Remove startup_file from ldlang.c.
[deliverable/binutils-gdb.git] / ld / ldlang.c
1 /* Linker command language support.
2 Copyright 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
3 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010
4 Free Software Foundation, Inc.
5
6 This file is part of the GNU Binutils.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 MA 02110-1301, USA. */
22
23 #include "sysdep.h"
24 #include "bfd.h"
25 #include "libiberty.h"
26 #include "safe-ctype.h"
27 #include "obstack.h"
28 #include "bfdlink.h"
29
30 #include "ld.h"
31 #include "ldmain.h"
32 #include "ldexp.h"
33 #include "ldlang.h"
34 #include <ldgram.h>
35 #include "ldlex.h"
36 #include "ldmisc.h"
37 #include "ldctor.h"
38 #include "ldfile.h"
39 #include "ldemul.h"
40 #include "fnmatch.h"
41 #include "demangle.h"
42 #include "hashtab.h"
43 #include "libbfd.h"
44 #ifdef ENABLE_PLUGINS
45 #include "plugin.h"
46 #endif /* ENABLE_PLUGINS */
47
48 #ifndef offsetof
49 #define offsetof(TYPE, MEMBER) ((size_t) & (((TYPE*) 0)->MEMBER))
50 #endif
51
52 /* Locals variables. */
53 static struct obstack stat_obstack;
54 static struct obstack map_obstack;
55
56 #define obstack_chunk_alloc xmalloc
57 #define obstack_chunk_free free
58 static const char *entry_symbol_default = "start";
59 static bfd_boolean placed_commons = FALSE;
60 static bfd_boolean stripped_excluded_sections = FALSE;
61 static lang_output_section_statement_type *default_common_section;
62 static bfd_boolean map_option_f;
63 static bfd_vma print_dot;
64 static lang_input_statement_type *first_file;
65 static const char *current_target;
66 static lang_statement_list_type statement_list;
67 static struct bfd_hash_table lang_definedness_table;
68 static lang_statement_list_type *stat_save[10];
69 static lang_statement_list_type **stat_save_ptr = &stat_save[0];
70 static struct unique_sections *unique_section_list;
71 static bfd_boolean ldlang_sysrooted_script = FALSE;
72
73 /* Forward declarations. */
74 static void exp_init_os (etree_type *);
75 static void init_map_userdata (bfd *, asection *, void *);
76 static lang_input_statement_type *lookup_name (const char *);
77 static struct bfd_hash_entry *lang_definedness_newfunc
78 (struct bfd_hash_entry *, struct bfd_hash_table *, const char *);
79 static void insert_undefined (const char *);
80 static bfd_boolean sort_def_symbol (struct bfd_link_hash_entry *, void *);
81 static void print_statement (lang_statement_union_type *,
82 lang_output_section_statement_type *);
83 static void print_statement_list (lang_statement_union_type *,
84 lang_output_section_statement_type *);
85 static void print_statements (void);
86 static void print_input_section (asection *, bfd_boolean);
87 static bfd_boolean lang_one_common (struct bfd_link_hash_entry *, void *);
88 static void lang_record_phdrs (void);
89 static void lang_do_version_exports_section (void);
90 static void lang_finalize_version_expr_head
91 (struct bfd_elf_version_expr_head *);
92
93 /* Exported variables. */
94 const char *output_target;
95 lang_output_section_statement_type *abs_output_section;
96 lang_statement_list_type lang_output_section_statement;
97 lang_statement_list_type *stat_ptr = &statement_list;
98 lang_statement_list_type file_chain = { NULL, NULL };
99 lang_statement_list_type input_file_chain;
100 struct bfd_sym_chain entry_symbol = { NULL, NULL };
101 const char *entry_section = ".text";
102 bfd_boolean entry_from_cmdline;
103 bfd_boolean undef_from_cmdline;
104 bfd_boolean lang_has_input_file = FALSE;
105 bfd_boolean had_output_filename = FALSE;
106 bfd_boolean lang_float_flag = FALSE;
107 bfd_boolean delete_output_file_on_failure = FALSE;
108 struct lang_phdr *lang_phdr_list;
109 struct lang_nocrossrefs *nocrossref_list;
110 bfd_boolean missing_file = FALSE;
111 int ld_compatibility;
112
113 /* Functions that traverse the linker script and might evaluate
114 DEFINED() need to increment this. */
115 int lang_statement_iteration = 0;
116
117 etree_type *base; /* Relocation base - or null */
118
119 /* Return TRUE if the PATTERN argument is a wildcard pattern.
120 Although backslashes are treated specially if a pattern contains
121 wildcards, we do not consider the mere presence of a backslash to
122 be enough to cause the pattern to be treated as a wildcard.
123 That lets us handle DOS filenames more naturally. */
124 #define wildcardp(pattern) (strpbrk ((pattern), "?*[") != NULL)
125
126 #define new_stat(x, y) \
127 (x##_type *) new_statement (x##_enum, sizeof (x##_type), y)
128
129 #define outside_section_address(q) \
130 ((q)->output_offset + (q)->output_section->vma)
131
132 #define outside_symbol_address(q) \
133 ((q)->value + outside_section_address (q->section))
134
135 #define SECTION_NAME_MAP_LENGTH (16)
136
137 void *
138 stat_alloc (size_t size)
139 {
140 return obstack_alloc (&stat_obstack, size);
141 }
142
143 static int
144 name_match (const char *pattern, const char *name)
145 {
146 if (wildcardp (pattern))
147 return fnmatch (pattern, name, 0);
148 return strcmp (pattern, name);
149 }
150
151 /* If PATTERN is of the form archive:file, return a pointer to the
152 separator. If not, return NULL. */
153
154 static char *
155 archive_path (const char *pattern)
156 {
157 char *p = NULL;
158
159 if (link_info.path_separator == 0)
160 return p;
161
162 p = strchr (pattern, link_info.path_separator);
163 #ifdef HAVE_DOS_BASED_FILE_SYSTEM
164 if (p == NULL || link_info.path_separator != ':')
165 return p;
166
167 /* Assume a match on the second char is part of drive specifier,
168 as in "c:\silly.dos". */
169 if (p == pattern + 1 && ISALPHA (*pattern))
170 p = strchr (p + 1, link_info.path_separator);
171 #endif
172 return p;
173 }
174
175 /* Given that FILE_SPEC results in a non-NULL SEP result from archive_path,
176 return whether F matches FILE_SPEC. */
177
178 static bfd_boolean
179 input_statement_is_archive_path (const char *file_spec, char *sep,
180 lang_input_statement_type *f)
181 {
182 bfd_boolean match = FALSE;
183
184 if ((*(sep + 1) == 0
185 || name_match (sep + 1, f->filename) == 0)
186 && ((sep != file_spec)
187 == (f->the_bfd != NULL && f->the_bfd->my_archive != NULL)))
188 {
189 match = TRUE;
190
191 if (sep != file_spec)
192 {
193 const char *aname = f->the_bfd->my_archive->filename;
194 *sep = 0;
195 match = name_match (file_spec, aname) == 0;
196 *sep = link_info.path_separator;
197 }
198 }
199 return match;
200 }
201
202 static bfd_boolean
203 unique_section_p (const asection *sec,
204 const lang_output_section_statement_type *os)
205 {
206 struct unique_sections *unam;
207 const char *secnam;
208
209 if (link_info.relocatable
210 && sec->owner != NULL
211 && bfd_is_group_section (sec->owner, sec))
212 return !(os != NULL
213 && strcmp (os->name, DISCARD_SECTION_NAME) == 0);
214
215 secnam = sec->name;
216 for (unam = unique_section_list; unam; unam = unam->next)
217 if (name_match (unam->name, secnam) == 0)
218 return TRUE;
219
220 return FALSE;
221 }
222
223 /* Generic traversal routines for finding matching sections. */
224
225 /* Try processing a section against a wildcard. This just calls
226 the callback unless the filename exclusion list is present
227 and excludes the file. It's hardly ever present so this
228 function is very fast. */
229
230 static void
231 walk_wild_consider_section (lang_wild_statement_type *ptr,
232 lang_input_statement_type *file,
233 asection *s,
234 struct wildcard_list *sec,
235 callback_t callback,
236 void *data)
237 {
238 struct name_list *list_tmp;
239
240 /* Don't process sections from files which were excluded. */
241 for (list_tmp = sec->spec.exclude_name_list;
242 list_tmp;
243 list_tmp = list_tmp->next)
244 {
245 char *p = archive_path (list_tmp->name);
246
247 if (p != NULL)
248 {
249 if (input_statement_is_archive_path (list_tmp->name, p, file))
250 return;
251 }
252
253 else if (name_match (list_tmp->name, file->filename) == 0)
254 return;
255
256 /* FIXME: Perhaps remove the following at some stage? Matching
257 unadorned archives like this was never documented and has
258 been superceded by the archive:path syntax. */
259 else if (file->the_bfd != NULL
260 && file->the_bfd->my_archive != NULL
261 && name_match (list_tmp->name,
262 file->the_bfd->my_archive->filename) == 0)
263 return;
264 }
265
266 (*callback) (ptr, sec, s, file, data);
267 }
268
269 /* Lowest common denominator routine that can handle everything correctly,
270 but slowly. */
271
272 static void
273 walk_wild_section_general (lang_wild_statement_type *ptr,
274 lang_input_statement_type *file,
275 callback_t callback,
276 void *data)
277 {
278 asection *s;
279 struct wildcard_list *sec;
280
281 for (s = file->the_bfd->sections; s != NULL; s = s->next)
282 {
283 sec = ptr->section_list;
284 if (sec == NULL)
285 (*callback) (ptr, sec, s, file, data);
286
287 while (sec != NULL)
288 {
289 bfd_boolean skip = FALSE;
290
291 if (sec->spec.name != NULL)
292 {
293 const char *sname = bfd_get_section_name (file->the_bfd, s);
294
295 skip = name_match (sec->spec.name, sname) != 0;
296 }
297
298 if (!skip)
299 walk_wild_consider_section (ptr, file, s, sec, callback, data);
300
301 sec = sec->next;
302 }
303 }
304 }
305
306 /* Routines to find a single section given its name. If there's more
307 than one section with that name, we report that. */
308
309 typedef struct
310 {
311 asection *found_section;
312 bfd_boolean multiple_sections_found;
313 } section_iterator_callback_data;
314
315 static bfd_boolean
316 section_iterator_callback (bfd *abfd ATTRIBUTE_UNUSED, asection *s, void *data)
317 {
318 section_iterator_callback_data *d = (section_iterator_callback_data *) data;
319
320 if (d->found_section != NULL)
321 {
322 d->multiple_sections_found = TRUE;
323 return TRUE;
324 }
325
326 d->found_section = s;
327 return FALSE;
328 }
329
330 static asection *
331 find_section (lang_input_statement_type *file,
332 struct wildcard_list *sec,
333 bfd_boolean *multiple_sections_found)
334 {
335 section_iterator_callback_data cb_data = { NULL, FALSE };
336
337 bfd_get_section_by_name_if (file->the_bfd, sec->spec.name,
338 section_iterator_callback, &cb_data);
339 *multiple_sections_found = cb_data.multiple_sections_found;
340 return cb_data.found_section;
341 }
342
343 /* Code for handling simple wildcards without going through fnmatch,
344 which can be expensive because of charset translations etc. */
345
346 /* A simple wild is a literal string followed by a single '*',
347 where the literal part is at least 4 characters long. */
348
349 static bfd_boolean
350 is_simple_wild (const char *name)
351 {
352 size_t len = strcspn (name, "*?[");
353 return len >= 4 && name[len] == '*' && name[len + 1] == '\0';
354 }
355
356 static bfd_boolean
357 match_simple_wild (const char *pattern, const char *name)
358 {
359 /* The first four characters of the pattern are guaranteed valid
360 non-wildcard characters. So we can go faster. */
361 if (pattern[0] != name[0] || pattern[1] != name[1]
362 || pattern[2] != name[2] || pattern[3] != name[3])
363 return FALSE;
364
365 pattern += 4;
366 name += 4;
367 while (*pattern != '*')
368 if (*name++ != *pattern++)
369 return FALSE;
370
371 return TRUE;
372 }
373
374 /* Return the numerical value of the init_priority attribute from
375 section name NAME. */
376
377 static unsigned long
378 get_init_priority (const char *name)
379 {
380 char *end;
381 unsigned long init_priority;
382
383 /* GCC uses the following section names for the init_priority
384 attribute with numerical values 101 and 65535 inclusive. A
385 lower value means a higher priority.
386
387 1: .init_array.NNNN/.fini_array.NNNN: Where NNNN is the
388 decimal numerical value of the init_priority attribute.
389 The order of execution in .init_array is forward and
390 .fini_array is backward.
391 2: .ctors.NNNN/.ctors.NNNN: Where NNNN is 65535 minus the
392 decimal numerical value of the init_priority attribute.
393 The order of execution in .ctors is backward and .dtors
394 is forward.
395 */
396 if (strncmp (name, ".init_array.", 12) == 0
397 || strncmp (name, ".fini_array.", 12) == 0)
398 {
399 init_priority = strtoul (name + 12, &end, 10);
400 return *end ? 0 : init_priority;
401 }
402 else if (strncmp (name, ".ctors.", 7) == 0
403 || strncmp (name, ".dtors.", 7) == 0)
404 {
405 init_priority = strtoul (name + 7, &end, 10);
406 return *end ? 0 : 65535 - init_priority;
407 }
408
409 return 0;
410 }
411
412 /* Compare sections ASEC and BSEC according to SORT. */
413
414 static int
415 compare_section (sort_type sort, asection *asec, asection *bsec)
416 {
417 int ret;
418 unsigned long ainit_priority, binit_priority;
419
420 switch (sort)
421 {
422 default:
423 abort ();
424
425 case by_init_priority:
426 ainit_priority
427 = get_init_priority (bfd_get_section_name (asec->owner, asec));
428 binit_priority
429 = get_init_priority (bfd_get_section_name (bsec->owner, bsec));
430 if (ainit_priority == 0 || binit_priority == 0)
431 goto sort_by_name;
432 ret = ainit_priority - binit_priority;
433 if (ret)
434 break;
435 else
436 goto sort_by_name;
437
438 case by_alignment_name:
439 ret = (bfd_section_alignment (bsec->owner, bsec)
440 - bfd_section_alignment (asec->owner, asec));
441 if (ret)
442 break;
443 /* Fall through. */
444
445 case by_name:
446 sort_by_name:
447 ret = strcmp (bfd_get_section_name (asec->owner, asec),
448 bfd_get_section_name (bsec->owner, bsec));
449 break;
450
451 case by_name_alignment:
452 ret = strcmp (bfd_get_section_name (asec->owner, asec),
453 bfd_get_section_name (bsec->owner, bsec));
454 if (ret)
455 break;
456 /* Fall through. */
457
458 case by_alignment:
459 ret = (bfd_section_alignment (bsec->owner, bsec)
460 - bfd_section_alignment (asec->owner, asec));
461 break;
462 }
463
464 return ret;
465 }
466
467 /* Build a Binary Search Tree to sort sections, unlike insertion sort
468 used in wild_sort(). BST is considerably faster if the number of
469 of sections are large. */
470
471 static lang_section_bst_type **
472 wild_sort_fast (lang_wild_statement_type *wild,
473 struct wildcard_list *sec,
474 lang_input_statement_type *file ATTRIBUTE_UNUSED,
475 asection *section)
476 {
477 lang_section_bst_type **tree;
478
479 tree = &wild->tree;
480 if (!wild->filenames_sorted
481 && (sec == NULL || sec->spec.sorted == none))
482 {
483 /* Append at the right end of tree. */
484 while (*tree)
485 tree = &((*tree)->right);
486 return tree;
487 }
488
489 while (*tree)
490 {
491 /* Find the correct node to append this section. */
492 if (compare_section (sec->spec.sorted, section, (*tree)->section) < 0)
493 tree = &((*tree)->left);
494 else
495 tree = &((*tree)->right);
496 }
497
498 return tree;
499 }
500
501 /* Use wild_sort_fast to build a BST to sort sections. */
502
503 static void
504 output_section_callback_fast (lang_wild_statement_type *ptr,
505 struct wildcard_list *sec,
506 asection *section,
507 lang_input_statement_type *file,
508 void *output)
509 {
510 lang_section_bst_type *node;
511 lang_section_bst_type **tree;
512 lang_output_section_statement_type *os;
513
514 os = (lang_output_section_statement_type *) output;
515
516 if (unique_section_p (section, os))
517 return;
518
519 node = (lang_section_bst_type *) xmalloc (sizeof (lang_section_bst_type));
520 node->left = 0;
521 node->right = 0;
522 node->section = section;
523
524 tree = wild_sort_fast (ptr, sec, file, section);
525 if (tree != NULL)
526 *tree = node;
527 }
528
529 /* Convert a sorted sections' BST back to list form. */
530
531 static void
532 output_section_callback_tree_to_list (lang_wild_statement_type *ptr,
533 lang_section_bst_type *tree,
534 void *output)
535 {
536 if (tree->left)
537 output_section_callback_tree_to_list (ptr, tree->left, output);
538
539 lang_add_section (&ptr->children, tree->section,
540 (lang_output_section_statement_type *) output);
541
542 if (tree->right)
543 output_section_callback_tree_to_list (ptr, tree->right, output);
544
545 free (tree);
546 }
547
548 /* Specialized, optimized routines for handling different kinds of
549 wildcards */
550
551 static void
552 walk_wild_section_specs1_wild0 (lang_wild_statement_type *ptr,
553 lang_input_statement_type *file,
554 callback_t callback,
555 void *data)
556 {
557 /* We can just do a hash lookup for the section with the right name.
558 But if that lookup discovers more than one section with the name
559 (should be rare), we fall back to the general algorithm because
560 we would otherwise have to sort the sections to make sure they
561 get processed in the bfd's order. */
562 bfd_boolean multiple_sections_found;
563 struct wildcard_list *sec0 = ptr->handler_data[0];
564 asection *s0 = find_section (file, sec0, &multiple_sections_found);
565
566 if (multiple_sections_found)
567 walk_wild_section_general (ptr, file, callback, data);
568 else if (s0)
569 walk_wild_consider_section (ptr, file, s0, sec0, callback, data);
570 }
571
572 static void
573 walk_wild_section_specs1_wild1 (lang_wild_statement_type *ptr,
574 lang_input_statement_type *file,
575 callback_t callback,
576 void *data)
577 {
578 asection *s;
579 struct wildcard_list *wildsec0 = ptr->handler_data[0];
580
581 for (s = file->the_bfd->sections; s != NULL; s = s->next)
582 {
583 const char *sname = bfd_get_section_name (file->the_bfd, s);
584 bfd_boolean skip = !match_simple_wild (wildsec0->spec.name, sname);
585
586 if (!skip)
587 walk_wild_consider_section (ptr, file, s, wildsec0, callback, data);
588 }
589 }
590
591 static void
592 walk_wild_section_specs2_wild1 (lang_wild_statement_type *ptr,
593 lang_input_statement_type *file,
594 callback_t callback,
595 void *data)
596 {
597 asection *s;
598 struct wildcard_list *sec0 = ptr->handler_data[0];
599 struct wildcard_list *wildsec1 = ptr->handler_data[1];
600 bfd_boolean multiple_sections_found;
601 asection *s0 = find_section (file, sec0, &multiple_sections_found);
602
603 if (multiple_sections_found)
604 {
605 walk_wild_section_general (ptr, file, callback, data);
606 return;
607 }
608
609 /* Note that if the section was not found, s0 is NULL and
610 we'll simply never succeed the s == s0 test below. */
611 for (s = file->the_bfd->sections; s != NULL; s = s->next)
612 {
613 /* Recall that in this code path, a section cannot satisfy more
614 than one spec, so if s == s0 then it cannot match
615 wildspec1. */
616 if (s == s0)
617 walk_wild_consider_section (ptr, file, s, sec0, callback, data);
618 else
619 {
620 const char *sname = bfd_get_section_name (file->the_bfd, s);
621 bfd_boolean skip = !match_simple_wild (wildsec1->spec.name, sname);
622
623 if (!skip)
624 walk_wild_consider_section (ptr, file, s, wildsec1, callback,
625 data);
626 }
627 }
628 }
629
630 static void
631 walk_wild_section_specs3_wild2 (lang_wild_statement_type *ptr,
632 lang_input_statement_type *file,
633 callback_t callback,
634 void *data)
635 {
636 asection *s;
637 struct wildcard_list *sec0 = ptr->handler_data[0];
638 struct wildcard_list *wildsec1 = ptr->handler_data[1];
639 struct wildcard_list *wildsec2 = ptr->handler_data[2];
640 bfd_boolean multiple_sections_found;
641 asection *s0 = find_section (file, sec0, &multiple_sections_found);
642
643 if (multiple_sections_found)
644 {
645 walk_wild_section_general (ptr, file, callback, data);
646 return;
647 }
648
649 for (s = file->the_bfd->sections; s != NULL; s = s->next)
650 {
651 if (s == s0)
652 walk_wild_consider_section (ptr, file, s, sec0, callback, data);
653 else
654 {
655 const char *sname = bfd_get_section_name (file->the_bfd, s);
656 bfd_boolean skip = !match_simple_wild (wildsec1->spec.name, sname);
657
658 if (!skip)
659 walk_wild_consider_section (ptr, file, s, wildsec1, callback, data);
660 else
661 {
662 skip = !match_simple_wild (wildsec2->spec.name, sname);
663 if (!skip)
664 walk_wild_consider_section (ptr, file, s, wildsec2, callback,
665 data);
666 }
667 }
668 }
669 }
670
671 static void
672 walk_wild_section_specs4_wild2 (lang_wild_statement_type *ptr,
673 lang_input_statement_type *file,
674 callback_t callback,
675 void *data)
676 {
677 asection *s;
678 struct wildcard_list *sec0 = ptr->handler_data[0];
679 struct wildcard_list *sec1 = ptr->handler_data[1];
680 struct wildcard_list *wildsec2 = ptr->handler_data[2];
681 struct wildcard_list *wildsec3 = ptr->handler_data[3];
682 bfd_boolean multiple_sections_found;
683 asection *s0 = find_section (file, sec0, &multiple_sections_found), *s1;
684
685 if (multiple_sections_found)
686 {
687 walk_wild_section_general (ptr, file, callback, data);
688 return;
689 }
690
691 s1 = find_section (file, sec1, &multiple_sections_found);
692 if (multiple_sections_found)
693 {
694 walk_wild_section_general (ptr, file, callback, data);
695 return;
696 }
697
698 for (s = file->the_bfd->sections; s != NULL; s = s->next)
699 {
700 if (s == s0)
701 walk_wild_consider_section (ptr, file, s, sec0, callback, data);
702 else
703 if (s == s1)
704 walk_wild_consider_section (ptr, file, s, sec1, callback, data);
705 else
706 {
707 const char *sname = bfd_get_section_name (file->the_bfd, s);
708 bfd_boolean skip = !match_simple_wild (wildsec2->spec.name,
709 sname);
710
711 if (!skip)
712 walk_wild_consider_section (ptr, file, s, wildsec2, callback,
713 data);
714 else
715 {
716 skip = !match_simple_wild (wildsec3->spec.name, sname);
717 if (!skip)
718 walk_wild_consider_section (ptr, file, s, wildsec3,
719 callback, data);
720 }
721 }
722 }
723 }
724
725 static void
726 walk_wild_section (lang_wild_statement_type *ptr,
727 lang_input_statement_type *file,
728 callback_t callback,
729 void *data)
730 {
731 if (file->just_syms_flag)
732 return;
733
734 (*ptr->walk_wild_section_handler) (ptr, file, callback, data);
735 }
736
737 /* Returns TRUE when name1 is a wildcard spec that might match
738 something name2 can match. We're conservative: we return FALSE
739 only if the prefixes of name1 and name2 are different up to the
740 first wildcard character. */
741
742 static bfd_boolean
743 wild_spec_can_overlap (const char *name1, const char *name2)
744 {
745 size_t prefix1_len = strcspn (name1, "?*[");
746 size_t prefix2_len = strcspn (name2, "?*[");
747 size_t min_prefix_len;
748
749 /* Note that if there is no wildcard character, then we treat the
750 terminating 0 as part of the prefix. Thus ".text" won't match
751 ".text." or ".text.*", for example. */
752 if (name1[prefix1_len] == '\0')
753 prefix1_len++;
754 if (name2[prefix2_len] == '\0')
755 prefix2_len++;
756
757 min_prefix_len = prefix1_len < prefix2_len ? prefix1_len : prefix2_len;
758
759 return memcmp (name1, name2, min_prefix_len) == 0;
760 }
761
762 /* Select specialized code to handle various kinds of wildcard
763 statements. */
764
765 static void
766 analyze_walk_wild_section_handler (lang_wild_statement_type *ptr)
767 {
768 int sec_count = 0;
769 int wild_name_count = 0;
770 struct wildcard_list *sec;
771 int signature;
772 int data_counter;
773
774 ptr->walk_wild_section_handler = walk_wild_section_general;
775 ptr->handler_data[0] = NULL;
776 ptr->handler_data[1] = NULL;
777 ptr->handler_data[2] = NULL;
778 ptr->handler_data[3] = NULL;
779 ptr->tree = NULL;
780
781 /* Count how many wildcard_specs there are, and how many of those
782 actually use wildcards in the name. Also, bail out if any of the
783 wildcard names are NULL. (Can this actually happen?
