cmdline;
104 bfd_boolean undef_from_cmdline;
105 bfd_boolean lang_has_input_file = FALSE;
106 bfd_boolean had_output_filename = FALSE;
107 bfd_boolean lang_float_flag = FALSE;
108 bfd_boolean delete_output_file_on_failure = FALSE;
109 struct lang_phdr *lang_phdr_list;
110 struct lang_nocrossrefs *nocrossref_list;
111 bfd_boolean missing_file = FALSE;
112
113 /* Functions that traverse the linker script and might evaluate
114 DEFINED() need to increment this. */
115 int lang_statement_iteration = 0;
116
117 etree_type *base; /* Relocation base - or null */
118
119 /* Return TRUE if the PATTERN argument is a wildcard pattern.
120 Although backslashes are treated specially if a pattern contains
121 wildcards, we do not consider the mere presence of a backslash to
122 be enough to cause the pattern to be treated as a wildcard.
123 That lets us handle DOS filenames more naturally. */
124 #define wildcardp(pattern) (strpbrk ((pattern), "?*[") != NULL)
125
126 #define new_stat(x, y) \
127 (x##_type *) new_statement (x##_enum, sizeof (x##_type), y)
128
129 #define outside_section_address(q) \
130 ((q)->output_offset + (q)->output_section->vma)
131
132 #define outside_symbol_address(q) \
133 ((q)->value + outside_section_address (q->section))
134
135 #define SECTION_NAME_MAP_LENGTH (16)
136
137 void *
138 stat_alloc (size_t size)
139 {
140 return obstack_alloc (&stat_obstack, size);
141 }
142
143 static int
144 name_match (const char *pattern, const char *name)
145 {
146 if (wildcardp (pattern))
147 return fnmatch (pattern, name, 0);
148 return strcmp (pattern, name);
149 }
150
151 /* If PATTERN is of the form archive:file, return a pointer to the
152 separator. If not, return NULL. */
153
154 static char *
155 archive_path (const char *pattern)
156 {
157 char *p = NULL;
158
159 if (link_info.path_separator == 0)
160 return p;
161
162 p = strchr (pattern, link_info.path_separator);
163 #ifdef HAVE_DOS_BASED_FILE_SYSTEM
164 if (p == NULL || link_info.path_separator != ':')
165 return p;
166
167 /* Assume a match on the second char is part of drive specifier,
168 as in "c:\silly.dos". */
169 if (p == pattern + 1 && ISALPHA (*pattern))
170 p = strchr (p + 1, link_info.path_separator);
171 #endif
172 return p;
173 }
174
175 /* Given that FILE_SPEC results in a non-NULL SEP result from archive_path,
176 return whether F matches FILE_SPEC. */
177
178 static bfd_boolean
179 input_statement_is_archive_path (const char *file_spec, char *sep,
180 lang_input_statement_type *f)
181 {
182 bfd_boolean match = FALSE;
183
184 if ((*(sep + 1) == 0
185 || name_match (sep + 1, f->filename) == 0)
186 && ((sep != file_spec)
187 == (f->the_bfd != NULL && f->the_bfd->my_archive != NULL)))
188 {
189 match = TRUE;
190
191 if (sep != file_spec)
192 {
193 const char *aname = f->the_bfd->my_archive->filename;
194 *sep = 0;
195 match = name_match (file_spec, aname) == 0;
196 *sep = link_info.path_separator;
197 }
198 }
199 return match;
200 }
201
202 static bfd_boolean
203 unique_section_p (const asection *sec,
204 const lang_output_section_statement_type *os)
205 {
206 struct unique_sections *unam;
207 const char *secnam;
208
209 if (link_info.relocatable
210 && sec->owner != NULL
211 && bfd_is_group_section (sec->owner, sec))
212 return !(os != NULL
213 && strcmp (os->name, DISCARD_SECTION_NAME) == 0);
214
215 secnam = sec->name;
216 for (unam = unique_section_list; unam; unam = unam->next)
217 if (name_match (unam->name, secnam) == 0)
218 return TRUE;
219
220 return FALSE;
221 }
222
223 /* Generic traversal routines for finding matching sections. */
224
225 /* Try processing a section against a wildcard. This just calls
226 the callback unless the filename exclusion list is present
227 and excludes the file. It's hardly ever present so this
228 function is very fast. */
229
230 static void
231 walk_wild_consider_section (lang_wild_statement_type *ptr,
232 lang_input_statement_type *file,
233 asection *s,
234 struct wildcard_list *sec,
235 callback_t callback,
236 void *data)
237 {
238 struct name_list *list_tmp;
239
240 /* Propagate the section_flag_info from the wild statement to the section. */
241 s->section_flag_info = ptr->section_flag_list;
242
243 /* Don't process sections from files which were excluded. */
244 for (list_tmp = sec->spec.exclude_name_list;
245 list_tmp;
246 list_tmp = list_tmp->next)
247 {
248 char *p = archive_path (list_tmp->name);
249
250 if (p != NULL)
251 {
252 if (input_statement_is_archive_path (list_tmp->name, p, file))
253 return;
254 }
255
256 else if (name_match (list_tmp->name, file->filename) == 0)
257 return;
258
259 /* FIXME: Perhaps remove the following at some stage? Matching
260 unadorned archives like this was never documented and has
261 been superceded by the archive:path syntax. */
262 else if (file->the_bfd != NULL
263 && file->the_bfd->my_archive != NULL
264 && name_match (list_tmp->name,
265 file->the_bfd->my_archive->filename) == 0)
266 return;
267 }
268
269 (*callback) (ptr, sec, s, file, data);
270 }
271
272 /* Lowest common denominator routine that can handle everything correctly,
273 but slowly. */
274
275 static void
276 walk_wild_section_general (lang_wild_statement_type *ptr,
277 lang_input_statement_type *file,
278 callback_t callback,
279 void *data)
280 {
281 asection *s;
282 struct wildcard_list *sec;
283
284 for (s = file->the_bfd->sections; s != NULL; s = s->next)
285 {
286 sec = ptr->section_list;
287 if (sec == NULL)
288 (*callback) (ptr, sec, s, file, data);
289
290 while (sec != NULL)
291 {
292 bfd_boolean skip = FALSE;
293
294 if (sec->spec.name != NULL)
295 {
296 const char *sname = bfd_get_section_name (file->the_bfd, s);
297
298 skip = name_match (sec->spec.name, sname) != 0;
299 }
300
301 if (!skip)
302 walk_wild_consider_section (ptr, file, s, sec, callback, data);
303
304 sec = sec->next;
305 }
306 }
307 }
308
309 /* Routines to find a single section given its name. If there's more
310 than one section with that name, we report that. */
311
312 typedef struct
313 {
314 asection *found_section;
315 bfd_boolean multiple_sections_found;
316 } section_iterator_callback_data;
317
318 static bfd_boolean
319 section_iterator_callback (bfd *abfd ATTRIBUTE_UNUSED, asection *s, void *data)
320 {
321 section_iterator_callback_data *d = (section_iterator_callback_data *) data;
322
323 if (d->found_section != NULL)
324 {
325 d->multiple_sections_found = TRUE;
326 return TRUE;
327 }
328
329 d->found_section = s;
330 return FALSE;
331 }
332
333 static asection *
334 find_section (lang_input_statement_type *file,
335 struct wildcard_list *sec,
336 bfd_boolean *multiple_sections_found)
337 {
338 section_iterator_callback_data cb_data = { NULL, FALSE };
339
340 bfd_get_section_by_name_if (file->the_bfd, sec->spec.name,
341 section_iterator_callback, &cb_data);
342 *multiple_sections_found = cb_data.multiple_sections_found;
343 return cb_data.found_section;
344 }
345
346 /* Code for handling simple wildcards without going through fnmatch,
347 which can be expensive because of charset translations etc. */
348
349 /* A simple wild is a literal string followed by a single '*',
350 where the literal part is at least 4 characters long. */
351
352 static bfd_boolean
353 is_simple_wild (const char *name)
354 {
355 size_t len = strcspn (name, "*?[");
356 return len >= 4 && name[len] == '*' && name[len + 1] == '\0';
357 }
358
359 static bfd_boolean
360 match_simple_wild (const char *pattern, const char *name)
361 {
362 /* The first four characters of the pattern are guaranteed valid
363 non-wildcard characters. So we can go faster. */
364 if (pattern[0] != name[0] || pattern[1] != name[1]
365 || pattern[2] != name[2] || pattern[3] != name[3])
366 return FALSE;
367
368 pattern += 4;
369 name += 4;
370 while (*pattern != '*')
371 if (*name++ != *pattern++)
372 return FALSE;
373
374 return TRUE;
375 }
376
377 /* Return the numerical value of the init_priority attribute from
378 section name NAME. */
379
380 static unsigned long
381 get_init_priority (const char *name)
382 {
383 char *end;
384 unsigned long init_priority;
385
386 /* GCC uses the following section names for the init_priority
387 attribute with numerical values 101 and 65535 inclusive. A
388 lower value means a higher priority.
389
390 1: .init_array.NNNN/.fini_array.NNNN: Where NNNN is the
391 decimal numerical value of the init_priority attribute.
392 The order of execution in .init_array is forward and
393 .fini_array is backward.
394 2: .ctors.NNNN/.ctors.NNNN: Where NNNN is 65535 minus the
395 decimal numerical value of the init_priority attribute.
396 The order of execution in .ctors is backward and .dtors
397 is forward.
398 */
399 if (strncmp (name, ".init_array.", 12) == 0
400 || strncmp (name, ".fini_array.", 12) == 0)
401 {
402 init_priority = strtoul (name + 12, &end, 10);
403 return *end ? 0 : init_priority;
404 }
405 else if (strncmp (name, ".ctors.", 7) == 0
406 || strncmp (name, ".dtors.", 7) == 0)
407 {
408 init_priority = strtoul (name + 7, &end, 10);
409 return *end ? 0 : 65535 - init_priority;
410 }
411
412 return 0;
413 }
414
415 /* Compare sections ASEC and BSEC according to SORT. */
416
417 static int
418 compare_section (sort_type sort, asection *asec, asection *bsec)
419 {
420 int ret;
421 unsigned long ainit_priority, binit_priority;
422
423 switch (sort)
424 {
425 default:
426 abort ();
427
428 case by_init_priority:
429 ainit_priority
430 = get_init_priority (bfd_get_section_name (asec->owner, asec));
431 binit_priority
432 = get_init_priority (bfd_get_section_name (bsec->owner, bsec));
433 if (ainit_priority == 0 || binit_priority == 0)
434 goto sort_by_name;
435 ret = ainit_priority - binit_priority;
436 if (ret)
437 break;
438 else
439 goto sort_by_name;
440
441 case by_alignment_name:
442 ret = (bfd_section_alignment (bsec->owner, bsec)
443 - bfd_section_alignment (asec->owner, asec));
444 if (ret)
445 break;
446 /* Fall through. */
447
448 case by_name:
449 sort_by_name:
450 ret = strcmp (bfd_get_section_name (asec->owner, asec),
451 bfd_get_section_name (bsec->owner, bsec));
452 break;
453
454 case by_name_alignment:
455 ret = strcmp (bfd_get_section_name (asec->owner, asec),
456 bfd_get_section_name (bsec->owner, bsec));
457 if (ret)
458 break;
459 /* Fall through. */
460
461 case by_alignment:
462 ret = (bfd_section_alignment (bsec->owner, bsec)
463 - bfd_section_alignment (asec->owner, asec));
464 break;
465 }
466
467 return ret;
468 }
469
470 /* Build a Binary Search Tree to sort sections, unlike insertion sort
471 used in wild_sort(). BST is considerably faster if the number of
472 of sections are large. */
473
474 static lang_section_bst_type **
475 wild_sort_fast (lang_wild_statement_type *wild,
476 struct wildcard_list *sec,
477 lang_input_statement_type *file ATTRIBUTE_UNUSED,
478 asection *section)
479 {
480 lang_section_bst_type **tree;
481
482 tree = &wild->tree;
483 if (!wild->filenames_sorted
484 && (sec == NULL || sec->spec.sorted == none))
485 {
486 /* Append at the right end of tree. */
487 while (*tree)
488 tree = &((*tree)->right);
489 return tree;
490 }
491
492 while (*tree)
493 {
494 /* Find the correct node to append this section. */
495 if (compare_section (sec->spec.sorted, section, (*tree)->section) < 0)
496 tree = &((*tree)->left);
497 else
498 tree = &((*tree)->right);
499 }
500
501 return tree;
502 }
503
504 /* Use wild_sort_fast to build a BST to sort sections. */
505
506 static void
507 output_section_callback_fast (lang_wild_statement_type *ptr,
508 struct wildcard_list *sec,
509 asection *section,
510 lang_input_statement_type *file,
511 void *output)
512 {
513 lang_section_bst_type *node;
514 lang_section_bst_type **tree;
515 lang_output_section_statement_type *os;
516
517 os = (lang_output_section_statement_type *) output;
518
519 if (unique_section_p (section, os))
520 return;
521
522 node = (lang_section_bst_type *) xmalloc (sizeof (lang_section_bst_type));
523 node->left = 0;
524 node->right = 0;
525 node->section = section;
526
527 tree = wild_sort_fast (ptr, sec, file, section);
528 if (tree != NULL)
529 *tree = node;
530 }
531
532 /* Convert a sorted sections' BST back to list form. */
533
534 static void
535 output_section_callback_tree_to_list (lang_wild_statement_type *ptr,
536 lang_section_bst_type *tree,
537 void *output)
538 {
539 if (tree->left)
540 output_section_callback_tree_to_list (ptr, tree->left, output);
541
542 lang_add_section (&ptr->children, tree->section,
543 (lang_output_section_statement_type *) output);
544
545 if (tree->right)
546 output_section_callback_tree_to_list (ptr, tree->right, output);
547
548 free (tree);
549 }
550
551 /* Specialized, optimized routines for handling different kinds of
552 wildcards */
553
554 static void
555 walk_wild_section_specs1_wild0 (lang_wild_statement_type *ptr,
556 lang_input_statement_type *file,
557 callback_t callback,
558 void *data)
559 {
560 /* We can just do a hash lookup for the section with the right name.
561 But if that lookup discovers more than one section with the name
562 (should be rare), we fall back to the general algorithm because
563 we would otherwise have to sort the sections to make sure they
564 get processed in the bfd's order. */
565 bfd_boolean multiple_sections_found;
566 struct wildcard_list *sec0 = ptr->handler_data[0];
567 asection *s0 = find_section (file, sec0, &multiple_sections_found);
568
569 if (multiple_sections_found)
570 walk_wild_section_general (ptr, file, callback, data);
571 else if (s0)
572 walk_wild_consider_section (ptr, file, s0, sec0, callback, data);
573 }
574
575 static void
576 walk_wild_section_specs1_wild1 (lang_wild_statement_type *ptr,
577 lang_input_statement_type *file,
578 callback_t callback,
579 void *data)
580 {
581 asection *s;
582 struct wildcard_list *wildsec0 = ptr->handler_data[0];
583
584 for (s = file->the_bfd->sections; s != NULL; s = s->next)
585 {
586 const char *sname = bfd_get_section_name (file->the_bfd, s);
587 bfd_boolean skip = !match_simple_wild (wildsec0->spec.name, sname);
588
589 if (!skip)
590 walk_wild_consider_section (ptr, file, s, wildsec0, callback, data);
591 }
592 }
593
594 static void
595 walk_wild_section_specs2_wild1 (lang_wild_statement_type *ptr,
596 lang_input_statement_type *file,
597 callback_t callback,
598 void *data)
599 {
600 asection *s;
601 struct wildcard_list *sec0 = ptr->handler_data[0];
602 struct wildcard_list *wildsec1 = ptr->handler_data[1];
603 bfd_boolean multiple_sections_found;
604 asection *s0 = find_section (file, sec0, &multiple_sections_found);
605
606 if (multiple_sections_found)
607 {
608 walk_wild_section_general (ptr, file, callback, data);
609 return;
610 }
611
612 /* Note that if the section was not found, s0 is NULL and
613 we'll simply never succeed the s == s0 test below. */
614 for (s = file->the_bfd->sections; s != NULL; s = s->next)
615 {
616 /* Recall that in this code path, a section cannot satisfy more
617 than one spec, so if s == s0 then it cannot match
618 wildspec1. */
619 if (s == s0)
620 walk_wild_consider_section (ptr, file, s, sec0, callback, data);
621 else
622 {
623 const char *sname = bfd_get_section_name (file->the_bfd, s);
624 bfd_boolean skip = !match_simple_wild (wildsec1->spec.name, sname);
625
626 if (!skip)
627 walk_wild_consider_section (ptr, file, s, wildsec1, callback,
628 data);
629 }
630 }
631 }
632
633 static void
634 walk_wild_section_specs3_wild2 (lang_wild_statement_type *ptr,
635 lang_input_statement_type *file,
636 callback_t callback,
637 void *data)
638 {
639 asection *s;
640 struct wildcard_list *sec0 = ptr->handler_data[0];
641 struct wildcard_list *wildsec1 = ptr->handler_data[1];
642 struct wildcard_list *wildsec2 = ptr->handler_data[2];
643 bfd_boolean multiple_sections_found;
644 asection *s0 = find_section (file, sec0, &multiple_sections_found);
645
646 if (multiple_sections_found)
647 {
648 walk_wild_section_general (ptr, file, callback, data);
649 return;
650 }
651
652 for (s = file->the_bfd->sections; s != NULL; s = s->next)
653 {
654 if (s == s0)
655 walk_wild_consider_section (ptr, file, s, sec0, callback, data);
656 else
657 {
658 const char *sname = bfd_get_section_name (file->the_bfd, s);
659 bfd_boolean skip = !match_simple_wild (wildsec1->spec.name, sname);
660
661 if (!skip)
662 walk_wild_consider_section (ptr, file, s, wildsec1, callback, data);
663 else
664 {
665 skip = !match_simple_wild (wildsec2->spec.name, sname);
666 if (!skip)
667 walk_wild_consider_section (ptr, file, s, wildsec2, callback,
668 data);
669 }
670 }
671 }
672 }
673
674 static void
675 walk_wild_section_specs4_wild2 (lang_wild_statement_type *ptr,
676 lang_input_statement_type *file,
677 callback_t callback,
678 void *data)
679 {
680 asection *s;
681 struct wildcard_list *sec0 = ptr->handler_data[0];
682 struct wildcard_list *sec1 = ptr->handler_data[1];
683 struct wildcard_list *wildsec2 = ptr->handler_data[2];
684 struct wildcard_list *wildsec3 = ptr->handler_data[3];
685 bfd_boolean multiple_sections_found;
686 asection *s0 = find_section (file, sec0, &multiple_sections_found), *s1;
687
688 if (multiple_sections_found)
689 {
690 walk_wild_section_general (ptr, file, callback, data);
691 return;
692 }
693
694 s1 = find_section (file, sec1, &multiple_sections_found);
695 if (multiple_sections_found)
696 {
697 walk_wild_section_general (ptr, file, callback, data);
698 return;
699 }
700
701 for (s = file->the_bfd->sections; s != NULL; s = s->next)
702 {
703 if (s == s0)
704 walk_wild_consider_section (ptr, file, s, sec0, callback, data);
705 else
706 if (s == s1)
707 walk_wild_consider_section (ptr, file, s, sec1, callback, data);
708 else
709 {
710 const char *sname = bfd_get_section_name (file->the_bfd, s);
711 bfd_boolean skip = !match_simple_wild (wildsec2->spec.name,
712 sname);
713
714 if (!skip)
715 walk_wild_consider_section (ptr, file, s, wildsec2, callback,
716 data);
717 else
718 {
719 skip = !match_simple_wild (wildsec3->spec.name, sname);
720 if (!skip)
721 walk_wild_consider_section (ptr, file, s, wildsec3,
722 callback, data);
723 }
724 }
725 }
726 }
727
728 static void
729 walk_wild_section (lang_wild_statement_type *ptr,
730 lang_input_statement_type *file,
731 callback_t callback,
732 void *data)
733 {
734 if (file->just_syms_flag)
735 return;
736
737 (*ptr->walk_wild_section_handler) (ptr, file, callback, data);
738 }
739
740 /* Returns TRUE when name1 is a wildcard spec that might match
741 something name2 can match. We're conservative: we return FALSE
742 only if the prefixes of name1 and name2 are different up to the
743 first wildcard character. */
744
745 static bfd_boolean
746 wild_spec_can_overlap (const char *name1, const char *name2)
747 {
748 size_t prefix1_len = strcspn (name1, "?*[");
749 size_t prefix2_len = strcspn (name2, "?*[");
750 size_t min_prefix_len;
751
752 /* Note that if there is no wildcard character, then we treat the
753 terminating 0 as part of the prefix. Thus ".text" won't match
754 ".text." or ".text.*", for example. */
755 if (name1[prefix1_len] == '\0')
756 prefix1_len++;
757 if (name2[prefix2_len] == '\0')
758 prefix2_len++;
759
760 min_prefix_len = prefix1_len < prefix2_len ? prefix1_len : prefix2_len;
761
762 return memcmp (name1, name2, min_prefix_len) == 0;
763 }
764
765 /* Select specialized code to handle various kinds of wildcard
766 statements. */
767
768 static void
769 analyze_walk_wild_section_handler (lang_wild_statement_type *ptr)
770 {
771 int sec_count = 0;
772 int wild_name_count = 0;
773 struct wildcard_list *sec;
774 int signature;
775 int data_counter;
776
777 ptr->walk_wild_section_handler = walk_wild_section_general;
778 ptr->handler_data[0] = NULL;
779 ptr->handler_data[1] = NULL;
780 ptr->handler_data[2] = NULL;
781 ptr->handler_data[3] = NULL;
782 ptr->tree = NULL;
783
784 /* Count how many wildcard_specs there are, and how many of those
785 actually use wildcards in the name. Also, bail out if any of the
786 wildcard names are NULL. (Can this actually happen?
787 walk_wild_section used to test for it.) And bail out if any
788 of the wildcards are more complex than a simple string
789 ending in a single '*'. */
790 for (sec = ptr->section_list; sec != NULL; sec = sec->next)
791 {
792 ++sec_count;
793 if (sec->spec.name == NULL)
794 return;
795 if (wildcardp (sec->spec.name))
796 {
797 ++wild_name_count;
798 if (!is_simple_wild (sec->spec.name))
799 return;
800 }
801 }
802
803 /* The zero-spec case would be easy to optimize but it doesn't
804 happen in practice. Likewise, more than 4 specs doesn't
805 happen in practice. */
806 if (sec_count == 0 || sec_count > 4)
807 return;
808
809 /* Check that no two specs can match the same section. */
810 for (sec = ptr->section_list; sec != NULL; sec = sec->next)
811 {
812 struct wildcard_list *sec2;
813 for (sec2 = sec->next; sec2 != NULL; sec2 = sec2->next)
814 {
815 if (wild_spec_can_overlap (sec->spec.name, sec2->spec.name))
816 return;
817 }
818 }
819
820 signature = (sec_count << 8) + wild_name_count;
821 switch (signature)
822 {
823 case 0x0100:
824 ptr->walk_wild_section_handler = walk_wild_section_specs1_wild0;
825 break;
826 case 0x0101:
827 ptr->walk_wild_section_handler = walk_wild_section_specs1_wild1;
828 break;
829 case 0x0201:
830 ptr->walk_wild_section_handler = walk_wild_section_specs2_wild1;
831 break;
832 case 0x0302:
833 ptr->walk_wild_section_handler = walk_wild_section_specs3_wild2;
834 break;
835 case 0x0402:
836 ptr->walk_wild_section_handler = walk_wild_section_specs4_wild2;
837 break;
838 default:
839 return;
840 }
841
842 /* Now fill the data array with pointers to the specs, first the
843 specs with non-wildcard names, then the specs with wildcard
844 names. It's OK to process the specs in different order from the
845 given order, because we've already determined that no section
846 will match more than one spec. */
847 data_counter = 0;
848 for (sec = ptr->section_list; sec != NULL; sec = sec->next)
849 if (!wildcardp (sec->spec.name))
850 ptr->handler_data[data_counter++] = sec;
851 for (sec = ptr->section_list; sec != NULL; sec = sec->next)
852 if (wildcardp (sec->spec.name))
853 ptr->handler_data[data_counter++] = sec;
854 }
855
856 /* Handle a wild statement for a single file F. */
857
858 static void
859 walk_wild_file (lang_wild_statement_type *s,
860 lang_input_statement_type *f,
861 callback_t callback,
862 void *data)
863 {
864 if (f->the_bfd == NULL
865 || ! bfd_check_format (f->the_bfd, bfd_archive))
866 walk_wild_section (s, f, callback, data);
867 else
868 {
869 bfd *member;
870
871 /* This is an archive file. We must map each member of the
872 archive separately. */
873 member = bfd_openr_next_archived_file (f->the_bfd, NULL);
874 while (member != NULL)
875 {
876 /* When lookup_name is called, it will call the add_symbols
877 entry point for the archive. For each element of the
878 archive which is included, BFD will call ldlang_add_file,
879 which will set the usrdata field of the member to the
880 lang_input_statement. */
881 if (member->usrdata != NULL)
882 {
883 walk_wild_section (s,
884 (lang_input_statement_type *) member->usrdata,
885 callback, data);
886 }
887
888 member = bfd_openr_next_archived_file (f->the_bfd, member);
889 }
890 }
891 }
892
893 static void
894 walk_wild (lang_wild_statement_type *s, callback_t callback, void *data)
895 {
896 const char *file_spec = s->filename;
897 char *p;
898
899 if (file_spec == NULL)
900 {
901 /* Perform the iteration over all files in the list. */
902 LANG_FOR_EACH_INPUT_STATEMENT (f)
903 {
904 walk_wild_file (s, f, callback, data);
905 }
906 }
907 else if ((p = archive_path (file_spec)) != NULL)
908 {
909 LANG_FOR_EACH_INPUT_STATEMENT (f)
910 {
911 if (input_statement_is_archive_path (file_spec, p, f))
912 walk_wild_file (s, f, callback, data);
913 }
914 }
915 else if (wildcardp (file_spec))
916 {
917 LANG_FOR_EACH_INPUT_STATEMENT (f)
918 {
919 if (fnmatch (file_spec, f->filename, 0) == 0)
920 walk_wild_file (s, f, callback, data);
921 }
922 }
923 else
924 {
925 lang_input_statement_type *f;
926
927 /* Perform the iteration over a single file. */
928 f = lookup_name (file_spec);
929 if (f)
930 walk_wild_file (s, f, callback, data);
931 }
932 }
933
934 /* lang_for_each_statement walks the parse tree and calls the provided
935 function for each node, except those inside output section statements
936 with constraint set to -1. */
937
938 void
939 lang_for_each_statement_worker (void (*func) (lang_statement_union_type *),
940 lang_statement_union_type *s)
941 {
942 for (; s != NULL; s = s->header.next)
943 {
944 func (s);
945
946 switch (s->header.type)
947 {
948 case lang_constructors_statement_enum:
949 lang_for_each_statement_worker (func, constructor_list.head);
950 break;
951 case lang_output_section_statement_enum:
952 if (s->output_section_statement.constraint != -1)
953 lang_for_each_statement_worker
954 (func, s->output_section_statement.children.head);
955 break;
956 case lang_wild_statement_enum:
957 lang_for_each_statement_worker (func,
958 s->wild_statement.children.head);
959 break;
960 case lang_group_statement_enum:
961 lang_for_each_statement_worker (func,
962 s->group_statement.children.head);
963 break;
964 case lang_data_statement_enum:
965 case lang_reloc_statement_enum:
966 case lang_object_symbols_statement_enum:
967 case lang_output_statement_enum:
968 case lang_target_statement_enum:
969 case lang_input_section_enum:
970 case lang_input_statement_enum:
971 case lang_assignment_statement_enum:
972 case lang_padding_statement_enum:
973 case lang_address_statement_enum:
974 case lang_fill_statement_enum:
975 case lang_insert_statement_enum:
976 break;
977 default:
978 FAIL ();
979 break;
980 }
981 }
982 }
983
984 void
985 lang_for_each_statement (void (*func) (lang_statement_union_type *))
986 {
987 lang_for_each_statement_worker (func, statement_list.head);
988 }
989
990 /*----------------------------------------------------------------------*/
991
992 void
993 lang_list_init (lang_statement_list_type *list)
994 {
995 list->head = NULL;
996 list->tail = &list->head;
997 }
998
999 void
1000 push_stat_ptr (lang_statement_list_type *new_ptr)
1001 {
1002 if (stat_save_ptr >= stat_save + sizeof (stat_save) / sizeof (stat_save[0]))
1003 abort ();
1004 *stat_save_ptr++ = stat_ptr;
1005 stat_ptr = new_ptr;
1006 }
1007
1008 void
1009 pop_stat_ptr (void)
1010 {
1011 if (stat_save_ptr <= stat_save)
1012 abort ();
1013 stat_ptr = *--stat_save_ptr;
1014 }
1015
1016 /* Build a new statement node for the parse tree. */
1017
1018 static lang_statement_union_type *
1019 new_statement (enum statement_enum type,
1020 size_t size,
1021 lang_statement_list_type *list)
1022 {
1023 lang_statement_union_type *new_stmt;
1024
1025 new_stmt = (lang_statement_union_type *) stat_alloc (size);
1026 new_stmt->header.type = type;
1027 new_stmt->header.next = NULL;
1028 lang_statement_append (list, new_stmt, &new_stmt->header.next);
1029 return new_stmt;
1030 }
1031
1032 /* Build a new input file node for the language. There are several
1033 ways in which we treat an input file, eg, we only look at symbols,
1034 or prefix it with a -l etc.
