de24380630e0d4cfe461c4a94d9458ef47a90631
[deliverable/binutils-gdb.git] / ld / ldlang.c
1 /* Linker command language support.
2 Copyright (C) 1991-2016 Free Software Foundation, Inc.
3
4 This file is part of the GNU Binutils.
5
6 This program is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 3 of the License, or
9 (at your option) any later version.
10
11 This program is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with this program; if not, write to the Free Software
18 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
19 MA 02110-1301, USA. */
20
21 #include "sysdep.h"
22 #include "bfd.h"
23 #include "libiberty.h"
24 #include "filenames.h"
25 #include "safe-ctype.h"
26 #include "obstack.h"
27 #include "bfdlink.h"
28
29 #include "ld.h"
30 #include "ldmain.h"
31 #include "ldexp.h"
32 #include "ldlang.h"
33 #include <ldgram.h>
34 #include "ldlex.h"
35 #include "ldmisc.h"
36 #include "ldctor.h"
37 #include "ldfile.h"
38 #include "ldemul.h"
39 #include "fnmatch.h"
40 #include "demangle.h"
41 #include "hashtab.h"
42 #include "elf-bfd.h"
43 #ifdef ENABLE_PLUGINS
44 #include "plugin.h"
45 #endif /* ENABLE_PLUGINS */
46
47 #ifndef offsetof
48 #define offsetof(TYPE, MEMBER) ((size_t) & (((TYPE*) 0)->MEMBER))
49 #endif
50
51 /* Convert between addresses in bytes and sizes in octets.
52 For currently supported targets, octets_per_byte is always a power
53 of two, so we can use shifts. */
54 #define TO_ADDR(X) ((X) >> opb_shift)
55 #define TO_SIZE(X) ((X) << opb_shift)
56
57 /* Local variables. */
58 static struct obstack stat_obstack;
59 static struct obstack map_obstack;
60
61 #define obstack_chunk_alloc xmalloc
62 #define obstack_chunk_free free
63 static const char *entry_symbol_default = "start";
64 static bfd_boolean placed_commons = FALSE;
65 static bfd_boolean map_head_is_link_order = FALSE;
66 static lang_output_section_statement_type *default_common_section;
67 static bfd_boolean map_option_f;
68 static bfd_vma print_dot;
69 static lang_input_statement_type *first_file;
70 static const char *current_target;
71 static lang_statement_list_type statement_list;
72 static lang_statement_list_type *stat_save[10];
73 static lang_statement_list_type **stat_save_ptr = &stat_save[0];
74 static struct unique_sections *unique_section_list;
75 static struct asneeded_minfo *asneeded_list_head;
76 static unsigned int opb_shift = 0;
77
78 /* Forward declarations. */
79 static void exp_init_os (etree_type *);
80 static lang_input_statement_type *lookup_name (const char *);
81 static void insert_undefined (const char *);
82 static bfd_boolean sort_def_symbol (struct bfd_link_hash_entry *, void *);
83 static void print_statement (lang_statement_union_type *,
84 lang_output_section_statement_type *);
85 static void print_statement_list (lang_statement_union_type *,
86 lang_output_section_statement_type *);
87 static void print_statements (void);
88 static void print_input_section (asection *, bfd_boolean);
89 static bfd_boolean lang_one_common (struct bfd_link_hash_entry *, void *);
90 static void lang_record_phdrs (void);
91 static void lang_do_version_exports_section (void);
92 static void lang_finalize_version_expr_head
93 (struct bfd_elf_version_expr_head *);
94 static void lang_do_memory_regions (void);
95
96 /* Exported variables. */
97 const char *output_target;
98 lang_output_section_statement_type *abs_output_section;
99 lang_statement_list_type lang_output_section_statement;
100 lang_statement_list_type *stat_ptr = &statement_list;
101 lang_statement_list_type file_chain = { NULL, NULL };
102 lang_statement_list_type input_file_chain;
103 struct bfd_sym_chain entry_symbol = { NULL, NULL };
104 const char *entry_section = ".text";
105 struct lang_input_statement_flags input_flags;
106 bfd_boolean entry_from_cmdline;
107 bfd_boolean undef_from_cmdline;
108 bfd_boolean lang_has_input_file = FALSE;
109 bfd_boolean had_output_filename = FALSE;
110 bfd_boolean lang_float_flag = FALSE;
111 bfd_boolean delete_output_file_on_failure = FALSE;
112 struct lang_phdr *lang_phdr_list;
113 struct lang_nocrossrefs *nocrossref_list;
114 struct asneeded_minfo **asneeded_list_tail;
115
116 /* Functions that traverse the linker script and might evaluate
117 DEFINED() need to increment this at the start of the traversal. */
118 int lang_statement_iteration = 0;
119
120 /* Return TRUE if the PATTERN argument is a wildcard pattern.
121 Although backslashes are treated specially if a pattern contains
122 wildcards, we do not consider the mere presence of a backslash to
123 be enough to cause the pattern to be treated as a wildcard.
124 That lets us handle DOS filenames more naturally. */
125 #define wildcardp(pattern) (strpbrk ((pattern), "?*[") != NULL)
126
127 #define new_stat(x, y) \
128 (x##_type *) new_statement (x##_enum, sizeof (x##_type), y)
129
130 #define outside_section_address(q) \
131 ((q)->output_offset + (q)->output_section->vma)
132
133 #define outside_symbol_address(q) \
134 ((q)->value + outside_section_address (q->section))
135
136 #define SECTION_NAME_MAP_LENGTH (16)
137
138 void *
139 stat_alloc (size_t size)
140 {
141 return obstack_alloc (&stat_obstack, size);
142 }
143
144 static int
145 name_match (const char *pattern, const char *name)
146 {
147 if (wildcardp (pattern))
148 return fnmatch (pattern, name, 0);
149 return strcmp (pattern, name);
150 }
151
152 /* If PATTERN is of the form archive:file, return a pointer to the
153 separator. If not, return NULL. */
154
155 static char *
156 archive_path (const char *pattern)
157 {
158 char *p = NULL;
159
160 if (link_info.path_separator == 0)
161 return p;
162
163 p = strchr (pattern, link_info.path_separator);
164 #ifdef HAVE_DOS_BASED_FILE_SYSTEM
165 if (p == NULL || link_info.path_separator != ':')
166 return p;
167
168 /* Assume a match on the second char is part of drive specifier,
169 as in "c:\silly.dos". */
170 if (p == pattern + 1 && ISALPHA (*pattern))
171 p = strchr (p + 1, link_info.path_separator);
172 #endif
173 return p;
174 }
175
176 /* Given that FILE_SPEC results in a non-NULL SEP result from archive_path,
177 return whether F matches FILE_SPEC. */
178
179 static bfd_boolean
180 input_statement_is_archive_path (const char *file_spec, char *sep,
181 lang_input_statement_type *f)
182 {
183 bfd_boolean match = FALSE;
184
185 if ((*(sep + 1) == 0
186 || name_match (sep + 1, f->filename) == 0)
187 && ((sep != file_spec)
188 == (f->the_bfd != NULL && f->the_bfd->my_archive != NULL)))
189 {
190 match = TRUE;
191
192 if (sep != file_spec)
193 {
194 const char *aname = f->the_bfd->my_archive->filename;
195 *sep = 0;
196 match = name_match (file_spec, aname) == 0;
197 *sep = link_info.path_separator;
198 }
199 }
200 return match;
201 }
202
203 static bfd_boolean
204 unique_section_p (const asection *sec,
205 const lang_output_section_statement_type *os)
206 {
207 struct unique_sections *unam;
208 const char *secnam;
209
210 if (bfd_link_relocatable (&link_info)
211 && sec->owner != NULL
212 && bfd_is_group_section (sec->owner, sec))
213 return !(os != NULL
214 && strcmp (os->name, DISCARD_SECTION_NAME) == 0);
215
216 secnam = sec->name;
217 for (unam = unique_section_list; unam; unam = unam->next)
218 if (name_match (unam->name, secnam) == 0)
219 return TRUE;
220
221 return FALSE;
222 }
223
224 /* Generic traversal routines for finding matching sections. */
225
226 /* Return true if FILE matches a pattern in EXCLUDE_LIST, otherwise return
227 false. */
228
229 static bfd_boolean
230 walk_wild_file_in_exclude_list (struct name_list *exclude_list,
231 lang_input_statement_type *file)
232 {
233 struct name_list *list_tmp;
234
235 for (list_tmp = exclude_list;
236 list_tmp;
237 list_tmp = list_tmp->next)
238 {
239 char *p = archive_path (list_tmp->name);
240
241 if (p != NULL)
242 {
243 if (input_statement_is_archive_path (list_tmp->name, p, file))
244 return TRUE;
245 }
246
247 else if (name_match (list_tmp->name, file->filename) == 0)
248 return TRUE;
249
250 /* FIXME: Perhaps remove the following at some stage? Matching
251 unadorned archives like this was never documented and has
252 been superceded by the archive:path syntax. */
253 else if (file->the_bfd != NULL
254 && file->the_bfd->my_archive != NULL
255 && name_match (list_tmp->name,
256 file->the_bfd->my_archive->filename) == 0)
257 return TRUE;
258 }
259
260 return FALSE;
261 }
262
263 /* Try processing a section against a wildcard. This just calls
264 the callback unless the filename exclusion list is present
265 and excludes the file. It's hardly ever present so this
266 function is very fast. */
267
268 static void
269 walk_wild_consider_section (lang_wild_statement_type *ptr,
270 lang_input_statement_type *file,
271 asection *s,
272 struct wildcard_list *sec,
273 callback_t callback,
274 void *data)
275 {
276 /* Don't process sections from files which were excluded. */
277 if (walk_wild_file_in_exclude_list (sec->spec.exclude_name_list, file))
278 return;
279
280 (*callback) (ptr, sec, s, ptr->section_flag_list, file, data);
281 }
282
283 /* Lowest common denominator routine that can handle everything correctly,
284 but slowly. */
285
286 static void
287 walk_wild_section_general (lang_wild_statement_type *ptr,
288 lang_input_statement_type *file,
289 callback_t callback,
290 void *data)
291 {
292 asection *s;
293 struct wildcard_list *sec;
294
295 for (s = file->the_bfd->sections; s != NULL; s = s->next)
296 {
297 sec = ptr->section_list;
298 if (sec == NULL)
299 (*callback) (ptr, sec, s, ptr->section_flag_list, file, data);
300
301 while (sec != NULL)
302 {
303 bfd_boolean skip = FALSE;
304
305 if (sec->spec.name != NULL)
306 {
307 const char *sname = bfd_get_section_name (file->the_bfd, s);
308
309 skip = name_match (sec->spec.name, sname) != 0;
310 }
311
312 if (!skip)
313 walk_wild_consider_section (ptr, file, s, sec, callback, data);
314
315 sec = sec->next;
316 }
317 }
318 }
319
320 /* Routines to find a single section given its name. If there's more
321 than one section with that name, we report that. */
322
323 typedef struct
324 {
325 asection *found_section;
326 bfd_boolean multiple_sections_found;
327 } section_iterator_callback_data;
328
329 static bfd_boolean
330 section_iterator_callback (bfd *abfd ATTRIBUTE_UNUSED, asection *s, void *data)
331 {
332 section_iterator_callback_data *d = (section_iterator_callback_data *) data;
333
334 if (d->found_section != NULL)
335 {
336 d->multiple_sections_found = TRUE;
337 return TRUE;
338 }
339
340 d->found_section = s;
341 return FALSE;
342 }
343
344 static asection *
345 find_section (lang_input_statement_type *file,
346 struct wildcard_list *sec,
347 bfd_boolean *multiple_sections_found)
348 {
349 section_iterator_callback_data cb_data = { NULL, FALSE };
350
351 bfd_get_section_by_name_if (file->the_bfd, sec->spec.name,
352 section_iterator_callback, &cb_data);
353 *multiple_sections_found = cb_data.multiple_sections_found;
354 return cb_data.found_section;
355 }
356
357 /* Code for handling simple wildcards without going through fnmatch,
358 which can be expensive because of charset translations etc. */
359
360 /* A simple wild is a literal string followed by a single '*',
361 where the literal part is at least 4 characters long. */
362
363 static bfd_boolean
364 is_simple_wild (const char *name)
365 {
366 size_t len = strcspn (name, "*?[");
367 return len >= 4 && name[len] == '*' && name[len + 1] == '\0';
368 }
369
370 static bfd_boolean
371 match_simple_wild (const char *pattern, const char *name)
372 {
373 /* The first four characters of the pattern are guaranteed valid
374 non-wildcard characters. So we can go faster. */
375 if (pattern[0] != name[0] || pattern[1] != name[1]
376 || pattern[2] != name[2] || pattern[3] != name[3])
377 return FALSE;
378
379 pattern += 4;
380 name += 4;
381 while (*pattern != '*')
382 if (*name++ != *pattern++)
383 return FALSE;
384
385 return TRUE;
386 }
387
388 /* Return the numerical value of the init_priority attribute from
389 section name NAME. */
390
391 static unsigned long
392 get_init_priority (const char *name)
393 {
394 char *end;
395 unsigned long init_priority;
396
397 /* GCC uses the following section names for the init_priority
398 attribute with numerical values 101 and 65535 inclusive. A
399 lower value means a higher priority.
400
401 1: .init_array.NNNN/.fini_array.NNNN: Where NNNN is the
402 decimal numerical value of the init_priority attribute.
403 The order of execution in .init_array is forward and
404 .fini_array is backward.
405 2: .ctors.NNNN/.dtors.NNNN: Where NNNN is 65535 minus the
406 decimal numerical value of the init_priority attribute.
407 The order of execution in .ctors is backward and .dtors
408 is forward.
409 */
410 if (strncmp (name, ".init_array.", 12) == 0
411 || strncmp (name, ".fini_array.", 12) == 0)
412 {
413 init_priority = strtoul (name + 12, &end, 10);
414 return *end ? 0 : init_priority;
415 }
416 else if (strncmp (name, ".ctors.", 7) == 0
417 || strncmp (name, ".dtors.", 7) == 0)
418 {
419 init_priority = strtoul (name + 7, &end, 10);
420 return *end ? 0 : 65535 - init_priority;
421 }
422
423 return 0;
424 }
425
426 /* Compare sections ASEC and BSEC according to SORT. */
427
428 static int
429 compare_section (sort_type sort, asection *asec, asection *bsec)
430 {
431 int ret;
432 unsigned long ainit_priority, binit_priority;
433
434 switch (sort)
435 {
436 default:
437 abort ();
438
439 case by_init_priority:
440 ainit_priority
441 = get_init_priority (bfd_get_section_name (asec->owner, asec));
442 binit_priority
443 = get_init_priority (bfd_get_section_name (bsec->owner, bsec));
444 if (ainit_priority == 0 || binit_priority == 0)
445 goto sort_by_name;
446 ret = ainit_priority - binit_priority;
447 if (ret)
448 break;
449 else
450 goto sort_by_name;
451
452 case by_alignment_name:
453 ret = (bfd_section_alignment (bsec->owner, bsec)
454 - bfd_section_alignment (asec->owner, asec));
455 if (ret)
456 break;
457 /* Fall through. */
458
459 case by_name:
460 sort_by_name:
461 ret = strcmp (bfd_get_section_name (asec->owner, asec),
462 bfd_get_section_name (bsec->owner, bsec));
463 break;
464
465 case by_name_alignment:
466 ret = strcmp (bfd_get_section_name (asec->owner, asec),
467 bfd_get_section_name (bsec->owner, bsec));
468 if (ret)
469 break;
470 /* Fall through. */
471
472 case by_alignment:
473 ret = (bfd_section_alignment (bsec->owner, bsec)
474 - bfd_section_alignment (asec->owner, asec));
475 break;
476 }
477
478 return ret;
479 }
480
481 /* Build a Binary Search Tree to sort sections, unlike insertion sort
482 used in wild_sort(). BST is considerably faster if the number of
483 of sections are large. */
484
485 static lang_section_bst_type **
486 wild_sort_fast (lang_wild_statement_type *wild,
487 struct wildcard_list *sec,
488 lang_input_statement_type *file ATTRIBUTE_UNUSED,
489 asection *section)
490 {
491 lang_section_bst_type **tree;
492
493 tree = &wild->tree;
494 if (!wild->filenames_sorted
495 && (sec == NULL || sec->spec.sorted == none))
496 {
497 /* Append at the right end of tree. */
498 while (*tree)
499 tree = &((*tree)->right);
500 return tree;
501 }
502
503 while (*tree)
504 {
505 /* Find the correct node to append this section. */
506 if (compare_section (sec->spec.sorted, section, (*tree)->section) < 0)
507 tree = &((*tree)->left);
508 else
509 tree = &((*tree)->right);
510 }
511
512 return tree;
513 }
514
515 /* Use wild_sort_fast to build a BST to sort sections. */
516
517 static void
518 output_section_callback_fast (lang_wild_statement_type *ptr,
519 struct wildcard_list *sec,
520 asection *section,
521 struct flag_info *sflag_list ATTRIBUTE_UNUSED,
522 lang_input_statement_type *file,
523 void *output)
524 {
525 lang_section_bst_type *node;
526 lang_section_bst_type **tree;
527 lang_output_section_statement_type *os;
528
529 os = (lang_output_section_statement_type *) output;
530
531 if (unique_section_p (section, os))
532 return;
533
534 node = (lang_section_bst_type *) xmalloc (sizeof (lang_section_bst_type));
535 node->left = 0;
536 node->right = 0;
537 node->section = section;
538
539 tree = wild_sort_fast (ptr, sec, file, section);
540 if (tree != NULL)
541 *tree = node;
542 }
543
544 /* Convert a sorted sections' BST back to list form. */
545
546 static void
547 output_section_callback_tree_to_list (lang_wild_statement_type *ptr,
548 lang_section_bst_type *tree,
549 void *output)
550 {
551 if (tree->left)
552 output_section_callback_tree_to_list (ptr, tree->left, output);
553
554 lang_add_section (&ptr->children, tree->section, NULL,
555 (lang_output_section_statement_type *) output);
556
557 if (tree->right)
558 output_section_callback_tree_to_list (ptr, tree->right, output);
559
560 free (tree);
561 }
562
563 /* Specialized, optimized routines for handling different kinds of
564 wildcards */
565
566 static void
567 walk_wild_section_specs1_wild0 (lang_wild_statement_type *ptr,
568 lang_input_statement_type *file,
569 callback_t callback,
570 void *data)
571 {
572 /* We can just do a hash lookup for the section with the right name.
573 But if that lookup discovers more than one section with the name
574 (should be rare), we fall back to the general algorithm because
575 we would otherwise have to sort the sections to make sure they
576 get processed in the bfd's order. */
577 bfd_boolean multiple_sections_found;
578 struct wildcard_list *sec0 = ptr->handler_data[0];
579 asection *s0 = find_section (file, sec0, &multiple_sections_found);
580
581 if (multiple_sections_found)
582 walk_wild_section_general (ptr, file, callback, data);
583 else if (s0)
584 walk_wild_consider_section (ptr, file, s0, sec0, callback, data);
585 }
586
587 static void
588 walk_wild_section_specs1_wild1 (lang_wild_statement_type *ptr,
589 lang_input_statement_type *file,
590 callback_t callback,
591 void *data)
592 {
593 asection *s;
594 struct wildcard_list *wildsec0 = ptr->handler_data[0];
595
596 for (s = file->the_bfd->sections; s != NULL; s = s->next)
597 {
598 const char *sname = bfd_get_section_name (file->the_bfd, s);
599 bfd_boolean skip = !match_simple_wild (wildsec0->spec.name, sname);
600
601 if (!skip)
602 walk_wild_consider_section (ptr, file, s, wildsec0, callback, data);
603 }
604 }
605
606 static void
607 walk_wild_section_specs2_wild1 (lang_wild_statement_type *ptr,
608 lang_input_statement_type *file,
609 callback_t callback,
610 void *data)
611 {
612 asection *s;
613 struct wildcard_list *sec0 = ptr->handler_data[0];
614 struct wildcard_list *wildsec1 = ptr->handler_data[1];
615 bfd_boolean multiple_sections_found;
616 asection *s0 = find_section (file, sec0, &multiple_sections_found);
617
618 if (multiple_sections_found)
619 {
620 walk_wild_section_general (ptr, file, callback, data);
621 return;
622 }
623
624 /* Note that if the section was not found, s0 is NULL and
625 we'll simply never succeed the s == s0 test below. */
626 for (s = file->the_bfd->sections; s != NULL; s = s->next)
627 {
628 /* Recall that in this code path, a section cannot satisfy more
629 than one spec, so if s == s0 then it cannot match
630 wildspec1. */
631 if (s == s0)
632 walk_wild_consider_section (ptr, file, s, sec0, callback, data);
633 else
634 {
635 const char *sname = bfd_get_section_name (file->the_bfd, s);
636 bfd_boolean skip = !match_simple_wild (wildsec1->spec.name, sname);
637
638 if (!skip)
639 walk_wild_consider_section (ptr, file, s, wildsec1, callback,
640 data);
641 }
642 }
643 }
644
645 static void
646 walk_wild_section_specs3_wild2 (lang_wild_statement_type *ptr,
647 lang_input_statement_type *file,
648 callback_t callback,
649 void *data)
650 {
651 asection *s;
652 struct wildcard_list *sec0 = ptr->handler_data[0];
653 struct wildcard_list *wildsec1 = ptr->handler_data[1];
654 struct wildcard_list *wildsec2 = ptr->handler_data[2];
655 bfd_boolean multiple_sections_found;
656 asection *s0 = find_section (file, sec0, &multiple_sections_found);
657
658 if (multiple_sections_found)
659 {
660 walk_wild_section_general (ptr, file, callback, data);
661 return;
662 }
663
664 for (s = file->the_bfd->sections; s != NULL; s = s->next)
665 {
666 if (s == s0)
667 walk_wild_consider_section (ptr, file, s, sec0, callback, data);
668 else
669 {
670 const char *sname = bfd_get_section_name (file->the_bfd, s);
671 bfd_boolean skip = !match_simple_wild (wildsec1->spec.name, sname);
672
673 if (!skip)
674 walk_wild_consider_section (ptr, file, s, wildsec1, callback, data);
675 else
676 {
677 skip = !match_simple_wild (wildsec2->spec.name, sname);
678 if (!skip)
679 walk_wild_consider_section (ptr, file, s, wildsec2, callback,
680 data);
681 }
682 }
683 }
684 }
685
686 static void
687 walk_wild_section_specs4_wild2 (lang_wild_statement_type *ptr,
688 lang_input_statement_type *file,
689 callback_t callback,
690 void *data)
691 {
692 asection *s;
693 struct wildcard_list *sec0 = ptr->handler_data[0];
694 struct wildcard_list *sec1 = ptr->handler_data[1];
695 struct wildcard_list *wildsec2 = ptr->handler_data[2];
696 struct wildcard_list *wildsec3 = ptr->handler_data[3];
697 bfd_boolean multiple_sections_found;
698 asection *s0 = find_section (file, sec0, &multiple_sections_found), *s1;
699
700 if (multiple_sections_found)
701 {
702 walk_wild_section_general (ptr, file, callback, data);
703 return;
704 }
705
706 s1 = find_section (file, sec1, &multiple_sections_found);
707 if (multiple_sections_found)
708 {
709 walk_wild_section_general (ptr, file, callback, data);
710 return;
711 }
712
713 for (s = file->the_bfd->sections; s != NULL; s = s->next)
714 {
715 if (s == s0)
716 walk_wild_consider_section (ptr, file, s, sec0, callback, data);
717 else
718 if (s == s1)
719 walk_wild_consider_section (ptr, file, s, sec1, callback, data);
720 else
721 {
722 const char *sname = bfd_get_section_name (file->the_bfd, s);
723 bfd_boolean skip = !match_simple_wild (wildsec2->spec.name,
724 sname);
725
726 if (!skip)
727 walk_wild_consider_section (ptr, file, s, wildsec2, callback,
728 data);
729 else
730 {
731 skip = !match_simple_wild (wildsec3->spec.name, sname);
732 if (!skip)
733 walk_wild_consider_section (ptr, file, s, wildsec3,
734 callback, data);
735 }
736 }
737 }
738 }
739
740 static void
741 walk_wild_section (lang_wild_statement_type *ptr,
742 lang_input_statement_type *file,
743 callback_t callback,
744 void *data)
745 {
746 if (file->flags.just_syms)
747 return;
748
749 (*ptr->walk_wild_section_handler) (ptr, file, callback, data);
750 }
751
752 /* Returns TRUE when name1 is a wildcard spec that might match
753 something name2 can match. We're conservative: we return FALSE
754 only if the prefixes of name1 and name2 are different up to the
755 first wildcard character. */
756
757 static bfd_boolean
758 wild_spec_can_overlap (const char *name1, const char *name2)
759 {
760 size_t prefix1_len = strcspn (name1, "?*[");
761 size_t prefix2_len = strcspn (name2, "?*[");
762 size_t min_prefix_len;
763
764 /* Note that if there is no wildcard character, then we treat the
765 terminating 0 as part of the prefix. Thus ".text" won't match
766 ".text." or ".text.*", for example. */
767 if (name1[prefix1_len] == '\0')
768 prefix1_len++;
769 if (name2[prefix2_len] == '\0')
770 prefix2_len++;
771
772 min_prefix_len = prefix1_len < prefix2_len ? prefix1_len : prefix2_len;
773
774 return memcmp (name1, name2, min_prefix_len) == 0;
775 }
776
777 /* Select specialized code to handle various kinds of wildcard
778 statements. */
779
780 static void
781 analyze_walk_wild_section_handler (lang_wild_statement_type *ptr)
782 {
783 int sec_count = 0;
784 int wild_name_count = 0;
785 struct wildcard_list *sec;
786 int signature;
787 int data_counter;
788
789 ptr->walk_wild_section_handler = walk_wild_section_general;
790 ptr->handler_data[0] = NULL;
791 ptr->handler_data[1] = NULL;
792 ptr->handler_data[2] = NULL;
793 ptr->handler_data[3] = NULL;
794 ptr->tree = NULL;
795
796 /* Count how many wildcard_specs there are, and how many of those
797 actually use wildcards in the name. Also, bail out if any of the
798 wildcard names are NULL. (Can this actually happen?
799 walk_wild_section used to test for it.) And bail out if any
800 of the wildcards are more complex than a simple string
801 ending in a single '*'. */
802 for (sec = ptr->section_list; sec != NULL; sec = sec->next)
803 {
804 ++sec_count;
805 if (sec->spec.name == NULL)
806 return;
807 if (wildcardp (sec->spec.name))
808 {
809 ++wild_name_count;
810 if (!is_simple_wild (sec->spec.name))
811 return;
812 }
813 }
814
815 /* The zero-spec case would be easy to optimize but it doesn't
816 happen in practice. Likewise, more than 4 specs doesn't
817 happen in practice. */
818 if (sec_count == 0 || sec_count > 4)
819 return;
820
821 /* Check that no two specs can match the same section. */
822 for (sec = ptr->section_list; sec != NULL; sec = sec->next)
823 {
824 struct wildcard_list *sec2;
825 for (sec2 = sec->next; sec2 != NULL; sec2 = sec2->next)
826 {
827 if (wild_spec_can_overlap (sec->spec.name, sec2->spec.name))
828 return;
829 }
830 }
831
832 signature = (sec_count << 8) + wild_name_count;
833 switch (signature)
834 {
835 case 0x0100:
836 ptr->walk_wild_section_handler = walk_wild_section_specs1_wild0;
837 break;
838 case 0x0101:
839 ptr->walk_wild_section_handler = walk_wild_section_specs1_wild1;
840 break;
841 case 0x0201:
842 ptr->walk_wild_section_handler = walk_wild_section_specs2_wild1;
843 break;
844 case 0x0302:
845 ptr->walk_wild_section_handler = walk_wild_section_specs3_wild2;
846 break;
847 case 0x0402:
848 ptr->walk_wild_section_handler = walk_wild_section_specs4_wild2;
849 break;
850 default:
851 return;
852 }
853
854 /* Now fill the data array with pointers to the specs, first the
855 specs with non-wildcard names, then the specs with wildcard
856 names. It's OK to process the specs in different order from the
857 given order, because we've already determined that no section
858 will match more than one spec. */
859 data_counter = 0;
860 for (sec = ptr->section_list; sec != NULL; sec = sec->next)
861 if (!wildcardp (sec->spec.name))
862 ptr->handler_data[data_counter++] = sec;
863 for (sec = ptr->section_list; sec != NULL; sec = sec->next)
864 if (wildcardp (sec->spec.name))
865 ptr->handler_data[data_counter++] = sec;
866 }
867
868 /* Handle a wild statement for a single file F. */
869
870 static void
871 walk_wild_file (lang_wild_statement_type *s,
872 lang_input_statement_type *f,
873 callback_t callback,
874 void *data)
875 {
876 if (walk_wild_file_in_exclude_list (s->exclude_name_list, f))
877 return;
878
879 if (f->the_bfd == NULL
880 || !bfd_check_format (f->the_bfd, bfd_archive))
881 walk_wild_section (s, f, callback, data);
882 else
883 {
884 bfd *member;
885
886 /* This is an archive file. We must map each member of the
887 archive separately. */
888 member = bfd_openr_next_archived_file (f->the_bfd, NULL);
889 while (member != NULL)
890 {
891 /* When lookup_name is called, it will call the add_symbols
892 entry point for the archive. For each element of the
893 archive which is included, BFD will call ldlang_add_file,
894 which will set the usrdata field of the member to the
895 lang_input_statement. */
896 if (member->usrdata != NULL)
897 {
898 walk_wild_section (s,
899 (lang_input_statement_type *) member->usrdata,
900 callback, data);
901 }
902
903 member = bfd_openr_next_archived_file (f->the_bfd, member);
904 }
905 }
906 }
907
908 static void
909 walk_wild (lang_wild_statement_type *s, callback_t callback, void *data)
910 {
911 const char *file_spec = s->filename;
912 char *p;
913
914 if (file_spec == NULL)
915 {
916 /* Perform the iteration over all files in the list. */
917 LANG_FOR_EACH_INPUT_STATEMENT (f)
918 {
919 walk_wild_file (s, f, callback, data);
920 }
921 }
922 else if ((p = archive_path (file_spec)) != NULL)
923 {
924 LANG_FOR_EACH_INPUT_STATEMENT (f)
925 {
926 if (input_statement_is_archive_path (file_spec, p, f))
927 walk_wild_file (s, f, callback, data);
928 }
929 }
930 else if (wildcardp (file_spec))
931 {
932 LANG_FOR_EACH_INPUT_STATEMENT (f)
933 {
934 if (fnmatch (file_spec, f->filename, 0) == 0)
935 walk_wild_file (s, f, callback, data);
936 }
937 }
938 else
939 {
940 lang_input_statement_type *f;
941
942 /* Perform the iteration over a single file. */
943 f = lookup_name (file_spec);
944 if (f)
945 walk_wild_file (s, f, callback, data);
946 }
947 }
948
949 /* lang_for_each_statement walks the parse tree and calls the provided
950 function for each node, except those inside output section statements
951 with constraint set to -1. */
952
953 void
954 lang_for_each_statement_worker (void (*func) (lang_statement_union_type *),
955 lang_statement_union_type *s)
956 {
957 for (; s != NULL; s = s->header.next)
958 {
959 func (s);
960
961 switch (s->header.type)
962 {
963 case lang_constructors_statement_enum:
964 lang_for_each_statement_worker (func, constructor_list.head);
965 break;
966 case lang_output_section_statement_enum:
967 if (s->output_section_statement.constraint != -1)
968 lang_for_each_statement_worker
969 (func, s->output_section_statement.children.head);
970 break;
971 case lang_wild_statement_enum:
972 lang_for_each_statement_worker (func,
973 s->wild_statement.children.head);
974 break;
975 case lang_group_statement_enum:
976 lang_for_each_statement_worker (func,
977 s->group_statement.children.head);
978 break;
979 case lang_data_statement_enum:
980 case lang_reloc_statement_enum:
981 case lang_object_symbols_statement_enum:
982 case lang_output_statement_enum:
983 case lang_target_statement_enum:
984 case lang_input_section_enum:
985 case lang_input_statement_enum:
986 case lang_assignment_statement_enum:
987 case lang_padding_statement_enum:
988 case lang_address_statement_enum:
989 case lang_fill_statement_enum:
990 case lang_insert_statement_enum:
991 break;
992 default:
993 FAIL ();
994 break;
995 }
996 }
997 }
998
999 void
1000 lang_for_each_statement (void (*func) (lang_statement_union_type *))
1001 {
1002 lang_for_each_statement_worker (func, statement_list.head);
1003 }
1004
1005 /*----------------------------------------------------------------------*/
1006
1007 void
1008 lang_list_init (lang_statement_list_type *list)
1009 {
1010 list->head = NULL;
1011 list->tail = &list->head;
1012 }
1013
1014 void
1015 push_stat_ptr (lang_statement_list_type *new_ptr)
1016 {
1017 if (stat_save_ptr >= stat_save + sizeof (stat_save) / sizeof (stat_save[0]))
1018 abort ();
1019 *stat_save_ptr++ = stat_ptr;
1020 stat_ptr = new_ptr;
1021 }
1022
1023 void
1024 pop_stat_ptr (void)
1025 {
1026 if (stat_save_ptr <= stat_save)
1027 abort ();
1028 stat_ptr = *--stat_save_ptr;
1029 }
1030
1031 /* Build a new statement node for the parse tree. */
1032
1033 static lang_statement_union_type *
1034 new_statement (enum statement_enum type,
1035 size_t size,
1036 lang_statement_list_type *list)
1037 {
1038 lang_statement_union_type *new_stmt;
1039
1040 new_stmt = (lang_statement_union_type *) stat_alloc (size);
1041 new_stmt->header.type = type;
1042 new_stmt->header.next = NULL;
1043 lang_statement_append (list, new_stmt, &new_stmt->header.next);
1044 return new_stmt;
1045 }
1046
1047 /* Build a new input file node for the language. There are several
1048 ways in which we treat an input file, eg, we only look at symbols,
1049 or prefix it with a -l etc.