784 walk_wild_section used to test for it.) And bail out if any
785 of the wildcards are more complex than a simple string
786 ending in a single '*'. */
787 for (sec = ptr->section_list; sec != NULL; sec = sec->next)
788 {
789 ++sec_count;
790 if (sec->spec.name == NULL)
791 return;
792 if (wildcardp (sec->spec.name))
793 {
794 ++wild_name_count;
795 if (!is_simple_wild (sec->spec.name))
796 return;
797 }
798 }
799
800 /* The zero-spec case would be easy to optimize but it doesn't
801 happen in practice. Likewise, more than 4 specs doesn't
802 happen in practice. */
803 if (sec_count == 0 || sec_count > 4)
804 return;
805
806 /* Check that no two specs can match the same section. */
807 for (sec = ptr->section_list; sec != NULL; sec = sec->next)
808 {
809 struct wildcard_list *sec2;
810 for (sec2 = sec->next; sec2 != NULL; sec2 = sec2->next)
811 {
812 if (wild_spec_can_overlap (sec->spec.name, sec2->spec.name))
813 return;
814 }
815 }
816
817 signature = (sec_count << 8) + wild_name_count;
818 switch (signature)
819 {
820 case 0x0100:
821 ptr->walk_wild_section_handler = walk_wild_section_specs1_wild0;
822 break;
823 case 0x0101:
824 ptr->walk_wild_section_handler = walk_wild_section_specs1_wild1;
825 break;
826 case 0x0201:
827 ptr->walk_wild_section_handler = walk_wild_section_specs2_wild1;
828 break;
829 case 0x0302:
830 ptr->walk_wild_section_handler = walk_wild_section_specs3_wild2;
831 break;
832 case 0x0402:
833 ptr->walk_wild_section_handler = walk_wild_section_specs4_wild2;
834 break;
835 default:
836 return;
837 }
838
839 /* Now fill the data array with pointers to the specs, first the
840 specs with non-wildcard names, then the specs with wildcard
841 names. It's OK to process the specs in different order from the
842 given order, because we've already determined that no section
843 will match more than one spec. */
844 data_counter = 0;
845 for (sec = ptr->section_list; sec != NULL; sec = sec->next)
846 if (!wildcardp (sec->spec.name))
847 ptr->handler_data[data_counter++] = sec;
848 for (sec = ptr->section_list; sec != NULL; sec = sec->next)
849 if (wildcardp (sec->spec.name))
850 ptr->handler_data[data_counter++] = sec;
851 }
852
853 /* Handle a wild statement for a single file F. */
854
855 static void
856 walk_wild_file (lang_wild_statement_type *s,
857 lang_input_statement_type *f,
858 callback_t callback,
859 void *data)
860 {
861 if (f->the_bfd == NULL
862 || ! bfd_check_format (f->the_bfd, bfd_archive))
863 walk_wild_section (s, f, callback, data);
864 else
865 {
866 bfd *member;
867
868 /* This is an archive file. We must map each member of the
869 archive separately. */
870 member = bfd_openr_next_archived_file (f->the_bfd, NULL);
871 while (member != NULL)
872 {
873 /* When lookup_name is called, it will call the add_symbols
874 entry point for the archive. For each element of the
875 archive which is included, BFD will call ldlang_add_file,
876 which will set the usrdata field of the member to the
877 lang_input_statement. */
878 if (member->usrdata != NULL)
879 {
880 walk_wild_section (s,
881 (lang_input_statement_type *) member->usrdata,
882 callback, data);
883 }
884
885 member = bfd_openr_next_archived_file (f->the_bfd, member);
886 }
887 }
888 }
889
890 static void
891 walk_wild (lang_wild_statement_type *s, callback_t callback, void *data)
892 {
893 const char *file_spec = s->filename;
894 char *p;
895
896 if (file_spec == NULL)
897 {
898 /* Perform the iteration over all files in the list. */
899 LANG_FOR_EACH_INPUT_STATEMENT (f)
900 {
901 walk_wild_file (s, f, callback, data);
902 }
903 }
904 else if ((p = archive_path (file_spec)) != NULL)
905 {
906 LANG_FOR_EACH_INPUT_STATEMENT (f)
907 {
908 if (input_statement_is_archive_path (file_spec, p, f))
909 walk_wild_file (s, f, callback, data);
910 }
911 }
912 else if (wildcardp (file_spec))
913 {
914 LANG_FOR_EACH_INPUT_STATEMENT (f)
915 {
916 if (fnmatch (file_spec, f->filename, 0) == 0)
917 walk_wild_file (s, f, callback, data);
918 }
919 }
920 else
921 {
922 lang_input_statement_type *f;
923
924 /* Perform the iteration over a single file. */
925 f = lookup_name (file_spec);
926 if (f)
927 walk_wild_file (s, f, callback, data);
928 }
929 }
930
931 /* lang_for_each_statement walks the parse tree and calls the provided
932 function for each node, except those inside output section statements
933 with constraint set to -1. */
934
935 void
936 lang_for_each_statement_worker (void (*func) (lang_statement_union_type *),
937 lang_statement_union_type *s)
938 {
939 for (; s != NULL; s = s->header.next)
940 {
941 func (s);
942
943 switch (s->header.type)
944 {
945 case lang_constructors_statement_enum:
946 lang_for_each_statement_worker (func, constructor_list.head);
947 break;
948 case lang_output_section_statement_enum:
949 if (s->output_section_statement.constraint != -1)
950 lang_for_each_statement_worker
951 (func, s->output_section_statement.children.head);
952 break;
953 case lang_wild_statement_enum:
954 lang_for_each_statement_worker (func,
955 s->wild_statement.children.head);
956 break;
957 case lang_group_statement_enum:
958 lang_for_each_statement_worker (func,
959 s->group_statement.children.head);
960 break;
961 case lang_data_statement_enum:
962 case lang_reloc_statement_enum:
963 case lang_object_symbols_statement_enum:
964 case lang_output_statement_enum:
965 case lang_target_statement_enum:
966 case lang_input_section_enum:
967 case lang_input_statement_enum:
968 case lang_assignment_statement_enum:
969 case lang_padding_statement_enum:
970 case lang_address_statement_enum:
971 case lang_fill_statement_enum:
972 case lang_insert_statement_enum:
973 break;
974 default:
975 FAIL ();
976 break;
977 }
978 }
979 }
980
981 void
982 lang_for_each_statement (void (*func) (lang_statement_union_type *))
983 {
984 lang_for_each_statement_worker (func, statement_list.head);
985 }
986
987 /*----------------------------------------------------------------------*/
988
989 void
990 lang_list_init (lang_statement_list_type *list)
991 {
992 list->head = NULL;
993 list->tail = &list->head;
994 }
995
996 void
997 push_stat_ptr (lang_statement_list_type *new_ptr)
998 {
999 if (stat_save_ptr >= stat_save + sizeof (stat_save) / sizeof (stat_save[0]))
1000 abort ();
1001 *stat_save_ptr++ = stat_ptr;
1002 stat_ptr = new_ptr;
1003 }
1004
1005 void
1006 pop_stat_ptr (void)
1007 {
1008 if (stat_save_ptr <= stat_save)
1009 abort ();
1010 stat_ptr = *--stat_save_ptr;
1011 }
1012
1013 /* Build a new statement node for the parse tree. */
1014
1015 static lang_statement_union_type *
1016 new_statement (enum statement_enum type,
1017 size_t size,
1018 lang_statement_list_type *list)
1019 {
1020 lang_statement_union_type *new_stmt;
1021
1022 new_stmt = (lang_statement_union_type *) stat_alloc (size);
1023 new_stmt->header.type = type;
1024 new_stmt->header.next = NULL;
1025 lang_statement_append (list, new_stmt, &new_stmt->header.next);
1026 return new_stmt;
1027 }
1028
1029 /* Build a new input file node for the language. There are several
1030 ways in which we treat an input file, eg, we only look at symbols,
1031 or prefix it with a -l etc.
1032
1033 We can be supplied with requests for input files more than once;
1034 they may, for example be split over several lines like foo.o(.text)
1035 foo.o(.data) etc, so when asked for a file we check that we haven't
1036 got it already so we don't duplicate the bfd. */
1037
1038 static lang_input_statement_type *
1039 new_afile (const char *name,
1040 lang_input_file_enum_type file_type,
1041 const char *target,
1042 bfd_boolean add_to_list)
1043 {
1044 lang_input_statement_type *p;
1045
1046 if (add_to_list)
1047 p = (lang_input_statement_type *) new_stat (lang_input_statement, stat_ptr);
1048 else
1049 {
1050 p = (lang_input_statement_type *)
1051 stat_alloc (sizeof (lang_input_statement_type));
1052 p->header.type = lang_input_statement_enum;
1053 p->header.next = NULL;
1054 }
1055
1056 lang_has_input_file = TRUE;
1057 p->target = target;
1058 p->sysrooted = FALSE;
1059
1060 if (file_type == lang_input_file_is_l_enum
1061 && name[0] == ':' && name[1] != '\0')
1062 {
1063 file_type = lang_input_file_is_search_file_enum;
1064 name = name + 1;
1065 }
1066
1067 switch (file_type)
1068 {
1069 case lang_input_file_is_symbols_only_enum:
1070 p->filename = name;
1071 p->maybe_archive = FALSE;
1072 p->real = TRUE;
1073 p->local_sym_name = name;
1074 p->just_syms_flag = TRUE;
1075 p->search_dirs_flag = FALSE;
1076 break;
1077 case lang_input_file_is_fake_enum:
1078 p->filename = name;
1079 p->maybe_archive = FALSE;
1080 p->real = FALSE;
1081 p->local_sym_name = name;
1082 p->just_syms_flag = FALSE;
1083 p->search_dirs_flag = FALSE;
1084 break;
1085 case lang_input_file_is_l_enum:
1086 p->maybe_archive = TRUE;
1087 p->filename = name;
1088 p->real = TRUE;
1089 p->local_sym_name = concat ("-l", name, (const char *) NULL);
1090 p->just_syms_flag = FALSE;
1091 p->search_dirs_flag = TRUE;
1092 break;
1093 case lang_input_file_is_marker_enum:
1094 p->filename = name;
1095 p->maybe_archive = FALSE;
1096 p->real = FALSE;
1097 p->local_sym_name = name;
1098 p->just_syms_flag = FALSE;
1099 p->search_dirs_flag = TRUE;
1100 break;
1101 case lang_input_file_is_search_file_enum:
1102 p->sysrooted = ldlang_sysrooted_script;
1103 p->filename = name;
1104 p->maybe_archive = FALSE;
1105 p->real = TRUE;
1106 p->local_sym_name = name;
1107 p->just_syms_flag = FALSE;
1108 p->search_dirs_flag = TRUE;
1109 break;
1110 case lang_input_file_is_file_enum:
1111 p->filename = name;
1112 p->maybe_archive = FALSE;
1113 p->real = TRUE;
1114 p->local_sym_name = name;
1115 p->just_syms_flag = FALSE;
1116 p->search_dirs_flag = FALSE;
1117 break;
1118 default:
1119 FAIL ();
1120 }
1121 p->the_bfd = NULL;
1122 p->next_real_file = NULL;
1123 p->next = NULL;
1124 p->dynamic = config.dynamic_link;
1125 p->add_DT_NEEDED_for_dynamic = add_DT_NEEDED_for_dynamic;
1126 p->add_DT_NEEDED_for_regular = add_DT_NEEDED_for_regular;
1127 p->whole_archive = whole_archive;
1128 p->loaded = FALSE;
1129 p->missing_file = FALSE;
1130
1131 lang_statement_append (&input_file_chain,
1132 (lang_statement_union_type *) p,
1133 &p->next_real_file);
1134 return p;
1135 }
1136
1137 lang_input_statement_type *
1138 lang_add_input_file (const char *name,
1139 lang_input_file_enum_type file_type,
1140 const char *target)
1141 {
1142 return new_afile (name, file_type, target, TRUE);
1143 }
1144
1145 struct out_section_hash_entry
1146 {
1147 struct bfd_hash_entry root;
1148 lang_statement_union_type s;
1149 };
1150
1151 /* The hash table. */
1152
1153 static struct bfd_hash_table output_section_statement_table;
1154
1155 /* Support routines for the hash table used by lang_output_section_find,
1156 initialize the table, fill in an entry and remove the table. */
1157
1158 static struct bfd_hash_entry *
1159 output_section_statement_newfunc (struct bfd_hash_entry *entry,
1160 struct bfd_hash_table *table,
1161 const char *string)
1162 {
1163 lang_output_section_statement_type **nextp;
1164 struct out_section_hash_entry *ret;
1165
1166 if (entry == NULL)
1167 {
1168 entry = (struct bfd_hash_entry *) bfd_hash_allocate (table,
1169 sizeof (*ret));
1170 if (entry == NULL)
1171 return entry;
1172 }
1173
1174 entry = bfd_hash_newfunc (entry, table, string);
1175 if (entry == NULL)
1176 return entry;
1177
1178 ret = (struct out_section_hash_entry *) entry;
1179 memset (&ret->s, 0, sizeof (ret->s));
1180 ret->s.header.type = lang_output_section_statement_enum;
1181 ret->s.output_section_statement.subsection_alignment = -1;
1182 ret->s.output_section_statement.section_alignment = -1;
1183 ret->s.output_section_statement.block_value = 1;
1184 lang_list_init (&ret->s.output_section_statement.children);
1185 lang_statement_append (stat_ptr, &ret->s, &ret->s.header.next);
1186
1187 /* For every output section statement added to the list, except the
1188 first one, lang_output_section_statement.tail points to the "next"
1189 field of the last element of the list. */
1190 if (lang_output_section_statement.head != NULL)
1191 ret->s.output_section_statement.prev
1192 = ((lang_output_section_statement_type *)
1193 ((char *) lang_output_section_statement.tail
1194 - offsetof (lang_output_section_statement_type, next)));
1195
1196 /* GCC's strict aliasing rules prevent us from just casting the
1197 address, so we store the pointer in a variable and cast that
1198 instead. */
1199 nextp = &ret->s.output_section_statement.next;
1200 lang_statement_append (&lang_output_section_statement,
1201 &ret->s,
1202 (lang_statement_union_type **) nextp);
1203 return &ret->root;
1204 }
1205
1206 static void
1207 output_section_statement_table_init (void)
1208 {
1209 if (!bfd_hash_table_init_n (&output_section_statement_table,
1210 output_section_statement_newfunc,
1211 sizeof (struct out_section_hash_entry),
1212 61))
1213 einfo (_("%P%F: can not create hash table: %E\n"));
1214 }
1215
1216 static void
1217 output_section_statement_table_free (void)
1218 {
1219 bfd_hash_table_free (&output_section_statement_table);
1220 }
1221
1222 /* Build enough state so that the parser can build its tree. */
1223
1224 void
1225 lang_init (void)
1226 {
1227 obstack_begin (&stat_obstack, 1000);
1228
1229 stat_ptr = &statement_list;
1230
1231 output_section_statement_table_init ();
1232
1233 lang_list_init (stat_ptr);
1234
1235 lang_list_init (&input_file_chain);
1236 lang_list_init (&lang_output_section_statement);
1237 lang_list_init (&file_chain);
1238 first_file = lang_add_input_file (NULL, lang_input_file_is_marker_enum,
1239 NULL);
1240 abs_output_section =
1241 lang_output_section_statement_lookup (BFD_ABS_SECTION_NAME, 0, TRUE);
1242
1243 abs_output_section->bfd_section = bfd_abs_section_ptr;
1244
1245 /* The value "3" is ad-hoc, somewhat related to the expected number of
1246 DEFINED expressions in a linker script. For most default linker
1247 scripts, there are none. Why a hash table then? Well, it's somewhat
1248 simpler to re-use working machinery than using a linked list in terms
1249 of code-complexity here in ld, besides the initialization which just
1250 looks like other code here. */
1251 if (!bfd_hash_table_init_n (&lang_definedness_table,
1252 lang_definedness_newfunc,
1253 sizeof (struct lang_definedness_hash_entry),
1254 3))
1255 einfo (_("%P%F: can not create hash table: %E\n"));
1256 }
1257
1258 void
1259 lang_finish (void)
1260 {
1261 output_section_statement_table_free ();
1262 }
1263
1264 /*----------------------------------------------------------------------
1265 A region is an area of memory declared with the
1266 MEMORY { name:org=exp, len=exp ... }
1267 syntax.
1268
1269 We maintain a list of all the regions here.
1270
1271 If no regions are specified in the script, then the default is used
1272 which is created when looked up to be the entire data space.
1273
1274 If create is true we are creating a region inside a MEMORY block.
1275 In this case it is probably an error to create a region that has
1276 already been created. If we are not inside a MEMORY block it is
1277 dubious to use an undeclared region name (except DEFAULT_MEMORY_REGION)
1278 and so we issue a warning.
1279
1280 Each region has at least one name. The first name is either
1281 DEFAULT_MEMORY_REGION or the name given in the MEMORY block. You can add
1282 alias names to an existing region within a script with
1283 REGION_ALIAS (alias, region_name). Each name corresponds to at most one
1284 region. */
1285
1286 static lang_memory_region_type *lang_memory_region_list;
1287 static lang_memory_region_type **lang_memory_region_list_tail
1288 = &lang_memory_region_list;
1289
1290 lang_memory_region_type *
1291 lang_memory_region_lookup (const char *const name, bfd_boolean create)
1292 {
1293 lang_memory_region_name *n;
1294 lang_memory_region_type *r;
1295 lang_memory_region_type *new_region;
1296
1297 /* NAME is NULL for LMA memspecs if no region was specified. */
1298 if (name == NULL)
1299 return NULL;
1300
1301 for (r = lang_memory_region_list; r != NULL; r = r->next)
1302 for (n = &r->name_list; n != NULL; n = n->next)
1303 if (strcmp (n->name, name) == 0)
1304 {
1305 if (create)
1306 einfo (_("%P:%S: warning: redeclaration of memory region `%s'\n"),
1307 name);
1308 return r;
1309 }
1310
1311 if (!create && strcmp (name, DEFAULT_MEMORY_REGION))
1312 einfo (_("%P:%S: warning: memory region `%s' not declared\n"), name);
1313
1314 new_region = (lang_memory_region_type *)
1315 stat_alloc (sizeof (lang_memory_region_type));
1316
1317 new_region->name_list.name = xstrdup (name);
1318 new_region->name_list.next = NULL;
1319 new_region->next = NULL;
1320 new_region->origin = 0;
1321 new_region->length = ~(bfd_size_type) 0;
1322 new_region->current = 0;
1323 new_region->last_os = NULL;
1324 new_region->flags = 0;
1325 new_region->not_flags = 0;
1326 new_region->had_full_message = FALSE;
1327
1328 *lang_memory_region_list_tail = new_region;
1329 lang_memory_region_list_tail = &new_region->next;
1330
1331 return new_region;
1332 }
1333
1334 void
1335 lang_memory_region_alias (const char * alias, const char * region_name)
1336 {
1337 lang_memory_region_name * n;
1338 lang_memory_region_type * r;
1339 lang_memory_region_type * region;
1340
1341 /* The default region must be unique. This ensures that it is not necessary
1342 to iterate through the name list if someone wants the check if a region is
1343 the default memory region. */
1344 if (strcmp (region_name, DEFAULT_MEMORY_REGION) == 0
1345 || strcmp (alias, DEFAULT_MEMORY_REGION) == 0)
1346 einfo (_("%F%P:%S: error: alias for default memory region\n"));
1347
1348 /* Look for the target region and check if the alias is not already
1349 in use. */
1350 region = NULL;
1351 for (r = lang_memory_region_list; r != NULL; r = r->next)
1352 for (n = &r->name_list; n != NULL; n = n->next)
1353 {
1354 if (region == NULL && strcmp (n->name, region_name) == 0)
1355 region = r;
1356 if (strcmp (n->name, alias) == 0)
1357 einfo (_("%F%P:%S: error: redefinition of memory region "
1358 "alias `%s'\n"),
1359 alias);
1360 }
1361
1362 /* Check if the target region exists. */
1363 if (region == NULL)
1364 einfo (_("%F%P:%S: error: memory region `%s' "
1365 "for alias `%s' does not exist\n"),
1366 region_name,
1367 alias);
1368
1369 /* Add alias to region name list. */
1370 n = (lang_memory_region_name *) stat_alloc (sizeof (lang_memory_region_name));
1371 n->name = xstrdup (alias);
1372 n->next = region->name_list.next;
1373 region->name_list.next = n;
1374 }
1375
1376 static lang_memory_region_type *
1377 lang_memory_default (asection * section)
1378 {
1379 lang_memory_region_type *p;
1380
1381 flagword sec_flags = section->flags;
1382
1383 /* Override SEC_DATA to mean a writable section. */
1384 if ((sec_flags & (SEC_ALLOC | SEC_READONLY | SEC_CODE)) == SEC_ALLOC)
1385 sec_flags |= SEC_DATA;
1386
1387 for (p = lang_memory_region_list; p != NULL; p = p->next)
1388 {
1389 if ((p->flags & sec_flags) != 0
1390 && (p->not_flags & sec_flags) == 0)
1391 {
1392 return p;
1393 }
1394 }
1395 return lang_memory_region_lookup (DEFAULT_MEMORY_REGION, FALSE);
1396 }
1397
1398 /* Find or create an output_section_statement with the given NAME.
1399 If CONSTRAINT is non-zero match one with that constraint, otherwise
1400 match any non-negative constraint. If CREATE, always make a
1401 new output_section_statement for SPECIAL CONSTRAINT. */
1402
1403 lang_output_section_statement_type *
1404 lang_output_section_statement_lookup (const char *name,
1405 int constraint,
1406 bfd_boolean create)
1407 {
1408 struct out_section_hash_entry *entry;
1409
1410 entry = ((struct out_section_hash_entry *)
1411 bfd_hash_lookup (&output_section_statement_table, name,
1412 create, FALSE));
1413 if (entry == NULL)
1414 {
1415 if (create)
1416 einfo (_("%P%F: failed creating section `%s': %E\n"), name);
1417 return NULL;
1418 }
1419
1420 if (entry->s.output_section_statement.name != NULL)
1421 {
1422 /* We have a section of this name, but it might not have the correct
1423 constraint. */
1424 struct out_section_hash_entry *last_ent;
1425
1426 name = entry->s.output_section_statement.name;
1427 if (create && constraint == SPECIAL)
1428 /* Not traversing to the end reverses the order of the second
1429 and subsequent SPECIAL sections in the hash table chain,
1430 but that shouldn't matter. */
1431 last_ent = entry;
1432 else
1433 do
1434 {
1435 if (constraint == entry->s.output_section_statement.constraint
1436 || (constraint == 0
1437 && entry->s.output_section_statement.constraint >= 0))
1438 return &entry->s.output_section_statement;
1439 last_ent = entry;
1440 entry = (struct out_section_hash_entry *) entry->root.next;
1441 }
1442 while (entry != NULL
1443 && name == entry->s.output_section_statement.name);
1444
1445 if (!create)
1446 return NULL;
1447
1448 entry
1449 = ((struct out_section_hash_entry *)
1450 output_section_statement_newfunc (NULL,
1451 &output_section_statement_table,
1452 name));
1453 if (entry == NULL)
1454 {
1455 einfo (_("%P%F: failed creating section `%s': %E\n"), name);
1456 return NULL;
1457 }
1458 entry->root = last_ent->root;
1459 last_ent->root.next = &entry->root;
1460 }
1461
1462 entry->s.output_section_statement.name = name;
1463 entry->s.output_section_statement.constraint = constraint;
1464 return &entry->s.output_section_statement;
1465 }
1466
1467 /* Find the next output_section_statement with the same name as OS.
1468 If CONSTRAINT is non-zero, find one with that constraint otherwise
1469 match any non-negative constraint. */
1470
1471 lang_output_section_statement_type *
1472 next_matching_output_section_statement (lang_output_section_statement_type *os,
1473 int constraint)
1474 {
1475 /* All output_section_statements are actually part of a
1476 struct out_section_hash_entry. */
1477 struct out_section_hash_entry *entry = (struct out_section_hash_entry *)
1478 ((char *) os
1479 - offsetof (struct out_section_hash_entry, s.output_section_statement));
1480 const char *name = os->name;
1481
1482 ASSERT (name == entry->root.string);
1483 do
1484 {
1485 entry = (struct out_section_hash_entry *) entry->root.next;
1486 if (entry == NULL
1487 || name != entry->s.output_section_statement.name)
1488 return NULL;
1489 }
1490 while (constraint != entry->s.output_section_statement.constraint
1491 && (constraint != 0
1492 || entry->s.output_section_statement.constraint < 0));
1493
1494 return &entry->s.output_section_statement;
1495 }
1496
1497 /* A variant of lang_output_section_find used by place_orphan.