1035
1036 We can be supplied with requests for input files more than once;
1037 they may, for example be split over several lines like foo.o(.text)
1038 foo.o(.data) etc, so when asked for a file we check that we haven't
1039 got it already so we don't duplicate the bfd. */
1040
1041 static lang_input_statement_type *
1042 new_afile (const char *name,
1043 lang_input_file_enum_type file_type,
1044 const char *target,
1045 bfd_boolean add_to_list)
1046 {
1047 lang_input_statement_type *p;
1048
1049 if (add_to_list)
1050 p = (lang_input_statement_type *) new_stat (lang_input_statement, stat_ptr);
1051 else
1052 {
1053 p = (lang_input_statement_type *)
1054 stat_alloc (sizeof (lang_input_statement_type));
1055 p->header.type = lang_input_statement_enum;
1056 p->header.next = NULL;
1057 }
1058
1059 lang_has_input_file = TRUE;
1060 p->target = target;
1061 p->sysrooted = FALSE;
1062
1063 if (file_type == lang_input_file_is_l_enum
1064 && name[0] == ':' && name[1] != '\0')
1065 {
1066 file_type = lang_input_file_is_search_file_enum;
1067 name = name + 1;
1068 }
1069
1070 switch (file_type)
1071 {
1072 case lang_input_file_is_symbols_only_enum:
1073 p->filename = name;
1074 p->maybe_archive = FALSE;
1075 p->real = TRUE;
1076 p->local_sym_name = name;
1077 p->just_syms_flag = TRUE;
1078 p->search_dirs_flag = FALSE;
1079 break;
1080 case lang_input_file_is_fake_enum:
1081 p->filename = name;
1082 p->maybe_archive = FALSE;
1083 p->real = FALSE;
1084 p->local_sym_name = name;
1085 p->just_syms_flag = FALSE;
1086 p->search_dirs_flag = FALSE;
1087 break;
1088 case lang_input_file_is_l_enum:
1089 p->maybe_archive = TRUE;
1090 p->filename = name;
1091 p->real = TRUE;
1092 p->local_sym_name = concat ("-l", name, (const char *) NULL);
1093 p->just_syms_flag = FALSE;
1094 p->search_dirs_flag = TRUE;
1095 break;
1096 case lang_input_file_is_marker_enum:
1097 p->filename = name;
1098 p->maybe_archive = FALSE;
1099 p->real = FALSE;
1100 p->local_sym_name = name;
1101 p->just_syms_flag = FALSE;
1102 p->search_dirs_flag = TRUE;
1103 break;
1104 case lang_input_file_is_search_file_enum:
1105 p->sysrooted = ldlang_sysrooted_script;
1106 p->filename = name;
1107 p->maybe_archive = FALSE;
1108 p->real = TRUE;
1109 p->local_sym_name = name;
1110 p->just_syms_flag = FALSE;
1111 p->search_dirs_flag = TRUE;
1112 break;
1113 case lang_input_file_is_file_enum:
1114 p->filename = name;
1115 p->maybe_archive = FALSE;
1116 p->real = TRUE;
1117 p->local_sym_name = name;
1118 p->just_syms_flag = FALSE;
1119 p->search_dirs_flag = FALSE;
1120 break;
1121 default:
1122 FAIL ();
1123 }
1124 p->the_bfd = NULL;
1125 p->next_real_file = NULL;
1126 p->next = NULL;
1127 p->dynamic = config.dynamic_link;
1128 p->add_DT_NEEDED_for_dynamic = add_DT_NEEDED_for_dynamic;
1129 p->add_DT_NEEDED_for_regular = add_DT_NEEDED_for_regular;
1130 p->whole_archive = whole_archive;
1131 p->loaded = FALSE;
1132 p->missing_file = FALSE;
1133 #ifdef ENABLE_PLUGINS
1134 p->claimed = FALSE;
1135 p->claim_archive = FALSE;
1136 p->reload = FALSE;
1137 #endif /* ENABLE_PLUGINS */
1138
1139 lang_statement_append (&input_file_chain,
1140 (lang_statement_union_type *) p,
1141 &p->next_real_file);
1142 return p;
1143 }
1144
1145 lang_input_statement_type *
1146 lang_add_input_file (const char *name,
1147 lang_input_file_enum_type file_type,
1148 const char *target)
1149 {
1150 return new_afile (name, file_type, target, TRUE);
1151 }
1152
1153 struct out_section_hash_entry
1154 {
1155 struct bfd_hash_entry root;
1156 lang_statement_union_type s;
1157 };
1158
1159 /* The hash table. */
1160
1161 static struct bfd_hash_table output_section_statement_table;
1162
1163 /* Support routines for the hash table used by lang_output_section_find,
1164 initialize the table, fill in an entry and remove the table. */
1165
1166 static struct bfd_hash_entry *
1167 output_section_statement_newfunc (struct bfd_hash_entry *entry,
1168 struct bfd_hash_table *table,
1169 const char *string)
1170 {
1171 lang_output_section_statement_type **nextp;
1172 struct out_section_hash_entry *ret;
1173
1174 if (entry == NULL)
1175 {
1176 entry = (struct bfd_hash_entry *) bfd_hash_allocate (table,
1177 sizeof (*ret));
1178 if (entry == NULL)
1179 return entry;
1180 }
1181
1182 entry = bfd_hash_newfunc (entry, table, string);
1183 if (entry == NULL)
1184 return entry;
1185
1186 ret = (struct out_section_hash_entry *) entry;
1187 memset (&ret->s, 0, sizeof (ret->s));
1188 ret->s.header.type = lang_output_section_statement_enum;
1189 ret->s.output_section_statement.subsection_alignment = -1;
1190 ret->s.output_section_statement.section_alignment = -1;
1191 ret->s.output_section_statement.block_value = 1;
1192 lang_list_init (&ret->s.output_section_statement.children);
1193 lang_statement_append (stat_ptr, &ret->s, &ret->s.header.next);
1194
1195 /* For every output section statement added to the list, except the
1196 first one, lang_output_section_statement.tail points to the "next"
1197 field of the last element of the list. */
1198 if (lang_output_section_statement.head != NULL)
1199 ret->s.output_section_statement.prev
1200 = ((lang_output_section_statement_type *)
1201 ((char *) lang_output_section_statement.tail
1202 - offsetof (lang_output_section_statement_type, next)));
1203
1204 /* GCC's strict aliasing rules prevent us from just casting the
1205 address, so we store the pointer in a variable and cast that
1206 instead. */
1207 nextp = &ret->s.output_section_statement.next;
1208 lang_statement_append (&lang_output_section_statement,
1209 &ret->s,
1210 (lang_statement_union_type **) nextp);
1211 return &ret->root;
1212 }
1213
1214 static void
1215 output_section_statement_table_init (void)
1216 {
1217 if (!bfd_hash_table_init_n (&output_section_statement_table,
1218 output_section_statement_newfunc,
1219 sizeof (struct out_section_hash_entry),
1220 61))
1221 einfo (_("%P%F: can not create hash table: %E\n"));
1222 }
1223
1224 static void
1225 output_section_statement_table_free (void)
1226 {
1227 bfd_hash_table_free (&output_section_statement_table);
1228 }
1229
1230 /* Build enough state so that the parser can build its tree. */
1231
1232 void
1233 lang_init (void)
1234 {
1235 obstack_begin (&stat_obstack, 1000);
1236
1237 stat_ptr = &statement_list;
1238
1239 output_section_statement_table_init ();
1240
1241 lang_list_init (stat_ptr);
1242
1243 lang_list_init (&input_file_chain);
1244 lang_list_init (&lang_output_section_statement);
1245 lang_list_init (&file_chain);
1246 first_file = lang_add_input_file (NULL, lang_input_file_is_marker_enum,
1247 NULL);
1248 abs_output_section =
1249 lang_output_section_statement_lookup (BFD_ABS_SECTION_NAME, 0, TRUE);
1250
1251 abs_output_section->bfd_section = bfd_abs_section_ptr;
1252
1253 /* The value "3" is ad-hoc, somewhat related to the expected number of
1254 DEFINED expressions in a linker script. For most default linker
1255 scripts, there are none. Why a hash table then? Well, it's somewhat
1256 simpler to re-use working machinery than using a linked list in terms
1257 of code-complexity here in ld, besides the initialization which just
1258 looks like other code here. */
1259 if (!bfd_hash_table_init_n (&lang_definedness_table,
1260 lang_definedness_newfunc,
1261 sizeof (struct lang_definedness_hash_entry),
1262 3))
1263 einfo (_("%P%F: can not create hash table: %E\n"));
1264 }
1265
1266 void
1267 lang_finish (void)
1268 {
1269 output_section_statement_table_free ();
1270 }
1271
1272 /*----------------------------------------------------------------------
1273 A region is an area of memory declared with the
1274 MEMORY { name:org=exp, len=exp ... }
1275 syntax.
1276
1277 We maintain a list of all the regions here.
1278
1279 If no regions are specified in the script, then the default is used
1280 which is created when looked up to be the entire data space.
1281
1282 If create is true we are creating a region inside a MEMORY block.
1283 In this case it is probably an error to create a region that has
1284 already been created. If we are not inside a MEMORY block it is
1285 dubious to use an undeclared region name (except DEFAULT_MEMORY_REGION)
1286 and so we issue a warning.
1287
1288 Each region has at least one name. The first name is either
1289 DEFAULT_MEMORY_REGION or the name given in the MEMORY block. You can add
1290 alias names to an existing region within a script with
1291 REGION_ALIAS (alias, region_name). Each name corresponds to at most one
1292 region. */
1293
1294 static lang_memory_region_type *lang_memory_region_list;
1295 static lang_memory_region_type **lang_memory_region_list_tail
1296 = &lang_memory_region_list;
1297
1298 lang_memory_region_type *
1299 lang_memory_region_lookup (const char *const name, bfd_boolean create)
1300 {
1301 lang_memory_region_name *n;
1302 lang_memory_region_type *r;
1303 lang_memory_region_type *new_region;
1304
1305 /* NAME is NULL for LMA memspecs if no region was specified. */
1306 if (name == NULL)
1307 return NULL;
1308
1309 for (r = lang_memory_region_list; r != NULL; r = r->next)
1310 for (n = &r->name_list; n != NULL; n = n->next)
1311 if (strcmp (n->name, name) == 0)
1312 {
1313 if (create)
1314 einfo (_("%P:%S: warning: redeclaration of memory region `%s'\n"),
1315 name);
1316 return r;
1317 }
1318
1319 if (!create && strcmp (name, DEFAULT_MEMORY_REGION))
1320 einfo (_("%P:%S: warning: memory region `%s' not declared\n"), name);
1321
1322 new_region = (lang_memory_region_type *)
1323 stat_alloc (sizeof (lang_memory_region_type));
1324
1325 new_region->name_list.name = xstrdup (name);
1326 new_region->name_list.next = NULL;
1327 new_region->next = NULL;
1328 new_region->origin = 0;
1329 new_region->length = ~(bfd_size_type) 0;
1330 new_region->current = 0;
1331 new_region->last_os = NULL;
1332 new_region->flags = 0;
1333 new_region->not_flags = 0;
1334 new_region->had_full_message = FALSE;
1335
1336 *lang_memory_region_list_tail = new_region;
1337 lang_memory_region_list_tail = &new_region->next;
1338
1339 return new_region;
1340 }
1341
1342 void
1343 lang_memory_region_alias (const char * alias, const char * region_name)
1344 {
1345 lang_memory_region_name * n;
1346 lang_memory_region_type * r;
1347 lang_memory_region_type * region;
1348
1349 /* The default region must be unique. This ensures that it is not necessary
1350 to iterate through the name list if someone wants the check if a region is
1351 the default memory region. */
1352 if (strcmp (region_name, DEFAULT_MEMORY_REGION) == 0
1353 || strcmp (alias, DEFAULT_MEMORY_REGION) == 0)
1354 einfo (_("%F%P:%S: error: alias for default memory region\n"));
1355
1356 /* Look for the target region and check if the alias is not already
1357 in use. */
1358 region = NULL;
1359 for (r = lang_memory_region_list; r != NULL; r = r->next)
1360 for (n = &r->name_list; n != NULL; n = n->next)
1361 {
1362 if (region == NULL && strcmp (n->name, region_name) == 0)
1363 region = r;
1364 if (strcmp (n->name, alias) == 0)
1365 einfo (_("%F%P:%S: error: redefinition of memory region "
1366 "alias `%s'\n"),
1367 alias);
1368 }
1369
1370 /* Check if the target region exists. */
1371 if (region == NULL)
1372 einfo (_("%F%P:%S: error: memory region `%s' "
1373 "for alias `%s' does not exist\n"),
1374 region_name,
1375 alias);
1376
1377 /* Add alias to region name list. */
1378 n = (lang_memory_region_name *) stat_alloc (sizeof (lang_memory_region_name));
1379 n->name = xstrdup (alias);
1380 n->next = region->name_list.next;
1381 region->name_list.next = n;
1382 }
1383
1384 static lang_memory_region_type *
1385 lang_memory_default (asection * section)
1386 {
1387 lang_memory_region_type *p;
1388
1389 flagword sec_flags = section->flags;
1390
1391 /* Override SEC_DATA to mean a writable section. */
1392 if ((sec_flags & (SEC_ALLOC | SEC_READONLY | SEC_CODE)) == SEC_ALLOC)
1393 sec_flags |= SEC_DATA;
1394
1395 for (p = lang_memory_region_list; p != NULL; p = p->next)
1396 {
1397 if ((p->flags & sec_flags) != 0
1398 && (p->not_flags & sec_flags) == 0)
1399 {
1400 return p;
1401 }
1402 }
1403 return lang_memory_region_lookup (DEFAULT_MEMORY_REGION, FALSE);
1404 }
1405
1406 /* Find or create an output_section_statement with the given NAME.
1407 If CONSTRAINT is non-zero match one with that constraint, otherwise
1408 match any non-negative constraint. If CREATE, always make a
1409 new output_section_statement for SPECIAL CONSTRAINT. */
1410
1411 lang_output_section_statement_type *
1412 lang_output_section_statement_lookup (const char *name,
1413 int constraint,
1414 bfd_boolean create)
1415 {
1416 struct out_section_hash_entry *entry;
1417
1418 entry = ((struct out_section_hash_entry *)
1419 bfd_hash_lookup (&output_section_statement_table, name,
1420 create, FALSE));
1421 if (entry == NULL)
1422 {
1423 if (create)
1424 einfo (_("%P%F: failed creating section `%s': %E\n"), name);
1425 return NULL;
1426 }
1427
1428 if (entry->s.output_section_statement.name != NULL)
1429 {
1430 /* We have a section of this name, but it might not have the correct
1431 constraint. */
1432 struct out_section_hash_entry *last_ent;
1433
1434 name = entry->s.output_section_statement.name;
1435 if (create && constraint == SPECIAL)
1436 /* Not traversing to the end reverses the order of the second
1437 and subsequent SPECIAL sections in the hash table chain,
1438 but that shouldn't matter. */
1439 last_ent = entry;
1440 else
1441 do
1442 {
1443 if (constraint == entry->s.output_section_statement.constraint
1444 || (constraint == 0
1445 && entry->s.output_section_statement.constraint >= 0))
1446 return &entry->s.output_section_statement;
1447 last_ent = entry;
1448 entry = (struct out_section_hash_entry *) entry->root.next;
1449 }
1450 while (entry != NULL
1451 && name == entry->s.output_section_statement.name);
1452
1453 if (!create)
1454 return NULL;
1455
1456 entry
1457 = ((struct out_section_hash_entry *)
1458 output_section_statement_newfunc (NULL,
1459 &output_section_statement_table,
1460 name));
1461 if (entry == NULL)
1462 {
1463 einfo (_("%P%F: failed creating section `%s': %E\n"), name);
1464 return NULL;
1465 }
1466 entry->root = last_ent->root;
1467 last_ent->root.next = &entry->root;
1468 }
1469
1470 entry->s.output_section_statement.name = name;
1471 entry->s.output_section_statement.constraint = constraint;
1472 return &entry->s.output_section_statement;
1473 }
1474
1475 /* Find the next output_section_statement with the same name as OS.
1476 If CONSTRAINT is non-zero, find one with that constraint otherwise
1477 match any non-negative constraint. */
1478
1479 lang_output_section_statement_type *
1480 next_matching_output_section_statement (lang_output_section_statement_type *os,
1481 int constraint)
1482 {
1483 /* All output_section_statements are actually part of a
1484 struct out_section_hash_entry. */
1485 struct out_section_hash_entry *entry = (struct out_section_hash_entry *)
1486 ((char *) os
1487 - offsetof (struct out_section_hash_entry, s.output_section_statement));
1488 const char *name = os->name;
1489
1490 ASSERT (name == entry->root.string);
1491 do
1492 {
1493 entry = (struct out_section_hash_entry *) entry->root.next;
1494 if (entry == NULL
1495 || name != entry->s.output_section_statement.name)
1496 return NULL;
1497 }
1498 while (constraint != entry->s.output_section_statement.constraint
1499 && (constraint != 0
1500 || entry->s.output_section_statement.constraint < 0));
1501
1502 return &entry->s.output_section_statement;
1503 }
1504
1505 /* A variant of lang_output_section_find used by place_orphan.
1506 Returns the output statement that should precede a new output
1507 statement for SEC. If an exact match is found on certain flags,
1508 sets *EXACT too. */
1509
1510 lang_output_section_statement_type *
1511 lang_output_section_find_by_flags (const asection *sec,
1512 lang_output_section_statement_type **exact,
1513 lang_match_sec_type_func match_type)
1514 {
1515 lang_output_section_statement_type *first, *look, *found;
1516 flagword flags;
1517
1518 /* We know the first statement on this list is *ABS*. May as well
1519 skip it. */
1520 first = &lang_output_section_statement.head->output_section_statement;
1521 first = first->next;
1522
1523 /* First try for an exact match. */
1524 found = NULL;
1525 for (look = first; look; look = look->next)
1526 {
1527 flags = look->flags;
1528 if (look->bfd_section != NULL)
1529 {
1530 flags = look->bfd_section->flags;
1531 if (match_type && !match_type (link_info.output_bfd,
1532 look->bfd_section,
1533 sec->owner, sec))
1534 continue;
1535 }
1536 flags ^= sec->flags;
1537 if (!(flags & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD | SEC_READONLY
1538 | SEC_CODE | SEC_SMALL_DATA | SEC_THREAD_LOCAL)))
1539 found = look;
1540 }
1541 if (found != NULL)
1542 {
1543 if (exact != NULL)
1544 *exact = found;
1545 return found;
1546 }
1547
1548 if ((sec->flags & SEC_CODE) != 0
1549 && (sec->flags & SEC_ALLOC) != 0)
1550 {
1551 /* Try for a rw code section. */
1552 for (look = first; look; look = look->next)
1553 {
1554 flags = look->flags;
1555 if (look->bfd_section != NULL)
1556 {
1557 flags = look->bfd_section->flags;
1558 if (match_type && !match_type (link_info.output_bfd,
1559 look->bfd_section,
1560 sec->owner, sec))
1561 continue;
1562 }
1563 flags ^= sec->flags;
1564 if (!(flags & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD
1565 | SEC_CODE | SEC_SMALL_DATA | SEC_THREAD_LOCAL)))
1566 found = look;
1567 }
1568 }
1569 else if ((sec->flags & (SEC_READONLY | SEC_THREAD_LOCAL)) != 0
1570 && (sec->flags & SEC_ALLOC) != 0)
1571 {
1572 /* .rodata can go after .text, .sdata2 after .rodata. */
1573 for (look = first; look; look = look->next)
1574 {
1575 flags = look->flags;
1576 if (look->bfd_section != NULL)
1577 {
1578 flags = look->bfd_section->flags;
1579 if (match_type && !match_type (link_info.output_bfd,
1580 look->bfd_section,
1581 sec->owner, sec))
1582 continue;
1583 }
1584 flags ^= sec->flags;
1585 if (!(flags & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD
1586 | SEC_READONLY | SEC_SMALL_DATA))
1587 || (!(flags & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD
1588 | SEC_READONLY))
1589 && !(look->flags & SEC_SMALL_DATA))
1590 || (!(flags & (SEC_THREAD_LOCAL | SEC_ALLOC))
1591 && (look->flags & SEC_THREAD_LOCAL)
1592 && (!(flags & SEC_LOAD)
1593 || (look->flags & SEC_LOAD))))
1594 found = look;
1595 }
1596 }
1597 else if ((sec->flags & SEC_SMALL_DATA) != 0
1598 && (sec->flags & SEC_ALLOC) != 0)
1599 {
1600 /* .sdata goes after .data, .sbss after .sdata. */
1601 for (look = first; look; look = look->next)
1602 {
1603 flags = look->flags;
1604 if (look->bfd_section != NULL)
1605 {
1606 flags = look->bfd_section->flags;
1607 if (match_type && !match_type (link_info.output_bfd,
1608 look->bfd_section,
1609 sec->owner, sec))
1610 continue;
1611 }
1612 flags ^= sec->flags;
1613 if (!(flags & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD
1614 | SEC_THREAD_LOCAL))
1615 || ((look->flags & SEC_SMALL_DATA)
1616 && !(sec->flags & SEC_HAS_CONTENTS)))
1617 found = look;
1618 }
1619 }
1620 else if ((sec->flags & SEC_HAS_CONTENTS) != 0
1621 && (sec->flags & SEC_ALLOC) != 0)
1622 {
1623 /* .data goes after .rodata. */
1624 for (look = first; look; look = look->next)
1625 {
1626 flags = look->flags;
1627 if (look->bfd_section != NULL)
1628 {
1629 flags = look->bfd_section->flags;
1630 if (match_type && !match_type (link_info.output_bfd,
1631 look->bfd_section,
1632 sec->owner, sec))
1633 continue;
1634 }
1635 flags ^= sec->flags;
1636 if (!(flags & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD
1637 | SEC_SMALL_DATA | SEC_THREAD_LOCAL)))
1638 found = look;
1639 }
1640 }
1641 else if ((sec->flags & SEC_ALLOC) != 0)
1642 {
1643 /* .bss goes after any other alloc section. */
1644 for (look = first; look; look = look->next)
1645 {
1646 flags = look->flags;
1647 if (look->bfd_section != NULL)
1648 {
1649 flags = look->bfd_section->flags;
1650 if (match_type && !match_type (link_info.output_bfd,
1651 look->bfd_section,
1652 sec->owner, sec))
1653 continue;
1654 }
1655 flags ^= sec->flags;
1656 if (!(flags & SEC_ALLOC))
1657 found = look;
1658 }
1659 }
1660 else
1661 {
1662 /* non-alloc go last. */
1663 for (look = first; look; look = look->next)
1664 {
1665 flags = look->flags;
1666 if (look->bfd_section != NULL)
1667 flags = look->bfd_section->flags;
1668 flags ^= sec->flags;
1669 if (!(flags & SEC_DEBUGGING))
1670 found = look;
1671 }
1672 return found;
1673 }
1674
1675 if (found || !match_type)
1676 return found;
1677
1678 return lang_output_section_find_by_flags (sec, NULL, NULL);
1679 }
1680
1681 /* Find the last output section before given output statement.
1682 Used by place_orphan. */
1683
1684 static asection *
1685 output_prev_sec_find (lang_output_section_statement_type *os)
1686 {
1687 lang_output_section_statement_type *lookup;
1688
1689 for (lookup = os->prev; lookup != NULL; lookup = lookup->prev)
1690 {
1691 if (lookup->constraint < 0)
1692 continue;
1693
1694 if (lookup->bfd_section != NULL && lookup->bfd_section->owner != NULL)
1695 return lookup->bfd_section;
1696 }
1697
1698 return NULL;
1699 }
1700
1701 /* Look for a suitable place for a new output section statement. The
1702 idea is to skip over anything that might be inside a SECTIONS {}
1703 statement in a script, before we find another output section
1704 statement. Assignments to "dot" before an output section statement
1705 are assumed to belong to it, except in two cases; The first
1706 assignment to dot, and assignments before non-alloc sections.
1707 Otherwise we might put an orphan before . = . + SIZEOF_HEADERS or
1708 similar assignments that set the initial address, or we might
1709 insert non-alloc note sections among assignments setting end of
1710 image symbols. */
1711
1712 static lang_statement_union_type **
1713 insert_os_after (lang_output_section_statement_type *after)
1714 {
1715 lang_statement_union_type **where;
1716 lang_statement_union_type **assign = NULL;
1717 bfd_boolean ignore_first;
1718
1719 ignore_first
1720 = after == &lang_output_section_statement.head->output_section_statement;
1721
1722 for (where = &after->header.next;
1723 *where != NULL;
1724 where = &(*where)->header.next)
1725 {
1726 switch ((*where)->header.type)
1727 {
1728 case lang_assignment_statement_enum:
1729 if (assign == NULL)
1730 {
1731 lang_assignment_statement_type *ass;
1732
1733 ass = &(*where)->assignment_statement;
1734 if (ass->exp->type.node_class != etree_assert
1735 && ass->exp->assign.dst[0] == '.'
1736 && ass->exp->assign.dst[1] == 0
1737 && !ignore_first)
1738 assign = where;
1739 }
1740 ignore_first = FALSE;
1741 continue;
1742 case lang_wild_statement_enum:
1743 case lang_input_section_enum:
1744 case lang_object_symbols_statement_enum:
1745 case lang_fill_statement_enum:
1746 case lang_data_statement_enum:
1747 case lang_reloc_statement_enum:
1748 case lang_padding_statement_enum:
1749 case lang_constructors_statement_enum:
1750 assign = NULL;
1751 continue;
1752 case lang_output_section_statement_enum:
1753 if (assign != NULL)
1754 {
1755 asection *s = (*where)->output_section_statement.bfd_section;
1756
1757 if (s == NULL
1758 || s->map_head.s == NULL
1759 || (s->flags & SEC_ALLOC) != 0)
1760 where = assign;
1761 }
1762 break;
1763 case lang_input_statement_enum:
1764 case lang_address_statement_enum:
1765 case lang_target_statement_enum:
1766 case lang_output_statement_enum:
1767 case lang_group_statement_enum:
1768 case lang_insert_statement_enum:
1769 continue;
1770 }
1771 break;
1772 }
1773
1774 return where;
1775 }
1776
1777 lang_output_section_statement_type *
1778 lang_insert_orphan (asection *s,
1779 const char *secname,
1780 int constraint,
1781 lang_output_section_statement_type *after,
1782 struct orphan_save *place,
1783 etree_type *address,
1784 lang_statement_list_type *add_child)
1785 {
1786 lang_statement_list_type add;
1787 const char *ps;
1788 lang_output_section_statement_type *os;
1789 lang_output_section_statement_type **os_tail;
1790
1791 /* If we have found an appropriate place for the output section
1792 statements for this orphan, add them to our own private list,
1793 inserting them later into the global statement list. */
1794 if (after != NULL)
1795 {
1796 lang_list_init (&add);
1797 push_stat_ptr (&add);
1798 }
1799
1800 if (link_info.relocatable || (s->flags & (SEC_LOAD | SEC_ALLOC)) == 0)
1801 address = exp_intop (0);
1802
1803 os_tail = ((lang_output_section_statement_type **)
1804 lang_output_section_statement.tail);
1805 os = lang_enter_output_section_statement (secname, address, normal_section,
1806 NULL, NULL, NULL, constraint);
1807
1808 ps = NULL;
1809 if (config.build_constructors && *os_tail == os)
1810 {
1811 /* If the name of the section is representable in C, then create
1812 symbols to mark the start and the end of the section. */
1813 for (ps = secname; *ps != '\0'; ps++)
1814 if (! ISALNUM ((unsigned char) *ps) && *ps != '_')
1815 break;
1816 if (*ps == '\0')
1817 {
1818 char *symname;
1819 etree_type *e_align;
1820
1821 symname = (char *) xmalloc (ps - secname + sizeof "__start_" + 1);
1822 symname[0] = bfd_get_symbol_leading_char (link_info.output_bfd);
1823 sprintf (symname + (symname[0] != 0), "__start_%s", secname);
1824 e_align = exp_unop (ALIGN_K,
1825 exp_intop ((bfd_vma) 1 << s->alignment_power));
1826 lang_add_assignment (exp_assign (".", e_align));
1827 lang_add_assignment (exp_provide (symname,
1828 exp_unop (ABSOLUTE,
1829 exp_nameop (NAME, ".")),
1830 FALSE));
1831 }
1832 }
1833
1834 if (add_child == NULL)
1835 add_child = &os->children;
1836 lang_add_section (add_child, s, os);
1837
1838 if (after && (s->flags & (SEC_LOAD | SEC_ALLOC)) != 0)
1839 {
1840 const char *region = (after->region
1841 ? after->region->name_list.name
1842 : DEFAULT_MEMORY_REGION);
1843 const char *lma_region = (after->lma_region
1844 ? after->lma_region->name_list.name
1845 : NULL);
1846 lang_leave_output_section_statement (NULL, region, after->phdrs,
1847 lma_region);
1848 }
1849 else
1850 lang_leave_output_section_statement (NULL, DEFAULT_MEMORY_REGION, NULL,
1851 NULL);
1852
1853 if (ps != NULL && *ps == '\0')
1854 {
1855 char *symname;
1856
1857 symname = (char *) xmalloc (ps - secname + sizeof "__stop_" + 1);
1858 symname[0] = bfd_get_symbol_leading_char (link_info.output_bfd);
1859 sprintf (symname + (symname[0] != 0), "__stop_%s", secname);
1860 lang_add_assignment (exp_provide (symname,
1861 exp_nameop (NAME, "."),
1862 FALSE));
1863 }
1864
1865 /* Restore the global list pointer. */
1866 if (after != NULL)
1867 pop_stat_ptr ();
1868
1869 if (after != NULL && os->bfd_section != NULL)
1870 {
1871 asection *snew, *as;
1872
1873 snew = os->bfd_section;
1874
1875 /* Shuffle the bfd section list to make the output file look
1876 neater. This is really only cosmetic. */
1877 if (place->section == NULL
1878 && after != (&lang_output_section_statement.head
1879 ->output_section_statement))
1880 {
1881 asection *bfd_section = after->bfd_section;
1882
1883 /* If the output statement hasn't been used to place any input
1884 sections (and thus doesn't have an output bfd_section),
1885 look for the closest prior output statement having an
1886 output section. */
1887 if (bfd_section == NULL)
1888 bfd_section = output_prev_sec_find (after);
1889
1890 if (bfd_section != NULL && bfd_section != snew)
1891 place->section = &bfd_section->next;
1892 }
1893
1894 if (place->section == NULL)
1895 place->section = &link_info.output_bfd->sections;
1896
1897 as = *place->section;
1898
1899 if (!as)
1900 {
1901 /* Put the section at the end of the list. */
1902
1903 /* Unlink the section. */
1904 bfd_section_list_remove (link_info.output_bfd, snew);
1905
1906 /* Now tack it back on in the right place. */
1907 bfd_section_list_append (link_info.output_bfd, snew);
1908 }
1909 else if (as != snew && as->prev != snew)
1910 {
1911 /* Unlink the section. */
1912 bfd_section_list_remove (link_info.output_bfd, snew);
1913
1914 /* Now tack it back on in the right place. */
1915 bfd_section_list_insert_before (link_info.output_bfd, as, snew);
1916 }
1917
1918 /* Save the end of this list. Further ophans of this type will
1919 follow the one we've just added. */
1920 place->section = &snew->next;
1921
1922 /* The following is non-cosmetic. We try to put the output
1923 statements in some sort of reasonable order here, because they
1924 determine the final load addresses of the orphan sections.
1925 In addition, placing output statements in the wrong order may
1926 require extra segments. For instance, given a typical
1927 situation of all read-only sections placed in one segment and
1928 following that a segment containing all the read-write
1929 sections, we wouldn't want to place an orphan read/write
1930 section before or amongst the read-only ones. */
1931 if (add.head != NULL)
1932 {
1933 lang_output_section_statement_type *newly_added_os;
1934
1935 if (place->stmt == NULL)
1936 {
1937 lang_statement_union_type **where = insert_os_after (after);
1938
1939 *add.tail = *where;
1940 *where = add.head;
1941
1942 place->os_tail = &after->next;
1943 }
1944 else
1945 {
1946 /* Put it after the last orphan statement we added. */
1947 *add.tail = *place->stmt;
1948 *place->stmt = add.head;
1949 }
1950
1951 /* Fix the global list pointer if we happened to tack our
1952 new list at the tail. */
1953 if (*stat_ptr->tail == add.head)
1954 stat_ptr->tail = add.tail;
1955
1956 /* Save the end of this list. */
1957 place->stmt = add.tail;
1958
1959 /* Do the same for the list of output section statements. */
1960 newly_added_os = *os_tail;
1961 *os_tail = NULL;
1962 newly_added_os->prev = (lang_output_section_statement_type *)
1963 ((char *) place->os_tail
1964 - offsetof (lang_output_section_statement_type, next));
1965 newly_added_os->next = *place->os_tail;
1966 if (newly_added_os->next != NULL)
1967 newly_added_os->next->prev = newly_added_os;
1968 *place->os_tail = newly_added_os;
1969 place->os_tail = &newly_added_os->next;
1970
1971 /* Fixing the global list pointer here is a little different.