1050
1051 We can be supplied with requests for input files more than once;
1052 they may, for example be split over several lines like foo.o(.text)
1053 foo.o(.data) etc, so when asked for a file we check that we haven't
1054 got it already so we don't duplicate the bfd. */
1055
1056 static lang_input_statement_type *
1057 new_afile (const char *name,
1058 lang_input_file_enum_type file_type,
1059 const char *target,
1060 bfd_boolean add_to_list)
1061 {
1062 lang_input_statement_type *p;
1063
1064 lang_has_input_file = TRUE;
1065
1066 if (add_to_list)
1067 p = (lang_input_statement_type *) new_stat (lang_input_statement, stat_ptr);
1068 else
1069 {
1070 p = (lang_input_statement_type *)
1071 stat_alloc (sizeof (lang_input_statement_type));
1072 p->header.type = lang_input_statement_enum;
1073 p->header.next = NULL;
1074 }
1075
1076 memset (&p->the_bfd, 0,
1077 sizeof (*p) - offsetof (lang_input_statement_type, the_bfd));
1078 p->target = target;
1079 p->flags.dynamic = input_flags.dynamic;
1080 p->flags.add_DT_NEEDED_for_dynamic = input_flags.add_DT_NEEDED_for_dynamic;
1081 p->flags.add_DT_NEEDED_for_regular = input_flags.add_DT_NEEDED_for_regular;
1082 p->flags.whole_archive = input_flags.whole_archive;
1083 p->flags.sysrooted = input_flags.sysrooted;
1084
1085 switch (file_type)
1086 {
1087 case lang_input_file_is_symbols_only_enum:
1088 p->filename = name;
1089 p->local_sym_name = name;
1090 p->flags.real = TRUE;
1091 p->flags.just_syms = TRUE;
1092 break;
1093 case lang_input_file_is_fake_enum:
1094 p->filename = name;
1095 p->local_sym_name = name;
1096 break;
1097 case lang_input_file_is_l_enum:
1098 if (name[0] == ':' && name[1] != '\0')
1099 {
1100 p->filename = name + 1;
1101 p->flags.full_name_provided = TRUE;
1102 }
1103 else
1104 p->filename = name;
1105 p->local_sym_name = concat ("-l", name, (const char *) NULL);
1106 p->flags.maybe_archive = TRUE;
1107 p->flags.real = TRUE;
1108 p->flags.search_dirs = TRUE;
1109 break;
1110 case lang_input_file_is_marker_enum:
1111 p->filename = name;
1112 p->local_sym_name = name;
1113 p->flags.search_dirs = TRUE;
1114 break;
1115 case lang_input_file_is_search_file_enum:
1116 p->filename = name;
1117 p->local_sym_name = name;
1118 p->flags.real = TRUE;
1119 p->flags.search_dirs = TRUE;
1120 break;
1121 case lang_input_file_is_file_enum:
1122 p->filename = name;
1123 p->local_sym_name = name;
1124 p->flags.real = TRUE;
1125 break;
1126 default:
1127 FAIL ();
1128 }
1129
1130 lang_statement_append (&input_file_chain,
1131 (lang_statement_union_type *) p,
1132 &p->next_real_file);
1133 return p;
1134 }
1135
1136 lang_input_statement_type *
1137 lang_add_input_file (const char *name,
1138 lang_input_file_enum_type file_type,
1139 const char *target)
1140 {
1141 if (name != NULL && *name == '=')
1142 {
1143 lang_input_statement_type *ret;
1144 char *sysrooted_name
1145 = concat (ld_sysroot, name + 1, (const char *) NULL);
1146
1147 /* We've now forcibly prepended the sysroot, making the input
1148 file independent of the context. Therefore, temporarily
1149 force a non-sysrooted context for this statement, so it won't
1150 get the sysroot prepended again when opened. (N.B. if it's a
1151 script, any child nodes with input files starting with "/"
1152 will be handled as "sysrooted" as they'll be found to be
1153 within the sysroot subdirectory.) */
1154 unsigned int outer_sysrooted = input_flags.sysrooted;
1155 input_flags.sysrooted = 0;
1156 ret = new_afile (sysrooted_name, file_type, target, TRUE);
1157 input_flags.sysrooted = outer_sysrooted;
1158 return ret;
1159 }
1160
1161 return new_afile (name, file_type, target, TRUE);
1162 }
1163
1164 struct out_section_hash_entry
1165 {
1166 struct bfd_hash_entry root;
1167 lang_statement_union_type s;
1168 };
1169
1170 /* The hash table. */
1171
1172 static struct bfd_hash_table output_section_statement_table;
1173
1174 /* Support routines for the hash table used by lang_output_section_find,
1175 initialize the table, fill in an entry and remove the table. */
1176
1177 static struct bfd_hash_entry *
1178 output_section_statement_newfunc (struct bfd_hash_entry *entry,
1179 struct bfd_hash_table *table,
1180 const char *string)
1181 {
1182 lang_output_section_statement_type **nextp;
1183 struct out_section_hash_entry *ret;
1184
1185 if (entry == NULL)
1186 {
1187 entry = (struct bfd_hash_entry *) bfd_hash_allocate (table,
1188 sizeof (*ret));
1189 if (entry == NULL)
1190 return entry;
1191 }
1192
1193 entry = bfd_hash_newfunc (entry, table, string);
1194 if (entry == NULL)
1195 return entry;
1196
1197 ret = (struct out_section_hash_entry *) entry;
1198 memset (&ret->s, 0, sizeof (ret->s));
1199 ret->s.header.type = lang_output_section_statement_enum;
1200 ret->s.output_section_statement.subsection_alignment = -1;
1201 ret->s.output_section_statement.section_alignment = -1;
1202 ret->s.output_section_statement.block_value = 1;
1203 lang_list_init (&ret->s.output_section_statement.children);
1204 lang_statement_append (stat_ptr, &ret->s, &ret->s.header.next);
1205
1206 /* For every output section statement added to the list, except the
1207 first one, lang_output_section_statement.tail points to the "next"
1208 field of the last element of the list. */
1209 if (lang_output_section_statement.head != NULL)
1210 ret->s.output_section_statement.prev
1211 = ((lang_output_section_statement_type *)
1212 ((char *) lang_output_section_statement.tail
1213 - offsetof (lang_output_section_statement_type, next)));
1214
1215 /* GCC's strict aliasing rules prevent us from just casting the
1216 address, so we store the pointer in a variable and cast that
1217 instead. */
1218 nextp = &ret->s.output_section_statement.next;
1219 lang_statement_append (&lang_output_section_statement,
1220 &ret->s,
1221 (lang_statement_union_type **) nextp);
1222 return &ret->root;
1223 }
1224
1225 static void
1226 output_section_statement_table_init (void)
1227 {
1228 if (!bfd_hash_table_init_n (&output_section_statement_table,
1229 output_section_statement_newfunc,
1230 sizeof (struct out_section_hash_entry),
1231 61))
1232 einfo (_("%P%F: can not create hash table: %E\n"));
1233 }
1234
1235 static void
1236 output_section_statement_table_free (void)
1237 {
1238 bfd_hash_table_free (&output_section_statement_table);
1239 }
1240
1241 /* Build enough state so that the parser can build its tree. */
1242
1243 void
1244 lang_init (void)
1245 {
1246 obstack_begin (&stat_obstack, 1000);
1247
1248 stat_ptr = &statement_list;
1249
1250 output_section_statement_table_init ();
1251
1252 lang_list_init (stat_ptr);
1253
1254 lang_list_init (&input_file_chain);
1255 lang_list_init (&lang_output_section_statement);
1256 lang_list_init (&file_chain);
1257 first_file = lang_add_input_file (NULL, lang_input_file_is_marker_enum,
1258 NULL);
1259 abs_output_section =
1260 lang_output_section_statement_lookup (BFD_ABS_SECTION_NAME, 0, TRUE);
1261
1262 abs_output_section->bfd_section = bfd_abs_section_ptr;
1263
1264 asneeded_list_head = NULL;
1265 asneeded_list_tail = &asneeded_list_head;
1266 }
1267
1268 void
1269 lang_finish (void)
1270 {
1271 output_section_statement_table_free ();
1272 }
1273
1274 /*----------------------------------------------------------------------
1275 A region is an area of memory declared with the
1276 MEMORY { name:org=exp, len=exp ... }
1277 syntax.
1278
1279 We maintain a list of all the regions here.
1280
1281 If no regions are specified in the script, then the default is used
1282 which is created when looked up to be the entire data space.
1283
1284 If create is true we are creating a region inside a MEMORY block.
1285 In this case it is probably an error to create a region that has
1286 already been created. If we are not inside a MEMORY block it is
1287 dubious to use an undeclared region name (except DEFAULT_MEMORY_REGION)
1288 and so we issue a warning.
1289
1290 Each region has at least one name. The first name is either
1291 DEFAULT_MEMORY_REGION or the name given in the MEMORY block. You can add
1292 alias names to an existing region within a script with
1293 REGION_ALIAS (alias, region_name). Each name corresponds to at most one
1294 region. */
1295
1296 static lang_memory_region_type *lang_memory_region_list;
1297 static lang_memory_region_type **lang_memory_region_list_tail
1298 = &lang_memory_region_list;
1299
1300 lang_memory_region_type *
1301 lang_memory_region_lookup (const char *const name, bfd_boolean create)
1302 {
1303 lang_memory_region_name *n;
1304 lang_memory_region_type *r;
1305 lang_memory_region_type *new_region;
1306
1307 /* NAME is NULL for LMA memspecs if no region was specified. */
1308 if (name == NULL)
1309 return NULL;
1310
1311 for (r = lang_memory_region_list; r != NULL; r = r->next)
1312 for (n = &r->name_list; n != NULL; n = n->next)
1313 if (strcmp (n->name, name) == 0)
1314 {
1315 if (create)
1316 einfo (_("%P:%S: warning: redeclaration of memory region `%s'\n"),
1317 NULL, name);
1318 return r;
1319 }
1320
1321 if (!create && strcmp (name, DEFAULT_MEMORY_REGION))
1322 einfo (_("%P:%S: warning: memory region `%s' not declared\n"),
1323 NULL, name);
1324
1325 new_region = (lang_memory_region_type *)
1326 stat_alloc (sizeof (lang_memory_region_type));
1327
1328 new_region->name_list.name = xstrdup (name);
1329 new_region->name_list.next = NULL;
1330 new_region->next = NULL;
1331 new_region->origin_exp = NULL;
1332 new_region->origin = 0;
1333 new_region->length_exp = NULL;
1334 new_region->length = ~(bfd_size_type) 0;
1335 new_region->current = 0;
1336 new_region->last_os = NULL;
1337 new_region->flags = 0;
1338 new_region->not_flags = 0;
1339 new_region->had_full_message = FALSE;
1340
1341 *lang_memory_region_list_tail = new_region;
1342 lang_memory_region_list_tail = &new_region->next;
1343
1344 return new_region;
1345 }
1346
1347 void
1348 lang_memory_region_alias (const char *alias, const char *region_name)
1349 {
1350 lang_memory_region_name *n;
1351 lang_memory_region_type *r;
1352 lang_memory_region_type *region;
1353
1354 /* The default region must be unique. This ensures that it is not necessary
1355 to iterate through the name list if someone wants the check if a region is
1356 the default memory region. */
1357 if (strcmp (region_name, DEFAULT_MEMORY_REGION) == 0
1358 || strcmp (alias, DEFAULT_MEMORY_REGION) == 0)
1359 einfo (_("%F%P:%S: error: alias for default memory region\n"), NULL);
1360
1361 /* Look for the target region and check if the alias is not already
1362 in use. */
1363 region = NULL;
1364 for (r = lang_memory_region_list; r != NULL; r = r->next)
1365 for (n = &r->name_list; n != NULL; n = n->next)
1366 {
1367 if (region == NULL && strcmp (n->name, region_name) == 0)
1368 region = r;
1369 if (strcmp (n->name, alias) == 0)
1370 einfo (_("%F%P:%S: error: redefinition of memory region "
1371 "alias `%s'\n"),
1372 NULL, alias);
1373 }
1374
1375 /* Check if the target region exists. */
1376 if (region == NULL)
1377 einfo (_("%F%P:%S: error: memory region `%s' "
1378 "for alias `%s' does not exist\n"),
1379 NULL, region_name, alias);
1380
1381 /* Add alias to region name list. */
1382 n = (lang_memory_region_name *) stat_alloc (sizeof (lang_memory_region_name));
1383 n->name = xstrdup (alias);
1384 n->next = region->name_list.next;
1385 region->name_list.next = n;
1386 }
1387
1388 static lang_memory_region_type *
1389 lang_memory_default (asection *section)
1390 {
1391 lang_memory_region_type *p;
1392
1393 flagword sec_flags = section->flags;
1394
1395 /* Override SEC_DATA to mean a writable section. */
1396 if ((sec_flags & (SEC_ALLOC | SEC_READONLY | SEC_CODE)) == SEC_ALLOC)
1397 sec_flags |= SEC_DATA;
1398
1399 for (p = lang_memory_region_list; p != NULL; p = p->next)
1400 {
1401 if ((p->flags & sec_flags) != 0
1402 && (p->not_flags & sec_flags) == 0)
1403 {
1404 return p;
1405 }
1406 }
1407 return lang_memory_region_lookup (DEFAULT_MEMORY_REGION, FALSE);
1408 }
1409
1410 /* Get the output section statement directly from the userdata. */
1411
1412 lang_output_section_statement_type *
1413 lang_output_section_get (const asection *output_section)
1414 {
1415 return get_userdata (output_section);
1416 }
1417
1418 /* Find or create an output_section_statement with the given NAME.
1419 If CONSTRAINT is non-zero match one with that constraint, otherwise
1420 match any non-negative constraint. If CREATE, always make a
1421 new output_section_statement for SPECIAL CONSTRAINT. */
1422
1423 lang_output_section_statement_type *
1424 lang_output_section_statement_lookup (const char *name,
1425 int constraint,
1426 bfd_boolean create)
1427 {
1428 struct out_section_hash_entry *entry;
1429
1430 entry = ((struct out_section_hash_entry *)
1431 bfd_hash_lookup (&output_section_statement_table, name,
1432 create, FALSE));
1433 if (entry == NULL)
1434 {
1435 if (create)
1436 einfo (_("%P%F: failed creating section `%s': %E\n"), name);
1437 return NULL;
1438 }
1439
1440 if (entry->s.output_section_statement.name != NULL)
1441 {
1442 /* We have a section of this name, but it might not have the correct
1443 constraint. */
1444 struct out_section_hash_entry *last_ent;
1445
1446 name = entry->s.output_section_statement.name;
1447 if (create && constraint == SPECIAL)
1448 /* Not traversing to the end reverses the order of the second
1449 and subsequent SPECIAL sections in the hash table chain,
1450 but that shouldn't matter. */
1451 last_ent = entry;
1452 else
1453 do
1454 {
1455 if (constraint == entry->s.output_section_statement.constraint
1456 || (constraint == 0
1457 && entry->s.output_section_statement.constraint >= 0))
1458 return &entry->s.output_section_statement;
1459 last_ent = entry;
1460 entry = (struct out_section_hash_entry *) entry->root.next;
1461 }
1462 while (entry != NULL
1463 && name == entry->s.output_section_statement.name);
1464
1465 if (!create)
1466 return NULL;
1467
1468 entry
1469 = ((struct out_section_hash_entry *)
1470 output_section_statement_newfunc (NULL,
1471 &output_section_statement_table,
1472 name));
1473 if (entry == NULL)
1474 {
1475 einfo (_("%P%F: failed creating section `%s': %E\n"), name);
1476 return NULL;
1477 }
1478 entry->root = last_ent->root;
1479 last_ent->root.next = &entry->root;
1480 }
1481
1482 entry->s.output_section_statement.name = name;
1483 entry->s.output_section_statement.constraint = constraint;
1484 return &entry->s.output_section_statement;
1485 }
1486
1487 /* Find the next output_section_statement with the same name as OS.
1488 If CONSTRAINT is non-zero, find one with that constraint otherwise
1489 match any non-negative constraint. */
1490
1491 lang_output_section_statement_type *
1492 next_matching_output_section_statement (lang_output_section_statement_type *os,
1493 int constraint)
1494 {
1495 /* All output_section_statements are actually part of a
1496 struct out_section_hash_entry. */
1497 struct out_section_hash_entry *entry = (struct out_section_hash_entry *)
1498 ((char *) os
1499 - offsetof (struct out_section_hash_entry, s.output_section_statement));
1500 const char *name = os->name;
1501
1502 ASSERT (name == entry->root.string);
1503 do
1504 {
1505 entry = (struct out_section_hash_entry *) entry->root.next;
1506 if (entry == NULL
1507 || name != entry->s.output_section_statement.name)
1508 return NULL;
1509 }
1510 while (constraint != entry->s.output_section_statement.constraint
1511 && (constraint != 0
1512 || entry->s.output_section_statement.constraint < 0));
1513
1514 return &entry->s.output_section_statement;
1515 }
1516
1517 /* A variant of lang_output_section_find used by place_orphan.
1518 Returns the output statement that should precede a new output
1519 statement for SEC. If an exact match is found on certain flags,
1520 sets *EXACT too. */
1521
1522 lang_output_section_statement_type *
1523 lang_output_section_find_by_flags (const asection *sec,
1524 flagword sec_flags,
1525 lang_output_section_statement_type **exact,
1526 lang_match_sec_type_func match_type)
1527 {
1528 lang_output_section_statement_type *first, *look, *found;
1529 flagword look_flags, differ;
1530
1531 /* We know the first statement on this list is *ABS*. May as well
1532 skip it. */
1533 first = &lang_output_section_statement.head->output_section_statement;
1534 first = first->next;
1535
1536 /* First try for an exact match. */
1537 found = NULL;
1538 for (look = first; look; look = look->next)
1539 {
1540 look_flags = look->flags;
1541 if (look->bfd_section != NULL)
1542 {
1543 look_flags = look->bfd_section->flags;
1544 if (match_type && !match_type (link_info.output_bfd,
1545 look->bfd_section,
1546 sec->owner, sec))
1547 continue;
1548 }
1549 differ = look_flags ^ sec_flags;
1550 if (!(differ & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD | SEC_READONLY
1551 | SEC_CODE | SEC_SMALL_DATA | SEC_THREAD_LOCAL)))
1552 found = look;
1553 }
1554 if (found != NULL)
1555 {
1556 if (exact != NULL)
1557 *exact = found;
1558 return found;
1559 }
1560
1561 if ((sec_flags & SEC_CODE) != 0
1562 && (sec_flags & SEC_ALLOC) != 0)
1563 {
1564 /* Try for a rw code section. */
1565 for (look = first; look; look = look->next)
1566 {
1567 look_flags = look->flags;
1568 if (look->bfd_section != NULL)
1569 {
1570 look_flags = look->bfd_section->flags;
1571 if (match_type && !match_type (link_info.output_bfd,
1572 look->bfd_section,
1573 sec->owner, sec))
1574 continue;
1575 }
1576 differ = look_flags ^ sec_flags;
1577 if (!(differ & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD
1578 | SEC_CODE | SEC_SMALL_DATA | SEC_THREAD_LOCAL)))
1579 found = look;
1580 }
1581 }
1582 else if ((sec_flags & SEC_READONLY) != 0
1583 && (sec_flags & SEC_ALLOC) != 0)
1584 {
1585 /* .rodata can go after .text, .sdata2 after .rodata. */
1586 for (look = first; look; look = look->next)
1587 {
1588 look_flags = look->flags;
1589 if (look->bfd_section != NULL)
1590 {
1591 look_flags = look->bfd_section->flags;
1592 if (match_type && !match_type (link_info.output_bfd,
1593 look->bfd_section,
1594 sec->owner, sec))
1595 continue;
1596 }
1597 differ = look_flags ^ sec_flags;
1598 if (!(differ & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD
1599 | SEC_READONLY | SEC_SMALL_DATA))
1600 || (!(differ & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD
1601 | SEC_READONLY))
1602 && !(look_flags & SEC_SMALL_DATA)))
1603 found = look;
1604 }
1605 }
1606 else if ((sec_flags & SEC_THREAD_LOCAL) != 0
1607 && (sec_flags & SEC_ALLOC) != 0)
1608 {
1609 /* .tdata can go after .data, .tbss after .tdata. Treat .tbss
1610 as if it were a loaded section, and don't use match_type. */
1611 bfd_boolean seen_thread_local = FALSE;
1612
1613 match_type = NULL;
1614 for (look = first; look; look = look->next)
1615 {
1616 look_flags = look->flags;
1617 if (look->bfd_section != NULL)
1618 look_flags = look->bfd_section->flags;
1619
1620 differ = look_flags ^ (sec_flags | SEC_LOAD | SEC_HAS_CONTENTS);
1621 if (!(differ & (SEC_THREAD_LOCAL | SEC_ALLOC)))
1622 {
1623 /* .tdata and .tbss must be adjacent and in that order. */
1624 if (!(look_flags & SEC_LOAD)
1625 && (sec_flags & SEC_LOAD))
1626 /* ..so if we're at a .tbss section and we're placing
1627 a .tdata section stop looking and return the
1628 previous section. */
1629 break;
1630 found = look;
1631 seen_thread_local = TRUE;
1632 }
1633 else if (seen_thread_local)
1634 break;
1635 else if (!(differ & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD)))
1636 found = look;
1637 }
1638 }
1639 else if ((sec_flags & SEC_SMALL_DATA) != 0
1640 && (sec_flags & SEC_ALLOC) != 0)
1641 {
1642 /* .sdata goes after .data, .sbss after .sdata. */
1643 for (look = first; look; look = look->next)
1644 {
1645 look_flags = look->flags;
1646 if (look->bfd_section != NULL)
1647 {
1648 look_flags = look->bfd_section->flags;
1649 if (match_type && !match_type (link_info.output_bfd,
1650 look->bfd_section,
1651 sec->owner, sec))
1652 continue;
1653 }
1654 differ = look_flags ^ sec_flags;
1655 if (!(differ & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD
1656 | SEC_THREAD_LOCAL))
1657 || ((look_flags & SEC_SMALL_DATA)
1658 && !(sec_flags & SEC_HAS_CONTENTS)))
1659 found = look;
1660 }
1661 }
1662 else if ((sec_flags & SEC_HAS_CONTENTS) != 0
1663 && (sec_flags & SEC_ALLOC) != 0)
1664 {
1665 /* .data goes after .rodata. */
1666 for (look = first; look; look = look->next)
1667 {
1668 look_flags = look->flags;
1669 if (look->bfd_section != NULL)
1670 {
1671 look_flags = look->bfd_section->flags;
1672 if (match_type && !match_type (link_info.output_bfd,
1673 look->bfd_section,
1674 sec->owner, sec))
1675 continue;
1676 }
1677 differ = look_flags ^ sec_flags;
1678 if (!(differ & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD
1679 | SEC_SMALL_DATA | SEC_THREAD_LOCAL)))
1680 found = look;
1681 }
1682 }
1683 else if ((sec_flags & SEC_ALLOC) != 0)
1684 {
1685 /* .bss goes after any other alloc section. */
1686 for (look = first; look; look = look->next)
1687 {
1688 look_flags = look->flags;
1689 if (look->bfd_section != NULL)
1690 {
1691 look_flags = look->bfd_section->flags;
1692 if (match_type && !match_type (link_info.output_bfd,
1693 look->bfd_section,
1694 sec->owner, sec))
1695 continue;
1696 }
1697 differ = look_flags ^ sec_flags;
1698 if (!(differ & SEC_ALLOC))
1699 found = look;
1700 }
1701 }
1702 else
1703 {
1704 /* non-alloc go last. */
1705 for (look = first; look; look = look->next)
1706 {
1707 look_flags = look->flags;
1708 if (look->bfd_section != NULL)
1709 look_flags = look->bfd_section->flags;
1710 differ = look_flags ^ sec_flags;
1711 if (!(differ & SEC_DEBUGGING))
1712 found = look;
1713 }
1714 return found;
1715 }
1716
1717 if (found || !match_type)
1718 return found;
1719
1720 return lang_output_section_find_by_flags (sec, sec_flags, NULL, NULL);
1721 }
1722
1723 /* Find the last output section before given output statement.
1724 Used by place_orphan. */
1725
1726 static asection *
1727 output_prev_sec_find (lang_output_section_statement_type *os)
1728 {
1729 lang_output_section_statement_type *lookup;
1730
1731 for (lookup = os->prev; lookup != NULL; lookup = lookup->prev)
1732 {
1733 if (lookup->constraint < 0)
1734 continue;
1735
1736 if (lookup->bfd_section != NULL && lookup->bfd_section->owner != NULL)
1737 return lookup->bfd_section;
1738 }
1739
1740 return NULL;
1741 }
1742
1743 /* Look for a suitable place for a new output section statement. The
1744 idea is to skip over anything that might be inside a SECTIONS {}
1745 statement in a script, before we find another output section
1746 statement. Assignments to "dot" before an output section statement
1747 are assumed to belong to it, except in two cases; The first
1748 assignment to dot, and assignments before non-alloc sections.
1749 Otherwise we might put an orphan before . = . + SIZEOF_HEADERS or
1750 similar assignments that set the initial address, or we might
1751 insert non-alloc note sections among assignments setting end of
1752 image symbols. */
1753
1754 static lang_statement_union_type **
1755 insert_os_after (lang_output_section_statement_type *after)
1756 {
1757 lang_statement_union_type **where;
1758 lang_statement_union_type **assign = NULL;
1759 bfd_boolean ignore_first;
1760
1761 ignore_first
1762 = after == &lang_output_section_statement.head->output_section_statement;
1763
1764 for (where = &after->header.next;
1765 *where != NULL;
1766 where = &(*where)->header.next)
1767 {
1768 switch ((*where)->header.type)
1769 {
1770 case lang_assignment_statement_enum:
1771 if (assign == NULL)
1772 {
1773 lang_assignment_statement_type *ass;
1774
1775 ass = &(*where)->assignment_statement;
1776 if (ass->exp->type.node_class != etree_assert
1777 && ass->exp->assign.dst[0] == '.'
1778 && ass->exp->assign.dst[1] == 0
1779 && !ignore_first)
1780 assign = where;
1781 }
1782 ignore_first = FALSE;
1783 continue;
1784 case lang_wild_statement_enum:
1785 case lang_input_section_enum:
1786 case lang_object_symbols_statement_enum:
1787 case lang_fill_statement_enum:
1788 case lang_data_statement_enum:
1789 case lang_reloc_statement_enum:
1790 case lang_padding_statement_enum:
1791 case lang_constructors_statement_enum:
1792 assign = NULL;
1793 continue;
1794 case lang_output_section_statement_enum:
1795 if (assign != NULL)
1796 {
1797 asection *s = (*where)->output_section_statement.bfd_section;
1798
1799 if (s == NULL
1800 || s->map_head.s == NULL
1801 || (s->flags & SEC_ALLOC) != 0)
1802 where = assign;
1803 }
1804 break;
1805 case lang_input_statement_enum:
1806 case lang_address_statement_enum:
1807 case lang_target_statement_enum:
1808 case lang_output_statement_enum:
1809 case lang_group_statement_enum:
1810 case lang_insert_statement_enum:
1811 continue;
1812 }
1813 break;
1814 }
1815
1816 return where;
1817 }
1818
1819 lang_output_section_statement_type *
1820 lang_insert_orphan (asection *s,
1821 const char *secname,
1822 int constraint,
1823 lang_output_section_statement_type *after,
1824 struct orphan_save *place,
1825 etree_type *address,
1826 lang_statement_list_type *add_child)
1827 {
1828 lang_statement_list_type add;
1829 const char *ps;
1830 lang_assignment_statement_type *start_assign;
1831 lang_output_section_statement_type *os;
1832 lang_output_section_statement_type **os_tail;
1833
1834 /* If we have found an appropriate place for the output section
1835 statements for this orphan, add them to our own private list,
1836 inserting them later into the global statement list. */
1837 if (after != NULL)
1838 {
1839 lang_list_init (&add);
1840 push_stat_ptr (&add);
1841 }
1842
1843 if (bfd_link_relocatable (&link_info)
1844 || (s->flags & (SEC_LOAD | SEC_ALLOC)) == 0)
1845 address = exp_intop (0);
1846
1847 os_tail = ((lang_output_section_statement_type **)
1848 lang_output_section_statement.tail);
1849 os = lang_enter_output_section_statement (secname, address, normal_section,
1850 NULL, NULL, NULL, constraint, 0);
1851
1852 ps = NULL;
1853 start_assign = NULL;
1854 if (config.build_constructors && *os_tail == os)
1855 {
1856 /* If the name of the section is representable in C, then create
1857 symbols to mark the start and the end of the section. */
1858 for (ps = secname; *ps != '\0'; ps++)
1859 if (!ISALNUM ((unsigned char) *ps) && *ps != '_')
1860 break;
1861 if (*ps == '\0')
1862 {
1863 char *symname;
1864
1865 symname = (char *) xmalloc (ps - secname + sizeof "__start_" + 1);
1866 symname[0] = bfd_get_symbol_leading_char (link_info.output_bfd);
1867 sprintf (symname + (symname[0] != 0), "__start_%s", secname);
1868 start_assign
1869 = lang_add_assignment (exp_provide (symname,
1870 exp_nameop (NAME, "."),
1871 FALSE));
1872 }
1873 }
1874
1875 if (add_child == NULL)
1876 add_child = &os->children;
1877 lang_add_section (add_child, s, NULL, os);
1878
1879 if (after && (s->flags & (SEC_LOAD | SEC_ALLOC)) != 0)
1880 {
1881 const char *region = (after->region
1882 ? after->region->name_list.name
1883 : DEFAULT_MEMORY_REGION);
1884 const char *lma_region = (after->lma_region
1885 ? after->lma_region->name_list.name
1886 : NULL);
1887 lang_leave_output_section_statement (NULL, region, after->phdrs,
1888 lma_region);
1889 }
1890 else
1891 lang_leave_output_section_statement (NULL, DEFAULT_MEMORY_REGION, NULL,
1892 NULL);
1893
1894 if (start_assign != NULL)
1895 {
1896 char *symname;
1897 lang_assignment_statement_type *stop_assign;
1898 bfd_vma dot;
1899
1900 symname = (char *) xmalloc (ps - secname + sizeof "__stop_" + 1);
1901 symname[0] = bfd_get_symbol_leading_char (link_info.output_bfd);
1902 sprintf (symname + (symname[0] != 0), "__stop_%s", secname);
1903 stop_assign
1904 = lang_add_assignment (exp_provide (symname,
1905 exp_nameop (NAME, "."),
1906 FALSE));
1907 /* Evaluate the expression to define the symbol if referenced,
1908 before sizing dynamic sections. */
1909 dot = os->bfd_section->vma;
1910 exp_fold_tree (start_assign->exp, os->bfd_section, &dot);
1911 dot += TO_ADDR (s->size);
1912 exp_fold_tree (stop_assign->exp, os->bfd_section, &dot);
1913 }
1914
1915 /* Restore the global list pointer. */
1916 if (after != NULL)
1917 pop_stat_ptr ();
1918
1919 if (after != NULL && os->bfd_section != NULL)
1920 {
1921 asection *snew, *as;
1922
1923 snew = os->bfd_section;
1924
1925 /* Shuffle the bfd section list to make the output file look
1926 neater. This is really only cosmetic. */
1927 if (place->section == NULL
1928 && after != (&lang_output_section_statement.head
1929 ->output_section_statement))
1930 {
1931 asection *bfd_section = after->bfd_section;
1932
1933 /* If the output statement hasn't been used to place any input
1934 sections (and thus doesn't have an output bfd_section),
1935 look for the closest prior output statement having an
1936 output section. */
1937 if (bfd_section == NULL)
1938 bfd_section = output_prev_sec_find (after);
1939
1940 if (bfd_section != NULL && bfd_section != snew)
1941 place->section = &bfd_section->next;
1942 }
1943
1944 if (place->section == NULL)
1945 place->section = &link_info.output_bfd->sections;
1946
1947 as = *place->section;
1948
1949 if (!as)
1950 {
1951 /* Put the section at the end of the list. */
1952
1953 /* Unlink the section. */
1954 bfd_section_list_remove (link_info.output_bfd, snew);
1955
1956 /* Now tack it back on in the right place. */
1957 bfd_section_list_append (link_info.output_bfd, snew);
1958 }
1959 else if (as != snew && as->prev != snew)
1960 {
1961 /* Unlink the section. */
1962 bfd_section_list_remove (link_info.output_bfd, snew);
1963
1964 /* Now tack it back on in the right place. */
1965 bfd_section_list_insert_before (link_info.output_bfd, as, snew);
1966 }
1967
1968 /* Save the end of this list. Further ophans of this type will
1969 follow the one we've just added. */
1970 place->section = &snew->next;
1971
1972 /* The following is non-cosmetic. We try to put the output
1973 statements in some sort of reasonable order here, because they
1974 determine the final load addresses of the orphan sections.
1975 In addition, placing output statements in the wrong order may
1976 require extra segments. For instance, given a typical
1977 situation of all read-only sections placed in one segment and
1978 following that a segment containing all the read-write
1979 sections, we wouldn't want to place an orphan read/write
1980 section before or amongst the read-only ones. */
1981 if (add.head != NULL)
1982 {
1983 lang_output_section_statement_type *newly_added_os;
1984
1985 if (place->stmt == NULL)
1986 {
1987 lang_statement_union_type **where = insert_os_after (after);
1988
1989 *add.tail = *where;
1990 *where = add.head;
1991
1992 place->os_tail = &after->next;
1993 }
1994 else
1995 {
1996 /* Put it after the last orphan statement we added. */
1997 *add.tail = *place->stmt;
1998 *place->stmt = add.head;
1999 }
2000
2001 /* Fix the global list pointer if we happened to tack our
2002 new list at the tail. */
2003 if (*stat_ptr->tail == add.head)
2004 stat_ptr->tail = add.tail;
2005
2006 /* Save the end of this list. */
2007 place->stmt = add.tail;
2008
2009 /* Do the same for the list of output section statements. */
2010 newly_added_os = *os_tail;
2011 *os_tail = NULL;
2012 newly_added_os->prev = (lang_output_section_statement_type *)
2013 ((char *) place->os_tail
2014 - offsetof (lang_output_section_statement_type, next));
2015 newly_added_os->next = *place->os_tail;
2016 if (newly_added_os->next != NULL)
2017 newly_added_os->next->prev = newly_added_os;
2018 *place->os_tail = newly_added_os;
2019 place->os_tail = &newly_added_os->next;
2020
2021 /* Fixing the global list pointer here is a little different.