1498 Returns the output statement that should precede a new output
1499 statement for SEC. If an exact match is found on certain flags,
1500 sets *EXACT too. */
1501
1502 lang_output_section_statement_type *
1503 lang_output_section_find_by_flags (const asection *sec,
1504 lang_output_section_statement_type **exact,
1505 lang_match_sec_type_func match_type)
1506 {
1507 lang_output_section_statement_type *first, *look, *found;
1508 flagword flags;
1509
1510 /* We know the first statement on this list is *ABS*. May as well
1511 skip it. */
1512 first = &lang_output_section_statement.head->output_section_statement;
1513 first = first->next;
1514
1515 /* First try for an exact match. */
1516 found = NULL;
1517 for (look = first; look; look = look->next)
1518 {
1519 flags = look->flags;
1520 if (look->bfd_section != NULL)
1521 {
1522 flags = look->bfd_section->flags;
1523 if (match_type && !match_type (link_info.output_bfd,
1524 look->bfd_section,
1525 sec->owner, sec))
1526 continue;
1527 }
1528 flags ^= sec->flags;
1529 if (!(flags & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD | SEC_READONLY
1530 | SEC_CODE | SEC_SMALL_DATA | SEC_THREAD_LOCAL)))
1531 found = look;
1532 }
1533 if (found != NULL)
1534 {
1535 if (exact != NULL)
1536 *exact = found;
1537 return found;
1538 }
1539
1540 if ((sec->flags & SEC_CODE) != 0
1541 && (sec->flags & SEC_ALLOC) != 0)
1542 {
1543 /* Try for a rw code section. */
1544 for (look = first; look; look = look->next)
1545 {
1546 flags = look->flags;
1547 if (look->bfd_section != NULL)
1548 {
1549 flags = look->bfd_section->flags;
1550 if (match_type && !match_type (link_info.output_bfd,
1551 look->bfd_section,
1552 sec->owner, sec))
1553 continue;
1554 }
1555 flags ^= sec->flags;
1556 if (!(flags & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD
1557 | SEC_CODE | SEC_SMALL_DATA | SEC_THREAD_LOCAL)))
1558 found = look;
1559 }
1560 }
1561 else if ((sec->flags & (SEC_READONLY | SEC_THREAD_LOCAL)) != 0
1562 && (sec->flags & SEC_ALLOC) != 0)
1563 {
1564 /* .rodata can go after .text, .sdata2 after .rodata. */
1565 for (look = first; look; look = look->next)
1566 {
1567 flags = look->flags;
1568 if (look->bfd_section != NULL)
1569 {
1570 flags = look->bfd_section->flags;
1571 if (match_type && !match_type (link_info.output_bfd,
1572 look->bfd_section,
1573 sec->owner, sec))
1574 continue;
1575 }
1576 flags ^= sec->flags;
1577 if (!(flags & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD
1578 | SEC_READONLY))
1579 && !(look->flags & (SEC_SMALL_DATA | SEC_THREAD_LOCAL)))
1580 found = look;
1581 }
1582 }
1583 else if ((sec->flags & SEC_SMALL_DATA) != 0
1584 && (sec->flags & SEC_ALLOC) != 0)
1585 {
1586 /* .sdata goes after .data, .sbss after .sdata. */
1587 for (look = first; look; look = look->next)
1588 {
1589 flags = look->flags;
1590 if (look->bfd_section != NULL)
1591 {
1592 flags = look->bfd_section->flags;
1593 if (match_type && !match_type (link_info.output_bfd,
1594 look->bfd_section,
1595 sec->owner, sec))
1596 continue;
1597 }
1598 flags ^= sec->flags;
1599 if (!(flags & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD
1600 | SEC_THREAD_LOCAL))
1601 || ((look->flags & SEC_SMALL_DATA)
1602 && !(sec->flags & SEC_HAS_CONTENTS)))
1603 found = look;
1604 }
1605 }
1606 else if ((sec->flags & SEC_HAS_CONTENTS) != 0
1607 && (sec->flags & SEC_ALLOC) != 0)
1608 {
1609 /* .data goes after .rodata. */
1610 for (look = first; look; look = look->next)
1611 {
1612 flags = look->flags;
1613 if (look->bfd_section != NULL)
1614 {
1615 flags = look->bfd_section->flags;
1616 if (match_type && !match_type (link_info.output_bfd,
1617 look->bfd_section,
1618 sec->owner, sec))
1619 continue;
1620 }
1621 flags ^= sec->flags;
1622 if (!(flags & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD
1623 | SEC_SMALL_DATA | SEC_THREAD_LOCAL)))
1624 found = look;
1625 }
1626 }
1627 else if ((sec->flags & SEC_ALLOC) != 0)
1628 {
1629 /* .bss goes after any other alloc section. */
1630 for (look = first; look; look = look->next)
1631 {
1632 flags = look->flags;
1633 if (look->bfd_section != NULL)
1634 {
1635 flags = look->bfd_section->flags;
1636 if (match_type && !match_type (link_info.output_bfd,
1637 look->bfd_section,
1638 sec->owner, sec))
1639 continue;
1640 }
1641 flags ^= sec->flags;
1642 if (!(flags & SEC_ALLOC))
1643 found = look;
1644 }
1645 }
1646 else
1647 {
1648 /* non-alloc go last. */
1649 for (look = first; look; look = look->next)
1650 {
1651 flags = look->flags;
1652 if (look->bfd_section != NULL)
1653 flags = look->bfd_section->flags;
1654 flags ^= sec->flags;
1655 if (!(flags & SEC_DEBUGGING))
1656 found = look;
1657 }
1658 return found;
1659 }
1660
1661 if (found || !match_type)
1662 return found;
1663
1664 return lang_output_section_find_by_flags (sec, NULL, NULL);
1665 }
1666
1667 /* Find the last output section before given output statement.
1668 Used by place_orphan. */
1669
1670 static asection *
1671 output_prev_sec_find (lang_output_section_statement_type *os)
1672 {
1673 lang_output_section_statement_type *lookup;
1674
1675 for (lookup = os->prev; lookup != NULL; lookup = lookup->prev)
1676 {
1677 if (lookup->constraint < 0)
1678 continue;
1679
1680 if (lookup->bfd_section != NULL && lookup->bfd_section->owner != NULL)
1681 return lookup->bfd_section;
1682 }
1683
1684 return NULL;
1685 }
1686
1687 /* Look for a suitable place for a new output section statement. The
1688 idea is to skip over anything that might be inside a SECTIONS {}
1689 statement in a script, before we find another output section
1690 statement. Assignments to "dot" before an output section statement
1691 are assumed to belong to it, except in two cases; The first
1692 assignment to dot, and assignments before non-alloc sections.
1693 Otherwise we might put an orphan before . = . + SIZEOF_HEADERS or
1694 similar assignments that set the initial address, or we might
1695 insert non-alloc note sections among assignments setting end of
1696 image symbols. */
1697
1698 static lang_statement_union_type **
1699 insert_os_after (lang_output_section_statement_type *after)
1700 {
1701 lang_statement_union_type **where;
1702 lang_statement_union_type **assign = NULL;
1703 bfd_boolean ignore_first;
1704
1705 ignore_first
1706 = after == &lang_output_section_statement.head->output_section_statement;
1707
1708 for (where = &after->header.next;
1709 *where != NULL;
1710 where = &(*where)->header.next)
1711 {
1712 switch ((*where)->header.type)
1713 {
1714 case lang_assignment_statement_enum:
1715 if (assign == NULL)
1716 {
1717 lang_assignment_statement_type *ass;
1718
1719 ass = &(*where)->assignment_statement;
1720 if (ass->exp->type.node_class != etree_assert
1721 && ass->exp->assign.dst[0] == '.'
1722 && ass->exp->assign.dst[1] == 0
1723 && !ignore_first)
1724 assign = where;
1725 }
1726 ignore_first = FALSE;
1727 continue;
1728 case lang_wild_statement_enum:
1729 case lang_input_section_enum:
1730 case lang_object_symbols_statement_enum:
1731 case lang_fill_statement_enum:
1732 case lang_data_statement_enum:
1733 case lang_reloc_statement_enum:
1734 case lang_padding_statement_enum:
1735 case lang_constructors_statement_enum:
1736 assign = NULL;
1737 continue;
1738 case lang_output_section_statement_enum:
1739 if (assign != NULL)
1740 {
1741 asection *s = (*where)->output_section_statement.bfd_section;
1742
1743 if (s == NULL
1744 || s->map_head.s == NULL
1745 || (s->flags & SEC_ALLOC) != 0)
1746 where = assign;
1747 }
1748 break;
1749 case lang_input_statement_enum:
1750 case lang_address_statement_enum:
1751 case lang_target_statement_enum:
1752 case lang_output_statement_enum:
1753 case lang_group_statement_enum:
1754 case lang_insert_statement_enum:
1755 continue;
1756 }
1757 break;
1758 }
1759
1760 return where;
1761 }
1762
1763 lang_output_section_statement_type *
1764 lang_insert_orphan (asection *s,
1765 const char *secname,
1766 int constraint,
1767 lang_output_section_statement_type *after,
1768 struct orphan_save *place,
1769 etree_type *address,
1770 lang_statement_list_type *add_child)
1771 {
1772 lang_statement_list_type add;
1773 const char *ps;
1774 lang_output_section_statement_type *os;
1775 lang_output_section_statement_type **os_tail;
1776
1777 /* If we have found an appropriate place for the output section
1778 statements for this orphan, add them to our own private list,
1779 inserting them later into the global statement list. */
1780 if (after != NULL)
1781 {
1782 lang_list_init (&add);
1783 push_stat_ptr (&add);
1784 }
1785
1786 if (link_info.relocatable || (s->flags & (SEC_LOAD | SEC_ALLOC)) == 0)
1787 address = exp_intop (0);
1788
1789 os_tail = ((lang_output_section_statement_type **)
1790 lang_output_section_statement.tail);
1791 os = lang_enter_output_section_statement (secname, address, normal_section,
1792 NULL, NULL, NULL, constraint);
1793
1794 ps = NULL;
1795 if (config.build_constructors && *os_tail == os)
1796 {
1797 /* If the name of the section is representable in C, then create
1798 symbols to mark the start and the end of the section. */
1799 for (ps = secname; *ps != '\0'; ps++)
1800 if (! ISALNUM ((unsigned char) *ps) && *ps != '_')
1801 break;
1802 if (*ps == '\0')
1803 {
1804 char *symname;
1805 etree_type *e_align;
1806
1807 symname = (char *) xmalloc (ps - secname + sizeof "__start_" + 1);
1808 symname[0] = bfd_get_symbol_leading_char (link_info.output_bfd);
1809 sprintf (symname + (symname[0] != 0), "__start_%s", secname);
1810 e_align = exp_unop (ALIGN_K,
1811 exp_intop ((bfd_vma) 1 << s->alignment_power));
1812 lang_add_assignment (exp_assop ('=', ".", e_align));
1813 lang_add_assignment (exp_provide (symname,
1814 exp_unop (ABSOLUTE,
1815 exp_nameop (NAME, ".")),
1816 FALSE));
1817 }
1818 }
1819
1820 if (add_child == NULL)
1821 add_child = &os->children;
1822 lang_add_section (add_child, s, os);
1823
1824 if (after && (s->flags & (SEC_LOAD | SEC_ALLOC)) != 0)
1825 {
1826 const char *region = (after->region
1827 ? after->region->name_list.name
1828 : DEFAULT_MEMORY_REGION);
1829 const char *lma_region = (after->lma_region
1830 ? after->lma_region->name_list.name
1831 : NULL);
1832 lang_leave_output_section_statement (NULL, region, after->phdrs,
1833 lma_region);
1834 }
1835 else
1836 lang_leave_output_section_statement (NULL, DEFAULT_MEMORY_REGION, NULL,
1837 NULL);
1838
1839 if (ps != NULL && *ps == '\0')
1840 {
1841 char *symname;
1842
1843 symname = (char *) xmalloc (ps - secname + sizeof "__stop_" + 1);
1844 symname[0] = bfd_get_symbol_leading_char (link_info.output_bfd);
1845 sprintf (symname + (symname[0] != 0), "__stop_%s", secname);
1846 lang_add_assignment (exp_provide (symname,
1847 exp_nameop (NAME, "."),
1848 FALSE));
1849 }
1850
1851 /* Restore the global list pointer. */
1852 if (after != NULL)
1853 pop_stat_ptr ();
1854
1855 if (after != NULL && os->bfd_section != NULL)
1856 {
1857 asection *snew, *as;
1858
1859 snew = os->bfd_section;
1860
1861 /* Shuffle the bfd section list to make the output file look
1862 neater. This is really only cosmetic. */
1863 if (place->section == NULL
1864 && after != (&lang_output_section_statement.head
1865 ->output_section_statement))
1866 {
1867 asection *bfd_section = after->bfd_section;
1868
1869 /* If the output statement hasn't been used to place any input
1870 sections (and thus doesn't have an output bfd_section),
1871 look for the closest prior output statement having an
1872 output section. */
1873 if (bfd_section == NULL)
1874 bfd_section = output_prev_sec_find (after);
1875
1876 if (bfd_section != NULL && bfd_section != snew)
1877 place->section = &bfd_section->next;
1878 }
1879
1880 if (place->section == NULL)
1881 place->section = &link_info.output_bfd->sections;
1882
1883 as = *place->section;
1884
1885 if (!as)
1886 {
1887 /* Put the section at the end of the list. */
1888
1889 /* Unlink the section. */
1890 bfd_section_list_remove (link_info.output_bfd, snew);
1891
1892 /* Now tack it back on in the right place. */
1893 bfd_section_list_append (link_info.output_bfd, snew);
1894 }
1895 else if (as != snew && as->prev != snew)
1896 {
1897 /* Unlink the section. */
1898 bfd_section_list_remove (link_info.output_bfd, snew);
1899
1900 /* Now tack it back on in the right place. */
1901 bfd_section_list_insert_before (link_info.output_bfd, as, snew);
1902 }
1903
1904 /* Save the end of this list. Further ophans of this type will
1905 follow the one we've just added. */
1906 place->section = &snew->next;
1907
1908 /* The following is non-cosmetic. We try to put the output
1909 statements in some sort of reasonable order here, because they
1910 determine the final load addresses of the orphan sections.
1911 In addition, placing output statements in the wrong order may
1912 require extra segments. For instance, given a typical
1913 situation of all read-only sections placed in one segment and
1914 following that a segment containing all the read-write
1915 sections, we wouldn't want to place an orphan read/write
1916 section before or amongst the read-only ones. */
1917 if (add.head != NULL)
1918 {
1919 lang_output_section_statement_type *newly_added_os;
1920
1921 if (place->stmt == NULL)
1922 {
1923 lang_statement_union_type **where = insert_os_after (after);
1924
1925 *add.tail = *where;
1926 *where = add.head;
1927
1928 place->os_tail = &after->next;
1929 }
1930 else
1931 {
1932 /* Put it after the last orphan statement we added. */
1933 *add.tail = *place->stmt;
1934 *place->stmt = add.head;
1935 }
1936
1937 /* Fix the global list pointer if we happened to tack our
1938 new list at the tail. */
1939 if (*stat_ptr->tail == add.head)
1940 stat_ptr->tail = add.tail;
1941
1942 /* Save the end of this list. */
1943 place->stmt = add.tail;
1944
1945 /* Do the same for the list of output section statements. */
1946 newly_added_os = *os_tail;
1947 *os_tail = NULL;
1948 newly_added_os->prev = (lang_output_section_statement_type *)
1949 ((char *) place->os_tail
1950 - offsetof (lang_output_section_statement_type, next));
1951 newly_added_os->next = *place->os_tail;
1952 if (newly_added_os->next != NULL)
1953 newly_added_os->next->prev = newly_added_os;
1954 *place->os_tail = newly_added_os;
1955 place->os_tail = &newly_added_os->next;
1956
1957 /* Fixing the global list pointer here is a little different.
1958 We added to the list in lang_enter_output_section_statement,
1959 trimmed off the new output_section_statment above when
1960 assigning *os_tail = NULL, but possibly added it back in
1961 the same place when assigning *place->os_tail. */
1962 if (*os_tail == NULL)
1963 lang_output_section_statement.tail
1964 = (lang_statement_union_type **) os_tail;
1965 }
1966 }
1967 return os;
1968 }
1969
1970 static void
1971 lang_map_flags (flagword flag)
1972 {
1973 if (flag & SEC_ALLOC)
1974 minfo ("a");
1975
1976 if (flag & SEC_CODE)
1977 minfo ("x");
1978
1979 if (flag & SEC_READONLY)
1980 minfo ("r");
1981
1982 if (flag & SEC_DATA)
1983 minfo ("w");
1984
1985 if (flag & SEC_LOAD)
1986 minfo ("l");
1987 }
1988
1989 void
1990 lang_map (void)
1991 {
1992 lang_memory_region_type *m;
1993 bfd_boolean dis_header_printed = FALSE;
1994 bfd *p;
1995
1996 LANG_FOR_EACH_INPUT_STATEMENT (file)
1997 {
1998 asection *s;
1999
2000 if ((file->the_bfd->flags & (BFD_LINKER_CREATED | DYNAMIC)) != 0
2001 || file->just_syms_flag)
2002 continue;
2003
2004 for (s = file->the_bfd->sections; s != NULL; s = s->next)
2005 if ((s->output_section == NULL
2006 || s->output_section->owner != link_info.output_bfd)
2007 && (s->flags & (SEC_LINKER_CREATED | SEC_KEEP)) == 0)
2008 {
2009 if (! dis_header_printed)
2010 {
2011 fprintf (config.map_file, _("\nDiscarded input sections\n\n"));
2012 dis_header_printed = TRUE;
2013 }
2014
2015 print_input_section (s, TRUE);
2016 }
2017 }
2018
2019 minfo (_("\nMemory Configuration\n\n"));
2020 fprintf (config.map_file, "%-16s %-18s %-18s %s\n",
2021 _("Name"), _("Origin"), _("Length"), _("Attributes"));
2022
2023 for (m = lang_memory_region_list; m != NULL; m = m->next)
2024 {
2025 char buf[100];
2026 int len;
2027
2028 fprintf (config.map_file, "%-16s ", m->name_list.name);
2029
2030 sprintf_vma (buf, m->origin);
2031 minfo ("0x%s ", buf);
2032 len = strlen (buf);
2033 while (len < 16)
2034 {
2035 print_space ();
2036 ++len;
2037 }
2038
2039 minfo ("0x%V", m->length);
2040 if (m->flags || m->not_flags)
2041 {
2042 #ifndef BFD64
2043 minfo (" ");
2044 #endif
2045 if (m->flags)
2046 {
2047 print_space ();
2048 lang_map_flags (m->flags);
2049 }
2050
2051 if (m->not_flags)
2052 {
2053 minfo (" !");
2054 lang_map_flags (m->not_flags);
2055 }
2056 }
2057
2058 print_nl ();
2059 }
2060
2061 fprintf (config.map_file, _("\nLinker script and memory map\n\n"));
2062
2063 if (! link_info.reduce_memory_overheads)
2064 {
2065 obstack_begin (&map_obstack, 1000);
2066 for (p = link_info.input_bfds; p != (bfd *) NULL; p = p->link_next)
2067 bfd_map_over_sections (p, init_map_userdata, 0);
2068 bfd_link_hash_traverse (link_info.hash, sort_def_symbol, 0);
2069 }
2070 lang_statement_iteration ++;
2071 print_statements ();
2072 }
2073
2074 static void
2075 init_map_userdata (bfd *abfd ATTRIBUTE_UNUSED,
2076 asection *sec,
2077 void *data ATTRIBUTE_UNUSED)
2078 {
2079 fat_section_userdata_type *new_data
2080 = ((fat_section_userdata_type *) (stat_alloc
2081 (sizeof (fat_section_userdata_type))));
2082
2083 ASSERT (get_userdata (sec) == NULL);
2084 get_userdata (sec) = new_data;
2085 new_data->map_symbol_def_tail = &new_data->map_symbol_def_head;
2086 new_data->map_symbol_def_count = 0;
2087 }
2088
2089 static bfd_boolean
2090 sort_def_symbol (struct bfd_link_hash_entry *hash_entry,
2091 void *info ATTRIBUTE_UNUSED)
2092 {
2093 if (hash_entry->type == bfd_link_hash_defined
2094 || hash_entry->type == bfd_link_hash_defweak)
2095 {
2096 struct fat_user_section_struct *ud;
2097 struct map_symbol_def *def;
2098
2099 ud = (struct fat_user_section_struct *)
2100 get_userdata (hash_entry->u.def.section);
2101 if (! ud)
2102 {
2103 /* ??? What do we have to do to initialize this beforehand? */
2104 /* The first time we get here is bfd_abs_section... */
2105 init_map_userdata (0, hash_entry->u.def.section, 0);
2106 ud = (struct fat_user_section_struct *)
2107 get_userdata (hash_entry->u.def.section);
2108 }
2109 else if (!ud->map_symbol_def_tail)
2110 ud->map_symbol_def_tail = &ud->map_symbol_def_head;
2111
2112 def = (struct map_symbol_def *) obstack_alloc (&map_obstack, sizeof *def);
2113 def->entry = hash_entry;
2114 *(ud->map_symbol_def_tail) = def;
2115 ud->map_symbol_def_tail = &def->next;
2116 ud->map_symbol_def_count++;
2117 }
2118 return TRUE;
2119 }
2120
2121 /* Initialize an output section. */
2122
2123 static void
2124 init_os (lang_output_section_statement_type *s, flagword flags)
2125 {
2126 if (strcmp (s->name, DISCARD_SECTION_NAME) == 0)
2127 einfo (_("%P%F: Illegal use of `%s' section\n"), DISCARD_SECTION_NAME);
2128
2129 if (s->constraint != SPECIAL)
2130 s->bfd_section = bfd_get_section_by_name (link_info.output_bfd, s->name);
2131 if (s->bfd_section == NULL)
2132 s->bfd_section = bfd_make_section_anyway_with_flags (link_info.output_bfd,
2133 s->name, flags);
2134 if (s->bfd_section == NULL)
2135 {
2136 einfo (_("%P%F: output format %s cannot represent section called %s\n"),
2137 link_info.output_bfd->xvec->name, s->name);
2138 }
2139 s->bfd_section->output_section = s->bfd_section;
2140 s->bfd_section->output_offset = 0;
2141
2142 if (!link_info.reduce_memory_overheads)
2143 {
2144 fat_section_userdata_type *new_userdata = (fat_section_userdata_type *)
2145 stat_alloc (sizeof (fat_section_userdata_type));
2146 memset (new_userdata, 0, sizeof (fat_section_userdata_type));
2147 get_userdata (s->bfd_section) = new_userdata;
2148 }
2149
2150 /* If there is a base address, make sure that any sections it might
2151 mention are initialized. */
2152 if (s->addr_tree != NULL)
2153 exp_init_os (s->addr_tree);
2154
2155 if (s->load_base != NULL)
2156 exp_init_os (s->load_base);
2157
2158 /* If supplied an alignment, set it. */
2159 if (s->section_alignment != -1)
2160 s->bfd_section->alignment_power = s->section_alignment;
2161 }
2162
2163 /* Make sure that all output sections mentioned in an expression are
2164 initialized. */
2165
2166 static void
2167 exp_init_os (etree_type *exp)
2168 {
2169 switch (exp->type.node_class)
2170 {
2171 case etree_assign:
2172 case etree_provide:
2173 exp_init_os (exp->assign.src);
2174 break;
2175
2176 case etree_binary:
2177 exp_init_os (exp->binary.lhs);
2178 exp_init_os (exp->binary.rhs);
2179 break;
2180
2181 case etree_trinary:
2182 exp_init_os (exp->trinary.cond);
2183 exp_init_os (exp->trinary.lhs);
2184 exp_init_os (exp->trinary.rhs);
2185 break;
2186
2187 case etree_assert:
2188 exp_init_os (exp->assert_s.child);
2189 break;
2190
2191 case etree_unary:
2192 exp_init_os (exp->unary.child);
2193 break;
2194
2195 case etree_name:
2196 switch (exp->type.node_code)
2197 {
2198 case ADDR:
2199 case LOADADDR:
2200 case SIZEOF:
2201 {
2202 lang_output_section_statement_type *os;
2203
2204 os = lang_output_section_find (exp->name.name);
2205 if (os != NULL && os->bfd_section == NULL)
2206 init_os (os, 0);
2207 }
2208 }
2209 break;
2210
2211 default:
2212 break;
2213 }
2214 }
2215 \f
2216 static void
2217 section_already_linked (bfd *abfd, asection *sec, void *data)
2218 {
2219 lang_input_statement_type *entry = (lang_input_statement_type *) data;
2220
2221 /* If we are only reading symbols from this object, then we want to
2222 discard all sections. */
2223 if (entry->just_syms_flag)
2224 {
2225 bfd_link_just_syms (abfd, sec, &link_info);
2226 return;
2227 }
2228
2229 if (!(abfd->flags & DYNAMIC))
2230 bfd_section_already_linked (abfd, sec, &link_info);
2231 }
2232 \f
2233 /* The wild routines.
2234
2235 These expand statements like *(.text) and foo.o to a list of
2236 explicit actions, like foo.o(.text), bar.o(.text) and
2237 foo.o(.text, .data). */
2238
2239 /* Add SECTION to the output section OUTPUT. Do this by creating a
2240 lang_input_section statement which is placed at PTR. FILE is the
2241 input file which holds SECTION. */
2242
2243 void
2244 lang_add_section (lang_statement_list_type *ptr,
2245 asection *section,
2246 lang_output_section_statement_type *output)
2247 {
2248 flagword flags = section->flags;
2249 bfd_boolean discard;
2250 lang_input_section_type *new_section;
2251
2252 /* Discard sections marked with SEC_EXCLUDE. */
2253 discard = (flags & SEC_EXCLUDE) != 0;
2254
2255 /* Discard input sections which are assigned to a section named
2256 DISCARD_SECTION_NAME. */
2257 if (strcmp (output->name, DISCARD_SECTION_NAME) == 0)
2258 discard = TRUE;
2259
2260 /* Discard debugging sections if we are stripping debugging
2261 information. */
2262 if ((link_info.strip == strip_debugger || link_info.strip == strip_all)
2263 && (flags & SEC_DEBUGGING) != 0)
2264 discard = TRUE;
2265
2266 if (discard)
2267 {
2268 if (section->output_section == NULL)
2269 {
2270 /* This prevents future calls from assigning this section. */
2271 section->output_section = bfd_abs_section_ptr;
2272 }
2273 return;
2274 }
2275
2276 if (section->output_section != NULL)
2277 return;
2278
2279 /* We don't copy the SEC_NEVER_LOAD flag from an input section
2280 to an output section, because we want to be able to include a
2281 SEC_NEVER_LOAD section in the middle of an otherwise loaded
2282 section (I don't know why we want to do this, but we do).