1972 We added to the list in lang_enter_output_section_statement,
1973 trimmed off the new output_section_statment above when
1974 assigning *os_tail = NULL, but possibly added it back in
1975 the same place when assigning *place->os_tail. */
1976 if (*os_tail == NULL)
1977 lang_output_section_statement.tail
1978 = (lang_statement_union_type **) os_tail;
1979 }
1980 }
1981 return os;
1982 }
1983
1984 static void
1985 lang_map_flags (flagword flag)
1986 {
1987 if (flag & SEC_ALLOC)
1988 minfo ("a");
1989
1990 if (flag & SEC_CODE)
1991 minfo ("x");
1992
1993 if (flag & SEC_READONLY)
1994 minfo ("r");
1995
1996 if (flag & SEC_DATA)
1997 minfo ("w");
1998
1999 if (flag & SEC_LOAD)
2000 minfo ("l");
2001 }
2002
2003 void
2004 lang_map (void)
2005 {
2006 lang_memory_region_type *m;
2007 bfd_boolean dis_header_printed = FALSE;
2008 bfd *p;
2009
2010 LANG_FOR_EACH_INPUT_STATEMENT (file)
2011 {
2012 asection *s;
2013
2014 if ((file->the_bfd->flags & (BFD_LINKER_CREATED | DYNAMIC)) != 0
2015 || file->just_syms_flag)
2016 continue;
2017
2018 for (s = file->the_bfd->sections; s != NULL; s = s->next)
2019 if ((s->output_section == NULL
2020 || s->output_section->owner != link_info.output_bfd)
2021 && (s->flags & (SEC_LINKER_CREATED | SEC_KEEP)) == 0)
2022 {
2023 if (! dis_header_printed)
2024 {
2025 fprintf (config.map_file, _("\nDiscarded input sections\n\n"));
2026 dis_header_printed = TRUE;
2027 }
2028
2029 print_input_section (s, TRUE);
2030 }
2031 }
2032
2033 minfo (_("\nMemory Configuration\n\n"));
2034 fprintf (config.map_file, "%-16s %-18s %-18s %s\n",
2035 _("Name"), _("Origin"), _("Length"), _("Attributes"));
2036
2037 for (m = lang_memory_region_list; m != NULL; m = m->next)
2038 {
2039 char buf[100];
2040 int len;
2041
2042 fprintf (config.map_file, "%-16s ", m->name_list.name);
2043
2044 sprintf_vma (buf, m->origin);
2045 minfo ("0x%s ", buf);
2046 len = strlen (buf);
2047 while (len < 16)
2048 {
2049 print_space ();
2050 ++len;
2051 }
2052
2053 minfo ("0x%V", m->length);
2054 if (m->flags || m->not_flags)
2055 {
2056 #ifndef BFD64
2057 minfo (" ");
2058 #endif
2059 if (m->flags)
2060 {
2061 print_space ();
2062 lang_map_flags (m->flags);
2063 }
2064
2065 if (m->not_flags)
2066 {
2067 minfo (" !");
2068 lang_map_flags (m->not_flags);
2069 }
2070 }
2071
2072 print_nl ();
2073 }
2074
2075 fprintf (config.map_file, _("\nLinker script and memory map\n\n"));
2076
2077 if (! link_info.reduce_memory_overheads)
2078 {
2079 obstack_begin (&map_obstack, 1000);
2080 for (p = link_info.input_bfds; p != (bfd *) NULL; p = p->link_next)
2081 bfd_map_over_sections (p, init_map_userdata, 0);
2082 bfd_link_hash_traverse (link_info.hash, sort_def_symbol, 0);
2083 }
2084 lang_statement_iteration ++;
2085 print_statements ();
2086 }
2087
2088 static void
2089 init_map_userdata (bfd *abfd ATTRIBUTE_UNUSED,
2090 asection *sec,
2091 void *data ATTRIBUTE_UNUSED)
2092 {
2093 fat_section_userdata_type *new_data
2094 = ((fat_section_userdata_type *) (stat_alloc
2095 (sizeof (fat_section_userdata_type))));
2096
2097 ASSERT (get_userdata (sec) == NULL);
2098 get_userdata (sec) = new_data;
2099 new_data->map_symbol_def_tail = &new_data->map_symbol_def_head;
2100 new_data->map_symbol_def_count = 0;
2101 }
2102
2103 static bfd_boolean
2104 sort_def_symbol (struct bfd_link_hash_entry *hash_entry,
2105 void *info ATTRIBUTE_UNUSED)
2106 {
2107 if (hash_entry->type == bfd_link_hash_defined
2108 || hash_entry->type == bfd_link_hash_defweak)
2109 {
2110 struct fat_user_section_struct *ud;
2111 struct map_symbol_def *def;
2112
2113 ud = (struct fat_user_section_struct *)
2114 get_userdata (hash_entry->u.def.section);
2115 if (! ud)
2116 {
2117 /* ??? What do we have to do to initialize this beforehand? */
2118 /* The first time we get here is bfd_abs_section... */
2119 init_map_userdata (0, hash_entry->u.def.section, 0);
2120 ud = (struct fat_user_section_struct *)
2121 get_userdata (hash_entry->u.def.section);
2122 }
2123 else if (!ud->map_symbol_def_tail)
2124 ud->map_symbol_def_tail = &ud->map_symbol_def_head;
2125
2126 def = (struct map_symbol_def *) obstack_alloc (&map_obstack, sizeof *def);
2127 def->entry = hash_entry;
2128 *(ud->map_symbol_def_tail) = def;
2129 ud->map_symbol_def_tail = &def->next;
2130 ud->map_symbol_def_count++;
2131 }
2132 return TRUE;
2133 }
2134
2135 /* Initialize an output section. */
2136
2137 static void
2138 init_os (lang_output_section_statement_type *s, flagword flags)
2139 {
2140 if (strcmp (s->name, DISCARD_SECTION_NAME) == 0)
2141 einfo (_("%P%F: Illegal use of `%s' section\n"), DISCARD_SECTION_NAME);
2142
2143 if (s->constraint != SPECIAL)
2144 s->bfd_section = bfd_get_section_by_name (link_info.output_bfd, s->name);
2145 if (s->bfd_section == NULL)
2146 s->bfd_section = bfd_make_section_anyway_with_flags (link_info.output_bfd,
2147 s->name, flags);
2148 if (s->bfd_section == NULL)
2149 {
2150 einfo (_("%P%F: output format %s cannot represent section called %s\n"),
2151 link_info.output_bfd->xvec->name, s->name);
2152 }
2153 s->bfd_section->output_section = s->bfd_section;
2154 s->bfd_section->output_offset = 0;
2155
2156 if (!link_info.reduce_memory_overheads)
2157 {
2158 fat_section_userdata_type *new_userdata = (fat_section_userdata_type *)
2159 stat_alloc (sizeof (fat_section_userdata_type));
2160 memset (new_userdata, 0, sizeof (fat_section_userdata_type));
2161 get_userdata (s->bfd_section) = new_userdata;
2162 }
2163
2164 /* If there is a base address, make sure that any sections it might
2165 mention are initialized. */
2166 if (s->addr_tree != NULL)
2167 exp_init_os (s->addr_tree);
2168
2169 if (s->load_base != NULL)
2170 exp_init_os (s->load_base);
2171
2172 /* If supplied an alignment, set it. */
2173 if (s->section_alignment != -1)
2174 s->bfd_section->alignment_power = s->section_alignment;
2175 }
2176
2177 /* Make sure that all output sections mentioned in an expression are
2178 initialized. */
2179
2180 static void
2181 exp_init_os (etree_type *exp)
2182 {
2183 switch (exp->type.node_class)
2184 {
2185 case etree_assign:
2186 case etree_provide:
2187 exp_init_os (exp->assign.src);
2188 break;
2189
2190 case etree_binary:
2191 exp_init_os (exp->binary.lhs);
2192 exp_init_os (exp->binary.rhs);
2193 break;
2194
2195 case etree_trinary:
2196 exp_init_os (exp->trinary.cond);
2197 exp_init_os (exp->trinary.lhs);
2198 exp_init_os (exp->trinary.rhs);
2199 break;
2200
2201 case etree_assert:
2202 exp_init_os (exp->assert_s.child);
2203 break;
2204
2205 case etree_unary:
2206 exp_init_os (exp->unary.child);
2207 break;
2208
2209 case etree_name:
2210 switch (exp->type.node_code)
2211 {
2212 case ADDR:
2213 case LOADADDR:
2214 case SIZEOF:
2215 {
2216 lang_output_section_statement_type *os;
2217
2218 os = lang_output_section_find (exp->name.name);
2219 if (os != NULL && os->bfd_section == NULL)
2220 init_os (os, 0);
2221 }
2222 }
2223 break;
2224
2225 default:
2226 break;
2227 }
2228 }
2229 \f
2230 static void
2231 section_already_linked (bfd *abfd, asection *sec, void *data)
2232 {
2233 lang_input_statement_type *entry = (lang_input_statement_type *) data;
2234
2235 /* If we are only reading symbols from this object, then we want to
2236 discard all sections. */
2237 if (entry->just_syms_flag)
2238 {
2239 bfd_link_just_syms (abfd, sec, &link_info);
2240 return;
2241 }
2242
2243 if (!(abfd->flags & DYNAMIC))
2244 bfd_section_already_linked (abfd, sec, &link_info);
2245 }
2246 \f
2247 /* The wild routines.
2248
2249 These expand statements like *(.text) and foo.o to a list of
2250 explicit actions, like foo.o(.text), bar.o(.text) and
2251 foo.o(.text, .data). */
2252
2253 /* Add SECTION to the output section OUTPUT. Do this by creating a
2254 lang_input_section statement which is placed at PTR. FILE is the
2255 input file which holds SECTION. */
2256
2257 void
2258 lang_add_section (lang_statement_list_type *ptr,
2259 asection *section,
2260 lang_output_section_statement_type *output)
2261 {
2262 flagword flags = section->flags;
2263 struct flag_info *sflag_info = section->section_flag_info;
2264
2265 bfd_boolean discard;
2266 lang_input_section_type *new_section;
2267 bfd *abfd = link_info.output_bfd;
2268
2269 /* Discard sections marked with SEC_EXCLUDE. */
2270 discard = (flags & SEC_EXCLUDE) != 0;
2271
2272 /* Discard input sections which are assigned to a section named
2273 DISCARD_SECTION_NAME. */
2274 if (strcmp (output->name, DISCARD_SECTION_NAME) == 0)
2275 discard = TRUE;
2276
2277 /* Discard debugging sections if we are stripping debugging
2278 information. */
2279 if ((link_info.strip == strip_debugger || link_info.strip == strip_all)
2280 && (flags & SEC_DEBUGGING) != 0)
2281 discard = TRUE;
2282
2283 if (discard)
2284 {
2285 if (section->output_section == NULL)
2286 {
2287 /* This prevents future calls from assigning this section. */
2288 section->output_section = bfd_abs_section_ptr;
2289 }
2290 return;
2291 }
2292
2293 if (sflag_info)
2294 {
2295 if (sflag_info->flags_initialized == FALSE)
2296 bfd_lookup_section_flags (&link_info, sflag_info);
2297
2298 if (sflag_info->only_with_flags != 0
2299 && sflag_info->not_with_flags != 0
2300 && ((sflag_info->not_with_flags & flags) != 0
2301 || (sflag_info->only_with_flags & flags)
2302 != sflag_info->only_with_flags))
2303 return;
2304
2305 if (sflag_info->only_with_flags != 0
2306 && (sflag_info->only_with_flags & flags)
2307 != sflag_info->only_with_flags)
2308 return;
2309
2310 if (sflag_info->not_with_flags != 0
2311 && (sflag_info->not_with_flags & flags) != 0)
2312 return;
2313 }
2314
2315 if (section->output_section != NULL)
2316 return;
2317
2318 /* We don't copy the SEC_NEVER_LOAD flag from an input section
2319 to an output section, because we want to be able to include a
2320 SEC_NEVER_LOAD section in the middle of an otherwise loaded
2321 section (I don't know why we want to do this, but we do).
2322 build_link_order in ldwrite.c handles this case by turning
2323 the embedded SEC_NEVER_LOAD section into a fill. */
2324 flags &= ~ SEC_NEVER_LOAD;
2325
2326 /* If final link, don't copy the SEC_LINK_ONCE flags, they've
2327 already been processed. One reason to do this is that on pe
2328 format targets, .text$foo sections go into .text and it's odd
2329 to see .text with SEC_LINK_ONCE set. */
2330
2331 if (!link_info.relocatable)
2332 flags &= ~(SEC_LINK_ONCE | SEC_LINK_DUPLICATES | SEC_RELOC);
2333
2334 switch (output->sectype)
2335 {
2336 case normal_section:
2337 case overlay_section:
2338 break;
2339 case noalloc_section:
2340 flags &= ~SEC_ALLOC;
2341 break;
2342 case noload_section:
2343 flags &= ~SEC_LOAD;
2344 flags |= SEC_NEVER_LOAD;
2345 /* Unfortunately GNU ld has managed to evolve two different
2346 meanings to NOLOAD in scripts. ELF gets a .bss style noload,
2347 alloc, no contents section. All others get a noload, noalloc
2348 section. */
2349 if (bfd_get_flavour (link_info.output_bfd) == bfd_target_elf_flavour)
2350 flags &= ~SEC_HAS_CONTENTS;
2351 else
2352 flags &= ~SEC_ALLOC;
2353 break;
2354 }
2355
2356 if (output->bfd_section == NULL)
2357 init_os (output, flags);
2358
2359 /* If SEC_READONLY is not set in the input section, then clear
2360 it from the output section. */
2361 output->bfd_section->flags &= flags | ~SEC_READONLY;
2362
2363 if (output->bfd_section->linker_has_input)
2364 {
2365 /* Only set SEC_READONLY flag on the first input section. */
2366 flags &= ~ SEC_READONLY;
2367
2368 /* Keep SEC_MERGE and SEC_STRINGS only if they are the same. */
2369 if ((output->bfd_section->flags & (SEC_MERGE | SEC_STRINGS))
2370 != (flags & (SEC_MERGE | SEC_STRINGS))
2371 || ((flags & SEC_MERGE) != 0
2372 && output->bfd_section->entsize != section->entsize))
2373 {
2374 output->bfd_section->flags &= ~ (SEC_MERGE | SEC_STRINGS);
2375 flags &= ~ (SEC_MERGE | SEC_STRINGS);
2376 }
2377 }
2378 output->bfd_section->flags |= flags;
2379
2380 if (!output->bfd_section->linker_has_input)
2381 {
2382 output->bfd_section->linker_has_input = 1;
2383 /* This must happen after flags have been updated. The output
2384 section may have been created before we saw its first input
2385 section, eg. for a data statement. */
2386 bfd_init_private_section_data (section->owner, section,
2387 link_info.output_bfd,
2388 output->bfd_section,
2389 &link_info);
2390 if ((flags & SEC_MERGE) != 0)
2391 output->bfd_section->entsize = section->entsize;
2392 }
2393
2394 if ((flags & SEC_TIC54X_BLOCK) != 0
2395 && bfd_get_arch (section->owner) == bfd_arch_tic54x)
2396 {
2397 /* FIXME: This value should really be obtained from the bfd... */
2398 output->block_value = 128;
2399 }
2400
2401 if (section->alignment_power > output->bfd_section->alignment_power)
2402 output->bfd_section->alignment_power = section->alignment_power;
2403
2404 section->output_section = output->bfd_section;
2405
2406 if (!link_info.relocatable
2407 && !stripped_excluded_sections)
2408 {
2409 asection *s = output->bfd_section->map_tail.s;
2410 output->bfd_section->map_tail.s = section;
2411 section->map_head.s = NULL;
2412 section->map_tail.s = s;
2413 if (s != NULL)
2414 s->map_head.s = section;
2415 else
2416 output->bfd_section->map_head.s = section;
2417 }
2418
2419 /* Add a section reference to the list. */
2420 new_section = new_stat (lang_input_section, ptr);
2421 new_section->section = section;
2422 }
2423
2424 /* Handle wildcard sorting. This returns the lang_input_section which
2425 should follow the one we are going to create for SECTION and FILE,
2426 based on the sorting requirements of WILD. It returns NULL if the
2427 new section should just go at the end of the current list. */
2428
2429 static lang_statement_union_type *
2430 wild_sort (lang_wild_statement_type *wild,
2431 struct wildcard_list *sec,
2432 lang_input_statement_type *file,
2433 asection *section)
2434 {
2435 lang_statement_union_type *l;
2436
2437 if (!wild->filenames_sorted
2438 && (sec == NULL || sec->spec.sorted == none))
2439 return NULL;
2440
2441 for (l = wild->children.head; l != NULL; l = l->header.next)
2442 {
2443 lang_input_section_type *ls;
2444
2445 if (l->header.type != lang_input_section_enum)
2446 continue;
2447 ls = &l->input_section;
2448
2449 /* Sorting by filename takes precedence over sorting by section
2450 name. */
2451
2452 if (wild->filenames_sorted)
2453 {
2454 const char *fn, *ln;
2455 bfd_boolean fa, la;
2456 int i;
2457
2458 /* The PE support for the .idata section as generated by
2459 dlltool assumes that files will be sorted by the name of
2460 the archive and then the name of the file within the
2461 archive. */
2462
2463 if (file->the_bfd != NULL
2464 && bfd_my_archive (file->the_bfd) != NULL)
2465 {
2466 fn = bfd_get_filename (bfd_my_archive (file->the_bfd));
2467 fa = TRUE;
2468 }
2469 else
2470 {
2471 fn = file->filename;
2472 fa = FALSE;
2473 }
2474
2475 if (bfd_my_archive (ls->section->owner) != NULL)
2476 {
2477 ln = bfd_get_filename (bfd_my_archive (ls->section->owner));
2478 la = TRUE;
2479 }
2480 else
2481 {
2482 ln = ls->section->owner->filename;
2483 la = FALSE;
2484 }
2485
2486 i = filename_cmp (fn, ln);
2487 if (i > 0)
2488 continue;
2489 else if (i < 0)
2490 break;
2491
2492 if (fa || la)
2493 {
2494 if (fa)
2495 fn = file->filename;
2496 if (la)
2497 ln = ls->section->owner->filename;
2498
2499 i = filename_cmp (fn, ln);
2500 if (i > 0)
2501 continue;
2502 else if (i < 0)
2503 break;
2504 }
2505 }
2506
2507 /* Here either the files are not sorted by name, or we are
2508 looking at the sections for this file. */
2509
2510 if (sec != NULL && sec->spec.sorted != none)
2511 if (compare_section (sec->spec.sorted, section, ls->section) < 0)
2512 break;
2513 }
2514
2515 return l;
2516 }
2517
2518 /* Expand a wild statement for a particular FILE. SECTION may be
2519 NULL, in which case it is a wild card. */
2520
2521 static void
2522 output_section_callback (lang_wild_statement_type *ptr,
2523 struct wildcard_list *sec,
2524 asection *section,
2525 lang_input_statement_type *file,
2526 void *output)
2527 {
2528 lang_statement_union_type *before;
2529 lang_output_section_statement_type *os;
2530
2531 os = (lang_output_section_statement_type *) output;
2532
2533 /* Exclude sections that match UNIQUE_SECTION_LIST. */
2534 if (unique_section_p (section, os))
2535 return;
2536
2537 before = wild_sort (ptr, sec, file, section);
2538
2539 /* Here BEFORE points to the lang_input_section which
2540 should follow the one we are about to add. If BEFORE
2541 is NULL, then the section should just go at the end
2542 of the current list. */
2543
2544 if (before == NULL)
2545 lang_add_section (&ptr->children, section, os);
2546 else
2547 {
2548 lang_statement_list_type list;
2549 lang_statement_union_type **pp;
2550
2551 lang_list_init (&list);
2552 lang_add_section (&list, section, os);
2553
2554 /* If we are discarding the section, LIST.HEAD will
2555 be NULL. */
2556 if (list.head != NULL)
2557 {
2558 ASSERT (list.head->header.next == NULL);
2559
2560 for (pp = &ptr->children.head;
2561 *pp != before;
2562 pp = &(*pp)->header.next)
2563 ASSERT (*pp != NULL);
2564
2565 list.head->header.next = *pp;
2566 *pp = list.head;
2567 }
2568 }
2569 }
2570
2571 /* Check if all sections in a wild statement for a particular FILE
2572 are readonly. */
2573
2574 static void
2575 check_section_callback (lang_wild_statement_type *ptr ATTRIBUTE_UNUSED,
2576 struct wildcard_list *sec ATTRIBUTE_UNUSED,
2577 asection *section,
2578 lang_input_statement_type *file ATTRIBUTE_UNUSED,
2579 void *output)
2580 {
2581 lang_output_section_statement_type *os;
2582
2583 os = (lang_output_section_statement_type *) output;
2584
2585 /* Exclude sections that match UNIQUE_SECTION_LIST. */
2586 if (unique_section_p (section, os))
2587 return;
2588
2589 if (section->output_section == NULL && (section->flags & SEC_READONLY) == 0)
2590 os->all_input_readonly = FALSE;
2591 }
2592
2593 /* This is passed a file name which must have been seen already and
2594 added to the statement tree. We will see if it has been opened
2595 already and had its symbols read. If not then we'll read it. */
2596
2597 static lang_input_statement_type *
2598 lookup_name (const char *name)
2599 {
2600 lang_input_statement_type *search;
2601
2602 for (search = (lang_input_statement_type *) input_file_chain.head;
2603 search != NULL;
2604 search = (lang_input_statement_type *) search->next_real_file)
2605 {
2606 /* Use the local_sym_name as the name of the file that has
2607 already been loaded as filename might have been transformed
2608 via the search directory lookup mechanism. */
2609 const char *filename = search->local_sym_name;
2610
2611 if (filename != NULL
2612 && filename_cmp (filename, name) == 0)
2613 break;
2614 }
2615
2616 if (search == NULL)
2617 search = new_afile (name, lang_input_file_is_search_file_enum,
2618 default_target, FALSE);
2619
2620 /* If we have already added this file, or this file is not real
2621 don't add this file. */
2622 if (search->loaded || !search->real)
2623 return search;
2624
2625 if (! load_symbols (search, NULL))
2626 return NULL;
2627
2628 return search;
2629 }
2630
2631 /* Save LIST as a list of libraries whose symbols should not be exported. */
2632
2633 struct excluded_lib
2634 {
2635 char *name;
2636 struct excluded_lib *next;
2637 };
2638 static struct excluded_lib *excluded_libs;
2639
2640 void
2641 add_excluded_libs (const char *list)
2642 {
2643 const char *p = list, *end;
2644
2645 while (*p != '\0')
2646 {
2647 struct excluded_lib *entry;
2648 end = strpbrk (p, ",:");
2649 if (end == NULL)
2650 end = p + strlen (p);
2651 entry = (struct excluded_lib *) xmalloc (sizeof (*entry));
2652 entry->next = excluded_libs;
2653 entry->name = (char *) xmalloc (end - p + 1);
2654 memcpy (entry->name, p, end - p);
2655 entry->name[end - p] = '\0';
2656 excluded_libs = entry;
2657 if (*end == '\0')
2658 break;
2659 p = end + 1;
2660 }
2661 }
2662
2663 static void
2664 check_excluded_libs (bfd *abfd)
2665 {
2666 struct excluded_lib *lib = excluded_libs;
2667
2668 while (lib)
2669 {
2670 int len = strlen (lib->name);
2671 const char *filename = lbasename (abfd->filename);
2672
2673 if (strcmp (lib->name, "ALL") == 0)
2674 {
2675 abfd->no_export = TRUE;
2676 return;
2677 }
2678
2679 if (filename_ncmp (lib->name, filename, len) == 0
2680 && (filename[len] == '\0'
2681 || (filename[len] == '.' && filename[len + 1] == 'a'
2682 && filename[len + 2] == '\0')))
2683 {
2684 abfd->no_export = TRUE;
2685 return;
2686 }
2687
2688 lib = lib->next;
2689 }
2690 }
2691
2692 /* Get the symbols for an input file. */
2693
2694 bfd_boolean
2695 load_symbols (lang_input_statement_type *entry,
2696 lang_statement_list_type *place)
2697 {
2698 char **matching;
2699
2700 if (entry->loaded)
2701 return TRUE;
2702
2703 ldfile_open_file (entry);
2704
2705 /* Do not process further if the file was missing. */
2706 if (entry->missing_file)
2707 return TRUE;
2708
2709 if (! bfd_check_format (entry->the_bfd, bfd_archive)
2710 && ! bfd_check_format_matches (entry->the_bfd, bfd_object, &matching))
2711 {
2712 bfd_error_type err;
2713 bfd_boolean save_ldlang_sysrooted_script;
2714 bfd_boolean save_add_DT_NEEDED_for_regular;
2715 bfd_boolean save_add_DT_NEEDED_for_dynamic;
2716 bfd_boolean save_whole_archive;
2717
2718 err = bfd_get_error ();
2719
2720 /* See if the emulation has some special knowledge. */
2721 if (ldemul_unrecognized_file (entry))
2722 return TRUE;
2723
2724 if (err == bfd_error_file_ambiguously_recognized)
2725 {
2726 char **p;
2727
2728 einfo (_("%B: file not recognized: %E\n"), entry->the_bfd);
2729 einfo (_("%B: matching formats:"), entry->the_bfd);
2730 for (p = matching; *p != NULL; p++)
2731 einfo (" %s", *p);
2732 einfo ("%F\n");
2733 }
2734 else if (err != bfd_error_file_not_recognized
2735 || place == NULL)
2736 einfo (_("%F%B: file not recognized: %E\n"), entry->the_bfd);
2737
2738 bfd_close (entry->the_bfd);
2739 entry->the_bfd = NULL;
2740
2741 /* Try to interpret the file as a linker script. */
2742 ldfile_open_command_file (entry->filename);
2743
2744 push_stat_ptr (place);
2745 save_ldlang_sysrooted_script = ldlang_sysrooted_script;
2746 ldlang_sysrooted_script = entry->sysrooted;
2747 save_add_DT_NEEDED_for_regular = add_DT_NEEDED_for_regular;
2748 add_DT_NEEDED_for_regular = entry->add_DT_NEEDED_for_regular;
2749 save_add_DT_NEEDED_for_dynamic = add_DT_NEEDED_for_dynamic;
2750 add_DT_NEEDED_for_dynamic = entry->add_DT_NEEDED_for_dynamic;
2751 save_whole_archive = whole_archive;
2752 whole_archive = entry->whole_archive;
2753
2754 ldfile_assumed_script = TRUE;
2755 parser_input = input_script;
2756 /* We want to use the same -Bdynamic/-Bstatic as the one for
2757 ENTRY. */
2758 config.dynamic_link = entry->dynamic;
2759 yyparse ();
2760 ldfile_assumed_script = FALSE;
2761
2762 ldlang_sysrooted_script = save_ldlang_sysrooted_script;
2763 add_DT_NEEDED_for_regular = save_add_DT_NEEDED_for_regular;
2764 add_DT_NEEDED_for_dynamic = save_add_DT_NEEDED_for_dynamic;
2765 whole_archive = save_whole_archive;
2766 pop_stat_ptr ();
2767
2768 return TRUE;
2769 }
2770
2771 if (ldemul_recognized_file (entry))
2772 return TRUE;
2773
2774 /* We don't call ldlang_add_file for an archive. Instead, the
2775 add_symbols entry point will call ldlang_add_file, via the
2776 add_archive_element callback, for each element of the archive
2777 which is used. */
2778 switch (bfd_get_format (entry->the_bfd))
2779 {
2780 default:
2781 break;
2782
2783 case bfd_object:
2784 #ifdef ENABLE_PLUGINS
2785 if (!entry->reload)
2786 #endif
2787 ldlang_add_file (entry);
2788 if (trace_files || trace_file_tries)
2789 info_msg ("%I\n", entry);
2790 break;
2791
2792 case bfd_archive:
2793 check_excluded_libs (entry->the_bfd);
2794
2795 if (entry->whole_archive)
2796 {
2797 bfd *member = NULL;
2798 bfd_boolean loaded = TRUE;
2799
2800 for (;;)
2801 {
2802 bfd *subsbfd;
2803 member = bfd_openr_next_archived_file (entry->the_bfd, member);
2804
2805 if (member == NULL)
2806 break;
2807
2808 if (! bfd_check_format (member, bfd_object))
2809 {
2810 einfo (_("%F%B: member %B in archive is not an object\n"),
2811 entry->the_bfd, member);
2812 loaded = FALSE;
2813 }
2814
2815 subsbfd = member;
2816 if (!(*link_info.callbacks
2817 ->add_archive_element) (&link_info, member,
2818 "--whole-archive", &subsbfd))
2819 abort ();
2820
2821 /* Potentially, the add_archive_element hook may have set a
2822 substitute BFD for us. */
2823 if (!bfd_link_add_symbols (subsbfd, &link_info))
2824 {
2825 einfo (_("%F%B: could not read symbols: %E\n"), member);
2826 loaded = FALSE;
2827 }
2828 }
2829
2830 entry->loaded = loaded;
2831 return loaded;
2832 }
2833 break;
2834 }
2835
2836 if (bfd_link_add_symbols (entry->the_bfd, &link_info))
2837 entry->loaded = TRUE;
2838 else
2839 einfo (_("%F%B: could not read symbols: %E\n"), entry->the_bfd);
2840
2841 return entry->loaded;
2842 }
2843
2844 /* Handle a wild statement. S->FILENAME or S->SECTION_LIST or both
2845 may be NULL, indicating that it is a wildcard. Separate
2846 lang_input_section statements are created for each part of the
2847 expansion; they are added after the wild statement S. OUTPUT is
2848 the output section. */
2849
2850 static void
2851 wild (lang_wild_statement_type *s,
2852 const char *target ATTRIBUTE_UNUSED,
2853 lang_output_section_statement_type *output)
2854 {
2855 struct wildcard_list *sec;
2856
2857 if (s->handler_data[0]
2858 && s->handler_data[0]->spec.sorted == by_name
2859 && !s->filenames_sorted)
2860 {
2861 lang_section_bst_type *tree;
2862
2863 walk_wild (s, output_section_callback_fast, output);
2864
2865 tree = s->tree;
2866 if (tree)
2867 {
2868 output_section_callback_tree_to_list (s, tree, output);
2869 s->tree = NULL;
2870 }
2871 }
2872 else
2873 walk_wild (s, output_section_callback, output);
2874
2875 if (default_common_section == NULL)
2876 for (sec = s->section_list; sec != NULL; sec = sec->next)
2877 if (sec->spec.name != NULL && strcmp (sec->spec.name, "COMMON") == 0)
2878 {
2879 /* Remember the section that common is going to in case we
2880 later get something which doesn't know where to put it. */
2881 default_common_section = output;
2882 break;
2883 }
2884 }
2885
2886 /* Return TRUE iff target is the sought target. */
2887
2888 static int
2889 get_target (const bfd_target *target, void *data)
2890 {
2891 const char *sought = (const char *) data;
2892
2893 return strcmp (target->name, sought) == 0;
2894 }
2895
2896 /* Like strcpy() but convert to lower case as well. */
2897
2898 static void
2899 stricpy (char *dest, char *src)
2900 {
2901 char c;
2902
2903 while ((c = *src++) != 0)
2904 *dest++ = TOLOWER (c);
2905
2906 *dest = 0;
2907 }
2908
2909 /* Remove the first occurrence of needle (if any) in haystack
2910 from haystack. */
2911
2912 static void
2913 strcut (char *haystack, char *needle)
2914 {
2915 haystack = strstr (haystack, needle);
2916
2917 if (haystack)
2918 {
2919 char *src;
2920
2921 for (src = haystack + strlen (needle); *src;)
2922 *haystack++ = *src++;
2923
2924 *haystack = 0;
2925 }
2926 }
2927
2928 /* Compare two target format name strings.
2929 Return a value indicating how "similar" they are. */
2930
2931 static int
2932 name_compare (char *first, char *second)
2933 {
2934 char *copy1;
2935 char *copy2;
2936 int result;
2937
2938 copy1 = (char *) xmalloc (strlen (first) + 1);
2939 copy2 = (char *) xmalloc (strlen (second) + 1);
2940
2941 /* Convert the names to lower case. */
2942 stricpy (copy1, first);
2943 stricpy (copy2, second);
2944
2945 /* Remove size and endian strings from the name. */
2946 strcut (copy1, "big");
2947 strcut (copy1, "little");
2948 strcut (copy2, "big");
2949 strcut (copy2, "little");
2950
2951 /* Return a value based on how many characters match,
2952 starting from the beginning. If both strings are
2953 the same then return 10 * their length. */
2954 for (result = 0; copy1[result] == copy2[result]; result++)
2955 if (copy1[result] == 0)
2956 {
2957 result *= 10;
2958 break;
2959 }
2960
2961 free (copy1);
2962 free (copy2);
2963
2964 return result;
2965 }
2966
2967 /* Set by closest_target_match() below. */
2968 static const bfd_target *winner;
2969
2970 /* Scan all the valid bfd targets looking for one that has the endianness
2971 requirement that was specified on the command line, and is the nearest
2972 match to the original output target. */
2973
2974 static int
2975 closest_target_match (const bfd_target *target, void *data)
2976 {
2977 const bfd_target *original = (const bfd_target *) data;
2978
2979 if (command_line.endian == ENDIAN_BIG
2980 && target->byteorder != BFD_ENDIAN_BIG)
2981 return 0;
2982
2983 if (command_line.endian == ENDIAN_LITTLE
2984 && target->byteorder != BFD_ENDIAN_LITTLE)
2985 return 0;
2986
2987 /* Must be the same flavour. */
2988 if (target->flavour != original->flavour)
2989 return 0;
2990
2991 /* Ignore generic big and little endian elf vectors. */
2992 if (strcmp (target->name, "elf32-big") == 0
2993 || strcmp (target->name, "elf64-big") == 0
2994 || strcmp (target->name, "elf32-little") == 0
2995 || strcmp (target->name, "elf64-little") == 0)
2996 return 0;
2997
2998 /* If we have not found a potential winner yet, then record this one. */
2999 if (winner == NULL)
3000 {
3001 winner = target;
3002 return 0;
3003 }
3004
3005 /* Oh dear, we now have two potential candidates for a successful match.
3006 Compare their names and choose the better one. */
3007 if (name_compare (target->name, original->name)
3008 > name_compare (winner->name, original->name))
3009 winner = target;
3010
3011 /* Keep on searching until wqe have checked them all. */
3012 return 0;
3013 }
3014
3015 /* Return the BFD target format of the first input file. */
3016
3017 static char *
3018 get_first_input_target (void)
3019 {
3020 char *target = NULL;
3021
3022 LANG_FOR_EACH_INPUT_STATEMENT (s)
3023 {
3024 if (s->header.type == lang_input_statement_enum
3025 && s->real)
3026 {
3027 ldfile_open_file (s);
3028
3029 if (s->the_bfd != NULL
3030 && bfd_check_format (s->the_bfd, bfd_object))
3031 {
3032 target = bfd_get_target (s->the_bfd);
3033
3034 if (target != NULL)
3035 break;
3036 }
3037 }
3038 }
3039
3040 return target;
3041 }
3042
3043 const char *
3044 lang_get_output_target (void)
3045 {
3046 const char *target;
3047
3048 /* Has the user told us which output format to use? */
3049 if (output_target != NULL)
3050 return output_target;
3051
3052 /* No - has the current target been set to something other than
3053 the default? */
3054 if (current_target != default_target && current_target != NULL)
3055 return current_target;
3056
3057 /* No - can we determine the format of the first input file? */
3058 target = get_first_input_target ();
3059 if (target != NULL)
3060 return target;
3061
3062 /* Failed - use the default output target. */
3063 return default_target;
3064 }
3065
3066 /* Open the output file. */
3067
3068 static void
3069 open_output (const char *name)
3070 {
3071 output_target = lang_get_output_target ();
3072
3073 /* Has the user requested a particular endianness on the command
3074 line? */
3075 if (command_line.endian != ENDIAN_UNSET)
3076 {
3077 const bfd_target *target;
3078 enum bfd_endian desired_endian;
3079
3080 /* Get the chosen target. */
3081 target = bfd_search_for_target (get_target, (void *) output_target);
3082
3083 /* If the target is not supported, we cannot do anything. */
3084 if (target != NULL)
3085 {
3086 if (command_line.endian == ENDIAN_BIG)
3087 desired_endian = BFD_ENDIAN_BIG;
3088 else
3089 desired_endian = BFD_ENDIAN_LITTLE;
3090
3091 /* See if the target has the wrong endianness. This should
3092 not happen if the linker script has provided big and
3093 little endian alternatives, but some scrips don't do
3094 this. */
3095 if (target->byteorder != desired_endian)
3096 {
3097 /* If it does, then see if the target provides
3098 an alternative with the correct endianness. */
3099 if (target->alternative_target != NULL
3100 && (target->alternative_target->byteorder == desired_endian))
3101 output_target = target->alternative_target->name;
3102 else
3103 {
3104 /* Try to find a target as similar as possible to
3105 the default target, but which has the desired
3106 endian characteristic. */
3107 bfd_search_for_target (closest_target_match,
3108 (void *) target);
3109
3110 /* Oh dear - we could not find any targets that
3111 satisfy our requirements. */
3112 if (winner == NULL)
3113 einfo (_("%P: warning: could not find any targets"
3114 " that match endianness requirement\n"));
3115 else
3116 output_target = winner->name;
3117 }
3118 }
3119 }
3120 }
3121
3122 link_info.output_bfd = bfd_openw (name, output_target);
3123
3124 if (link_info.output_bfd == NULL)
3125 {
3126 if (bfd_get_error () == bfd_error_invalid_target)
3127 einfo (_("%P%F: target %s not found\n"), output_target);
3128
3129 einfo (_("%P%F: cannot open output file %s: %E\n"), name);
3130 }
3131
3132 delete_output_file_on_failure = TRUE;
3133
3134 if (! bfd_set_format (link_info.output_bfd, bfd_object))
3135 einfo (_("%P%F:%s: can not make object file: %E\n"), name);
3136 if (! bfd_set_arch_mach (link_info.output_bfd,
3137 ldfile_output_architecture,
3138 ldfile_output_machine))
3139 einfo (_("%P%F:%s: can not set architecture: %E\n"), name);
3140
3141 link_info.hash = bfd_link_hash_table_create (link_info.output_bfd);
3142 if (link_info.hash == NULL)
3143 einfo (_("%P%F: can not create hash table: %E\n"));
3144
3145 bfd_set_gp_size (link_info.output_bfd, g_switch_value);
3146 }
3147
3148 static void
3149 ldlang_open_output (lang_statement_union_type *statement)
3150 {
3151 switch (statement->header.type)
3152 {
3153 case lang_output_statement_enum:
3154 ASSERT (link_info.output_bfd == NULL);
3155 open_output (statement->output_statement.name);
3156 ldemul_set_output_arch ();
3157 if (config.magic_demand_paged && !link_info.relocatable)
3158 link_info.output_bfd->flags |= D_PAGED;
3159 else
3160 link_info.output_bfd->flags &= ~D_PAGED;
3161 if (config.text_read_only)
3162 link_info.output_bfd->flags |= WP_TEXT;
3163 else
3164 link_info.output_bfd->flags &= ~WP_TEXT;
3165 if (link_info.traditional_format)
3166 link_info.output_bfd->flags |= BFD_TRADITIONAL_FORMAT;
3167 else
3168 link_info.output_bfd->flags &= ~BFD_TRADITIONAL_FORMAT;
3169 break;
3170
3171 case lang_target_statement_enum:
3172 current_target = statement->target_statement.target;
3173 break;
3174 default:
3175 break;
3176 }
3177 }
3178
3179 /* Convert between addresses in bytes and sizes in octets.