2022 We added to the list in lang_enter_output_section_statement,
2023 trimmed off the new output_section_statment above when
2024 assigning *os_tail = NULL, but possibly added it back in
2025 the same place when assigning *place->os_tail. */
2026 if (*os_tail == NULL)
2027 lang_output_section_statement.tail
2028 = (lang_statement_union_type **) os_tail;
2029 }
2030 }
2031 return os;
2032 }
2033
2034 static void
2035 lang_print_asneeded (void)
2036 {
2037 struct asneeded_minfo *m;
2038 char buf[100];
2039
2040 if (asneeded_list_head == NULL)
2041 return;
2042
2043 sprintf (buf, _("\nAs-needed library included "
2044 "to satisfy reference by file (symbol)\n\n"));
2045 minfo ("%s", buf);
2046
2047 for (m = asneeded_list_head; m != NULL; m = m->next)
2048 {
2049 size_t len;
2050
2051 minfo ("%s", m->soname);
2052 len = strlen (m->soname);
2053
2054 if (len >= 29)
2055 {
2056 print_nl ();
2057 len = 0;
2058 }
2059 while (len < 30)
2060 {
2061 print_space ();
2062 ++len;
2063 }
2064
2065 if (m->ref != NULL)
2066 minfo ("%B ", m->ref);
2067 minfo ("(%T)\n", m->name);
2068 }
2069 }
2070
2071 static void
2072 lang_map_flags (flagword flag)
2073 {
2074 if (flag & SEC_ALLOC)
2075 minfo ("a");
2076
2077 if (flag & SEC_CODE)
2078 minfo ("x");
2079
2080 if (flag & SEC_READONLY)
2081 minfo ("r");
2082
2083 if (flag & SEC_DATA)
2084 minfo ("w");
2085
2086 if (flag & SEC_LOAD)
2087 minfo ("l");
2088 }
2089
2090 void
2091 lang_map (void)
2092 {
2093 lang_memory_region_type *m;
2094 bfd_boolean dis_header_printed = FALSE;
2095
2096 LANG_FOR_EACH_INPUT_STATEMENT (file)
2097 {
2098 asection *s;
2099
2100 if ((file->the_bfd->flags & (BFD_LINKER_CREATED | DYNAMIC)) != 0
2101 || file->flags.just_syms)
2102 continue;
2103
2104 for (s = file->the_bfd->sections; s != NULL; s = s->next)
2105 if ((s->output_section == NULL
2106 || s->output_section->owner != link_info.output_bfd)
2107 && (s->flags & (SEC_LINKER_CREATED | SEC_KEEP)) == 0)
2108 {
2109 if (!dis_header_printed)
2110 {
2111 fprintf (config.map_file, _("\nDiscarded input sections\n\n"));
2112 dis_header_printed = TRUE;
2113 }
2114
2115 print_input_section (s, TRUE);
2116 }
2117 }
2118
2119 minfo (_("\nMemory Configuration\n\n"));
2120 fprintf (config.map_file, "%-16s %-18s %-18s %s\n",
2121 _("Name"), _("Origin"), _("Length"), _("Attributes"));
2122
2123 for (m = lang_memory_region_list; m != NULL; m = m->next)
2124 {
2125 char buf[100];
2126 int len;
2127
2128 fprintf (config.map_file, "%-16s ", m->name_list.name);
2129
2130 sprintf_vma (buf, m->origin);
2131 minfo ("0x%s ", buf);
2132 len = strlen (buf);
2133 while (len < 16)
2134 {
2135 print_space ();
2136 ++len;
2137 }
2138
2139 minfo ("0x%V", m->length);
2140 if (m->flags || m->not_flags)
2141 {
2142 #ifndef BFD64
2143 minfo (" ");
2144 #endif
2145 if (m->flags)
2146 {
2147 print_space ();
2148 lang_map_flags (m->flags);
2149 }
2150
2151 if (m->not_flags)
2152 {
2153 minfo (" !");
2154 lang_map_flags (m->not_flags);
2155 }
2156 }
2157
2158 print_nl ();
2159 }
2160
2161 fprintf (config.map_file, _("\nLinker script and memory map\n\n"));
2162
2163 if (!link_info.reduce_memory_overheads)
2164 {
2165 obstack_begin (&map_obstack, 1000);
2166 bfd_link_hash_traverse (link_info.hash, sort_def_symbol, 0);
2167 }
2168 lang_statement_iteration++;
2169 print_statements ();
2170
2171 ldemul_extra_map_file_text (link_info.output_bfd, &link_info,
2172 config.map_file);
2173 }
2174
2175 static bfd_boolean
2176 sort_def_symbol (struct bfd_link_hash_entry *hash_entry,
2177 void *info ATTRIBUTE_UNUSED)
2178 {
2179 if ((hash_entry->type == bfd_link_hash_defined
2180 || hash_entry->type == bfd_link_hash_defweak)
2181 && hash_entry->u.def.section->owner != link_info.output_bfd
2182 && hash_entry->u.def.section->owner != NULL)
2183 {
2184 input_section_userdata_type *ud;
2185 struct map_symbol_def *def;
2186
2187 ud = ((input_section_userdata_type *)
2188 get_userdata (hash_entry->u.def.section));
2189 if (!ud)
2190 {
2191 ud = (input_section_userdata_type *) stat_alloc (sizeof (*ud));
2192 get_userdata (hash_entry->u.def.section) = ud;
2193 ud->map_symbol_def_tail = &ud->map_symbol_def_head;
2194 ud->map_symbol_def_count = 0;
2195 }
2196 else if (!ud->map_symbol_def_tail)
2197 ud->map_symbol_def_tail = &ud->map_symbol_def_head;
2198
2199 def = (struct map_symbol_def *) obstack_alloc (&map_obstack, sizeof *def);
2200 def->entry = hash_entry;
2201 *(ud->map_symbol_def_tail) = def;
2202 ud->map_symbol_def_tail = &def->next;
2203 ud->map_symbol_def_count++;
2204 }
2205 return TRUE;
2206 }
2207
2208 /* Initialize an output section. */
2209
2210 static void
2211 init_os (lang_output_section_statement_type *s, flagword flags)
2212 {
2213 if (strcmp (s->name, DISCARD_SECTION_NAME) == 0)
2214 einfo (_("%P%F: Illegal use of `%s' section\n"), DISCARD_SECTION_NAME);
2215
2216 if (s->constraint != SPECIAL)
2217 s->bfd_section = bfd_get_section_by_name (link_info.output_bfd, s->name);
2218 if (s->bfd_section == NULL)
2219 s->bfd_section = bfd_make_section_anyway_with_flags (link_info.output_bfd,
2220 s->name, flags);
2221 if (s->bfd_section == NULL)
2222 {
2223 einfo (_("%P%F: output format %s cannot represent section"
2224 " called %s: %E\n"),
2225 link_info.output_bfd->xvec->name, s->name);
2226 }
2227 s->bfd_section->output_section = s->bfd_section;
2228 s->bfd_section->output_offset = 0;
2229
2230 /* Set the userdata of the output section to the output section
2231 statement to avoid lookup. */
2232 get_userdata (s->bfd_section) = s;
2233
2234 /* If there is a base address, make sure that any sections it might
2235 mention are initialized. */
2236 if (s->addr_tree != NULL)
2237 exp_init_os (s->addr_tree);
2238
2239 if (s->load_base != NULL)
2240 exp_init_os (s->load_base);
2241
2242 /* If supplied an alignment, set it. */
2243 if (s->section_alignment != -1)
2244 s->bfd_section->alignment_power = s->section_alignment;
2245 }
2246
2247 /* Make sure that all output sections mentioned in an expression are
2248 initialized. */
2249
2250 static void
2251 exp_init_os (etree_type *exp)
2252 {
2253 switch (exp->type.node_class)
2254 {
2255 case etree_assign:
2256 case etree_provide:
2257 exp_init_os (exp->assign.src);
2258 break;
2259
2260 case etree_binary:
2261 exp_init_os (exp->binary.lhs);
2262 exp_init_os (exp->binary.rhs);
2263 break;
2264
2265 case etree_trinary:
2266 exp_init_os (exp->trinary.cond);
2267 exp_init_os (exp->trinary.lhs);
2268 exp_init_os (exp->trinary.rhs);
2269 break;
2270
2271 case etree_assert:
2272 exp_init_os (exp->assert_s.child);
2273 break;
2274
2275 case etree_unary:
2276 exp_init_os (exp->unary.child);
2277 break;
2278
2279 case etree_name:
2280 switch (exp->type.node_code)
2281 {
2282 case ADDR:
2283 case LOADADDR:
2284 case SIZEOF:
2285 {
2286 lang_output_section_statement_type *os;
2287
2288 os = lang_output_section_find (exp->name.name);
2289 if (os != NULL && os->bfd_section == NULL)
2290 init_os (os, 0);
2291 }
2292 }
2293 break;
2294
2295 default:
2296 break;
2297 }
2298 }
2299 \f
2300 static void
2301 section_already_linked (bfd *abfd, asection *sec, void *data)
2302 {
2303 lang_input_statement_type *entry = (lang_input_statement_type *) data;
2304
2305 /* If we are only reading symbols from this object, then we want to
2306 discard all sections. */
2307 if (entry->flags.just_syms)
2308 {
2309 bfd_link_just_syms (abfd, sec, &link_info);
2310 return;
2311 }
2312
2313 /* Deal with SHF_EXCLUDE ELF sections. */
2314 if (!bfd_link_relocatable (&link_info)
2315 && (abfd->flags & BFD_PLUGIN) == 0
2316 && (sec->flags & (SEC_GROUP | SEC_KEEP | SEC_EXCLUDE)) == SEC_EXCLUDE)
2317 sec->output_section = bfd_abs_section_ptr;
2318
2319 if (!(abfd->flags & DYNAMIC))
2320 bfd_section_already_linked (abfd, sec, &link_info);
2321 }
2322 \f
2323 /* The wild routines.
2324
2325 These expand statements like *(.text) and foo.o to a list of
2326 explicit actions, like foo.o(.text), bar.o(.text) and
2327 foo.o(.text, .data). */
2328
2329 /* Add SECTION to the output section OUTPUT. Do this by creating a
2330 lang_input_section statement which is placed at PTR. */
2331
2332 void
2333 lang_add_section (lang_statement_list_type *ptr,
2334 asection *section,
2335 struct flag_info *sflag_info,
2336 lang_output_section_statement_type *output)
2337 {
2338 flagword flags = section->flags;
2339
2340 bfd_boolean discard;
2341 lang_input_section_type *new_section;
2342 bfd *abfd = link_info.output_bfd;
2343
2344 /* Discard sections marked with SEC_EXCLUDE. */
2345 discard = (flags & SEC_EXCLUDE) != 0;
2346
2347 /* Discard input sections which are assigned to a section named
2348 DISCARD_SECTION_NAME. */
2349 if (strcmp (output->name, DISCARD_SECTION_NAME) == 0)
2350 discard = TRUE;
2351
2352 /* Discard debugging sections if we are stripping debugging
2353 information. */
2354 if ((link_info.strip == strip_debugger || link_info.strip == strip_all)
2355 && (flags & SEC_DEBUGGING) != 0)
2356 discard = TRUE;
2357
2358 if (discard)
2359 {
2360 if (section->output_section == NULL)
2361 {
2362 /* This prevents future calls from assigning this section. */
2363 section->output_section = bfd_abs_section_ptr;
2364 }
2365 return;
2366 }
2367
2368 if (sflag_info)
2369 {
2370 bfd_boolean keep;
2371
2372 keep = bfd_lookup_section_flags (&link_info, sflag_info, section);
2373 if (!keep)
2374 return;
2375 }
2376
2377 if (section->output_section != NULL)
2378 return;
2379
2380 /* We don't copy the SEC_NEVER_LOAD flag from an input section
2381 to an output section, because we want to be able to include a
2382 SEC_NEVER_LOAD section in the middle of an otherwise loaded
2383 section (I don't know why we want to do this, but we do).
2384 build_link_order in ldwrite.c handles this case by turning
2385 the embedded SEC_NEVER_LOAD section into a fill. */
2386 flags &= ~ SEC_NEVER_LOAD;
2387
2388 /* If final link, don't copy the SEC_LINK_ONCE flags, they've
2389 already been processed. One reason to do this is that on pe
2390 format targets, .text$foo sections go into .text and it's odd
2391 to see .text with SEC_LINK_ONCE set. */
2392
2393 if (!bfd_link_relocatable (&link_info))
2394 flags &= ~(SEC_LINK_ONCE | SEC_LINK_DUPLICATES | SEC_RELOC);
2395
2396 switch (output->sectype)
2397 {
2398 case normal_section:
2399 case overlay_section:
2400 break;
2401 case noalloc_section:
2402 flags &= ~SEC_ALLOC;
2403 break;
2404 case noload_section:
2405 flags &= ~SEC_LOAD;
2406 flags |= SEC_NEVER_LOAD;
2407 /* Unfortunately GNU ld has managed to evolve two different
2408 meanings to NOLOAD in scripts. ELF gets a .bss style noload,
2409 alloc, no contents section. All others get a noload, noalloc
2410 section. */
2411 if (bfd_get_flavour (link_info.output_bfd) == bfd_target_elf_flavour)
2412 flags &= ~SEC_HAS_CONTENTS;
2413 else
2414 flags &= ~SEC_ALLOC;
2415 break;
2416 }
2417
2418 if (output->bfd_section == NULL)
2419 init_os (output, flags);
2420
2421 /* If SEC_READONLY is not set in the input section, then clear
2422 it from the output section. */
2423 output->bfd_section->flags &= flags | ~SEC_READONLY;
2424
2425 if (output->bfd_section->linker_has_input)
2426 {
2427 /* Only set SEC_READONLY flag on the first input section. */
2428 flags &= ~ SEC_READONLY;
2429
2430 /* Keep SEC_MERGE and SEC_STRINGS only if they are the same. */
2431 if ((output->bfd_section->flags & (SEC_MERGE | SEC_STRINGS))
2432 != (flags & (SEC_MERGE | SEC_STRINGS))
2433 || ((flags & SEC_MERGE) != 0
2434 && output->bfd_section->entsize != section->entsize))
2435 {
2436 output->bfd_section->flags &= ~ (SEC_MERGE | SEC_STRINGS);
2437 flags &= ~ (SEC_MERGE | SEC_STRINGS);
2438 }
2439 }
2440 output->bfd_section->flags |= flags;
2441
2442 if (!output->bfd_section->linker_has_input)
2443 {
2444 output->bfd_section->linker_has_input = 1;
2445 /* This must happen after flags have been updated. The output
2446 section may have been created before we saw its first input
2447 section, eg. for a data statement. */
2448 bfd_init_private_section_data (section->owner, section,
2449 link_info.output_bfd,
2450 output->bfd_section,
2451 &link_info);
2452 if ((flags & SEC_MERGE) != 0)
2453 output->bfd_section->entsize = section->entsize;
2454 }
2455
2456 if ((flags & SEC_TIC54X_BLOCK) != 0
2457 && bfd_get_arch (section->owner) == bfd_arch_tic54x)
2458 {
2459 /* FIXME: This value should really be obtained from the bfd... */
2460 output->block_value = 128;
2461 }
2462
2463 if (section->alignment_power > output->bfd_section->alignment_power)
2464 output->bfd_section->alignment_power = section->alignment_power;
2465
2466 section->output_section = output->bfd_section;
2467
2468 if (!map_head_is_link_order)
2469 {
2470 asection *s = output->bfd_section->map_tail.s;
2471 output->bfd_section->map_tail.s = section;
2472 section->map_head.s = NULL;
2473 section->map_tail.s = s;
2474 if (s != NULL)
2475 s->map_head.s = section;
2476 else
2477 output->bfd_section->map_head.s = section;
2478 }
2479
2480 /* Add a section reference to the list. */
2481 new_section = new_stat (lang_input_section, ptr);
2482 new_section->section = section;
2483 }
2484
2485 /* Handle wildcard sorting. This returns the lang_input_section which
2486 should follow the one we are going to create for SECTION and FILE,
2487 based on the sorting requirements of WILD. It returns NULL if the
2488 new section should just go at the end of the current list. */
2489
2490 static lang_statement_union_type *
2491 wild_sort (lang_wild_statement_type *wild,
2492 struct wildcard_list *sec,
2493 lang_input_statement_type *file,
2494 asection *section)
2495 {
2496 lang_statement_union_type *l;
2497
2498 if (!wild->filenames_sorted
2499 && (sec == NULL || sec->spec.sorted == none))
2500 return NULL;
2501
2502 for (l = wild->children.head; l != NULL; l = l->header.next)
2503 {
2504 lang_input_section_type *ls;
2505
2506 if (l->header.type != lang_input_section_enum)
2507 continue;
2508 ls = &l->input_section;
2509
2510 /* Sorting by filename takes precedence over sorting by section
2511 name. */
2512
2513 if (wild->filenames_sorted)
2514 {
2515 const char *fn, *ln;
2516 bfd_boolean fa, la;
2517 int i;
2518
2519 /* The PE support for the .idata section as generated by
2520 dlltool assumes that files will be sorted by the name of
2521 the archive and then the name of the file within the
2522 archive. */
2523
2524 if (file->the_bfd != NULL
2525 && file->the_bfd->my_archive != NULL)
2526 {
2527 fn = bfd_get_filename (file->the_bfd->my_archive);
2528 fa = TRUE;
2529 }
2530 else
2531 {
2532 fn = file->filename;
2533 fa = FALSE;
2534 }
2535
2536 if (ls->section->owner->my_archive != NULL)
2537 {
2538 ln = bfd_get_filename (ls->section->owner->my_archive);
2539 la = TRUE;
2540 }
2541 else
2542 {
2543 ln = ls->section->owner->filename;
2544 la = FALSE;
2545 }
2546
2547 i = filename_cmp (fn, ln);
2548 if (i > 0)
2549 continue;
2550 else if (i < 0)
2551 break;
2552
2553 if (fa || la)
2554 {
2555 if (fa)
2556 fn = file->filename;
2557 if (la)
2558 ln = ls->section->owner->filename;
2559
2560 i = filename_cmp (fn, ln);
2561 if (i > 0)
2562 continue;
2563 else if (i < 0)
2564 break;
2565 }
2566 }
2567
2568 /* Here either the files are not sorted by name, or we are
2569 looking at the sections for this file. */
2570
2571 if (sec != NULL
2572 && sec->spec.sorted != none
2573 && sec->spec.sorted != by_none)
2574 if (compare_section (sec->spec.sorted, section, ls->section) < 0)
2575 break;
2576 }
2577
2578 return l;
2579 }
2580
2581 /* Expand a wild statement for a particular FILE. SECTION may be
2582 NULL, in which case it is a wild card. */
2583
2584 static void
2585 output_section_callback (lang_wild_statement_type *ptr,
2586 struct wildcard_list *sec,
2587 asection *section,
2588 struct flag_info *sflag_info,
2589 lang_input_statement_type *file,
2590 void *output)
2591 {
2592 lang_statement_union_type *before;
2593 lang_output_section_statement_type *os;
2594
2595 os = (lang_output_section_statement_type *) output;
2596
2597 /* Exclude sections that match UNIQUE_SECTION_LIST. */
2598 if (unique_section_p (section, os))
2599 return;
2600
2601 before = wild_sort (ptr, sec, file, section);
2602
2603 /* Here BEFORE points to the lang_input_section which
2604 should follow the one we are about to add. If BEFORE
2605 is NULL, then the section should just go at the end
2606 of the current list. */
2607
2608 if (before == NULL)
2609 lang_add_section (&ptr->children, section, sflag_info, os);
2610 else
2611 {
2612 lang_statement_list_type list;
2613 lang_statement_union_type **pp;
2614
2615 lang_list_init (&list);
2616 lang_add_section (&list, section, sflag_info, os);
2617
2618 /* If we are discarding the section, LIST.HEAD will
2619 be NULL. */
2620 if (list.head != NULL)
2621 {
2622 ASSERT (list.head->header.next == NULL);
2623
2624 for (pp = &ptr->children.head;
2625 *pp != before;
2626 pp = &(*pp)->header.next)
2627 ASSERT (*pp != NULL);
2628
2629 list.head->header.next = *pp;
2630 *pp = list.head;
2631 }
2632 }
2633 }
2634
2635 /* Check if all sections in a wild statement for a particular FILE
2636 are readonly. */
2637
2638 static void
2639 check_section_callback (lang_wild_statement_type *ptr ATTRIBUTE_UNUSED,
2640 struct wildcard_list *sec ATTRIBUTE_UNUSED,
2641 asection *section,
2642 struct flag_info *sflag_info ATTRIBUTE_UNUSED,
2643 lang_input_statement_type *file ATTRIBUTE_UNUSED,
2644 void *output)
2645 {
2646 lang_output_section_statement_type *os;
2647
2648 os = (lang_output_section_statement_type *) output;
2649
2650 /* Exclude sections that match UNIQUE_SECTION_LIST. */
2651 if (unique_section_p (section, os))
2652 return;
2653
2654 if (section->output_section == NULL && (section->flags & SEC_READONLY) == 0)
2655 os->all_input_readonly = FALSE;
2656 }
2657
2658 /* This is passed a file name which must have been seen already and
2659 added to the statement tree. We will see if it has been opened
2660 already and had its symbols read. If not then we'll read it. */
2661
2662 static lang_input_statement_type *
2663 lookup_name (const char *name)
2664 {
2665 lang_input_statement_type *search;
2666
2667 for (search = (lang_input_statement_type *) input_file_chain.head;
2668 search != NULL;
2669 search = (lang_input_statement_type *) search->next_real_file)
2670 {
2671 /* Use the local_sym_name as the name of the file that has
2672 already been loaded as filename might have been transformed
2673 via the search directory lookup mechanism. */
2674 const char *filename = search->local_sym_name;
2675
2676 if (filename != NULL
2677 && filename_cmp (filename, name) == 0)
2678 break;
2679 }
2680
2681 if (search == NULL)
2682 search = new_afile (name, lang_input_file_is_search_file_enum,
2683 default_target, FALSE);
2684
2685 /* If we have already added this file, or this file is not real
2686 don't add this file. */
2687 if (search->flags.loaded || !search->flags.real)
2688 return search;
2689
2690 if (!load_symbols (search, NULL))
2691 return NULL;
2692
2693 return search;
2694 }
2695
2696 /* Save LIST as a list of libraries whose symbols should not be exported. */
2697
2698 struct excluded_lib
2699 {
2700 char *name;
2701 struct excluded_lib *next;
2702 };
2703 static struct excluded_lib *excluded_libs;
2704
2705 void
2706 add_excluded_libs (const char *list)
2707 {
2708 const char *p = list, *end;
2709
2710 while (*p != '\0')
2711 {
2712 struct excluded_lib *entry;
2713 end = strpbrk (p, ",:");
2714 if (end == NULL)
2715 end = p + strlen (p);
2716 entry = (struct excluded_lib *) xmalloc (sizeof (*entry));
2717 entry->next = excluded_libs;
2718 entry->name = (char *) xmalloc (end - p + 1);
2719 memcpy (entry->name, p, end - p);
2720 entry->name[end - p] = '\0';
2721 excluded_libs = entry;
2722 if (*end == '\0')
2723 break;
2724 p = end + 1;
2725 }
2726 }
2727
2728 static void
2729 check_excluded_libs (bfd *abfd)
2730 {
2731 struct excluded_lib *lib = excluded_libs;
2732
2733 while (lib)
2734 {
2735 int len = strlen (lib->name);
2736 const char *filename = lbasename (abfd->filename);
2737
2738 if (strcmp (lib->name, "ALL") == 0)
2739 {
2740 abfd->no_export = TRUE;
2741 return;
2742 }
2743
2744 if (filename_ncmp (lib->name, filename, len) == 0
2745 && (filename[len] == '\0'
2746 || (filename[len] == '.' && filename[len + 1] == 'a'
2747 && filename[len + 2] == '\0')))
2748 {
2749 abfd->no_export = TRUE;
2750 return;
2751 }
2752
2753 lib = lib->next;
2754 }
2755 }
2756
2757 /* Get the symbols for an input file. */
2758
2759 bfd_boolean
2760 load_symbols (lang_input_statement_type *entry,
2761 lang_statement_list_type *place)
2762 {
2763 char **matching;
2764
2765 if (entry->flags.loaded)
2766 return TRUE;
2767
2768 ldfile_open_file (entry);
2769
2770 /* Do not process further if the file was missing. */
2771 if (entry->flags.missing_file)
2772 return TRUE;
2773
2774 if (!bfd_check_format (entry->the_bfd, bfd_archive)
2775 && !bfd_check_format_matches (entry->the_bfd, bfd_object, &matching))
2776 {
2777 bfd_error_type err;
2778 struct lang_input_statement_flags save_flags;
2779 extern FILE *yyin;
2780
2781 err = bfd_get_error ();
2782
2783 /* See if the emulation has some special knowledge. */
2784 if (ldemul_unrecognized_file (entry))
2785 return TRUE;
2786
2787 if (err == bfd_error_file_ambiguously_recognized)
2788 {
2789 char **p;
2790
2791 einfo (_("%B: file not recognized: %E\n"), entry->the_bfd);
2792 einfo (_("%B: matching formats:"), entry->the_bfd);
2793 for (p = matching; *p != NULL; p++)
2794 einfo (" %s", *p);
2795 einfo ("%F\n");
2796 }
2797 else if (err != bfd_error_file_not_recognized
2798 || place == NULL)
2799 einfo (_("%F%B: file not recognized: %E\n"), entry->the_bfd);
2800
2801 bfd_close (entry->the_bfd);
2802 entry->the_bfd = NULL;
2803
2804 /* Try to interpret the file as a linker script. */
2805 save_flags = input_flags;
2806 ldfile_open_command_file (entry->filename);
2807
2808 push_stat_ptr (place);
2809 input_flags.add_DT_NEEDED_for_regular
2810 = entry->flags.add_DT_NEEDED_for_regular;
2811 input_flags.add_DT_NEEDED_for_dynamic
2812 = entry->flags.add_DT_NEEDED_for_dynamic;
2813 input_flags.whole_archive = entry->flags.whole_archive;
2814 input_flags.dynamic = entry->flags.dynamic;
2815
2816 ldfile_assumed_script = TRUE;
2817 parser_input = input_script;
2818 yyparse ();
2819 ldfile_assumed_script = FALSE;
2820
2821 /* missing_file is sticky. sysrooted will already have been
2822 restored when seeing EOF in yyparse, but no harm to restore
2823 again. */
2824 save_flags.missing_file |= input_flags.missing_file;
2825 input_flags = save_flags;
2826 pop_stat_ptr ();
2827 fclose (yyin);
2828 yyin = NULL;
2829 entry->flags.loaded = TRUE;
2830
2831 return TRUE;
2832 }
2833
2834 if (ldemul_recognized_file (entry))
2835 return TRUE;
2836
2837 /* We don't call ldlang_add_file for an archive. Instead, the
2838 add_symbols entry point will call ldlang_add_file, via the
2839 add_archive_element callback, for each element of the archive
2840 which is used. */
2841 switch (bfd_get_format (entry->the_bfd))
2842 {
2843 default:
2844 break;
2845
2846 case bfd_object:
2847 if (!entry->flags.reload)
2848 ldlang_add_file (entry);
2849 if (trace_files || verbose)
2850 info_msg ("%I\n", entry);
2851 break;
2852
2853 case bfd_archive:
2854 check_excluded_libs (entry->the_bfd);
2855
2856 if (entry->flags.whole_archive)
2857 {
2858 bfd *member = NULL;
2859 bfd_boolean loaded = TRUE;
2860
2861 for (;;)
2862 {
2863 bfd *subsbfd;
2864 member = bfd_openr_next_archived_file (entry->the_bfd, member);
2865
2866 if (member == NULL)
2867 break;
2868
2869 if (!bfd_check_format (member, bfd_object))
2870 {
2871 einfo (_("%F%B: member %B in archive is not an object\n"),
2872 entry->the_bfd, member);
2873 loaded = FALSE;
2874 }
2875
2876 subsbfd = member;
2877 if (!(*link_info.callbacks
2878 ->add_archive_element) (&link_info, member,
2879 "--whole-archive", &subsbfd))
2880 abort ();
2881
2882 /* Potentially, the add_archive_element hook may have set a
2883 substitute BFD for us. */
2884 if (!bfd_link_add_symbols (subsbfd, &link_info))
2885 {
2886 einfo (_("%F%B: error adding symbols: %E\n"), member);
2887 loaded = FALSE;
2888 }
2889 }
2890
2891 entry->flags.loaded = loaded;
2892 return loaded;
2893 }
2894 break;
2895 }
2896
2897 if (bfd_link_add_symbols (entry->the_bfd, &link_info))
2898 entry->flags.loaded = TRUE;
2899 else
2900 einfo (_("%F%B: error adding symbols: %E\n"), entry->the_bfd);
2901
2902 return entry->flags.loaded;
2903 }
2904
2905 /* Handle a wild statement. S->FILENAME or S->SECTION_LIST or both
2906 may be NULL, indicating that it is a wildcard. Separate
2907 lang_input_section statements are created for each part of the
2908 expansion; they are added after the wild statement S. OUTPUT is
2909 the output section. */
2910
2911 static void
2912 wild (lang_wild_statement_type *s,
2913 const char *target ATTRIBUTE_UNUSED,
2914 lang_output_section_statement_type *output)
2915 {
2916 struct wildcard_list *sec;
2917
2918 if (s->handler_data[0]
2919 && s->handler_data[0]->spec.sorted == by_name
2920 && !s->filenames_sorted)
2921 {
2922 lang_section_bst_type *tree;
2923
2924 walk_wild (s, output_section_callback_fast, output);
2925
2926 tree = s->tree;
2927 if (tree)
2928 {
2929 output_section_callback_tree_to_list (s, tree, output);
2930 s->tree = NULL;
2931 }
2932 }
2933 else
2934 walk_wild (s, output_section_callback, output);
2935
2936 if (default_common_section == NULL)
2937 for (sec = s->section_list; sec != NULL; sec = sec->next)
2938 if (sec->spec.name != NULL && strcmp (sec->spec.name, "COMMON") == 0)
2939 {
2940 /* Remember the section that common is going to in case we
2941 later get something which doesn't know where to put it. */
2942 default_common_section = output;
2943 break;
2944 }
2945 }
2946
2947 /* Return TRUE iff target is the sought target. */
2948
2949 static int
2950 get_target (const bfd_target *target, void *data)
2951 {
2952 const char *sought = (const char *) data;
2953
2954 return strcmp (target->name, sought) == 0;
2955 }
2956
2957 /* Like strcpy() but convert to lower case as well. */
2958
2959 static void
2960 stricpy (char *dest, char *src)
2961 {
2962 char c;
2963
2964 while ((c = *src++) != 0)
2965 *dest++ = TOLOWER (c);
2966
2967 *dest = 0;
2968 }
2969
2970 /* Remove the first occurrence of needle (if any) in haystack
2971 from haystack. */
2972
2973 static void
2974 strcut (char *haystack, char *needle)
2975 {
2976 haystack = strstr (haystack, needle);
2977
2978 if (haystack)
2979 {
2980 char *src;
2981
2982 for (src = haystack + strlen (needle); *src;)
2983 *haystack++ = *src++;
2984
2985 *haystack = 0;
2986 }
2987 }
2988
2989 /* Compare two target format name strings.
2990 Return a value indicating how "similar" they are. */
2991
2992 static int
2993 name_compare (char *first, char *second)
2994 {
2995 char *copy1;
2996 char *copy2;
2997 int result;
2998
2999 copy1 = (char *) xmalloc (strlen (first) + 1);
3000 copy2 = (char *) xmalloc (strlen (second) + 1);
3001
3002 /* Convert the names to lower case. */
3003 stricpy (copy1, first);
3004 stricpy (copy2, second);
3005
3006 /* Remove size and endian strings from the name. */
3007 strcut (copy1, "big");
3008 strcut (copy1, "little");
3009 strcut (copy2, "big");
3010 strcut (copy2, "little");
3011
3012 /* Return a value based on how many characters match,
3013 starting from the beginning. If both strings are
3014 the same then return 10 * their length. */
3015 for (result = 0; copy1[result] == copy2[result]; result++)
3016 if (copy1[result] == 0)
3017 {
3018 result *= 10;
3019 break;
3020 }
3021
3022 free (copy1);
3023 free (copy2);
3024
3025 return result;
3026 }
3027
3028 /* Set by closest_target_match() below. */
3029 static const bfd_target *winner;
3030
3031 /* Scan all the valid bfd targets looking for one that has the endianness
3032 requirement that was specified on the command line, and is the nearest
3033 match to the original output target. */
3034
3035 static int
3036 closest_target_match (const bfd_target *target, void *data)
3037 {
3038 const bfd_target *original = (const bfd_target *) data;
3039
3040 if (command_line.endian == ENDIAN_BIG
3041 && target->byteorder != BFD_ENDIAN_BIG)
3042 return 0;
3043
3044 if (command_line.endian == ENDIAN_LITTLE
3045 && target->byteorder != BFD_ENDIAN_LITTLE)
3046 return 0;
3047
3048 /* Must be the same flavour. */
3049 if (target->flavour != original->flavour)
3050 return 0;
3051
3052 /* Ignore generic big and little endian elf vectors. */
3053 if (strcmp (target->name, "elf32-big") == 0
3054 || strcmp (target->name, "elf64-big") == 0
3055 || strcmp (target->name, "elf32-little") == 0
3056 || strcmp (target->name, "elf64-little") == 0)
3057 return 0;
3058
3059 /* If we have not found a potential winner yet, then record this one. */
3060 if (winner == NULL)
3061 {
3062 winner = target;
3063 return 0;
3064 }
3065
3066 /* Oh dear, we now have two potential candidates for a successful match.