2283 build_link_order in ldwrite.c handles this case by turning
2284 the embedded SEC_NEVER_LOAD section into a fill. */
2285 flags &= ~ SEC_NEVER_LOAD;
2286
2287 /* If final link, don't copy the SEC_LINK_ONCE flags, they've
2288 already been processed. One reason to do this is that on pe
2289 format targets, .text$foo sections go into .text and it's odd
2290 to see .text with SEC_LINK_ONCE set. */
2291
2292 if (!link_info.relocatable)
2293 flags &= ~(SEC_LINK_ONCE | SEC_LINK_DUPLICATES | SEC_RELOC);
2294
2295 switch (output->sectype)
2296 {
2297 case normal_section:
2298 case overlay_section:
2299 break;
2300 case noalloc_section:
2301 flags &= ~SEC_ALLOC;
2302 break;
2303 case noload_section:
2304 flags &= ~SEC_LOAD;
2305 flags |= SEC_NEVER_LOAD;
2306 /* Unfortunately GNU ld has managed to evolve two different
2307 meanings to NOLOAD in scripts. ELF gets a .bss style noload,
2308 alloc, no contents section. All others get a noload, noalloc
2309 section. */
2310 if (bfd_get_flavour (link_info.output_bfd) == bfd_target_elf_flavour)
2311 flags &= ~SEC_HAS_CONTENTS;
2312 else
2313 flags &= ~SEC_ALLOC;
2314 break;
2315 }
2316
2317 if (output->bfd_section == NULL)
2318 init_os (output, flags);
2319
2320 /* If SEC_READONLY is not set in the input section, then clear
2321 it from the output section. */
2322 output->bfd_section->flags &= flags | ~SEC_READONLY;
2323
2324 if (output->bfd_section->linker_has_input)
2325 {
2326 /* Only set SEC_READONLY flag on the first input section. */
2327 flags &= ~ SEC_READONLY;
2328
2329 /* Keep SEC_MERGE and SEC_STRINGS only if they are the same. */
2330 if ((output->bfd_section->flags & (SEC_MERGE | SEC_STRINGS))
2331 != (flags & (SEC_MERGE | SEC_STRINGS))
2332 || ((flags & SEC_MERGE) != 0
2333 && output->bfd_section->entsize != section->entsize))
2334 {
2335 output->bfd_section->flags &= ~ (SEC_MERGE | SEC_STRINGS);
2336 flags &= ~ (SEC_MERGE | SEC_STRINGS);
2337 }
2338 }
2339 output->bfd_section->flags |= flags;
2340
2341 if (!output->bfd_section->linker_has_input)
2342 {
2343 output->bfd_section->linker_has_input = 1;
2344 /* This must happen after flags have been updated. The output
2345 section may have been created before we saw its first input
2346 section, eg. for a data statement. */
2347 bfd_init_private_section_data (section->owner, section,
2348 link_info.output_bfd,
2349 output->bfd_section,
2350 &link_info);
2351 if ((flags & SEC_MERGE) != 0)
2352 output->bfd_section->entsize = section->entsize;
2353 }
2354
2355 if ((flags & SEC_TIC54X_BLOCK) != 0
2356 && bfd_get_arch (section->owner) == bfd_arch_tic54x)
2357 {
2358 /* FIXME: This value should really be obtained from the bfd... */
2359 output->block_value = 128;
2360 }
2361
2362 if (section->alignment_power > output->bfd_section->alignment_power)
2363 output->bfd_section->alignment_power = section->alignment_power;
2364
2365 section->output_section = output->bfd_section;
2366
2367 if (!link_info.relocatable
2368 && !stripped_excluded_sections)
2369 {
2370 asection *s = output->bfd_section->map_tail.s;
2371 output->bfd_section->map_tail.s = section;
2372 section->map_head.s = NULL;
2373 section->map_tail.s = s;
2374 if (s != NULL)
2375 s->map_head.s = section;
2376 else
2377 output->bfd_section->map_head.s = section;
2378 }
2379
2380 /* Add a section reference to the list. */
2381 new_section = new_stat (lang_input_section, ptr);
2382 new_section->section = section;
2383 }
2384
2385 /* Handle wildcard sorting. This returns the lang_input_section which
2386 should follow the one we are going to create for SECTION and FILE,
2387 based on the sorting requirements of WILD. It returns NULL if the
2388 new section should just go at the end of the current list. */
2389
2390 static lang_statement_union_type *
2391 wild_sort (lang_wild_statement_type *wild,
2392 struct wildcard_list *sec,
2393 lang_input_statement_type *file,
2394 asection *section)
2395 {
2396 lang_statement_union_type *l;
2397
2398 if (!wild->filenames_sorted
2399 && (sec == NULL || sec->spec.sorted == none))
2400 return NULL;
2401
2402 for (l = wild->children.head; l != NULL; l = l->header.next)
2403 {
2404 lang_input_section_type *ls;
2405
2406 if (l->header.type != lang_input_section_enum)
2407 continue;
2408 ls = &l->input_section;
2409
2410 /* Sorting by filename takes precedence over sorting by section
2411 name. */
2412
2413 if (wild->filenames_sorted)
2414 {
2415 const char *fn, *ln;
2416 bfd_boolean fa, la;
2417 int i;
2418
2419 /* The PE support for the .idata section as generated by
2420 dlltool assumes that files will be sorted by the name of
2421 the archive and then the name of the file within the
2422 archive. */
2423
2424 if (file->the_bfd != NULL
2425 && bfd_my_archive (file->the_bfd) != NULL)
2426 {
2427 fn = bfd_get_filename (bfd_my_archive (file->the_bfd));
2428 fa = TRUE;
2429 }
2430 else
2431 {
2432 fn = file->filename;
2433 fa = FALSE;
2434 }
2435
2436 if (bfd_my_archive (ls->section->owner) != NULL)
2437 {
2438 ln = bfd_get_filename (bfd_my_archive (ls->section->owner));
2439 la = TRUE;
2440 }
2441 else
2442 {
2443 ln = ls->section->owner->filename;
2444 la = FALSE;
2445 }
2446
2447 i = strcmp (fn, ln);
2448 if (i > 0)
2449 continue;
2450 else if (i < 0)
2451 break;
2452
2453 if (fa || la)
2454 {
2455 if (fa)
2456 fn = file->filename;
2457 if (la)
2458 ln = ls->section->owner->filename;
2459
2460 i = strcmp (fn, ln);
2461 if (i > 0)
2462 continue;
2463 else if (i < 0)
2464 break;
2465 }
2466 }
2467
2468 /* Here either the files are not sorted by name, or we are
2469 looking at the sections for this file. */
2470
2471 if (sec != NULL && sec->spec.sorted != none)
2472 if (compare_section (sec->spec.sorted, section, ls->section) < 0)
2473 break;
2474 }
2475
2476 return l;
2477 }
2478
2479 /* Expand a wild statement for a particular FILE. SECTION may be
2480 NULL, in which case it is a wild card. */
2481
2482 static void
2483 output_section_callback (lang_wild_statement_type *ptr,
2484 struct wildcard_list *sec,
2485 asection *section,
2486 lang_input_statement_type *file,
2487 void *output)
2488 {
2489 lang_statement_union_type *before;
2490 lang_output_section_statement_type *os;
2491
2492 os = (lang_output_section_statement_type *) output;
2493
2494 /* Exclude sections that match UNIQUE_SECTION_LIST. */
2495 if (unique_section_p (section, os))
2496 return;
2497
2498 before = wild_sort (ptr, sec, file, section);
2499
2500 /* Here BEFORE points to the lang_input_section which
2501 should follow the one we are about to add. If BEFORE
2502 is NULL, then the section should just go at the end
2503 of the current list. */
2504
2505 if (before == NULL)
2506 lang_add_section (&ptr->children, section, os);
2507 else
2508 {
2509 lang_statement_list_type list;
2510 lang_statement_union_type **pp;
2511
2512 lang_list_init (&list);
2513 lang_add_section (&list, section, os);
2514
2515 /* If we are discarding the section, LIST.HEAD will
2516 be NULL. */
2517 if (list.head != NULL)
2518 {
2519 ASSERT (list.head->header.next == NULL);
2520
2521 for (pp = &ptr->children.head;
2522 *pp != before;
2523 pp = &(*pp)->header.next)
2524 ASSERT (*pp != NULL);
2525
2526 list.head->header.next = *pp;
2527 *pp = list.head;
2528 }
2529 }
2530 }
2531
2532 /* Check if all sections in a wild statement for a particular FILE
2533 are readonly. */
2534
2535 static void
2536 check_section_callback (lang_wild_statement_type *ptr ATTRIBUTE_UNUSED,
2537 struct wildcard_list *sec ATTRIBUTE_UNUSED,
2538 asection *section,
2539 lang_input_statement_type *file ATTRIBUTE_UNUSED,
2540 void *output)
2541 {
2542 lang_output_section_statement_type *os;
2543
2544 os = (lang_output_section_statement_type *) output;
2545
2546 /* Exclude sections that match UNIQUE_SECTION_LIST. */
2547 if (unique_section_p (section, os))
2548 return;
2549
2550 if (section->output_section == NULL && (section->flags & SEC_READONLY) == 0)
2551 os->all_input_readonly = FALSE;
2552 }
2553
2554 /* This is passed a file name which must have been seen already and
2555 added to the statement tree. We will see if it has been opened
2556 already and had its symbols read. If not then we'll read it. */
2557
2558 static lang_input_statement_type *
2559 lookup_name (const char *name)
2560 {
2561 lang_input_statement_type *search;
2562
2563 for (search = (lang_input_statement_type *) input_file_chain.head;
2564 search != NULL;
2565 search = (lang_input_statement_type *) search->next_real_file)
2566 {
2567 /* Use the local_sym_name as the name of the file that has
2568 already been loaded as filename might have been transformed
2569 via the search directory lookup mechanism. */
2570 const char *filename = search->local_sym_name;
2571
2572 if (filename != NULL
2573 && strcmp (filename, name) == 0)
2574 break;
2575 }
2576
2577 if (search == NULL)
2578 search = new_afile (name, lang_input_file_is_search_file_enum,
2579 default_target, FALSE);
2580
2581 /* If we have already added this file, or this file is not real
2582 don't add this file. */
2583 if (search->loaded || !search->real)
2584 return search;
2585
2586 if (! load_symbols (search, NULL))
2587 return NULL;
2588
2589 return search;
2590 }
2591
2592 /* Save LIST as a list of libraries whose symbols should not be exported. */
2593
2594 struct excluded_lib
2595 {
2596 char *name;
2597 struct excluded_lib *next;
2598 };
2599 static struct excluded_lib *excluded_libs;
2600
2601 void
2602 add_excluded_libs (const char *list)
2603 {
2604 const char *p = list, *end;
2605
2606 while (*p != '\0')
2607 {
2608 struct excluded_lib *entry;
2609 end = strpbrk (p, ",:");
2610 if (end == NULL)
2611 end = p + strlen (p);
2612 entry = (struct excluded_lib *) xmalloc (sizeof (*entry));
2613 entry->next = excluded_libs;
2614 entry->name = (char *) xmalloc (end - p + 1);
2615 memcpy (entry->name, p, end - p);
2616 entry->name[end - p] = '\0';
2617 excluded_libs = entry;
2618 if (*end == '\0')
2619 break;
2620 p = end + 1;
2621 }
2622 }
2623
2624 static void
2625 check_excluded_libs (bfd *abfd)
2626 {
2627 struct excluded_lib *lib = excluded_libs;
2628
2629 while (lib)
2630 {
2631 int len = strlen (lib->name);
2632 const char *filename = lbasename (abfd->filename);
2633
2634 if (strcmp (lib->name, "ALL") == 0)
2635 {
2636 abfd->no_export = TRUE;
2637 return;
2638 }
2639
2640 if (strncmp (lib->name, filename, len) == 0
2641 && (filename[len] == '\0'
2642 || (filename[len] == '.' && filename[len + 1] == 'a'
2643 && filename[len + 2] == '\0')))
2644 {
2645 abfd->no_export = TRUE;
2646 return;
2647 }
2648
2649 lib = lib->next;
2650 }
2651 }
2652
2653 /* Get the symbols for an input file. */
2654
2655 bfd_boolean
2656 load_symbols (lang_input_statement_type *entry,
2657 lang_statement_list_type *place)
2658 {
2659 char **matching;
2660
2661 if (entry->loaded)
2662 return TRUE;
2663
2664 ldfile_open_file (entry);
2665
2666 /* Do not process further if the file was missing. */
2667 if (entry->missing_file)
2668 return TRUE;
2669
2670 if (! bfd_check_format (entry->the_bfd, bfd_archive)
2671 && ! bfd_check_format_matches (entry->the_bfd, bfd_object, &matching))
2672 {
2673 bfd_error_type err;
2674 bfd_boolean save_ldlang_sysrooted_script;
2675 bfd_boolean save_add_DT_NEEDED_for_regular;
2676 bfd_boolean save_add_DT_NEEDED_for_dynamic;
2677 bfd_boolean save_whole_archive;
2678
2679 err = bfd_get_error ();
2680
2681 /* See if the emulation has some special knowledge. */
2682 if (ldemul_unrecognized_file (entry))
2683 return TRUE;
2684
2685 if (err == bfd_error_file_ambiguously_recognized)
2686 {
2687 char **p;
2688
2689 einfo (_("%B: file not recognized: %E\n"), entry->the_bfd);
2690 einfo (_("%B: matching formats:"), entry->the_bfd);
2691 for (p = matching; *p != NULL; p++)
2692 einfo (" %s", *p);
2693 einfo ("%F\n");
2694 }
2695 else if (err != bfd_error_file_not_recognized
2696 || place == NULL)
2697 einfo (_("%F%B: file not recognized: %E\n"), entry->the_bfd);
2698
2699 bfd_close (entry->the_bfd);
2700 entry->the_bfd = NULL;
2701
2702 /* Try to interpret the file as a linker script. */
2703 ldfile_open_command_file (entry->filename);
2704
2705 push_stat_ptr (place);
2706 save_ldlang_sysrooted_script = ldlang_sysrooted_script;
2707 ldlang_sysrooted_script = entry->sysrooted;
2708 save_add_DT_NEEDED_for_regular = add_DT_NEEDED_for_regular;
2709 add_DT_NEEDED_for_regular = entry->add_DT_NEEDED_for_regular;
2710 save_add_DT_NEEDED_for_dynamic = add_DT_NEEDED_for_dynamic;
2711 add_DT_NEEDED_for_dynamic = entry->add_DT_NEEDED_for_dynamic;
2712 save_whole_archive = whole_archive;
2713 whole_archive = entry->whole_archive;
2714
2715 ldfile_assumed_script = TRUE;
2716 parser_input = input_script;
2717 /* We want to use the same -Bdynamic/-Bstatic as the one for
2718 ENTRY. */
2719 config.dynamic_link = entry->dynamic;
2720 yyparse ();
2721 ldfile_assumed_script = FALSE;
2722
2723 ldlang_sysrooted_script = save_ldlang_sysrooted_script;
2724 add_DT_NEEDED_for_regular = save_add_DT_NEEDED_for_regular;
2725 add_DT_NEEDED_for_dynamic = save_add_DT_NEEDED_for_dynamic;
2726 whole_archive = save_whole_archive;
2727 pop_stat_ptr ();
2728
2729 return TRUE;
2730 }
2731
2732 if (ldemul_recognized_file (entry))
2733 return TRUE;
2734
2735 /* We don't call ldlang_add_file for an archive. Instead, the
2736 add_symbols entry point will call ldlang_add_file, via the
2737 add_archive_element callback, for each element of the archive
2738 which is used. */
2739 switch (bfd_get_format (entry->the_bfd))
2740 {
2741 default:
2742 break;
2743
2744 case bfd_object:
2745 ldlang_add_file (entry);
2746 if (trace_files || trace_file_tries)
2747 info_msg ("%I\n", entry);
2748 break;
2749
2750 case bfd_archive:
2751 check_excluded_libs (entry->the_bfd);
2752
2753 if (entry->whole_archive)
2754 {
2755 bfd *member = NULL;
2756 bfd_boolean loaded = TRUE;
2757
2758 for (;;)
2759 {
2760 bfd *subsbfd;
2761 member = bfd_openr_next_archived_file (entry->the_bfd, member);
2762
2763 if (member == NULL)
2764 break;
2765
2766 if (! bfd_check_format (member, bfd_object))
2767 {
2768 einfo (_("%F%B: member %B in archive is not an object\n"),
2769 entry->the_bfd, member);
2770 loaded = FALSE;
2771 }
2772
2773 subsbfd = member;
2774 if (!(*link_info.callbacks
2775 ->add_archive_element) (&link_info, member,
2776 "--whole-archive", &subsbfd))
2777 abort ();
2778
2779 /* Potentially, the add_archive_element hook may have set a
2780 substitute BFD for us. */
2781 if (!bfd_link_add_symbols (subsbfd, &link_info))
2782 {
2783 einfo (_("%F%B: could not read symbols: %E\n"), member);
2784 loaded = FALSE;
2785 }
2786 }
2787
2788 entry->loaded = loaded;
2789 return loaded;
2790 }
2791 break;
2792 }
2793
2794 if (bfd_link_add_symbols (entry->the_bfd, &link_info))
2795 entry->loaded = TRUE;
2796 else
2797 einfo (_("%F%B: could not read symbols: %E\n"), entry->the_bfd);
2798
2799 return entry->loaded;
2800 }
2801
2802 /* Handle a wild statement. S->FILENAME or S->SECTION_LIST or both
2803 may be NULL, indicating that it is a wildcard. Separate
2804 lang_input_section statements are created for each part of the
2805 expansion; they are added after the wild statement S. OUTPUT is
2806 the output section. */
2807
2808 static void
2809 wild (lang_wild_statement_type *s,
2810 const char *target ATTRIBUTE_UNUSED,
2811 lang_output_section_statement_type *output)
2812 {
2813 struct wildcard_list *sec;
2814
2815 if (s->handler_data[0]
2816 && s->handler_data[0]->spec.sorted == by_name
2817 && !s->filenames_sorted)
2818 {
2819 lang_section_bst_type *tree;
2820
2821 walk_wild (s, output_section_callback_fast, output);
2822
2823 tree = s->tree;
2824 if (tree)
2825 {
2826 output_section_callback_tree_to_list (s, tree, output);
2827 s->tree = NULL;
2828 }
2829 }
2830 else
2831 walk_wild (s, output_section_callback, output);
2832
2833 if (default_common_section == NULL)
2834 for (sec = s->section_list; sec != NULL; sec = sec->next)
2835 if (sec->spec.name != NULL && strcmp (sec->spec.name, "COMMON") == 0)
2836 {
2837 /* Remember the section that common is going to in case we
2838 later get something which doesn't know where to put it. */
2839 default_common_section = output;
2840 break;
2841 }
2842 }
2843
2844 /* Return TRUE iff target is the sought target. */
2845
2846 static int
2847 get_target (const bfd_target *target, void *data)
2848 {
2849 const char *sought = (const char *) data;
2850
2851 return strcmp (target->name, sought) == 0;
2852 }
2853
2854 /* Like strcpy() but convert to lower case as well. */
2855
2856 static void
2857 stricpy (char *dest, char *src)
2858 {
2859 char c;
2860
2861 while ((c = *src++) != 0)
2862 *dest++ = TOLOWER (c);
2863
2864 *dest = 0;
2865 }
2866
2867 /* Remove the first occurrence of needle (if any) in haystack
2868 from haystack. */
2869
2870 static void
2871 strcut (char *haystack, char *needle)
2872 {
2873 haystack = strstr (haystack, needle);
2874
2875 if (haystack)
2876 {
2877 char *src;
2878
2879 for (src = haystack + strlen (needle); *src;)
2880 *haystack++ = *src++;
2881
2882 *haystack = 0;
2883 }
2884 }
2885
2886 /* Compare two target format name strings.
2887 Return a value indicating how "similar" they are. */
2888
2889 static int
2890 name_compare (char *first, char *second)
2891 {
2892 char *copy1;
2893 char *copy2;
2894 int result;
2895
2896 copy1 = (char *) xmalloc (strlen (first) + 1);
2897 copy2 = (char *) xmalloc (strlen (second) + 1);
2898
2899 /* Convert the names to lower case. */
2900 stricpy (copy1, first);
2901 stricpy (copy2, second);
2902
2903 /* Remove size and endian strings from the name. */
2904 strcut (copy1, "big");
2905 strcut (copy1, "little");
2906 strcut (copy2, "big");
2907 strcut (copy2, "little");
2908
2909 /* Return a value based on how many characters match,
2910 starting from the beginning. If both strings are
2911 the same then return 10 * their length. */
2912 for (result = 0; copy1[result] == copy2[result]; result++)
2913 if (copy1[result] == 0)
2914 {
2915 result *= 10;
2916 break;
2917 }
2918
2919 free (copy1);
2920 free (copy2);
2921
2922 return result;
2923 }
2924
2925 /* Set by closest_target_match() below. */
2926 static const bfd_target *winner;
2927
2928 /* Scan all the valid bfd targets looking for one that has the endianness
2929 requirement that was specified on the command line, and is the nearest
2930 match to the original output target. */
2931
2932 static int
2933 closest_target_match (const bfd_target *target, void *data)
2934 {
2935 const bfd_target *original = (const bfd_target *) data;
2936
2937 if (command_line.endian == ENDIAN_BIG
2938 && target->byteorder != BFD_ENDIAN_BIG)
2939 return 0;
2940
2941 if (command_line.endian == ENDIAN_LITTLE
2942 && target->byteorder != BFD_ENDIAN_LITTLE)
2943 return 0;
2944
2945 /* Must be the same flavour. */
2946 if (target->flavour != original->flavour)
2947 return 0;
2948
2949 /* Ignore generic big and little endian elf vectors. */
2950 if (strcmp (target->name, "elf32-big") == 0
2951 || strcmp (target->name, "elf64-big") == 0
2952 || strcmp (target->name, "elf32-little") == 0
2953 || strcmp (target->name, "elf64-little") == 0)
2954 return 0;
2955
2956 /* If we have not found a potential winner yet, then record this one. */
2957 if (winner == NULL)
2958 {
2959 winner = target;
2960 return 0;
2961 }
2962
2963 /* Oh dear, we now have two potential candidates for a successful match.
2964 Compare their names and choose the better one. */
2965 if (name_compare (target->name, original->name)
2966 > name_compare (winner->name, original->name))
2967 winner = target;
2968
2969 /* Keep on searching until wqe have checked them all. */
2970 return 0;
2971 }
2972
2973 /* Return the BFD target format of the first input file. */
2974
2975 static char *
2976 get_first_input_target (void)
2977 {
2978 char *target = NULL;
2979
2980 LANG_FOR_EACH_INPUT_STATEMENT (s)
2981 {
2982 if (s->header.type == lang_input_statement_enum
2983 && s->real)
2984 {
2985 ldfile_open_file (s);
2986
2987 if (s->the_bfd != NULL
2988 && bfd_check_format (s->the_bfd, bfd_object))
2989 {
2990 target = bfd_get_target (s->the_bfd);
2991
2992 if (target != NULL)
2993 break;
2994 }
2995 }
2996 }
2997
2998 return target;
2999 }
3000
3001 const char *
3002 lang_get_output_target (void)
3003 {
3004 const char *target;
3005
3006 /* Has the user told us which output format to use? */
3007 if (output_target != NULL)
3008 return output_target;
3009
3010 /* No - has the current target been set to something other than
3011 the default? */
3012 if (current_target != default_target)
3013 return current_target;
3014
3015 /* No - can we determine the format of the first input file? */
3016 target = get_first_input_target ();
3017 if (target != NULL)
3018 return target;
3019
3020 /* Failed - use the default output target. */
3021 return default_target;
3022 }
3023
3024 /* Open the output file. */
3025
3026 static void
3027 open_output (const char *name)
3028 {
3029 output_target = lang_get_output_target ();
3030
3031 /* Has the user requested a particular endianness on the command
3032 line? */
3033 if (command_line.endian != ENDIAN_UNSET)
3034 {
3035 const bfd_target *target;
3036 enum bfd_endian desired_endian;
3037
3038 /* Get the chosen target. */
3039 target = bfd_search_for_target (get_target, (void *) output_target);
3040
3041 /* If the target is not supported, we cannot do anything. */
3042 if (target != NULL)
3043 {
3044 if (command_line.endian == ENDIAN_BIG)
3045 desired_endian = BFD_ENDIAN_BIG;
3046 else
3047 desired_endian = BFD_ENDIAN_LITTLE;
3048
3049 /* See if the target has the wrong endianness. This should
3050 not happen if the linker script has provided big and
3051 little endian alternatives, but some scrips don't do
3052 this. */
3053 if (target->byteorder != desired_endian)
3054 {
3055 /* If it does, then see if the target provides
3056 an alternative with the correct endianness. */
3057 if (target->alternative_target != NULL
3058 && (target->alternative_target->byteorder == desired_endian))
3059 output_target = target->alternative_target->name;
3060 else
3061 {
3062 /* Try to find a target as similar as possible to
3063 the default target, but which has the desired
3064 endian characteristic. */
3065 bfd_search_for_target (closest_target_match,
3066 (void *) target);
3067
3068 /* Oh dear - we could not find any targets that
3069 satisfy our requirements. */
3070 if (winner == NULL)
3071 einfo (_("%P: warning: could not find any targets"
3072 " that match endianness requirement\n"));
3073 else
3074 output_target = winner->name;
3075 }
3076 }
3077 }
3078 }
3079
3080 link_info.output_bfd = bfd_openw (name, output_target);
3081
3082 if (link_info.output_bfd == NULL)
3083 {
3084 if (bfd_get_error () == bfd_error_invalid_target)
3085 einfo (_("%P%F: target %s not found\n"), output_target);
3086
3087 einfo (_("%P%F: cannot open output file %s: %E\n"), name);
3088 }
3089
3090 delete_output_file_on_failure = TRUE;
3091
3092 if (! bfd_set_format (link_info.output_bfd, bfd_object))
3093 einfo (_("%P%F:%s: can not make object file: %E\n"), name);
3094 if (! bfd_set_arch_mach (link_info.output_bfd,
3095 ldfile_output_architecture,
3096 ldfile_output_machine))
3097 einfo (_("%P%F:%s: can not set architecture: %E\n"), name);
3098
3099 link_info.hash = bfd_link_hash_table_create (link_info.output_bfd);
3100 if (link_info.hash == NULL)
3101 einfo (_("%P%F: can not create hash table: %E\n"));
3102
3103 bfd_set_gp_size (link_info.output_bfd, g_switch_value);
3104 }
3105
3106 static void
3107 ldlang_open_output (lang_statement_union_type *statement)
3108 {
3109 switch (statement->header.type)
3110 {
3111 case lang_output_statement_enum:
3112 ASSERT (link_info.output_bfd == NULL);
3113 open_output (statement->output_statement.name);
3114 ldemul_set_output_arch ();
3115 if (config.magic_demand_paged && !link_info.relocatable)
3116 link_info.output_bfd->flags |= D_PAGED;
3117 else
3118 link_info.output_bfd->flags &= ~D_PAGED;
3119 if (config.text_read_only)
3120 link_info.output_bfd->flags |= WP_TEXT;
3121 else
3122 link_info.output_bfd->flags &= ~WP_TEXT;
3123 if (link_info.traditional_format)
3124 link_info.output_bfd->flags |= BFD_TRADITIONAL_FORMAT;
3125 else
3126 link_info.output_bfd->flags &= ~BFD_TRADITIONAL_FORMAT;
3127 break;
3128
3129 case lang_target_statement_enum:
3130 current_target = statement->target_statement.target;
3131 break;
3132 default:
3133 break;
3134 }
3135 }
3136
3137 /* Convert between addresses in bytes and sizes in octets.