3180 For currently supported targets, octets_per_byte is always a power
3181 of two, so we can use shifts. */
3182 #define TO_ADDR(X) ((X) >> opb_shift)
3183 #define TO_SIZE(X) ((X) << opb_shift)
3184
3185 /* Support the above. */
3186 static unsigned int opb_shift = 0;
3187
3188 static void
3189 init_opb (void)
3190 {
3191 unsigned x = bfd_arch_mach_octets_per_byte (ldfile_output_architecture,
3192 ldfile_output_machine);
3193 opb_shift = 0;
3194 if (x > 1)
3195 while ((x & 1) == 0)
3196 {
3197 x >>= 1;
3198 ++opb_shift;
3199 }
3200 ASSERT (x == 1);
3201 }
3202
3203 /* Open all the input files. */
3204
3205 enum open_bfd_mode
3206 {
3207 OPEN_BFD_NORMAL = 0,
3208 OPEN_BFD_FORCE = 1,
3209 OPEN_BFD_RESCAN = 2
3210 };
3211 #ifdef ENABLE_PLUGINS
3212 static lang_input_statement_type *plugin_insert = NULL;
3213 #endif
3214
3215 static void
3216 open_input_bfds (lang_statement_union_type *s, enum open_bfd_mode mode)
3217 {
3218 for (; s != NULL; s = s->header.next)
3219 {
3220 switch (s->header.type)
3221 {
3222 case lang_constructors_statement_enum:
3223 open_input_bfds (constructor_list.head, mode);
3224 break;
3225 case lang_output_section_statement_enum:
3226 open_input_bfds (s->output_section_statement.children.head, mode);
3227 break;
3228 case lang_wild_statement_enum:
3229 /* Maybe we should load the file's symbols. */
3230 if ((mode & OPEN_BFD_RESCAN) == 0
3231 && s->wild_statement.filename
3232 && !wildcardp (s->wild_statement.filename)
3233 && !archive_path (s->wild_statement.filename))
3234 lookup_name (s->wild_statement.filename);
3235 open_input_bfds (s->wild_statement.children.head, mode);
3236 break;
3237 case lang_group_statement_enum:
3238 {
3239 struct bfd_link_hash_entry *undefs;
3240
3241 /* We must continually search the entries in the group
3242 until no new symbols are added to the list of undefined
3243 symbols. */
3244
3245 do
3246 {
3247 undefs = link_info.hash->undefs_tail;
3248 open_input_bfds (s->group_statement.children.head,
3249 mode | OPEN_BFD_FORCE);
3250 }
3251 while (undefs != link_info.hash->undefs_tail);
3252 }
3253 break;
3254 case lang_target_statement_enum:
3255 current_target = s->target_statement.target;
3256 break;
3257 case lang_input_statement_enum:
3258 if (s->input_statement.real)
3259 {
3260 lang_statement_union_type **os_tail;
3261 lang_statement_list_type add;
3262
3263 s->input_statement.target = current_target;
3264
3265 /* If we are being called from within a group, and this
3266 is an archive which has already been searched, then
3267 force it to be researched unless the whole archive
3268 has been loaded already. Do the same for a rescan. */
3269 if (mode != OPEN_BFD_NORMAL
3270 #ifdef ENABLE_PLUGINS
3271 && ((mode & OPEN_BFD_RESCAN) == 0
3272 || plugin_insert == NULL)
3273 #endif
3274 && !s->input_statement.whole_archive
3275 && s->input_statement.loaded
3276 && bfd_check_format (s->input_statement.the_bfd,
3277 bfd_archive))
3278 s->input_statement.loaded = FALSE;
3279 #ifdef ENABLE_PLUGINS
3280 /* When rescanning, reload --as-needed shared libs. */
3281 else if ((mode & OPEN_BFD_RESCAN) != 0
3282 && plugin_insert == NULL
3283 && s->input_statement.loaded
3284 && s->input_statement.add_DT_NEEDED_for_regular
3285 && ((s->input_statement.the_bfd->flags) & DYNAMIC) != 0)
3286 {
3287 s->input_statement.loaded = FALSE;
3288 s->input_statement.reload = TRUE;
3289 }
3290 #endif
3291
3292 os_tail = lang_output_section_statement.tail;
3293 lang_list_init (&add);
3294
3295 if (! load_symbols (&s->input_statement, &add))
3296 config.make_executable = FALSE;
3297
3298 if (add.head != NULL)
3299 {
3300 /* If this was a script with output sections then
3301 tack any added statements on to the end of the
3302 list. This avoids having to reorder the output
3303 section statement list. Very likely the user
3304 forgot -T, and whatever we do here will not meet
3305 naive user expectations. */
3306 if (os_tail != lang_output_section_statement.tail)
3307 {
3308 einfo (_("%P: warning: %s contains output sections;"
3309 " did you forget -T?\n"),
3310 s->input_statement.filename);
3311 *stat_ptr->tail = add.head;
3312 stat_ptr->tail = add.tail;
3313 }
3314 else
3315 {
3316 *add.tail = s->header.next;
3317 s->header.next = add.head;
3318 }
3319 }
3320 }
3321 #ifdef ENABLE_PLUGINS
3322 /* If we have found the point at which a plugin added new
3323 files, clear plugin_insert to enable archive rescan. */
3324 if (&s->input_statement == plugin_insert)
3325 plugin_insert = NULL;
3326 #endif
3327 break;
3328 case lang_assignment_statement_enum:
3329 if (s->assignment_statement.exp->assign.hidden)
3330 /* This is from a --defsym on the command line. */
3331 exp_fold_tree_no_dot (s->assignment_statement.exp);
3332 break;
3333 default:
3334 break;
3335 }
3336 }
3337
3338 /* Exit if any of the files were missing. */
3339 if (missing_file)
3340 einfo ("%F");
3341 }
3342
3343 /* Add a symbol to a hash of symbols used in DEFINED (NAME) expressions. */
3344
3345 void
3346 lang_track_definedness (const char *name)
3347 {
3348 if (bfd_hash_lookup (&lang_definedness_table, name, TRUE, FALSE) == NULL)
3349 einfo (_("%P%F: bfd_hash_lookup failed creating symbol %s\n"), name);
3350 }
3351
3352 /* New-function for the definedness hash table. */
3353
3354 static struct bfd_hash_entry *
3355 lang_definedness_newfunc (struct bfd_hash_entry *entry,
3356 struct bfd_hash_table *table ATTRIBUTE_UNUSED,
3357 const char *name ATTRIBUTE_UNUSED)
3358 {
3359 struct lang_definedness_hash_entry *ret
3360 = (struct lang_definedness_hash_entry *) entry;
3361
3362 if (ret == NULL)
3363 ret = (struct lang_definedness_hash_entry *)
3364 bfd_hash_allocate (table, sizeof (struct lang_definedness_hash_entry));
3365
3366 if (ret == NULL)
3367 einfo (_("%P%F: bfd_hash_allocate failed creating symbol %s\n"), name);
3368
3369 ret->iteration = -1;
3370 return &ret->root;
3371 }
3372
3373 /* Return the iteration when the definition of NAME was last updated. A
3374 value of -1 means that the symbol is not defined in the linker script
3375 or the command line, but may be defined in the linker symbol table. */
3376
3377 int
3378 lang_symbol_definition_iteration (const char *name)
3379 {
3380 struct lang_definedness_hash_entry *defentry
3381 = (struct lang_definedness_hash_entry *)
3382 bfd_hash_lookup (&lang_definedness_table, name, FALSE, FALSE);
3383
3384 /* We've already created this one on the presence of DEFINED in the
3385 script, so it can't be NULL unless something is borked elsewhere in
3386 the code. */
3387 if (defentry == NULL)
3388 FAIL ();
3389
3390 return defentry->iteration;
3391 }
3392
3393 /* Update the definedness state of NAME. */
3394
3395 void
3396 lang_update_definedness (const char *name, struct bfd_link_hash_entry *h)
3397 {
3398 struct lang_definedness_hash_entry *defentry
3399 = (struct lang_definedness_hash_entry *)
3400 bfd_hash_lookup (&lang_definedness_table, name, FALSE, FALSE);
3401
3402 /* We don't keep track of symbols not tested with DEFINED. */
3403 if (defentry == NULL)
3404 return;
3405
3406 /* If the symbol was already defined, and not from an earlier statement
3407 iteration, don't update the definedness iteration, because that'd
3408 make the symbol seem defined in the linker script at this point, and
3409 it wasn't; it was defined in some object. If we do anyway, DEFINED
3410 would start to yield false before this point and the construct "sym =
3411 DEFINED (sym) ? sym : X;" would change sym to X despite being defined
3412 in an object. */
3413 if (h->type != bfd_link_hash_undefined
3414 && h->type != bfd_link_hash_common
3415 && h->type != bfd_link_hash_new
3416 && defentry->iteration == -1)
3417 return;
3418
3419 defentry->iteration = lang_statement_iteration;
3420 }
3421
3422 /* Add the supplied name to the symbol table as an undefined reference.
3423 This is a two step process as the symbol table doesn't even exist at
3424 the time the ld command line is processed. First we put the name
3425 on a list, then, once the output file has been opened, transfer the
3426 name to the symbol table. */
3427
3428 typedef struct bfd_sym_chain ldlang_undef_chain_list_type;
3429
3430 #define ldlang_undef_chain_list_head entry_symbol.next
3431
3432 void
3433 ldlang_add_undef (const char *const name, bfd_boolean cmdline)
3434 {
3435 ldlang_undef_chain_list_type *new_undef;
3436
3437 undef_from_cmdline = undef_from_cmdline || cmdline;
3438 new_undef = (ldlang_undef_chain_list_type *) stat_alloc (sizeof (*new_undef));
3439 new_undef->next = ldlang_undef_chain_list_head;
3440 ldlang_undef_chain_list_head = new_undef;
3441
3442 new_undef->name = xstrdup (name);
3443
3444 if (link_info.output_bfd != NULL)
3445 insert_undefined (new_undef->name);
3446 }
3447
3448 /* Insert NAME as undefined in the symbol table. */
3449
3450 static void
3451 insert_undefined (const char *name)
3452 {
3453 struct bfd_link_hash_entry *h;
3454
3455 h = bfd_link_hash_lookup (link_info.hash, name, TRUE, FALSE, TRUE);
3456 if (h == NULL)
3457 einfo (_("%P%F: bfd_link_hash_lookup failed: %E\n"));
3458 if (h->type == bfd_link_hash_new)
3459 {
3460 h->type = bfd_link_hash_undefined;
3461 h->u.undef.abfd = NULL;
3462 bfd_link_add_undef (link_info.hash, h);
3463 }
3464 }
3465
3466 /* Run through the list of undefineds created above and place them
3467 into the linker hash table as undefined symbols belonging to the
3468 script file. */
3469
3470 static void
3471 lang_place_undefineds (void)
3472 {
3473 ldlang_undef_chain_list_type *ptr;
3474
3475 for (ptr = ldlang_undef_chain_list_head; ptr != NULL; ptr = ptr->next)
3476 insert_undefined (ptr->name);
3477 }
3478
3479 /* Check for all readonly or some readwrite sections. */
3480
3481 static void
3482 check_input_sections
3483 (lang_statement_union_type *s,
3484 lang_output_section_statement_type *output_section_statement)
3485 {
3486 for (; s != (lang_statement_union_type *) NULL; s = s->header.next)
3487 {
3488 switch (s->header.type)
3489 {
3490 case lang_wild_statement_enum:
3491 walk_wild (&s->wild_statement, check_section_callback,
3492 output_section_statement);
3493 if (! output_section_statement->all_input_readonly)
3494 return;
3495 break;
3496 case lang_constructors_statement_enum:
3497 check_input_sections (constructor_list.head,
3498 output_section_statement);
3499 if (! output_section_statement->all_input_readonly)
3500 return;
3501 break;
3502 case lang_group_statement_enum:
3503 check_input_sections (s->group_statement.children.head,
3504 output_section_statement);
3505 if (! output_section_statement->all_input_readonly)
3506 return;
3507 break;
3508 default:
3509 break;
3510 }
3511 }
3512 }
3513
3514 /* Update wildcard statements if needed. */
3515
3516 static void
3517 update_wild_statements (lang_statement_union_type *s)
3518 {
3519 struct wildcard_list *sec;
3520
3521 switch (sort_section)
3522 {
3523 default:
3524 FAIL ();
3525
3526 case none:
3527 break;
3528
3529 case by_name:
3530 case by_alignment:
3531 for (; s != NULL; s = s->header.next)
3532 {
3533 switch (s->header.type)
3534 {
3535 default:
3536 break;
3537
3538 case lang_wild_statement_enum:
3539 sec = s->wild_statement.section_list;
3540 for (sec = s->wild_statement.section_list; sec != NULL;
3541 sec = sec->next)
3542 {
3543 switch (sec->spec.sorted)
3544 {
3545 case none:
3546 sec->spec.sorted = sort_section;
3547 break;
3548 case by_name:
3549 if (sort_section == by_alignment)
3550 sec->spec.sorted = by_name_alignment;
3551 break;
3552 case by_alignment:
3553 if (sort_section == by_name)
3554 sec->spec.sorted = by_alignment_name;
3555 break;
3556 default:
3557 break;
3558 }
3559 }
3560 break;
3561
3562 case lang_constructors_statement_enum:
3563 update_wild_statements (constructor_list.head);
3564 break;
3565
3566 case lang_output_section_statement_enum:
3567 update_wild_statements
3568 (s->output_section_statement.children.head);
3569 break;
3570
3571 case lang_group_statement_enum:
3572 update_wild_statements (s->group_statement.children.head);
3573 break;
3574 }
3575 }
3576 break;
3577 }
3578 }
3579
3580 /* Open input files and attach to output sections. */
3581
3582 static void
3583 map_input_to_output_sections
3584 (lang_statement_union_type *s, const char *target,
3585 lang_output_section_statement_type *os)
3586 {
3587 for (; s != NULL; s = s->header.next)
3588 {
3589 lang_output_section_statement_type *tos;
3590 flagword flags;
3591
3592 switch (s->header.type)
3593 {
3594 case lang_wild_statement_enum:
3595 wild (&s->wild_statement, target, os);
3596 break;
3597 case lang_constructors_statement_enum:
3598 map_input_to_output_sections (constructor_list.head,
3599 target,
3600 os);
3601 break;
3602 case lang_output_section_statement_enum:
3603 tos = &s->output_section_statement;
3604 if (tos->constraint != 0)
3605 {
3606 if (tos->constraint != ONLY_IF_RW
3607 && tos->constraint != ONLY_IF_RO)
3608 break;
3609 tos->all_input_readonly = TRUE;
3610 check_input_sections (tos->children.head, tos);
3611 if (tos->all_input_readonly != (tos->constraint == ONLY_IF_RO))
3612 {
3613 tos->constraint = -1;
3614 break;
3615 }
3616 }
3617 map_input_to_output_sections (tos->children.head,
3618 target,
3619 tos);
3620 break;
3621 case lang_output_statement_enum:
3622 break;
3623 case lang_target_statement_enum:
3624 target = s->target_statement.target;
3625 break;
3626 case lang_group_statement_enum:
3627 map_input_to_output_sections (s->group_statement.children.head,
3628 target,
3629 os);
3630 break;
3631 case lang_data_statement_enum:
3632 /* Make sure that any sections mentioned in the expression
3633 are initialized. */
3634 exp_init_os (s->data_statement.exp);
3635 /* The output section gets CONTENTS, ALLOC and LOAD, but
3636 these may be overridden by the script. */
3637 flags = SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD;
3638 switch (os->sectype)
3639 {
3640 case normal_section:
3641 case overlay_section:
3642 break;
3643 case noalloc_section:
3644 flags = SEC_HAS_CONTENTS;
3645 break;
3646 case noload_section:
3647 if (bfd_get_flavour (link_info.output_bfd)
3648 == bfd_target_elf_flavour)
3649 flags = SEC_NEVER_LOAD | SEC_ALLOC;
3650 else
3651 flags = SEC_NEVER_LOAD | SEC_HAS_CONTENTS;
3652 break;
3653 }
3654 if (os->bfd_section == NULL)
3655 init_os (os, flags);
3656 else
3657 os->bfd_section->flags |= flags;
3658 break;
3659 case lang_input_section_enum:
3660 break;
3661 case lang_fill_statement_enum:
3662 case lang_object_symbols_statement_enum:
3663 case lang_reloc_statement_enum:
3664 case lang_padding_statement_enum:
3665 case lang_input_statement_enum:
3666 if (os != NULL && os->bfd_section == NULL)
3667 init_os (os, 0);
3668 break;
3669 case lang_assignment_statement_enum:
3670 if (os != NULL && os->bfd_section == NULL)
3671 init_os (os, 0);
3672
3673 /* Make sure that any sections mentioned in the assignment
3674 are initialized. */
3675 exp_init_os (s->assignment_statement.exp);
3676 break;
3677 case lang_address_statement_enum:
3678 /* Mark the specified section with the supplied address.
3679 If this section was actually a segment marker, then the
3680 directive is ignored if the linker script explicitly
3681 processed the segment marker. Originally, the linker
3682 treated segment directives (like -Ttext on the
3683 command-line) as section directives. We honor the
3684 section directive semantics for backwards compatibilty;
3685 linker scripts that do not specifically check for
3686 SEGMENT_START automatically get the old semantics. */
3687 if (!s->address_statement.segment
3688 || !s->address_statement.segment->used)
3689 {
3690 const char *name = s->address_statement.section_name;
3691
3692 /* Create the output section statement here so that
3693 orphans with a set address will be placed after other
3694 script sections. If we let the orphan placement code
3695 place them in amongst other sections then the address
3696 will affect following script sections, which is
3697 likely to surprise naive users. */
3698 tos = lang_output_section_statement_lookup (name, 0, TRUE);
3699 tos->addr_tree = s->address_statement.address;
3700 if (tos->bfd_section == NULL)
3701 init_os (tos, 0);
3702 }
3703 break;
3704 case lang_insert_statement_enum:
3705 break;
3706 }
3707 }
3708 }
3709
3710 /* An insert statement snips out all the linker statements from the
3711 start of the list and places them after the output section
3712 statement specified by the insert. This operation is complicated
3713 by the fact that we keep a doubly linked list of output section
3714 statements as well as the singly linked list of all statements. */
3715
3716 static void
3717 process_insert_statements (void)
3718 {
3719 lang_statement_union_type **s;
3720 lang_output_section_statement_type *first_os = NULL;
3721 lang_output_section_statement_type *last_os = NULL;
3722 lang_output_section_statement_type *os;
3723
3724 /* "start of list" is actually the statement immediately after
3725 the special abs_section output statement, so that it isn't
3726 reordered. */
3727 s = &lang_output_section_statement.head;
3728 while (*(s = &(*s)->header.next) != NULL)
3729 {
3730 if ((*s)->header.type == lang_output_section_statement_enum)
3731 {
3732 /* Keep pointers to the first and last output section
3733 statement in the sequence we may be about to move. */
3734 os = &(*s)->output_section_statement;
3735
3736 ASSERT (last_os == NULL || last_os->next == os);
3737 last_os = os;
3738
3739 /* Set constraint negative so that lang_output_section_find
3740 won't match this output section statement. At this
3741 stage in linking constraint has values in the range
3742 [-1, ONLY_IN_RW]. */
3743 last_os->constraint = -2 - last_os->constraint;
3744 if (first_os == NULL)
3745 first_os = last_os;
3746 }
3747 else if ((*s)->header.type == lang_insert_statement_enum)
3748 {
3749 lang_insert_statement_type *i = &(*s)->insert_statement;
3750 lang_output_section_statement_type *where;
3751 lang_statement_union_type **ptr;
3752 lang_statement_union_type *first;
3753
3754 where = lang_output_section_find (i->where);
3755 if (where != NULL && i->is_before)
3756 {
3757 do
3758 where = where->prev;
3759 while (where != NULL && where->constraint < 0);
3760 }
3761 if (where == NULL)
3762 {
3763 einfo (_("%F%P: %s not found for insert\n"), i->where);
3764 return;
3765 }
3766
3767 /* Deal with reordering the output section statement list. */
3768 if (last_os != NULL)
3769 {
3770 asection *first_sec, *last_sec;
3771 struct lang_output_section_statement_struct **next;
3772
3773 /* Snip out the output sections we are moving. */
3774 first_os->prev->next = last_os->next;
3775 if (last_os->next == NULL)
3776 {
3777 next = &first_os->prev->next;
3778 lang_output_section_statement.tail
3779 = (lang_statement_union_type **) next;
3780 }
3781 else
3782 last_os->next->prev = first_os->prev;
3783 /* Add them in at the new position. */
3784 last_os->next = where->next;
3785 if (where->next == NULL)
3786 {
3787 next = &last_os->next;
3788 lang_output_section_statement.tail
3789 = (lang_statement_union_type **) next;
3790 }
3791 else
3792 where->next->prev = last_os;
3793 first_os->prev = where;
3794 where->next = first_os;
3795
3796 /* Move the bfd sections in the same way. */
3797 first_sec = NULL;
3798 last_sec = NULL;
3799 for (os = first_os; os != NULL; os = os->next)
3800 {
3801 os->constraint = -2 - os->constraint;
3802 if (os->bfd_section != NULL
3803 && os->bfd_section->owner != NULL)
3804 {
3805 last_sec = os->bfd_section;
3806 if (first_sec == NULL)
3807 first_sec = last_sec;
3808 }
3809 if (os == last_os)
3810 break;
3811 }
3812 if (last_sec != NULL)
3813 {
3814 asection *sec = where->bfd_section;
3815 if (sec == NULL)
3816 sec = output_prev_sec_find (where);
3817
3818 /* The place we want to insert must come after the
3819 sections we are moving. So if we find no
3820 section or if the section is the same as our
3821 last section, then no move is needed. */
3822 if (sec != NULL && sec != last_sec)
3823 {
3824 /* Trim them off. */
3825 if (first_sec->prev != NULL)
3826 first_sec->prev->next = last_sec->next;
3827 else
3828 link_info.output_bfd->sections = last_sec->next;
3829 if (last_sec->next != NULL)
3830 last_sec->next->prev = first_sec->prev;
3831 else
3832 link_info.output_bfd->section_last = first_sec->prev;
3833 /* Add back. */
3834 last_sec->next = sec->next;
3835 if (sec->next != NULL)
3836 sec->next->prev = last_sec;
3837 else
3838 link_info.output_bfd->section_last = last_sec;
3839 first_sec->prev = sec;
3840 sec->next = first_sec;
3841 }
3842 }
3843
3844 first_os = NULL;
3845 last_os = NULL;
3846 }
3847
3848 ptr = insert_os_after (where);
3849 /* Snip everything after the abs_section output statement we
3850 know is at the start of the list, up to and including
3851 the insert statement we are currently processing. */
3852 first = lang_output_section_statement.head->header.next;
3853 lang_output_section_statement.head->header.next = (*s)->header.next;
3854 /* Add them back where they belong. */
3855 *s = *ptr;
3856 if (*s == NULL)
3857 statement_list.tail = s;
3858 *ptr = first;
3859 s = &lang_output_section_statement.head;
3860 }
3861 }
3862
3863 /* Undo constraint twiddling. */
3864 for (os = first_os; os != NULL; os = os->next)
3865 {
3866 os->constraint = -2 - os->constraint;
3867 if (os == last_os)
3868 break;
3869 }
3870 }
3871
3872 /* An output section might have been removed after its statement was
3873 added. For example, ldemul_before_allocation can remove dynamic
3874 sections if they turn out to be not needed. Clean them up here. */
3875
3876 void
3877 strip_excluded_output_sections (void)
3878 {
3879 lang_output_section_statement_type *os;
3880
3881 /* Run lang_size_sections (if not already done). */
3882 if (expld.phase != lang_mark_phase_enum)
3883 {
3884 expld.phase = lang_mark_phase_enum;
3885 expld.dataseg.phase = exp_dataseg_none;
3886 one_lang_size_sections_pass (NULL, FALSE);
3887 lang_reset_memory_regions ();
3888 }
3889
3890 for (os = &lang_output_section_statement.head->output_section_statement;
3891 os != NULL;
3892 os = os->next)
3893 {
3894 asection *output_section;
3895 bfd_boolean exclude;
3896
3897 if (os->constraint < 0)
3898 continue;
3899
3900 output_section = os->bfd_section;
3901 if (output_section == NULL)
3902 continue;
3903
3904 exclude = (output_section->rawsize == 0
3905 && (output_section->flags & SEC_KEEP) == 0
3906 && !bfd_section_removed_from_list (link_info.output_bfd,
3907 output_section));
3908
3909 /* Some sections have not yet been sized, notably .gnu.version,
3910 .dynsym, .dynstr and .hash. These all have SEC_LINKER_CREATED
3911 input sections, so don't drop output sections that have such
3912 input sections unless they are also marked SEC_EXCLUDE. */
3913 if (exclude && output_section->map_head.s != NULL)
3914 {
3915 asection *s;
3916
3917 for (s = output_section->map_head.s; s != NULL; s = s->map_head.s)
3918 if ((s->flags & SEC_LINKER_CREATED) != 0
3919 && (s->flags & SEC_EXCLUDE) == 0)
3920 {
3921 exclude = FALSE;
3922 break;
3923 }
3924 }
3925
3926 /* TODO: Don't just junk map_head.s, turn them into link_orders. */
3927 output_section->map_head.link_order = NULL;
3928 output_section->map_tail.link_order = NULL;
3929
3930 if (exclude)
3931 {
3932 /* We don't set bfd_section to NULL since bfd_section of the
3933 removed output section statement may still be used. */
3934 if (!os->section_relative_symbol
3935 && !os->update_dot_tree)
3936 os->ignored = TRUE;
3937 output_section->flags |= SEC_EXCLUDE;
3938 bfd_section_list_remove (link_info.output_bfd, output_section);
3939 link_info.output_bfd->section_count--;
3940 }
3941 }
3942
3943 /* Stop future calls to lang_add_section from messing with map_head
3944 and map_tail link_order fields. */
3945 stripped_excluded_sections = TRUE;
3946 }
3947
3948 static void
3949 print_output_section_statement
3950 (lang_output_section_statement_type *output_section_statement)
3951 {
3952 asection *section = output_section_statement->bfd_section;
3953 int len;
3954
3955 if (output_section_statement != abs_output_section)
3956 {
3957 minfo ("\n%s", output_section_statement->name);
3958
3959 if (section != NULL)
3960 {
3961 print_dot = section->vma;
3962
3963 len = strlen (output_section_statement->name);
3964 if (len >= SECTION_NAME_MAP_LENGTH - 1)
3965 {
3966 print_nl ();
3967 len = 0;
3968 }
3969 while (len < SECTION_NAME_MAP_LENGTH)
3970 {
3971 print_space ();
3972 ++len;
3973 }
3974
3975 minfo ("0x%V %W", section->vma, section->size);
3976
3977 if (section->vma != section->lma)
3978 minfo (_(" load address 0x%V"), section->lma);
3979
3980 if (output_section_statement->update_dot_tree != NULL)
3981 exp_fold_tree (output_section_statement->update_dot_tree,
3982 bfd_abs_section_ptr, &print_dot);
3983 }
3984
3985 print_nl ();
3986 }
3987
3988 print_statement_list (output_section_statement->children.head,
3989 output_section_statement);
3990 }
3991
3992 /* Scan for the use of the destination in the right hand side
3993 of an expression. In such cases we will not compute the
3994 correct expression, since the value of DST that is used on
3995 the right hand side will be its final value, not its value
3996 just before this expression is evaluated. */
3997
3998 static bfd_boolean
3999 scan_for_self_assignment (const char * dst, etree_type * rhs)
4000 {
4001 if (rhs == NULL || dst == NULL)
4002 return FALSE;
4003
4004 switch (rhs->type.node_class)
4005 {
4006 case etree_binary:
4007 return (scan_for_self_assignment (dst, rhs->binary.lhs)
4008 || scan_for_self_assignment (dst, rhs->binary.rhs));
4009
4010 case etree_trinary:
4011 return (scan_for_self_assignment (dst, rhs->trinary.lhs)
4012 || scan_for_self_assignment (dst, rhs->trinary.rhs));
4013
4014 case etree_assign:
4015 case etree_provided:
4016 case etree_provide:
4017 if (strcmp (dst, rhs->assign.dst) == 0)
4018 return TRUE;
4019 return scan_for_self_assignment (dst, rhs->assign.src);
4020
4021 case etree_unary:
4022 return scan_for_self_assignment (dst, rhs->unary.child);
4023
4024 case etree_value:
4025 if (rhs->value.str)
4026 return strcmp (dst, rhs->value.str) == 0;
4027 return FALSE;
4028
4029 case etree_name:
4030 if (rhs->name.name)
4031 return strcmp (dst, rhs->name.name) == 0;
4032 return FALSE;
4033
4034 default:
4035 break;
4036 }
4037
4038 return FALSE;
4039 }
4040
4041
4042 static void
4043 print_assignment (lang_assignment_statement_type *assignment,
4044 lang_output_section_statement_type *output_section)
4045 {
4046 unsigned int i;
4047 bfd_boolean is_dot;
4048 bfd_boolean computation_is_valid = TRUE;
4049 etree_type *tree;
4050 asection *osec;
4051
4052 for (i = 0; i < SECTION_NAME_MAP_LENGTH; i++)
4053 print_space ();
4054
4055 if (assignment->exp->type.node_class == etree_assert)
4056 {
4057 is_dot = FALSE;
4058 tree = assignment->exp->assert_s.child;
4059 computation_is_valid = TRUE;
4060 }
4061 else
4062 {
4063 const char *dst = assignment->exp->assign.dst;
4064
4065 is_dot = (dst[0] == '.' && dst[1] == 0);
4066 tree = assignment->exp->assign.src;
4067 computation_is_valid = is_dot || !scan_for_self_assignment (dst, tree);
4068 }
4069
4070 osec = output_section->bfd_section;
4071 if (osec == NULL)
4072 osec = bfd_abs_section_ptr;
4073 exp_fold_tree (tree, osec, &print_dot);
4074 if (expld.result.valid_p)
4075 {
4076 bfd_vma value;
4077
4078 if (computation_is_valid)
4079 {
4080 value = expld.result.value;
4081
4082 if (expld.result.section != NULL)
4083 value += expld.result.section->vma;
4084
4085 minfo ("0x%V", value);
4086 if (is_dot)
4087 print_dot = value;
4088 }
4089 else
4090 {
4091 struct bfd_link_hash_entry *h;
4092
4093 h = bfd_link_hash_lookup (link_info.hash, assignment->exp->assign.dst,
4094 FALSE, FALSE, TRUE);
4095 if (h)
4096 {
4097 value = h->u.def.value;
4098 value += h->u.def.section->output_section->vma;
4099 value += h->u.def.section->output_offset;
4100
4101 minfo ("[0x%V]", value);
4102 }
4103 else
4104 minfo ("[unresolved]");
4105 }
4106 }
4107 else
4108 {
4109 minfo ("*undef* ");
4110 #ifdef BFD64
4111 minfo (" ");
4112 #endif
4113 }
4114
4115 minfo (" ");
4116 exp_print_tree (assignment->exp);
4117 print_nl ();
4118 }
4119
4120 static void
4121 print_input_statement (lang_input_statement_type *statm)
4122 {
4123 if (statm->filename != NULL
4124 && (statm->the_bfd == NULL
4125 || (statm->the_bfd->flags & BFD_LINKER_CREATED) == 0))
4126 fprintf (config.map_file, "LOAD %s\n", statm->filename);
4127 }
4128
4129 /* Print all symbols defined in a particular section. This is called