3067 Compare their names and choose the better one. */
3068 if (name_compare (target->name, original->name)
3069 > name_compare (winner->name, original->name))
3070 winner = target;
3071
3072 /* Keep on searching until wqe have checked them all. */
3073 return 0;
3074 }
3075
3076 /* Return the BFD target format of the first input file. */
3077
3078 static char *
3079 get_first_input_target (void)
3080 {
3081 char *target = NULL;
3082
3083 LANG_FOR_EACH_INPUT_STATEMENT (s)
3084 {
3085 if (s->header.type == lang_input_statement_enum
3086 && s->flags.real)
3087 {
3088 ldfile_open_file (s);
3089
3090 if (s->the_bfd != NULL
3091 && bfd_check_format (s->the_bfd, bfd_object))
3092 {
3093 target = bfd_get_target (s->the_bfd);
3094
3095 if (target != NULL)
3096 break;
3097 }
3098 }
3099 }
3100
3101 return target;
3102 }
3103
3104 const char *
3105 lang_get_output_target (void)
3106 {
3107 const char *target;
3108
3109 /* Has the user told us which output format to use? */
3110 if (output_target != NULL)
3111 return output_target;
3112
3113 /* No - has the current target been set to something other than
3114 the default? */
3115 if (current_target != default_target && current_target != NULL)
3116 return current_target;
3117
3118 /* No - can we determine the format of the first input file? */
3119 target = get_first_input_target ();
3120 if (target != NULL)
3121 return target;
3122
3123 /* Failed - use the default output target. */
3124 return default_target;
3125 }
3126
3127 /* Open the output file. */
3128
3129 static void
3130 open_output (const char *name)
3131 {
3132 output_target = lang_get_output_target ();
3133
3134 /* Has the user requested a particular endianness on the command
3135 line? */
3136 if (command_line.endian != ENDIAN_UNSET)
3137 {
3138 /* Get the chosen target. */
3139 const bfd_target *target
3140 = bfd_iterate_over_targets (get_target, (void *) output_target);
3141
3142 /* If the target is not supported, we cannot do anything. */
3143 if (target != NULL)
3144 {
3145 enum bfd_endian desired_endian;
3146
3147 if (command_line.endian == ENDIAN_BIG)
3148 desired_endian = BFD_ENDIAN_BIG;
3149 else
3150 desired_endian = BFD_ENDIAN_LITTLE;
3151
3152 /* See if the target has the wrong endianness. This should
3153 not happen if the linker script has provided big and
3154 little endian alternatives, but some scrips don't do
3155 this. */
3156 if (target->byteorder != desired_endian)
3157 {
3158 /* If it does, then see if the target provides
3159 an alternative with the correct endianness. */
3160 if (target->alternative_target != NULL
3161 && (target->alternative_target->byteorder == desired_endian))
3162 output_target = target->alternative_target->name;
3163 else
3164 {
3165 /* Try to find a target as similar as possible to
3166 the default target, but which has the desired
3167 endian characteristic. */
3168 bfd_iterate_over_targets (closest_target_match,
3169 (void *) target);
3170
3171 /* Oh dear - we could not find any targets that
3172 satisfy our requirements. */
3173 if (winner == NULL)
3174 einfo (_("%P: warning: could not find any targets"
3175 " that match endianness requirement\n"));
3176 else
3177 output_target = winner->name;
3178 }
3179 }
3180 }
3181 }
3182
3183 link_info.output_bfd = bfd_openw (name, output_target);
3184
3185 if (link_info.output_bfd == NULL)
3186 {
3187 if (bfd_get_error () == bfd_error_invalid_target)
3188 einfo (_("%P%F: target %s not found\n"), output_target);
3189
3190 einfo (_("%P%F: cannot open output file %s: %E\n"), name);
3191 }
3192
3193 delete_output_file_on_failure = TRUE;
3194
3195 if (!bfd_set_format (link_info.output_bfd, bfd_object))
3196 einfo (_("%P%F:%s: can not make object file: %E\n"), name);
3197 if (!bfd_set_arch_mach (link_info.output_bfd,
3198 ldfile_output_architecture,
3199 ldfile_output_machine))
3200 einfo (_("%P%F:%s: can not set architecture: %E\n"), name);
3201
3202 link_info.hash = bfd_link_hash_table_create (link_info.output_bfd);
3203 if (link_info.hash == NULL)
3204 einfo (_("%P%F: can not create hash table: %E\n"));
3205
3206 bfd_set_gp_size (link_info.output_bfd, g_switch_value);
3207 }
3208
3209 static void
3210 ldlang_open_output (lang_statement_union_type *statement)
3211 {
3212 switch (statement->header.type)
3213 {
3214 case lang_output_statement_enum:
3215 ASSERT (link_info.output_bfd == NULL);
3216 open_output (statement->output_statement.name);
3217 ldemul_set_output_arch ();
3218 if (config.magic_demand_paged
3219 && !bfd_link_relocatable (&link_info))
3220 link_info.output_bfd->flags |= D_PAGED;
3221 else
3222 link_info.output_bfd->flags &= ~D_PAGED;
3223 if (config.text_read_only)
3224 link_info.output_bfd->flags |= WP_TEXT;
3225 else
3226 link_info.output_bfd->flags &= ~WP_TEXT;
3227 if (link_info.traditional_format)
3228 link_info.output_bfd->flags |= BFD_TRADITIONAL_FORMAT;
3229 else
3230 link_info.output_bfd->flags &= ~BFD_TRADITIONAL_FORMAT;
3231 break;
3232
3233 case lang_target_statement_enum:
3234 current_target = statement->target_statement.target;
3235 break;
3236 default:
3237 break;
3238 }
3239 }
3240
3241 static void
3242 init_opb (void)
3243 {
3244 unsigned x = bfd_arch_mach_octets_per_byte (ldfile_output_architecture,
3245 ldfile_output_machine);
3246 opb_shift = 0;
3247 if (x > 1)
3248 while ((x & 1) == 0)
3249 {
3250 x >>= 1;
3251 ++opb_shift;
3252 }
3253 ASSERT (x == 1);
3254 }
3255
3256 /* Open all the input files. */
3257
3258 enum open_bfd_mode
3259 {
3260 OPEN_BFD_NORMAL = 0,
3261 OPEN_BFD_FORCE = 1,
3262 OPEN_BFD_RESCAN = 2
3263 };
3264 #ifdef ENABLE_PLUGINS
3265 static lang_input_statement_type *plugin_insert = NULL;
3266 #endif
3267
3268 static void
3269 open_input_bfds (lang_statement_union_type *s, enum open_bfd_mode mode)
3270 {
3271 for (; s != NULL; s = s->header.next)
3272 {
3273 switch (s->header.type)
3274 {
3275 case lang_constructors_statement_enum:
3276 open_input_bfds (constructor_list.head, mode);
3277 break;
3278 case lang_output_section_statement_enum:
3279 open_input_bfds (s->output_section_statement.children.head, mode);
3280 break;
3281 case lang_wild_statement_enum:
3282 /* Maybe we should load the file's symbols. */
3283 if ((mode & OPEN_BFD_RESCAN) == 0
3284 && s->wild_statement.filename
3285 && !wildcardp (s->wild_statement.filename)
3286 && !archive_path (s->wild_statement.filename))
3287 lookup_name (s->wild_statement.filename);
3288 open_input_bfds (s->wild_statement.children.head, mode);
3289 break;
3290 case lang_group_statement_enum:
3291 {
3292 struct bfd_link_hash_entry *undefs;
3293
3294 /* We must continually search the entries in the group
3295 until no new symbols are added to the list of undefined
3296 symbols. */
3297
3298 do
3299 {
3300 undefs = link_info.hash->undefs_tail;
3301 open_input_bfds (s->group_statement.children.head,
3302 mode | OPEN_BFD_FORCE);
3303 }
3304 while (undefs != link_info.hash->undefs_tail);
3305 }
3306 break;
3307 case lang_target_statement_enum:
3308 current_target = s->target_statement.target;
3309 break;
3310 case lang_input_statement_enum:
3311 if (s->input_statement.flags.real)
3312 {
3313 lang_statement_union_type **os_tail;
3314 lang_statement_list_type add;
3315 bfd *abfd;
3316
3317 s->input_statement.target = current_target;
3318
3319 /* If we are being called from within a group, and this
3320 is an archive which has already been searched, then
3321 force it to be researched unless the whole archive
3322 has been loaded already. Do the same for a rescan.
3323 Likewise reload --as-needed shared libs. */
3324 if (mode != OPEN_BFD_NORMAL
3325 #ifdef ENABLE_PLUGINS
3326 && ((mode & OPEN_BFD_RESCAN) == 0
3327 || plugin_insert == NULL)
3328 #endif
3329 && s->input_statement.flags.loaded
3330 && (abfd = s->input_statement.the_bfd) != NULL
3331 && ((bfd_get_format (abfd) == bfd_archive
3332 && !s->input_statement.flags.whole_archive)
3333 || (bfd_get_format (abfd) == bfd_object
3334 && ((abfd->flags) & DYNAMIC) != 0
3335 && s->input_statement.flags.add_DT_NEEDED_for_regular
3336 && bfd_get_flavour (abfd) == bfd_target_elf_flavour
3337 && (elf_dyn_lib_class (abfd) & DYN_AS_NEEDED) != 0)))
3338 {
3339 s->input_statement.flags.loaded = FALSE;
3340 s->input_statement.flags.reload = TRUE;
3341 }
3342
3343 os_tail = lang_output_section_statement.tail;
3344 lang_list_init (&add);
3345
3346 if (!load_symbols (&s->input_statement, &add))
3347 config.make_executable = FALSE;
3348
3349 if (add.head != NULL)
3350 {
3351 /* If this was a script with output sections then
3352 tack any added statements on to the end of the
3353 list. This avoids having to reorder the output
3354 section statement list. Very likely the user
3355 forgot -T, and whatever we do here will not meet
3356 naive user expectations. */
3357 if (os_tail != lang_output_section_statement.tail)
3358 {
3359 einfo (_("%P: warning: %s contains output sections;"
3360 " did you forget -T?\n"),
3361 s->input_statement.filename);
3362 *stat_ptr->tail = add.head;
3363 stat_ptr->tail = add.tail;
3364 }
3365 else
3366 {
3367 *add.tail = s->header.next;
3368 s->header.next = add.head;
3369 }
3370 }
3371 }
3372 #ifdef ENABLE_PLUGINS
3373 /* If we have found the point at which a plugin added new
3374 files, clear plugin_insert to enable archive rescan. */
3375 if (&s->input_statement == plugin_insert)
3376 plugin_insert = NULL;
3377 #endif
3378 break;
3379 case lang_assignment_statement_enum:
3380 if (s->assignment_statement.exp->assign.defsym)
3381 /* This is from a --defsym on the command line. */
3382 exp_fold_tree_no_dot (s->assignment_statement.exp);
3383 break;
3384 default:
3385 break;
3386 }
3387 }
3388
3389 /* Exit if any of the files were missing. */
3390 if (input_flags.missing_file)
3391 einfo ("%F");
3392 }
3393
3394 /* Add the supplied name to the symbol table as an undefined reference.
3395 This is a two step process as the symbol table doesn't even exist at
3396 the time the ld command line is processed. First we put the name
3397 on a list, then, once the output file has been opened, transfer the
3398 name to the symbol table. */
3399
3400 typedef struct bfd_sym_chain ldlang_undef_chain_list_type;
3401
3402 #define ldlang_undef_chain_list_head entry_symbol.next
3403
3404 void
3405 ldlang_add_undef (const char *const name, bfd_boolean cmdline)
3406 {
3407 ldlang_undef_chain_list_type *new_undef;
3408
3409 undef_from_cmdline = undef_from_cmdline || cmdline;
3410 new_undef = (ldlang_undef_chain_list_type *) stat_alloc (sizeof (*new_undef));
3411 new_undef->next = ldlang_undef_chain_list_head;
3412 ldlang_undef_chain_list_head = new_undef;
3413
3414 new_undef->name = xstrdup (name);
3415
3416 if (link_info.output_bfd != NULL)
3417 insert_undefined (new_undef->name);
3418 }
3419
3420 /* Insert NAME as undefined in the symbol table. */
3421
3422 static void
3423 insert_undefined (const char *name)
3424 {
3425 struct bfd_link_hash_entry *h;
3426
3427 h = bfd_link_hash_lookup (link_info.hash, name, TRUE, FALSE, TRUE);
3428 if (h == NULL)
3429 einfo (_("%P%F: bfd_link_hash_lookup failed: %E\n"));
3430 if (h->type == bfd_link_hash_new)
3431 {
3432 h->type = bfd_link_hash_undefined;
3433 h->u.undef.abfd = NULL;
3434 bfd_link_add_undef (link_info.hash, h);
3435 }
3436 }
3437
3438 /* Run through the list of undefineds created above and place them
3439 into the linker hash table as undefined symbols belonging to the
3440 script file. */
3441
3442 static void
3443 lang_place_undefineds (void)
3444 {
3445 ldlang_undef_chain_list_type *ptr;
3446
3447 for (ptr = ldlang_undef_chain_list_head; ptr != NULL; ptr = ptr->next)
3448 insert_undefined (ptr->name);
3449 }
3450
3451 /* Structure used to build the list of symbols that the user has required
3452 be defined. */
3453
3454 struct require_defined_symbol
3455 {
3456 const char *name;
3457 struct require_defined_symbol *next;
3458 };
3459
3460 /* The list of symbols that the user has required be defined. */
3461
3462 static struct require_defined_symbol *require_defined_symbol_list;
3463
3464 /* Add a new symbol NAME to the list of symbols that are required to be
3465 defined. */
3466
3467 void
3468 ldlang_add_require_defined (const char *const name)
3469 {
3470 struct require_defined_symbol *ptr;
3471
3472 ldlang_add_undef (name, TRUE);
3473 ptr = (struct require_defined_symbol *) stat_alloc (sizeof (*ptr));
3474 ptr->next = require_defined_symbol_list;
3475 ptr->name = strdup (name);
3476 require_defined_symbol_list = ptr;
3477 }
3478
3479 /* Check that all symbols the user required to be defined, are defined,
3480 raise an error if we find a symbol that is not defined. */
3481
3482 static void
3483 ldlang_check_require_defined_symbols (void)
3484 {
3485 struct require_defined_symbol *ptr;
3486
3487 for (ptr = require_defined_symbol_list; ptr != NULL; ptr = ptr->next)
3488 {
3489 struct bfd_link_hash_entry *h;
3490
3491 h = bfd_link_hash_lookup (link_info.hash, ptr->name,
3492 FALSE, FALSE, TRUE);
3493 if (h == NULL
3494 || (h->type != bfd_link_hash_defined
3495 && h->type != bfd_link_hash_defweak))
3496 einfo(_("%P%X: required symbol `%s' not defined\n"), ptr->name);
3497 }
3498 }
3499
3500 /* Check for all readonly or some readwrite sections. */
3501
3502 static void
3503 check_input_sections
3504 (lang_statement_union_type *s,
3505 lang_output_section_statement_type *output_section_statement)
3506 {
3507 for (; s != (lang_statement_union_type *) NULL; s = s->header.next)
3508 {
3509 switch (s->header.type)
3510 {
3511 case lang_wild_statement_enum:
3512 walk_wild (&s->wild_statement, check_section_callback,
3513 output_section_statement);
3514 if (!output_section_statement->all_input_readonly)
3515 return;
3516 break;
3517 case lang_constructors_statement_enum:
3518 check_input_sections (constructor_list.head,
3519 output_section_statement);
3520 if (!output_section_statement->all_input_readonly)
3521 return;
3522 break;
3523 case lang_group_statement_enum:
3524 check_input_sections (s->group_statement.children.head,
3525 output_section_statement);
3526 if (!output_section_statement->all_input_readonly)
3527 return;
3528 break;
3529 default:
3530 break;
3531 }
3532 }
3533 }
3534
3535 /* Update wildcard statements if needed. */
3536
3537 static void
3538 update_wild_statements (lang_statement_union_type *s)
3539 {
3540 struct wildcard_list *sec;
3541
3542 switch (sort_section)
3543 {
3544 default:
3545 FAIL ();
3546
3547 case none:
3548 break;
3549
3550 case by_name:
3551 case by_alignment:
3552 for (; s != NULL; s = s->header.next)
3553 {
3554 switch (s->header.type)
3555 {
3556 default:
3557 break;
3558
3559 case lang_wild_statement_enum:
3560 for (sec = s->wild_statement.section_list; sec != NULL;
3561 sec = sec->next)
3562 {
3563 switch (sec->spec.sorted)
3564 {
3565 case none:
3566 sec->spec.sorted = sort_section;
3567 break;
3568 case by_name:
3569 if (sort_section == by_alignment)
3570 sec->spec.sorted = by_name_alignment;
3571 break;
3572 case by_alignment:
3573 if (sort_section == by_name)
3574 sec->spec.sorted = by_alignment_name;
3575 break;
3576 default:
3577 break;
3578 }
3579 }
3580 break;
3581
3582 case lang_constructors_statement_enum:
3583 update_wild_statements (constructor_list.head);
3584 break;
3585
3586 case lang_output_section_statement_enum:
3587 /* Don't sort .init/.fini sections. */
3588 if (strcmp (s->output_section_statement.name, ".init") != 0
3589 && strcmp (s->output_section_statement.name, ".fini") != 0)
3590 update_wild_statements
3591 (s->output_section_statement.children.head);
3592 break;
3593
3594 case lang_group_statement_enum:
3595 update_wild_statements (s->group_statement.children.head);
3596 break;
3597 }
3598 }
3599 break;
3600 }
3601 }
3602
3603 /* Open input files and attach to output sections. */
3604
3605 static void
3606 map_input_to_output_sections
3607 (lang_statement_union_type *s, const char *target,
3608 lang_output_section_statement_type *os)
3609 {
3610 for (; s != NULL; s = s->header.next)
3611 {
3612 lang_output_section_statement_type *tos;
3613 flagword flags;
3614
3615 switch (s->header.type)
3616 {
3617 case lang_wild_statement_enum:
3618 wild (&s->wild_statement, target, os);
3619 break;
3620 case lang_constructors_statement_enum:
3621 map_input_to_output_sections (constructor_list.head,
3622 target,
3623 os);
3624 break;
3625 case lang_output_section_statement_enum:
3626 tos = &s->output_section_statement;
3627 if (tos->constraint != 0)
3628 {
3629 if (tos->constraint != ONLY_IF_RW
3630 && tos->constraint != ONLY_IF_RO)
3631 break;
3632 tos->all_input_readonly = TRUE;
3633 check_input_sections (tos->children.head, tos);
3634 if (tos->all_input_readonly != (tos->constraint == ONLY_IF_RO))
3635 {
3636 tos->constraint = -1;
3637 break;
3638 }
3639 }
3640 map_input_to_output_sections (tos->children.head,
3641 target,
3642 tos);
3643 break;
3644 case lang_output_statement_enum:
3645 break;
3646 case lang_target_statement_enum:
3647 target = s->target_statement.target;
3648 break;
3649 case lang_group_statement_enum:
3650 map_input_to_output_sections (s->group_statement.children.head,
3651 target,
3652 os);
3653 break;
3654 case lang_data_statement_enum:
3655 /* Make sure that any sections mentioned in the expression
3656 are initialized. */
3657 exp_init_os (s->data_statement.exp);
3658 /* The output section gets CONTENTS, ALLOC and LOAD, but
3659 these may be overridden by the script. */
3660 flags = SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD;
3661 switch (os->sectype)
3662 {
3663 case normal_section:
3664 case overlay_section:
3665 break;
3666 case noalloc_section:
3667 flags = SEC_HAS_CONTENTS;
3668 break;
3669 case noload_section:
3670 if (bfd_get_flavour (link_info.output_bfd)
3671 == bfd_target_elf_flavour)
3672 flags = SEC_NEVER_LOAD | SEC_ALLOC;
3673 else
3674 flags = SEC_NEVER_LOAD | SEC_HAS_CONTENTS;
3675 break;
3676 }
3677 if (os->bfd_section == NULL)
3678 init_os (os, flags);
3679 else
3680 os->bfd_section->flags |= flags;
3681 break;
3682 case lang_input_section_enum:
3683 break;
3684 case lang_fill_statement_enum:
3685 case lang_object_symbols_statement_enum:
3686 case lang_reloc_statement_enum:
3687 case lang_padding_statement_enum:
3688 case lang_input_statement_enum:
3689 if (os != NULL && os->bfd_section == NULL)
3690 init_os (os, 0);
3691 break;
3692 case lang_assignment_statement_enum:
3693 if (os != NULL && os->bfd_section == NULL)
3694 init_os (os, 0);
3695
3696 /* Make sure that any sections mentioned in the assignment
3697 are initialized. */
3698 exp_init_os (s->assignment_statement.exp);
3699 break;
3700 case lang_address_statement_enum:
3701 /* Mark the specified section with the supplied address.
3702 If this section was actually a segment marker, then the
3703 directive is ignored if the linker script explicitly
3704 processed the segment marker. Originally, the linker
3705 treated segment directives (like -Ttext on the
3706 command-line) as section directives. We honor the
3707 section directive semantics for backwards compatibility;
3708 linker scripts that do not specifically check for
3709 SEGMENT_START automatically get the old semantics. */
3710 if (!s->address_statement.segment
3711 || !s->address_statement.segment->used)
3712 {
3713 const char *name = s->address_statement.section_name;
3714
3715 /* Create the output section statement here so that
3716 orphans with a set address will be placed after other
3717 script sections. If we let the orphan placement code
3718 place them in amongst other sections then the address
3719 will affect following script sections, which is
3720 likely to surprise naive users. */
3721 tos = lang_output_section_statement_lookup (name, 0, TRUE);
3722 tos->addr_tree = s->address_statement.address;
3723 if (tos->bfd_section == NULL)
3724 init_os (tos, 0);
3725 }
3726 break;
3727 case lang_insert_statement_enum:
3728 break;
3729 }
3730 }
3731 }
3732
3733 /* An insert statement snips out all the linker statements from the
3734 start of the list and places them after the output section
3735 statement specified by the insert. This operation is complicated
3736 by the fact that we keep a doubly linked list of output section
3737 statements as well as the singly linked list of all statements. */
3738
3739 static void
3740 process_insert_statements (void)
3741 {
3742 lang_statement_union_type **s;
3743 lang_output_section_statement_type *first_os = NULL;
3744 lang_output_section_statement_type *last_os = NULL;
3745 lang_output_section_statement_type *os;
3746
3747 /* "start of list" is actually the statement immediately after
3748 the special abs_section output statement, so that it isn't
3749 reordered. */
3750 s = &lang_output_section_statement.head;
3751 while (*(s = &(*s)->header.next) != NULL)
3752 {
3753 if ((*s)->header.type == lang_output_section_statement_enum)
3754 {
3755 /* Keep pointers to the first and last output section
3756 statement in the sequence we may be about to move. */
3757 os = &(*s)->output_section_statement;
3758
3759 ASSERT (last_os == NULL || last_os->next == os);
3760 last_os = os;
3761
3762 /* Set constraint negative so that lang_output_section_find
3763 won't match this output section statement. At this
3764 stage in linking constraint has values in the range
3765 [-1, ONLY_IN_RW]. */
3766 last_os->constraint = -2 - last_os->constraint;
3767 if (first_os == NULL)
3768 first_os = last_os;
3769 }
3770 else if ((*s)->header.type == lang_insert_statement_enum)
3771 {
3772 lang_insert_statement_type *i = &(*s)->insert_statement;
3773 lang_output_section_statement_type *where;
3774 lang_statement_union_type **ptr;
3775 lang_statement_union_type *first;
3776
3777 where = lang_output_section_find (i->where);
3778 if (where != NULL && i->is_before)
3779 {
3780 do
3781 where = where->prev;
3782 while (where != NULL && where->constraint < 0);
3783 }
3784 if (where == NULL)
3785 {
3786 einfo (_("%F%P: %s not found for insert\n"), i->where);
3787 return;
3788 }
3789
3790 /* Deal with reordering the output section statement list. */
3791 if (last_os != NULL)
3792 {
3793 asection *first_sec, *last_sec;
3794 struct lang_output_section_statement_struct **next;
3795
3796 /* Snip out the output sections we are moving. */
3797 first_os->prev->next = last_os->next;
3798 if (last_os->next == NULL)
3799 {
3800 next = &first_os->prev->next;
3801 lang_output_section_statement.tail
3802 = (lang_statement_union_type **) next;
3803 }
3804 else
3805 last_os->next->prev = first_os->prev;
3806 /* Add them in at the new position. */
3807 last_os->next = where->next;
3808 if (where->next == NULL)
3809 {
3810 next = &last_os->next;
3811 lang_output_section_statement.tail
3812 = (lang_statement_union_type **) next;
3813 }
3814 else
3815 where->next->prev = last_os;
3816 first_os->prev = where;
3817 where->next = first_os;
3818
3819 /* Move the bfd sections in the same way. */
3820 first_sec = NULL;
3821 last_sec = NULL;
3822 for (os = first_os; os != NULL; os = os->next)
3823 {
3824 os->constraint = -2 - os->constraint;
3825 if (os->bfd_section != NULL
3826 && os->bfd_section->owner != NULL)
3827 {
3828 last_sec = os->bfd_section;
3829 if (first_sec == NULL)
3830 first_sec = last_sec;
3831 }
3832 if (os == last_os)
3833 break;
3834 }
3835 if (last_sec != NULL)
3836 {
3837 asection *sec = where->bfd_section;
3838 if (sec == NULL)
3839 sec = output_prev_sec_find (where);
3840
3841 /* The place we want to insert must come after the
3842 sections we are moving. So if we find no
3843 section or if the section is the same as our
3844 last section, then no move is needed. */
3845 if (sec != NULL && sec != last_sec)
3846 {
3847 /* Trim them off. */
3848 if (first_sec->prev != NULL)
3849 first_sec->prev->next = last_sec->next;
3850 else
3851 link_info.output_bfd->sections = last_sec->next;
3852 if (last_sec->next != NULL)
3853 last_sec->next->prev = first_sec->prev;
3854 else
3855 link_info.output_bfd->section_last = first_sec->prev;
3856 /* Add back. */
3857 last_sec->next = sec->next;
3858 if (sec->next != NULL)
3859 sec->next->prev = last_sec;
3860 else
3861 link_info.output_bfd->section_last = last_sec;
3862 first_sec->prev = sec;
3863 sec->next = first_sec;
3864 }
3865 }
3866
3867 first_os = NULL;
3868 last_os = NULL;
3869 }
3870
3871 ptr = insert_os_after (where);
3872 /* Snip everything after the abs_section output statement we
3873 know is at the start of the list, up to and including
3874 the insert statement we are currently processing. */
3875 first = lang_output_section_statement.head->header.next;
3876 lang_output_section_statement.head->header.next = (*s)->header.next;
3877 /* Add them back where they belong. */
3878 *s = *ptr;
3879 if (*s == NULL)
3880 statement_list.tail = s;
3881 *ptr = first;
3882 s = &lang_output_section_statement.head;
3883 }
3884 }
3885
3886 /* Undo constraint twiddling. */
3887 for (os = first_os; os != NULL; os = os->next)
3888 {
3889 os->constraint = -2 - os->constraint;
3890 if (os == last_os)
3891 break;
3892 }
3893 }
3894
3895 /* An output section might have been removed after its statement was
3896 added. For example, ldemul_before_allocation can remove dynamic
3897 sections if they turn out to be not needed. Clean them up here. */
3898
3899 void
3900 strip_excluded_output_sections (void)
3901 {
3902 lang_output_section_statement_type *os;
3903
3904 /* Run lang_size_sections (if not already done). */
3905 if (expld.phase != lang_mark_phase_enum)
3906 {
3907 expld.phase = lang_mark_phase_enum;
3908 expld.dataseg.phase = exp_dataseg_none;
3909 one_lang_size_sections_pass (NULL, FALSE);
3910 lang_reset_memory_regions ();
3911 }
3912
3913 for (os = &lang_output_section_statement.head->output_section_statement;
3914 os != NULL;
3915 os = os->next)
3916 {
3917 asection *output_section;
3918 bfd_boolean exclude;
3919
3920 if (os->constraint < 0)
3921 continue;
3922
3923 output_section = os->bfd_section;
3924 if (output_section == NULL)
3925 continue;
3926
3927 exclude = (output_section->rawsize == 0
3928 && (output_section->flags & SEC_KEEP) == 0
3929 && !bfd_section_removed_from_list (link_info.output_bfd,
3930 output_section));
3931
3932 /* Some sections have not yet been sized, notably .gnu.version,
3933 .dynsym, .dynstr and .hash. These all have SEC_LINKER_CREATED
3934 input sections, so don't drop output sections that have such
3935 input sections unless they are also marked SEC_EXCLUDE. */
3936 if (exclude && output_section->map_head.s != NULL)
3937 {
3938 asection *s;
3939
3940 for (s = output_section->map_head.s; s != NULL; s = s->map_head.s)
3941 if ((s->flags & SEC_EXCLUDE) == 0
3942 && ((s->flags & SEC_LINKER_CREATED) != 0
3943 || link_info.emitrelocations))
3944 {
3945 exclude = FALSE;
3946 break;
3947 }
3948 }
3949
3950 if (exclude)
3951 {
3952 /* We don't set bfd_section to NULL since bfd_section of the
3953 removed output section statement may still be used. */
3954 if (!os->update_dot)
3955 os->ignored = TRUE;
3956 output_section->flags |= SEC_EXCLUDE;
3957 bfd_section_list_remove (link_info.output_bfd, output_section);
3958 link_info.output_bfd->section_count--;
3959 }
3960 }
3961 }
3962
3963 /* Called from ldwrite to clear out asection.map_head and
3964 asection.map_tail for use as link_orders in ldwrite.
3965 FIXME: Except for sh64elf.em which starts creating link_orders in
3966 its after_allocation routine so needs to call it early. */
3967
3968 void
3969 lang_clear_os_map (void)
3970 {
3971 lang_output_section_statement_type *os;
3972
3973 if (map_head_is_link_order)
3974 return;
3975
3976 for (os = &lang_output_section_statement.head->output_section_statement;
3977 os != NULL;
3978 os = os->next)
3979 {
3980 asection *output_section;
3981
3982 if (os->constraint < 0)
3983 continue;
3984
3985 output_section = os->bfd_section;
3986 if (output_section == NULL)
3987 continue;
3988
3989 /* TODO: Don't just junk map_head.s, turn them into link_orders. */
3990 output_section->map_head.link_order = NULL;
3991 output_section->map_tail.link_order = NULL;
3992 }
3993
3994 /* Stop future calls to lang_add_section from messing with map_head
3995 and map_tail link_order fields. */
3996 map_head_is_link_order = TRUE;
3997 }
3998
3999 static void
4000 print_output_section_statement
4001 (lang_output_section_statement_type *output_section_statement)
4002 {
4003 asection *section = output_section_statement->bfd_section;
4004 int len;
4005
4006 if (output_section_statement != abs_output_section)
4007 {
4008 minfo ("\n%s", output_section_statement->name);
4009
4010 if (section != NULL)
4011 {
4012 print_dot = section->vma;
4013
4014 len = strlen (output_section_statement->name);
4015 if (len >= SECTION_NAME_MAP_LENGTH - 1)
4016 {
4017 print_nl ();
4018 len = 0;
4019 }
4020 while (len < SECTION_NAME_MAP_LENGTH)
4021 {
4022 print_space ();
4023 ++len;
4024 }
4025
4026 minfo ("0x%V %W", section->vma, TO_ADDR (section->size));
4027
4028 if (section->vma != section->lma)
4029 minfo (_(" load address 0x%V"), section->lma);
4030
4031 if (output_section_statement->update_dot_tree != NULL)
4032 exp_fold_tree (output_section_statement->update_dot_tree,
4033 bfd_abs_section_ptr, &print_dot);
4034 }
4035
4036 print_nl ();
4037 }
4038
4039 print_statement_list (output_section_statement->children.head,
4040 output_section_statement);
4041 }
4042
4043 static void
4044 print_assignment (lang_assignment_statement_type *assignment,
4045 lang_output_section_statement_type *output_section)
4046 {
4047 unsigned int i;
4048 bfd_boolean is_dot;
4049 etree_type *tree;
4050 asection *osec;
4051
4052 for (i = 0; i < SECTION_NAME_MAP_LENGTH; i++)
4053 print_space ();
4054
4055 if (assignment->exp->type.node_class == etree_assert)
4056 {
4057 is_dot = FALSE;
4058 tree = assignment->exp->assert_s.child;
4059 }
4060 else
4061 {
4062 const char *dst = assignment->exp->assign.dst;
4063
4064 is_dot = (dst[0] == '.' && dst[1] == 0);
4065 if (!is_dot)
4066 expld.assign_name = dst;
4067 tree = assignment->exp->assign.src;
4068 }
4069
4070 osec = output_section->bfd_section;
4071 if (osec == NULL)
4072 osec = bfd_abs_section_ptr;
4073
4074 if (assignment->exp->type.node_class != etree_provide)
4075 exp_fold_tree (tree, osec, &print_dot);
4076 else
4077 expld.result.valid_p = FALSE;
4078
4079 if (expld.result.valid_p)
4080 {
4081 bfd_vma value;
4082
4083 if (assignment->exp->type.node_class == etree_assert
4084 || is_dot
4085 || expld.assign_name != NULL)
4086 {
4087 value = expld.result.value;
4088
4089 if (expld.result.section != NULL)
4090 value += expld.result.section->vma;
4091
4092 minfo ("0x%V", value);
4093 if (is_dot)
4094 print_dot = value;
4095 }
4096 else
4097 {
4098 struct bfd_link_hash_entry *h;
4099
4100 h = bfd_link_hash_lookup (link_info.hash, assignment->exp->assign.dst,
4101 FALSE, FALSE, TRUE);
4102 if (h)
4103 {
4104 value = h->u.def.value;
4105 value += h->u.def.section->output_section->vma;
4106 value += h->u.def.section->output_offset;
4107
4108 minfo ("[0x%V]", value);
4109 }
4110 else
4111 minfo ("[unresolved]");
4112 }
4113 }
4114 else
4115 {
4116 if (assignment->exp->type.node_class == etree_provide)
4117 minfo ("[!provide]");
4118 else
4119 minfo ("*undef* ");
4120 #ifdef BFD64
4121 minfo (" ");
4122 #endif
4123 }
4124 expld.assign_name = NULL;
4125
4126 minfo (" ");
4127 exp_print_tree (assignment->exp);
4128 print_nl ();
4129 }
4130
4131 static void
4132 print_input_statement (lang_input_statement_type *statm)
4133 {
4134 if (statm->filename != NULL
4135 && (statm->the_bfd == NULL
4136 || (statm->the_bfd->flags & BFD_LINKER_CREATED) == 0))
4137 fprintf (config.map_file, "LOAD %s\n", statm->filename);
4138 }
4139
4140 /* Print all symbols defined in a particular section. This is called
4141 via bfd_link_hash_traverse, or by print_all_symbols. */
4142
4143 static bfd_boolean
4144 print_one_symbol (struct bfd_link_hash_entry *hash_entry, void *ptr)
4145 {
4146 asection *sec = (asection *) ptr;
4147
4148 if ((hash_entry->type == bfd_link_hash_defined
4149 || hash_entry->type == bfd_link_hash_defweak)
4150 && sec == hash_entry->u.def.section)
4151 {
4152 int i;
4153
4154 for (i = 0; i < SECTION_NAME_MAP_LENGTH; i++)
4155 print_space ();
4156 minfo ("0x%V ",
4157 (hash_entry->u.def.value
4158 + hash_entry->u.def.section->output_offset
4159 + hash_entry->u.def.section->output_section->vma));
4160
4161 minfo (" %T\n", hash_entry->root.string);
4162 }
4163
4164 return TRUE;
4165 }
4166
4167 static int
4168 hash_entry_addr_cmp (const void *a, const void *b)
4169 {
4170 const struct bfd_link_hash_entry *l = *(const struct bfd_link_hash_entry **)a;
4171 const struct bfd_link_hash_entry *r = *(const struct bfd_link_hash_entry **)b;
4172
4173 if (l->u.def.value < r->u.def.value)
4174 return -1;
4175 else if (l->u.def.value > r->u.def.value)
4176 return 1;
4177 else
4178 return 0;
4179 }
4180
4181 static void
4182 print_all_symbols (asection *sec)
4183 {
4184 input_section_userdata_type *ud
4185 = (input_section_userdata_type *) get_userdata (sec);
4186 struct map_symbol_def *def;
4187 struct bfd_link_hash_entry **entries;
4188 unsigned int i;
4189
4190 if (!ud)
4191 return;
4192
4193 *ud->map_symbol_def_tail = 0;
4194
4195 /* Sort the symbols by address. */
4196 entries = (struct bfd_link_hash_entry **)
4197 obstack_alloc (&map_obstack,
4198 ud->map_symbol_def_count * sizeof (*entries));
4199
4200 for (i = 0, def = ud->map_symbol_def_head; def; def = def->next, i++)
4201 entries[i] = def->entry;
4202
4203 qsort (entries, ud->map_symbol_def_count, sizeof (*entries),
4204 hash_entry_addr_cmp);
4205
4206 /* Print the symbols. */
4207 for (i = 0; i < ud->map_symbol_def_count; i++)
4208 print_one_symbol (entries[i], sec);
4209
4210 obstack_free (&map_obstack, entries);
4211 }
4212
4213 /* Print information about an input section to the map file. */
4214
4215 static void
4216 print_input_section (asection *i, bfd_boolean is_discarded)
4217 {
4218 bfd_size_type size = i->size;
4219 int len;
4220 bfd_vma addr;
4221
4222 init_opb ();
4223
4224 print_space ();
4225 minfo ("%s", i->name);
4226
4227 len = 1 + strlen (i->name);
4228 if (len >= SECTION_NAME_MAP_LENGTH - 1)
4229 {
4230 print_nl ();
4231 len = 0;
4232 }
4233 while (len < SECTION_NAME_MAP_LENGTH)
4234 {
4235 print_space ();
4236 ++len;
4237 }
4238
4239 if (i->output_section != NULL
4240 && i->output_section->owner == link_info.output_bfd)
4241 addr = i->output_section->vma + i->output_offset;
4242 else
4243 {
4244 addr = print_dot;
4245 if (!is_discarded)
4246 size = 0;
4247 }
4248
4249 minfo ("0x%V %W %B\n", addr, size, i->owner);
4250
4251 if (size != i->rawsize && i->rawsize != 0)
4252 {
4253 len = SECTION_NAME_MAP_LENGTH + 3;
4254 #ifdef BFD64
4255 len += 16;
4256 #else
4257 len += 8;
4258 #endif
4259 while (len > 0)
4260 {
4261 print_space ();
4262 --len;
4263 }
4264
4265 minfo (_("%W (size before relaxing)\n"), i->rawsize);
4266 }
4267
4268 if (i->output_section != NULL
4269 && i->output_section->owner == link_info.output_bfd)
4270 {
4271 if (link_info.reduce_memory_overheads)
4272 bfd_link_hash_traverse (link_info.hash, print_one_symbol, i);
4273 else
4274 print_all_symbols (i);
4275
4276 /* Update print_dot, but make sure that we do not move it
4277 backwards - this could happen if we have overlays and a
4278 later overlay is shorter than an earier one. */
4279 if (addr + TO_ADDR (size) > print_dot)
4280 print_dot = addr + TO_ADDR (size);
4281 }
4282 }
4283
4284 static void
4285 print_fill_statement (lang_fill_statement_type *fill)
4286 {
4287 size_t size;
4288 unsigned char *p;
4289 fputs (" FILL mask 0x", config.map_file);
4290 for (p = fill->fill->data, size = fill->fill->size; size != 0; p++, size--)
4291 fprintf (config.map_file, "%02x", *p);
4292 fputs ("\n", config.map_file);
4293 }
4294
4295 static void
4296 print_data_statement (lang_data_statement_type *data)
4297 {
4298 int i;
4299 bfd_vma addr;
4300 bfd_size_type size;
4301 const char *name;
4302
4303 init_opb ();
4304 for (i = 0; i < SECTION_NAME_MAP_LENGTH; i++)
4305 print_space ();
4306
4307 addr = data->output_offset;
4308 if (data->output_section != NULL)
4309 addr += data->output_section->vma;
4310
4311 switch (data->type)
4312 {
4313 default:
4314 abort ();
4315 case BYTE:
4316 size = BYTE_SIZE;
4317 name = "BYTE";
4318 break;
4319 case SHORT:
4320 size = SHORT_SIZE;
4321 name = "SHORT";
4322 break;
4323 case LONG:
4324 size = LONG_SIZE;
4325 name = "LONG";
4326 break;
4327 case QUAD:
4328 size = QUAD_SIZE;
4329 name = "QUAD";
4330 break;
4331 case SQUAD:
4332 size = QUAD_SIZE;
4333 name = "SQUAD";
4334 break;
4335 }
4336
4337 if (size < TO_SIZE ((unsigned) 1))
4338 size = TO_SIZE ((unsigned) 1);
4339 minfo ("0x%V %W %s 0x%v", addr, TO_ADDR (size), name, data->value);
4340
4341 if (data->exp->type.node_class != etree_value)
4342 {
4343 print_space ();
4344 exp_print_tree (data->exp);
4345 }
4346
4347 print_nl ();
4348
4349 print_dot = addr + TO_ADDR (size);
4350 }
4351
4352 /* Print an address statement. These are generated by options like
4353 -Ttext. */
4354
4355 static void
4356 print_address_statement (lang_address_statement_type *address)
4357 {
4358 minfo (_("Address of section %s set to "), address->section_name);
4359 exp_print_tree (address->address);
4360 print_nl ();
4361 }
4362
4363 /* Print a reloc statement. */
4364
4365 static void
4366 print_reloc_statement (lang_reloc_statement_type *reloc)
4367 {
4368 int i;
4369 bfd_vma addr;
4370 bfd_size_type size;
4371
4372 init_opb ();
4373 for (i = 0; i < SECTION_NAME_MAP_LENGTH; i++)
4374 print_space ();
4375
4376 addr = reloc->output_offset;
4377 if (reloc->output_section != NULL)
4378 addr += reloc->output_section->vma;
4379
4380 size = bfd_get_reloc_size (reloc->howto);
4381
4382 minfo ("0x%V %W RELOC %s ", addr, TO_ADDR (size), reloc->howto->name);
4383
4384 if (reloc->name != NULL)
4385 minfo ("%s+", reloc->name);
4386 else
4387 minfo ("%s+", reloc->section->name);
4388
4389 exp_print_tree (reloc->addend_exp);
4390
4391 print_nl ();
4392
4393 print_dot = addr + TO_ADDR (size);
4394 }
4395
4396 static void
4397 print_padding_statement (lang_padding_statement_type *s)
4398 {
4399 int len;
4400 bfd_vma addr;
4401
4402 init_opb ();
4403 minfo (" *fill*");
4404
4405 len = sizeof " *fill*" - 1;
4406 while (len < SECTION_NAME_MAP_LENGTH)
4407 {
4408 print_space ();
4409 ++len;
4410 }
4411
4412 addr = s->output_offset;
4413 if (s->output_section != NULL)
4414 addr += s->output_section->vma;
4415 minfo ("0x%V %W ", addr, TO_ADDR (s->size));
4416
4417 if (s->fill->size != 0)
4418 {
4419 size_t size;
4420 unsigned char *p;
4421 for (p = s->fill->data, size = s->fill->size; size != 0; p++, size--)
4422 fprintf (config.map_file, "%02x", *p);
4423 }
4424
4425 print_nl ();
4426
4427 print_dot = addr + TO_ADDR (s->size);
4428 }
4429
4430 static void
4431 print_wild_statement (lang_wild_statement_type *w,
4432 lang_output_section_statement_type *os)
4433 {
4434 struct wildcard_list *sec;
4435
4436 print_space ();
4437
4438 if (w->exclude_name_list)
4439 {
4440 name_list *tmp;
4441 minfo ("EXCLUDE_FILE(%s", w->exclude_name_list->name);
4442 for (tmp = w->exclude_name_list->next; tmp; tmp = tmp->next)
4443 minfo (" %s", tmp->name);
4444 minfo (") ");
4445 }
4446
4447 if (w->filenames_sorted)
4448 minfo ("SORT(");
4449 if (w->filename != NULL)
4450 minfo ("%s", w->filename);
4451 else
4452 minfo ("*");
4453 if (w->filenames_sorted)
4454 minfo (")");
4455
4456 minfo ("(");
4457 for (sec = w->section_list; sec; sec = sec->next)
4458 {
4459 if (sec->spec.sorted)
4460 minfo ("SORT(");
4461 if (sec->spec.exclude_name_list != NULL)
4462 {
4463 name_list *tmp;
4464 minfo ("EXCLUDE_FILE(%s", sec->spec.exclude_name_list->name);
4465 for (tmp = sec->spec.exclude_name_list->next; tmp; tmp = tmp->next)
4466 minfo (" %s", tmp->name);
4467 minfo (") ");
4468 }
4469 if (sec->spec.name != NULL)
4470 minfo ("%s", sec->spec.name);
4471 else
4472 minfo ("*");
4473 if (sec->spec.sorted)
4474 minfo (")");
4475 if (sec->next)
4476 minfo (" ");
4477 }
4478 minfo (")");
4479
4480 print_nl ();
4481
4482 print_statement_list (w->children.head, os);
4483 }
4484
4485 /* Print a group statement. */
4486
4487 static void
4488 print_group (lang_group_statement_type *s,
4489 lang_output_section_statement_type *os)
4490 {
4491 fprintf (config.map_file, "START GROUP\n");
4492 print_statement_list (s->children.head, os);
4493 fprintf (config.map_file, "END GROUP\n");
4494 }
4495
4496 /* Print the list of statements in S.