3138 For currently supported targets, octets_per_byte is always a power
3139 of two, so we can use shifts. */
3140 #define TO_ADDR(X) ((X) >> opb_shift)
3141 #define TO_SIZE(X) ((X) << opb_shift)
3142
3143 /* Support the above. */
3144 static unsigned int opb_shift = 0;
3145
3146 static void
3147 init_opb (void)
3148 {
3149 unsigned x = bfd_arch_mach_octets_per_byte (ldfile_output_architecture,
3150 ldfile_output_machine);
3151 opb_shift = 0;
3152 if (x > 1)
3153 while ((x & 1) == 0)
3154 {
3155 x >>= 1;
3156 ++opb_shift;
3157 }
3158 ASSERT (x == 1);
3159 }
3160
3161 /* Open all the input files. */
3162
3163 static void
3164 open_input_bfds (lang_statement_union_type *s, bfd_boolean force)
3165 {
3166 for (; s != NULL; s = s->header.next)
3167 {
3168 switch (s->header.type)
3169 {
3170 case lang_constructors_statement_enum:
3171 open_input_bfds (constructor_list.head, force);
3172 break;
3173 case lang_output_section_statement_enum:
3174 open_input_bfds (s->output_section_statement.children.head, force);
3175 break;
3176 case lang_wild_statement_enum:
3177 /* Maybe we should load the file's symbols. */
3178 if (s->wild_statement.filename
3179 && !wildcardp (s->wild_statement.filename)
3180 && !archive_path (s->wild_statement.filename))
3181 lookup_name (s->wild_statement.filename);
3182 open_input_bfds (s->wild_statement.children.head, force);
3183 break;
3184 case lang_group_statement_enum:
3185 {
3186 struct bfd_link_hash_entry *undefs;
3187
3188 /* We must continually search the entries in the group
3189 until no new symbols are added to the list of undefined
3190 symbols. */
3191
3192 do
3193 {
3194 undefs = link_info.hash->undefs_tail;
3195 open_input_bfds (s->group_statement.children.head, TRUE);
3196 }
3197 while (undefs != link_info.hash->undefs_tail);
3198 }
3199 break;
3200 case lang_target_statement_enum:
3201 current_target = s->target_statement.target;
3202 break;
3203 case lang_input_statement_enum:
3204 if (s->input_statement.real)
3205 {
3206 lang_statement_union_type **os_tail;
3207 lang_statement_list_type add;
3208
3209 s->input_statement.target = current_target;
3210
3211 /* If we are being called from within a group, and this
3212 is an archive which has already been searched, then
3213 force it to be researched unless the whole archive
3214 has been loaded already. */
3215 if (force
3216 && !s->input_statement.whole_archive
3217 && s->input_statement.loaded
3218 && bfd_check_format (s->input_statement.the_bfd,
3219 bfd_archive))
3220 s->input_statement.loaded = FALSE;
3221
3222 os_tail = lang_output_section_statement.tail;
3223 lang_list_init (&add);
3224
3225 if (! load_symbols (&s->input_statement, &add))
3226 config.make_executable = FALSE;
3227
3228 if (add.head != NULL)
3229 {
3230 /* If this was a script with output sections then
3231 tack any added statements on to the end of the
3232 list. This avoids having to reorder the output
3233 section statement list. Very likely the user
3234 forgot -T, and whatever we do here will not meet
3235 naive user expectations. */
3236 if (os_tail != lang_output_section_statement.tail)
3237 {
3238 einfo (_("%P: warning: %s contains output sections;"
3239 " did you forget -T?\n"),
3240 s->input_statement.filename);
3241 *stat_ptr->tail = add.head;
3242 stat_ptr->tail = add.tail;
3243 }
3244 else
3245 {
3246 *add.tail = s->header.next;
3247 s->header.next = add.head;
3248 }
3249 }
3250 }
3251 break;
3252 case lang_assignment_statement_enum:
3253 exp_fold_tree_no_dot (s->assignment_statement.exp);
3254 break;
3255 default:
3256 break;
3257 }
3258 }
3259
3260 /* Exit if any of the files were missing. */
3261 if (missing_file)
3262 einfo ("%F");
3263 }
3264
3265 /* Add a symbol to a hash of symbols used in DEFINED (NAME) expressions. */
3266
3267 void
3268 lang_track_definedness (const char *name)
3269 {
3270 if (bfd_hash_lookup (&lang_definedness_table, name, TRUE, FALSE) == NULL)
3271 einfo (_("%P%F: bfd_hash_lookup failed creating symbol %s\n"), name);
3272 }
3273
3274 /* New-function for the definedness hash table. */
3275
3276 static struct bfd_hash_entry *
3277 lang_definedness_newfunc (struct bfd_hash_entry *entry,
3278 struct bfd_hash_table *table ATTRIBUTE_UNUSED,
3279 const char *name ATTRIBUTE_UNUSED)
3280 {
3281 struct lang_definedness_hash_entry *ret
3282 = (struct lang_definedness_hash_entry *) entry;
3283
3284 if (ret == NULL)
3285 ret = (struct lang_definedness_hash_entry *)
3286 bfd_hash_allocate (table, sizeof (struct lang_definedness_hash_entry));
3287
3288 if (ret == NULL)
3289 einfo (_("%P%F: bfd_hash_allocate failed creating symbol %s\n"), name);
3290
3291 ret->iteration = -1;
3292 return &ret->root;
3293 }
3294
3295 /* Return the iteration when the definition of NAME was last updated. A
3296 value of -1 means that the symbol is not defined in the linker script
3297 or the command line, but may be defined in the linker symbol table. */
3298
3299 int
3300 lang_symbol_definition_iteration (const char *name)
3301 {
3302 struct lang_definedness_hash_entry *defentry
3303 = (struct lang_definedness_hash_entry *)
3304 bfd_hash_lookup (&lang_definedness_table, name, FALSE, FALSE);
3305
3306 /* We've already created this one on the presence of DEFINED in the
3307 script, so it can't be NULL unless something is borked elsewhere in
3308 the code. */
3309 if (defentry == NULL)
3310 FAIL ();
3311
3312 return defentry->iteration;
3313 }
3314
3315 /* Update the definedness state of NAME. */
3316
3317 void
3318 lang_update_definedness (const char *name, struct bfd_link_hash_entry *h)
3319 {
3320 struct lang_definedness_hash_entry *defentry
3321 = (struct lang_definedness_hash_entry *)
3322 bfd_hash_lookup (&lang_definedness_table, name, FALSE, FALSE);
3323
3324 /* We don't keep track of symbols not tested with DEFINED. */
3325 if (defentry == NULL)
3326 return;
3327
3328 /* If the symbol was already defined, and not from an earlier statement
3329 iteration, don't update the definedness iteration, because that'd
3330 make the symbol seem defined in the linker script at this point, and
3331 it wasn't; it was defined in some object. If we do anyway, DEFINED
3332 would start to yield false before this point and the construct "sym =
3333 DEFINED (sym) ? sym : X;" would change sym to X despite being defined
3334 in an object. */
3335 if (h->type != bfd_link_hash_undefined
3336 && h->type != bfd_link_hash_common
3337 && h->type != bfd_link_hash_new
3338 && defentry->iteration == -1)
3339 return;
3340
3341 defentry->iteration = lang_statement_iteration;
3342 }
3343
3344 /* Add the supplied name to the symbol table as an undefined reference.
3345 This is a two step process as the symbol table doesn't even exist at
3346 the time the ld command line is processed. First we put the name
3347 on a list, then, once the output file has been opened, transfer the
3348 name to the symbol table. */
3349
3350 typedef struct bfd_sym_chain ldlang_undef_chain_list_type;
3351
3352 #define ldlang_undef_chain_list_head entry_symbol.next
3353
3354 void
3355 ldlang_add_undef (const char *const name, bfd_boolean cmdline)
3356 {
3357 ldlang_undef_chain_list_type *new_undef;
3358
3359 undef_from_cmdline = undef_from_cmdline || cmdline;
3360 new_undef = (ldlang_undef_chain_list_type *) stat_alloc (sizeof (*new_undef));
3361 new_undef->next = ldlang_undef_chain_list_head;
3362 ldlang_undef_chain_list_head = new_undef;
3363
3364 new_undef->name = xstrdup (name);
3365
3366 if (link_info.output_bfd != NULL)
3367 insert_undefined (new_undef->name);
3368 }
3369
3370 /* Insert NAME as undefined in the symbol table. */
3371
3372 static void
3373 insert_undefined (const char *name)
3374 {
3375 struct bfd_link_hash_entry *h;
3376
3377 h = bfd_link_hash_lookup (link_info.hash, name, TRUE, FALSE, TRUE);
3378 if (h == NULL)
3379 einfo (_("%P%F: bfd_link_hash_lookup failed: %E\n"));
3380 if (h->type == bfd_link_hash_new)
3381 {
3382 h->type = bfd_link_hash_undefined;
3383 h->u.undef.abfd = NULL;
3384 bfd_link_add_undef (link_info.hash, h);
3385 }
3386 }
3387
3388 /* Run through the list of undefineds created above and place them
3389 into the linker hash table as undefined symbols belonging to the
3390 script file. */
3391
3392 static void
3393 lang_place_undefineds (void)
3394 {
3395 ldlang_undef_chain_list_type *ptr;
3396
3397 for (ptr = ldlang_undef_chain_list_head; ptr != NULL; ptr = ptr->next)
3398 insert_undefined (ptr->name);
3399 }
3400
3401 /* Check for all readonly or some readwrite sections. */
3402
3403 static void
3404 check_input_sections
3405 (lang_statement_union_type *s,
3406 lang_output_section_statement_type *output_section_statement)
3407 {
3408 for (; s != (lang_statement_union_type *) NULL; s = s->header.next)
3409 {
3410 switch (s->header.type)
3411 {
3412 case lang_wild_statement_enum:
3413 walk_wild (&s->wild_statement, check_section_callback,
3414 output_section_statement);
3415 if (! output_section_statement->all_input_readonly)
3416 return;
3417 break;
3418 case lang_constructors_statement_enum:
3419 check_input_sections (constructor_list.head,
3420 output_section_statement);
3421 if (! output_section_statement->all_input_readonly)
3422 return;
3423 break;
3424 case lang_group_statement_enum:
3425 check_input_sections (s->group_statement.children.head,
3426 output_section_statement);
3427 if (! output_section_statement->all_input_readonly)
3428 return;
3429 break;
3430 default:
3431 break;
3432 }
3433 }
3434 }
3435
3436 /* Update wildcard statements if needed. */
3437
3438 static void
3439 update_wild_statements (lang_statement_union_type *s)
3440 {
3441 struct wildcard_list *sec;
3442
3443 switch (sort_section)
3444 {
3445 default:
3446 FAIL ();
3447
3448 case none:
3449 break;
3450
3451 case by_name:
3452 case by_alignment:
3453 for (; s != NULL; s = s->header.next)
3454 {
3455 switch (s->header.type)
3456 {
3457 default:
3458 break;
3459
3460 case lang_wild_statement_enum:
3461 sec = s->wild_statement.section_list;
3462 for (sec = s->wild_statement.section_list; sec != NULL;
3463 sec = sec->next)
3464 {
3465 switch (sec->spec.sorted)
3466 {
3467 case none:
3468 sec->spec.sorted = sort_section;
3469 break;
3470 case by_name:
3471 if (sort_section == by_alignment)
3472 sec->spec.sorted = by_name_alignment;
3473 break;
3474 case by_alignment:
3475 if (sort_section == by_name)
3476 sec->spec.sorted = by_alignment_name;
3477 break;
3478 default:
3479 break;
3480 }
3481 }
3482 break;
3483
3484 case lang_constructors_statement_enum:
3485 update_wild_statements (constructor_list.head);
3486 break;
3487
3488 case lang_output_section_statement_enum:
3489 update_wild_statements
3490 (s->output_section_statement.children.head);
3491 break;
3492
3493 case lang_group_statement_enum:
3494 update_wild_statements (s->group_statement.children.head);
3495 break;
3496 }
3497 }
3498 break;
3499 }
3500 }
3501
3502 /* Open input files and attach to output sections. */
3503
3504 static void
3505 map_input_to_output_sections
3506 (lang_statement_union_type *s, const char *target,
3507 lang_output_section_statement_type *os)
3508 {
3509 for (; s != NULL; s = s->header.next)
3510 {
3511 lang_output_section_statement_type *tos;
3512 flagword flags;
3513
3514 switch (s->header.type)
3515 {
3516 case lang_wild_statement_enum:
3517 wild (&s->wild_statement, target, os);
3518 break;
3519 case lang_constructors_statement_enum:
3520 map_input_to_output_sections (constructor_list.head,
3521 target,
3522 os);
3523 break;
3524 case lang_output_section_statement_enum:
3525 tos = &s->output_section_statement;
3526 if (tos->constraint != 0)
3527 {
3528 if (tos->constraint != ONLY_IF_RW
3529 && tos->constraint != ONLY_IF_RO)
3530 break;
3531 tos->all_input_readonly = TRUE;
3532 check_input_sections (tos->children.head, tos);
3533 if (tos->all_input_readonly != (tos->constraint == ONLY_IF_RO))
3534 {
3535 tos->constraint = -1;
3536 break;
3537 }
3538 }
3539 map_input_to_output_sections (tos->children.head,
3540 target,
3541 tos);
3542 break;
3543 case lang_output_statement_enum:
3544 break;
3545 case lang_target_statement_enum:
3546 target = s->target_statement.target;
3547 break;
3548 case lang_group_statement_enum:
3549 map_input_to_output_sections (s->group_statement.children.head,
3550 target,
3551 os);
3552 break;
3553 case lang_data_statement_enum:
3554 /* Make sure that any sections mentioned in the expression
3555 are initialized. */
3556 exp_init_os (s->data_statement.exp);
3557 /* The output section gets CONTENTS, ALLOC and LOAD, but
3558 these may be overridden by the script. */
3559 flags = SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD;
3560 switch (os->sectype)
3561 {
3562 case normal_section:
3563 case overlay_section:
3564 break;
3565 case noalloc_section:
3566 flags = SEC_HAS_CONTENTS;
3567 break;
3568 case noload_section:
3569 if (bfd_get_flavour (link_info.output_bfd)
3570 == bfd_target_elf_flavour)
3571 flags = SEC_NEVER_LOAD | SEC_ALLOC;
3572 else
3573 flags = SEC_NEVER_LOAD | SEC_HAS_CONTENTS;
3574 break;
3575 }
3576 if (os->bfd_section == NULL)
3577 init_os (os, flags);
3578 else
3579 os->bfd_section->flags |= flags;
3580 break;
3581 case lang_input_section_enum:
3582 break;
3583 case lang_fill_statement_enum:
3584 case lang_object_symbols_statement_enum:
3585 case lang_reloc_statement_enum:
3586 case lang_padding_statement_enum:
3587 case lang_input_statement_enum:
3588 if (os != NULL && os->bfd_section == NULL)
3589 init_os (os, 0);
3590 break;
3591 case lang_assignment_statement_enum:
3592 if (os != NULL && os->bfd_section == NULL)
3593 init_os (os, 0);
3594
3595 /* Make sure that any sections mentioned in the assignment
3596 are initialized. */
3597 exp_init_os (s->assignment_statement.exp);
3598 break;
3599 case lang_address_statement_enum:
3600 /* Mark the specified section with the supplied address.
3601 If this section was actually a segment marker, then the
3602 directive is ignored if the linker script explicitly
3603 processed the segment marker. Originally, the linker
3604 treated segment directives (like -Ttext on the
3605 command-line) as section directives. We honor the
3606 section directive semantics for backwards compatibilty;
3607 linker scripts that do not specifically check for
3608 SEGMENT_START automatically get the old semantics. */
3609 if (!s->address_statement.segment
3610 || !s->address_statement.segment->used)
3611 {
3612 const char *name = s->address_statement.section_name;
3613
3614 /* Create the output section statement here so that
3615 orphans with a set address will be placed after other
3616 script sections. If we let the orphan placement code
3617 place them in amongst other sections then the address
3618 will affect following script sections, which is
3619 likely to surprise naive users. */
3620 tos = lang_output_section_statement_lookup (name, 0, TRUE);
3621 tos->addr_tree = s->address_statement.address;
3622 if (tos->bfd_section == NULL)
3623 init_os (tos, 0);
3624 }
3625 break;
3626 case lang_insert_statement_enum:
3627 break;
3628 }
3629 }
3630 }
3631
3632 /* An insert statement snips out all the linker statements from the
3633 start of the list and places them after the output section
3634 statement specified by the insert. This operation is complicated
3635 by the fact that we keep a doubly linked list of output section
3636 statements as well as the singly linked list of all statements. */
3637
3638 static void
3639 process_insert_statements (void)
3640 {
3641 lang_statement_union_type **s;
3642 lang_output_section_statement_type *first_os = NULL;
3643 lang_output_section_statement_type *last_os = NULL;
3644 lang_output_section_statement_type *os;
3645
3646 /* "start of list" is actually the statement immediately after
3647 the special abs_section output statement, so that it isn't
3648 reordered. */
3649 s = &lang_output_section_statement.head;
3650 while (*(s = &(*s)->header.next) != NULL)
3651 {
3652 if ((*s)->header.type == lang_output_section_statement_enum)
3653 {
3654 /* Keep pointers to the first and last output section
3655 statement in the sequence we may be about to move. */
3656 os = &(*s)->output_section_statement;
3657
3658 ASSERT (last_os == NULL || last_os->next == os);
3659 last_os = os;
3660
3661 /* Set constraint negative so that lang_output_section_find
3662 won't match this output section statement. At this
3663 stage in linking constraint has values in the range
3664 [-1, ONLY_IN_RW]. */
3665 last_os->constraint = -2 - last_os->constraint;
3666 if (first_os == NULL)
3667 first_os = last_os;
3668 }
3669 else if ((*s)->header.type == lang_insert_statement_enum)
3670 {
3671 lang_insert_statement_type *i = &(*s)->insert_statement;
3672 lang_output_section_statement_type *where;
3673 lang_statement_union_type **ptr;
3674 lang_statement_union_type *first;
3675
3676 where = lang_output_section_find (i->where);
3677 if (where != NULL && i->is_before)
3678 {
3679 do
3680 where = where->prev;
3681 while (where != NULL && where->constraint < 0);
3682 }
3683 if (where == NULL)
3684 {
3685 einfo (_("%F%P: %s not found for insert\n"), i->where);
3686 return;
3687 }
3688
3689 /* Deal with reordering the output section statement list. */
3690 if (last_os != NULL)
3691 {
3692 asection *first_sec, *last_sec;
3693 struct lang_output_section_statement_struct **next;
3694
3695 /* Snip out the output sections we are moving. */
3696 first_os->prev->next = last_os->next;
3697 if (last_os->next == NULL)
3698 {
3699 next = &first_os->prev->next;
3700 lang_output_section_statement.tail
3701 = (lang_statement_union_type **) next;
3702 }
3703 else
3704 last_os->next->prev = first_os->prev;
3705 /* Add them in at the new position. */
3706 last_os->next = where->next;
3707 if (where->next == NULL)
3708 {
3709 next = &last_os->next;
3710 lang_output_section_statement.tail
3711 = (lang_statement_union_type **) next;
3712 }
3713 else
3714 where->next->prev = last_os;
3715 first_os->prev = where;
3716 where->next = first_os;
3717
3718 /* Move the bfd sections in the same way. */
3719 first_sec = NULL;
3720 last_sec = NULL;
3721 for (os = first_os; os != NULL; os = os->next)
3722 {
3723 os->constraint = -2 - os->constraint;
3724 if (os->bfd_section != NULL
3725 && os->bfd_section->owner != NULL)
3726 {
3727 last_sec = os->bfd_section;
3728 if (first_sec == NULL)
3729 first_sec = last_sec;
3730 }
3731 if (os == last_os)
3732 break;
3733 }
3734 if (last_sec != NULL)
3735 {
3736 asection *sec = where->bfd_section;
3737 if (sec == NULL)
3738 sec = output_prev_sec_find (where);
3739
3740 /* The place we want to insert must come after the
3741 sections we are moving. So if we find no
3742 section or if the section is the same as our
3743 last section, then no move is needed. */
3744 if (sec != NULL && sec != last_sec)
3745 {
3746 /* Trim them off. */
3747 if (first_sec->prev != NULL)
3748 first_sec->prev->next = last_sec->next;
3749 else
3750 link_info.output_bfd->sections = last_sec->next;
3751 if (last_sec->next != NULL)
3752 last_sec->next->prev = first_sec->prev;
3753 else
3754 link_info.output_bfd->section_last = first_sec->prev;
3755 /* Add back. */
3756 last_sec->next = sec->next;
3757 if (sec->next != NULL)
3758 sec->next->prev = last_sec;
3759 else
3760 link_info.output_bfd->section_last = last_sec;
3761 first_sec->prev = sec;
3762 sec->next = first_sec;
3763 }
3764 }
3765
3766 first_os = NULL;
3767 last_os = NULL;
3768 }
3769
3770 ptr = insert_os_after (where);
3771 /* Snip everything after the abs_section output statement we
3772 know is at the start of the list, up to and including
3773 the insert statement we are currently processing. */
3774 first = lang_output_section_statement.head->header.next;
3775 lang_output_section_statement.head->header.next = (*s)->header.next;
3776 /* Add them back where they belong. */
3777 *s = *ptr;
3778 if (*s == NULL)
3779 statement_list.tail = s;
3780 *ptr = first;
3781 s = &lang_output_section_statement.head;
3782 }
3783 }
3784
3785 /* Undo constraint twiddling. */
3786 for (os = first_os; os != NULL; os = os->next)
3787 {
3788 os->constraint = -2 - os->constraint;
3789 if (os == last_os)
3790 break;
3791 }
3792 }
3793
3794 /* An output section might have been removed after its statement was
3795 added. For example, ldemul_before_allocation can remove dynamic
3796 sections if they turn out to be not needed. Clean them up here. */
3797
3798 void
3799 strip_excluded_output_sections (void)
3800 {
3801 lang_output_section_statement_type *os;
3802
3803 /* Run lang_size_sections (if not already done). */
3804 if (expld.phase != lang_mark_phase_enum)
3805 {
3806 expld.phase = lang_mark_phase_enum;
3807 expld.dataseg.phase = exp_dataseg_none;
3808 one_lang_size_sections_pass (NULL, FALSE);
3809 lang_reset_memory_regions ();
3810 }
3811
3812 for (os = &lang_output_section_statement.head->output_section_statement;
3813 os != NULL;
3814 os = os->next)
3815 {
3816 asection *output_section;
3817 bfd_boolean exclude;
3818
3819 if (os->constraint < 0)
3820 continue;
3821
3822 output_section = os->bfd_section;
3823 if (output_section == NULL)
3824 continue;
3825
3826 exclude = (output_section->rawsize == 0
3827 && (output_section->flags & SEC_KEEP) == 0
3828 && !bfd_section_removed_from_list (link_info.output_bfd,
3829 output_section));
3830
3831 /* Some sections have not yet been sized, notably .gnu.version,
3832 .dynsym, .dynstr and .hash. These all have SEC_LINKER_CREATED
3833 input sections, so don't drop output sections that have such
3834 input sections unless they are also marked SEC_EXCLUDE. */
3835 if (exclude && output_section->map_head.s != NULL)
3836 {
3837 asection *s;
3838
3839 for (s = output_section->map_head.s; s != NULL; s = s->map_head.s)
3840 if ((s->flags & SEC_LINKER_CREATED) != 0
3841 && (s->flags & SEC_EXCLUDE) == 0)
3842 {
3843 exclude = FALSE;
3844 break;
3845 }
3846 }
3847
3848 /* TODO: Don't just junk map_head.s, turn them into link_orders. */
3849 output_section->map_head.link_order = NULL;
3850 output_section->map_tail.link_order = NULL;
3851
3852 if (exclude)
3853 {
3854 /* We don't set bfd_section to NULL since bfd_section of the
3855 removed output section statement may still be used. */
3856 if (!os->section_relative_symbol
3857 && !os->update_dot_tree)
3858 os->ignored = TRUE;
3859 output_section->flags |= SEC_EXCLUDE;
3860 bfd_section_list_remove (link_info.output_bfd, output_section);
3861 link_info.output_bfd->section_count--;
3862 }
3863 }
3864
3865 /* Stop future calls to lang_add_section from messing with map_head
3866 and map_tail link_order fields. */
3867 stripped_excluded_sections = TRUE;
3868 }
3869
3870 static void
3871 print_output_section_statement
3872 (lang_output_section_statement_type *output_section_statement)
3873 {
3874 asection *section = output_section_statement->bfd_section;