4130 via bfd_link_hash_traverse, or by print_all_symbols. */
4131
4132 static bfd_boolean
4133 print_one_symbol (struct bfd_link_hash_entry *hash_entry, void *ptr)
4134 {
4135 asection *sec = (asection *) ptr;
4136
4137 if ((hash_entry->type == bfd_link_hash_defined
4138 || hash_entry->type == bfd_link_hash_defweak)
4139 && sec == hash_entry->u.def.section)
4140 {
4141 int i;
4142
4143 for (i = 0; i < SECTION_NAME_MAP_LENGTH; i++)
4144 print_space ();
4145 minfo ("0x%V ",
4146 (hash_entry->u.def.value
4147 + hash_entry->u.def.section->output_offset
4148 + hash_entry->u.def.section->output_section->vma));
4149
4150 minfo (" %T\n", hash_entry->root.string);
4151 }
4152
4153 return TRUE;
4154 }
4155
4156 static int
4157 hash_entry_addr_cmp (const void *a, const void *b)
4158 {
4159 const struct bfd_link_hash_entry *l = *(const struct bfd_link_hash_entry **)a;
4160 const struct bfd_link_hash_entry *r = *(const struct bfd_link_hash_entry **)b;
4161
4162 if (l->u.def.value < r->u.def.value)
4163 return -1;
4164 else if (l->u.def.value > r->u.def.value)
4165 return 1;
4166 else
4167 return 0;
4168 }
4169
4170 static void
4171 print_all_symbols (asection *sec)
4172 {
4173 struct fat_user_section_struct *ud =
4174 (struct fat_user_section_struct *) get_userdata (sec);
4175 struct map_symbol_def *def;
4176 struct bfd_link_hash_entry **entries;
4177 unsigned int i;
4178
4179 if (!ud)
4180 return;
4181
4182 *ud->map_symbol_def_tail = 0;
4183
4184 /* Sort the symbols by address. */
4185 entries = (struct bfd_link_hash_entry **)
4186 obstack_alloc (&map_obstack, ud->map_symbol_def_count * sizeof (*entries));
4187
4188 for (i = 0, def = ud->map_symbol_def_head; def; def = def->next, i++)
4189 entries[i] = def->entry;
4190
4191 qsort (entries, ud->map_symbol_def_count, sizeof (*entries),
4192 hash_entry_addr_cmp);
4193
4194 /* Print the symbols. */
4195 for (i = 0; i < ud->map_symbol_def_count; i++)
4196 print_one_symbol (entries[i], sec);
4197
4198 obstack_free (&map_obstack, entries);
4199 }
4200
4201 /* Print information about an input section to the map file. */
4202
4203 static void
4204 print_input_section (asection *i, bfd_boolean is_discarded)
4205 {
4206 bfd_size_type size = i->size;
4207 int len;
4208 bfd_vma addr;
4209
4210 init_opb ();
4211
4212 print_space ();
4213 minfo ("%s", i->name);
4214
4215 len = 1 + strlen (i->name);
4216 if (len >= SECTION_NAME_MAP_LENGTH - 1)
4217 {
4218 print_nl ();
4219 len = 0;
4220 }
4221 while (len < SECTION_NAME_MAP_LENGTH)
4222 {
4223 print_space ();
4224 ++len;
4225 }
4226
4227 if (i->output_section != NULL
4228 && i->output_section->owner == link_info.output_bfd)
4229 addr = i->output_section->vma + i->output_offset;
4230 else
4231 {
4232 addr = print_dot;
4233 if (!is_discarded)
4234 size = 0;
4235 }
4236
4237 minfo ("0x%V %W %B\n", addr, TO_ADDR (size), i->owner);
4238
4239 if (size != i->rawsize && i->rawsize != 0)
4240 {
4241 len = SECTION_NAME_MAP_LENGTH + 3;
4242 #ifdef BFD64
4243 len += 16;
4244 #else
4245 len += 8;
4246 #endif
4247 while (len > 0)
4248 {
4249 print_space ();
4250 --len;
4251 }
4252
4253 minfo (_("%W (size before relaxing)\n"), i->rawsize);
4254 }
4255
4256 if (i->output_section != NULL
4257 && i->output_section->owner == link_info.output_bfd)
4258 {
4259 if (link_info.reduce_memory_overheads)
4260 bfd_link_hash_traverse (link_info.hash, print_one_symbol, i);
4261 else
4262 print_all_symbols (i);
4263
4264 /* Update print_dot, but make sure that we do not move it
4265 backwards - this could happen if we have overlays and a
4266 later overlay is shorter than an earier one. */
4267 if (addr + TO_ADDR (size) > print_dot)
4268 print_dot = addr + TO_ADDR (size);
4269 }
4270 }
4271
4272 static void
4273 print_fill_statement (lang_fill_statement_type *fill)
4274 {
4275 size_t size;
4276 unsigned char *p;
4277 fputs (" FILL mask 0x", config.map_file);
4278 for (p = fill->fill->data, size = fill->fill->size; size != 0; p++, size--)
4279 fprintf (config.map_file, "%02x", *p);
4280 fputs ("\n", config.map_file);
4281 }
4282
4283 static void
4284 print_data_statement (lang_data_statement_type *data)
4285 {
4286 int i;
4287 bfd_vma addr;
4288 bfd_size_type size;
4289 const char *name;
4290
4291 init_opb ();
4292 for (i = 0; i < SECTION_NAME_MAP_LENGTH; i++)
4293 print_space ();
4294
4295 addr = data->output_offset;
4296 if (data->output_section != NULL)
4297 addr += data->output_section->vma;
4298
4299 switch (data->type)
4300 {
4301 default:
4302 abort ();
4303 case BYTE:
4304 size = BYTE_SIZE;
4305 name = "BYTE";
4306 break;
4307 case SHORT:
4308 size = SHORT_SIZE;
4309 name = "SHORT";
4310 break;
4311 case LONG:
4312 size = LONG_SIZE;
4313 name = "LONG";
4314 break;
4315 case QUAD:
4316 size = QUAD_SIZE;
4317 name = "QUAD";
4318 break;
4319 case SQUAD:
4320 size = QUAD_SIZE;
4321 name = "SQUAD";
4322 break;
4323 }
4324
4325 minfo ("0x%V %W %s 0x%v", addr, size, name, data->value);
4326
4327 if (data->exp->type.node_class != etree_value)
4328 {
4329 print_space ();
4330 exp_print_tree (data->exp);
4331 }
4332
4333 print_nl ();
4334
4335 print_dot = addr + TO_ADDR (size);
4336 }
4337
4338 /* Print an address statement. These are generated by options like
4339 -Ttext. */
4340
4341 static void
4342 print_address_statement (lang_address_statement_type *address)
4343 {
4344 minfo (_("Address of section %s set to "), address->section_name);
4345 exp_print_tree (address->address);
4346 print_nl ();
4347 }
4348
4349 /* Print a reloc statement. */
4350
4351 static void
4352 print_reloc_statement (lang_reloc_statement_type *reloc)
4353 {
4354 int i;
4355 bfd_vma addr;
4356 bfd_size_type size;
4357
4358 init_opb ();
4359 for (i = 0; i < SECTION_NAME_MAP_LENGTH; i++)
4360 print_space ();
4361
4362 addr = reloc->output_offset;
4363 if (reloc->output_section != NULL)
4364 addr += reloc->output_section->vma;
4365
4366 size = bfd_get_reloc_size (reloc->howto);
4367
4368 minfo ("0x%V %W RELOC %s ", addr, size, reloc->howto->name);
4369
4370 if (reloc->name != NULL)
4371 minfo ("%s+", reloc->name);
4372 else
4373 minfo ("%s+", reloc->section->name);
4374
4375 exp_print_tree (reloc->addend_exp);
4376
4377 print_nl ();
4378
4379 print_dot = addr + TO_ADDR (size);
4380 }
4381
4382 static void
4383 print_padding_statement (lang_padding_statement_type *s)
4384 {
4385 int len;
4386 bfd_vma addr;
4387
4388 init_opb ();
4389 minfo (" *fill*");
4390
4391 len = sizeof " *fill*" - 1;
4392 while (len < SECTION_NAME_MAP_LENGTH)
4393 {
4394 print_space ();
4395 ++len;
4396 }
4397
4398 addr = s->output_offset;
4399 if (s->output_section != NULL)
4400 addr += s->output_section->vma;
4401 minfo ("0x%V %W ", addr, (bfd_vma) s->size);
4402
4403 if (s->fill->size != 0)
4404 {
4405 size_t size;
4406 unsigned char *p;
4407 for (p = s->fill->data, size = s->fill->size; size != 0; p++, size--)
4408 fprintf (config.map_file, "%02x", *p);
4409 }
4410
4411 print_nl ();
4412
4413 print_dot = addr + TO_ADDR (s->size);
4414 }
4415
4416 static void
4417 print_wild_statement (lang_wild_statement_type *w,
4418 lang_output_section_statement_type *os)
4419 {
4420 struct wildcard_list *sec;
4421
4422 print_space ();
4423
4424 if (w->filenames_sorted)
4425 minfo ("SORT(");
4426 if (w->filename != NULL)
4427 minfo ("%s", w->filename);
4428 else
4429 minfo ("*");
4430 if (w->filenames_sorted)
4431 minfo (")");
4432
4433 minfo ("(");
4434 for (sec = w->section_list; sec; sec = sec->next)
4435 {
4436 if (sec->spec.sorted)
4437 minfo ("SORT(");
4438 if (sec->spec.exclude_name_list != NULL)
4439 {
4440 name_list *tmp;
4441 minfo ("EXCLUDE_FILE(%s", sec->spec.exclude_name_list->name);
4442 for (tmp = sec->spec.exclude_name_list->next; tmp; tmp = tmp->next)
4443 minfo (" %s", tmp->name);
4444 minfo (") ");
4445 }
4446 if (sec->spec.name != NULL)
4447 minfo ("%s", sec->spec.name);
4448 else
4449 minfo ("*");
4450 if (sec->spec.sorted)
4451 minfo (")");
4452 if (sec->next)
4453 minfo (" ");
4454 }
4455 minfo (")");
4456
4457 print_nl ();
4458
4459 print_statement_list (w->children.head, os);
4460 }
4461
4462 /* Print a group statement. */
4463
4464 static void
4465 print_group (lang_group_statement_type *s,
4466 lang_output_section_statement_type *os)
4467 {
4468 fprintf (config.map_file, "START GROUP\n");
4469 print_statement_list (s->children.head, os);
4470 fprintf (config.map_file, "END GROUP\n");
4471 }
4472
4473 /* Print the list of statements in S.
4474 This can be called for any statement type. */
4475
4476 static void
4477 print_statement_list (lang_statement_union_type *s,
4478 lang_output_section_statement_type *os)
4479 {
4480 while (s != NULL)
4481 {
4482 print_statement (s, os);
4483 s = s->header.next;
4484 }
4485 }
4486
4487 /* Print the first statement in statement list S.
4488 This can be called for any statement type. */
4489
4490 static void
4491 print_statement (lang_statement_union_type *s,
4492 lang_output_section_statement_type *os)
4493 {
4494 switch (s->header.type)
4495 {
4496 default:
4497 fprintf (config.map_file, _("Fail with %d\n"), s->header.type);
4498 FAIL ();
4499 break;
4500 case lang_constructors_statement_enum:
4501 if (constructor_list.head != NULL)
4502 {
4503 if (constructors_sorted)
4504 minfo (" SORT (CONSTRUCTORS)\n");
4505 else
4506 minfo (" CONSTRUCTORS\n");
4507 print_statement_list (constructor_list.head, os);
4508 }
4509 break;
4510 case lang_wild_statement_enum:
4511 print_wild_statement (&s->wild_statement, os);
4512 break;
4513 case lang_address_statement_enum:
4514 print_address_statement (&s->address_statement);
4515 break;
4516 case lang_object_symbols_statement_enum:
4517 minfo (" CREATE_OBJECT_SYMBOLS\n");
4518 break;
4519 case lang_fill_statement_enum:
4520 print_fill_statement (&s->fill_statement);
4521 break;
4522 case lang_data_statement_enum:
4523 print_data_statement (&s->data_statement);
4524 break;
4525 case lang_reloc_statement_enum:
4526 print_reloc_statement (&s->reloc_statement);
4527 break;
4528 case lang_input_section_enum:
4529 print_input_section (s->input_section.section, FALSE);
4530 break;
4531 case lang_padding_statement_enum:
4532 print_padding_statement (&s->padding_statement);
4533 break;
4534 case lang_output_section_statement_enum:
4535 print_output_section_statement (&s->output_section_statement);
4536 break;
4537 case lang_assignment_statement_enum:
4538 print_assignment (&s->assignment_statement, os);
4539 break;
4540 case lang_target_statement_enum:
4541 fprintf (config.map_file, "TARGET(%s)\n", s->target_statement.target);
4542 break;
4543 case lang_output_statement_enum:
4544 minfo ("OUTPUT(%s", s->output_statement.name);
4545 if (output_target != NULL)
4546 minfo (" %s", output_target);
4547 minfo (")\n");
4548 break;
4549 case lang_input_statement_enum:
4550 print_input_statement (&s->input_statement);
4551 break;
4552 case lang_group_statement_enum:
4553 print_group (&s->group_statement, os);
4554 break;
4555 case lang_insert_statement_enum:
4556 minfo ("INSERT %s %s\n",
4557 s->insert_statement.is_before ? "BEFORE" : "AFTER",
4558 s->insert_statement.where);
4559 break;
4560 }
4561 }
4562
4563 static void
4564 print_statements (void)
4565 {
4566 print_statement_list (statement_list.head, abs_output_section);
4567 }
4568
4569 /* Print the first N statements in statement list S to STDERR.
4570 If N == 0, nothing is printed.
4571 If N < 0, the entire list is printed.
4572 Intended to be called from GDB. */
4573
4574 void
4575 dprint_statement (lang_statement_union_type *s, int n)
4576 {
4577 FILE *map_save = config.map_file;
4578
4579 config.map_file = stderr;
4580
4581 if (n < 0)
4582 print_statement_list (s, abs_output_section);
4583 else
4584 {
4585 while (s && --n >= 0)
4586 {
4587 print_statement (s, abs_output_section);
4588 s = s->header.next;
4589 }
4590 }
4591
4592 config.map_file = map_save;
4593 }
4594
4595 static void
4596 insert_pad (lang_statement_union_type **ptr,
4597 fill_type *fill,
4598 unsigned int alignment_needed,
4599 asection *output_section,
4600 bfd_vma dot)
4601 {
4602 static fill_type zero_fill = { 1, { 0 } };
4603 lang_statement_union_type *pad = NULL;
4604
4605 if (ptr != &statement_list.head)
4606 pad = ((lang_statement_union_type *)
4607 ((char *) ptr - offsetof (lang_statement_union_type, header.next)));
4608 if (pad != NULL
4609 && pad->header.type == lang_padding_statement_enum
4610 && pad->padding_statement.output_section == output_section)
4611 {
4612 /* Use the existing pad statement. */
4613 }
4614 else if ((pad = *ptr) != NULL
4615 && pad->header.type == lang_padding_statement_enum
4616 && pad->padding_statement.output_section == output_section)
4617 {
4618 /* Use the existing pad statement. */
4619 }
4620 else
4621 {
4622 /* Make a new padding statement, linked into existing chain. */
4623 pad = (lang_statement_union_type *)
4624 stat_alloc (sizeof (lang_padding_statement_type));
4625 pad->header.next = *ptr;
4626 *ptr = pad;
4627 pad->header.type = lang_padding_statement_enum;
4628 pad->padding_statement.output_section = output_section;
4629 if (fill == NULL)
4630 fill = &zero_fill;
4631 pad->padding_statement.fill = fill;
4632 }
4633 pad->padding_statement.output_offset = dot - output_section->vma;
4634 pad->padding_statement.size = alignment_needed;
4635 output_section->size += alignment_needed;
4636 }
4637
4638 /* Work out how much this section will move the dot point. */
4639
4640 static bfd_vma
4641 size_input_section
4642 (lang_statement_union_type **this_ptr,
4643 lang_output_section_statement_type *output_section_statement,
4644 fill_type *fill,
4645 bfd_vma dot)
4646 {
4647 lang_input_section_type *is = &((*this_ptr)->input_section);
4648 asection *i = is->section;
4649
4650 if (!((lang_input_statement_type *) i->owner->usrdata)->just_syms_flag
4651 && (i->flags & SEC_EXCLUDE) == 0)
4652 {
4653 unsigned int alignment_needed;
4654 asection *o;
4655
4656 /* Align this section first to the input sections requirement,
4657 then to the output section's requirement. If this alignment
4658 is greater than any seen before, then record it too. Perform
4659 the alignment by inserting a magic 'padding' statement. */
4660
4661 if (output_section_statement->subsection_alignment != -1)
4662 i->alignment_power = output_section_statement->subsection_alignment;
4663
4664 o = output_section_statement->bfd_section;
4665 if (o->alignment_power < i->alignment_power)
4666 o->alignment_power = i->alignment_power;
4667
4668 alignment_needed = align_power (dot, i->alignment_power) - dot;
4669
4670 if (alignment_needed != 0)
4671 {
4672 insert_pad (this_ptr, fill, TO_SIZE (alignment_needed), o, dot);
4673 dot += alignment_needed;
4674 }
4675
4676 /* Remember where in the output section this input section goes. */
4677
4678 i->output_offset = dot - o->vma;
4679
4680 /* Mark how big the output section must be to contain this now. */
4681 dot += TO_ADDR (i->size);
4682 o->size = TO_SIZE (dot - o->vma);
4683 }
4684 else
4685 {
4686 i->output_offset = i->vma - output_section_statement->bfd_section->vma;
4687 }
4688
4689 return dot;
4690 }
4691
4692 static int
4693 sort_sections_by_lma (const void *arg1, const void *arg2)
4694 {
4695 const asection *sec1 = *(const asection **) arg1;
4696 const asection *sec2 = *(const asection **) arg2;
4697
4698 if (bfd_section_lma (sec1->owner, sec1)
4699 < bfd_section_lma (sec2->owner, sec2))
4700 return -1;
4701 else if (bfd_section_lma (sec1->owner, sec1)
4702 > bfd_section_lma (sec2->owner, sec2))
4703 return 1;
4704 else if (sec1->id < sec2->id)
4705 return -1;
4706 else if (sec1->id > sec2->id)
4707 return 1;
4708
4709 return 0;
4710 }
4711
4712 #define IGNORE_SECTION(s) \
4713 ((s->flags & SEC_ALLOC) == 0 \
4714 || ((s->flags & SEC_THREAD_LOCAL) != 0 \
4715 && (s->flags & SEC_LOAD) == 0))
4716
4717 /* Check to see if any allocated sections overlap with other allocated
4718 sections. This can happen if a linker script specifies the output
4719 section addresses of the two sections. Also check whether any memory
4720 region has overflowed. */
4721
4722 static void
4723 lang_check_section_addresses (void)
4724 {
4725 asection *s, *p;
4726 asection **sections, **spp;
4727 unsigned int count;
4728 bfd_vma s_start;
4729 bfd_vma s_end;
4730 bfd_vma p_start;
4731 bfd_vma p_end;
4732 bfd_size_type amt;
4733 lang_memory_region_type *m;
4734
4735 if (bfd_count_sections (link_info.output_bfd) <= 1)
4736 return;
4737
4738 amt = bfd_count_sections (link_info.output_bfd) * sizeof (asection *);
4739 sections = (asection **) xmalloc (amt);
4740
4741 /* Scan all sections in the output list. */
4742 count = 0;
4743 for (s = link_info.output_bfd->sections; s != NULL; s = s->next)
4744 {
4745 /* Only consider loadable sections with real contents. */
4746 if (!(s->flags & SEC_LOAD)
4747 || !(s->flags & SEC_ALLOC)
4748 || s->size == 0)
4749 continue;
4750
4751 sections[count] = s;
4752 count++;
4753 }
4754
4755 if (count <= 1)
4756 return;
4757
4758 qsort (sections, (size_t) count, sizeof (asection *),
4759 sort_sections_by_lma);
4760
4761 spp = sections;
4762 s = *spp++;
4763 s_start = s->lma;
4764 s_end = s_start + TO_ADDR (s->size) - 1;
4765 for (count--; count; count--)
4766 {
4767 /* We must check the sections' LMA addresses not their VMA
4768 addresses because overlay sections can have overlapping VMAs
4769 but they must have distinct LMAs. */
4770 p = s;
4771 p_start = s_start;
4772 p_end = s_end;
4773 s = *spp++;
4774 s_start = s->lma;
4775 s_end = s_start + TO_ADDR (s->size) - 1;
4776
4777 /* Look for an overlap. We have sorted sections by lma, so we
4778 know that s_start >= p_start. Besides the obvious case of
4779 overlap when the current section starts before the previous
4780 one ends, we also must have overlap if the previous section
4781 wraps around the address space. */
4782 if (s_start <= p_end
4783 || p_end < p_start)
4784 einfo (_("%X%P: section %s loaded at [%V,%V] overlaps section %s loaded at [%V,%V]\n"),
4785 s->name, s_start, s_end, p->name, p_start, p_end);
4786 }
4787
4788 free (sections);
4789
4790 /* If any memory region has overflowed, report by how much.
4791 We do not issue this diagnostic for regions that had sections
4792 explicitly placed outside their bounds; os_region_check's
4793 diagnostics are adequate for that case.
4794
4795 FIXME: It is conceivable that m->current - (m->origin + m->length)
4796 might overflow a 32-bit integer. There is, alas, no way to print
4797 a bfd_vma quantity in decimal. */
4798 for (m = lang_memory_region_list; m; m = m->next)
4799 if (m->had_full_message)
4800 einfo (_("%X%P: region `%s' overflowed by %ld bytes\n"),
4801 m->name_list.name, (long)(m->current - (m->origin + m->length)));
4802
4803 }
4804
4805 /* Make sure the new address is within the region. We explicitly permit the
4806 current address to be at the exact end of the region when the address is
4807 non-zero, in case the region is at the end of addressable memory and the
4808 calculation wraps around. */
4809
4810 static void
4811 os_region_check (lang_output_section_statement_type *os,
4812 lang_memory_region_type *region,
4813 etree_type *tree,
4814 bfd_vma rbase)
4815 {
4816 if ((region->current < region->origin
4817 || (region->current - region->origin > region->length))
4818 && ((region->current != region->origin + region->length)
4819 || rbase == 0))
4820 {
4821 if (tree != NULL)
4822 {
4823 einfo (_("%X%P: address 0x%v of %B section `%s'"
4824 " is not within region `%s'\n"),
4825 region->current,
4826 os->bfd_section->owner,
4827 os->bfd_section->name,
4828 region->name_list.name);
4829 }
4830 else if (!region->had_full_message)
4831 {
4832 region->had_full_message = TRUE;
4833
4834 einfo (_("%X%P: %B section `%s' will not fit in region `%s'\n"),
4835 os->bfd_section->owner,
4836 os->bfd_section->name,
4837 region->name_list.name);
4838 }
4839 }
4840 }
4841
4842 /* Set the sizes for all the output sections. */
4843
4844 static bfd_vma
4845 lang_size_sections_1
4846 (lang_statement_union_type **prev,
4847 lang_output_section_statement_type *output_section_statement,
4848 fill_type *fill,
4849 bfd_vma dot,
4850 bfd_boolean *relax,
4851 bfd_boolean check_regions)
4852 {
4853 lang_statement_union_type *s;
4854
4855 /* Size up the sections from their constituent parts. */
4856 for (s = *prev; s != NULL; s = s->header.next)
4857 {
4858 switch (s->header.type)
4859 {
4860 case lang_output_section_statement_enum:
4861 {
4862 bfd_vma newdot, after;
4863 lang_output_section_statement_type *os;
4864 lang_memory_region_type *r;
4865 int section_alignment = 0;
4866
4867 os = &s->output_section_statement;
4868 if (os->constraint == -1)
4869 break;
4870
4871 /* FIXME: We shouldn't need to zero section vmas for ld -r
4872 here, in lang_insert_orphan, or in the default linker scripts.
4873 This is covering for coff backend linker bugs. See PR6945. */
4874 if (os->addr_tree == NULL
4875 && link_info.relocatable
4876 && (bfd_get_flavour (link_info.output_bfd)
4877 == bfd_target_coff_flavour))
4878 os->addr_tree = exp_intop (0);
4879 if (os->addr_tree != NULL)
4880 {
4881 os->processed_vma = FALSE;
4882 exp_fold_tree (os->addr_tree, bfd_abs_section_ptr, &dot);
4883
4884 if (expld.result.valid_p)
4885 {
4886 dot = expld.result.value;
4887 if (expld.result.section != NULL)
4888 dot += expld.result.section->vma;
4889 }
4890 else if (expld.phase != lang_mark_phase_enum)
4891 einfo (_("%F%S: non constant or forward reference"
4892 " address expression for section %s\n"),
4893 os->name);
4894 }
4895
4896 if (os->bfd_section == NULL)
4897 /* This section was removed or never actually created. */
4898 break;
4899
4900 /* If this is a COFF shared library section, use the size and
4901 address from the input section. FIXME: This is COFF
4902 specific; it would be cleaner if there were some other way
4903 to do this, but nothing simple comes to mind. */
4904 if (((bfd_get_flavour (link_info.output_bfd)
4905 == bfd_target_ecoff_flavour)
4906 || (bfd_get_flavour (link_info.output_bfd)
4907 == bfd_target_coff_flavour))
4908 && (os->bfd_section->flags & SEC_COFF_SHARED_LIBRARY) != 0)
4909 {
4910 asection *input;
4911
4912 if (os->children.head == NULL
4913 || os->children.head->header.next != NULL
4914 || (os->children.head->header.type
4915 != lang_input_section_enum))
4916 einfo (_("%P%X: Internal error on COFF shared library"
4917 " section %s\n"), os->name);
4918
4919 input = os->children.head->input_section.section;
4920 bfd_set_section_vma (os->bfd_section->owner,
4921 os->bfd_section,
4922 bfd_section_vma (input->owner, input));
4923 os->bfd_section->size = input->size;
4924 break;
4925 }
4926
4927 newdot = dot;
4928 if (bfd_is_abs_section (os->bfd_section))
4929 {
4930 /* No matter what happens, an abs section starts at zero. */
4931 ASSERT (os->bfd_section->vma == 0);
4932 }
4933 else
4934 {
4935 if (os->addr_tree == NULL)
4936 {
4937 /* No address specified for this section, get one
4938 from the region specification. */
4939 if (os->region == NULL
4940 || ((os->bfd_section->flags & (SEC_ALLOC | SEC_LOAD))
4941 && os->region->name_list.name[0] == '*'
4942 && strcmp (os->region->name_list.name,
4943 DEFAULT_MEMORY_REGION) == 0))
4944 {
4945 os->region = lang_memory_default (os->bfd_section);
4946 }
4947
4948 /* If a loadable section is using the default memory
4949 region, and some non default memory regions were
4950 defined, issue an error message. */
4951 if (!os->ignored
4952 && !IGNORE_SECTION (os->bfd_section)
4953 && ! link_info.relocatable
4954 && check_regions
4955 && strcmp (os->region->name_list.name,
4956 DEFAULT_MEMORY_REGION) == 0
4957 && lang_memory_region_list != NULL
4958 && (strcmp (lang_memory_region_list->name_list.name,
4959 DEFAULT_MEMORY_REGION) != 0
4960 || lang_memory_region_list->next != NULL)
4961 && expld.phase != lang_mark_phase_enum)
4962 {
4963 /* By default this is an error rather than just a
4964 warning because if we allocate the section to the
4965 default memory region we can end up creating an
4966 excessively large binary, or even seg faulting when
4967 attempting to perform a negative seek. See
4968 sources.redhat.com/ml/binutils/2003-04/msg00423.html
4969 for an example of this. This behaviour can be
4970 overridden by the using the --no-check-sections
4971 switch. */
4972 if (command_line.check_section_addresses)
4973 einfo (_("%P%F: error: no memory region specified"
4974 " for loadable section `%s'\n"),
4975 bfd_get_section_name (link_info.output_bfd,
4976 os->bfd_section));
4977 else
4978 einfo (_("%P: warning: no memory region specified"
4979 " for loadable section `%s'\n"),
4980 bfd_get_section_name (link_info.output_bfd,
4981 os->bfd_section));
4982 }
4983
4984 newdot = os->region->current;
4985 section_alignment = os->bfd_section->alignment_power;
4986 }
4987 else
4988 section_alignment = os->section_alignment;
4989
4990 /* Align to what the section needs. */
4991 if (section_alignment > 0)
4992 {
4993 bfd_vma savedot = newdot;
4994 newdot = align_power (newdot, section_alignment);
4995
4996 if (newdot != savedot
4997 && (config.warn_section_align
4998 || os->addr_tree != NULL)
4999 && expld.phase != lang_mark_phase_enum)
5000 einfo (_("%P: warning: changing start of section"
5001 " %s by %lu bytes\n"),
5002 os->name, (unsigned long) (newdot - savedot));
5003 }
5004
5005 bfd_set_section_vma (0, os->bfd_section, newdot);
5006
5007 os->bfd_section->output_offset = 0;
5008 }
5009
5010 lang_size_sections_1 (&os->children.head, os,
5011 os->fill, newdot, relax, check_regions);
5012
5013 os->processed_vma = TRUE;
5014
5015 if (bfd_is_abs_section (os->bfd_section) || os->ignored)
5016 /* Except for some special linker created sections,
5017 no output section should change from zero size
5018 after strip_excluded_output_sections. A non-zero
5019 size on an ignored section indicates that some
5020 input section was not sized early enough. */
5021 ASSERT (os->bfd_section->size == 0);
5022 else
5023 {
5024 dot = os->bfd_section->vma;
5025
5026 /* Put the section within the requested block size, or
5027 align at the block boundary. */
5028 after = ((dot
5029 + TO_ADDR (os->bfd_section->size)
5030 + os->block_value - 1)
5031 & - (bfd_vma) os->block_value);
5032
5033 os->bfd_section->size = TO_SIZE (after - os->bfd_section->vma);
5034 }
5035
5036 /* Set section lma. */
5037 r = os->region;
5038 if (r == NULL)
5039 r = lang_memory_region_lookup (DEFAULT_MEMORY_REGION, FALSE);
5040
5041 if (os->load_base)
5042 {
5043 bfd_vma lma = exp_get_abs_int (os->load_base, 0, "load base");
5044 os->bfd_section->lma = lma;
5045 }
5046 else if (os->lma_region != NULL)
5047 {
5048 bfd_vma lma = os->lma_region->current;
5049
5050 if (section_alignment > 0)
5051 lma = align_power (lma, section_alignment);
5052 os->bfd_section->lma = lma;
5053 }
5054 else if (r->last_os != NULL
5055 && (os->bfd_section->flags & SEC_ALLOC) != 0)
5056 {
5057 bfd_vma lma;
5058 asection *last;
5059
5060 last = r->last_os->output_section_statement.bfd_section;
5061
5062 /* A backwards move of dot should be accompanied by
5063 an explicit assignment to the section LMA (ie.
5064 os->load_base set) because backwards moves can
5065 create overlapping LMAs. */
5066 if (dot < last->vma
5067 && os->bfd_section->size != 0
5068 && dot + os->bfd_section->size <= last->vma)
5069 {
5070 /* If dot moved backwards then leave lma equal to
5071 vma. This is the old default lma, which might
5072 just happen to work when the backwards move is
5073 sufficiently large. Nag if this changes anything,
5074 so people can fix their linker scripts. */
5075
5076 if (last->vma != last->lma)
5077 einfo (_("%P: warning: dot moved backwards before `%s'\n"),
5078 os->name);
5079 }
5080 else
5081 {
5082 /* If this is an overlay, set the current lma to that
5083 at the end of the previous section. */
5084 if (os->sectype == overlay_section)
5085 lma = last->lma + last->size;
5086
5087 /* Otherwise, keep the same lma to vma relationship
5088 as the previous section. */
5089 else
5090 lma = dot + last->lma - last->vma;
5091
5092 if (section_alignment > 0)
5093 lma = align_power (lma, section_alignment);
5094 os->bfd_section->lma = lma;
5095 }
5096 }
5097 os->processed_lma = TRUE;
5098
5099 if (bfd_is_abs_section (os->bfd_section) || os->ignored)
5100 break;
5101
5102 /* Keep track of normal sections using the default
5103 lma region. We use this to set the lma for
5104 following sections. Overlays or other linker
5105 script assignment to lma might mean that the
5106 default lma == vma is incorrect.