4497 This can be called for any statement type. */
4498
4499 static void
4500 print_statement_list (lang_statement_union_type *s,
4501 lang_output_section_statement_type *os)
4502 {
4503 while (s != NULL)
4504 {
4505 print_statement (s, os);
4506 s = s->header.next;
4507 }
4508 }
4509
4510 /* Print the first statement in statement list S.
4511 This can be called for any statement type. */
4512
4513 static void
4514 print_statement (lang_statement_union_type *s,
4515 lang_output_section_statement_type *os)
4516 {
4517 switch (s->header.type)
4518 {
4519 default:
4520 fprintf (config.map_file, _("Fail with %d\n"), s->header.type);
4521 FAIL ();
4522 break;
4523 case lang_constructors_statement_enum:
4524 if (constructor_list.head != NULL)
4525 {
4526 if (constructors_sorted)
4527 minfo (" SORT (CONSTRUCTORS)\n");
4528 else
4529 minfo (" CONSTRUCTORS\n");
4530 print_statement_list (constructor_list.head, os);
4531 }
4532 break;
4533 case lang_wild_statement_enum:
4534 print_wild_statement (&s->wild_statement, os);
4535 break;
4536 case lang_address_statement_enum:
4537 print_address_statement (&s->address_statement);
4538 break;
4539 case lang_object_symbols_statement_enum:
4540 minfo (" CREATE_OBJECT_SYMBOLS\n");
4541 break;
4542 case lang_fill_statement_enum:
4543 print_fill_statement (&s->fill_statement);
4544 break;
4545 case lang_data_statement_enum:
4546 print_data_statement (&s->data_statement);
4547 break;
4548 case lang_reloc_statement_enum:
4549 print_reloc_statement (&s->reloc_statement);
4550 break;
4551 case lang_input_section_enum:
4552 print_input_section (s->input_section.section, FALSE);
4553 break;
4554 case lang_padding_statement_enum:
4555 print_padding_statement (&s->padding_statement);
4556 break;
4557 case lang_output_section_statement_enum:
4558 print_output_section_statement (&s->output_section_statement);
4559 break;
4560 case lang_assignment_statement_enum:
4561 print_assignment (&s->assignment_statement, os);
4562 break;
4563 case lang_target_statement_enum:
4564 fprintf (config.map_file, "TARGET(%s)\n", s->target_statement.target);
4565 break;
4566 case lang_output_statement_enum:
4567 minfo ("OUTPUT(%s", s->output_statement.name);
4568 if (output_target != NULL)
4569 minfo (" %s", output_target);
4570 minfo (")\n");
4571 break;
4572 case lang_input_statement_enum:
4573 print_input_statement (&s->input_statement);
4574 break;
4575 case lang_group_statement_enum:
4576 print_group (&s->group_statement, os);
4577 break;
4578 case lang_insert_statement_enum:
4579 minfo ("INSERT %s %s\n",
4580 s->insert_statement.is_before ? "BEFORE" : "AFTER",
4581 s->insert_statement.where);
4582 break;
4583 }
4584 }
4585
4586 static void
4587 print_statements (void)
4588 {
4589 print_statement_list (statement_list.head, abs_output_section);
4590 }
4591
4592 /* Print the first N statements in statement list S to STDERR.
4593 If N == 0, nothing is printed.
4594 If N < 0, the entire list is printed.
4595 Intended to be called from GDB. */
4596
4597 void
4598 dprint_statement (lang_statement_union_type *s, int n)
4599 {
4600 FILE *map_save = config.map_file;
4601
4602 config.map_file = stderr;
4603
4604 if (n < 0)
4605 print_statement_list (s, abs_output_section);
4606 else
4607 {
4608 while (s && --n >= 0)
4609 {
4610 print_statement (s, abs_output_section);
4611 s = s->header.next;
4612 }
4613 }
4614
4615 config.map_file = map_save;
4616 }
4617
4618 static void
4619 insert_pad (lang_statement_union_type **ptr,
4620 fill_type *fill,
4621 bfd_size_type alignment_needed,
4622 asection *output_section,
4623 bfd_vma dot)
4624 {
4625 static fill_type zero_fill;
4626 lang_statement_union_type *pad = NULL;
4627
4628 if (ptr != &statement_list.head)
4629 pad = ((lang_statement_union_type *)
4630 ((char *) ptr - offsetof (lang_statement_union_type, header.next)));
4631 if (pad != NULL
4632 && pad->header.type == lang_padding_statement_enum
4633 && pad->padding_statement.output_section == output_section)
4634 {
4635 /* Use the existing pad statement. */
4636 }
4637 else if ((pad = *ptr) != NULL
4638 && pad->header.type == lang_padding_statement_enum
4639 && pad->padding_statement.output_section == output_section)
4640 {
4641 /* Use the existing pad statement. */
4642 }
4643 else
4644 {
4645 /* Make a new padding statement, linked into existing chain. */
4646 pad = (lang_statement_union_type *)
4647 stat_alloc (sizeof (lang_padding_statement_type));
4648 pad->header.next = *ptr;
4649 *ptr = pad;
4650 pad->header.type = lang_padding_statement_enum;
4651 pad->padding_statement.output_section = output_section;
4652 if (fill == NULL)
4653 fill = &zero_fill;
4654 pad->padding_statement.fill = fill;
4655 }
4656 pad->padding_statement.output_offset = dot - output_section->vma;
4657 pad->padding_statement.size = alignment_needed;
4658 output_section->size = TO_SIZE (dot + TO_ADDR (alignment_needed)
4659 - output_section->vma);
4660 }
4661
4662 /* Work out how much this section will move the dot point. */
4663
4664 static bfd_vma
4665 size_input_section
4666 (lang_statement_union_type **this_ptr,
4667 lang_output_section_statement_type *output_section_statement,
4668 fill_type *fill,
4669 bfd_vma dot)
4670 {
4671 lang_input_section_type *is = &((*this_ptr)->input_section);
4672 asection *i = is->section;
4673 asection *o = output_section_statement->bfd_section;
4674
4675 if (i->sec_info_type == SEC_INFO_TYPE_JUST_SYMS)
4676 i->output_offset = i->vma - o->vma;
4677 else if ((i->flags & SEC_EXCLUDE) != 0)
4678 i->output_offset = dot - o->vma;
4679 else
4680 {
4681 bfd_size_type alignment_needed;
4682
4683 /* Align this section first to the input sections requirement,
4684 then to the output section's requirement. If this alignment
4685 is greater than any seen before, then record it too. Perform
4686 the alignment by inserting a magic 'padding' statement. */
4687
4688 if (output_section_statement->subsection_alignment != -1)
4689 i->alignment_power = output_section_statement->subsection_alignment;
4690
4691 if (o->alignment_power < i->alignment_power)
4692 o->alignment_power = i->alignment_power;
4693
4694 alignment_needed = align_power (dot, i->alignment_power) - dot;
4695
4696 if (alignment_needed != 0)
4697 {
4698 insert_pad (this_ptr, fill, TO_SIZE (alignment_needed), o, dot);
4699 dot += alignment_needed;
4700 }
4701
4702 /* Remember where in the output section this input section goes. */
4703 i->output_offset = dot - o->vma;
4704
4705 /* Mark how big the output section must be to contain this now. */
4706 dot += TO_ADDR (i->size);
4707 o->size = TO_SIZE (dot - o->vma);
4708 }
4709
4710 return dot;
4711 }
4712
4713 struct check_sec
4714 {
4715 asection *sec;
4716 bfd_boolean warned;
4717 };
4718
4719 static int
4720 sort_sections_by_lma (const void *arg1, const void *arg2)
4721 {
4722 const asection *sec1 = ((const struct check_sec *) arg1)->sec;
4723 const asection *sec2 = ((const struct check_sec *) arg2)->sec;
4724
4725 if (sec1->lma < sec2->lma)
4726 return -1;
4727 else if (sec1->lma > sec2->lma)
4728 return 1;
4729 else if (sec1->id < sec2->id)
4730 return -1;
4731 else if (sec1->id > sec2->id)
4732 return 1;
4733
4734 return 0;
4735 }
4736
4737 static int
4738 sort_sections_by_vma (const void *arg1, const void *arg2)
4739 {
4740 const asection *sec1 = ((const struct check_sec *) arg1)->sec;
4741 const asection *sec2 = ((const struct check_sec *) arg2)->sec;
4742
4743 if (sec1->vma < sec2->vma)
4744 return -1;
4745 else if (sec1->vma > sec2->vma)
4746 return 1;
4747 else if (sec1->id < sec2->id)
4748 return -1;
4749 else if (sec1->id > sec2->id)
4750 return 1;
4751
4752 return 0;
4753 }
4754
4755 #define IS_TBSS(s) \
4756 ((s->flags & (SEC_LOAD | SEC_THREAD_LOCAL)) == SEC_THREAD_LOCAL)
4757
4758 #define IGNORE_SECTION(s) \
4759 ((s->flags & SEC_ALLOC) == 0 || IS_TBSS (s))
4760
4761 /* Check to see if any allocated sections overlap with other allocated
4762 sections. This can happen if a linker script specifies the output
4763 section addresses of the two sections. Also check whether any memory
4764 region has overflowed. */
4765
4766 static void
4767 lang_check_section_addresses (void)
4768 {
4769 asection *s, *p;
4770 struct check_sec *sections;
4771 size_t i, count;
4772 bfd_vma s_start;
4773 bfd_vma s_end;
4774 bfd_vma p_start = 0;
4775 bfd_vma p_end = 0;
4776 lang_memory_region_type *m;
4777 bfd_boolean overlays;
4778
4779 if (bfd_count_sections (link_info.output_bfd) <= 1)
4780 return;
4781
4782 count = bfd_count_sections (link_info.output_bfd);
4783 sections = XNEWVEC (struct check_sec, count);
4784
4785 /* Scan all sections in the output list. */
4786 count = 0;
4787 for (s = link_info.output_bfd->sections; s != NULL; s = s->next)
4788 {
4789 if (IGNORE_SECTION (s)
4790 || s->size == 0)
4791 continue;
4792
4793 sections[count].sec = s;
4794 sections[count].warned = FALSE;
4795 count++;
4796 }
4797
4798 if (count <= 1)
4799 {
4800 free (sections);
4801 return;
4802 }
4803
4804 qsort (sections, count, sizeof (*sections), sort_sections_by_lma);
4805
4806 /* First check section LMAs. There should be no overlap of LMAs on
4807 loadable sections, even with overlays. */
4808 for (p = NULL, i = 0; i < count; i++)
4809 {
4810 s = sections[i].sec;
4811 if ((s->flags & SEC_LOAD) != 0)
4812 {
4813 s_start = s->lma;
4814 s_end = s_start + TO_ADDR (s->size) - 1;
4815
4816 /* Look for an overlap. We have sorted sections by lma, so
4817 we know that s_start >= p_start. Besides the obvious
4818 case of overlap when the current section starts before
4819 the previous one ends, we also must have overlap if the
4820 previous section wraps around the address space. */
4821 if (p != NULL
4822 && (s_start <= p_end
4823 || p_end < p_start))
4824 {
4825 einfo (_("%X%P: section %s LMA [%V,%V]"
4826 " overlaps section %s LMA [%V,%V]\n"),
4827 s->name, s_start, s_end, p->name, p_start, p_end);
4828 sections[i].warned = TRUE;
4829 }
4830 p = s;
4831 p_start = s_start;
4832 p_end = s_end;
4833 }
4834 }
4835
4836 /* If any non-zero size allocated section (excluding tbss) starts at
4837 exactly the same VMA as another such section, then we have
4838 overlays. Overlays generated by the OVERLAY keyword will have
4839 this property. It is possible to intentionally generate overlays
4840 that fail this test, but it would be unusual. */
4841 qsort (sections, count, sizeof (*sections), sort_sections_by_vma);
4842 overlays = FALSE;
4843 p_start = sections[0].sec->vma;
4844 for (i = 1; i < count; i++)
4845 {
4846 s_start = sections[i].sec->vma;
4847 if (p_start == s_start)
4848 {
4849 overlays = TRUE;
4850 break;
4851 }
4852 p_start = s_start;
4853 }
4854
4855 /* Now check section VMAs if no overlays were detected. */
4856 if (!overlays)
4857 {
4858 for (p = NULL, i = 0; i < count; i++)
4859 {
4860 s = sections[i].sec;
4861 s_start = s->vma;
4862 s_end = s_start + TO_ADDR (s->size) - 1;
4863
4864 if (p != NULL
4865 && !sections[i].warned
4866 && (s_start <= p_end
4867 || p_end < p_start))
4868 einfo (_("%X%P: section %s VMA [%V,%V]"
4869 " overlaps section %s VMA [%V,%V]\n"),
4870 s->name, s_start, s_end, p->name, p_start, p_end);
4871 p = s;
4872 p_start = s_start;
4873 p_end = s_end;
4874 }
4875 }
4876
4877 free (sections);
4878
4879 /* If any memory region has overflowed, report by how much.
4880 We do not issue this diagnostic for regions that had sections
4881 explicitly placed outside their bounds; os_region_check's
4882 diagnostics are adequate for that case.
4883
4884 FIXME: It is conceivable that m->current - (m->origin + m->length)
4885 might overflow a 32-bit integer. There is, alas, no way to print
4886 a bfd_vma quantity in decimal. */
4887 for (m = lang_memory_region_list; m; m = m->next)
4888 if (m->had_full_message)
4889 einfo (_("%X%P: region `%s' overflowed by %ld bytes\n"),
4890 m->name_list.name, (long)(m->current - (m->origin + m->length)));
4891 }
4892
4893 /* Make sure the new address is within the region. We explicitly permit the
4894 current address to be at the exact end of the region when the address is
4895 non-zero, in case the region is at the end of addressable memory and the
4896 calculation wraps around. */
4897
4898 static void
4899 os_region_check (lang_output_section_statement_type *os,
4900 lang_memory_region_type *region,
4901 etree_type *tree,
4902 bfd_vma rbase)
4903 {
4904 if ((region->current < region->origin
4905 || (region->current - region->origin > region->length))
4906 && ((region->current != region->origin + region->length)
4907 || rbase == 0))
4908 {
4909 if (tree != NULL)
4910 {
4911 einfo (_("%X%P: address 0x%v of %B section `%s'"
4912 " is not within region `%s'\n"),
4913 region->current,
4914 os->bfd_section->owner,
4915 os->bfd_section->name,
4916 region->name_list.name);
4917 }
4918 else if (!region->had_full_message)
4919 {
4920 region->had_full_message = TRUE;
4921
4922 einfo (_("%X%P: %B section `%s' will not fit in region `%s'\n"),
4923 os->bfd_section->owner,
4924 os->bfd_section->name,
4925 region->name_list.name);
4926 }
4927 }
4928 }
4929
4930 /* Set the sizes for all the output sections. */
4931
4932 static bfd_vma
4933 lang_size_sections_1
4934 (lang_statement_union_type **prev,
4935 lang_output_section_statement_type *output_section_statement,
4936 fill_type *fill,
4937 bfd_vma dot,
4938 bfd_boolean *relax,
4939 bfd_boolean check_regions)
4940 {
4941 lang_statement_union_type *s;
4942
4943 /* Size up the sections from their constituent parts. */
4944 for (s = *prev; s != NULL; s = s->header.next)
4945 {
4946 switch (s->header.type)
4947 {
4948 case lang_output_section_statement_enum:
4949 {
4950 bfd_vma newdot, after, dotdelta;
4951 lang_output_section_statement_type *os;
4952 lang_memory_region_type *r;
4953 int section_alignment = 0;
4954
4955 os = &s->output_section_statement;
4956 if (os->constraint == -1)
4957 break;
4958
4959 /* FIXME: We shouldn't need to zero section vmas for ld -r
4960 here, in lang_insert_orphan, or in the default linker scripts.
4961 This is covering for coff backend linker bugs. See PR6945. */
4962 if (os->addr_tree == NULL
4963 && bfd_link_relocatable (&link_info)
4964 && (bfd_get_flavour (link_info.output_bfd)
4965 == bfd_target_coff_flavour))
4966 os->addr_tree = exp_intop (0);
4967 if (os->addr_tree != NULL)
4968 {
4969 os->processed_vma = FALSE;
4970 exp_fold_tree (os->addr_tree, bfd_abs_section_ptr, &dot);
4971
4972 if (expld.result.valid_p)
4973 {
4974 dot = expld.result.value;
4975 if (expld.result.section != NULL)
4976 dot += expld.result.section->vma;
4977 }
4978 else if (expld.phase != lang_mark_phase_enum)
4979 einfo (_("%F%S: non constant or forward reference"
4980 " address expression for section %s\n"),
4981 os->addr_tree, os->name);
4982 }
4983
4984 if (os->bfd_section == NULL)
4985 /* This section was removed or never actually created. */
4986 break;
4987
4988 /* If this is a COFF shared library section, use the size and
4989 address from the input section. FIXME: This is COFF
4990 specific; it would be cleaner if there were some other way
4991 to do this, but nothing simple comes to mind. */
4992 if (((bfd_get_flavour (link_info.output_bfd)
4993 == bfd_target_ecoff_flavour)
4994 || (bfd_get_flavour (link_info.output_bfd)
4995 == bfd_target_coff_flavour))
4996 && (os->bfd_section->flags & SEC_COFF_SHARED_LIBRARY) != 0)
4997 {
4998 asection *input;
4999
5000 if (os->children.head == NULL
5001 || os->children.head->header.next != NULL
5002 || (os->children.head->header.type
5003 != lang_input_section_enum))
5004 einfo (_("%P%X: Internal error on COFF shared library"
5005 " section %s\n"), os->name);
5006
5007 input = os->children.head->input_section.section;
5008 bfd_set_section_vma (os->bfd_section->owner,
5009 os->bfd_section,
5010 bfd_section_vma (input->owner, input));
5011 os->bfd_section->size = input->size;
5012 break;
5013 }
5014
5015 newdot = dot;
5016 dotdelta = 0;
5017 if (bfd_is_abs_section (os->bfd_section))
5018 {
5019 /* No matter what happens, an abs section starts at zero. */
5020 ASSERT (os->bfd_section->vma == 0);
5021 }
5022 else
5023 {
5024 if (os->addr_tree == NULL)
5025 {
5026 /* No address specified for this section, get one
5027 from the region specification. */
5028 if (os->region == NULL
5029 || ((os->bfd_section->flags & (SEC_ALLOC | SEC_LOAD))
5030 && os->region->name_list.name[0] == '*'
5031 && strcmp (os->region->name_list.name,
5032 DEFAULT_MEMORY_REGION) == 0))
5033 {
5034 os->region = lang_memory_default (os->bfd_section);
5035 }
5036
5037 /* If a loadable section is using the default memory
5038 region, and some non default memory regions were
5039 defined, issue an error message. */
5040 if (!os->ignored
5041 && !IGNORE_SECTION (os->bfd_section)
5042 && !bfd_link_relocatable (&link_info)
5043 && check_regions
5044 && strcmp (os->region->name_list.name,
5045 DEFAULT_MEMORY_REGION) == 0
5046 && lang_memory_region_list != NULL
5047 && (strcmp (lang_memory_region_list->name_list.name,
5048 DEFAULT_MEMORY_REGION) != 0
5049 || lang_memory_region_list->next != NULL)
5050 && expld.phase != lang_mark_phase_enum)
5051 {
5052 /* By default this is an error rather than just a
5053 warning because if we allocate the section to the
5054 default memory region we can end up creating an
5055 excessively large binary, or even seg faulting when
5056 attempting to perform a negative seek. See
5057 sources.redhat.com/ml/binutils/2003-04/msg00423.html
5058 for an example of this. This behaviour can be
5059 overridden by the using the --no-check-sections
5060 switch. */
5061 if (command_line.check_section_addresses)
5062 einfo (_("%P%F: error: no memory region specified"
5063 " for loadable section `%s'\n"),
5064 bfd_get_section_name (link_info.output_bfd,
5065 os->bfd_section));
5066 else
5067 einfo (_("%P: warning: no memory region specified"
5068 " for loadable section `%s'\n"),
5069 bfd_get_section_name (link_info.output_bfd,
5070 os->bfd_section));
5071 }
5072
5073 newdot = os->region->current;
5074 section_alignment = os->bfd_section->alignment_power;
5075 }
5076 else
5077 section_alignment = os->section_alignment;
5078
5079 /* Align to what the section needs. */
5080 if (section_alignment > 0)
5081 {
5082 bfd_vma savedot = newdot;
5083 newdot = align_power (newdot, section_alignment);
5084
5085 dotdelta = newdot - savedot;
5086 if (dotdelta != 0
5087 && (config.warn_section_align
5088 || os->addr_tree != NULL)
5089 && expld.phase != lang_mark_phase_enum)
5090 einfo (_("%P: warning: changing start of section"
5091 " %s by %lu bytes\n"),
5092 os->name, (unsigned long) dotdelta);
5093 }
5094
5095 bfd_set_section_vma (0, os->bfd_section, newdot);
5096
5097 os->bfd_section->output_offset = 0;
5098 }
5099
5100 lang_size_sections_1 (&os->children.head, os,
5101 os->fill, newdot, relax, check_regions);
5102
5103 os->processed_vma = TRUE;
5104
5105 if (bfd_is_abs_section (os->bfd_section) || os->ignored)
5106 /* Except for some special linker created sections,
5107 no output section should change from zero size
5108 after strip_excluded_output_sections. A non-zero
5109 size on an ignored section indicates that some
5110 input section was not sized early enough. */
5111 ASSERT (os->bfd_section->size == 0);
5112 else
5113 {
5114 dot = os->bfd_section->vma;
5115
5116 /* Put the section within the requested block size, or
5117 align at the block boundary. */
5118 after = ((dot
5119 + TO_ADDR (os->bfd_section->size)
5120 + os->block_value - 1)
5121 & - (bfd_vma) os->block_value);
5122
5123 os->bfd_section->size = TO_SIZE (after - os->bfd_section->vma);
5124 }
5125
5126 /* Set section lma. */
5127 r = os->region;
5128 if (r == NULL)
5129 r = lang_memory_region_lookup (DEFAULT_MEMORY_REGION, FALSE);
5130
5131 if (os->load_base)
5132 {
5133 bfd_vma lma = exp_get_abs_int (os->load_base, 0, "load base");
5134 os->bfd_section->lma = lma;
5135 }
5136 else if (os->lma_region != NULL)
5137 {
5138 bfd_vma lma = os->lma_region->current;
5139
5140 if (os->align_lma_with_input)
5141 lma += dotdelta;
5142 else
5143 {
5144 /* When LMA_REGION is the same as REGION, align the LMA
5145 as we did for the VMA, possibly including alignment
5146 from the bfd section. If a different region, then
5147 only align according to the value in the output
5148 statement. */
5149 if (os->lma_region != os->region)
5150 section_alignment = os->section_alignment;
5151 if (section_alignment > 0)
5152 lma = align_power (lma, section_alignment);
5153 }
5154 os->bfd_section->lma = lma;
5155 }
5156 else if (r->last_os != NULL
5157 && (os->bfd_section->flags & SEC_ALLOC) != 0)
5158 {
5159 bfd_vma lma;
5160 asection *last;
5161
5162 last = r->last_os->output_section_statement.bfd_section;
5163
5164 /* A backwards move of dot should be accompanied by
5165 an explicit assignment to the section LMA (ie.
5166 os->load_base set) because backwards moves can
5167 create overlapping LMAs. */
5168 if (dot < last->vma
5169 && os->bfd_section->size != 0
5170 && dot + TO_ADDR (os->bfd_section->size) <= last->vma)
5171 {
5172 /* If dot moved backwards then leave lma equal to
5173 vma. This is the old default lma, which might
5174 just happen to work when the backwards move is
5175 sufficiently large. Nag if this changes anything,
5176 so people can fix their linker scripts. */
5177
5178 if (last->vma != last->lma)
5179 einfo (_("%P: warning: dot moved backwards "
5180 "before `%s'\n"), os->name);
5181 }
5182 else
5183 {
5184 /* If this is an overlay, set the current lma to that
5185 at the end of the previous section. */
5186 if (os->sectype == overlay_section)
5187 lma = last->lma + TO_ADDR (last->size);
5188
5189 /* Otherwise, keep the same lma to vma relationship
5190 as the previous section. */
5191 else
5192 lma = dot + last->lma - last->vma;
5193
5194 if (section_alignment > 0)
5195 lma = align_power (lma, section_alignment);
5196 os->bfd_section->lma = lma;
5197 }
5198 }
5199 os->processed_lma = TRUE;
5200
5201 if (bfd_is_abs_section (os->bfd_section) || os->ignored)
5202 break;
5203
5204 /* Keep track of normal sections using the default
5205 lma region. We use this to set the lma for
5206 following sections. Overlays or other linker
5207 script assignment to lma might mean that the
5208 default lma == vma is incorrect.
5209 To avoid warnings about dot moving backwards when using
5210 -Ttext, don't start tracking sections until we find one
5211 of non-zero size or with lma set differently to vma. */
5212 if (!IGNORE_SECTION (os->bfd_section)
5213 && (os->bfd_section->size != 0
5214 || (r->last_os == NULL
5215 && os->bfd_section->vma != os->bfd_section->lma)
5216 || (r->last_os != NULL
5217 && dot >= (r->last_os->output_section_statement
5218 .bfd_section->vma)))
5219 && os->lma_region == NULL
5220 && !bfd_link_relocatable (&link_info))
5221 r->last_os = s;
5222
5223 /* .tbss sections effectively have zero size. */
5224 if (!IS_TBSS (os->bfd_section)
5225 || bfd_link_relocatable (&link_info))
5226 dotdelta = TO_ADDR (os->bfd_section->size);
5227 else
5228 dotdelta = 0;
5229 dot += dotdelta;
5230
5231 if (os->update_dot_tree != 0)
5232 exp_fold_tree (os->update_dot_tree, bfd_abs_section_ptr, &dot);
5233
5234 /* Update dot in the region ?