3875 int len;
3876
3877 if (output_section_statement != abs_output_section)
3878 {
3879 minfo ("\n%s", output_section_statement->name);
3880
3881 if (section != NULL)
3882 {
3883 print_dot = section->vma;
3884
3885 len = strlen (output_section_statement->name);
3886 if (len >= SECTION_NAME_MAP_LENGTH - 1)
3887 {
3888 print_nl ();
3889 len = 0;
3890 }
3891 while (len < SECTION_NAME_MAP_LENGTH)
3892 {
3893 print_space ();
3894 ++len;
3895 }
3896
3897 minfo ("0x%V %W", section->vma, section->size);
3898
3899 if (section->vma != section->lma)
3900 minfo (_(" load address 0x%V"), section->lma);
3901
3902 if (output_section_statement->update_dot_tree != NULL)
3903 exp_fold_tree (output_section_statement->update_dot_tree,
3904 bfd_abs_section_ptr, &print_dot);
3905 }
3906
3907 print_nl ();
3908 }
3909
3910 print_statement_list (output_section_statement->children.head,
3911 output_section_statement);
3912 }
3913
3914 /* Scan for the use of the destination in the right hand side
3915 of an expression. In such cases we will not compute the
3916 correct expression, since the value of DST that is used on
3917 the right hand side will be its final value, not its value
3918 just before this expression is evaluated. */
3919
3920 static bfd_boolean
3921 scan_for_self_assignment (const char * dst, etree_type * rhs)
3922 {
3923 if (rhs == NULL || dst == NULL)
3924 return FALSE;
3925
3926 switch (rhs->type.node_class)
3927 {
3928 case etree_binary:
3929 return (scan_for_self_assignment (dst, rhs->binary.lhs)
3930 || scan_for_self_assignment (dst, rhs->binary.rhs));
3931
3932 case etree_trinary:
3933 return (scan_for_self_assignment (dst, rhs->trinary.lhs)
3934 || scan_for_self_assignment (dst, rhs->trinary.rhs));
3935
3936 case etree_assign:
3937 case etree_provided:
3938 case etree_provide:
3939 if (strcmp (dst, rhs->assign.dst) == 0)
3940 return TRUE;
3941 return scan_for_self_assignment (dst, rhs->assign.src);
3942
3943 case etree_unary:
3944 return scan_for_self_assignment (dst, rhs->unary.child);
3945
3946 case etree_value:
3947 if (rhs->value.str)
3948 return strcmp (dst, rhs->value.str) == 0;
3949 return FALSE;
3950
3951 case etree_name:
3952 if (rhs->name.name)
3953 return strcmp (dst, rhs->name.name) == 0;
3954 return FALSE;
3955
3956 default:
3957 break;
3958 }
3959
3960 return FALSE;
3961 }
3962
3963
3964 static void
3965 print_assignment (lang_assignment_statement_type *assignment,
3966 lang_output_section_statement_type *output_section)
3967 {
3968 unsigned int i;
3969 bfd_boolean is_dot;
3970 bfd_boolean computation_is_valid = TRUE;
3971 etree_type *tree;
3972 asection *osec;
3973
3974 for (i = 0; i < SECTION_NAME_MAP_LENGTH; i++)
3975 print_space ();
3976
3977 if (assignment->exp->type.node_class == etree_assert)
3978 {
3979 is_dot = FALSE;
3980 tree = assignment->exp->assert_s.child;
3981 computation_is_valid = TRUE;
3982 }
3983 else
3984 {
3985 const char *dst = assignment->exp->assign.dst;
3986
3987 is_dot = (dst[0] == '.' && dst[1] == 0);
3988 tree = assignment->exp->assign.src;
3989 computation_is_valid = is_dot || !scan_for_self_assignment (dst, tree);
3990 }
3991
3992 osec = output_section->bfd_section;
3993 if (osec == NULL)
3994 osec = bfd_abs_section_ptr;
3995 exp_fold_tree (tree, osec, &print_dot);
3996 if (expld.result.valid_p)
3997 {
3998 bfd_vma value;
3999
4000 if (computation_is_valid)
4001 {
4002 value = expld.result.value;
4003
4004 if (expld.result.section != NULL)
4005 value += expld.result.section->vma;
4006
4007 minfo ("0x%V", value);
4008 if (is_dot)
4009 print_dot = value;
4010 }
4011 else
4012 {
4013 struct bfd_link_hash_entry *h;
4014
4015 h = bfd_link_hash_lookup (link_info.hash, assignment->exp->assign.dst,
4016 FALSE, FALSE, TRUE);
4017 if (h)
4018 {
4019 value = h->u.def.value;
4020
4021 if (expld.result.section != NULL)
4022 value += expld.result.section->vma;
4023
4024 minfo ("[0x%V]", value);
4025 }
4026 else
4027 minfo ("[unresolved]");
4028 }
4029 }
4030 else
4031 {
4032 minfo ("*undef* ");
4033 #ifdef BFD64
4034 minfo (" ");
4035 #endif
4036 }
4037
4038 minfo (" ");
4039 exp_print_tree (assignment->exp);
4040 print_nl ();
4041 }
4042
4043 static void
4044 print_input_statement (lang_input_statement_type *statm)
4045 {
4046 if (statm->filename != NULL
4047 && (statm->the_bfd == NULL
4048 || (statm->the_bfd->flags & BFD_LINKER_CREATED) == 0))
4049 fprintf (config.map_file, "LOAD %s\n", statm->filename);
4050 }
4051
4052 /* Print all symbols defined in a particular section. This is called
4053 via bfd_link_hash_traverse, or by print_all_symbols. */
4054
4055 static bfd_boolean
4056 print_one_symbol (struct bfd_link_hash_entry *hash_entry, void *ptr)
4057 {
4058 asection *sec = (asection *) ptr;
4059
4060 if ((hash_entry->type == bfd_link_hash_defined
4061 || hash_entry->type == bfd_link_hash_defweak)
4062 && sec == hash_entry->u.def.section)
4063 {
4064 int i;
4065
4066 for (i = 0; i < SECTION_NAME_MAP_LENGTH; i++)
4067 print_space ();
4068 minfo ("0x%V ",
4069 (hash_entry->u.def.value
4070 + hash_entry->u.def.section->output_offset
4071 + hash_entry->u.def.section->output_section->vma));
4072
4073 minfo (" %T\n", hash_entry->root.string);
4074 }
4075
4076 return TRUE;
4077 }
4078
4079 static int
4080 hash_entry_addr_cmp (const void *a, const void *b)
4081 {
4082 const struct bfd_link_hash_entry *l = *(const struct bfd_link_hash_entry **)a;
4083 const struct bfd_link_hash_entry *r = *(const struct bfd_link_hash_entry **)b;
4084
4085 if (l->u.def.value < r->u.def.value)
4086 return -1;
4087 else if (l->u.def.value > r->u.def.value)
4088 return 1;
4089 else
4090 return 0;
4091 }
4092
4093 static void
4094 print_all_symbols (asection *sec)
4095 {
4096 struct fat_user_section_struct *ud =
4097 (struct fat_user_section_struct *) get_userdata (sec);
4098 struct map_symbol_def *def;
4099 struct bfd_link_hash_entry **entries;
4100 unsigned int i;
4101
4102 if (!ud)
4103 return;
4104
4105 *ud->map_symbol_def_tail = 0;
4106
4107 /* Sort the symbols by address. */
4108 entries = (struct bfd_link_hash_entry **)
4109 obstack_alloc (&map_obstack, ud->map_symbol_def_count * sizeof (*entries));
4110
4111 for (i = 0, def = ud->map_symbol_def_head; def; def = def->next, i++)
4112 entries[i] = def->entry;
4113
4114 qsort (entries, ud->map_symbol_def_count, sizeof (*entries),
4115 hash_entry_addr_cmp);
4116
4117 /* Print the symbols. */
4118 for (i = 0; i < ud->map_symbol_def_count; i++)
4119 print_one_symbol (entries[i], sec);
4120
4121 obstack_free (&map_obstack, entries);
4122 }
4123
4124 /* Print information about an input section to the map file. */
4125
4126 static void
4127 print_input_section (asection *i, bfd_boolean is_discarded)
4128 {
4129 bfd_size_type size = i->size;
4130 int len;
4131 bfd_vma addr;
4132
4133 init_opb ();
4134
4135 print_space ();
4136 minfo ("%s", i->name);
4137
4138 len = 1 + strlen (i->name);
4139 if (len >= SECTION_NAME_MAP_LENGTH - 1)
4140 {
4141 print_nl ();
4142 len = 0;
4143 }
4144 while (len < SECTION_NAME_MAP_LENGTH)
4145 {
4146 print_space ();
4147 ++len;
4148 }
4149
4150 if (i->output_section != NULL
4151 && i->output_section->owner == link_info.output_bfd)
4152 addr = i->output_section->vma + i->output_offset;
4153 else
4154 {
4155 addr = print_dot;
4156 if (!is_discarded)
4157 size = 0;
4158 }
4159
4160 minfo ("0x%V %W %B\n", addr, TO_ADDR (size), i->owner);
4161
4162 if (size != i->rawsize && i->rawsize != 0)
4163 {
4164 len = SECTION_NAME_MAP_LENGTH + 3;
4165 #ifdef BFD64
4166 len += 16;
4167 #else
4168 len += 8;
4169 #endif
4170 while (len > 0)
4171 {
4172 print_space ();
4173 --len;
4174 }
4175
4176 minfo (_("%W (size before relaxing)\n"), i->rawsize);
4177 }
4178
4179 if (i->output_section != NULL
4180 && i->output_section->owner == link_info.output_bfd)
4181 {
4182 if (link_info.reduce_memory_overheads)
4183 bfd_link_hash_traverse (link_info.hash, print_one_symbol, i);
4184 else
4185 print_all_symbols (i);
4186
4187 /* Update print_dot, but make sure that we do not move it
4188 backwards - this could happen if we have overlays and a
4189 later overlay is shorter than an earier one. */
4190 if (addr + TO_ADDR (size) > print_dot)
4191 print_dot = addr + TO_ADDR (size);
4192 }
4193 }
4194
4195 static void
4196 print_fill_statement (lang_fill_statement_type *fill)
4197 {
4198 size_t size;
4199 unsigned char *p;
4200 fputs (" FILL mask 0x", config.map_file);
4201 for (p = fill->fill->data, size = fill->fill->size; size != 0; p++, size--)
4202 fprintf (config.map_file, "%02x", *p);
4203 fputs ("\n", config.map_file);
4204 }
4205
4206 static void
4207 print_data_statement (lang_data_statement_type *data)
4208 {
4209 int i;
4210 bfd_vma addr;
4211 bfd_size_type size;
4212 const char *name;
4213
4214 init_opb ();
4215 for (i = 0; i < SECTION_NAME_MAP_LENGTH; i++)
4216 print_space ();
4217
4218 addr = data->output_offset;
4219 if (data->output_section != NULL)
4220 addr += data->output_section->vma;
4221
4222 switch (data->type)
4223 {
4224 default:
4225 abort ();
4226 case BYTE:
4227 size = BYTE_SIZE;
4228 name = "BYTE";
4229 break;
4230 case SHORT:
4231 size = SHORT_SIZE;
4232 name = "SHORT";
4233 break;
4234 case LONG:
4235 size = LONG_SIZE;
4236 name = "LONG";
4237 break;
4238 case QUAD:
4239 size = QUAD_SIZE;
4240 name = "QUAD";
4241 break;
4242 case SQUAD:
4243 size = QUAD_SIZE;
4244 name = "SQUAD";
4245 break;
4246 }
4247
4248 minfo ("0x%V %W %s 0x%v", addr, size, name, data->value);
4249
4250 if (data->exp->type.node_class != etree_value)
4251 {
4252 print_space ();
4253 exp_print_tree (data->exp);
4254 }
4255
4256 print_nl ();
4257
4258 print_dot = addr + TO_ADDR (size);
4259 }
4260
4261 /* Print an address statement. These are generated by options like
4262 -Ttext. */
4263
4264 static void
4265 print_address_statement (lang_address_statement_type *address)
4266 {
4267 minfo (_("Address of section %s set to "), address->section_name);
4268 exp_print_tree (address->address);
4269 print_nl ();
4270 }
4271
4272 /* Print a reloc statement. */
4273
4274 static void
4275 print_reloc_statement (lang_reloc_statement_type *reloc)
4276 {
4277 int i;
4278 bfd_vma addr;
4279 bfd_size_type size;
4280
4281 init_opb ();
4282 for (i = 0; i < SECTION_NAME_MAP_LENGTH; i++)
4283 print_space ();
4284
4285 addr = reloc->output_offset;
4286 if (reloc->output_section != NULL)
4287 addr += reloc->output_section->vma;
4288
4289 size = bfd_get_reloc_size (reloc->howto);
4290
4291 minfo ("0x%V %W RELOC %s ", addr, size, reloc->howto->name);
4292
4293 if (reloc->name != NULL)
4294 minfo ("%s+", reloc->name);
4295 else
4296 minfo ("%s+", reloc->section->name);
4297
4298 exp_print_tree (reloc->addend_exp);
4299
4300 print_nl ();
4301
4302 print_dot = addr + TO_ADDR (size);
4303 }
4304
4305 static void
4306 print_padding_statement (lang_padding_statement_type *s)
4307 {
4308 int len;
4309 bfd_vma addr;
4310
4311 init_opb ();
4312 minfo (" *fill*");
4313
4314 len = sizeof " *fill*" - 1;
4315 while (len < SECTION_NAME_MAP_LENGTH)
4316 {
4317 print_space ();
4318 ++len;
4319 }
4320
4321 addr = s->output_offset;
4322 if (s->output_section != NULL)
4323 addr += s->output_section->vma;
4324 minfo ("0x%V %W ", addr, (bfd_vma) s->size);
4325
4326 if (s->fill->size != 0)
4327 {
4328 size_t size;
4329 unsigned char *p;
4330 for (p = s->fill->data, size = s->fill->size; size != 0; p++, size--)
4331 fprintf (config.map_file, "%02x", *p);
4332 }
4333
4334 print_nl ();
4335
4336 print_dot = addr + TO_ADDR (s->size);
4337 }
4338
4339 static void
4340 print_wild_statement (lang_wild_statement_type *w,
4341 lang_output_section_statement_type *os)
4342 {
4343 struct wildcard_list *sec;
4344
4345 print_space ();
4346
4347 if (w->filenames_sorted)
4348 minfo ("SORT(");
4349 if (w->filename != NULL)
4350 minfo ("%s", w->filename);
4351 else
4352 minfo ("*");
4353 if (w->filenames_sorted)
4354 minfo (")");
4355
4356 minfo ("(");
4357 for (sec = w->section_list; sec; sec = sec->next)
4358 {
4359 if (sec->spec.sorted)
4360 minfo ("SORT(");
4361 if (sec->spec.exclude_name_list != NULL)
4362 {
4363 name_list *tmp;
4364 minfo ("EXCLUDE_FILE(%s", sec->spec.exclude_name_list->name);
4365 for (tmp = sec->spec.exclude_name_list->next; tmp; tmp = tmp->next)
4366 minfo (" %s", tmp->name);
4367 minfo (") ");
4368 }
4369 if (sec->spec.name != NULL)
4370 minfo ("%s", sec->spec.name);
4371 else
4372 minfo ("*");
4373 if (sec->spec.sorted)
4374 minfo (")");
4375 if (sec->next)
4376 minfo (" ");
4377 }
4378 minfo (")");
4379
4380 print_nl ();
4381
4382 print_statement_list (w->children.head, os);
4383 }
4384
4385 /* Print a group statement. */
4386
4387 static void
4388 print_group (lang_group_statement_type *s,
4389 lang_output_section_statement_type *os)
4390 {
4391 fprintf (config.map_file, "START GROUP\n");
4392 print_statement_list (s->children.head, os);
4393 fprintf (config.map_file, "END GROUP\n");
4394 }
4395
4396 /* Print the list of statements in S.
4397 This can be called for any statement type. */
4398
4399 static void
4400 print_statement_list (lang_statement_union_type *s,
4401 lang_output_section_statement_type *os)
4402 {
4403 while (s != NULL)
4404 {
4405 print_statement (s, os);
4406 s = s->header.next;
4407 }
4408 }
4409
4410 /* Print the first statement in statement list S.
4411 This can be called for any statement type. */
4412
4413 static void
4414 print_statement (lang_statement_union_type *s,
4415 lang_output_section_statement_type *os)
4416 {
4417 switch (s->header.type)
4418 {
4419 default:
4420 fprintf (config.map_file, _("Fail with %d\n"), s->header.type);
4421 FAIL ();
4422 break;
4423 case lang_constructors_statement_enum:
4424 if (constructor_list.head != NULL)
4425 {
4426 if (constructors_sorted)
4427 minfo (" SORT (CONSTRUCTORS)\n");
4428 else
4429 minfo (" CONSTRUCTORS\n");
4430 print_statement_list (constructor_list.head, os);
4431 }
4432 break;
4433 case lang_wild_statement_enum:
4434 print_wild_statement (&s->wild_statement, os);
4435 break;
4436 case lang_address_statement_enum:
4437 print_address_statement (&s->address_statement);
4438 break;
4439 case lang_object_symbols_statement_enum:
4440 minfo (" CREATE_OBJECT_SYMBOLS\n");
4441 break;
4442 case lang_fill_statement_enum:
4443 print_fill_statement (&s->fill_statement);
4444 break;
4445 case lang_data_statement_enum:
4446 print_data_statement (&s->data_statement);
4447 break;
4448 case lang_reloc_statement_enum:
4449 print_reloc_statement (&s->reloc_statement);
4450 break;
4451 case lang_input_section_enum:
4452 print_input_section (s->input_section.section, FALSE);
4453 break;
4454 case lang_padding_statement_enum:
4455 print_padding_statement (&s->padding_statement);
4456 break;
4457 case lang_output_section_statement_enum:
4458 print_output_section_statement (&s->output_section_statement);
4459 break;
4460 case lang_assignment_statement_enum:
4461 print_assignment (&s->assignment_statement, os);
4462 break;
4463 case lang_target_statement_enum:
4464 fprintf (config.map_file, "TARGET(%s)\n", s->target_statement.target);
4465 break;
4466 case lang_output_statement_enum:
4467 minfo ("OUTPUT(%s", s->output_statement.name);
4468 if (output_target != NULL)
4469 minfo (" %s", output_target);
4470 minfo (")\n");
4471 break;
4472 case lang_input_statement_enum:
4473 print_input_statement (&s->input_statement);
4474 break;
4475 case lang_group_statement_enum:
4476 print_group (&s->group_statement, os);
4477 break;
4478 case lang_insert_statement_enum:
4479 minfo ("INSERT %s %s\n",
4480 s->insert_statement.is_before ? "BEFORE" : "AFTER",
4481 s->insert_statement.where);
4482 break;
4483 }
4484 }
4485
4486 static void
4487 print_statements (void)
4488 {
4489 print_statement_list (statement_list.head, abs_output_section);
4490 }
4491
4492 /* Print the first N statements in statement list S to STDERR.
4493 If N == 0, nothing is printed.
4494 If N < 0, the entire list is printed.
4495 Intended to be called from GDB. */
4496
4497 void
4498 dprint_statement (lang_statement_union_type *s, int n)
4499 {
4500 FILE *map_save = config.map_file;
4501
4502 config.map_file = stderr;
4503
4504 if (n < 0)
4505 print_statement_list (s, abs_output_section);
4506 else
4507 {
4508 while (s && --n >= 0)
4509 {
4510 print_statement (s, abs_output_section);
4511 s = s->header.next;
4512 }
4513 }
4514
4515 config.map_file = map_save;
4516 }
4517
4518 static void
4519 insert_pad (lang_statement_union_type **ptr,
4520 fill_type *fill,
4521 unsigned int alignment_needed,
4522 asection *output_section,
4523 bfd_vma dot)
4524 {
4525 static fill_type zero_fill = { 1, { 0 } };
4526 lang_statement_union_type *pad = NULL;
4527
4528 if (ptr != &statement_list.head)
4529 pad = ((lang_statement_union_type *)
4530 ((char *) ptr - offsetof (lang_statement_union_type, header.next)));
4531 if (pad != NULL
4532 && pad->header.type == lang_padding_statement_enum
4533 && pad->padding_statement.output_section == output_section)
4534 {
4535 /* Use the existing pad statement. */
4536 }
4537 else if ((pad = *ptr) != NULL
4538 && pad->header.type == lang_padding_statement_enum
4539 && pad->padding_statement.output_section == output_section)
4540 {
4541 /* Use the existing pad statement. */
4542 }
4543 else
4544 {
4545 /* Make a new padding statement, linked into existing chain. */
4546 pad = (lang_statement_union_type *)
4547 stat_alloc (sizeof (lang_padding_statement_type));
4548 pad->header.next = *ptr;
4549 *ptr = pad;
4550 pad->header.type = lang_padding_statement_enum;
4551 pad->padding_statement.output_section = output_section;
4552 if (fill == NULL)
4553 fill = &zero_fill;
4554 pad->padding_statement.fill = fill;
4555 }
4556 pad->padding_statement.output_offset = dot - output_section->vma;
4557 pad->padding_statement.size = alignment_needed;
4558 output_section->size += alignment_needed;
4559 }
4560
4561 /* Work out how much this section will move the dot point. */
4562
4563 static bfd_vma
4564 size_input_section
4565 (lang_statement_union_type **this_ptr,
4566 lang_output_section_statement_type *output_section_statement,
4567 fill_type *fill,
4568 bfd_vma dot)
4569 {
4570 lang_input_section_type *is = &((*this_ptr)->input_section);
4571 asection *i = is->section;
4572
4573 if (!((lang_input_statement_type *) i->owner->usrdata)->just_syms_flag
4574 && (i->flags & SEC_EXCLUDE) == 0)
4575 {
4576 unsigned int alignment_needed;
4577 asection *o;
4578
4579 /* Align this section first to the input sections requirement,
4580 then to the output section's requirement. If this alignment
4581 is greater than any seen before, then record it too. Perform
4582 the alignment by inserting a magic 'padding' statement. */
4583
4584 if (output_section_statement->subsection_alignment != -1)
4585 i->alignment_power = output_section_statement->subsection_alignment;
4586
4587 o = output_section_statement->bfd_section;
4588 if (o->alignment_power < i->alignment_power)
4589 o->alignment_power = i->alignment_power;
4590
4591 alignment_needed = align_power (dot, i->alignment_power) - dot;
4592
4593 if (alignment_needed != 0)
4594 {
4595 insert_pad (this_ptr, fill, TO_SIZE (alignment_needed), o, dot);
4596 dot += alignment_needed;
4597 }
4598
4599 /* Remember where in the output section this input section goes. */
4600
4601 i->output_offset = dot - o->vma;
4602
4603 /* Mark how big the output section must be to contain this now. */
4604 dot += TO_ADDR (i->size);
4605 o->size = TO_SIZE (dot - o->vma);
4606 }
4607 else
4608 {
4609 i->output_offset = i->vma - output_section_statement->bfd_section->vma;
4610 }
4611
4612 return dot;
4613 }
4614
4615 static int
4616 sort_sections_by_lma (const void *arg1, const void *arg2)
4617 {
4618 const asection *sec1 = *(const asection **) arg1;
4619 const asection *sec2 = *(const asection **) arg2;
4620
4621 if (bfd_section_lma (sec1->owner, sec1)
4622 < bfd_section_lma (sec2->owner, sec2))
4623 return -1;
4624 else if (bfd_section_lma (sec1->owner, sec1)
4625 > bfd_section_lma (sec2->owner, sec2))
4626 return 1;
4627 else if (sec1->id < sec2->id)
4628 return -1;
4629 else if (sec1->id > sec2->id)
4630 return 1;
4631
4632 return 0;
4633 }
4634
4635 #define IGNORE_SECTION(s) \
4636 ((s->flags & SEC_ALLOC) == 0 \
4637 || ((s->flags & SEC_THREAD_LOCAL) != 0 \
4638 && (s->flags & SEC_LOAD) == 0))
4639
4640 /* Check to see if any allocated sections overlap with other allocated
4641 sections. This can happen if a linker script specifies the output
4642 section addresses of the two sections. Also check whether any memory
4643 region has overflowed. */
4644
4645 static void
4646 lang_check_section_addresses (void)
4647 {
4648 asection *s, *p;
4649 asection **sections, **spp;
4650 unsigned int count;
4651 bfd_vma s_start;
4652 bfd_vma s_end;
4653 bfd_vma p_start;
4654 bfd_vma p_end;
4655 bfd_size_type amt;
4656 lang_memory_region_type *m;
4657
4658 if (bfd_count_sections (link_info.output_bfd) <= 1)
4659 return;
4660
4661 amt = bfd_count_sections (link_info.output_bfd) * sizeof (asection *);
4662 sections = (asection **) xmalloc (amt);
4663
4664 /* Scan all sections in the output list. */
4665 count = 0;
4666 for (s = link_info.output_bfd->sections; s != NULL; s = s->next)
4667 {
4668 /* Only consider loadable sections with real contents. */
4669 if (!(s->flags & SEC_LOAD)
4670 || !(s->flags & SEC_ALLOC)
4671 || s->size == 0)
4672 continue;
4673
4674 sections[count] = s;
4675 count++;
4676 }
4677
4678 if (count <= 1)
4679 return;
4680
4681 qsort (sections, (size_t) count, sizeof (asection *),
4682 sort_sections_by_lma);
4683
4684 spp = sections;
4685 s = *spp++;
4686 s_start = s->lma;
4687 s_end = s_start + TO_ADDR (s->size) - 1;
4688 for (count--; count; count--)
4689 {
4690 /* We must check the sections' LMA addresses not their VMA
4691 addresses because overlay sections can have overlapping VMAs
4692 but they must have distinct LMAs. */
4693 p = s;
4694 p_start = s_start;
4695 p_end = s_end;
4696 s = *spp++;
4697 s_start = s->lma;
4698 s_end = s_start + TO_ADDR (s->size) - 1;
4699
4700 /* Look for an overlap. We have sorted sections by lma, so we
4701 know that s_start >= p_start. Besides the obvious case of
4702 overlap when the current section starts before the previous
4703 one ends, we also must have overlap if the previous section
4704 wraps around the address space. */
4705 if (s_start <= p_end
4706 || p_end < p_start)
4707 einfo (_("%X%P: section %s loaded at [%V,%V] overlaps section %s loaded at [%V,%V]\n"),
4708 s->name, s_start, s_end, p->name, p_start, p_end);
4709 }
4710
4711 free (sections);
4712
4713 /* If any memory region has overflowed, report by how much.
4714 We do not issue this diagnostic for regions that had sections
4715 explicitly placed outside their bounds; os_region_check's
4716 diagnostics are adequate for that case.