5107 To avoid warnings about dot moving backwards when using
5108 -Ttext, don't start tracking sections until we find one
5109 of non-zero size or with lma set differently to vma. */
5110 if (((os->bfd_section->flags & SEC_HAS_CONTENTS) != 0
5111 || (os->bfd_section->flags & SEC_THREAD_LOCAL) == 0)
5112 && (os->bfd_section->flags & SEC_ALLOC) != 0
5113 && (os->bfd_section->size != 0
5114 || (r->last_os == NULL
5115 && os->bfd_section->vma != os->bfd_section->lma)
5116 || (r->last_os != NULL
5117 && dot >= (r->last_os->output_section_statement
5118 .bfd_section->vma)))
5119 && os->lma_region == NULL
5120 && !link_info.relocatable)
5121 r->last_os = s;
5122
5123 /* .tbss sections effectively have zero size. */
5124 if ((os->bfd_section->flags & SEC_HAS_CONTENTS) != 0
5125 || (os->bfd_section->flags & SEC_THREAD_LOCAL) == 0
5126 || link_info.relocatable)
5127 dot += TO_ADDR (os->bfd_section->size);
5128
5129 if (os->update_dot_tree != 0)
5130 exp_fold_tree (os->update_dot_tree, bfd_abs_section_ptr, &dot);
5131
5132 /* Update dot in the region ?
5133 We only do this if the section is going to be allocated,
5134 since unallocated sections do not contribute to the region's
5135 overall size in memory. */
5136 if (os->region != NULL
5137 && (os->bfd_section->flags & (SEC_ALLOC | SEC_LOAD)))
5138 {
5139 os->region->current = dot;
5140
5141 if (check_regions)
5142 /* Make sure the new address is within the region. */
5143 os_region_check (os, os->region, os->addr_tree,
5144 os->bfd_section->vma);
5145
5146 if (os->lma_region != NULL && os->lma_region != os->region
5147 && (os->bfd_section->flags & SEC_LOAD))
5148 {
5149 os->lma_region->current
5150 = os->bfd_section->lma + TO_ADDR (os->bfd_section->size);
5151
5152 if (check_regions)
5153 os_region_check (os, os->lma_region, NULL,
5154 os->bfd_section->lma);
5155 }
5156 }
5157 }
5158 break;
5159
5160 case lang_constructors_statement_enum:
5161 dot = lang_size_sections_1 (&constructor_list.head,
5162 output_section_statement,
5163 fill, dot, relax, check_regions);
5164 break;
5165
5166 case lang_data_statement_enum:
5167 {
5168 unsigned int size = 0;
5169
5170 s->data_statement.output_offset =
5171 dot - output_section_statement->bfd_section->vma;
5172 s->data_statement.output_section =
5173 output_section_statement->bfd_section;
5174
5175 /* We might refer to provided symbols in the expression, and
5176 need to mark them as needed. */
5177 exp_fold_tree (s->data_statement.exp, bfd_abs_section_ptr, &dot);
5178
5179 switch (s->data_statement.type)
5180 {
5181 default:
5182 abort ();
5183 case QUAD:
5184 case SQUAD:
5185 size = QUAD_SIZE;
5186 break;
5187 case LONG:
5188 size = LONG_SIZE;
5189 break;
5190 case SHORT:
5191 size = SHORT_SIZE;
5192 break;
5193 case BYTE:
5194 size = BYTE_SIZE;
5195 break;
5196 }
5197 if (size < TO_SIZE ((unsigned) 1))
5198 size = TO_SIZE ((unsigned) 1);
5199 dot += TO_ADDR (size);
5200 output_section_statement->bfd_section->size += size;
5201 }
5202 break;
5203
5204 case lang_reloc_statement_enum:
5205 {
5206 int size;
5207
5208 s->reloc_statement.output_offset =
5209 dot - output_section_statement->bfd_section->vma;
5210 s->reloc_statement.output_section =
5211 output_section_statement->bfd_section;
5212 size = bfd_get_reloc_size (s->reloc_statement.howto);
5213 dot += TO_ADDR (size);
5214 output_section_statement->bfd_section->size += size;
5215 }
5216 break;
5217
5218 case lang_wild_statement_enum:
5219 dot = lang_size_sections_1 (&s->wild_statement.children.head,
5220 output_section_statement,
5221 fill, dot, relax, check_regions);
5222 break;
5223
5224 case lang_object_symbols_statement_enum:
5225 link_info.create_object_symbols_section =
5226 output_section_statement->bfd_section;
5227 break;
5228
5229 case lang_output_statement_enum:
5230 case lang_target_statement_enum:
5231 break;
5232
5233 case lang_input_section_enum:
5234 {
5235 asection *i;
5236
5237 i = s->input_section.section;
5238 if (relax)
5239 {
5240 bfd_boolean again;
5241
5242 if (! bfd_relax_section (i->owner, i, &link_info, &again))
5243 einfo (_("%P%F: can't relax section: %E\n"));
5244 if (again)
5245 *relax = TRUE;
5246 }
5247 dot = size_input_section (prev, output_section_statement,
5248 output_section_statement->fill, dot);
5249 }
5250 break;
5251
5252 case lang_input_statement_enum:
5253 break;
5254
5255 case lang_fill_statement_enum:
5256 s->fill_statement.output_section =
5257 output_section_statement->bfd_section;
5258
5259 fill = s->fill_statement.fill;
5260 break;
5261
5262 case lang_assignment_statement_enum:
5263 {
5264 bfd_vma newdot = dot;
5265 etree_type *tree = s->assignment_statement.exp;
5266
5267 expld.dataseg.relro = exp_dataseg_relro_none;
5268
5269 exp_fold_tree (tree,
5270 output_section_statement->bfd_section,
5271 &newdot);
5272
5273 if (expld.dataseg.relro == exp_dataseg_relro_start)
5274 {
5275 if (!expld.dataseg.relro_start_stat)
5276 expld.dataseg.relro_start_stat = s;
5277 else
5278 {
5279 ASSERT (expld.dataseg.relro_start_stat == s);
5280 }
5281 }
5282 else if (expld.dataseg.relro == exp_dataseg_relro_end)
5283 {
5284 if (!expld.dataseg.relro_end_stat)
5285 expld.dataseg.relro_end_stat = s;
5286 else
5287 {
5288 ASSERT (expld.dataseg.relro_end_stat == s);
5289 }
5290 }
5291 expld.dataseg.relro = exp_dataseg_relro_none;
5292
5293 /* This symbol is relative to this section. */
5294 if ((tree->type.node_class == etree_provided
5295 || tree->type.node_class == etree_assign)
5296 && (tree->assign.dst [0] != '.'
5297 || tree->assign.dst [1] != '\0'))
5298 output_section_statement->section_relative_symbol = 1;
5299
5300 if (!output_section_statement->ignored)
5301 {
5302 if (output_section_statement == abs_output_section)
5303 {
5304 /* If we don't have an output section, then just adjust
5305 the default memory address. */
5306 lang_memory_region_lookup (DEFAULT_MEMORY_REGION,
5307 FALSE)->current = newdot;
5308 }
5309 else if (newdot != dot)
5310 {
5311 /* Insert a pad after this statement. We can't
5312 put the pad before when relaxing, in case the
5313 assignment references dot. */
5314 insert_pad (&s->header.next, fill, TO_SIZE (newdot - dot),
5315 output_section_statement->bfd_section, dot);
5316
5317 /* Don't neuter the pad below when relaxing. */
5318 s = s->header.next;
5319
5320 /* If dot is advanced, this implies that the section
5321 should have space allocated to it, unless the
5322 user has explicitly stated that the section
5323 should not be allocated. */
5324 if (output_section_statement->sectype != noalloc_section
5325 && (output_section_statement->sectype != noload_section
5326 || (bfd_get_flavour (link_info.output_bfd)
5327 == bfd_target_elf_flavour)))
5328 output_section_statement->bfd_section->flags |= SEC_ALLOC;
5329 }
5330 dot = newdot;
5331 }
5332 }
5333 break;
5334
5335 case lang_padding_statement_enum:
5336 /* If this is the first time lang_size_sections is called,
5337 we won't have any padding statements. If this is the
5338 second or later passes when relaxing, we should allow
5339 padding to shrink. If padding is needed on this pass, it
5340 will be added back in. */
5341 s->padding_statement.size = 0;
5342
5343 /* Make sure output_offset is valid. If relaxation shrinks
5344 the section and this pad isn't needed, it's possible to
5345 have output_offset larger than the final size of the
5346 section. bfd_set_section_contents will complain even for
5347 a pad size of zero. */
5348 s->padding_statement.output_offset
5349 = dot - output_section_statement->bfd_section->vma;
5350 break;
5351
5352 case lang_group_statement_enum:
5353 dot = lang_size_sections_1 (&s->group_statement.children.head,
5354 output_section_statement,
5355 fill, dot, relax, check_regions);
5356 break;
5357
5358 case lang_insert_statement_enum:
5359 break;
5360
5361 /* We can only get here when relaxing is turned on. */
5362 case lang_address_statement_enum:
5363 break;
5364
5365 default:
5366 FAIL ();
5367 break;
5368 }
5369 prev = &s->header.next;
5370 }
5371 return dot;
5372 }
5373
5374 /* Callback routine that is used in _bfd_elf_map_sections_to_segments.
5375 The BFD library has set NEW_SEGMENT to TRUE iff it thinks that
5376 CURRENT_SECTION and PREVIOUS_SECTION ought to be placed into different
5377 segments. We are allowed an opportunity to override this decision. */
5378
5379 bfd_boolean
5380 ldlang_override_segment_assignment (struct bfd_link_info * info ATTRIBUTE_UNUSED,
5381 bfd * abfd ATTRIBUTE_UNUSED,
5382 asection * current_section,
5383 asection * previous_section,
5384 bfd_boolean new_segment)
5385 {
5386 lang_output_section_statement_type * cur;
5387 lang_output_section_statement_type * prev;
5388
5389 /* The checks below are only necessary when the BFD library has decided
5390 that the two sections ought to be placed into the same segment. */
5391 if (new_segment)
5392 return TRUE;
5393
5394 /* Paranoia checks. */
5395 if (current_section == NULL || previous_section == NULL)
5396 return new_segment;
5397
5398 /* Find the memory regions associated with the two sections.
5399 We call lang_output_section_find() here rather than scanning the list
5400 of output sections looking for a matching section pointer because if
5401 we have a large number of sections then a hash lookup is faster. */
5402 cur = lang_output_section_find (current_section->name);
5403 prev = lang_output_section_find (previous_section->name);
5404
5405 /* More paranoia. */
5406 if (cur == NULL || prev == NULL)
5407 return new_segment;
5408
5409 /* If the regions are different then force the sections to live in
5410 different segments. See the email thread starting at the following
5411 URL for the reasons why this is necessary:
5412 http://sourceware.org/ml/binutils/2007-02/msg00216.html */
5413 return cur->region != prev->region;
5414 }
5415
5416 void
5417 one_lang_size_sections_pass (bfd_boolean *relax, bfd_boolean check_regions)
5418 {
5419 lang_statement_iteration++;
5420 lang_size_sections_1 (&statement_list.head, abs_output_section,
5421 0, 0, relax, check_regions);
5422 }
5423
5424 void
5425 lang_size_sections (bfd_boolean *relax, bfd_boolean check_regions)
5426 {
5427 expld.phase = lang_allocating_phase_enum;
5428 expld.dataseg.phase = exp_dataseg_none;
5429
5430 one_lang_size_sections_pass (relax, check_regions);
5431 if (expld.dataseg.phase == exp_dataseg_end_seen
5432 && link_info.relro && expld.dataseg.relro_end)
5433 {
5434 /* If DATA_SEGMENT_ALIGN DATA_SEGMENT_RELRO_END pair was seen, try
5435 to put expld.dataseg.relro on a (common) page boundary. */
5436 bfd_vma min_base, old_base, relro_end, maxpage;
5437
5438 expld.dataseg.phase = exp_dataseg_relro_adjust;
5439 maxpage = expld.dataseg.maxpagesize;
5440 /* MIN_BASE is the absolute minimum address we are allowed to start the
5441 read-write segment (byte before will be mapped read-only). */
5442 min_base = (expld.dataseg.min_base + maxpage - 1) & ~(maxpage - 1);
5443 /* OLD_BASE is the address for a feasible minimum address which will
5444 still not cause a data overlap inside MAXPAGE causing file offset skip
5445 by MAXPAGE. */
5446 old_base = expld.dataseg.base;
5447 expld.dataseg.base += (-expld.dataseg.relro_end
5448 & (expld.dataseg.pagesize - 1));
5449 /* Compute the expected PT_GNU_RELRO segment end. */
5450 relro_end = ((expld.dataseg.relro_end + expld.dataseg.pagesize - 1)
5451 & ~(expld.dataseg.pagesize - 1));
5452 if (min_base + maxpage < expld.dataseg.base)
5453 {
5454 expld.dataseg.base -= maxpage;
5455 relro_end -= maxpage;
5456 }
5457 lang_reset_memory_regions ();
5458 one_lang_size_sections_pass (relax, check_regions);
5459 if (expld.dataseg.relro_end > relro_end)
5460 {
5461 /* The alignment of sections between DATA_SEGMENT_ALIGN
5462 and DATA_SEGMENT_RELRO_END caused huge padding to be
5463 inserted at DATA_SEGMENT_RELRO_END. Try to start a bit lower so
5464 that the section alignments will fit in. */
5465 asection *sec;
5466 unsigned int max_alignment_power = 0;
5467
5468 /* Find maximum alignment power of sections between
5469 DATA_SEGMENT_ALIGN and DATA_SEGMENT_RELRO_END. */
5470 for (sec = link_info.output_bfd->sections; sec; sec = sec->next)
5471 if (sec->vma >= expld.dataseg.base
5472 && sec->vma < expld.dataseg.relro_end
5473 && sec->alignment_power > max_alignment_power)
5474 max_alignment_power = sec->alignment_power;
5475
5476 if (((bfd_vma) 1 << max_alignment_power) < expld.dataseg.pagesize)
5477 {
5478 if (expld.dataseg.base - (1 << max_alignment_power) < old_base)
5479 expld.dataseg.base += expld.dataseg.pagesize;
5480 expld.dataseg.base -= (1 << max_alignment_power);
5481 lang_reset_memory_regions ();
5482 one_lang_size_sections_pass (relax, check_regions);
5483 }
5484 }
5485 link_info.relro_start = expld.dataseg.base;
5486 link_info.relro_end = expld.dataseg.relro_end;
5487 }
5488 else if (expld.dataseg.phase == exp_dataseg_end_seen)
5489 {
5490 /* If DATA_SEGMENT_ALIGN DATA_SEGMENT_END pair was seen, check whether
5491 a page could be saved in the data segment. */
5492 bfd_vma first, last;
5493
5494 first = -expld.dataseg.base & (expld.dataseg.pagesize - 1);
5495 last = expld.dataseg.end & (expld.dataseg.pagesize - 1);
5496 if (first && last
5497 && ((expld.dataseg.base & ~(expld.dataseg.pagesize - 1))
5498 != (expld.dataseg.end & ~(expld.dataseg.pagesize - 1)))
5499 && first + last <= expld.dataseg.pagesize)
5500 {
5501 expld.dataseg.phase = exp_dataseg_adjust;
5502 lang_reset_memory_regions ();
5503 one_lang_size_sections_pass (relax, check_regions);
5504 }
5505 else
5506 expld.dataseg.phase = exp_dataseg_done;
5507 }
5508 else
5509 expld.dataseg.phase = exp_dataseg_done;
5510 }
5511
5512 /* Worker function for lang_do_assignments. Recursiveness goes here. */
5513
5514 static bfd_vma
5515 lang_do_assignments_1 (lang_statement_union_type *s,
5516 lang_output_section_statement_type *current_os,
5517 fill_type *fill,
5518 bfd_vma dot)
5519 {
5520 for (; s != NULL; s = s->header.next)
5521 {
5522 switch (s->header.type)
5523 {
5524 case lang_constructors_statement_enum:
5525 dot = lang_do_assignments_1 (constructor_list.head,
5526 current_os, fill, dot);
5527 break;
5528
5529 case lang_output_section_statement_enum:
5530 {
5531 lang_output_section_statement_type *os;
5532
5533 os = &(s->output_section_statement);
5534 if (os->bfd_section != NULL && !os->ignored)
5535 {
5536 dot = os->bfd_section->vma;
5537
5538 lang_do_assignments_1 (os->children.head, os, os->fill, dot);
5539
5540 /* .tbss sections effectively have zero size. */
5541 if ((os->bfd_section->flags & SEC_HAS_CONTENTS) != 0
5542 || (os->bfd_section->flags & SEC_THREAD_LOCAL) == 0
5543 || link_info.relocatable)
5544 dot += TO_ADDR (os->bfd_section->size);
5545
5546 if (os->update_dot_tree != NULL)
5547 exp_fold_tree (os->update_dot_tree, bfd_abs_section_ptr, &dot);
5548 }
5549 }
5550 break;
5551
5552 case lang_wild_statement_enum:
5553
5554 dot = lang_do_assignments_1 (s->wild_statement.children.head,
5555 current_os, fill, dot);
5556 break;
5557
5558 case lang_object_symbols_statement_enum:
5559 case lang_output_statement_enum:
5560 case lang_target_statement_enum:
5561 break;
5562
5563 case lang_data_statement_enum:
5564 exp_fold_tree (s->data_statement.exp, bfd_abs_section_ptr, &dot);
5565 if (expld.result.valid_p)
5566 {
5567 s->data_statement.value = expld.result.value;
5568 if (expld.result.section != NULL)
5569 s->data_statement.value += expld.result.section->vma;
5570 }
5571 else
5572 einfo (_("%F%P: invalid data statement\n"));
5573 {
5574 unsigned int size;
5575 switch (s->data_statement.type)
5576 {
5577 default:
5578 abort ();
5579 case QUAD:
5580 case SQUAD:
5581 size = QUAD_SIZE;
5582 break;
5583 case LONG:
5584 size = LONG_SIZE;
5585 break;
5586 case SHORT:
5587 size = SHORT_SIZE;
5588 break;
5589 case BYTE:
5590 size = BYTE_SIZE;
5591 break;
5592 }
5593 if (size < TO_SIZE ((unsigned) 1))
5594 size = TO_SIZE ((unsigned) 1);
5595 dot += TO_ADDR (size);
5596 }
5597 break;
5598
5599 case lang_reloc_statement_enum:
5600 exp_fold_tree (s->reloc_statement.addend_exp,
5601 bfd_abs_section_ptr, &dot);
5602 if (expld.result.valid_p)
5603 s->reloc_statement.addend_value = expld.result.value;
5604 else
5605 einfo (_("%F%P: invalid reloc statement\n"));
5606 dot += TO_ADDR (bfd_get_reloc_size (s->reloc_statement.howto));
5607 break;
5608
5609 case lang_input_section_enum:
5610 {
5611 asection *in = s->input_section.section;
5612
5613 if ((in->flags & SEC_EXCLUDE) == 0)
5614 dot += TO_ADDR (in->size);
5615 }
5616 break;
5617
5618 case lang_input_statement_enum:
5619 break;
5620
5621 case lang_fill_statement_enum:
5622 fill = s->fill_statement.fill;
5623 break;
5624
5625 case lang_assignment_statement_enum:
5626 exp_fold_tree (s->assignment_statement.exp,
5627 current_os->bfd_section,
5628 &dot);
5629 break;
5630
5631 case lang_padding_statement_enum:
5632 dot += TO_ADDR (s->padding_statement.size);
5633 break;
5634
5635 case lang_group_statement_enum:
5636 dot = lang_do_assignments_1 (s->group_statement.children.head,
5637 current_os, fill, dot);
5638 break;
5639
5640 case lang_insert_statement_enum:
5641 break;
5642
5643 case lang_address_statement_enum:
5644 break;
5645
5646 default:
5647 FAIL ();
5648 break;
5649 }
5650 }
5651 return dot;
5652 }
5653
5654 void
5655 lang_do_assignments (lang_phase_type phase)
5656 {
5657 expld.phase = phase;
5658 lang_statement_iteration++;
5659 lang_do_assignments_1 (statement_list.head, abs_output_section, NULL, 0);
5660 }
5661
5662 /* Fix any .startof. or .sizeof. symbols. When the assemblers see the
5663 operator .startof. (section_name), it produces an undefined symbol
5664 .startof.section_name. Similarly, when it sees
5665 .sizeof. (section_name), it produces an undefined symbol
5666 .sizeof.section_name. For all the output sections, we look for
5667 such symbols, and set them to the correct value. */
5668
5669 static void
5670 lang_set_startof (void)
5671 {
5672 asection *s;
5673
5674 if (link_info.relocatable)
5675 return;
5676
5677 for (s = link_info.output_bfd->sections; s != NULL; s = s->next)
5678 {
5679 const char *secname;
5680 char *buf;
5681 struct bfd_link_hash_entry *h;
5682
5683 secname = bfd_get_section_name (link_info.output_bfd, s);
5684 buf = (char *) xmalloc (10 + strlen (secname));
5685
5686 sprintf (buf, ".startof.%s", secname);
5687 h = bfd_link_hash_lookup (link_info.hash, buf, FALSE, FALSE, TRUE);
5688 if (h != NULL && h->type == bfd_link_hash_undefined)
5689 {
5690 h->type = bfd_link_hash_defined;
5691 h->u.def.value = bfd_get_section_vma (link_info.output_bfd, s);
5692 h->u.def.section = bfd_abs_section_ptr;
5693 }
5694
5695 sprintf (buf, ".sizeof.%s", secname);
5696 h = bfd_link_hash_lookup (link_info.hash, buf, FALSE, FALSE, TRUE);
5697 if (h != NULL && h->type == bfd_link_hash_undefined)
5698 {
5699 h->type = bfd_link_hash_defined;
5700 h->u.def.value = TO_ADDR (s->size);
5701 h->u.def.section = bfd_abs_section_ptr;
5702 }
5703
5704 free (buf);
5705 }
5706 }
5707
5708 static void
5709 lang_end (void)
5710 {
5711 struct bfd_link_hash_entry *h;
5712 bfd_boolean warn;
5713
5714 if ((link_info.relocatable && !link_info.gc_sections)
5715 || (link_info.shared && !link_info.executable))
5716 warn = entry_from_cmdline;
5717 else
5718 warn = TRUE;
5719
5720 /* Force the user to specify a root when generating a relocatable with
5721 --gc-sections. */
5722 if (link_info.gc_sections && link_info.relocatable
5723 && !(entry_from_cmdline || undef_from_cmdline))
5724 einfo (_("%P%F: gc-sections requires either an entry or "
5725 "an undefined symbol\n"));
5726
5727 if (entry_symbol.name == NULL)
5728 {
5729 /* No entry has been specified. Look for the default entry, but
5730 don't warn if we don't find it. */
5731 entry_symbol.name = entry_symbol_default;
5732 warn = FALSE;
5733 }
5734
5735 h = bfd_link_hash_lookup (link_info.hash, entry_symbol.name,
5736 FALSE, FALSE, TRUE);
5737 if (h != NULL
5738 && (h->type == bfd_link_hash_defined
5739 || h->type == bfd_link_hash_defweak)
5740 && h->u.def.section->output_section != NULL)
5741 {
5742 bfd_vma val;
5743
5744 val = (h->u.def.value
5745 + bfd_get_section_vma (link_info.output_bfd,
5746 h->u.def.section->output_section)
5747 + h->u.def.section->output_offset);
5748 if (! bfd_set_start_address (link_info.output_bfd, val))
5749 einfo (_("%P%F:%s: can't set start address\n"), entry_symbol.name);
5750 }
5751 else
5752 {
5753 bfd_vma val;
5754 const char *send;
5755
5756 /* We couldn't find the entry symbol. Try parsing it as a
5757 number. */
5758 val = bfd_scan_vma (entry_symbol.name, &send, 0);
5759 if (*send == '\0')
5760 {
5761 if (! bfd_set_start_address (link_info.output_bfd, val))
5762 einfo (_("%P%F: can't set start address\n"));
5763 }
5764 else
5765 {
5766 asection *ts;
5767
5768 /* Can't find the entry symbol, and it's not a number. Use
5769 the first address in the text section. */
5770 ts = bfd_get_section_by_name (link_info.output_bfd, entry_section);
5771 if (ts != NULL)
5772 {
5773 if (warn)
5774 einfo (_("%P: warning: cannot find entry symbol %s;"
5775 " defaulting to %V\n"),
5776 entry_symbol.name,
5777 bfd_get_section_vma (link_info.output_bfd, ts));
5778 if (!(bfd_set_start_address
5779 (link_info.output_bfd,
5780 bfd_get_section_vma (link_info.output_bfd, ts))))
5781 einfo (_("%P%F: can't set start address\n"));
5782 }
5783 else
5784 {
5785 if (warn)
5786 einfo (_("%P: warning: cannot find entry symbol %s;"
5787 " not setting start address\n"),
5788 entry_symbol.name);
5789 }
5790 }
5791 }
5792
5793 /* Don't bfd_hash_table_free (&lang_definedness_table);
5794 map file output may result in a call of lang_track_definedness. */
5795 }
5796
5797 /* This is a small function used when we want to ignore errors from
5798 BFD. */
5799
5800 static void
5801 ignore_bfd_errors (const char *s ATTRIBUTE_UNUSED, ...)