5235 We only do this if the section is going to be allocated,
5236 since unallocated sections do not contribute to the region's
5237 overall size in memory. */
5238 if (os->region != NULL
5239 && (os->bfd_section->flags & (SEC_ALLOC | SEC_LOAD)))
5240 {
5241 os->region->current = dot;
5242
5243 if (check_regions)
5244 /* Make sure the new address is within the region. */
5245 os_region_check (os, os->region, os->addr_tree,
5246 os->bfd_section->vma);
5247
5248 if (os->lma_region != NULL && os->lma_region != os->region
5249 && ((os->bfd_section->flags & SEC_LOAD)
5250 || os->align_lma_with_input))
5251 {
5252 os->lma_region->current = os->bfd_section->lma + dotdelta;
5253
5254 if (check_regions)
5255 os_region_check (os, os->lma_region, NULL,
5256 os->bfd_section->lma);
5257 }
5258 }
5259 }
5260 break;
5261
5262 case lang_constructors_statement_enum:
5263 dot = lang_size_sections_1 (&constructor_list.head,
5264 output_section_statement,
5265 fill, dot, relax, check_regions);
5266 break;
5267
5268 case lang_data_statement_enum:
5269 {
5270 unsigned int size = 0;
5271
5272 s->data_statement.output_offset =
5273 dot - output_section_statement->bfd_section->vma;
5274 s->data_statement.output_section =
5275 output_section_statement->bfd_section;
5276
5277 /* We might refer to provided symbols in the expression, and
5278 need to mark them as needed. */
5279 exp_fold_tree (s->data_statement.exp, bfd_abs_section_ptr, &dot);
5280
5281 switch (s->data_statement.type)
5282 {
5283 default:
5284 abort ();
5285 case QUAD:
5286 case SQUAD:
5287 size = QUAD_SIZE;
5288 break;
5289 case LONG:
5290 size = LONG_SIZE;
5291 break;
5292 case SHORT:
5293 size = SHORT_SIZE;
5294 break;
5295 case BYTE:
5296 size = BYTE_SIZE;
5297 break;
5298 }
5299 if (size < TO_SIZE ((unsigned) 1))
5300 size = TO_SIZE ((unsigned) 1);
5301 dot += TO_ADDR (size);
5302 output_section_statement->bfd_section->size
5303 = TO_SIZE (dot - output_section_statement->bfd_section->vma);
5304
5305 }
5306 break;
5307
5308 case lang_reloc_statement_enum:
5309 {
5310 int size;
5311
5312 s->reloc_statement.output_offset =
5313 dot - output_section_statement->bfd_section->vma;
5314 s->reloc_statement.output_section =
5315 output_section_statement->bfd_section;
5316 size = bfd_get_reloc_size (s->reloc_statement.howto);
5317 dot += TO_ADDR (size);
5318 output_section_statement->bfd_section->size
5319 = TO_SIZE (dot - output_section_statement->bfd_section->vma);
5320 }
5321 break;
5322
5323 case lang_wild_statement_enum:
5324 dot = lang_size_sections_1 (&s->wild_statement.children.head,
5325 output_section_statement,
5326 fill, dot, relax, check_regions);
5327 break;
5328
5329 case lang_object_symbols_statement_enum:
5330 link_info.create_object_symbols_section =
5331 output_section_statement->bfd_section;
5332 break;
5333
5334 case lang_output_statement_enum:
5335 case lang_target_statement_enum:
5336 break;
5337
5338 case lang_input_section_enum:
5339 {
5340 asection *i;
5341
5342 i = s->input_section.section;
5343 if (relax)
5344 {
5345 bfd_boolean again;
5346
5347 if (!bfd_relax_section (i->owner, i, &link_info, &again))
5348 einfo (_("%P%F: can't relax section: %E\n"));
5349 if (again)
5350 *relax = TRUE;
5351 }
5352 dot = size_input_section (prev, output_section_statement,
5353 fill, dot);
5354 }
5355 break;
5356
5357 case lang_input_statement_enum:
5358 break;
5359
5360 case lang_fill_statement_enum:
5361 s->fill_statement.output_section =
5362 output_section_statement->bfd_section;
5363
5364 fill = s->fill_statement.fill;
5365 break;
5366
5367 case lang_assignment_statement_enum:
5368 {
5369 bfd_vma newdot = dot;
5370 etree_type *tree = s->assignment_statement.exp;
5371
5372 expld.dataseg.relro = exp_dataseg_relro_none;
5373
5374 exp_fold_tree (tree,
5375 output_section_statement->bfd_section,
5376 &newdot);
5377
5378 if (expld.dataseg.relro == exp_dataseg_relro_start)
5379 {
5380 if (!expld.dataseg.relro_start_stat)
5381 expld.dataseg.relro_start_stat = s;
5382 else
5383 {
5384 ASSERT (expld.dataseg.relro_start_stat == s);
5385 }
5386 }
5387 else if (expld.dataseg.relro == exp_dataseg_relro_end)
5388 {
5389 if (!expld.dataseg.relro_end_stat)
5390 expld.dataseg.relro_end_stat = s;
5391 else
5392 {
5393 ASSERT (expld.dataseg.relro_end_stat == s);
5394 }
5395 }
5396 expld.dataseg.relro = exp_dataseg_relro_none;
5397
5398 /* This symbol may be relative to this section. */
5399 if ((tree->type.node_class == etree_provided
5400 || tree->type.node_class == etree_assign)
5401 && (tree->assign.dst [0] != '.'
5402 || tree->assign.dst [1] != '\0'))
5403 output_section_statement->update_dot = 1;
5404
5405 if (!output_section_statement->ignored)
5406 {
5407 if (output_section_statement == abs_output_section)
5408 {
5409 /* If we don't have an output section, then just adjust
5410 the default memory address. */
5411 lang_memory_region_lookup (DEFAULT_MEMORY_REGION,
5412 FALSE)->current = newdot;
5413 }
5414 else if (newdot != dot)
5415 {
5416 /* Insert a pad after this statement. We can't
5417 put the pad before when relaxing, in case the
5418 assignment references dot. */
5419 insert_pad (&s->header.next, fill, TO_SIZE (newdot - dot),
5420 output_section_statement->bfd_section, dot);
5421
5422 /* Don't neuter the pad below when relaxing. */
5423 s = s->header.next;
5424
5425 /* If dot is advanced, this implies that the section
5426 should have space allocated to it, unless the
5427 user has explicitly stated that the section
5428 should not be allocated. */
5429 if (output_section_statement->sectype != noalloc_section
5430 && (output_section_statement->sectype != noload_section
5431 || (bfd_get_flavour (link_info.output_bfd)
5432 == bfd_target_elf_flavour)))
5433 output_section_statement->bfd_section->flags |= SEC_ALLOC;
5434 }
5435 dot = newdot;
5436 }
5437 }
5438 break;
5439
5440 case lang_padding_statement_enum:
5441 /* If this is the first time lang_size_sections is called,
5442 we won't have any padding statements. If this is the
5443 second or later passes when relaxing, we should allow
5444 padding to shrink. If padding is needed on this pass, it
5445 will be added back in. */
5446 s->padding_statement.size = 0;
5447
5448 /* Make sure output_offset is valid. If relaxation shrinks
5449 the section and this pad isn't needed, it's possible to
5450 have output_offset larger than the final size of the
5451 section. bfd_set_section_contents will complain even for
5452 a pad size of zero. */
5453 s->padding_statement.output_offset
5454 = dot - output_section_statement->bfd_section->vma;
5455 break;
5456
5457 case lang_group_statement_enum:
5458 dot = lang_size_sections_1 (&s->group_statement.children.head,
5459 output_section_statement,
5460 fill, dot, relax, check_regions);
5461 break;
5462
5463 case lang_insert_statement_enum:
5464 break;
5465
5466 /* We can only get here when relaxing is turned on. */
5467 case lang_address_statement_enum:
5468 break;
5469
5470 default:
5471 FAIL ();
5472 break;
5473 }
5474 prev = &s->header.next;
5475 }
5476 return dot;
5477 }
5478
5479 /* Callback routine that is used in _bfd_elf_map_sections_to_segments.
5480 The BFD library has set NEW_SEGMENT to TRUE iff it thinks that
5481 CURRENT_SECTION and PREVIOUS_SECTION ought to be placed into different
5482 segments. We are allowed an opportunity to override this decision. */
5483
5484 bfd_boolean
5485 ldlang_override_segment_assignment (struct bfd_link_info *info ATTRIBUTE_UNUSED,
5486 bfd *abfd ATTRIBUTE_UNUSED,
5487 asection *current_section,
5488 asection *previous_section,
5489 bfd_boolean new_segment)
5490 {
5491 lang_output_section_statement_type *cur;
5492 lang_output_section_statement_type *prev;
5493
5494 /* The checks below are only necessary when the BFD library has decided
5495 that the two sections ought to be placed into the same segment. */
5496 if (new_segment)
5497 return TRUE;
5498
5499 /* Paranoia checks. */
5500 if (current_section == NULL || previous_section == NULL)
5501 return new_segment;
5502
5503 /* If this flag is set, the target never wants code and non-code
5504 sections comingled in the same segment. */
5505 if (config.separate_code
5506 && ((current_section->flags ^ previous_section->flags) & SEC_CODE))
5507 return TRUE;
5508
5509 /* Find the memory regions associated with the two sections.
5510 We call lang_output_section_find() here rather than scanning the list
5511 of output sections looking for a matching section pointer because if
5512 we have a large number of sections then a hash lookup is faster. */
5513 cur = lang_output_section_find (current_section->name);
5514 prev = lang_output_section_find (previous_section->name);
5515
5516 /* More paranoia. */
5517 if (cur == NULL || prev == NULL)
5518 return new_segment;
5519
5520 /* If the regions are different then force the sections to live in
5521 different segments. See the email thread starting at the following
5522 URL for the reasons why this is necessary:
5523 http://sourceware.org/ml/binutils/2007-02/msg00216.html */
5524 return cur->region != prev->region;
5525 }
5526
5527 void
5528 one_lang_size_sections_pass (bfd_boolean *relax, bfd_boolean check_regions)
5529 {
5530 lang_statement_iteration++;
5531 lang_size_sections_1 (&statement_list.head, abs_output_section,
5532 0, 0, relax, check_regions);
5533 }
5534
5535 void
5536 lang_size_sections (bfd_boolean *relax, bfd_boolean check_regions)
5537 {
5538 expld.phase = lang_allocating_phase_enum;
5539 expld.dataseg.phase = exp_dataseg_none;
5540
5541 one_lang_size_sections_pass (relax, check_regions);
5542 if (expld.dataseg.phase == exp_dataseg_end_seen
5543 && link_info.relro && expld.dataseg.relro_end)
5544 {
5545 bfd_vma initial_base, relro_end, desired_end;
5546 asection *sec;
5547
5548 /* Compute the expected PT_GNU_RELRO segment end. */
5549 relro_end = ((expld.dataseg.relro_end + expld.dataseg.pagesize - 1)
5550 & ~(expld.dataseg.pagesize - 1));
5551
5552 /* Adjust by the offset arg of DATA_SEGMENT_RELRO_END. */
5553 desired_end = relro_end - expld.dataseg.relro_offset;
5554
5555 /* For sections in the relro segment.. */
5556 for (sec = link_info.output_bfd->section_last; sec; sec = sec->prev)
5557 if ((sec->flags & SEC_ALLOC) != 0
5558 && sec->vma >= expld.dataseg.base
5559 && sec->vma < expld.dataseg.relro_end - expld.dataseg.relro_offset)
5560 {
5561 /* Where do we want to put this section so that it ends as
5562 desired? */
5563 bfd_vma start, end, bump;
5564
5565 end = start = sec->vma;
5566 if (!IS_TBSS (sec))
5567 end += TO_ADDR (sec->size);
5568 bump = desired_end - end;
5569 /* We'd like to increase START by BUMP, but we must heed
5570 alignment so the increase might be less than optimum. */
5571 start += bump;
5572 start &= ~(((bfd_vma) 1 << sec->alignment_power) - 1);
5573 /* This is now the desired end for the previous section. */
5574 desired_end = start;
5575 }
5576
5577 expld.dataseg.phase = exp_dataseg_relro_adjust;
5578 ASSERT (desired_end >= expld.dataseg.base);
5579 initial_base = expld.dataseg.base;
5580 expld.dataseg.base = desired_end;
5581 lang_reset_memory_regions ();
5582 one_lang_size_sections_pass (relax, check_regions);
5583
5584 if (expld.dataseg.relro_end > relro_end)
5585 {
5586 /* Assignments to dot, or to output section address in a
5587 user script have increased padding over the original.
5588 Revert. */
5589 expld.dataseg.base = initial_base;
5590 lang_reset_memory_regions ();
5591 one_lang_size_sections_pass (relax, check_regions);
5592 }
5593
5594 link_info.relro_start = expld.dataseg.base;
5595 link_info.relro_end = expld.dataseg.relro_end;
5596 }
5597 else if (expld.dataseg.phase == exp_dataseg_end_seen)
5598 {
5599 /* If DATA_SEGMENT_ALIGN DATA_SEGMENT_END pair was seen, check whether
5600 a page could be saved in the data segment. */
5601 bfd_vma first, last;
5602
5603 first = -expld.dataseg.base & (expld.dataseg.pagesize - 1);
5604 last = expld.dataseg.end & (expld.dataseg.pagesize - 1);
5605 if (first && last
5606 && ((expld.dataseg.base & ~(expld.dataseg.pagesize - 1))
5607 != (expld.dataseg.end & ~(expld.dataseg.pagesize - 1)))
5608 && first + last <= expld.dataseg.pagesize)
5609 {
5610 expld.dataseg.phase = exp_dataseg_adjust;
5611 lang_reset_memory_regions ();
5612 one_lang_size_sections_pass (relax, check_regions);
5613 }
5614 else
5615 expld.dataseg.phase = exp_dataseg_done;
5616 }
5617 else
5618 expld.dataseg.phase = exp_dataseg_done;
5619 }
5620
5621 static lang_output_section_statement_type *current_section;
5622 static lang_assignment_statement_type *current_assign;
5623 static bfd_boolean prefer_next_section;
5624
5625 /* Worker function for lang_do_assignments. Recursiveness goes here. */
5626
5627 static bfd_vma
5628 lang_do_assignments_1 (lang_statement_union_type *s,
5629 lang_output_section_statement_type *current_os,
5630 fill_type *fill,
5631 bfd_vma dot,
5632 bfd_boolean *found_end)
5633 {
5634 for (; s != NULL; s = s->header.next)
5635 {
5636 switch (s->header.type)
5637 {
5638 case lang_constructors_statement_enum:
5639 dot = lang_do_assignments_1 (constructor_list.head,
5640 current_os, fill, dot, found_end);
5641 break;
5642
5643 case lang_output_section_statement_enum:
5644 {
5645 lang_output_section_statement_type *os;
5646 bfd_vma newdot;
5647
5648 os = &(s->output_section_statement);
5649 os->after_end = *found_end;
5650 if (os->bfd_section != NULL && !os->ignored)
5651 {
5652 if ((os->bfd_section->flags & SEC_ALLOC) != 0)
5653 {
5654 current_section = os;
5655 prefer_next_section = FALSE;
5656 }
5657 dot = os->bfd_section->vma;
5658 }
5659 newdot = lang_do_assignments_1 (os->children.head,
5660 os, os->fill, dot, found_end);
5661 if (!os->ignored)
5662 {
5663 if (os->bfd_section != NULL)
5664 {
5665 /* .tbss sections effectively have zero size. */
5666 if (!IS_TBSS (os->bfd_section)
5667 || bfd_link_relocatable (&link_info))
5668 dot += TO_ADDR (os->bfd_section->size);
5669
5670 if (os->update_dot_tree != NULL)
5671 exp_fold_tree (os->update_dot_tree,
5672 bfd_abs_section_ptr, &dot);
5673 }
5674 else
5675 dot = newdot;
5676 }
5677 }
5678 break;
5679
5680 case lang_wild_statement_enum:
5681
5682 dot = lang_do_assignments_1 (s->wild_statement.children.head,
5683 current_os, fill, dot, found_end);
5684 break;
5685
5686 case lang_object_symbols_statement_enum:
5687 case lang_output_statement_enum:
5688 case lang_target_statement_enum:
5689 break;
5690
5691 case lang_data_statement_enum:
5692 exp_fold_tree (s->data_statement.exp, bfd_abs_section_ptr, &dot);
5693 if (expld.result.valid_p)
5694 {
5695 s->data_statement.value = expld.result.value;
5696 if (expld.result.section != NULL)
5697 s->data_statement.value += expld.result.section->vma;
5698 }
5699 else if (expld.phase == lang_final_phase_enum)
5700 einfo (_("%F%P: invalid data statement\n"));
5701 {
5702 unsigned int size;
5703 switch (s->data_statement.type)
5704 {
5705 default:
5706 abort ();
5707 case QUAD:
5708 case SQUAD:
5709 size = QUAD_SIZE;
5710 break;
5711 case LONG:
5712 size = LONG_SIZE;
5713 break;
5714 case SHORT:
5715 size = SHORT_SIZE;
5716 break;
5717 case BYTE:
5718 size = BYTE_SIZE;
5719 break;
5720 }
5721 if (size < TO_SIZE ((unsigned) 1))
5722 size = TO_SIZE ((unsigned) 1);
5723 dot += TO_ADDR (size);
5724 }
5725 break;
5726
5727 case lang_reloc_statement_enum:
5728 exp_fold_tree (s->reloc_statement.addend_exp,
5729 bfd_abs_section_ptr, &dot);
5730 if (expld.result.valid_p)
5731 s->reloc_statement.addend_value = expld.result.value;
5732 else if (expld.phase == lang_final_phase_enum)
5733 einfo (_("%F%P: invalid reloc statement\n"));
5734 dot += TO_ADDR (bfd_get_reloc_size (s->reloc_statement.howto));
5735 break;
5736
5737 case lang_input_section_enum:
5738 {
5739 asection *in = s->input_section.section;
5740
5741 if ((in->flags & SEC_EXCLUDE) == 0)
5742 dot += TO_ADDR (in->size);
5743 }
5744 break;
5745
5746 case lang_input_statement_enum:
5747 break;
5748
5749 case lang_fill_statement_enum:
5750 fill = s->fill_statement.fill;
5751 break;
5752
5753 case lang_assignment_statement_enum:
5754 current_assign = &s->assignment_statement;
5755 if (current_assign->exp->type.node_class != etree_assert)
5756 {
5757 const char *p = current_assign->exp->assign.dst;
5758
5759 if (current_os == abs_output_section && p[0] == '.' && p[1] == 0)
5760 prefer_next_section = TRUE;
5761
5762 while (*p == '_')
5763 ++p;
5764 if (strcmp (p, "end") == 0)
5765 *found_end = TRUE;
5766 }
5767 exp_fold_tree (s->assignment_statement.exp,
5768 (current_os->bfd_section != NULL
5769 ? current_os->bfd_section : bfd_und_section_ptr),
5770 &dot);
5771 break;
5772
5773 case lang_padding_statement_enum:
5774 dot += TO_ADDR (s->padding_statement.size);
5775 break;
5776
5777 case lang_group_statement_enum:
5778 dot = lang_do_assignments_1 (s->group_statement.children.head,
5779 current_os, fill, dot, found_end);
5780 break;
5781
5782 case lang_insert_statement_enum:
5783 break;
5784
5785 case lang_address_statement_enum:
5786 break;
5787
5788 default:
5789 FAIL ();
5790 break;
5791 }
5792 }
5793 return dot;
5794 }
5795
5796 void
5797 lang_do_assignments (lang_phase_type phase)
5798 {
5799 bfd_boolean found_end = FALSE;
5800
5801 current_section = NULL;
5802 prefer_next_section = FALSE;
5803 expld.phase = phase;
5804 lang_statement_iteration++;
5805 lang_do_assignments_1 (statement_list.head,
5806 abs_output_section, NULL, 0, &found_end);
5807 }
5808
5809 /* For an assignment statement outside of an output section statement,
5810 choose the best of neighbouring output sections to use for values
5811 of "dot". */
5812
5813 asection *
5814 section_for_dot (void)
5815 {
5816 asection *s;
5817
5818 /* Assignments belong to the previous output section, unless there
5819 has been an assignment to "dot", in which case following
5820 assignments belong to the next output section. (The assumption
5821 is that an assignment to "dot" is setting up the address for the
5822 next output section.) Except that past the assignment to "_end"
5823 we always associate with the previous section. This exception is
5824 for targets like SH that define an alloc .stack or other
5825 weirdness after non-alloc sections. */
5826 if (current_section == NULL || prefer_next_section)
5827 {
5828 lang_statement_union_type *stmt;
5829 lang_output_section_statement_type *os;
5830
5831 for (stmt = (lang_statement_union_type *) current_assign;
5832 stmt != NULL;
5833 stmt = stmt->header.next)
5834 if (stmt->header.type == lang_output_section_statement_enum)
5835 break;
5836
5837 os = &stmt->output_section_statement;
5838 while (os != NULL
5839 && !os->after_end
5840 && (os->bfd_section == NULL
5841 || (os->bfd_section->flags & SEC_EXCLUDE) != 0
5842 || bfd_section_removed_from_list (link_info.output_bfd,
5843 os->bfd_section)))
5844 os = os->next;
5845
5846 if (current_section == NULL || os == NULL || !os->after_end)
5847 {
5848 if (os != NULL)
5849 s = os->bfd_section;
5850 else
5851 s = link_info.output_bfd->section_last;
5852 while (s != NULL
5853 && ((s->flags & SEC_ALLOC) == 0
5854 || (s->flags & SEC_THREAD_LOCAL) != 0))
5855 s = s->prev;
5856 if (s != NULL)
5857 return s;
5858
5859 return bfd_abs_section_ptr;
5860 }
5861 }
5862
5863 s = current_section->bfd_section;
5864
5865 /* The section may have been stripped. */
5866 while (s != NULL
5867 && ((s->flags & SEC_EXCLUDE) != 0
5868 || (s->flags & SEC_ALLOC) == 0
5869 || (s->flags & SEC_THREAD_LOCAL) != 0
5870 || bfd_section_removed_from_list (link_info.output_bfd, s)))
5871 s = s->prev;
5872 if (s == NULL)
5873 s = link_info.output_bfd->sections;
5874 while (s != NULL
5875 && ((s->flags & SEC_ALLOC) == 0
5876 || (s->flags & SEC_THREAD_LOCAL) != 0))
5877 s = s->next;
5878 if (s != NULL)
5879 return s;
5880
5881 return bfd_abs_section_ptr;
5882 }
5883
5884 /* Fix any .startof. or .sizeof. symbols. When the assemblers see the
5885 operator .startof. (section_name), it produces an undefined symbol
5886 .startof.section_name. Similarly, when it sees
5887 .sizeof. (section_name), it produces an undefined symbol
5888 .sizeof.section_name. For all the output sections, we look for
5889 such symbols, and set them to the correct value. */
5890
5891 static void
5892 lang_set_startof (void)
5893 {
5894 asection *s;
5895
5896 if (bfd_link_relocatable (&link_info))
5897 return;
5898
5899 for (s = link_info.output_bfd->sections; s != NULL; s = s->next)
5900 {
5901 const char *secname;
5902 char *buf;
5903 struct bfd_link_hash_entry *h;
5904
5905 secname = bfd_get_section_name (link_info.output_bfd, s);
5906 buf = (char *) xmalloc (10 + strlen (secname));
5907
5908 sprintf (buf, ".startof.%s", secname);
5909 h = bfd_link_hash_lookup (link_info.hash, buf, FALSE, FALSE, TRUE);
5910 if (h != NULL && h->type == bfd_link_hash_undefined)
5911 {
5912 h->type = bfd_link_hash_defined;
5913 h->u.def.value = 0;
5914 h->u.def.section = s;
5915 }
5916
5917 sprintf (buf, ".sizeof.%s", secname);
5918 h = bfd_link_hash_lookup (link_info.hash, buf, FALSE, FALSE, TRUE);
5919 if (h != NULL && h->type == bfd_link_hash_undefined)
5920 {
5921 h->type = bfd_link_hash_defined;
5922 h->u.def.value = TO_ADDR (s->size);
5923 h->u.def.section = bfd_abs_section_ptr;
5924 }
5925
5926 free (buf);
5927 }
5928 }
5929
5930 static void
5931 lang_end (void)
5932 {
5933 struct bfd_link_hash_entry *h;
5934 bfd_boolean warn;
5935
5936 if ((bfd_link_relocatable (&link_info) && !link_info.gc_sections)
5937 || bfd_link_dll (&link_info))
5938 warn = entry_from_cmdline;
5939 else
5940 warn = TRUE;
5941
5942 /* Force the user to specify a root when generating a relocatable with
5943 --gc-sections. */
5944 if (link_info.gc_sections && bfd_link_relocatable (&link_info)
5945 && !(entry_from_cmdline || undef_from_cmdline))
5946 einfo (_("%P%F: gc-sections requires either an entry or "
5947 "an undefined symbol\n"));
5948
5949 if (entry_symbol.name == NULL)
5950 {
5951 /* No entry has been specified. Look for the default entry, but
5952 don't warn if we don't find it. */
5953 entry_symbol.name = entry_symbol_default;
5954 warn = FALSE;
5955 }
5956
5957 h = bfd_link_hash_lookup (link_info.hash, entry_symbol.name,
5958 FALSE, FALSE, TRUE);
5959 if (h != NULL
5960 && (h->type == bfd_link_hash_defined
5961 || h->type == bfd_link_hash_defweak)
5962 && h->u.def.section->output_section != NULL)
5963 {
5964 bfd_vma val;
5965
5966 val = (h->u.def.value
5967 + bfd_get_section_vma (link_info.output_bfd,
5968 h->u.def.section->output_section)
5969 + h->u.def.section->output_offset);
5970 if (!bfd_set_start_address (link_info.output_bfd, val))
5971 einfo (_("%P%F:%s: can't set start address\n"), entry_symbol.name);
5972 }
5973 else
5974 {
5975 bfd_vma val;
5976 const char *send;
5977
5978 /* We couldn't find the entry symbol. Try parsing it as a
5979 number. */
5980 val = bfd_scan_vma (entry_symbol.name, &send, 0);
5981 if (*send == '\0')
5982 {
5983 if (!bfd_set_start_address (link_info.output_bfd, val))
5984 einfo (_("%P%F: can't set start address\n"));
5985 }
5986 else
5987 {
5988 asection *ts;
5989
5990 /* Can't find the entry symbol, and it's not a number. Use
5991 the first address in the text section. */
5992 ts = bfd_get_section_by_name (link_info.output_bfd, entry_section);
5993 if (ts != NULL)
5994 {
5995 if (warn)
5996 einfo (_("%P: warning: cannot find entry symbol %s;"
5997 " defaulting to %V\n"),
5998 entry_symbol.name,
5999 bfd_get_section_vma (link_info.output_bfd, ts));
6000 if (!(bfd_set_start_address
6001 (link_info.output_bfd,
6002 bfd_get_section_vma (link_info.output_bfd, ts))))
6003 einfo (_("%P%F: can't set start address\n"));
6004 }
6005 else
6006 {
6007 if (warn)
6008 einfo (_("%P: warning: cannot find entry symbol %s;"
6009 " not setting start address\n"),
6010 entry_symbol.name);
6011 }
6012 }
6013 }
6014 }
6015
6016 /* This is a small function used when we want to ignore errors from
6017 BFD. */
6018
6019 static void
6020 ignore_bfd_errors (const char *fmt ATTRIBUTE_UNUSED,
6021 va_list ap ATTRIBUTE_UNUSED)
6022 {
6023 /* Don't do anything. */
6024 }
6025
6026 /* Check that the architecture of all the input files is compatible
6027 with the output file. Also call the backend to let it do any
6028 other checking that is needed. */
6029
6030 static void
6031 lang_check (void)
6032 {
6033 lang_statement_union_type *file;
6034 bfd *input_bfd;
6035 const bfd_arch_info_type *compatible;
6036
6037 for (file = file_chain.head; file != NULL; file = file->input_statement.next)
6038 {
6039 #ifdef ENABLE_PLUGINS
6040 /* Don't check format of files claimed by plugin. */
6041 if (file->input_statement.flags.claimed)
6042 continue;
6043 #endif /* ENABLE_PLUGINS */
6044 input_bfd = file->input_statement.the_bfd;
6045 compatible
6046 = bfd_arch_get_compatible (input_bfd, link_info.output_bfd,
6047 command_line.accept_unknown_input_arch);
6048
6049 /* In general it is not possible to perform a relocatable
6050 link between differing object formats when the input
6051 file has relocations, because the relocations in the
6052 input format may not have equivalent representations in
6053 the output format (and besides BFD does not translate
6054 relocs for other link purposes than a final link). */
6055 if ((bfd_link_relocatable (&link_info)
6056 || link_info.emitrelocations)
6057 && (compatible == NULL
6058 || (bfd_get_flavour (input_bfd)
6059 != bfd_get_flavour (link_info.output_bfd)))
6060 && (bfd_get_file_flags (input_bfd) & HAS_RELOC) != 0)
6061 {
6062 einfo (_("%P%F: Relocatable linking with relocations from"
6063 " format %s (%B) to format %s (%B) is not supported\n"),
6064 bfd_get_target (input_bfd), input_bfd,
6065 bfd_get_target (link_info.output_bfd), link_info.output_bfd);
6066 /* einfo with %F exits. */
6067 }
6068
6069 if (compatible == NULL)
6070 {
6071 if (command_line.warn_mismatch)
6072 einfo (_("%P%X: %s architecture of input file `%B'"
6073 " is incompatible with %s output\n"),
6074 bfd_printable_name (input_bfd), input_bfd,
6075 bfd_printable_name (link_info.output_bfd));
6076 }
6077 else if (bfd_count_sections (input_bfd))
6078 {
6079 /* If the input bfd has no contents, it shouldn't set the
6080 private data of the output bfd. */
6081
6082 bfd_error_handler_type pfn = NULL;
6083
6084 /* If we aren't supposed to warn about mismatched input
6085 files, temporarily set the BFD error handler to a
6086 function which will do nothing. We still want to call
6087 bfd_merge_private_bfd_data, since it may set up
6088 information which is needed in the output file. */
6089 if (!command_line.warn_mismatch)
6090 pfn = bfd_set_error_handler (ignore_bfd_errors);
6091 if (!bfd_merge_private_bfd_data (input_bfd, &link_info))
6092 {
6093 if (command_line.warn_mismatch)
6094 einfo (_("%P%X: failed to merge target specific data"
6095 " of file %B\n"), input_bfd);
6096 }
6097 if (!command_line.warn_mismatch)
6098 bfd_set_error_handler (pfn);
6099 }
6100 }
6101 }
6102
6103 /* Look through all the global common symbols and attach them to the
6104 correct section. The -sort-common command line switch may be used
6105 to roughly sort the entries by alignment. */
6106
6107 static void
6108 lang_common (void)
6109 {
6110 if (command_line.inhibit_common_definition)
6111 return;
6112 if (bfd_link_relocatable (&link_info)
6113 && !command_line.force_common_definition)
6114 return;
6115
6116 if (!config.sort_common)
6117 bfd_link_hash_traverse (link_info.hash, lang_one_common, NULL);
6118 else
6119 {
6120 unsigned int power;
6121
6122 if (config.sort_common == sort_descending)
6123 {
6124 for (power = 4; power > 0; power--)
6125 bfd_link_hash_traverse (link_info.hash, lang_one_common, &power);
6126
6127 power = 0;
6128 bfd_link_hash_traverse (link_info.hash, lang_one_common, &power);
6129 }
6130 else
6131 {
6132 for (power = 0; power <= 4; power++)
6133 bfd_link_hash_traverse (link_info.hash, lang_one_common, &power);
6134
6135 power = (unsigned int) -1;
6136 bfd_link_hash_traverse (link_info.hash, lang_one_common, &power);
6137 }
6138 }
6139 }
6140
6141 /* Place one common symbol in the correct section. */
6142
6143 static bfd_boolean
6144 lang_one_common (struct bfd_link_hash_entry *h, void *info)
6145 {
6146 unsigned int power_of_two;
6147 bfd_vma size;
6148 asection *section;
6149
6150 if (h->type != bfd_link_hash_common)
6151 return TRUE;
6152
6153 size = h->u.c.size;
6154 power_of_two = h->u.c.p->alignment_power;
6155
6156 if (config.sort_common == sort_descending
6157 && power_of_two < *(unsigned int *) info)
6158 return TRUE;
6159 else if (config.sort_common == sort_ascending
6160 && power_of_two > *(unsigned int *) info)
6161 return TRUE;
6162
6163 section = h->u.c.p->section;
6164 if (!bfd_define_common_symbol (link_info.output_bfd, &link_info, h))
6165 einfo (_("%P%F: Could not define common symbol `%T': %E\n"),
6166 h->root.string);
6167
6168 if (config.map_file != NULL)
6169 {
6170 static bfd_boolean header_printed;
6171 int len;
6172 char *name;
6173 char buf[50];
6174
6175 if (!header_printed)
6176 {
6177 minfo (_("\nAllocating common symbols\n"));
6178 minfo (_("Common symbol size file\n\n"));
6179 header_printed = TRUE;
6180 }
6181
6182 name = bfd_demangle (link_info.output_bfd, h->root.string,
6183 DMGL_ANSI | DMGL_PARAMS);
6184 if (name == NULL)
6185 {
6186 minfo ("%s", h->root.string);
6187 len = strlen (h->root.string);
6188 }
6189 else
6190 {
6191 minfo ("%s", name);
6192 len = strlen (name);
6193 free (name);
6194 }
6195
6196 if (len >= 19)
6197 {
6198 print_nl ();
6199 len = 0;
6200 }
6201 while (len < 20)
6202 {
6203 print_space ();
6204 ++len;
6205 }
6206
6207 minfo ("0x");
6208 if (size <= 0xffffffff)
6209 sprintf (buf, "%lx", (unsigned long) size);
6210 else
6211 sprintf_vma (buf, size);
6212 minfo ("%s", buf);
6213 len = strlen (buf);
6214
6215 while (len < 16)
6216 {
6217 print_space ();
6218 ++len;
6219 }
6220
6221 minfo ("%B\n", section->owner);
6222 }
6223
6224 return TRUE;
6225 }
6226
6227 /* Handle a single orphan section S, placing the orphan into an appropriate
6228 output section. The effects of the --orphan-handling command line
6229 option are handled here. */
6230
6231 static void
6232 ldlang_place_orphan (asection *s)
6233 {
6234 if (config.orphan_handling == orphan_handling_discard)
6235 {
6236 lang_output_section_statement_type *os;
6237 os = lang_output_section_statement_lookup (DISCARD_SECTION_NAME, 0,
6238 TRUE);
6239 if (os->addr_tree == NULL
6240 && (bfd_link_relocatable (&link_info)
6241 || (s->flags & (SEC_LOAD | SEC_ALLOC)) == 0))
6242 os->addr_tree = exp_intop (0);
6243 lang_add_section (&os->children, s, NULL, os);
6244 }
6245 else
6246 {
6247 lang_output_section_statement_type *os;
6248 const char *name = s->name;
6249 int constraint = 0;
6250
6251 if (config.orphan_handling == orphan_handling_error)
6252 einfo ("%X%P: error: unplaced orphan section `%A' from `%B'.\n",
6253 s, s->owner);
6254
6255 if (config.unique_orphan_sections || unique_section_p (s, NULL))
6256 constraint = SPECIAL;
6257