4717
4718 FIXME: It is conceivable that m->current - (m->origin + m->length)
4719 might overflow a 32-bit integer. There is, alas, no way to print
4720 a bfd_vma quantity in decimal. */
4721 for (m = lang_memory_region_list; m; m = m->next)
4722 if (m->had_full_message)
4723 einfo (_("%X%P: region `%s' overflowed by %ld bytes\n"),
4724 m->name_list.name, (long)(m->current - (m->origin + m->length)));
4725
4726 }
4727
4728 /* Make sure the new address is within the region. We explicitly permit the
4729 current address to be at the exact end of the region when the address is
4730 non-zero, in case the region is at the end of addressable memory and the
4731 calculation wraps around. */
4732
4733 static void
4734 os_region_check (lang_output_section_statement_type *os,
4735 lang_memory_region_type *region,
4736 etree_type *tree,
4737 bfd_vma rbase)
4738 {
4739 if ((region->current < region->origin
4740 || (region->current - region->origin > region->length))
4741 && ((region->current != region->origin + region->length)
4742 || rbase == 0))
4743 {
4744 if (tree != NULL)
4745 {
4746 einfo (_("%X%P: address 0x%v of %B section `%s'"
4747 " is not within region `%s'\n"),
4748 region->current,
4749 os->bfd_section->owner,
4750 os->bfd_section->name,
4751 region->name_list.name);
4752 }
4753 else if (!region->had_full_message)
4754 {
4755 region->had_full_message = TRUE;
4756
4757 einfo (_("%X%P: %B section `%s' will not fit in region `%s'\n"),
4758 os->bfd_section->owner,
4759 os->bfd_section->name,
4760 region->name_list.name);
4761 }
4762 }
4763 }
4764
4765 /* Set the sizes for all the output sections. */
4766
4767 static bfd_vma
4768 lang_size_sections_1
4769 (lang_statement_union_type **prev,
4770 lang_output_section_statement_type *output_section_statement,
4771 fill_type *fill,
4772 bfd_vma dot,
4773 bfd_boolean *relax,
4774 bfd_boolean check_regions)
4775 {
4776 lang_statement_union_type *s;
4777
4778 /* Size up the sections from their constituent parts. */
4779 for (s = *prev; s != NULL; s = s->header.next)
4780 {
4781 switch (s->header.type)
4782 {
4783 case lang_output_section_statement_enum:
4784 {
4785 bfd_vma newdot, after;
4786 lang_output_section_statement_type *os;
4787 lang_memory_region_type *r;
4788 int section_alignment = 0;
4789
4790 os = &s->output_section_statement;
4791 if (os->constraint == -1)
4792 break;
4793
4794 /* FIXME: We shouldn't need to zero section vmas for ld -r
4795 here, in lang_insert_orphan, or in the default linker scripts.
4796 This is covering for coff backend linker bugs. See PR6945. */
4797 if (os->addr_tree == NULL
4798 && link_info.relocatable
4799 && (bfd_get_flavour (link_info.output_bfd)
4800 == bfd_target_coff_flavour))
4801 os->addr_tree = exp_intop (0);
4802 if (os->addr_tree != NULL)
4803 {
4804 os->processed_vma = FALSE;
4805 exp_fold_tree (os->addr_tree, bfd_abs_section_ptr, &dot);
4806
4807 if (expld.result.valid_p)
4808 {
4809 dot = expld.result.value;
4810 if (expld.result.section != NULL)
4811 dot += expld.result.section->vma;
4812 }
4813 else if (expld.phase != lang_mark_phase_enum)
4814 einfo (_("%F%S: non constant or forward reference"
4815 " address expression for section %s\n"),
4816 os->name);
4817 }
4818
4819 if (os->bfd_section == NULL)
4820 /* This section was removed or never actually created. */
4821 break;
4822
4823 /* If this is a COFF shared library section, use the size and
4824 address from the input section. FIXME: This is COFF
4825 specific; it would be cleaner if there were some other way
4826 to do this, but nothing simple comes to mind. */
4827 if (((bfd_get_flavour (link_info.output_bfd)
4828 == bfd_target_ecoff_flavour)
4829 || (bfd_get_flavour (link_info.output_bfd)
4830 == bfd_target_coff_flavour))
4831 && (os->bfd_section->flags & SEC_COFF_SHARED_LIBRARY) != 0)
4832 {
4833 asection *input;
4834
4835 if (os->children.head == NULL
4836 || os->children.head->header.next != NULL
4837 || (os->children.head->header.type
4838 != lang_input_section_enum))
4839 einfo (_("%P%X: Internal error on COFF shared library"
4840 " section %s\n"), os->name);
4841
4842 input = os->children.head->input_section.section;
4843 bfd_set_section_vma (os->bfd_section->owner,
4844 os->bfd_section,
4845 bfd_section_vma (input->owner, input));
4846 os->bfd_section->size = input->size;
4847 break;
4848 }
4849
4850 newdot = dot;
4851 if (bfd_is_abs_section (os->bfd_section))
4852 {
4853 /* No matter what happens, an abs section starts at zero. */
4854 ASSERT (os->bfd_section->vma == 0);
4855 }
4856 else
4857 {
4858 if (os->addr_tree == NULL)
4859 {
4860 /* No address specified for this section, get one
4861 from the region specification. */
4862 if (os->region == NULL
4863 || ((os->bfd_section->flags & (SEC_ALLOC | SEC_LOAD))
4864 && os->region->name_list.name[0] == '*'
4865 && strcmp (os->region->name_list.name,
4866 DEFAULT_MEMORY_REGION) == 0))
4867 {
4868 os->region = lang_memory_default (os->bfd_section);
4869 }
4870
4871 /* If a loadable section is using the default memory
4872 region, and some non default memory regions were
4873 defined, issue an error message. */
4874 if (!os->ignored
4875 && !IGNORE_SECTION (os->bfd_section)
4876 && ! link_info.relocatable
4877 && check_regions
4878 && strcmp (os->region->name_list.name,
4879 DEFAULT_MEMORY_REGION) == 0
4880 && lang_memory_region_list != NULL
4881 && (strcmp (lang_memory_region_list->name_list.name,
4882 DEFAULT_MEMORY_REGION) != 0
4883 || lang_memory_region_list->next != NULL)
4884 && expld.phase != lang_mark_phase_enum)
4885 {
4886 /* By default this is an error rather than just a
4887 warning because if we allocate the section to the
4888 default memory region we can end up creating an
4889 excessively large binary, or even seg faulting when
4890 attempting to perform a negative seek. See
4891 sources.redhat.com/ml/binutils/2003-04/msg00423.html
4892 for an example of this. This behaviour can be
4893 overridden by the using the --no-check-sections
4894 switch. */
4895 if (command_line.check_section_addresses)
4896 einfo (_("%P%F: error: no memory region specified"
4897 " for loadable section `%s'\n"),
4898 bfd_get_section_name (link_info.output_bfd,
4899 os->bfd_section));
4900 else
4901 einfo (_("%P: warning: no memory region specified"
4902 " for loadable section `%s'\n"),
4903 bfd_get_section_name (link_info.output_bfd,
4904 os->bfd_section));
4905 }
4906
4907 newdot = os->region->current;
4908 section_alignment = os->bfd_section->alignment_power;
4909 }
4910 else
4911 section_alignment = os->section_alignment;
4912
4913 /* Align to what the section needs. */
4914 if (section_alignment > 0)
4915 {
4916 bfd_vma savedot = newdot;
4917 newdot = align_power (newdot, section_alignment);
4918
4919 if (newdot != savedot
4920 && (config.warn_section_align
4921 || os->addr_tree != NULL)
4922 && expld.phase != lang_mark_phase_enum)
4923 einfo (_("%P: warning: changing start of section"
4924 " %s by %lu bytes\n"),
4925 os->name, (unsigned long) (newdot - savedot));
4926 }
4927
4928 bfd_set_section_vma (0, os->bfd_section, newdot);
4929
4930 os->bfd_section->output_offset = 0;
4931 }
4932
4933 lang_size_sections_1 (&os->children.head, os,
4934 os->fill, newdot, relax, check_regions);
4935
4936 os->processed_vma = TRUE;
4937
4938 if (bfd_is_abs_section (os->bfd_section) || os->ignored)
4939 /* Except for some special linker created sections,
4940 no output section should change from zero size
4941 after strip_excluded_output_sections. A non-zero
4942 size on an ignored section indicates that some
4943 input section was not sized early enough. */
4944 ASSERT (os->bfd_section->size == 0);
4945 else
4946 {
4947 dot = os->bfd_section->vma;
4948
4949 /* Put the section within the requested block size, or
4950 align at the block boundary. */
4951 after = ((dot
4952 + TO_ADDR (os->bfd_section->size)
4953 + os->block_value - 1)
4954 & - (bfd_vma) os->block_value);
4955
4956 os->bfd_section->size = TO_SIZE (after - os->bfd_section->vma);
4957 }
4958
4959 /* Set section lma. */
4960 r = os->region;
4961 if (r == NULL)
4962 r = lang_memory_region_lookup (DEFAULT_MEMORY_REGION, FALSE);
4963
4964 if (os->load_base)
4965 {
4966 bfd_vma lma = exp_get_abs_int (os->load_base, 0, "load base");
4967 os->bfd_section->lma = lma;
4968 }
4969 else if (os->lma_region != NULL)
4970 {
4971 bfd_vma lma = os->lma_region->current;
4972
4973 if (section_alignment > 0)
4974 lma = align_power (lma, section_alignment);
4975 os->bfd_section->lma = lma;
4976 }
4977 else if (r->last_os != NULL
4978 && (os->bfd_section->flags & SEC_ALLOC) != 0)
4979 {
4980 bfd_vma lma;
4981 asection *last;
4982
4983 last = r->last_os->output_section_statement.bfd_section;
4984
4985 /* A backwards move of dot should be accompanied by
4986 an explicit assignment to the section LMA (ie.
4987 os->load_base set) because backwards moves can
4988 create overlapping LMAs. */
4989 if (dot < last->vma
4990 && os->bfd_section->size != 0
4991 && dot + os->bfd_section->size <= last->vma)
4992 {
4993 /* If dot moved backwards then leave lma equal to
4994 vma. This is the old default lma, which might
4995 just happen to work when the backwards move is
4996 sufficiently large. Nag if this changes anything,
4997 so people can fix their linker scripts. */
4998
4999 if (last->vma != last->lma)
5000 einfo (_("%P: warning: dot moved backwards before `%s'\n"),
5001 os->name);
5002 }
5003 else
5004 {
5005 /* If this is an overlay, set the current lma to that
5006 at the end of the previous section. */
5007 if (os->sectype == overlay_section)
5008 lma = last->lma + last->size;
5009
5010 /* Otherwise, keep the same lma to vma relationship
5011 as the previous section. */
5012 else
5013 lma = dot + last->lma - last->vma;
5014
5015 if (section_alignment > 0)
5016 lma = align_power (lma, section_alignment);
5017 os->bfd_section->lma = lma;
5018 }
5019 }
5020 os->processed_lma = TRUE;
5021
5022 if (bfd_is_abs_section (os->bfd_section) || os->ignored)
5023 break;
5024
5025 /* Keep track of normal sections using the default
5026 lma region. We use this to set the lma for
5027 following sections. Overlays or other linker
5028 script assignment to lma might mean that the
5029 default lma == vma is incorrect.
5030 To avoid warnings about dot moving backwards when using
5031 -Ttext, don't start tracking sections until we find one
5032 of non-zero size or with lma set differently to vma. */
5033 if (((os->bfd_section->flags & SEC_HAS_CONTENTS) != 0
5034 || (os->bfd_section->flags & SEC_THREAD_LOCAL) == 0)
5035 && (os->bfd_section->flags & SEC_ALLOC) != 0
5036 && (os->bfd_section->size != 0
5037 || (r->last_os == NULL
5038 && os->bfd_section->vma != os->bfd_section->lma)
5039 || (r->last_os != NULL
5040 && dot >= (r->last_os->output_section_statement
5041 .bfd_section->vma)))
5042 && os->lma_region == NULL
5043 && !link_info.relocatable)
5044 r->last_os = s;
5045
5046 /* .tbss sections effectively have zero size. */
5047 if ((os->bfd_section->flags & SEC_HAS_CONTENTS) != 0
5048 || (os->bfd_section->flags & SEC_THREAD_LOCAL) == 0
5049 || link_info.relocatable)
5050 dot += TO_ADDR (os->bfd_section->size);
5051
5052 if (os->update_dot_tree != 0)
5053 exp_fold_tree (os->update_dot_tree, bfd_abs_section_ptr, &dot);
5054
5055 /* Update dot in the region ?
5056 We only do this if the section is going to be allocated,
5057 since unallocated sections do not contribute to the region's
5058 overall size in memory. */
5059 if (os->region != NULL
5060 && (os->bfd_section->flags & (SEC_ALLOC | SEC_LOAD)))
5061 {
5062 os->region->current = dot;
5063
5064 if (check_regions)
5065 /* Make sure the new address is within the region. */
5066 os_region_check (os, os->region, os->addr_tree,
5067 os->bfd_section->vma);
5068
5069 if (os->lma_region != NULL && os->lma_region != os->region
5070 && (os->bfd_section->flags & SEC_LOAD))
5071 {
5072 os->lma_region->current
5073 = os->bfd_section->lma + TO_ADDR (os->bfd_section->size);
5074
5075 if (check_regions)
5076 os_region_check (os, os->lma_region, NULL,
5077 os->bfd_section->lma);
5078 }
5079 }
5080 }
5081 break;
5082
5083 case lang_constructors_statement_enum:
5084 dot = lang_size_sections_1 (&constructor_list.head,
5085 output_section_statement,
5086 fill, dot, relax, check_regions);
5087 break;
5088
5089 case lang_data_statement_enum:
5090 {
5091 unsigned int size = 0;
5092
5093 s->data_statement.output_offset =
5094 dot - output_section_statement->bfd_section->vma;
5095 s->data_statement.output_section =
5096 output_section_statement->bfd_section;
5097
5098 /* We might refer to provided symbols in the expression, and
5099 need to mark them as needed. */
5100 exp_fold_tree (s->data_statement.exp, bfd_abs_section_ptr, &dot);
5101
5102 switch (s->data_statement.type)
5103 {
5104 default:
5105 abort ();
5106 case QUAD:
5107 case SQUAD:
5108 size = QUAD_SIZE;
5109 break;
5110 case LONG:
5111 size = LONG_SIZE;
5112 break;
5113 case SHORT:
5114 size = SHORT_SIZE;
5115 break;
5116 case BYTE:
5117 size = BYTE_SIZE;
5118 break;
5119 }
5120 if (size < TO_SIZE ((unsigned) 1))
5121 size = TO_SIZE ((unsigned) 1);
5122 dot += TO_ADDR (size);
5123 output_section_statement->bfd_section->size += size;
5124 }
5125 break;
5126
5127 case lang_reloc_statement_enum:
5128 {
5129 int size;
5130
5131 s->reloc_statement.output_offset =
5132 dot - output_section_statement->bfd_section->vma;
5133 s->reloc_statement.output_section =
5134 output_section_statement->bfd_section;
5135 size = bfd_get_reloc_size (s->reloc_statement.howto);
5136 dot += TO_ADDR (size);
5137 output_section_statement->bfd_section->size += size;
5138 }
5139 break;
5140
5141 case lang_wild_statement_enum:
5142 dot = lang_size_sections_1 (&s->wild_statement.children.head,
5143 output_section_statement,
5144 fill, dot, relax, check_regions);
5145 break;
5146
5147 case lang_object_symbols_statement_enum:
5148 link_info.create_object_symbols_section =
5149 output_section_statement->bfd_section;
5150 break;
5151
5152 case lang_output_statement_enum:
5153 case lang_target_statement_enum:
5154 break;
5155
5156 case lang_input_section_enum:
5157 {
5158 asection *i;
5159
5160 i = s->input_section.section;
5161 if (relax)
5162 {
5163 bfd_boolean again;
5164
5165 if (! bfd_relax_section (i->owner, i, &link_info, &again))
5166 einfo (_("%P%F: can't relax section: %E\n"));
5167 if (again)
5168 *relax = TRUE;
5169 }
5170 dot = size_input_section (prev, output_section_statement,
5171 output_section_statement->fill, dot);
5172 }
5173 break;
5174
5175 case lang_input_statement_enum:
5176 break;
5177
5178 case lang_fill_statement_enum:
5179 s->fill_statement.output_section =
5180 output_section_statement->bfd_section;
5181
5182 fill = s->fill_statement.fill;
5183 break;
5184
5185 case lang_assignment_statement_enum:
5186 {
5187 bfd_vma newdot = dot;
5188 etree_type *tree = s->assignment_statement.exp;
5189
5190 expld.dataseg.relro = exp_dataseg_relro_none;
5191
5192 exp_fold_tree (tree,
5193 output_section_statement->bfd_section,
5194 &newdot);
5195
5196 if (expld.dataseg.relro == exp_dataseg_relro_start)
5197 {
5198 if (!expld.dataseg.relro_start_stat)
5199 expld.dataseg.relro_start_stat = s;
5200 else
5201 {
5202 ASSERT (expld.dataseg.relro_start_stat == s);
5203 }
5204 }
5205 else if (expld.dataseg.relro == exp_dataseg_relro_end)
5206 {
5207 if (!expld.dataseg.relro_end_stat)
5208 expld.dataseg.relro_end_stat = s;
5209 else
5210 {
5211 ASSERT (expld.dataseg.relro_end_stat == s);
5212 }
5213 }
5214 expld.dataseg.relro = exp_dataseg_relro_none;
5215
5216 /* This symbol is relative to this section. */
5217 if ((tree->type.node_class == etree_provided
5218 || tree->type.node_class == etree_assign)
5219 && (tree->assign.dst [0] != '.'
5220 || tree->assign.dst [1] != '\0'))
5221 output_section_statement->section_relative_symbol = 1;
5222
5223 if (!output_section_statement->ignored)
5224 {
5225 if (output_section_statement == abs_output_section)
5226 {
5227 /* If we don't have an output section, then just adjust
5228 the default memory address. */
5229 lang_memory_region_lookup (DEFAULT_MEMORY_REGION,
5230 FALSE)->current = newdot;
5231 }
5232 else if (newdot != dot)
5233 {
5234 /* Insert a pad after this statement. We can't
5235 put the pad before when relaxing, in case the
5236 assignment references dot. */
5237 insert_pad (&s->header.next, fill, TO_SIZE (newdot - dot),
5238 output_section_statement->bfd_section, dot);
5239
5240 /* Don't neuter the pad below when relaxing. */
5241 s = s->header.next;
5242
5243 /* If dot is advanced, this implies that the section
5244 should have space allocated to it, unless the
5245 user has explicitly stated that the section
5246 should not be allocated. */
5247 if (output_section_statement->sectype != noalloc_section
5248 && (output_section_statement->sectype != noload_section
5249 || (bfd_get_flavour (link_info.output_bfd)
5250 == bfd_target_elf_flavour)))
5251 output_section_statement->bfd_section->flags |= SEC_ALLOC;
5252 }
5253 dot = newdot;
5254 }
5255 }
5256 break;
5257
5258 case lang_padding_statement_enum:
5259 /* If this is the first time lang_size_sections is called,
5260 we won't have any padding statements. If this is the
5261 second or later passes when relaxing, we should allow
5262 padding to shrink. If padding is needed on this pass, it
5263 will be added back in. */
5264 s->padding_statement.size = 0;
5265
5266 /* Make sure output_offset is valid. If relaxation shrinks
5267 the section and this pad isn't needed, it's possible to
5268 have output_offset larger than the final size of the
5269 section. bfd_set_section_contents will complain even for
5270 a pad size of zero. */
5271 s->padding_statement.output_offset
5272 = dot - output_section_statement->bfd_section->vma;
5273 break;
5274
5275 case lang_group_statement_enum:
5276 dot = lang_size_sections_1 (&s->group_statement.children.head,
5277 output_section_statement,
5278 fill, dot, relax, check_regions);
5279 break;
5280
5281 case lang_insert_statement_enum:
5282 break;
5283
5284 /* We can only get here when relaxing is turned on. */
5285 case lang_address_statement_enum:
5286 break;
5287
5288 default:
5289 FAIL ();
5290 break;
5291 }
5292 prev = &s->header.next;
5293 }
5294 return dot;
5295 }
5296
5297 /* Callback routine that is used in _bfd_elf_map_sections_to_segments.
5298 The BFD library has set NEW_SEGMENT to TRUE iff it thinks that
5299 CURRENT_SECTION and PREVIOUS_SECTION ought to be placed into different
5300 segments. We are allowed an opportunity to override this decision. */
5301
5302 bfd_boolean
5303 ldlang_override_segment_assignment (struct bfd_link_info * info ATTRIBUTE_UNUSED,
5304 bfd * abfd ATTRIBUTE_UNUSED,
5305 asection * current_section,
5306 asection * previous_section,
5307 bfd_boolean new_segment)
5308 {
5309 lang_output_section_statement_type * cur;
5310 lang_output_section_statement_type * prev;
5311
5312 /* The checks below are only necessary when the BFD library has decided
5313 that the two sections ought to be placed into the same segment. */
5314 if (new_segment)
5315 return TRUE;
5316
5317 /* Paranoia checks. */
5318 if (current_section == NULL || previous_section == NULL)
5319 return new_segment;
5320
5321 /* Find the memory regions associated with the two sections.