5802 {
5803 /* Don't do anything. */
5804 }
5805
5806 /* Check that the architecture of all the input files is compatible
5807 with the output file. Also call the backend to let it do any
5808 other checking that is needed. */
5809
5810 static void
5811 lang_check (void)
5812 {
5813 lang_statement_union_type *file;
5814 bfd *input_bfd;
5815 const bfd_arch_info_type *compatible;
5816
5817 for (file = file_chain.head; file != NULL; file = file->input_statement.next)
5818 {
5819 #ifdef ENABLE_PLUGINS
5820 /* Don't check format of files claimed by plugin. */
5821 if (file->input_statement.claimed)
5822 continue;
5823 #endif /* ENABLE_PLUGINS */
5824 input_bfd = file->input_statement.the_bfd;
5825 compatible
5826 = bfd_arch_get_compatible (input_bfd, link_info.output_bfd,
5827 command_line.accept_unknown_input_arch);
5828
5829 /* In general it is not possible to perform a relocatable
5830 link between differing object formats when the input
5831 file has relocations, because the relocations in the
5832 input format may not have equivalent representations in
5833 the output format (and besides BFD does not translate
5834 relocs for other link purposes than a final link). */
5835 if ((link_info.relocatable || link_info.emitrelocations)
5836 && (compatible == NULL
5837 || (bfd_get_flavour (input_bfd)
5838 != bfd_get_flavour (link_info.output_bfd)))
5839 && (bfd_get_file_flags (input_bfd) & HAS_RELOC) != 0)
5840 {
5841 einfo (_("%P%F: Relocatable linking with relocations from"
5842 " format %s (%B) to format %s (%B) is not supported\n"),
5843 bfd_get_target (input_bfd), input_bfd,
5844 bfd_get_target (link_info.output_bfd), link_info.output_bfd);
5845 /* einfo with %F exits. */
5846 }
5847
5848 if (compatible == NULL)
5849 {
5850 if (command_line.warn_mismatch)
5851 einfo (_("%P%X: %s architecture of input file `%B'"
5852 " is incompatible with %s output\n"),
5853 bfd_printable_name (input_bfd), input_bfd,
5854 bfd_printable_name (link_info.output_bfd));
5855 }
5856 else if (bfd_count_sections (input_bfd))
5857 {
5858 /* If the input bfd has no contents, it shouldn't set the
5859 private data of the output bfd. */
5860
5861 bfd_error_handler_type pfn = NULL;
5862
5863 /* If we aren't supposed to warn about mismatched input
5864 files, temporarily set the BFD error handler to a
5865 function which will do nothing. We still want to call
5866 bfd_merge_private_bfd_data, since it may set up
5867 information which is needed in the output file. */
5868 if (! command_line.warn_mismatch)
5869 pfn = bfd_set_error_handler (ignore_bfd_errors);
5870 if (! bfd_merge_private_bfd_data (input_bfd, link_info.output_bfd))
5871 {
5872 if (command_line.warn_mismatch)
5873 einfo (_("%P%X: failed to merge target specific data"
5874 " of file %B\n"), input_bfd);
5875 }
5876 if (! command_line.warn_mismatch)
5877 bfd_set_error_handler (pfn);
5878 }
5879 }
5880 }
5881
5882 /* Look through all the global common symbols and attach them to the
5883 correct section. The -sort-common command line switch may be used
5884 to roughly sort the entries by alignment. */
5885
5886 static void
5887 lang_common (void)
5888 {
5889 if (command_line.inhibit_common_definition)
5890 return;
5891 if (link_info.relocatable
5892 && ! command_line.force_common_definition)
5893 return;
5894
5895 if (! config.sort_common)
5896 bfd_link_hash_traverse (link_info.hash, lang_one_common, NULL);
5897 else
5898 {
5899 unsigned int power;
5900
5901 if (config.sort_common == sort_descending)
5902 {
5903 for (power = 4; power > 0; power--)
5904 bfd_link_hash_traverse (link_info.hash, lang_one_common, &power);
5905
5906 power = 0;
5907 bfd_link_hash_traverse (link_info.hash, lang_one_common, &power);
5908 }
5909 else
5910 {
5911 for (power = 0; power <= 4; power++)
5912 bfd_link_hash_traverse (link_info.hash, lang_one_common, &power);
5913
5914 power = UINT_MAX;
5915 bfd_link_hash_traverse (link_info.hash, lang_one_common, &power);
5916 }
5917 }
5918 }
5919
5920 /* Place one common symbol in the correct section. */
5921
5922 static bfd_boolean
5923 lang_one_common (struct bfd_link_hash_entry *h, void *info)
5924 {
5925 unsigned int power_of_two;
5926 bfd_vma size;
5927 asection *section;
5928
5929 if (h->type != bfd_link_hash_common)
5930 return TRUE;
5931
5932 size = h->u.c.size;
5933 power_of_two = h->u.c.p->alignment_power;
5934
5935 if (config.sort_common == sort_descending
5936 && power_of_two < *(unsigned int *) info)
5937 return TRUE;
5938 else if (config.sort_common == sort_ascending
5939 && power_of_two > *(unsigned int *) info)
5940 return TRUE;
5941
5942 section = h->u.c.p->section;
5943 if (!bfd_define_common_symbol (link_info.output_bfd, &link_info, h))
5944 einfo (_("%P%F: Could not define common symbol `%T': %E\n"),
5945 h->root.string);
5946
5947 if (config.map_file != NULL)
5948 {
5949 static bfd_boolean header_printed;
5950 int len;
5951 char *name;
5952 char buf[50];
5953
5954 if (! header_printed)
5955 {
5956 minfo (_("\nAllocating common symbols\n"));
5957 minfo (_("Common symbol size file\n\n"));
5958 header_printed = TRUE;
5959 }
5960
5961 name = bfd_demangle (link_info.output_bfd, h->root.string,
5962 DMGL_ANSI | DMGL_PARAMS);
5963 if (name == NULL)
5964 {
5965 minfo ("%s", h->root.string);
5966 len = strlen (h->root.string);
5967 }
5968 else
5969 {
5970 minfo ("%s", name);
5971 len = strlen (name);
5972 free (name);
5973 }
5974
5975 if (len >= 19)
5976 {
5977 print_nl ();
5978 len = 0;
5979 }
5980 while (len < 20)
5981 {
5982 print_space ();
5983 ++len;
5984 }
5985
5986 minfo ("0x");
5987 if (size <= 0xffffffff)
5988 sprintf (buf, "%lx", (unsigned long) size);
5989 else
5990 sprintf_vma (buf, size);
5991 minfo ("%s", buf);
5992 len = strlen (buf);
5993
5994 while (len < 16)
5995 {
5996 print_space ();
5997 ++len;
5998 }
5999
6000 minfo ("%B\n", section->owner);
6001 }
6002
6003 return TRUE;
6004 }
6005
6006 /* Run through the input files and ensure that every input section has
6007 somewhere to go. If one is found without a destination then create
6008 an input request and place it into the statement tree. */
6009
6010 static void
6011 lang_place_orphans (void)
6012 {
6013 LANG_FOR_EACH_INPUT_STATEMENT (file)
6014 {
6015 asection *s;
6016
6017 for (s = file->the_bfd->sections; s != NULL; s = s->next)
6018 {
6019 if (s->output_section == NULL)
6020 {
6021 /* This section of the file is not attached, root
6022 around for a sensible place for it to go. */
6023
6024 if (file->just_syms_flag)
6025 bfd_link_just_syms (file->the_bfd, s, &link_info);
6026 else if ((s->flags & SEC_EXCLUDE) != 0)
6027 s->output_section = bfd_abs_section_ptr;
6028 else if (strcmp (s->name, "COMMON") == 0)
6029 {
6030 /* This is a lonely common section which must have
6031 come from an archive. We attach to the section
6032 with the wildcard. */
6033 if (! link_info.relocatable
6034 || command_line.force_common_definition)
6035 {
6036 if (default_common_section == NULL)
6037 default_common_section
6038 = lang_output_section_statement_lookup (".bss", 0,
6039 TRUE);
6040 lang_add_section (&default_common_section->children, s,
6041 default_common_section);
6042 }
6043 }
6044 else
6045 {
6046 const char *name = s->name;
6047 int constraint = 0;
6048
6049 if (config.unique_orphan_sections
6050 || unique_section_p (s, NULL))
6051 constraint = SPECIAL;
6052
6053 if (!ldemul_place_orphan (s, name, constraint))
6054 {
6055 lang_output_section_statement_type *os;
6056 os = lang_output_section_statement_lookup (name,
6057 constraint,
6058 TRUE);
6059 if (os->addr_tree == NULL
6060 && (link_info.relocatable
6061 || (s->flags & (SEC_LOAD | SEC_ALLOC)) == 0))
6062 os->addr_tree = exp_intop (0);
6063 lang_add_section (&os->children, s, os);
6064 }
6065 }
6066 }
6067 }
6068 }
6069 }
6070
6071 void
6072 lang_set_flags (lang_memory_region_type *ptr, const char *flags, int invert)
6073 {
6074 flagword *ptr_flags;
6075
6076 ptr_flags = invert ? &ptr->not_flags : &ptr->flags;
6077 while (*flags)
6078 {
6079 switch (*flags)
6080 {
6081 case 'A': case 'a':
6082 *ptr_flags |= SEC_ALLOC;
6083 break;
6084
6085 case 'R': case 'r':
6086 *ptr_flags |= SEC_READONLY;
6087 break;
6088
6089 case 'W': case 'w':
6090 *ptr_flags |= SEC_DATA;
6091 break;
6092
6093 case 'X': case 'x':
6094 *ptr_flags |= SEC_CODE;
6095 break;
6096
6097 case 'L': case 'l':
6098 case 'I': case 'i':
6099 *ptr_flags |= SEC_LOAD;
6100 break;
6101
6102 default:
6103 einfo (_("%P%F: invalid syntax in flags\n"));
6104 break;
6105 }
6106 flags++;
6107 }
6108 }
6109
6110 /* Call a function on each input file. This function will be called
6111 on an archive, but not on the elements. */
6112
6113 void
6114 lang_for_each_input_file (void (*func) (lang_input_statement_type *))
6115 {
6116 lang_input_statement_type *f;
6117
6118 for (f = (lang_input_statement_type *) input_file_chain.head;
6119 f != NULL;
6120 f = (lang_input_statement_type *) f->next_real_file)
6121 func (f);
6122 }
6123
6124 /* Call a function on each file. The function will be called on all
6125 the elements of an archive which are included in the link, but will
6126 not be called on the archive file itself. */
6127
6128 void
6129 lang_for_each_file (void (*func) (lang_input_statement_type *))
6130 {
6131 LANG_FOR_EACH_INPUT_STATEMENT (f)
6132 {
6133 func (f);
6134 }
6135 }
6136
6137 void
6138 ldlang_add_file (lang_input_statement_type *entry)
6139 {
6140 lang_statement_append (&file_chain,
6141 (lang_statement_union_type *) entry,
6142 &entry->next);
6143
6144 /* The BFD linker needs to have a list of all input BFDs involved in
6145 a link. */
6146 ASSERT (entry->the_bfd->link_next == NULL);
6147 ASSERT (entry->the_bfd != link_info.output_bfd);
6148
6149 *link_info.input_bfds_tail = entry->the_bfd;
6150 link_info.input_bfds_tail = &entry->the_bfd->link_next;
6151 entry->the_bfd->usrdata = entry;
6152 bfd_set_gp_size (entry->the_bfd, g_switch_value);
6153
6154 /* Look through the sections and check for any which should not be
6155 included in the link. We need to do this now, so that we can
6156 notice when the backend linker tries to report multiple
6157 definition errors for symbols which are in sections we aren't
6158 going to link. FIXME: It might be better to entirely ignore
6159 symbols which are defined in sections which are going to be
6160 discarded. This would require modifying the backend linker for
6161 each backend which might set the SEC_LINK_ONCE flag. If we do
6162 this, we should probably handle SEC_EXCLUDE in the same way. */
6163
6164 bfd_map_over_sections (entry->the_bfd, section_already_linked, entry);
6165 }
6166
6167 void
6168 lang_add_output (const char *name, int from_script)
6169 {
6170 /* Make -o on command line override OUTPUT in script. */
6171 if (!had_output_filename || !from_script)
6172 {
6173 output_filename = name;
6174 had_output_filename = TRUE;
6175 }
6176 }
6177
6178 static lang_output_section_statement_type *current_section;
6179
6180 static int
6181 topower (int x)
6182 {
6183 unsigned int i = 1;
6184 int l;
6185
6186 if (x < 0)
6187 return -1;
6188
6189 for (l = 0; l < 32; l++)
6190 {
6191 if (i >= (unsigned int) x)
6192 return l;
6193 i <<= 1;
6194 }
6195
6196 return 0;
6197 }
6198
6199 lang_output_section_statement_type *
6200 lang_enter_output_section_statement (const char *output_section_statement_name,
6201 etree_type *address_exp,
6202 enum section_type sectype,
6203 etree_type *align,
6204 etree_type *subalign,
6205 etree_type *ebase,
6206 int constraint)
6207 {
6208 lang_output_section_statement_type *os;
6209
6210 os = lang_output_section_statement_lookup (output_section_statement_name,
6211 constraint, TRUE);
6212 current_section = os;
6213
6214 if (os->addr_tree == NULL)
6215 {
6216 os->addr_tree = address_exp;
6217 }
6218 os->sectype = sectype;
6219 if (sectype != noload_section)
6220 os->flags = SEC_NO_FLAGS;
6221 else
6222 os->flags = SEC_NEVER_LOAD;
6223 os->block_value = 1;
6224
6225 /* Make next things chain into subchain of this. */
6226 push_stat_ptr (&os->children);
6227
6228 os->subsection_alignment =
6229 topower (exp_get_value_int (subalign, -1, "subsection alignment"));
6230 os->section_alignment =
6231 topower (exp_get_value_int (align, -1, "section alignment"));
6232
6233 os->load_base = ebase;
6234 return os;
6235 }
6236
6237 void
6238 lang_final (void)
6239 {
6240 lang_output_statement_type *new_stmt;
6241
6242 new_stmt = new_stat (lang_output_statement, stat_ptr);
6243 new_stmt->name = output_filename;
6244
6245 }
6246
6247 /* Reset the current counters in the regions. */
6248
6249 void
6250 lang_reset_memory_regions (void)
6251 {
6252 lang_memory_region_type *p = lang_memory_region_list;
6253 asection *o;
6254 lang_output_section_statement_type *os;
6255
6256 for (p = lang_memory_region_list; p != NULL; p = p->next)
6257 {
6258 p->current = p->origin;
6259 p->last_os = NULL;
6260 }
6261
6262 for (os = &lang_output_section_statement.head->output_section_statement;
6263 os != NULL;
6264 os = os->next)
6265 {
6266 os->processed_vma = FALSE;
6267 os->processed_lma = FALSE;
6268 }
6269
6270 for (o = link_info.output_bfd->sections; o != NULL; o = o->next)
6271 {
6272 /* Save the last size for possible use by bfd_relax_section. */
6273 o->rawsize = o->size;
6274 o->size = 0;
6275 }
6276 }
6277
6278 /* Worker for lang_gc_sections_1. */
6279
6280 static void
6281 gc_section_callback (lang_wild_statement_type *ptr,
6282 struct wildcard_list *sec ATTRIBUTE_UNUSED,
6283 asection *section,
6284 lang_input_statement_type *file ATTRIBUTE_UNUSED,
6285 void *data ATTRIBUTE_UNUSED)
6286 {
6287 /* If the wild pattern was marked KEEP, the member sections
6288 should be as well. */
6289 if (ptr->keep_sections)
6290 section->flags |= SEC_KEEP;
6291 }
6292
6293 /* Iterate over sections marking them against GC. */
6294
6295 static void
6296 lang_gc_sections_1 (lang_statement_union_type *s)
6297 {
6298 for (; s != NULL; s = s->header.next)
6299 {
6300 switch (s->header.type)
6301 {
6302 case lang_wild_statement_enum:
6303 walk_wild (&s->wild_statement, gc_section_callback, NULL);
6304 break;
6305 case lang_constructors_statement_enum:
6306 lang_gc_sections_1 (constructor_list.head);
6307 break;
6308 case lang_output_section_statement_enum:
6309 lang_gc_sections_1 (s->output_section_statement.children.head);
6310 break;
6311 case lang_group_statement_enum:
6312 lang_gc_sections_1 (s->group_statement.children.head);
6313 break;
6314 default:
6315 break;
6316 }
6317 }
6318 }
6319
6320 static void
6321 lang_gc_sections (void)
6322 {
6323 /* Keep all sections so marked in the link script. */
6324
6325 lang_gc_sections_1 (statement_list.head);
6326
6327 /* SEC_EXCLUDE is ignored when doing a relocatable link, except in
6328 the special case of debug info. (See bfd/stabs.c)
6329 Twiddle the flag here, to simplify later linker code. */
6330 if (link_info.relocatable)
6331 {
6332 LANG_FOR_EACH_INPUT_STATEMENT (f)
6333 {
6334 asection *sec;
6335 #ifdef ENABLE_PLUGINS
6336 if (f->claimed)
6337 continue;
6338 #endif
6339 for (sec = f->the_bfd->sections; sec != NULL; sec = sec->next)
6340 if ((sec->flags & SEC_DEBUGGING) == 0)
6341 sec->flags &= ~SEC_EXCLUDE;
6342 }
6343 }
6344
6345 if (link_info.gc_sections)
6346 bfd_gc_sections (link_info.output_bfd, &link_info);
6347 }
6348
6349 /* Worker for lang_find_relro_sections_1. */
6350
6351 static void
6352 find_relro_section_callback (lang_wild_statement_type *ptr ATTRIBUTE_UNUSED,
6353 struct wildcard_list *sec ATTRIBUTE_UNUSED,
6354 asection *section,
6355 lang_input_statement_type *file ATTRIBUTE_UNUSED,
6356 void *data)
6357 {
6358 /* Discarded, excluded and ignored sections effectively have zero
6359 size. */
6360 if (section->output_section != NULL
6361 && section->output_section->owner == link_info.output_bfd
6362 && (section->output_section->flags & SEC_EXCLUDE) == 0
6363 && !IGNORE_SECTION (section)
6364 && section->size != 0)
6365 {
6366 bfd_boolean *has_relro_section = (bfd_boolean *) data;
6367 *has_relro_section = TRUE;
6368 }
6369 }
6370
6371 /* Iterate over sections for relro sections. */
6372
6373 static void
6374 lang_find_relro_sections_1 (lang_statement_union_type *s,
6375 bfd_boolean *has_relro_section)
6376 {
6377 if (*has_relro_section)
6378 return;
6379
6380 for (; s != NULL; s = s->header.next)
6381 {
6382 if (s == expld.dataseg.relro_end_stat)
6383 break;
6384
6385 switch (s->header.type)
6386 {
6387 case lang_wild_statement_enum:
6388 walk_wild (&s->wild_statement,
6389 find_relro_section_callback,
6390 has_relro_section);
6391 break;
6392 case lang_constructors_statement_enum:
6393 lang_find_relro_sections_1 (constructor_list.head,
6394 has_relro_section);
6395 break;
6396 case lang_output_section_statement_enum:
6397 lang_find_relro_sections_1 (s->output_section_statement.children.head,
6398 has_relro_section);
6399 break;
6400 case lang_group_statement_enum:
6401 lang_find_relro_sections_1 (s->group_statement.children.head,
6402 has_relro_section);
6403 break;
6404 default:
6405 break;
6406 }
6407 }
6408 }
6409
6410 static void
6411 lang_find_relro_sections (void)
6412 {
6413 bfd_boolean has_relro_section = FALSE;
6414
6415 /* Check all sections in the link script. */
6416
6417 lang_find_relro_sections_1 (expld.dataseg.relro_start_stat,
6418 &has_relro_section);
6419
6420 if (!has_relro_section)
6421 link_info.relro = FALSE;
6422 }
6423
6424 /* Relax all sections until bfd_relax_section gives up. */
6425
6426 void
6427 lang_relax_sections (bfd_boolean need_layout)
6428 {
6429 if (RELAXATION_ENABLED)
6430 {
6431 /* We may need more than one relaxation pass. */
6432 int i = link_info.relax_pass;
6433
6434 /* The backend can use it to determine the current pass. */
6435 link_info.relax_pass = 0;
6436
6437 while (i--)
6438 {
6439 /* Keep relaxing until bfd_relax_section gives up. */
6440 bfd_boolean relax_again;
6441
6442 link_info.relax_trip = -1;
6443 do
6444 {
6445 link_info.relax_trip++;
6446
6447 /* Note: pe-dll.c does something like this also. If you find
6448 you need to change this code, you probably need to change
6449 pe-dll.c also. DJ */
6450
6451 /* Do all the assignments with our current guesses as to
6452 section sizes. */
6453 lang_do_assignments (lang_assigning_phase_enum);
6454
6455 /* We must do this after lang_do_assignments, because it uses
6456 size. */
6457 lang_reset_memory_regions ();
6458
6459 /* Perform another relax pass - this time we know where the
6460 globals are, so can make a better guess. */
6461 relax_again = FALSE;
6462 lang_size_sections (&relax_again, FALSE);
6463 }
6464 while (relax_again);
6465
6466 link_info.relax_pass++;
6467 }
6468 need_layout = TRUE;
6469 }
6470
6471 if (need_layout)
6472 {
6473 /* Final extra sizing to report errors. */
6474 lang_do_assignments (lang_assigning_phase_enum);
6475 lang_reset_memory_regions ();
6476 lang_size_sections (NULL, TRUE);
6477 }
6478 }
6479
6480 #ifdef ENABLE_PLUGINS
6481 /* Find the insert point for the plugin's replacement files. We
6482 place them after the first claimed real object file, or if the
6483 first claimed object is an archive member, after the last real
6484 object file immediately preceding the archive. In the event
6485 no objects have been claimed at all, we return the first dummy
6486 object file on the list as the insert point; that works, but
6487 the callee must be careful when relinking the file_chain as it
6488 is not actually on that chain, only the statement_list and the
6489 input_file list; in that case, the replacement files must be
6490 inserted at the head of the file_chain. */
6491
6492 static lang_input_statement_type *
6493 find_replacements_insert_point (void)
6494 {
6495 lang_input_statement_type *claim1, *lastobject;
6496 lastobject = &input_file_chain.head->input_statement;
6497 for (claim1 = &file_chain.head->input_statement;
6498 claim1 != NULL;
6499 claim1 = &claim1->next->input_statement)
6500 {
6501 if (claim1->claimed)
6502 return claim1->claim_archive ? lastobject : claim1;
6503 /* Update lastobject if this is a real object file. */
6504 if (claim1->the_bfd && (claim1->the_bfd->my_archive == NULL))
6505 lastobject = claim1;
6506 }
6507 /* No files were claimed by the plugin. Choose the last object
6508 file found on the list (maybe the first, dummy entry) as the
6509 insert point. */
6510 return lastobject;
6511 }
6512
6513 /* Insert SRCLIST into DESTLIST after given element by chaining
6514 on FIELD as the next-pointer. (Counterintuitively does not need
6515 a pointer to the actual after-node itself, just its chain field.) */
6516
6517 static void
6518 lang_list_insert_after (lang_statement_list_type *destlist,
6519 lang_statement_list_type *srclist,
6520 lang_statement_union_type **field)
6521 {
6522 *(srclist->tail) = *field;
6523 *field = srclist->head;
6524 if (destlist->tail == field)
6525 destlist->tail = srclist->tail;
6526 }
6527
6528 /* Detach new nodes added to DESTLIST since the time ORIGLIST
6529 was taken as a copy of it and leave them in ORIGLIST. */
6530
6531 static void
6532 lang_list_remove_tail (lang_statement_list_type *destlist,
6533 lang_statement_list_type *origlist)
6534 {
6535 union lang_statement_union **savetail;
6536 /* Check that ORIGLIST really is an earlier state of DESTLIST. */
6537 ASSERT (origlist->head == destlist->head);
6538 savetail = origlist->tail;
6539 origlist->head = *(savetail);
6540 origlist->tail = destlist->tail;
6541 destlist->tail = savetail;
6542 *savetail = NULL;
6543 }
6544 #endif /* ENABLE_PLUGINS */
6545
6546 void
6547 lang_process (void)
6548 {
6549 /* Finalize dynamic list. */
6550 if (link_info.dynamic_list)
6551 lang_finalize_version_expr_head (&link_info.dynamic_list->head);
6552
6553 current_target = default_target;
6554
6555 /* Open the output file. */
6556 lang_for_each_statement (ldlang_open_output);
6557 init_opb ();
6558
6559 ldemul_create_output_section_statements ();
6560
6561 /* Add to the hash table all undefineds on the command line. */
6562 lang_place_undefineds ();
6563
6564 if (!bfd_section_already_linked_table_init ())
6565 einfo (_("%P%F: Failed to create hash table\n"));
6566
6567 /* Create a bfd for each input file. */
6568 current_target = default_target;
6569 open_input_bfds (statement_list.head, OPEN_BFD_NORMAL);
6570
6571 #ifdef ENABLE_PLUGINS
6572 if (plugin_active_plugins_p ())
6573 {
6574 lang_statement_list_type added;
6575 lang_statement_list_type files, inputfiles;
6576
6577 /* Now all files are read, let the plugin(s) decide if there
6578 are any more to be added to the link before we call the
6579 emulation's after_open hook. We create a private list of
6580 input statements for this purpose, which we will eventually
6581 insert into the global statment list after the first claimed
6582 file. */
6583 added = *stat_ptr;
6584 /* We need to manipulate all three chains in synchrony. */
6585 files = file_chain;
6586 inputfiles = input_file_chain;
6587 if (plugin_call_all_symbols_read ())
6588 einfo (_("%P%F: %s: plugin reported error after all symbols read\n"),
6589 plugin_error_plugin ());
6590 /* Open any newly added files, updating the file chains. */
6591 link_info.loading_lto_outputs = TRUE;
6592 open_input_bfds (added.head, OPEN_BFD_NORMAL);
6593 /* Restore the global list pointer now they have all been added. */
6594 lang_list_remove_tail (stat_ptr, &added);
6595 /* And detach the fresh ends of the file lists. */
6596 lang_list_remove_tail (&file_chain, &files);
6597 lang_list_remove_tail (&input_file_chain, &inputfiles);
6598 /* Were any new files added? */
6599 if (added.head != NULL)
6600 {
6601 /* If so, we will insert them into the statement list immediately
6602 after the first input file that was claimed by the plugin. */
6603 plugin_insert = find_replacements_insert_point ();
6604 /* If a plugin adds input files without having claimed any, we
6605 don't really have a good idea where to place them. Just putting
6606 them at the start or end of the list is liable to leave them
6607 outside the crtbegin...crtend range. */
6608 ASSERT (plugin_insert != NULL);
6609 /* Splice the new statement list into the old one. */
6610 lang_list_insert_after (stat_ptr, &added,
6611 &plugin_insert->header.next);
6612 /* Likewise for the file chains. */
6613 lang_list_insert_after (&input_file_chain, &inputfiles,
6614 &plugin_insert->next_real_file);
6615 /* We must be careful when relinking file_chain; we may need to
6616 insert the new files at the head of the list if the insert
6617 point chosen is the dummy first input file. */
6618 if (plugin_insert->filename)
6619 lang_list_insert_after (&file_chain, &files, &plugin_insert->next);
6620 else
6621 lang_list_insert_after (&file_chain, &files, &file_chain.head);
6622
6623 /* Rescan archives in case new undefined symbols have appeared. */
6624 open_input_bfds (statement_list.head, OPEN_BFD_RESCAN);
6625 }
6626 }
6627 #endif /* ENABLE_PLUGINS */
6628
6629 link_info.gc_sym_list = &entry_symbol;
6630 if (entry_symbol.name == NULL)
6631 link_info.gc_sym_list = ldlang_undef_chain_list_head;
6632
6633 ldemul_after_open ();
6634
6635 bfd_section_already_linked_table_free ();
6636
6637 /* Make sure that we're not mixing architectures. We call this
6638 after all the input files have been opened, but before we do any
6639 other processing, so that any operations merge_private_bfd_data
6640 does on the output file will be known during the rest of the
6641 link. */
6642 lang_check ();
6643
6644 /* Handle .exports instead of a version script if we're told to do so. */
6645 if (command_line.version_exports_section)
6646 lang_do_version_exports_section ();
6647
6648 /* Build all sets based on the information gathered from the input
6649 files. */
6650 ldctor_build_sets ();
6651
6652 /* Remove unreferenced sections if asked to. */
6653 lang_gc_sections ();
6654
6655 /* Size up the common data. */
6656 lang_common ();
6657
6658 /* Update wild statements. */
6659 update_wild_statements (statement_list.head);
6660
6661 /* Run through the contours of the script and attach input sections
6662 to the correct output sections. */
6663 lang_statement_iteration++;
6664 map_input_to_output_sections (statement_list.head, NULL, NULL);
6665
6666 process_insert_statements ();
6667
6668 /* Find any sections not attached explicitly and handle them. */
6669 lang_place_orphans ();
6670
6671 if (! link_info.relocatable)
6672 {
6673 asection *found;
6674
6675 /* Merge SEC_MERGE sections. This has to be done after GC of
6676 sections, so that GCed sections are not merged, but before
6677 assigning dynamic symbols, since removing whole input sections
6678 is hard then. */
6679 bfd_merge_sections (link_info.output_bfd, &link_info);
6680
6681 /* Look for a text section and set the readonly attribute in it. */
6682 found = bfd_get_section_by_name (link_info.output_bfd, ".text");
6683
6684 if (found != NULL)
6685 {
6686 if (config.text_read_only)
6687 found->flags |= SEC_READONLY;
6688 else
6689 found->flags &= ~SEC_READONLY;
6690 }
6691 }
6692
6693 /* Do anything special before sizing sections. This is where ELF
6694 and other back-ends size dynamic sections. */
6695 ldemul_before_allocation ();
6696
6697 /* We must record the program headers before we try to fix the
6698 section positions, since they will affect SIZEOF_HEADERS. */
6699 lang_record_phdrs ();
6700
6701 /* Check relro sections. */
6702 if (link_info.relro && ! link_info.relocatable)
6703 lang_find_relro_sections ();
6704
6705 /* Size up the sections. */
6706 lang_size_sections (NULL, ! RELAXATION_ENABLED);
6707
6708 /* See if anything special should be done now we know how big
6709 everything is. This is where relaxation is done. */
6710 ldemul_after_allocation ();
6711
6712 /* Fix any .startof. or .sizeof. symbols. */
6713 lang_set_startof ();
6714
6715 /* Do all the assignments, now that we know the final resting places
6716 of all the symbols. */
6717 lang_do_assignments (lang_final_phase_enum);
6718
6719 ldemul_finish ();
6720
6721 /* Make sure that the section addresses make sense. */
6722 if (command_line.check_section_addresses)
6723 lang_check_section_addresses ();
6724
6725 lang_end ();
6726 }
6727
6728 /* EXPORTED TO YACC */
6729
6730 void
6731 lang_add_wild (struct wildcard_spec *filespec,
6732 struct wildcard_list *section_list,
6733 bfd_boolean keep_sections)
6734 {
6735 struct wildcard_list *curr, *next;
6736 lang_wild_statement_type *new_stmt;
6737
6738 /* Reverse the list as the parser puts it back to front. */
6739 for (curr = section_list, section_list = NULL;
6740 curr != NULL;
6741 section_list = curr, curr = next)
6742 {
6743 if (curr->spec.name != NULL && strcmp (curr->spec.name, "COMMON") == 0)
6744 placed_commons = TRUE;
6745
6746 next = curr->next;
6747 curr->next = section_list;
6748 }
6749
6750 if (filespec != NULL && filespec->name != NULL)
6751 {
6752 if (strcmp (filespec->name, "*") == 0)
6753 filespec->name = NULL;
6754 else if (! wildcardp (filespec->name))
6755 lang_has_input_file = TRUE;
6756 }
6757
6758 new_stmt = new_stat (lang_wild_statement, stat_ptr);
6759 new_stmt->filename = NULL;
6760 new_stmt->filenames_sorted = FALSE;
6761 new_stmt->section_flag_list = NULL;
6762 if (filespec != NULL)
6763 {
6764 new_stmt->filename = filespec->name;
6765 new_stmt->filenames_sorted = filespec->sorted == by_name;
6766 new_stmt->section_flag_list = filespec->section_flag_list;
6767 }
6768 new_stmt->section_list = section_list;
6769 new_stmt->keep_sections = keep_sections;
6770 lang_list_init (&new_stmt->children);
6771 analyze_walk_wild_section_handler (new_stmt);
6772 }
6773
6774 void
6775 lang_section_start (const char *name, etree_type *address,
6776 const segment_type *segment)
6777 {
6778 lang_address_statement_type *ad;
6779
6780 ad = new_stat (lang_address_statement, stat_ptr);
6781 ad->section_name = name;
6782 ad->address = address;
6783 ad->segment = segment;
6784 }
6785
6786 /* Set the start symbol to NAME. CMDLINE is nonzero if this is called
6787 because of a -e argument on the command line, or zero if this is
6788 called by ENTRY in a linker script. Command line arguments take
6789 precedence. */
6790
6791 void
6792 lang_add_entry (const char *name, bfd_boolean cmdline)
6793 {
6794 if (entry_symbol.name == NULL
6795 || cmdline
6796 || ! entry_from_cmdline)
6797 {
6798 entry_symbol.name = name;
6799 entry_from_cmdline = cmdline;
6800 }
6801 }
6802
6803 /* Set the default start symbol to NAME. .em files should use this,
6804 not lang_add_entry, to override the use of "start" if neither the
6805 linker script nor the command line specifies an entry point. NAME
6806 must be permanently allocated. */
6807 void
6808 lang_default_entry (const char *name)
6809 {
6810 entry_symbol_default = name;
6811 }
6812
6813 void
6814 lang_add_target (const char *name)
6815 {
6816 lang_target_statement_type *new_stmt;
6817
6818 new_stmt = new_stat (lang_target_statement, stat_ptr);
6819 new_stmt->target = name;
6820 }
6821
6822 void
6823 lang_add_map (const char *name)
6824 {
6825 while (*name)
6826 {
6827 switch (*name)
6828 {
6829 case 'F':
6830 map_option_f = TRUE;
6831 break;
6832 }
6833 name++;
6834 }
6835 }
6836
6837 void
6838 lang_add_fill (fill_type *fill)
6839 {
6840 lang_fill_statement_type *new_stmt;
6841
6842 new_stmt = new_stat (lang_fill_statement, stat_ptr);
6843 new_stmt->fill = fill;
6844 }
6845
6846 void
6847 lang_add_data (int type, union etree_union *exp)
6848 {
6849 lang_data_statement_type *new_stmt;
6850
6851 new_stmt = new_stat (lang_data_statement, stat_ptr);
6852 new_stmt->exp = exp;
6853 new_stmt->type = type;
6854 }
6855
6856 /* Create a new reloc statement. RELOC is the BFD relocation type to
6857 generate. HOWTO is the corresponding howto structure (we could
6858 look this up, but the caller has already done so). SECTION is the
6859 section to generate a reloc against, or NAME is the name of the
6860 symbol to generate a reloc against. Exactly one of SECTION and
6861 NAME must be NULL. ADDEND is an expression for the addend. */
6862
6863 void
6864 lang_add_reloc (bfd_reloc_code_real_type reloc,
6865 reloc_howto_type *howto,
6866 asection *section,
6867 const char *name,
6868 union etree_union *addend)
6869 {
6870 lang_reloc_statement_type *p = new_stat (lang_reloc_statement, stat_ptr);
6871
6872 p->reloc = reloc;
6873 p->howto = howto;
6874 p->section = section;
6875 p->name = name;
6876 p->addend_exp = addend;
6877
6878 p->addend_value = 0;
6879 p->output_section = NULL;
6880 p->output_offset = 0;
6881 }
6882
6883 lang_assignment_statement_type *
6884 lang_add_assignment (etree_type *exp)
6885 {
6886 lang_assignment_statement_type *new_stmt;
6887
6888 new_stmt = new_stat (lang_assignment_statement, stat_ptr);
6889 new_stmt->exp = exp;
6890 return new_stmt;
6891 }
6892
6893 void
6894 lang_add_attribute (enum statement_enum attribute)
6895 {
6896 new_statement (attribute, sizeof (lang_statement_header_type), stat_ptr);
6897 }
6898
6899 void
6900 lang_startup (const char *name)
6901 {
6902 if (first_file->filename != NULL)
6903 {
6904 einfo (_("%P%F: multiple STARTUP files\n"));
6905 }
6906 first_file->filename = name;
6907 first_file->local_sym_name = name;
6908 first_file->real = TRUE;
6909 }
6910
6911 void
6912 lang_float (bfd_boolean maybe)
6913 {
6914 lang_float_flag = maybe;
6915 }
6916
6917
6918 /* Work out the load- and run-time regions from a script statement, and
6919 store them in *LMA_REGION and *REGION respectively.
6920
6921 MEMSPEC is the name of the run-time region, or the value of
6922 DEFAULT_MEMORY_REGION if the statement didn't specify one.
6923 LMA_MEMSPEC is the name of the load-time region, or null if the
6924 statement didn't specify one.HAVE_LMA_P is TRUE if the statement
6925 had an explicit load address.
6926
6927 It is an error to specify both a load region and a load address. */
6928
6929 static void
6930 lang_get_regions (lang_memory_region_type **region,
6931 lang_memory_region_type **lma_region,
6932 const char *memspec,
6933 const char *lma_memspec,
6934 bfd_boolean have_lma,
6935 bfd_boolean have_vma)
6936 {
6937 *lma_region = lang_memory_region_lookup (lma_memspec, FALSE);
6938
6939 /* If no runtime region or VMA has been specified, but the load region
6940 has been specified, then use the load region for the runtime region
6941 as well. */
6942 if (lma_memspec != NULL
6943 && ! have_vma
6944 && strcmp (memspec, DEFAULT_MEMORY_REGION) == 0)
6945 *region = *lma_region;
6946 else
6947 *region = lang_memory_region_lookup (memspec, FALSE);
6948
6949 if (have_lma && lma_memspec != 0)
6950 einfo (_("%X%P:%S: section has both a load address and a load region\n"));
6951 }
6952
6953 void
6954 lang_leave_output_section_statement (fill_type *fill, const char *memspec,
6955 lang_output_section_phdr_list *phdrs,
6956 const char *lma_memspec)
6957 {
6958 lang_get_regions (&current_section->region,
6959 &current_section->lma_region,
6960 memspec, lma_memspec,
6961 current_section->load_base != NULL,
6962 current_section->addr_tree != NULL);
6963
6964 /* If this section has no load region or base, but uses the same
6965 region as the previous section, then propagate the previous
6966 section's load region. */
6967
6968 if (current_section->lma_region == NULL
6969 && current_section->load_base == NULL
6970 && current_section->addr_tree == NULL
6971 && current_section->region == current_section->prev->region)
6972 current_section->lma_region = current_section->prev->lma_region;
6973
6974 current_section->fill = fill;
6975 current_section->phdrs = phdrs;
6976 pop_stat_ptr ();
6977 }
6978
6979 /* Create an absolute symbol with the given name with the value of the
6980 address of first byte of the section named.
6981
6982 If the symbol already exists, then do nothing. */
6983
6984 void
6985 lang_abs_symbol_at_beginning_of (const char *secname, const char *name)
6986 {
6987 struct bfd_link_hash_entry *h;
6988
6989 h = bfd_link_hash_lookup (link_info.hash, name, TRUE, TRUE, TRUE);
6990 if (h == NULL)
6991 einfo (_("%P%F: bfd_link_hash_lookup failed: %E\n"));
6992
6993 if (h->type == bfd_link_hash_new
6994 || h->type == bfd_link_hash_undefined)
6995 {
6996 asection *sec;
6997
6998 h->type = bfd_link_hash_defined;
6999
7000 sec = bfd_get_section_by_name (link_info.output_bfd, secname);
7001 if (sec == NULL)
7002 h->u.def.value = 0;
7003 else
7004 h->u.def.value = bfd_get_section_vma (link_info.output_bfd, sec);
7005
7006 h->u.def.section = bfd_abs_section_ptr;
7007 }
7008 }
7009
7010 /* Create an absolute symbol with the given name with the value of the
7011 address of the first byte after the end of the section named.