6258 os = ldemul_place_orphan (s, name, constraint);
6259 if (os == NULL)
6260 {
6261 os = lang_output_section_statement_lookup (name, constraint, TRUE);
6262 if (os->addr_tree == NULL
6263 && (bfd_link_relocatable (&link_info)
6264 || (s->flags & (SEC_LOAD | SEC_ALLOC)) == 0))
6265 os->addr_tree = exp_intop (0);
6266 lang_add_section (&os->children, s, NULL, os);
6267 }
6268
6269 if (config.orphan_handling == orphan_handling_warn)
6270 einfo ("%P: warning: orphan section `%A' from `%B' being "
6271 "placed in section `%s'.\n",
6272 s, s->owner, os->name);
6273 }
6274 }
6275
6276 /* Run through the input files and ensure that every input section has
6277 somewhere to go. If one is found without a destination then create
6278 an input request and place it into the statement tree. */
6279
6280 static void
6281 lang_place_orphans (void)
6282 {
6283 LANG_FOR_EACH_INPUT_STATEMENT (file)
6284 {
6285 asection *s;
6286
6287 for (s = file->the_bfd->sections; s != NULL; s = s->next)
6288 {
6289 if (s->output_section == NULL)
6290 {
6291 /* This section of the file is not attached, root
6292 around for a sensible place for it to go. */
6293
6294 if (file->flags.just_syms)
6295 bfd_link_just_syms (file->the_bfd, s, &link_info);
6296 else if ((s->flags & SEC_EXCLUDE) != 0)
6297 s->output_section = bfd_abs_section_ptr;
6298 else if (strcmp (s->name, "COMMON") == 0)
6299 {
6300 /* This is a lonely common section which must have
6301 come from an archive. We attach to the section
6302 with the wildcard. */
6303 if (!bfd_link_relocatable (&link_info)
6304 || command_line.force_common_definition)
6305 {
6306 if (default_common_section == NULL)
6307 default_common_section
6308 = lang_output_section_statement_lookup (".bss", 0,
6309 TRUE);
6310 lang_add_section (&default_common_section->children, s,
6311 NULL, default_common_section);
6312 }
6313 }
6314 else
6315 ldlang_place_orphan (s);
6316 }
6317 }
6318 }
6319 }
6320
6321 void
6322 lang_set_flags (lang_memory_region_type *ptr, const char *flags, int invert)
6323 {
6324 flagword *ptr_flags;
6325
6326 ptr_flags = invert ? &ptr->not_flags : &ptr->flags;
6327
6328 while (*flags)
6329 {
6330 switch (*flags)
6331 {
6332 /* PR 17900: An exclamation mark in the attributes reverses
6333 the sense of any of the attributes that follow. */
6334 case '!':
6335 invert = !invert;
6336 ptr_flags = invert ? &ptr->not_flags : &ptr->flags;
6337 break;
6338
6339 case 'A': case 'a':
6340 *ptr_flags |= SEC_ALLOC;
6341 break;
6342
6343 case 'R': case 'r':
6344 *ptr_flags |= SEC_READONLY;
6345 break;
6346
6347 case 'W': case 'w':
6348 *ptr_flags |= SEC_DATA;
6349 break;
6350
6351 case 'X': case 'x':
6352 *ptr_flags |= SEC_CODE;
6353 break;
6354
6355 case 'L': case 'l':
6356 case 'I': case 'i':
6357 *ptr_flags |= SEC_LOAD;
6358 break;
6359
6360 default:
6361 einfo (_("%P%F: invalid character %c (%d) in flags\n"),
6362 *flags, *flags);
6363 break;
6364 }
6365 flags++;
6366 }
6367 }
6368
6369 /* Call a function on each input file. This function will be called
6370 on an archive, but not on the elements. */
6371
6372 void
6373 lang_for_each_input_file (void (*func) (lang_input_statement_type *))
6374 {
6375 lang_input_statement_type *f;
6376
6377 for (f = (lang_input_statement_type *) input_file_chain.head;
6378 f != NULL;
6379 f = (lang_input_statement_type *) f->next_real_file)
6380 func (f);
6381 }
6382
6383 /* Call a function on each file. The function will be called on all
6384 the elements of an archive which are included in the link, but will
6385 not be called on the archive file itself. */
6386
6387 void
6388 lang_for_each_file (void (*func) (lang_input_statement_type *))
6389 {
6390 LANG_FOR_EACH_INPUT_STATEMENT (f)
6391 {
6392 func (f);
6393 }
6394 }
6395
6396 void
6397 ldlang_add_file (lang_input_statement_type *entry)
6398 {
6399 lang_statement_append (&file_chain,
6400 (lang_statement_union_type *) entry,
6401 &entry->next);
6402
6403 /* The BFD linker needs to have a list of all input BFDs involved in
6404 a link. */
6405 ASSERT (entry->the_bfd->link.next == NULL);
6406 ASSERT (entry->the_bfd != link_info.output_bfd);
6407
6408 *link_info.input_bfds_tail = entry->the_bfd;
6409 link_info.input_bfds_tail = &entry->the_bfd->link.next;
6410 entry->the_bfd->usrdata = entry;
6411 bfd_set_gp_size (entry->the_bfd, g_switch_value);
6412
6413 /* Look through the sections and check for any which should not be
6414 included in the link. We need to do this now, so that we can
6415 notice when the backend linker tries to report multiple
6416 definition errors for symbols which are in sections we aren't
6417 going to link. FIXME: It might be better to entirely ignore
6418 symbols which are defined in sections which are going to be
6419 discarded. This would require modifying the backend linker for
6420 each backend which might set the SEC_LINK_ONCE flag. If we do
6421 this, we should probably handle SEC_EXCLUDE in the same way. */
6422
6423 bfd_map_over_sections (entry->the_bfd, section_already_linked, entry);
6424 }
6425
6426 void
6427 lang_add_output (const char *name, int from_script)
6428 {
6429 /* Make -o on command line override OUTPUT in script. */
6430 if (!had_output_filename || !from_script)
6431 {
6432 output_filename = name;
6433 had_output_filename = TRUE;
6434 }
6435 }
6436
6437 static int
6438 topower (int x)
6439 {
6440 unsigned int i = 1;
6441 int l;
6442
6443 if (x < 0)
6444 return -1;
6445
6446 for (l = 0; l < 32; l++)
6447 {
6448 if (i >= (unsigned int) x)
6449 return l;
6450 i <<= 1;
6451 }
6452
6453 return 0;
6454 }
6455
6456 lang_output_section_statement_type *
6457 lang_enter_output_section_statement (const char *output_section_statement_name,
6458 etree_type *address_exp,
6459 enum section_type sectype,
6460 etree_type *align,
6461 etree_type *subalign,
6462 etree_type *ebase,
6463 int constraint,
6464 int align_with_input)
6465 {
6466 lang_output_section_statement_type *os;
6467
6468 os = lang_output_section_statement_lookup (output_section_statement_name,
6469 constraint, TRUE);
6470 current_section = os;
6471
6472 if (os->addr_tree == NULL)
6473 {
6474 os->addr_tree = address_exp;
6475 }
6476 os->sectype = sectype;
6477 if (sectype != noload_section)
6478 os->flags = SEC_NO_FLAGS;
6479 else
6480 os->flags = SEC_NEVER_LOAD;
6481 os->block_value = 1;
6482
6483 /* Make next things chain into subchain of this. */
6484 push_stat_ptr (&os->children);
6485
6486 os->align_lma_with_input = align_with_input == ALIGN_WITH_INPUT;
6487 if (os->align_lma_with_input && align != NULL)
6488 einfo (_("%F%P:%S: error: align with input and explicit align specified\n"),
6489 NULL);
6490
6491 os->subsection_alignment =
6492 topower (exp_get_value_int (subalign, -1, "subsection alignment"));
6493 os->section_alignment =
6494 topower (exp_get_value_int (align, -1, "section alignment"));
6495
6496 os->load_base = ebase;
6497 return os;
6498 }
6499
6500 void
6501 lang_final (void)
6502 {
6503 lang_output_statement_type *new_stmt;
6504
6505 new_stmt = new_stat (lang_output_statement, stat_ptr);
6506 new_stmt->name = output_filename;
6507 }
6508
6509 /* Reset the current counters in the regions. */
6510
6511 void
6512 lang_reset_memory_regions (void)
6513 {
6514 lang_memory_region_type *p = lang_memory_region_list;
6515 asection *o;
6516 lang_output_section_statement_type *os;
6517
6518 for (p = lang_memory_region_list; p != NULL; p = p->next)
6519 {
6520 p->current = p->origin;
6521 p->last_os = NULL;
6522 }
6523
6524 for (os = &lang_output_section_statement.head->output_section_statement;
6525 os != NULL;
6526 os = os->next)
6527 {
6528 os->processed_vma = FALSE;
6529 os->processed_lma = FALSE;
6530 }
6531
6532 for (o = link_info.output_bfd->sections; o != NULL; o = o->next)
6533 {
6534 /* Save the last size for possible use by bfd_relax_section. */
6535 o->rawsize = o->size;
6536 o->size = 0;
6537 }
6538 }
6539
6540 /* Worker for lang_gc_sections_1. */
6541
6542 static void
6543 gc_section_callback (lang_wild_statement_type *ptr,
6544 struct wildcard_list *sec ATTRIBUTE_UNUSED,
6545 asection *section,
6546 struct flag_info *sflag_info ATTRIBUTE_UNUSED,
6547 lang_input_statement_type *file ATTRIBUTE_UNUSED,
6548 void *data ATTRIBUTE_UNUSED)
6549 {
6550 /* If the wild pattern was marked KEEP, the member sections
6551 should be as well. */
6552 if (ptr->keep_sections)
6553 section->flags |= SEC_KEEP;
6554 }
6555
6556 /* Iterate over sections marking them against GC. */
6557
6558 static void
6559 lang_gc_sections_1 (lang_statement_union_type *s)
6560 {
6561 for (; s != NULL; s = s->header.next)
6562 {
6563 switch (s->header.type)
6564 {
6565 case lang_wild_statement_enum:
6566 walk_wild (&s->wild_statement, gc_section_callback, NULL);
6567 break;
6568 case lang_constructors_statement_enum:
6569 lang_gc_sections_1 (constructor_list.head);
6570 break;
6571 case lang_output_section_statement_enum:
6572 lang_gc_sections_1 (s->output_section_statement.children.head);
6573 break;
6574 case lang_group_statement_enum:
6575 lang_gc_sections_1 (s->group_statement.children.head);
6576 break;
6577 default:
6578 break;
6579 }
6580 }
6581 }
6582
6583 static void
6584 lang_gc_sections (void)
6585 {
6586 /* Keep all sections so marked in the link script. */
6587 lang_gc_sections_1 (statement_list.head);
6588
6589 /* SEC_EXCLUDE is ignored when doing a relocatable link, except in
6590 the special case of debug info. (See bfd/stabs.c)
6591 Twiddle the flag here, to simplify later linker code. */
6592 if (bfd_link_relocatable (&link_info))
6593 {
6594 LANG_FOR_EACH_INPUT_STATEMENT (f)
6595 {
6596 asection *sec;
6597 #ifdef ENABLE_PLUGINS
6598 if (f->flags.claimed)
6599 continue;
6600 #endif
6601 for (sec = f->the_bfd->sections; sec != NULL; sec = sec->next)
6602 if ((sec->flags & SEC_DEBUGGING) == 0)
6603 sec->flags &= ~SEC_EXCLUDE;
6604 }
6605 }
6606
6607 if (link_info.gc_sections)
6608 bfd_gc_sections (link_info.output_bfd, &link_info);
6609 }
6610
6611 /* Worker for lang_find_relro_sections_1. */
6612
6613 static void
6614 find_relro_section_callback (lang_wild_statement_type *ptr ATTRIBUTE_UNUSED,
6615 struct wildcard_list *sec ATTRIBUTE_UNUSED,
6616 asection *section,
6617 struct flag_info *sflag_info ATTRIBUTE_UNUSED,
6618 lang_input_statement_type *file ATTRIBUTE_UNUSED,
6619 void *data)
6620 {
6621 /* Discarded, excluded and ignored sections effectively have zero
6622 size. */
6623 if (section->output_section != NULL
6624 && section->output_section->owner == link_info.output_bfd
6625 && (section->output_section->flags & SEC_EXCLUDE) == 0
6626 && !IGNORE_SECTION (section)
6627 && section->size != 0)
6628 {
6629 bfd_boolean *has_relro_section = (bfd_boolean *) data;
6630 *has_relro_section = TRUE;
6631 }
6632 }
6633
6634 /* Iterate over sections for relro sections. */
6635
6636 static void
6637 lang_find_relro_sections_1 (lang_statement_union_type *s,
6638 bfd_boolean *has_relro_section)
6639 {
6640 if (*has_relro_section)
6641 return;
6642
6643 for (; s != NULL; s = s->header.next)
6644 {
6645 if (s == expld.dataseg.relro_end_stat)
6646 break;
6647
6648 switch (s->header.type)
6649 {
6650 case lang_wild_statement_enum:
6651 walk_wild (&s->wild_statement,
6652 find_relro_section_callback,
6653 has_relro_section);
6654 break;
6655 case lang_constructors_statement_enum:
6656 lang_find_relro_sections_1 (constructor_list.head,
6657 has_relro_section);
6658 break;
6659 case lang_output_section_statement_enum:
6660 lang_find_relro_sections_1 (s->output_section_statement.children.head,
6661 has_relro_section);
6662 break;
6663 case lang_group_statement_enum:
6664 lang_find_relro_sections_1 (s->group_statement.children.head,
6665 has_relro_section);
6666 break;
6667 default:
6668 break;
6669 }
6670 }
6671 }
6672
6673 static void
6674 lang_find_relro_sections (void)
6675 {
6676 bfd_boolean has_relro_section = FALSE;
6677
6678 /* Check all sections in the link script. */
6679
6680 lang_find_relro_sections_1 (expld.dataseg.relro_start_stat,
6681 &has_relro_section);
6682
6683 if (!has_relro_section)
6684 link_info.relro = FALSE;
6685 }
6686
6687 /* Relax all sections until bfd_relax_section gives up. */
6688
6689 void
6690 lang_relax_sections (bfd_boolean need_layout)
6691 {
6692 if (RELAXATION_ENABLED)
6693 {
6694 /* We may need more than one relaxation pass. */
6695 int i = link_info.relax_pass;
6696
6697 /* The backend can use it to determine the current pass. */
6698 link_info.relax_pass = 0;
6699
6700 while (i--)
6701 {
6702 /* Keep relaxing until bfd_relax_section gives up. */
6703 bfd_boolean relax_again;
6704
6705 link_info.relax_trip = -1;
6706 do
6707 {
6708 link_info.relax_trip++;
6709
6710 /* Note: pe-dll.c does something like this also. If you find
6711 you need to change this code, you probably need to change
6712 pe-dll.c also. DJ */
6713
6714 /* Do all the assignments with our current guesses as to
6715 section sizes. */
6716 lang_do_assignments (lang_assigning_phase_enum);
6717
6718 /* We must do this after lang_do_assignments, because it uses
6719 size. */
6720 lang_reset_memory_regions ();
6721
6722 /* Perform another relax pass - this time we know where the
6723 globals are, so can make a better guess. */
6724 relax_again = FALSE;
6725 lang_size_sections (&relax_again, FALSE);
6726 }
6727 while (relax_again);
6728
6729 link_info.relax_pass++;
6730 }
6731 need_layout = TRUE;
6732 }
6733
6734 if (need_layout)
6735 {
6736 /* Final extra sizing to report errors. */
6737 lang_do_assignments (lang_assigning_phase_enum);
6738 lang_reset_memory_regions ();
6739 lang_size_sections (NULL, TRUE);
6740 }
6741 }
6742
6743 #ifdef ENABLE_PLUGINS
6744 /* Find the insert point for the plugin's replacement files. We
6745 place them after the first claimed real object file, or if the
6746 first claimed object is an archive member, after the last real
6747 object file immediately preceding the archive. In the event
6748 no objects have been claimed at all, we return the first dummy
6749 object file on the list as the insert point; that works, but
6750 the callee must be careful when relinking the file_chain as it
6751 is not actually on that chain, only the statement_list and the
6752 input_file list; in that case, the replacement files must be
6753 inserted at the head of the file_chain. */
6754
6755 static lang_input_statement_type *
6756 find_replacements_insert_point (void)
6757 {
6758 lang_input_statement_type *claim1, *lastobject;
6759 lastobject = &input_file_chain.head->input_statement;
6760 for (claim1 = &file_chain.head->input_statement;
6761 claim1 != NULL;
6762 claim1 = &claim1->next->input_statement)
6763 {
6764 if (claim1->flags.claimed)
6765 return claim1->flags.claim_archive ? lastobject : claim1;
6766 /* Update lastobject if this is a real object file. */
6767 if (claim1->the_bfd != NULL && claim1->the_bfd->my_archive == NULL)
6768 lastobject = claim1;
6769 }
6770 /* No files were claimed by the plugin. Choose the last object
6771 file found on the list (maybe the first, dummy entry) as the
6772 insert point. */
6773 return lastobject;
6774 }
6775
6776 /* Insert SRCLIST into DESTLIST after given element by chaining
6777 on FIELD as the next-pointer. (Counterintuitively does not need
6778 a pointer to the actual after-node itself, just its chain field.) */
6779
6780 static void
6781 lang_list_insert_after (lang_statement_list_type *destlist,
6782 lang_statement_list_type *srclist,
6783 lang_statement_union_type **field)
6784 {
6785 *(srclist->tail) = *field;
6786 *field = srclist->head;
6787 if (destlist->tail == field)
6788 destlist->tail = srclist->tail;
6789 }
6790
6791 /* Detach new nodes added to DESTLIST since the time ORIGLIST
6792 was taken as a copy of it and leave them in ORIGLIST. */
6793
6794 static void
6795 lang_list_remove_tail (lang_statement_list_type *destlist,
6796 lang_statement_list_type *origlist)
6797 {
6798 union lang_statement_union **savetail;
6799 /* Check that ORIGLIST really is an earlier state of DESTLIST. */
6800 ASSERT (origlist->head == destlist->head);
6801 savetail = origlist->tail;
6802 origlist->head = *(savetail);
6803 origlist->tail = destlist->tail;
6804 destlist->tail = savetail;
6805 *savetail = NULL;
6806 }
6807 #endif /* ENABLE_PLUGINS */
6808
6809 /* Add NAME to the list of garbage collection entry points. */
6810
6811 void
6812 lang_add_gc_name (const char *name)
6813 {
6814 struct bfd_sym_chain *sym;
6815
6816 if (name == NULL)
6817 return;
6818
6819 sym = (struct bfd_sym_chain *) stat_alloc (sizeof (*sym));
6820
6821 sym->next = link_info.gc_sym_list;
6822 sym->name = name;
6823 link_info.gc_sym_list = sym;
6824 }
6825
6826 /* Check relocations. */
6827
6828 static void
6829 lang_check_relocs (void)
6830 {
6831 if (link_info.check_relocs_after_open_input)
6832 {
6833 bfd *abfd;
6834
6835 for (abfd = link_info.input_bfds;
6836 abfd != (bfd *) NULL; abfd = abfd->link.next)
6837 if (!bfd_link_check_relocs (abfd, &link_info))
6838 {
6839 /* No object output, fail return. */
6840 config.make_executable = FALSE;
6841 /* Note: we do not abort the loop, but rather
6842 continue the scan in case there are other
6843 bad relocations to report. */
6844 }
6845 }
6846 }
6847
6848 void
6849 lang_process (void)
6850 {
6851 /* Finalize dynamic list. */
6852 if (link_info.dynamic_list)
6853 lang_finalize_version_expr_head (&link_info.dynamic_list->head);
6854
6855 current_target = default_target;
6856
6857 /* Open the output file. */
6858 lang_for_each_statement (ldlang_open_output);
6859 init_opb ();
6860
6861 ldemul_create_output_section_statements ();
6862
6863 /* Add to the hash table all undefineds on the command line. */
6864 lang_place_undefineds ();
6865
6866 if (!bfd_section_already_linked_table_init ())
6867 einfo (_("%P%F: Failed to create hash table\n"));
6868
6869 /* Create a bfd for each input file. */
6870 current_target = default_target;
6871 open_input_bfds (statement_list.head, OPEN_BFD_NORMAL);
6872
6873 #ifdef ENABLE_PLUGINS
6874 if (link_info.lto_plugin_active)
6875 {
6876 lang_statement_list_type added;
6877 lang_statement_list_type files, inputfiles;
6878
6879 /* Now all files are read, let the plugin(s) decide if there
6880 are any more to be added to the link before we call the
6881 emulation's after_open hook. We create a private list of
6882 input statements for this purpose, which we will eventually
6883 insert into the global statement list after the first claimed
6884 file. */
6885 added = *stat_ptr;
6886 /* We need to manipulate all three chains in synchrony. */
6887 files = file_chain;
6888 inputfiles = input_file_chain;
6889 if (plugin_call_all_symbols_read ())
6890 einfo (_("%P%F: %s: plugin reported error after all symbols read\n"),
6891 plugin_error_plugin ());
6892 /* Open any newly added files, updating the file chains. */
6893 open_input_bfds (*added.tail, OPEN_BFD_NORMAL);
6894 /* Restore the global list pointer now they have all been added. */
6895 lang_list_remove_tail (stat_ptr, &added);
6896 /* And detach the fresh ends of the file lists. */
6897 lang_list_remove_tail (&file_chain, &files);
6898 lang_list_remove_tail (&input_file_chain, &inputfiles);
6899 /* Were any new files added? */
6900 if (added.head != NULL)
6901 {
6902 /* If so, we will insert them into the statement list immediately
6903 after the first input file that was claimed by the plugin. */
6904 plugin_insert = find_replacements_insert_point ();
6905 /* If a plugin adds input files without having claimed any, we
6906 don't really have a good idea where to place them. Just putting
6907 them at the start or end of the list is liable to leave them
6908 outside the crtbegin...crtend range. */
6909 ASSERT (plugin_insert != NULL);
6910 /* Splice the new statement list into the old one. */
6911 lang_list_insert_after (stat_ptr, &added,
6912 &plugin_insert->header.next);
6913 /* Likewise for the file chains. */
6914 lang_list_insert_after (&input_file_chain, &inputfiles,
6915 &plugin_insert->next_real_file);
6916 /* We must be careful when relinking file_chain; we may need to
6917 insert the new files at the head of the list if the insert
6918 point chosen is the dummy first input file. */
6919 if (plugin_insert->filename)
6920 lang_list_insert_after (&file_chain, &files, &plugin_insert->next);
6921 else
6922 lang_list_insert_after (&file_chain, &files, &file_chain.head);
6923
6924 /* Rescan archives in case new undefined symbols have appeared. */
6925 open_input_bfds (statement_list.head, OPEN_BFD_RESCAN);
6926 }
6927 }
6928 #endif /* ENABLE_PLUGINS */
6929
6930 /* Make sure that nobody has tried to add a symbol to this list
6931 before now. */
6932 ASSERT (link_info.gc_sym_list == NULL);
6933
6934 link_info.gc_sym_list = &entry_symbol;
6935
6936 if (entry_symbol.name == NULL)
6937 {
6938 link_info.gc_sym_list = ldlang_undef_chain_list_head;
6939
6940 /* entry_symbol is normally initialied by a ENTRY definition in the
6941 linker script or the -e command line option. But if neither of
6942 these have been used, the target specific backend may still have
6943 provided an entry symbol via a call to lang_default_entry().
6944 Unfortunately this value will not be processed until lang_end()
6945 is called, long after this function has finished. So detect this
6946 case here and add the target's entry symbol to the list of starting
6947 points for garbage collection resolution. */
6948 lang_add_gc_name (entry_symbol_default);
6949 }
6950
6951 lang_add_gc_name (link_info.init_function);
6952 lang_add_gc_name (link_info.fini_function);
6953
6954 ldemul_after_open ();
6955 if (config.map_file != NULL)
6956 lang_print_asneeded ();
6957
6958 bfd_section_already_linked_table_free ();
6959
6960 /* Make sure that we're not mixing architectures. We call this
6961 after all the input files have been opened, but before we do any
6962 other processing, so that any operations merge_private_bfd_data
6963 does on the output file will be known during the rest of the
6964 link. */
6965 lang_check ();
6966
6967 /* Handle .exports instead of a version script if we're told to do so. */
6968 if (command_line.version_exports_section)
6969 lang_do_version_exports_section ();
6970
6971 /* Build all sets based on the information gathered from the input
6972 files. */
6973 ldctor_build_sets ();
6974
6975 /* PR 13683: We must rerun the assignments prior to running garbage
6976 collection in order to make sure that all symbol aliases are resolved. */
6977 lang_do_assignments (lang_mark_phase_enum);
6978
6979 lang_do_memory_regions();
6980 expld.phase = lang_first_phase_enum;
6981
6982 /* Size up the common data. */
6983 lang_common ();
6984
6985 /* Remove unreferenced sections if asked to. */
6986 lang_gc_sections ();
6987
6988 /* Check relocations. */
6989 lang_check_relocs ();
6990
6991 /* Update wild statements. */
6992 update_wild_statements (statement_list.head);
6993
6994 /* Run through the contours of the script and attach input sections
6995 to the correct output sections. */
6996 lang_statement_iteration++;
6997 map_input_to_output_sections (statement_list.head, NULL, NULL);
6998
6999 process_insert_statements ();
7000
7001 /* Find any sections not attached explicitly and handle them. */
7002 lang_place_orphans ();
7003
7004 if (!bfd_link_relocatable (&link_info))
7005 {
7006 asection *found;
7007
7008 /* Merge SEC_MERGE sections. This has to be done after GC of
7009 sections, so that GCed sections are not merged, but before
7010 assigning dynamic symbols, since removing whole input sections
7011 is hard then. */
7012 bfd_merge_sections (link_info.output_bfd, &link_info);
7013
7014 /* Look for a text section and set the readonly attribute in it. */
7015 found = bfd_get_section_by_name (link_info.output_bfd, ".text");
7016
7017 if (found != NULL)
7018 {
7019 if (config.text_read_only)
7020 found->flags |= SEC_READONLY;
7021 else
7022 found->flags &= ~SEC_READONLY;
7023 }
7024 }
7025
7026 /* Do anything special before sizing sections. This is where ELF
7027 and other back-ends size dynamic sections. */
7028 ldemul_before_allocation ();
7029
7030 /* We must record the program headers before we try to fix the
7031 section positions, since they will affect SIZEOF_HEADERS. */
7032 lang_record_phdrs ();
7033
7034 /* Check relro sections. */
7035 if (link_info.relro && !bfd_link_relocatable (&link_info))
7036 lang_find_relro_sections ();
7037
7038 /* Size up the sections. */
7039 lang_size_sections (NULL, !RELAXATION_ENABLED);
7040
7041 /* See if anything special should be done now we know how big
7042 everything is. This is where relaxation is done. */
7043 ldemul_after_allocation ();
7044
7045 /* Fix any .startof. or .sizeof. symbols. */
7046 lang_set_startof ();
7047
7048 /* Do all the assignments, now that we know the final resting places
7049 of all the symbols. */
7050 lang_do_assignments (lang_final_phase_enum);
7051
7052 ldemul_finish ();
7053
7054 /* Convert absolute symbols to section relative. */
7055 ldexp_finalize_syms ();
7056
7057 /* Make sure that the section addresses make sense. */
7058 if (command_line.check_section_addresses)
7059 lang_check_section_addresses ();
7060
7061 /* Check any required symbols are known. */
7062 ldlang_check_require_defined_symbols ();
7063
7064 lang_end ();
7065 }
7066
7067 /* EXPORTED TO YACC */
7068
7069 void
7070 lang_add_wild (struct wildcard_spec *filespec,
7071 struct wildcard_list *section_list,
7072 bfd_boolean keep_sections)
7073 {
7074 struct wildcard_list *curr, *next;
7075 lang_wild_statement_type *new_stmt;
7076
7077 /* Reverse the list as the parser puts it back to front. */
7078 for (curr = section_list, section_list = NULL;
7079 curr != NULL;
7080 section_list = curr, curr = next)
7081 {
7082 if (curr->spec.name != NULL && strcmp (curr->spec.name, "COMMON") == 0)
7083 placed_commons = TRUE;
7084
7085 next = curr->next;
7086 curr->next = section_list;
7087 }
7088
7089 if (filespec != NULL && filespec->name != NULL)
7090 {
7091 if (strcmp (filespec->name, "*") == 0)
7092 filespec->name = NULL;
7093 else if (!wildcardp (filespec->name))
7094 lang_has_input_file = TRUE;
7095 }
7096
7097 new_stmt = new_stat (lang_wild_statement, stat_ptr);
7098 new_stmt->filename = NULL;
7099 new_stmt->filenames_sorted = FALSE;
7100 new_stmt->section_flag_list = NULL;
7101 new_stmt->exclude_name_list = NULL;
7102 if (filespec != NULL)
7103 {
7104 new_stmt->filename = filespec->name;
7105 new_stmt->filenames_sorted = filespec->sorted == by_name;
7106 new_stmt->section_flag_list = filespec->section_flag_list;
7107 new_stmt->exclude_name_list = filespec->exclude_name_list;
7108 }
7109 new_stmt->section_list = section_list;
7110 new_stmt->keep_sections = keep_sections;
7111 lang_list_init (&new_stmt->children);
7112 analyze_walk_wild_section_handler (new_stmt);
7113 }
7114
7115 void
7116 lang_section_start (const char *name, etree_type *address,
7117 const segment_type *segment)
7118 {
7119 lang_address_statement_type *ad;
7120
7121 ad = new_stat (lang_address_statement, stat_ptr);
7122 ad->section_name = name;
7123 ad->address = address;
7124 ad->segment = segment;
7125 }
7126
7127 /* Set the start symbol to NAME. CMDLINE is nonzero if this is called
7128 because of a -e argument on the command line, or zero if this is
7129 called by ENTRY in a linker script. Command line arguments take
7130 precedence. */
7131
7132 void
7133 lang_add_entry (const char *name, bfd_boolean cmdline)
7134 {
7135 if (entry_symbol.name == NULL
7136 || cmdline
7137 || !entry_from_cmdline)
7138 {
7139 entry_symbol.name = name;
7140 entry_from_cmdline = cmdline;
7141 }
7142 }
7143
7144 /* Set the default start symbol to NAME. .em files should use this,
7145 not lang_add_entry, to override the use of "start" if neither the
7146 linker script nor the command line specifies an entry point. NAME
7147 must be permanently allocated. */
7148 void
7149 lang_default_entry (const char *name)
7150 {
7151 entry_symbol_default = name;
7152 }
7153
7154 void
7155 lang_add_target (const char *name)
7156 {
7157 lang_target_statement_type *new_stmt;
7158
7159 new_stmt = new_stat (lang_target_statement, stat_ptr);
7160 new_stmt->target = name;
7161 }
7162
7163 void
7164 lang_add_map (const char *name)
7165 {
7166 while (*name)
7167 {
7168 switch (*name)
7169 {
7170 case 'F':
7171 map_option_f = TRUE;
7172 break;
7173 }
7174 name++;
7175 }
7176 }
7177
7178 void
7179 lang_add_fill (fill_type *fill)
7180 {
7181 lang_fill_statement_type *new_stmt;
7182
7183 new_stmt = new_stat (lang_fill_statement, stat_ptr);
7184 new_stmt->fill = fill;
7185 }
7186
7187 void
7188 lang_add_data (int type, union etree_union *exp)
7189 {
7190 lang_data_statement_type *new_stmt;
7191
7192 new_stmt = new_stat (lang_data_statement, stat_ptr);
7193 new_stmt->exp = exp;
7194 new_stmt->type = type;
7195 }
7196
7197 /* Create a new reloc statement. RELOC is the BFD relocation type to
7198 generate. HOWTO is the corresponding howto structure (we could
7199 look this up, but the caller has already done so). SECTION is the
7200 section to generate a reloc against, or NAME is the name of the
7201 symbol to generate a reloc against. Exactly one of SECTION and
7202 NAME must be NULL. ADDEND is an expression for the addend. */
7203
7204 void
7205 lang_add_reloc (bfd_reloc_code_real_type reloc,
7206 reloc_howto_type *howto,
7207 asection *section,
7208 const char *name,
7209 union etree_union *addend)
7210 {
7211 lang_reloc_statement_type *p = new_stat (lang_reloc_statement, stat_ptr);
7212
7213 p->reloc = reloc;
7214 p->howto = howto;
7215 p->section = section;
7216 p->name = name;
7217 p->addend_exp = addend;
7218
7219 p->addend_value = 0;
7220 p->output_section = NULL;
7221 p->output_offset = 0;
7222 }
7223
7224 lang_assignment_statement_type *
7225 lang_add_assignment (etree_type *exp)
7226 {
7227 lang_assignment_statement_type *new_stmt;
7228
7229 new_stmt = new_stat (lang_assignment_statement, stat_ptr);
7230 new_stmt->exp = exp;
7231 return new_stmt;
7232 }
7233
7234 void
7235 lang_add_attribute (enum statement_enum attribute)
7236 {
7237 new_statement (attribute, sizeof (lang_statement_header_type), stat_ptr);
7238 }
7239
7240 void
7241 lang_startup (const char *name)
7242 {
7243 if (first_file->filename != NULL)
7244 {
7245 einfo (_("%P%F: multiple STARTUP files\n"));
7246 }
7247 first_file->filename = name;
7248 first_file->local_sym_name = name;
7249 first_file->flags.real = TRUE;
7250 }
7251
7252 void
7253 lang_float (bfd_boolean maybe)
7254 {
7255 lang_float_flag = maybe;
7256 }
7257
7258
7259 /* Work out the load- and run-time regions from a script statement, and
7260 store them in *LMA_REGION and *REGION respectively.
7261
7262 MEMSPEC is the name of the run-time region, or the value of
7263 DEFAULT_MEMORY_REGION if the statement didn't specify one.
7264 LMA_MEMSPEC is the name of the load-time region, or null if the
7265 statement didn't specify one.HAVE_LMA_P is TRUE if the statement
7266 had an explicit load address.
7267
7268 It is an error to specify both a load region and a load address. */
7269
7270 static void
7271 lang_get_regions (lang_memory_region_type **region,
7272 lang_memory_region_type **lma_region,
7273 const char *memspec,
7274 const char *lma_memspec,
7275 bfd_boolean have_lma,
7276 bfd_boolean have_vma)
7277 {
7278 *lma_region = lang_memory_region_lookup (lma_memspec, FALSE);
7279
7280 /* If no runtime region or VMA has been specified, but the load region
7281 has been specified, then use the load region for the runtime region
7282 as well. */
7283 if (lma_memspec != NULL
7284 && !have_vma
7285 && strcmp (memspec, DEFAULT_MEMORY_REGION) == 0)
7286 *region = *lma_region;
7287 else
7288 *region = lang_memory_region_lookup (memspec, FALSE);
7289
7290 if (have_lma && lma_memspec != 0)
7291 einfo (_("%X%P:%S: section has both a load address and a load region\n"),
7292 NULL);
7293 }
7294
7295 void
7296 lang_leave_output_section_statement (fill_type *fill, const char *memspec,
7297 lang_output_section_phdr_list *phdrs,
7298 const char *lma_memspec)
7299 {
7300 lang_get_regions (&current_section->region,
7301 &current_section->lma_region,
7302 memspec, lma_memspec,
7303 current_section->load_base != NULL,
7304 current_section->addr_tree != NULL);
7305
7306 /* If this section has no load region or base, but uses the same
7307 region as the previous section, then propagate the previous
7308 section's load region. */
7309
7310 if (current_section->lma_region == NULL
7311 && current_section->load_base == NULL
7312 && current_section->addr_tree == NULL
7313 && current_section->region == current_section->prev->region)
7314 current_section->lma_region = current_section->prev->lma_region;
7315
7316 current_section->fill = fill;
7317 current_section->phdrs = phdrs;
7318 pop_stat_ptr ();
7319 }
7320
7321 void
7322 lang_statement_append (lang_statement_list_type *list,
7323 lang_statement_union_type *element,
7324 lang_statement_union_type **field)
7325 {
7326 *(list->tail) = element;
7327 list->tail = field;
7328 }
7329
7330 /* Set the output format type. -oformat overrides scripts. */
7331
7332 void
7333 lang_add_output_format (const char *format,
7334 const char *big,
7335 const char *little,
7336 int from_script)
7337 {
7338 if (output_target == NULL || !from_script)
7339 {
7340 if (command_line.endian == ENDIAN_BIG
7341 && big != NULL)
7342 format = big;
7343 else if (command_line.endian == ENDIAN_LITTLE
7344 && little != NULL)
7345 format = little;
7346
7347 output_target = format;
7348 }
7349 }
7350
7351 void
7352 lang_add_insert (const char *where, int is_before)
7353 {
7354 lang_insert_statement_type *new_stmt;
7355
7356 new_stmt = new_stat (lang_insert_statement, stat_ptr);
7357 new_stmt->where = where;
7358 new_stmt->is_before = is_before;
7359 saved_script_handle = previous_script_handle;
7360 }
7361
7362 /* Enter a group. This creates a new lang_group_statement, and sets
7363 stat_ptr to build new statements within the group. */
7364
7365 void
7366 lang_enter_group (void)
7367 {
7368 lang_group_statement_type *g;
7369
7370 g = new_stat (lang_group_statement, stat_ptr);
7371 lang_list_init (&g->children);
7372 push_stat_ptr (&g->children);
7373 }
7374
7375 /* Leave a group. This just resets stat_ptr to start writing to the
7376 regular list of statements again. Note that this will not work if
7377 groups can occur inside anything else which can adjust stat_ptr,
7378 but currently they can't. */
7379
7380 void
7381 lang_leave_group (void)
7382 {
7383 pop_stat_ptr ();
7384 }
7385
7386 /* Add a new program header. This is called for each entry in a PHDRS
7387 command in a linker script. */
7388
7389 void
7390 lang_new_phdr (const char *name,
7391 etree_type *type,
7392 bfd_boolean filehdr,
7393 bfd_boolean phdrs,
7394 etree_type *at,
7395 etree_type *flags)
7396 {
7397 struct lang_phdr *n, **pp;
7398 bfd_boolean hdrs;
7399
7400 n = (struct lang_phdr *) stat_alloc (sizeof (struct lang_phdr));
7401 n->next = NULL;
7402 n->name = name;
7403 n->type = exp_get_value_int (type, 0, "program header type");
7404 n->filehdr = filehdr;
7405 n->phdrs = phdrs;
7406 n->at = at;
7407 n->flags = flags;
7408
7409 hdrs = n->type == 1 && (phdrs || filehdr);
7410
7411 for (pp = &lang_phdr_list; *pp != NULL; pp = &(*pp)->next)
7412 if (hdrs
7413 && (*pp)->type == 1
7414 && !((*pp)->filehdr || (*pp)->phdrs))
7415 {
7416 einfo (_("%X%P:%S: PHDRS and FILEHDR are not supported"
7417 " when prior PT_LOAD headers lack them\n"), NULL);
7418 hdrs = FALSE;
7419 }
7420
7421 *pp = n;
7422 }
7423
7424 /* Record the program header information in the output BFD. FIXME: We
7425 should not be calling an ELF specific function here. */
7426
7427 static void
7428 lang_record_phdrs (void)
7429 {
7430 unsigned int alc;
7431 asection **secs;
7432 lang_output_section_phdr_list *last;
7433 struct lang_phdr *l;
7434 lang_output_section_statement_type *os;
7435
7436 alc = 10;
7437 secs = (asection **) xmalloc (alc * sizeof (asection *));
7438 last = NULL;
7439
7440 for (l = lang_phdr_list; l != NULL; l = l->next)
7441 {
7442 unsigned int c;
7443 flagword flags;
7444 bfd_vma at;
7445
7446 c = 0;
7447 for (os = &lang_output_section_statement.head->output_section_statement;
7448 os != NULL;
7449 os = os->next)
7450 {
7451 lang_output_section_phdr_list *pl;
7452
7453 if (os->constraint < 0)
7454 continue;
7455
7456 pl = os->phdrs;
7457 if (pl != NULL)
7458 last = pl;
7459 else
7460 {
7461 if (os->sectype == noload_section
7462 || os->bfd_section == NULL
7463 || (os->bfd_section->flags & SEC_ALLOC) == 0)
7464 continue;
7465
7466 /* Don't add orphans to PT_INTERP header. */
7467 if (l->type == 3)
7468 continue;
7469
7470 if (last == NULL)
7471 {
7472 lang_output_section_statement_type *tmp_os;
7473
7474 /* If we have not run across a section with a program
7475 header assigned to it yet, then scan forwards to find
7476 one. This prevents inconsistencies in the linker's
7477 behaviour when a script has specified just a single
7478 header and there are sections in that script which are
7479 not assigned to it, and which occur before the first
7480 use of that header. See here for more details:
7481 http://sourceware.org/ml/binutils/2007-02/msg00291.html */
7482 for (tmp_os = os; tmp_os; tmp_os = tmp_os->next)
7483 if (tmp_os->phdrs)
7484 {
7485 last = tmp_os->phdrs;
7486 break;
7487 }
7488 if (last == NULL)
7489 einfo (_("%F%P: no sections assigned to phdrs\n"));
7490 }
7491 pl = last;
7492 }
7493
7494 if (os->bfd_section == NULL)
7495 continue;
7496
7497 for (; pl != NULL; pl = pl->next)
7498 {
7499 if (strcmp (pl->name, l->name) == 0)
7500 {
7501 if (c >= alc)
7502 {
7503 alc *= 2;
7504 secs = (asection **) xrealloc (secs,
7505 alc * sizeof (asection *));
7506 }
7507 secs[c] = os->bfd_section;
7508 ++c;
7509 pl->used = TRUE;
7510 }
7511 }
7512 }
7513
7514 if (l->flags == NULL)
7515 flags = 0;
7516 else
7517 flags = exp_get_vma (l->flags, 0, "phdr flags");
7518
7519 if (l->at == NULL)
7520 at = 0;
7521 else
7522 at = exp_get_vma (l->at, 0, "phdr load address");
7523
7524 if (!bfd_record_phdr (link_info.output_bfd, l->type,
7525 l->flags != NULL, flags, l->at != NULL,
7526 at, l->filehdr, l->phdrs, c, secs))
7527 einfo (_("%F%P: bfd_record_phdr failed: %E\n"));
7528 }
7529
7530 free (secs);
7531
7532 /* Make sure all the phdr assignments succeeded. */
7533 for (os = &lang_output_section_statement.head->output_section_statement;
7534 os != NULL;
7535 os = os->next)
7536 {
7537 lang_output_section_phdr_list *pl;
7538
7539 if (os->constraint < 0
7540 || os->bfd_section == NULL)
7541 continue;
7542
7543 for (pl = os->phdrs;
7544 pl != NULL;
7545 pl = pl->next)
7546 if (!pl->used && strcmp (pl->name, "NONE") != 0)
7547 einfo (_("%X%P: section `%s' assigned to non-existent phdr `%s'\n"),
7548 os->name, pl->name);
7549 }
7550 }
7551
7552 /* Record a list of sections which may not be cross referenced. */
7553
7554 void
7555 lang_add_nocrossref (lang_nocrossref_type *l)
7556 {
7557 struct lang_nocrossrefs *n;
7558
7559 n = (struct lang_nocrossrefs *) xmalloc (sizeof *n);
7560 n->next = nocrossref_list;
7561 n->list = l;
7562 n->onlyfirst = FALSE;
7563 nocrossref_list = n;
7564
7565 /* Set notice_all so that we get informed about all symbols. */
7566 link_info.notice_all = TRUE;
7567 }
7568
7569 /* Record a section that cannot be referenced from a list of sections. */
7570
7571 void
7572 lang_add_nocrossref_to (lang_nocrossref_type *l)
7573 {
7574 lang_add_nocrossref (l);
7575 nocrossref_list->onlyfirst = TRUE;
7576 }
7577 \f
7578 /* Overlay handling. We handle overlays with some static variables. */
7579
7580 /* The overlay virtual address. */
7581 static etree_type *overlay_vma;
7582 /* And subsection alignment. */
7583 static etree_type *overlay_subalign;
7584
7585 /* An expression for the maximum section size seen so far. */
7586 static etree_type *overlay_max;
7587
7588 /* A list of all the sections in this overlay. */
7589
7590 struct overlay_list {
7591 struct overlay_list *next;
7592 lang_output_section_statement_type *os;
7593 };
7594
7595 static struct overlay_list *overlay_list;
7596
7597 /* Start handling an overlay. */
7598
7599 void
7600 lang_enter_overlay (etree_type *vma_expr, etree_type *subalign)
7601 {
7602 /* The grammar should prevent nested overlays from occurring. */
7603 ASSERT (overlay_vma == NULL
7604 && overlay_subalign == NULL
7605 && overlay_max == NULL);
7606
7607 overlay_vma = vma_expr;
7608 overlay_subalign = subalign;
7609 }
7610
7611 /* Start a section in an overlay. We handle this by calling
7612 lang_enter_output_section_statement with the correct VMA.
7613 lang_leave_overlay sets up the LMA and memory regions. */
7614
7615 void
7616 lang_enter_overlay_section (const char *name)
7617 {
7618 struct overlay_list *n;
7619 etree_type *size;
7620
7621 lang_enter_output_section_statement (name, overlay_vma, overlay_section,
7622 0, overlay_subalign, 0, 0, 0);
7623
7624 /* If this is the first section, then base the VMA of future
7625 sections on this one. This will work correctly even if `.' is
7626 used in the addresses. */
7627 if (overlay_list == NULL)
7628 overlay_vma = exp_nameop (ADDR, name);
7629
7630 /* Remember the section. */
7631 n = (struct overlay_list *) xmalloc (sizeof *n);
7632 n->os = current_section;
7633 n->next = overlay_list;
7634 overlay_list = n;
7635
7636 size = exp_nameop (SIZEOF, name);
7637
7638 /* Arrange to work out the maximum section end address. */
7639 if (overlay_max == NULL)
7640 overlay_max = size;
7641 else
7642 overlay_max = exp_binop (MAX_K, overlay_max, size);
7643 }
7644
7645 /* Finish a section in an overlay. There isn't any special to do
7646 here. */
7647
7648 void
7649 lang_leave_overlay_section (fill_type *fill,
7650 lang_output_section_phdr_list *phdrs)
7651 {
7652 const char *name;
7653 char *clean, *s2;
7654 const char *s1;
7655 char *buf;
7656
7657 name = current_section->name;
7658
7659 /* For now, assume that DEFAULT_MEMORY_REGION is the run-time memory
7660 region and that no load-time region has been specified. It doesn't
7661 really matter what we say here, since lang_leave_overlay will
7662 override it. */
7663 lang_leave_output_section_statement (fill, DEFAULT_MEMORY_REGION, phdrs, 0);
7664
7665 /* Define the magic symbols. */
7666
7667 clean = (char *) xmalloc (strlen (name) + 1);
7668 s2 = clean;
7669 for (s1 = name; *s1 != '\0'; s1++)
7670 if (ISALNUM (*s1) || *s1 == '_')
7671 *s2++ = *s1;
7672 *s2 = '\0';
7673
7674 buf = (char *) xmalloc (strlen (clean) + sizeof "__load_start_");
7675 sprintf (buf, "__load_start_%s", clean);
7676 lang_add_assignment (exp_provide (buf,
7677 exp_nameop (LOADADDR, name),
7678 FALSE));
7679
7680 buf = (char *) xmalloc (strlen (clean) + sizeof "__load_stop_");
7681 sprintf (buf, "__load_stop_%s", clean);
7682 lang_add_assignment (exp_provide (buf,
7683 exp_binop ('+',
7684 exp_nameop (LOADADDR, name),
7685 exp_nameop (SIZEOF, name)),
7686 FALSE));
7687
7688 free (clean);
7689 }
7690
7691 /* Finish an overlay. If there are any overlay wide settings, this
7692 looks through all the sections in the overlay and sets them. */
7693
7694 void
7695 lang_leave_overlay (etree_type *lma_expr,
7696 int nocrossrefs,
7697 fill_type *fill,
7698 const char *memspec,
7699 lang_output_section_phdr_list *phdrs,
7700 const char *lma_memspec)
7701 {
7702 lang_memory_region_type *region;
7703 lang_memory_region_type *lma_region;
7704 struct overlay_list *l;
7705 lang_nocrossref_type *nocrossref;
7706
7707 lang_get_regions (&region, &lma_region,
7708 memspec, lma_memspec,
7709 lma_expr != NULL, FALSE);
7710
7711 nocrossref = NULL;
7712
7713 /* After setting the size of the last section, set '.' to end of the
7714 overlay region. */
7715 if (overlay_list != NULL)
7716 {
7717 overlay_list->os->update_dot = 1;
7718 overlay_list->os->update_dot_tree
7719 = exp_assign (".", exp_binop ('+', overlay_vma, overlay_max), FALSE);
7720 }
7721
7722 l = overlay_list;
7723 while (l != NULL)
7724 {
7725 struct overlay_list *next;
7726
7727 if (fill != NULL && l->os->fill == NULL)
7728 l->os->fill = fill;
7729
7730 l->os->region = region;
7731 l->os->lma_region = lma_region;
7732
7733 /* The first section has the load address specified in the
7734 OVERLAY statement. The rest are worked out from that.
7735 The base address is not needed (and should be null) if
7736 an LMA region was specified. */
7737 if (l->next == 0)
7738 {
7739 l->os->load_base = lma_expr;
7740 l->os->sectype = normal_section;
7741 }
7742 if (phdrs != NULL && l->os->phdrs == NULL)
7743 l->os->phdrs = phdrs;
7744
7745 if (nocrossrefs)
7746 {
7747 lang_nocrossref_type *nc;
7748
7749 nc = (lang_nocrossref_type *) xmalloc (sizeof *nc);
7750 nc->name = l->os->name;
7751 nc->next = nocrossref;
7752 nocrossref = nc;
7753 }
7754
7755 next = l->next;
7756 free (l);
7757 l = next;
7758 }
7759
7760 if (nocrossref != NULL)
7761 lang_add_nocrossref (nocrossref);
7762
7763 overlay_vma = NULL;
7764 overlay_list = NULL;
7765 overlay_max = NULL;
7766 }
7767 \f
7768 /* Version handling. This is only useful for ELF. */
7769
7770 /* If PREV is NULL, return first version pattern matching particular symbol.
7771 If PREV is non-NULL, return first version pattern matching particular
7772 symbol after PREV (previously returned by lang_vers_match). */
7773
7774 static struct bfd_elf_version_expr *
7775 lang_vers_match (struct bfd_elf_version_expr_head *head,
7776 struct bfd_elf_version_expr *prev,
7777 const char *sym)
7778 {
7779 const char *c_sym;
7780 const char *cxx_sym = sym;
7781 const char *java_sym = sym;
7782 struct bfd_elf_version_expr *expr = NULL;
7783 enum demangling_styles curr_style;
7784
7785 curr_style = CURRENT_DEMANGLING_STYLE;
7786 cplus_demangle_set_style (no_demangling);
7787 c_sym = bfd_demangle (link_info.output_bfd, sym, DMGL_NO_OPTS);
7788 if (!c_sym)
7789 c_sym = sym;
7790 cplus_demangle_set_style (curr_style);
7791
7792 if (head->mask & BFD_ELF_VERSION_CXX_TYPE)
7793 {
7794 cxx_sym = bfd_demangle (link_info.output_bfd, sym,
7795 DMGL_PARAMS | DMGL_ANSI);
7796 if (!cxx_sym)
7797 cxx_sym = sym;
7798 }
7799 if (head->mask & BFD_ELF_VERSION_JAVA_TYPE)
7800 {
7801 java_sym = bfd_demangle (link_info.output_bfd, sym, DMGL_JAVA);
7802 if (!java_sym)
7803 java_sym = sym;
7804 }
7805
7806 if (head->htab && (prev == NULL || prev->literal))
7807 {
7808 struct bfd_elf_version_expr e;
7809
7810 switch (prev ? prev->mask : 0)
7811 {
7812 case 0:
7813 if (head->mask & BFD_ELF_VERSION_C_TYPE)
7814 {
7815 e.pattern = c_sym;
7816 expr = (struct bfd_elf_version_expr *)
7817 htab_find ((htab_t) head->htab, &e);
7818 while (expr && strcmp (expr->pattern, c_sym) == 0)
7819 if (expr->mask == BFD_ELF_VERSION_C_TYPE)
7820 goto out_ret;
7821 else
7822 expr = expr->next;
7823 }
7824 /* Fallthrough */
7825 case BFD_ELF_VERSION_C_TYPE:
7826 if (head->mask & BFD_ELF_VERSION_CXX_TYPE)
7827 {
7828 e.pattern = cxx_sym;
7829 expr = (struct bfd_elf_version_expr *)
7830 htab_find ((htab_t) head->htab, &e);
7831 while (expr && strcmp (expr->pattern, cxx_sym) == 0)
7832 if (expr->mask == BFD_ELF_VERSION_CXX_TYPE)
7833 goto out_ret;
7834 else
7835 expr = expr->next;
7836 }
7837 /* Fallthrough */
7838 case BFD_ELF_VERSION_CXX_TYPE:
7839 if (head->mask & BFD_ELF_VERSION_JAVA_TYPE)
7840 {
7841 e.pattern = java_sym;
7842 expr = (struct bfd_elf_version_expr *)
7843 htab_find ((htab_t) head->htab, &e);
7844 while (expr && strcmp (expr->pattern, java_sym) == 0)
7845 if (expr->mask == BFD_ELF_VERSION_JAVA_TYPE)
7846 goto out_ret;
7847 else
7848 expr = expr->next;
7849 }
7850 /* Fallthrough */
7851 default:
7852 break;
7853 }
7854 }
7855
7856 /* Finally, try the wildcards. */
7857 if (prev == NULL || prev->literal)
7858 expr = head->remaining;
7859 else
7860 expr = prev->next;
7861 for (; expr; expr = expr->next)
7862 {
7863 const char *s;
7864
7865 if (!expr->pattern)
7866 continue;
7867
7868 if (expr->pattern[0] == '*' && expr->pattern[1] == '\0')
7869 break;
7870
7871 if (expr->mask == BFD_ELF_VERSION_JAVA_TYPE)
7872 s = java_sym;
7873 else if (expr->mask == BFD_ELF_VERSION_CXX_TYPE)
7874 s = cxx_sym;
7875 else
7876 s = c_sym;
7877 if (fnmatch (expr->pattern, s, 0) == 0)
7878 break;
7879 }
7880
7881 out_ret:
7882 if (c_sym != sym)
7883 free ((char *) c_sym);
7884 if (cxx_sym != sym)
7885 free ((char *) cxx_sym);
7886 if (java_sym != sym)
7887 free ((char *) java_sym);
7888 return expr;
7889 }
7890
7891 /* Return NULL if the PATTERN argument is a glob pattern, otherwise,
7892 return a pointer to the symbol name with any backslash quotes removed. */
7893
7894 static const char *
7895 realsymbol (const char *pattern)
7896 {
7897 const char *p;
7898 bfd_boolean changed = FALSE, backslash = FALSE;
7899 char *s, *symbol = (char *) xmalloc (strlen (pattern) + 1);
7900
7901 for (p = pattern, s = symbol; *p != '\0'; ++p)
7902 {
7903 /* It is a glob pattern only if there is no preceding
7904 backslash. */
7905 if (backslash)
7906 {
7907 /* Remove the preceding backslash. */
7908 *(s - 1) = *p;
7909 backslash = FALSE;
7910 changed = TRUE;
7911 }
7912 else
7913 {
7914 if (*p == '?' || *p == '*' || *p == '[')
7915 {
7916 free (symbol);
7917 return NULL;
7918 }
7919
7920 *s++ = *p;
7921 backslash = *p == '\\';
7922 }
7923 }
7924
7925 if (changed)
7926 {
7927 *s = '\0';
7928 return symbol;
7929 }
7930 else
7931 {
7932 free (symbol);
7933 return pattern;
7934 }
7935 }
7936
7937 /* This is called for each variable name or match expression. NEW_NAME is
7938 the name of the symbol to match, or, if LITERAL_P is FALSE, a glob
7939 pattern to be matched against symbol names. */
7940
7941 struct bfd_elf_version_expr *
7942 lang_new_vers_pattern (struct bfd_elf_version_expr *orig,
7943 const char *new_name,
7944 const char *lang,
7945 bfd_boolean literal_p)
7946 {
7947 struct bfd_elf_version_expr *ret;
7948
7949 ret = (struct bfd_elf_version_expr *) xmalloc (sizeof *ret);
7950 ret->next = orig;
7951 ret->symver = 0;
7952 ret->script = 0;
7953 ret->literal = TRUE;
7954 ret->pattern = literal_p ? new_name : realsymbol (new_name);
7955 if (ret->pattern == NULL)
7956 {
7957 ret->pattern = new_name;
7958 ret->literal = FALSE;
7959 }
7960
7961 if (lang == NULL || strcasecmp (lang, "C") == 0)
7962 ret->mask = BFD_ELF_VERSION_C_TYPE;
7963 else if (strcasecmp (lang, "C++") == 0)
7964 ret->mask = BFD_ELF_VERSION_CXX_TYPE;
7965 else if (strcasecmp (lang, "Java") == 0)
7966 ret->mask = BFD_ELF_VERSION_JAVA_TYPE;
7967 else
7968 {
7969 einfo (_("%X%P: unknown language `%s' in version information\n"),
7970 lang);
7971 ret->mask = BFD_ELF_VERSION_C_TYPE;
7972 }
7973
7974 return ldemul_new_vers_pattern (ret);
7975 }
7976
7977 /* This is called for each set of variable names and match
7978 expressions. */
7979
7980 struct bfd_elf_version_tree *
7981 lang_new_vers_node (struct bfd_elf_version_expr *globals,
7982 struct bfd_elf_version_expr *locals)
7983 {
7984 struct bfd_elf_version_tree *ret;
7985
7986 ret = (struct bfd_elf_version_tree *) xcalloc (1, sizeof *ret);
7987 ret->globals.list = globals;
7988 ret->locals.list = locals;
7989 ret->match = lang_vers_match;
7990 ret->name_indx = (unsigned int) -1;
7991 return ret;
7992 }
7993
7994 /* This static variable keeps track of version indices. */
7995
7996 static int version_index;
7997
7998 static hashval_t
7999 version_expr_head_hash (const void *p)
8000 {
8001 const struct bfd_elf_version_expr *e =
8002 (const struct bfd_elf_version_expr *) p;
8003
8004 return htab_hash_string (e->pattern);
8005 }
8006
8007 static int
8008 version_expr_head_eq (const void *p1, const void *p2)
8009 {
8010 const struct bfd_elf_version_expr *e1 =
8011 (const struct bfd_elf_version_expr *) p1;
8012 const struct bfd_elf_version_expr *e2 =
8013 (const struct bfd_elf_version_expr *) p2;
8014
8015 return strcmp (e1->pattern, e2->pattern) == 0;
8016 }
8017
8018 static void
8019 lang_finalize_version_expr_head (struct bfd_elf_version_expr_head *head)
8020 {
8021 size_t count = 0;
8022 struct bfd_elf_version_expr *e, *next;
8023 struct bfd_elf_version_expr **list_loc, **remaining_loc;
8024
8025 for (e = head->list; e; e = e->next)
8026 {
8027 if (e->literal)
8028 count++;
8029 head->mask |= e->mask;
8030 }
8031
8032 if (count)
8033 {
8034 head->htab = htab_create (count * 2, version_expr_head_hash,
8035 version_expr_head_eq, NULL);
8036 list_loc = &head->list;
8037 remaining_loc = &head->remaining;
8038 for (e = head->list; e; e = next)
8039 {
8040 next = e->next;
8041 if (!e->literal)
8042 {
8043 *remaining_loc = e;
8044 remaining_loc = &e->next;
8045 }
8046 else
8047 {
8048 void **loc = htab_find_slot ((htab_t) head->htab, e, INSERT);
8049
8050 if (*loc)
8051 {
8052 struct bfd_elf_version_expr *e1, *last;
8053
8054 e1 = (struct bfd_elf_version_expr *) *loc;
8055 last = NULL;
8056 do
8057 {
8058 if (e1->mask == e->mask)
8059 {
8060 last = NULL;
8061 break;
8062 }
8063 last = e1;
8064 e1 = e1->next;
8065 }
8066 while (e1 && strcmp (e1->pattern, e->pattern) == 0);
8067
8068 if (last == NULL)
8069 {
8070 /* This is a duplicate. */
8071 /* FIXME: Memory leak. Sometimes pattern is not
8072 xmalloced alone, but in larger chunk of memory. */
8073 /* free (e->pattern); */
8074 free (e);
8075 }
8076 else
8077 {
8078 e->next = last->next;
8079 last->next = e;
8080 }
8081 }
8082 else
8083 {
8084 *loc = e;
8085 *list_loc = e;
8086 list_loc = &e->next;
8087 }
8088 }
8089 }
8090 *remaining_loc = NULL;
8091 *list_loc = head->remaining;
8092 }
8093 else
8094 head->remaining = head->list;
8095 }
8096
8097 /* This is called when we know the name and dependencies of the
8098 version. */
8099
8100 void
8101 lang_register_vers_node (const char *name,
8102 struct bfd_elf_version_tree *version,
8103 struct bfd_elf_version_deps *deps)
8104 {
8105 struct bfd_elf_version_tree *t, **pp;
8106 struct bfd_elf_version_expr *e1;
8107
8108 if (name == NULL)
8109 name = "";
8110
8111 if (link_info.version_info != NULL
8112 && (name[0] == '\0' || link_info.version_info->name[0] == '\0'))
8113 {
8114 einfo (_("%X%P: anonymous version tag cannot be combined"
8115 " with other version tags\n"));
8116 free (version);
8117 return;
8118 }
8119
8120 /* Make sure this node has a unique name. */
8121 for (t = link_info.version_info; t != NULL; t = t->next)
8122 if (strcmp (t->name, name) == 0)
8123 einfo (_("%X%P: duplicate version tag `%s'\n"), name);
8124
8125 lang_finalize_version_expr_head (&version->globals);
8126 lang_finalize_version_expr_head (&version->locals);
8127
8128 /* Check the global and local match names, and make sure there
8129 aren't any duplicates. */
8130
8131 for (e1 = version->globals.list; e1 != NULL; e1 = e1->next)
8132 {
8133 for (t = link_info.version_info; t != NULL; t = t->next)
8134 {
8135 struct bfd_elf_version_expr *e2;
8136
8137 if (t->locals.htab && e1->literal)
8138 {
8139 e2 = (struct bfd_elf_version_expr *)
8140 htab_find ((htab_t) t->locals.htab, e1);
8141 while (e2 && strcmp (e1->pattern, e2->pattern) == 0)
8142 {
8143 if (e1->mask == e2->mask)
8144 einfo (_("%X%P: duplicate expression `%s'"
8145 " in version information\n"), e1->pattern);
8146 e2 = e2->next;
8147 }
8148 }
8149 else if (!e1->literal)
8150 for (e2 = t->locals.remaining; e2 != NULL; e2 = e2->next)
8151 if (strcmp (e1->pattern, e2->pattern) == 0
8152 && e1->mask == e2->mask)
8153 einfo (_("%X%P: duplicate expression `%s'"
8154 " in version information\n"), e1->pattern);
8155 }
8156 }
8157
8158 for (e1 = version->locals.list; e1 != NULL; e1 = e1->next)
8159 {
8160 for (t = link_info.version_info; t != NULL; t = t->next)
8161 {
8162 struct bfd_elf_version_expr *e2;
8163
8164 if (t->globals.htab && e1->literal)
8165 {
8166 e2 = (struct bfd_elf_version_expr *)
8167 htab_find ((htab_t) t->globals.htab, e1);
8168 while (e2 && strcmp (e1->pattern, e2->pattern) == 0)
8169 {
8170 if (e1->mask == e2->mask)
8171 einfo (_("%X%P: duplicate expression `%s'"
8172 " in version information\n"),
8173 e1->pattern);
8174 e2 = e2->next;
8175 }
8176 }
8177 else if (!e1->literal)
8178 for (e2 = t->globals.remaining; e2 != NULL; e2 = e2->next)
8179 if (strcmp (e1->pattern, e2->pattern) == 0
8180 && e1->mask == e2->mask)
8181 einfo (_("%X%P: duplicate expression `%s'"
8182 " in version information\n"), e1->pattern);
8183 }
8184 }
8185
8186 version->deps = deps;
8187 version->name = name;
8188 if (name[0] != '\0')
8189 {
8190 ++version_index;
8191 version->vernum = version_index;
8192 }
8193 else
8194 version->vernum = 0;
8195
8196 for (pp = &link_info.version_info; *pp != NULL; pp = &(*pp)->next)
8197 ;
8198 *pp = version;
8199 }
8200
8201 /* This is called when we see a version dependency. */
8202
8203 struct bfd_elf_version_deps *
8204 lang_add_vers_depend (struct bfd_elf_version_deps *list, const char *name)
8205 {
8206 struct bfd_elf_version_deps *ret;
8207 struct bfd_elf_version_tree *t;
8208
8209 ret = (struct bfd_elf_version_deps *) xmalloc (sizeof *ret);
8210 ret->next = list;
8211
8212 for (t = link_info.version_info; t != NULL; t = t->next)
8213 {
8214 if (strcmp (t->name, name) == 0)
8215 {
8216 ret->version_needed = t;
8217 return ret;
8218 }
8219 }
8220
8221 einfo (_("%X%P: unable to find version dependency `%s'\n"), name);
8222
8223 ret->version_needed = NULL;
8224 return ret;
8225 }
8226
8227 static void
8228 lang_do_version_exports_section (void)
8229 {
8230 struct bfd_elf_version_expr *greg = NULL, *lreg;
8231
8232 LANG_FOR_EACH_INPUT_STATEMENT (is)
8233 {
8234 asection *sec = bfd_get_section_by_name (is->the_bfd, ".exports");
8235 char *contents, *p;
8236 bfd_size_type len;
8237
8238 if (sec == NULL)
8239 continue;
8240
8241 len = sec->size;
8242 contents = (char *) xmalloc (len);
8243 if (!bfd_get_section_contents (is->the_bfd, sec, contents, 0, len))
8244 einfo (_("%X%P: unable to read .exports section contents\n"), sec);
8245
8246 p = contents;
8247 while (p < contents + len)
8248 {
8249 greg = lang_new_vers_pattern (greg, p, NULL, FALSE);
8250 p = strchr (p, '\0') + 1;
8251 }
8252
8253 /* Do not free the contents, as we used them creating the regex. */
8254
8255 /* Do not include this section in the link. */
8256 sec->flags |= SEC_EXCLUDE | SEC_KEEP;
8257 }
8258
8259 lreg = lang_new_vers_pattern (NULL, "*", NULL, FALSE);
8260 lang_register_vers_node (command_line.version_exports_section,
8261 lang_new_vers_node (greg, lreg), NULL);
8262 }
8263
8264 /* Evaluate LENGTH and ORIGIN parts of MEMORY spec */
8265
8266 static void
8267 lang_do_memory_regions (void)
8268 {
8269 lang_memory_region_type *r = lang_memory_region_list;
8270
8271 for (; r != NULL; r = r->next)
8272 {
8273 if (r->origin_exp)
8274 {
8275 exp_fold_tree_no_dot (r->origin_exp);
8276 if (expld.result.valid_p)
8277 {
8278 r->origin = expld.result.value;
8279 r->current = r->origin;
8280 }
8281 else
8282 einfo (_("%F%P: invalid origin for memory region %s\n"),
8283 r->name_list.name);
8284 }
8285 if (r->length_exp)
8286 {
8287 exp_fold_tree_no_dot (r->length_exp);
8288 if (expld.result.valid_p)
8289 r->length = expld.result.value;
8290 else
8291 einfo (_("%F%P: invalid length for memory region %s\n"),
8292 r->name_list.name);
8293 }
8294 }
8295 }
8296
8297 void
8298 lang_add_unique (const char *name)
8299 {
8300 struct unique_sections *ent;
8301
8302 for (ent = unique_section_list; ent; ent = ent->next)
8303 if (strcmp (ent->name, name) == 0)
8304 return;
8305
8306 ent = (struct unique_sections *) xmalloc (sizeof *ent);
8307 ent->name = xstrdup (name);
8308 ent->next = unique_section_list;
8309 unique_section_list = ent;
8310 }
8311
8312 /* Append the list of dynamic symbols to the existing one. */
8313
8314 void
8315 lang_append_dynamic_list (struct bfd_elf_version_expr *dynamic)
8316 {
8317 if (link_info.dynamic_list)
8318 {
8319 struct bfd_elf_version_expr *tail;
8320 for (tail = dynamic; tail->next != NULL; tail = tail->next)
8321 ;
8322 tail->next = link_info.dynamic_list->head.list;
8323 link_info.dynamic_list->head.list = dynamic;
8324 }
8325 else
8326 {
8327 struct bfd_elf_dynamic_list *d;
8328
8329 d = (struct bfd_elf_dynamic_list *) xcalloc (1, sizeof *d);
8330 d->head.list = dynamic;
8331 d->match = lang_vers_match;
8332 link_info.dynamic_list = d;
8333 }
8334 }
8335
8336 /* Append the list of C++ typeinfo dynamic symbols to the existing
8337 one. */
8338
8339 void
8340 lang_append_dynamic_list_cpp_typeinfo (void)
8341 {
8342 const char *symbols[] =
8343 {
8344 "typeinfo name for*",
8345 "typeinfo for*"
8346 };
8347 struct bfd_elf_version_expr *dynamic = NULL;
8348 unsigned int i;
8349
8350 for (i = 0; i < ARRAY_SIZE (symbols); i++)
8351 dynamic = lang_new_vers_pattern (dynamic, symbols [i], "C++",
8352 FALSE);
8353
8354 lang_append_dynamic_list (dynamic);
8355 }
8356
8357 /* Append the list of C++ operator new and delete dynamic symbols to the
8358 existing one. */
8359
8360 void
8361 lang_append_dynamic_list_cpp_new (void)
8362 {
8363 const char *symbols[] =
8364 {
8365 "operator new*",
8366 "operator delete*"
8367 };
8368 struct bfd_elf_version_expr *dynamic = NULL;
8369 unsigned int i;
8370
8371 for (i = 0; i < ARRAY_SIZE (symbols); i++)
8372 dynamic = lang_new_vers_pattern (dynamic, symbols [i], "C++",
8373 FALSE);
8374
8375 lang_append_dynamic_list (dynamic);
8376 }
8377
8378 /* Scan a space and/or comma separated string of features. */
8379
8380 void
8381 lang_ld_feature (char *str)
8382 {
8383 char *p, *q;
8384
8385 p = str;
8386 while (*p)
8387 {
8388 char sep;
8389 while (*p == ',' || ISSPACE (*p))
8390 ++p;
8391 if (!*p)
8392 break;
8393 q = p + 1;
8394 while (*q && *q != ',' && !ISSPACE (*q))
8395 ++q;
8396 sep = *q;
8397 *q = 0;
8398 if (strcasecmp (p, "SANE_EXPR") == 0)
8399 config.sane_expr = TRUE;
8400 else
8401 einfo (_("%X%P: unknown feature `%s'\n"), p);
8402 *q = sep;
8403 p = q;
8404 }
8405 }
8406
8407 /* Pretty print memory amount. */
8408
8409 static void
8410 lang_print_memory_size (bfd_vma sz)
8411 {
8412 if ((sz & 0x3fffffff) == 0)
8413 printf ("%10" BFD_VMA_FMT "u GB", sz >> 30);
8414 else if ((sz & 0xfffff) == 0)
8415 printf ("%10" BFD_VMA_FMT "u MB", sz >> 20);
8416 else if ((sz & 0x3ff) == 0)
8417 printf ("%10" BFD_VMA_FMT "u KB", sz >> 10);
8418 else
8419 printf (" %10" BFD_VMA_FMT "u B", sz);
8420 }
8421
8422 /* Implement --print-memory-usage: disply per region memory usage. */
8423
8424 void
8425 lang_print_memory_usage (void)
8426 {
8427 lang_memory_region_type *r;
8428
8429 printf ("Memory region Used Size Region Size %%age Used\n");
8430 for (r = lang_memory_region_list; r->next != NULL; r = r->next)
8431 {
8432 bfd_vma used_length = r->current - r->origin;
8433 double percent;
8434
8435 printf ("%16s: ",r->name_list.name);
8436 lang_print_memory_size (used_length);
8437 lang_print_memory_size ((bfd_vma) r->length);
8438
8439 percent = used_length * 100.0 / r->length;
8440
8441 printf (" %6.2f%%\n", percent);
8442 }
8443 }
This page took 0.207057 seconds and 4 git commands to generate.