7012
7013 If the symbol already exists, then do nothing. */
7014
7015 void
7016 lang_abs_symbol_at_end_of (const char *secname, const char *name)
7017 {
7018 struct bfd_link_hash_entry *h;
7019
7020 h = bfd_link_hash_lookup (link_info.hash, name, TRUE, TRUE, TRUE);
7021 if (h == NULL)
7022 einfo (_("%P%F: bfd_link_hash_lookup failed: %E\n"));
7023
7024 if (h->type == bfd_link_hash_new
7025 || h->type == bfd_link_hash_undefined)
7026 {
7027 asection *sec;
7028
7029 h->type = bfd_link_hash_defined;
7030
7031 sec = bfd_get_section_by_name (link_info.output_bfd, secname);
7032 if (sec == NULL)
7033 h->u.def.value = 0;
7034 else
7035 h->u.def.value = (bfd_get_section_vma (link_info.output_bfd, sec)
7036 + TO_ADDR (sec->size));
7037
7038 h->u.def.section = bfd_abs_section_ptr;
7039 }
7040 }
7041
7042 void
7043 lang_statement_append (lang_statement_list_type *list,
7044 lang_statement_union_type *element,
7045 lang_statement_union_type **field)
7046 {
7047 *(list->tail) = element;
7048 list->tail = field;
7049 }
7050
7051 /* Set the output format type. -oformat overrides scripts. */
7052
7053 void
7054 lang_add_output_format (const char *format,
7055 const char *big,
7056 const char *little,
7057 int from_script)
7058 {
7059 if (output_target == NULL || !from_script)
7060 {
7061 if (command_line.endian == ENDIAN_BIG
7062 && big != NULL)
7063 format = big;
7064 else if (command_line.endian == ENDIAN_LITTLE
7065 && little != NULL)
7066 format = little;
7067
7068 output_target = format;
7069 }
7070 }
7071
7072 void
7073 lang_add_insert (const char *where, int is_before)
7074 {
7075 lang_insert_statement_type *new_stmt;
7076
7077 new_stmt = new_stat (lang_insert_statement, stat_ptr);
7078 new_stmt->where = where;
7079 new_stmt->is_before = is_before;
7080 saved_script_handle = previous_script_handle;
7081 }
7082
7083 /* Enter a group. This creates a new lang_group_statement, and sets
7084 stat_ptr to build new statements within the group. */
7085
7086 void
7087 lang_enter_group (void)
7088 {
7089 lang_group_statement_type *g;
7090
7091 g = new_stat (lang_group_statement, stat_ptr);
7092 lang_list_init (&g->children);
7093 push_stat_ptr (&g->children);
7094 }
7095
7096 /* Leave a group. This just resets stat_ptr to start writing to the
7097 regular list of statements again. Note that this will not work if
7098 groups can occur inside anything else which can adjust stat_ptr,
7099 but currently they can't. */
7100
7101 void
7102 lang_leave_group (void)
7103 {
7104 pop_stat_ptr ();
7105 }
7106
7107 /* Add a new program header. This is called for each entry in a PHDRS
7108 command in a linker script. */
7109
7110 void
7111 lang_new_phdr (const char *name,
7112 etree_type *type,
7113 bfd_boolean filehdr,
7114 bfd_boolean phdrs,
7115 etree_type *at,
7116 etree_type *flags)
7117 {
7118 struct lang_phdr *n, **pp;
7119 bfd_boolean hdrs;
7120
7121 n = (struct lang_phdr *) stat_alloc (sizeof (struct lang_phdr));
7122 n->next = NULL;
7123 n->name = name;
7124 n->type = exp_get_value_int (type, 0, "program header type");
7125 n->filehdr = filehdr;
7126 n->phdrs = phdrs;
7127 n->at = at;
7128 n->flags = flags;
7129
7130 hdrs = n->type == 1 && (phdrs || filehdr);
7131
7132 for (pp = &lang_phdr_list; *pp != NULL; pp = &(*pp)->next)
7133 if (hdrs
7134 && (*pp)->type == 1
7135 && !((*pp)->filehdr || (*pp)->phdrs))
7136 {
7137 einfo (_("%X%P:%S: PHDRS and FILEHDR are not supported when prior PT_LOAD headers lack them\n"));
7138 hdrs = FALSE;
7139 }
7140
7141 *pp = n;
7142 }
7143
7144 /* Record the program header information in the output BFD. FIXME: We
7145 should not be calling an ELF specific function here. */
7146
7147 static void
7148 lang_record_phdrs (void)
7149 {
7150 unsigned int alc;
7151 asection **secs;
7152 lang_output_section_phdr_list *last;
7153 struct lang_phdr *l;
7154 lang_output_section_statement_type *os;
7155
7156 alc = 10;
7157 secs = (asection **) xmalloc (alc * sizeof (asection *));
7158 last = NULL;
7159
7160 for (l = lang_phdr_list; l != NULL; l = l->next)
7161 {
7162 unsigned int c;
7163 flagword flags;
7164 bfd_vma at;
7165
7166 c = 0;
7167 for (os = &lang_output_section_statement.head->output_section_statement;
7168 os != NULL;
7169 os = os->next)
7170 {
7171 lang_output_section_phdr_list *pl;
7172
7173 if (os->constraint < 0)
7174 continue;
7175
7176 pl = os->phdrs;
7177 if (pl != NULL)
7178 last = pl;
7179 else
7180 {
7181 if (os->sectype == noload_section
7182 || os->bfd_section == NULL
7183 || (os->bfd_section->flags & SEC_ALLOC) == 0)
7184 continue;
7185
7186 /* Don't add orphans to PT_INTERP header. */
7187 if (l->type == 3)
7188 continue;
7189
7190 if (last == NULL)
7191 {
7192 lang_output_section_statement_type * tmp_os;
7193
7194 /* If we have not run across a section with a program
7195 header assigned to it yet, then scan forwards to find
7196 one. This prevents inconsistencies in the linker's
7197 behaviour when a script has specified just a single
7198 header and there are sections in that script which are
7199 not assigned to it, and which occur before the first
7200 use of that header. See here for more details:
7201 http://sourceware.org/ml/binutils/2007-02/msg00291.html */
7202 for (tmp_os = os; tmp_os; tmp_os = tmp_os->next)
7203 if (tmp_os->phdrs)
7204 {
7205 last = tmp_os->phdrs;
7206 break;
7207 }
7208 if (last == NULL)
7209 einfo (_("%F%P: no sections assigned to phdrs\n"));
7210 }
7211 pl = last;
7212 }
7213
7214 if (os->bfd_section == NULL)
7215 continue;
7216
7217 for (; pl != NULL; pl = pl->next)
7218 {
7219 if (strcmp (pl->name, l->name) == 0)
7220 {
7221 if (c >= alc)
7222 {
7223 alc *= 2;
7224 secs = (asection **) xrealloc (secs,
7225 alc * sizeof (asection *));
7226 }
7227 secs[c] = os->bfd_section;
7228 ++c;
7229 pl->used = TRUE;
7230 }
7231 }
7232 }
7233
7234 if (l->flags == NULL)
7235 flags = 0;
7236 else
7237 flags = exp_get_vma (l->flags, 0, "phdr flags");
7238
7239 if (l->at == NULL)
7240 at = 0;
7241 else
7242 at = exp_get_vma (l->at, 0, "phdr load address");
7243
7244 if (! bfd_record_phdr (link_info.output_bfd, l->type,
7245 l->flags != NULL, flags, l->at != NULL,
7246 at, l->filehdr, l->phdrs, c, secs))
7247 einfo (_("%F%P: bfd_record_phdr failed: %E\n"));
7248 }
7249
7250 free (secs);
7251
7252 /* Make sure all the phdr assignments succeeded. */
7253 for (os = &lang_output_section_statement.head->output_section_statement;
7254 os != NULL;
7255 os = os->next)
7256 {
7257 lang_output_section_phdr_list *pl;
7258
7259 if (os->constraint < 0
7260 || os->bfd_section == NULL)
7261 continue;
7262
7263 for (pl = os->phdrs;
7264 pl != NULL;
7265 pl = pl->next)
7266 if (! pl->used && strcmp (pl->name, "NONE") != 0)
7267 einfo (_("%X%P: section `%s' assigned to non-existent phdr `%s'\n"),
7268 os->name, pl->name);
7269 }
7270 }
7271
7272 /* Record a list of sections which may not be cross referenced. */
7273
7274 void
7275 lang_add_nocrossref (lang_nocrossref_type *l)
7276 {
7277 struct lang_nocrossrefs *n;
7278
7279 n = (struct lang_nocrossrefs *) xmalloc (sizeof *n);
7280 n->next = nocrossref_list;
7281 n->list = l;
7282 nocrossref_list = n;
7283
7284 /* Set notice_all so that we get informed about all symbols. */
7285 link_info.notice_all = TRUE;
7286 }
7287 \f
7288 /* Overlay handling. We handle overlays with some static variables. */
7289
7290 /* The overlay virtual address. */
7291 static etree_type *overlay_vma;
7292 /* And subsection alignment. */
7293 static etree_type *overlay_subalign;
7294
7295 /* An expression for the maximum section size seen so far. */
7296 static etree_type *overlay_max;
7297
7298 /* A list of all the sections in this overlay. */
7299
7300 struct overlay_list {
7301 struct overlay_list *next;
7302 lang_output_section_statement_type *os;
7303 };
7304
7305 static struct overlay_list *overlay_list;
7306
7307 /* Start handling an overlay. */
7308
7309 void
7310 lang_enter_overlay (etree_type *vma_expr, etree_type *subalign)
7311 {
7312 /* The grammar should prevent nested overlays from occurring. */
7313 ASSERT (overlay_vma == NULL
7314 && overlay_subalign == NULL
7315 && overlay_max == NULL);
7316
7317 overlay_vma = vma_expr;
7318 overlay_subalign = subalign;
7319 }
7320
7321 /* Start a section in an overlay. We handle this by calling
7322 lang_enter_output_section_statement with the correct VMA.
7323 lang_leave_overlay sets up the LMA and memory regions. */
7324
7325 void
7326 lang_enter_overlay_section (const char *name)
7327 {
7328 struct overlay_list *n;
7329 etree_type *size;
7330
7331 lang_enter_output_section_statement (name, overlay_vma, overlay_section,
7332 0, overlay_subalign, 0, 0);
7333
7334 /* If this is the first section, then base the VMA of future
7335 sections on this one. This will work correctly even if `.' is
7336 used in the addresses. */
7337 if (overlay_list == NULL)
7338 overlay_vma = exp_nameop (ADDR, name);
7339
7340 /* Remember the section. */
7341 n = (struct overlay_list *) xmalloc (sizeof *n);
7342 n->os = current_section;
7343 n->next = overlay_list;
7344 overlay_list = n;
7345
7346 size = exp_nameop (SIZEOF, name);
7347
7348 /* Arrange to work out the maximum section end address. */
7349 if (overlay_max == NULL)
7350 overlay_max = size;
7351 else
7352 overlay_max = exp_binop (MAX_K, overlay_max, size);
7353 }
7354
7355 /* Finish a section in an overlay. There isn't any special to do
7356 here. */
7357
7358 void
7359 lang_leave_overlay_section (fill_type *fill,
7360 lang_output_section_phdr_list *phdrs)
7361 {
7362 const char *name;
7363 char *clean, *s2;
7364 const char *s1;
7365 char *buf;
7366
7367 name = current_section->name;
7368
7369 /* For now, assume that DEFAULT_MEMORY_REGION is the run-time memory
7370 region and that no load-time region has been specified. It doesn't
7371 really matter what we say here, since lang_leave_overlay will
7372 override it. */
7373 lang_leave_output_section_statement (fill, DEFAULT_MEMORY_REGION, phdrs, 0);
7374
7375 /* Define the magic symbols. */
7376
7377 clean = (char *) xmalloc (strlen (name) + 1);
7378 s2 = clean;
7379 for (s1 = name; *s1 != '\0'; s1++)
7380 if (ISALNUM (*s1) || *s1 == '_')
7381 *s2++ = *s1;
7382 *s2 = '\0';
7383
7384 buf = (char *) xmalloc (strlen (clean) + sizeof "__load_start_");
7385 sprintf (buf, "__load_start_%s", clean);
7386 lang_add_assignment (exp_provide (buf,
7387 exp_nameop (LOADADDR, name),
7388 FALSE));
7389
7390 buf = (char *) xmalloc (strlen (clean) + sizeof "__load_stop_");
7391 sprintf (buf, "__load_stop_%s", clean);
7392 lang_add_assignment (exp_provide (buf,
7393 exp_binop ('+',
7394 exp_nameop (LOADADDR, name),
7395 exp_nameop (SIZEOF, name)),
7396 FALSE));
7397
7398 free (clean);
7399 }
7400
7401 /* Finish an overlay. If there are any overlay wide settings, this
7402 looks through all the sections in the overlay and sets them. */
7403
7404 void
7405 lang_leave_overlay (etree_type *lma_expr,
7406 int nocrossrefs,
7407 fill_type *fill,
7408 const char *memspec,
7409 lang_output_section_phdr_list *phdrs,
7410 const char *lma_memspec)
7411 {
7412 lang_memory_region_type *region;
7413 lang_memory_region_type *lma_region;
7414 struct overlay_list *l;
7415 lang_nocrossref_type *nocrossref;
7416
7417 lang_get_regions (&region, &lma_region,
7418 memspec, lma_memspec,
7419 lma_expr != NULL, FALSE);
7420
7421 nocrossref = NULL;
7422
7423 /* After setting the size of the last section, set '.' to end of the
7424 overlay region. */
7425 if (overlay_list != NULL)
7426 overlay_list->os->update_dot_tree
7427 = exp_assign (".", exp_binop ('+', overlay_vma, overlay_max));
7428
7429 l = overlay_list;
7430 while (l != NULL)
7431 {
7432 struct overlay_list *next;
7433
7434 if (fill != NULL && l->os->fill == NULL)
7435 l->os->fill = fill;
7436
7437 l->os->region = region;
7438 l->os->lma_region = lma_region;
7439
7440 /* The first section has the load address specified in the
7441 OVERLAY statement. The rest are worked out from that.
7442 The base address is not needed (and should be null) if
7443 an LMA region was specified. */
7444 if (l->next == 0)
7445 {
7446 l->os->load_base = lma_expr;
7447 l->os->sectype = normal_section;
7448 }
7449 if (phdrs != NULL && l->os->phdrs == NULL)
7450 l->os->phdrs = phdrs;
7451
7452 if (nocrossrefs)
7453 {
7454 lang_nocrossref_type *nc;
7455
7456 nc = (lang_nocrossref_type *) xmalloc (sizeof *nc);
7457 nc->name = l->os->name;
7458 nc->next = nocrossref;
7459 nocrossref = nc;
7460 }
7461
7462 next = l->next;
7463 free (l);
7464 l = next;
7465 }
7466
7467 if (nocrossref != NULL)
7468 lang_add_nocrossref (nocrossref);
7469
7470 overlay_vma = NULL;
7471 overlay_list = NULL;
7472 overlay_max = NULL;
7473 }
7474 \f
7475 /* Version handling. This is only useful for ELF. */
7476
7477 /* If PREV is NULL, return first version pattern matching particular symbol.
7478 If PREV is non-NULL, return first version pattern matching particular
7479 symbol after PREV (previously returned by lang_vers_match). */
7480
7481 static struct bfd_elf_version_expr *
7482 lang_vers_match (struct bfd_elf_version_expr_head *head,
7483 struct bfd_elf_version_expr *prev,
7484 const char *sym)
7485 {
7486 const char *c_sym;
7487 const char *cxx_sym = sym;
7488 const char *java_sym = sym;
7489 struct bfd_elf_version_expr *expr = NULL;
7490 enum demangling_styles curr_style;
7491
7492 curr_style = CURRENT_DEMANGLING_STYLE;
7493 cplus_demangle_set_style (no_demangling);
7494 c_sym = bfd_demangle (link_info.output_bfd, sym, DMGL_NO_OPTS);
7495 if (!c_sym)
7496 c_sym = sym;
7497 cplus_demangle_set_style (curr_style);
7498
7499 if (head->mask & BFD_ELF_VERSION_CXX_TYPE)
7500 {
7501 cxx_sym = bfd_demangle (link_info.output_bfd, sym,
7502 DMGL_PARAMS | DMGL_ANSI);
7503 if (!cxx_sym)
7504 cxx_sym = sym;
7505 }
7506 if (head->mask & BFD_ELF_VERSION_JAVA_TYPE)
7507 {
7508 java_sym = bfd_demangle (link_info.output_bfd, sym, DMGL_JAVA);
7509 if (!java_sym)
7510 java_sym = sym;
7511 }
7512
7513 if (head->htab && (prev == NULL || prev->literal))
7514 {
7515 struct bfd_elf_version_expr e;
7516
7517 switch (prev ? prev->mask : 0)
7518 {
7519 case 0:
7520 if (head->mask & BFD_ELF_VERSION_C_TYPE)
7521 {
7522 e.pattern = c_sym;
7523 expr = (struct bfd_elf_version_expr *)
7524 htab_find ((htab_t) head->htab, &e);
7525 while (expr && strcmp (expr->pattern, c_sym) == 0)
7526 if (expr->mask == BFD_ELF_VERSION_C_TYPE)
7527 goto out_ret;
7528 else
7529 expr = expr->next;
7530 }
7531 /* Fallthrough */
7532 case BFD_ELF_VERSION_C_TYPE:
7533 if (head->mask & BFD_ELF_VERSION_CXX_TYPE)
7534 {
7535 e.pattern = cxx_sym;
7536 expr = (struct bfd_elf_version_expr *)
7537 htab_find ((htab_t) head->htab, &e);
7538 while (expr && strcmp (expr->pattern, cxx_sym) == 0)
7539 if (expr->mask == BFD_ELF_VERSION_CXX_TYPE)
7540 goto out_ret;
7541 else
7542 expr = expr->next;
7543 }
7544 /* Fallthrough */
7545 case BFD_ELF_VERSION_CXX_TYPE:
7546 if (head->mask & BFD_ELF_VERSION_JAVA_TYPE)
7547 {
7548 e.pattern = java_sym;
7549 expr = (struct bfd_elf_version_expr *)
7550 htab_find ((htab_t) head->htab, &e);
7551 while (expr && strcmp (expr->pattern, java_sym) == 0)
7552 if (expr->mask == BFD_ELF_VERSION_JAVA_TYPE)
7553 goto out_ret;
7554 else
7555 expr = expr->next;
7556 }
7557 /* Fallthrough */
7558 default:
7559 break;
7560 }
7561 }
7562
7563 /* Finally, try the wildcards. */
7564 if (prev == NULL || prev->literal)
7565 expr = head->remaining;
7566 else
7567 expr = prev->next;
7568 for (; expr; expr = expr->next)
7569 {
7570 const char *s;
7571
7572 if (!expr->pattern)
7573 continue;
7574
7575 if (expr->pattern[0] == '*' && expr->pattern[1] == '\0')
7576 break;
7577
7578 if (expr->mask == BFD_ELF_VERSION_JAVA_TYPE)
7579 s = java_sym;
7580 else if (expr->mask == BFD_ELF_VERSION_CXX_TYPE)
7581 s = cxx_sym;
7582 else
7583 s = c_sym;
7584 if (fnmatch (expr->pattern, s, 0) == 0)
7585 break;
7586 }
7587
7588 out_ret:
7589 if (c_sym != sym)
7590 free ((char *) c_sym);
7591 if (cxx_sym != sym)
7592 free ((char *) cxx_sym);
7593 if (java_sym != sym)
7594 free ((char *) java_sym);
7595 return expr;
7596 }
7597
7598 /* Return NULL if the PATTERN argument is a glob pattern, otherwise,
7599 return a pointer to the symbol name with any backslash quotes removed. */
7600
7601 static const char *
7602 realsymbol (const char *pattern)
7603 {
7604 const char *p;
7605 bfd_boolean changed = FALSE, backslash = FALSE;
7606 char *s, *symbol = (char *) xmalloc (strlen (pattern) + 1);
7607
7608 for (p = pattern, s = symbol; *p != '\0'; ++p)
7609 {
7610 /* It is a glob pattern only if there is no preceding
7611 backslash. */
7612 if (backslash)
7613 {
7614 /* Remove the preceding backslash. */
7615 *(s - 1) = *p;
7616 backslash = FALSE;
7617 changed = TRUE;
7618 }
7619 else
7620 {
7621 if (*p == '?' || *p == '*' || *p == '[')
7622 {
7623 free (symbol);
7624 return NULL;
7625 }
7626
7627 *s++ = *p;
7628 backslash = *p == '\\';
7629 }
7630 }
7631
7632 if (changed)
7633 {
7634 *s = '\0';
7635 return symbol;
7636 }
7637 else
7638 {
7639 free (symbol);
7640 return pattern;
7641 }
7642 }
7643
7644 /* This is called for each variable name or match expression. NEW_NAME is
7645 the name of the symbol to match, or, if LITERAL_P is FALSE, a glob
7646 pattern to be matched against symbol names. */
7647
7648 struct bfd_elf_version_expr *
7649 lang_new_vers_pattern (struct bfd_elf_version_expr *orig,
7650 const char *new_name,
7651 const char *lang,
7652 bfd_boolean literal_p)
7653 {
7654 struct bfd_elf_version_expr *ret;
7655
7656 ret = (struct bfd_elf_version_expr *) xmalloc (sizeof *ret);
7657 ret->next = orig;
7658 ret->symver = 0;
7659 ret->script = 0;
7660 ret->literal = TRUE;
7661 ret->pattern = literal_p ? new_name : realsymbol (new_name);
7662 if (ret->pattern == NULL)
7663 {
7664 ret->pattern = new_name;
7665 ret->literal = FALSE;
7666 }
7667
7668 if (lang == NULL || strcasecmp (lang, "C") == 0)
7669 ret->mask = BFD_ELF_VERSION_C_TYPE;
7670 else if (strcasecmp (lang, "C++") == 0)
7671 ret->mask = BFD_ELF_VERSION_CXX_TYPE;
7672 else if (strcasecmp (lang, "Java") == 0)
7673 ret->mask = BFD_ELF_VERSION_JAVA_TYPE;
7674 else
7675 {
7676 einfo (_("%X%P: unknown language `%s' in version information\n"),
7677 lang);
7678 ret->mask = BFD_ELF_VERSION_C_TYPE;
7679 }
7680
7681 return ldemul_new_vers_pattern (ret);
7682 }
7683
7684 /* This is called for each set of variable names and match
7685 expressions. */
7686
7687 struct bfd_elf_version_tree *
7688 lang_new_vers_node (struct bfd_elf_version_expr *globals,
7689 struct bfd_elf_version_expr *locals)
7690 {
7691 struct bfd_elf_version_tree *ret;
7692
7693 ret = (struct bfd_elf_version_tree *) xcalloc (1, sizeof *ret);
7694 ret->globals.list = globals;
7695 ret->locals.list = locals;
7696 ret->match = lang_vers_match;
7697 ret->name_indx = (unsigned int) -1;
7698 return ret;
7699 }
7700
7701 /* This static variable keeps track of version indices. */
7702
7703 static int version_index;
7704
7705 static hashval_t
7706 version_expr_head_hash (const void *p)
7707 {
7708 const struct bfd_elf_version_expr *e =
7709 (const struct bfd_elf_version_expr *) p;
7710
7711 return htab_hash_string (e->pattern);
7712 }
7713
7714 static int
7715 version_expr_head_eq (const void *p1, const void *p2)
7716 {
7717 const struct bfd_elf_version_expr *e1 =
7718 (const struct bfd_elf_version_expr *) p1;
7719 const struct bfd_elf_version_expr *e2 =
7720 (const struct bfd_elf_version_expr *) p2;
7721
7722 return strcmp (e1->pattern, e2->pattern) == 0;
7723 }
7724
7725 static void
7726 lang_finalize_version_expr_head (struct bfd_elf_version_expr_head *head)
7727 {
7728 size_t count = 0;
7729 struct bfd_elf_version_expr *e, *next;
7730 struct bfd_elf_version_expr **list_loc, **remaining_loc;
7731
7732 for (e = head->list; e; e = e->next)
7733 {
7734 if (e->literal)
7735 count++;
7736 head->mask |= e->mask;
7737 }
7738
7739 if (count)
7740 {
7741 head->htab = htab_create (count * 2, version_expr_head_hash,
7742 version_expr_head_eq, NULL);
7743 list_loc = &head->list;
7744 remaining_loc = &head->remaining;
7745 for (e = head->list; e; e = next)
7746 {
7747 next = e->next;
7748 if (!e->literal)
7749 {
7750 *remaining_loc = e;
7751 remaining_loc = &e->next;
7752 }
7753 else
7754 {
7755 void **loc = htab_find_slot ((htab_t) head->htab, e, INSERT);
7756
7757 if (*loc)
7758 {
7759 struct bfd_elf_version_expr *e1, *last;
7760
7761 e1 = (struct bfd_elf_version_expr *) *loc;
7762 last = NULL;
7763 do
7764 {
7765 if (e1->mask == e->mask)
7766 {
7767 last = NULL;
7768 break;
7769 }
7770 last = e1;
7771 e1 = e1->next;
7772 }
7773 while (e1 && strcmp (e1->pattern, e->pattern) == 0);
7774
7775 if (last == NULL)
7776 {
7777 /* This is a duplicate. */
7778 /* FIXME: Memory leak. Sometimes pattern is not
7779 xmalloced alone, but in larger chunk of memory. */
7780 /* free (e->pattern); */
7781 free (e);
7782 }
7783 else
7784 {
7785 e->next = last->next;
7786 last->next = e;
7787 }
7788 }
7789 else
7790 {
7791 *loc = e;
7792 *list_loc = e;
7793 list_loc = &e->next;
7794 }
7795 }
7796 }
7797 *remaining_loc = NULL;
7798 *list_loc = head->remaining;
7799 }
7800 else
7801 head->remaining = head->list;
7802 }
7803
7804 /* This is called when we know the name and dependencies of the
7805 version. */
7806
7807 void
7808 lang_register_vers_node (const char *name,
7809 struct bfd_elf_version_tree *version,
7810 struct bfd_elf_version_deps *deps)
7811 {
7812 struct bfd_elf_version_tree *t, **pp;
7813 struct bfd_elf_version_expr *e1;
7814
7815 if (name == NULL)
7816 name = "";
7817
7818 if (link_info.version_info != NULL
7819 && (name[0] == '\0' || link_info.version_info->name[0] == '\0'))
7820 {
7821 einfo (_("%X%P: anonymous version tag cannot be combined"
7822 " with other version tags\n"));
7823 free (version);
7824 return;
7825 }
7826
7827 /* Make sure this node has a unique name. */
7828 for (t = link_info.version_info; t != NULL; t = t->next)
7829 if (strcmp (t->name, name) == 0)
7830 einfo (_("%X%P: duplicate version tag `%s'\n"), name);
7831
7832 lang_finalize_version_expr_head (&version->globals);
7833 lang_finalize_version_expr_head (&version->locals);
7834
7835 /* Check the global and local match names, and make sure there
7836 aren't any duplicates. */
7837
7838 for (e1 = version->globals.list; e1 != NULL; e1 = e1->next)
7839 {
7840 for (t = link_info.version_info; t != NULL; t = t->next)
7841 {
7842 struct bfd_elf_version_expr *e2;
7843
7844 if (t->locals.htab && e1->literal)
7845 {
7846 e2 = (struct bfd_elf_version_expr *)
7847 htab_find ((htab_t) t->locals.htab, e1);
7848 while (e2 && strcmp (e1->pattern, e2->pattern) == 0)
7849 {
7850 if (e1->mask == e2->mask)
7851 einfo (_("%X%P: duplicate expression `%s'"
7852 " in version information\n"), e1->pattern);
7853 e2 = e2->next;
7854 }
7855 }
7856 else if (!e1->literal)
7857 for (e2 = t->locals.remaining; e2 != NULL; e2 = e2->next)
7858 if (strcmp (e1->pattern, e2->pattern) == 0
7859 && e1->mask == e2->mask)
7860 einfo (_("%X%P: duplicate expression `%s'"
7861 " in version information\n"), e1->pattern);
7862 }
7863 }
7864
7865 for (e1 = version->locals.list; e1 != NULL; e1 = e1->next)
7866 {
7867 for (t = link_info.version_info; t != NULL; t = t->next)
7868 {
7869 struct bfd_elf_version_expr *e2;
7870
7871 if (t->globals.htab && e1->literal)
7872 {
7873 e2 = (struct bfd_elf_version_expr *)
7874 htab_find ((htab_t) t->globals.htab, e1);
7875 while (e2 && strcmp (e1->pattern, e2->pattern) == 0)
7876 {
7877 if (e1->mask == e2->mask)
7878 einfo (_("%X%P: duplicate expression `%s'"
7879 " in version information\n"),
7880 e1->pattern);
7881 e2 = e2->next;
7882 }
7883 }
7884 else if (!e1->literal)
7885 for (e2 = t->globals.remaining; e2 != NULL; e2 = e2->next)
7886 if (strcmp (e1->pattern, e2->pattern) == 0
7887 && e1->mask == e2->mask)
7888 einfo (_("%X%P: duplicate expression `%s'"
7889 " in version information\n"), e1->pattern);
7890 }
7891 }
7892
7893 version->deps = deps;
7894 version->name = name;
7895 if (name[0] != '\0')
7896 {
7897 ++version_index;
7898 version->vernum = version_index;
7899 }
7900 else
7901 version->vernum = 0;
7902
7903 for (pp = &link_info.version_info; *pp != NULL; pp = &(*pp)->next)
7904 ;
7905 *pp = version;
7906 }
7907
7908 /* This is called when we see a version dependency. */
7909
7910 struct bfd_elf_version_deps *
7911 lang_add_vers_depend (struct bfd_elf_version_deps *list, const char *name)
7912 {
7913 struct bfd_elf_version_deps *ret;
7914 struct bfd_elf_version_tree *t;
7915
7916 ret = (struct bfd_elf_version_deps *) xmalloc (sizeof *ret);
7917 ret->next = list;
7918
7919 for (t = link_info.version_info; t != NULL; t = t->next)
7920 {
7921 if (strcmp (t->name, name) == 0)
7922 {
7923 ret->version_needed = t;
7924 return ret;
7925 }
7926 }
7927
7928 einfo (_("%X%P: unable to find version dependency `%s'\n"), name);
7929
7930 ret->version_needed = NULL;
7931 return ret;
7932 }
7933
7934 static void
7935 lang_do_version_exports_section (void)
7936 {
7937 struct bfd_elf_version_expr *greg = NULL, *lreg;
7938
7939 LANG_FOR_EACH_INPUT_STATEMENT (is)
7940 {
7941 asection *sec = bfd_get_section_by_name (is->the_bfd, ".exports");
7942 char *contents, *p;
7943 bfd_size_type len;
7944
7945 if (sec == NULL)
7946 continue;
7947
7948 len = sec->size;
7949 contents = (char *) xmalloc (len);
7950 if (!bfd_get_section_contents (is->the_bfd, sec, contents, 0, len))
7951 einfo (_("%X%P: unable to read .exports section contents\n"), sec);
7952
7953 p = contents;
7954 while (p < contents + len)
7955 {
7956 greg = lang_new_vers_pattern (greg, p, NULL, FALSE);
7957 p = strchr (p, '\0') + 1;
7958 }
7959
7960 /* Do not free the contents, as we used them creating the regex. */
7961
7962 /* Do not include this section in the link. */
7963 sec->flags |= SEC_EXCLUDE | SEC_KEEP;
7964 }
7965
7966 lreg = lang_new_vers_pattern (NULL, "*", NULL, FALSE);
7967 lang_register_vers_node (command_line.version_exports_section,
7968 lang_new_vers_node (greg, lreg), NULL);
7969 }
7970
7971 void
7972 lang_add_unique (const char *name)
7973 {
7974 struct unique_sections *ent;
7975
7976 for (ent = unique_section_list; ent; ent = ent->next)
7977 if (strcmp (ent->name, name) == 0)
7978 return;
7979
7980 ent = (struct unique_sections *) xmalloc (sizeof *ent);
7981 ent->name = xstrdup (name);
7982 ent->next = unique_section_list;
7983 unique_section_list = ent;
7984 }
7985
7986 /* Append the list of dynamic symbols to the existing one. */
7987
7988 void
7989 lang_append_dynamic_list (struct bfd_elf_version_expr *dynamic)
7990 {
7991 if (link_info.dynamic_list)
7992 {
7993 struct bfd_elf_version_expr *tail;
7994 for (tail = dynamic; tail->next != NULL; tail = tail->next)
7995 ;
7996 tail->next = link_info.dynamic_list->head.list;
7997 link_info.dynamic_list->head.list = dynamic;
7998 }
7999 else
8000 {
8001 struct bfd_elf_dynamic_list *d;
8002
8003 d = (struct bfd_elf_dynamic_list *) xcalloc (1, sizeof *d);
8004 d->head.list = dynamic;
8005 d->match = lang_vers_match;
8006 link_info.dynamic_list = d;
8007 }
8008 }
8009
8010 /* Append the list of C++ typeinfo dynamic symbols to the existing
8011 one. */
8012
8013 void
8014 lang_append_dynamic_list_cpp_typeinfo (void)
8015 {
8016 const char * symbols [] =
8017 {
8018 "typeinfo name for*",
8019 "typeinfo for*"
8020 };
8021 struct bfd_elf_version_expr *dynamic = NULL;
8022 unsigned int i;
8023
8024 for (i = 0; i < ARRAY_SIZE (symbols); i++)
8025 dynamic = lang_new_vers_pattern (dynamic, symbols [i], "C++",
8026 FALSE);
8027
8028 lang_append_dynamic_list (dynamic);
8029 }
8030
8031 /* Append the list of C++ operator new and delete dynamic symbols to the
8032 existing one. */
8033
8034 void
8035 lang_append_dynamic_list_cpp_new (void)
8036 {
8037 const char * symbols [] =
8038 {
8039 "operator new*",
8040 "operator delete*"
8041 };
8042 struct bfd_elf_version_expr *dynamic = NULL;
8043 unsigned int i;
8044
8045 for (i = 0; i < ARRAY_SIZE (symbols); i++)
8046 dynamic = lang_new_vers_pattern (dynamic, symbols [i], "C++",
8047 FALSE);
8048
8049 lang_append_dynamic_list (dynamic);
8050 }
8051
8052 /* Scan a space and/or comma separated string of features. */
8053
8054 void
8055 lang_ld_feature (char *str)
8056 {
8057 char *p, *q;
8058
8059 p = str;
8060 while (*p)
8061 {
8062 char sep;
8063 while (*p == ',' || ISSPACE (*p))
8064 ++p;
8065 if (!*p)
8066 break;
8067 q = p + 1;
8068 while (*q && *q != ',' && !ISSPACE (*q))
8069 ++q;
8070 sep = *q;
8071 *q = 0;
8072 if (strcasecmp (p, "SANE_EXPR") == 0)
8073 config.sane_expr = TRUE;
8074 else
8075 einfo (_("%X%P: unknown feature `%s'\n"), p);
8076 *q = sep;
8077 p = q;
8078 }
8079 }
This page took 0.193193 seconds and 4 git commands to generate.