5322 We call lang_output_section_find() here rather than scanning the list
5323 of output sections looking for a matching section pointer because if
5324 we have a large number of sections then a hash lookup is faster. */
5325 cur = lang_output_section_find (current_section->name);
5326 prev = lang_output_section_find (previous_section->name);
5327
5328 /* More paranoia. */
5329 if (cur == NULL || prev == NULL)
5330 return new_segment;
5331
5332 /* If the regions are different then force the sections to live in
5333 different segments. See the email thread starting at the following
5334 URL for the reasons why this is necessary:
5335 http://sourceware.org/ml/binutils/2007-02/msg00216.html */
5336 return cur->region != prev->region;
5337 }
5338
5339 void
5340 one_lang_size_sections_pass (bfd_boolean *relax, bfd_boolean check_regions)
5341 {
5342 lang_statement_iteration++;
5343 lang_size_sections_1 (&statement_list.head, abs_output_section,
5344 0, 0, relax, check_regions);
5345 }
5346
5347 void
5348 lang_size_sections (bfd_boolean *relax, bfd_boolean check_regions)
5349 {
5350 expld.phase = lang_allocating_phase_enum;
5351 expld.dataseg.phase = exp_dataseg_none;
5352
5353 one_lang_size_sections_pass (relax, check_regions);
5354 if (expld.dataseg.phase == exp_dataseg_end_seen
5355 && link_info.relro && expld.dataseg.relro_end)
5356 {
5357 /* If DATA_SEGMENT_ALIGN DATA_SEGMENT_RELRO_END pair was seen, try
5358 to put expld.dataseg.relro on a (common) page boundary. */
5359 bfd_vma min_base, old_base, relro_end, maxpage;
5360
5361 expld.dataseg.phase = exp_dataseg_relro_adjust;
5362 maxpage = expld.dataseg.maxpagesize;
5363 /* MIN_BASE is the absolute minimum address we are allowed to start the
5364 read-write segment (byte before will be mapped read-only). */
5365 min_base = (expld.dataseg.min_base + maxpage - 1) & ~(maxpage - 1);
5366 /* OLD_BASE is the address for a feasible minimum address which will
5367 still not cause a data overlap inside MAXPAGE causing file offset skip
5368 by MAXPAGE. */
5369 old_base = expld.dataseg.base;
5370 expld.dataseg.base += (-expld.dataseg.relro_end
5371 & (expld.dataseg.pagesize - 1));
5372 /* Compute the expected PT_GNU_RELRO segment end. */
5373 relro_end = ((expld.dataseg.relro_end + expld.dataseg.pagesize - 1)
5374 & ~(expld.dataseg.pagesize - 1));
5375 if (min_base + maxpage < expld.dataseg.base)
5376 {
5377 expld.dataseg.base -= maxpage;
5378 relro_end -= maxpage;
5379 }
5380 lang_reset_memory_regions ();
5381 one_lang_size_sections_pass (relax, check_regions);
5382 if (expld.dataseg.relro_end > relro_end)
5383 {
5384 /* The alignment of sections between DATA_SEGMENT_ALIGN
5385 and DATA_SEGMENT_RELRO_END caused huge padding to be
5386 inserted at DATA_SEGMENT_RELRO_END. Try to start a bit lower so
5387 that the section alignments will fit in. */
5388 asection *sec;
5389 unsigned int max_alignment_power = 0;
5390
5391 /* Find maximum alignment power of sections between
5392 DATA_SEGMENT_ALIGN and DATA_SEGMENT_RELRO_END. */
5393 for (sec = link_info.output_bfd->sections; sec; sec = sec->next)
5394 if (sec->vma >= expld.dataseg.base
5395 && sec->vma < expld.dataseg.relro_end
5396 && sec->alignment_power > max_alignment_power)
5397 max_alignment_power = sec->alignment_power;
5398
5399 if (((bfd_vma) 1 << max_alignment_power) < expld.dataseg.pagesize)
5400 {
5401 if (expld.dataseg.base - (1 << max_alignment_power) < old_base)
5402 expld.dataseg.base += expld.dataseg.pagesize;
5403 expld.dataseg.base -= (1 << max_alignment_power);
5404 lang_reset_memory_regions ();
5405 one_lang_size_sections_pass (relax, check_regions);
5406 }
5407 }
5408 link_info.relro_start = expld.dataseg.base;
5409 link_info.relro_end = expld.dataseg.relro_end;
5410 }
5411 else if (expld.dataseg.phase == exp_dataseg_end_seen)
5412 {
5413 /* If DATA_SEGMENT_ALIGN DATA_SEGMENT_END pair was seen, check whether
5414 a page could be saved in the data segment. */
5415 bfd_vma first, last;
5416
5417 first = -expld.dataseg.base & (expld.dataseg.pagesize - 1);
5418 last = expld.dataseg.end & (expld.dataseg.pagesize - 1);
5419 if (first && last
5420 && ((expld.dataseg.base & ~(expld.dataseg.pagesize - 1))
5421 != (expld.dataseg.end & ~(expld.dataseg.pagesize - 1)))
5422 && first + last <= expld.dataseg.pagesize)
5423 {
5424 expld.dataseg.phase = exp_dataseg_adjust;
5425 lang_reset_memory_regions ();
5426 one_lang_size_sections_pass (relax, check_regions);
5427 }
5428 }
5429
5430 expld.phase = lang_final_phase_enum;
5431 }
5432
5433 /* Worker function for lang_do_assignments. Recursiveness goes here. */
5434
5435 static bfd_vma
5436 lang_do_assignments_1 (lang_statement_union_type *s,
5437 lang_output_section_statement_type *current_os,
5438 fill_type *fill,
5439 bfd_vma dot)
5440 {
5441 for (; s != NULL; s = s->header.next)
5442 {
5443 switch (s->header.type)
5444 {
5445 case lang_constructors_statement_enum:
5446 dot = lang_do_assignments_1 (constructor_list.head,
5447 current_os, fill, dot);
5448 break;
5449
5450 case lang_output_section_statement_enum:
5451 {
5452 lang_output_section_statement_type *os;
5453
5454 os = &(s->output_section_statement);
5455 if (os->bfd_section != NULL && !os->ignored)
5456 {
5457 dot = os->bfd_section->vma;
5458
5459 lang_do_assignments_1 (os->children.head, os, os->fill, dot);
5460
5461 /* .tbss sections effectively have zero size. */
5462 if ((os->bfd_section->flags & SEC_HAS_CONTENTS) != 0
5463 || (os->bfd_section->flags & SEC_THREAD_LOCAL) == 0
5464 || link_info.relocatable)
5465 dot += TO_ADDR (os->bfd_section->size);
5466
5467 if (os->update_dot_tree != NULL)
5468 exp_fold_tree (os->update_dot_tree, bfd_abs_section_ptr, &dot);
5469 }
5470 }
5471 break;
5472
5473 case lang_wild_statement_enum:
5474
5475 dot = lang_do_assignments_1 (s->wild_statement.children.head,
5476 current_os, fill, dot);
5477 break;
5478
5479 case lang_object_symbols_statement_enum:
5480 case lang_output_statement_enum:
5481 case lang_target_statement_enum:
5482 break;
5483
5484 case lang_data_statement_enum:
5485 exp_fold_tree (s->data_statement.exp, bfd_abs_section_ptr, &dot);
5486 if (expld.result.valid_p)
5487 {
5488 s->data_statement.value = expld.result.value;
5489 if (expld.result.section != NULL)
5490 s->data_statement.value += expld.result.section->vma;
5491 }
5492 else
5493 einfo (_("%F%P: invalid data statement\n"));
5494 {
5495 unsigned int size;
5496 switch (s->data_statement.type)
5497 {
5498 default:
5499 abort ();
5500 case QUAD:
5501 case SQUAD:
5502 size = QUAD_SIZE;
5503 break;
5504 case LONG:
5505 size = LONG_SIZE;
5506 break;
5507 case SHORT:
5508 size = SHORT_SIZE;
5509 break;
5510 case BYTE:
5511 size = BYTE_SIZE;
5512 break;
5513 }
5514 if (size < TO_SIZE ((unsigned) 1))
5515 size = TO_SIZE ((unsigned) 1);
5516 dot += TO_ADDR (size);
5517 }
5518 break;
5519
5520 case lang_reloc_statement_enum:
5521 exp_fold_tree (s->reloc_statement.addend_exp,
5522 bfd_abs_section_ptr, &dot);
5523 if (expld.result.valid_p)
5524 s->reloc_statement.addend_value = expld.result.value;
5525 else
5526 einfo (_("%F%P: invalid reloc statement\n"));
5527 dot += TO_ADDR (bfd_get_reloc_size (s->reloc_statement.howto));
5528 break;
5529
5530 case lang_input_section_enum:
5531 {
5532 asection *in = s->input_section.section;
5533
5534 if ((in->flags & SEC_EXCLUDE) == 0)
5535 dot += TO_ADDR (in->size);
5536 }
5537 break;
5538
5539 case lang_input_statement_enum:
5540 break;
5541
5542 case lang_fill_statement_enum:
5543 fill = s->fill_statement.fill;
5544 break;
5545
5546 case lang_assignment_statement_enum:
5547 exp_fold_tree (s->assignment_statement.exp,
5548 current_os->bfd_section,
5549 &dot);
5550 break;
5551
5552 case lang_padding_statement_enum:
5553 dot += TO_ADDR (s->padding_statement.size);
5554 break;
5555
5556 case lang_group_statement_enum:
5557 dot = lang_do_assignments_1 (s->group_statement.children.head,
5558 current_os, fill, dot);
5559 break;
5560
5561 case lang_insert_statement_enum:
5562 break;
5563
5564 case lang_address_statement_enum:
5565 break;
5566
5567 default:
5568 FAIL ();
5569 break;
5570 }
5571 }
5572 return dot;
5573 }
5574
5575 void
5576 lang_do_assignments (void)
5577 {
5578 lang_statement_iteration++;
5579 lang_do_assignments_1 (statement_list.head, abs_output_section, NULL, 0);
5580 }
5581
5582 /* Fix any .startof. or .sizeof. symbols. When the assemblers see the
5583 operator .startof. (section_name), it produces an undefined symbol
5584 .startof.section_name. Similarly, when it sees
5585 .sizeof. (section_name), it produces an undefined symbol
5586 .sizeof.section_name. For all the output sections, we look for
5587 such symbols, and set them to the correct value. */
5588
5589 static void
5590 lang_set_startof (void)
5591 {
5592 asection *s;
5593
5594 if (link_info.relocatable)
5595 return;
5596
5597 for (s = link_info.output_bfd->sections; s != NULL; s = s->next)
5598 {
5599 const char *secname;
5600 char *buf;
5601 struct bfd_link_hash_entry *h;
5602
5603 secname = bfd_get_section_name (link_info.output_bfd, s);
5604 buf = (char *) xmalloc (10 + strlen (secname));
5605
5606 sprintf (buf, ".startof.%s", secname);
5607 h = bfd_link_hash_lookup (link_info.hash, buf, FALSE, FALSE, TRUE);
5608 if (h != NULL && h->type == bfd_link_hash_undefined)
5609 {
5610 h->type = bfd_link_hash_defined;
5611 h->u.def.value = bfd_get_section_vma (link_info.output_bfd, s);
5612 h->u.def.section = bfd_abs_section_ptr;
5613 }
5614
5615 sprintf (buf, ".sizeof.%s", secname);
5616 h = bfd_link_hash_lookup (link_info.hash, buf, FALSE, FALSE, TRUE);
5617 if (h != NULL && h->type == bfd_link_hash_undefined)
5618 {
5619 h->type = bfd_link_hash_defined;
5620 h->u.def.value = TO_ADDR (s->size);
5621 h->u.def.section = bfd_abs_section_ptr;
5622 }
5623
5624 free (buf);
5625 }
5626 }
5627
5628 static void
5629 lang_end (void)
5630 {
5631 struct bfd_link_hash_entry *h;
5632 bfd_boolean warn;
5633
5634 if ((link_info.relocatable && !link_info.gc_sections)
5635 || (link_info.shared && !link_info.executable))
5636 warn = entry_from_cmdline;
5637 else
5638 warn = TRUE;
5639
5640 /* Force the user to specify a root when generating a relocatable with
5641 --gc-sections. */
5642 if (link_info.gc_sections && link_info.relocatable
5643 && !(entry_from_cmdline || undef_from_cmdline))
5644 einfo (_("%P%F: gc-sections requires either an entry or "
5645 "an undefined symbol\n"));
5646
5647 if (entry_symbol.name == NULL)
5648 {
5649 /* No entry has been specified. Look for the default entry, but
5650 don't warn if we don't find it. */
5651 entry_symbol.name = entry_symbol_default;
5652 warn = FALSE;
5653 }
5654
5655 h = bfd_link_hash_lookup (link_info.hash, entry_symbol.name,
5656 FALSE, FALSE, TRUE);
5657 if (h != NULL
5658 && (h->type == bfd_link_hash_defined
5659 || h->type == bfd_link_hash_defweak)
5660 && h->u.def.section->output_section != NULL)
5661 {
5662 bfd_vma val;
5663
5664 val = (h->u.def.value
5665 + bfd_get_section_vma (link_info.output_bfd,
5666 h->u.def.section->output_section)
5667 + h->u.def.section->output_offset);
5668 if (! bfd_set_start_address (link_info.output_bfd, val))
5669 einfo (_("%P%F:%s: can't set start address\n"), entry_symbol.name);
5670 }
5671 else
5672 {
5673 bfd_vma val;
5674 const char *send;
5675
5676 /* We couldn't find the entry symbol. Try parsing it as a
5677 number. */
5678 val = bfd_scan_vma (entry_symbol.name, &send, 0);
5679 if (*send == '\0')
5680 {
5681 if (! bfd_set_start_address (link_info.output_bfd, val))
5682 einfo (_("%P%F: can't set start address\n"));
5683 }
5684 else
5685 {
5686 asection *ts;
5687
5688 /* Can't find the entry symbol, and it's not a number. Use
5689 the first address in the text section. */
5690 ts = bfd_get_section_by_name (link_info.output_bfd, entry_section);
5691 if (ts != NULL)
5692 {
5693 if (warn)
5694 einfo (_("%P: warning: cannot find entry symbol %s;"
5695 " defaulting to %V\n"),
5696 entry_symbol.name,
5697 bfd_get_section_vma (link_info.output_bfd, ts));
5698 if (!(bfd_set_start_address
5699 (link_info.output_bfd,
5700 bfd_get_section_vma (link_info.output_bfd, ts))))
5701 einfo (_("%P%F: can't set start address\n"));
5702 }
5703 else
5704 {
5705 if (warn)
5706 einfo (_("%P: warning: cannot find entry symbol %s;"
5707 " not setting start address\n"),
5708 entry_symbol.name);
5709 }
5710 }
5711 }
5712
5713 /* Don't bfd_hash_table_free (&lang_definedness_table);
5714 map file output may result in a call of lang_track_definedness. */
5715 }
5716
5717 /* This is a small function used when we want to ignore errors from
5718 BFD. */
5719
5720 static void
5721 ignore_bfd_errors (const char *s ATTRIBUTE_UNUSED, ...)
5722 {
5723 /* Don't do anything. */
5724 }
5725
5726 /* Check that the architecture of all the input files is compatible
5727 with the output file. Also call the backend to let it do any
5728 other checking that is needed. */
5729
5730 static void
5731 lang_check (void)
5732 {
5733 lang_statement_union_type *file;
5734 bfd *input_bfd;
5735 const bfd_arch_info_type *compatible;
5736
5737 for (file = file_chain.head; file != NULL; file = file->input_statement.next)
5738 {
5739 input_bfd = file->input_statement.the_bfd;
5740 compatible
5741 = bfd_arch_get_compatible (input_bfd, link_info.output_bfd,
5742 command_line.accept_unknown_input_arch);
5743
5744 /* In general it is not possible to perform a relocatable
5745 link between differing object formats when the input
5746 file has relocations, because the relocations in the
5747 input format may not have equivalent representations in
5748 the output format (and besides BFD does not translate
5749 relocs for other link purposes than a final link). */
5750 if ((link_info.relocatable || link_info.emitrelocations)
5751 && (compatible == NULL
5752 || (bfd_get_flavour (input_bfd)
5753 != bfd_get_flavour (link_info.output_bfd)))
5754 && (bfd_get_file_flags (input_bfd) & HAS_RELOC) != 0)
5755 {
5756 einfo (_("%P%F: Relocatable linking with relocations from"
5757 " format %s (%B) to format %s (%B) is not supported\n"),
5758 bfd_get_target (input_bfd), input_bfd,
5759 bfd_get_target (link_info.output_bfd), link_info.output_bfd);
5760 /* einfo with %F exits. */
5761 }
5762
5763 if (compatible == NULL)
5764 {
5765 if (command_line.warn_mismatch)
5766 einfo (_("%P%X: %s architecture of input file `%B'"
5767 " is incompatible with %s output\n"),
5768 bfd_printable_name (input_bfd), input_bfd,
5769 bfd_printable_name (link_info.output_bfd));
5770 }
5771 else if (bfd_count_sections (input_bfd))
5772 {
5773 /* If the input bfd has no contents, it shouldn't set the
5774 private data of the output bfd. */
5775
5776 bfd_error_handler_type pfn = NULL;
5777
5778 /* If we aren't supposed to warn about mismatched input
5779 files, temporarily set the BFD error handler to a
5780 function which will do nothing. We still want to call
5781 bfd_merge_private_bfd_data, since it may set up
5782 information which is needed in the output file. */
5783 if (! command_line.warn_mismatch)
5784 pfn = bfd_set_error_handler (ignore_bfd_errors);
5785 if (! bfd_merge_private_bfd_data (input_bfd, link_info.output_bfd))
5786 {
5787 if (command_line.warn_mismatch)
5788 einfo (_("%P%X: failed to merge target specific data"
5789 " of file %B\n"), input_bfd);
5790 }
5791 if (! command_line.warn_mismatch)
5792 bfd_set_error_handler (pfn);
5793 }
5794 }
5795 }
5796
5797 /* Look through all the global common symbols and attach them to the
5798 correct section. The -sort-common command line switch may be used
5799 to roughly sort the entries by alignment. */
5800
5801 static void
5802 lang_common (void)
5803 {
5804 if (command_line.inhibit_common_definition)
5805 return;
5806 if (link_info.relocatable
5807 && ! command_line.force_common_definition)
5808 return;
5809
5810 if (! config.sort_common)
5811 bfd_link_hash_traverse (link_info.hash, lang_one_common, NULL);
5812 else
5813 {
5814 unsigned int power;
5815
5816 if (config.sort_common == sort_descending)
5817 {
5818 for (power = 4; power > 0; power--)
5819 bfd_link_hash_traverse (link_info.hash, lang_one_common, &power);
5820
5821 power = 0;
5822 bfd_link_hash_traverse (link_info.hash, lang_one_common, &power);
5823 }
5824 else
5825 {
5826 for (power = 0; power <= 4; power++)
5827 bfd_link_hash_traverse (link_info.hash, lang_one_common, &power);
5828
5829 power = UINT_MAX;
5830 bfd_link_hash_traverse (link_info.hash, lang_one_common, &power);
5831 }
5832 }
5833 }
5834
5835 /* Place one common symbol in the correct section. */
5836
5837 static bfd_boolean
5838 lang_one_common (struct bfd_link_hash_entry *h, void *info)
5839 {
5840 unsigned int power_of_two;
5841 bfd_vma size;
5842 asection *section;
5843
5844 if (h->type != bfd_link_hash_common)
5845 return TRUE;
5846
5847 size = h->u.c.size;
5848 power_of_two = h->u.c.p->alignment_power;
5849
5850 if (config.sort_common == sort_descending
5851 && power_of_two < *(unsigned int *) info)
5852 return TRUE;
5853 else if (config.sort_common == sort_ascending
5854 && power_of_two > *(unsigned int *) info)
5855 return TRUE;
5856
5857 section = h->u.c.p->section;
5858 if (!bfd_define_common_symbol (link_info.output_bfd, &link_info, h))
5859 einfo (_("%P%F: Could not define common symbol `%T': %E\n"),
5860 h->root.string);
5861
5862 if (config.map_file != NULL)
5863 {
5864 static bfd_boolean header_printed;
5865 int len;
5866 char *name;
5867 char buf[50];
5868
5869 if (! header_printed)
5870 {
5871 minfo (_("\nAllocating common symbols\n"));
5872 minfo (_("Common symbol size file\n\n"));
5873 header_printed = TRUE;
5874 }
5875
5876 name = bfd_demangle (link_info.output_bfd, h->root.string,
5877 DMGL_ANSI | DMGL_PARAMS);
5878 if (name == NULL)
5879 {
5880 minfo ("%s", h->root.string);
5881 len = strlen (h->root.string);
5882 }
5883 else
5884 {
5885 minfo ("%s", name);
5886 len = strlen (name);
5887 free (name);
5888 }
5889
5890 if (len >= 19)
5891 {
5892 print_nl ();
5893 len = 0;
5894 }
5895 while (len < 20)
5896 {
5897 print_space ();
5898 ++len;
5899 }
5900
5901 minfo ("0x");
5902 if (size <= 0xffffffff)
5903 sprintf (buf, "%lx", (unsigned long) size);
5904 else
5905 sprintf_vma (buf, size);
5906 minfo ("%s", buf);
5907 len = strlen (buf);
5908
5909 while (len < 16)
5910 {
5911 print_space ();
5912 ++len;
5913 }
5914
5915 minfo ("%B\n", section->owner);
5916 }
5917
5918 return TRUE;
5919 }
5920
5921 /* Run through the input files and ensure that every input section has
5922 somewhere to go. If one is found without a destination then create
5923 an input request and place it into the statement tree. */
5924
5925 static void
5926 lang_place_orphans (void)
5927 {
5928 LANG_FOR_EACH_INPUT_STATEMENT (file)
5929 {
5930 asection *s;
5931
5932 for (s = file->the_bfd->sections; s != NULL; s = s->next)
5933 {
5934 if (s->output_section == NULL)
5935 {
5936 /* This section of the file is not attached, root
5937 around for a sensible place for it to go. */
5938
5939 if (file->just_syms_flag)
5940 bfd_link_just_syms (file->the_bfd, s, &link_info);
5941 else if ((s->flags & SEC_EXCLUDE) != 0)
5942 s->output_section = bfd_abs_section_ptr;
5943 else if (strcmp (s->name, "COMMON") == 0)
5944 {
5945 /* This is a lonely common section which must have
5946 come from an archive. We attach to the section
5947 with the wildcard. */
5948 if (! link_info.relocatable
5949 || command_line.force_common_definition)
5950 {
5951 if (default_common_section == NULL)
5952 default_common_section
5953 = lang_output_section_statement_lookup (".bss", 0,
5954 TRUE);
5955 lang_add_section (&default_common_section->children, s,
5956 default_common_section);
5957 }
5958 }
5959 else
5960 {
5961 const char *name = s->name;
5962 int constraint = 0;
5963
5964 if (config.unique_orphan_sections
5965 || unique_section_p (s, NULL))
5966 constraint = SPECIAL;
5967
5968 if (!ldemul_place_orphan (s, name, constraint))
5969 {
5970 lang_output_section_statement_type *os;
5971 os = lang_output_section_statement_lookup (name,
5972 constraint,
5973 TRUE);
5974 if (os->addr_tree == NULL
5975 && (link_info.relocatable
5976 || (s->flags & (SEC_LOAD | SEC_ALLOC)) == 0))
5977 os->addr_tree = exp_intop (0);
5978 lang_add_section (&os->children, s, os);
5979 }
5980 }
5981 }
5982 }
5983 }
5984 }
5985
5986 void
5987 lang_set_flags (lang_memory_region_type *ptr, const char *flags, int invert)
5988 {
5989 flagword *ptr_flags;
5990
5991 ptr_flags = invert ? &ptr->not_flags : &ptr->flags;
5992 while (*flags)
5993 {
5994 switch (*flags)
5995 {
5996 case 'A': case 'a':
5997 *ptr_flags |= SEC_ALLOC;
5998 break;
5999
6000 case 'R': case 'r':
6001 *ptr_flags |= SEC_READONLY;
6002 break;
6003
6004 case 'W': case 'w':
6005 *ptr_flags |= SEC_DATA;
6006 break;
6007
6008 case 'X': case 'x':
6009 *ptr_flags |= SEC_CODE;
6010 break;
6011
6012 case 'L': case 'l':
6013 case 'I': case 'i':
6014 *ptr_flags |= SEC_LOAD;
6015 break;
6016
6017 default:
6018 einfo (_("%P%F: invalid syntax in flags\n"));
6019 break;
6020 }
6021 flags++;
6022 }
6023 }
6024
6025 /* Call a function on each input file. This function will be called
6026 on an archive, but not on the elements. */
6027
6028 void
6029 lang_for_each_input_file (void (*func) (lang_input_statement_type *))
6030 {
6031 lang_input_statement_type *f;
6032
6033 for (f = (lang_input_statement_type *) input_file_chain.head;
6034 f != NULL;
6035 f = (lang_input_statement_type *) f->next_real_file)
6036 func (f);
6037 }
6038
6039 /* Call a function on each file. The function will be called on all
6040 the elements of an archive which are included in the link, but will
6041 not be called on the archive file itself. */
6042
6043 void
6044 lang_for_each_file (void (*func) (lang_input_statement_type *))
6045 {
6046 LANG_FOR_EACH_INPUT_STATEMENT (f)
6047 {
6048 func (f);
6049 }
6050 }
6051
6052 void
6053 ldlang_add_file (lang_input_statement_type *entry)
6054 {
6055 lang_statement_append (&file_chain,
6056 (lang_statement_union_type *) entry,
6057 &entry->next);
6058
6059 /* The BFD linker needs to have a list of all input BFDs involved in
6060 a link. */
6061 ASSERT (entry->the_bfd->link_next == NULL);
6062 ASSERT (entry->the_bfd != link_info.output_bfd);
6063
6064 *link_info.input_bfds_tail = entry->the_bfd;
6065 link_info.input_bfds_tail = &entry->the_bfd->link_next;
6066 entry->the_bfd->usrdata = entry;
6067 bfd_set_gp_size (entry->the_bfd, g_switch_value);
6068
6069 /* Look through the sections and check for any which should not be
6070 included in the link. We need to do this now, so that we can
6071 notice when the backend linker tries to report multiple
6072 definition errors for symbols which are in sections we aren't
6073 going to link. FIXME: It might be better to entirely ignore
6074 symbols which are defined in sections which are going to be
6075 discarded. This would require modifying the backend linker for
6076 each backend which might set the SEC_LINK_ONCE flag. If we do
6077 this, we should probably handle SEC_EXCLUDE in the same way. */
6078
6079 bfd_map_over_sections (entry->the_bfd, section_already_linked, entry);
6080 }
6081
6082 void
6083 lang_add_output (const char *name, int from_script)
6084 {
6085 /* Make -o on command line override OUTPUT in script. */
6086 if (!had_output_filename || !from_script)
6087 {
6088 output_filename = name;
6089 had_output_filename = TRUE;
6090 }
6091 }
6092
6093 static lang_output_section_statement_type *current_section;
6094
6095 static int
6096 topower (int x)
6097 {
6098 unsigned int i = 1;
6099 int l;
6100
6101 if (x < 0)
6102 return -1;
6103
6104 for (l = 0; l < 32; l++)
6105 {
6106 if (i >= (unsigned int) x)
6107 return l;
6108 i <<= 1;
6109 }
6110
6111 return 0;
6112 }
6113
6114 lang_output_section_statement_type *
6115 lang_enter_output_section_statement (const char *output_section_statement_name,
6116 etree_type *address_exp,
6117 enum section_type sectype,
6118 etree_type *align,
6119 etree_type *subalign,
6120 etree_type *ebase,
6121 int constraint)
6122 {
6123 lang_output_section_statement_type *os;
6124
6125 os = lang_output_section_statement_lookup (output_section_statement_name,
6126 constraint, TRUE);
6127 current_section = os;
6128
6129 if (os->addr_tree == NULL)
6130 {
6131 os->addr_tree = address_exp;
6132 }
6133 os->sectype = sectype;
6134 if (sectype != noload_section)
6135 os->flags = SEC_NO_FLAGS;
6136 else
6137 os->flags = SEC_NEVER_LOAD;
6138 os->block_value = 1;
6139
6140 /* Make next things chain into subchain of this. */
6141 push_stat_ptr (&os->children);
6142
6143 os->subsection_alignment =
6144 topower (exp_get_value_int (subalign, -1, "subsection alignment"));
6145 os->section_alignment =
6146 topower (exp_get_value_int (align, -1, "section alignment"));
6147
6148 os->load_base = ebase;
6149 return os;
6150 }
6151
6152 void
6153 lang_final (void)
6154 {
6155 lang_output_statement_type *new_stmt;
6156
6157 new_stmt = new_stat (lang_output_statement, stat_ptr);
6158 new_stmt->name = output_filename;
6159
6160 }
6161
6162 /* Reset the current counters in the regions. */
6163
6164 void
6165 lang_reset_memory_regions (void)
6166 {
6167 lang_memory_region_type *p = lang_memory_region_list;
6168 asection *o;
6169 lang_output_section_statement_type *os;
6170
6171 for (p = lang_memory_region_list; p != NULL; p = p->next)
6172 {
6173 p->current = p->origin;
6174 p->last_os = NULL;
6175 }
6176
6177 for (os = &lang_output_section_statement.head->output_section_statement;
6178 os != NULL;
6179 os = os->next)
6180 {
6181 os->processed_vma = FALSE;
6182 os->processed_lma = FALSE;
6183 }
6184
6185 for (o = link_info.output_bfd->sections; o != NULL; o = o->next)
6186 {
6187 /* Save the last size for possible use by bfd_relax_section. */
6188 o->rawsize = o->size;
6189 o->size = 0;
6190 }
6191 }
6192
6193 /* Worker for lang_gc_sections_1. */
6194
6195 static void
6196 gc_section_callback (lang_wild_statement_type *ptr,
6197 struct wildcard_list *sec ATTRIBUTE_UNUSED,
6198 asection *section,
6199 lang_input_statement_type *file ATTRIBUTE_UNUSED,
6200 void *data ATTRIBUTE_UNUSED)
6201 {
6202 /* If the wild pattern was marked KEEP, the member sections
6203 should be as well. */
6204 if (ptr->keep_sections)
6205 section->flags |= SEC_KEEP;
6206 }
6207
6208 /* Iterate over sections marking them against GC. */
6209
6210 static void
6211 lang_gc_sections_1 (lang_statement_union_type *s)
6212 {
6213 for (; s != NULL; s = s->header.next)
6214 {
6215 switch (s->header.type)
6216 {
6217 case lang_wild_statement_enum:
6218 walk_wild (&s->wild_statement, gc_section_callback, NULL);
6219 break;
6220 case lang_constructors_statement_enum:
6221 lang_gc_sections_1 (constructor_list.head);
6222 break;
6223 case lang_output_section_statement_enum:
6224 lang_gc_sections_1 (s->output_section_statement.children.head);
6225 break;
6226 case lang_group_statement_enum:
6227 lang_gc_sections_1 (s->group_statement.children.head);
6228 break;
6229 default:
6230 break;
6231 }
6232 }
6233 }
6234
6235 static void
6236 lang_gc_sections (void)
6237 {
6238 /* Keep all sections so marked in the link script. */
6239
6240 lang_gc_sections_1 (statement_list.head);
6241
6242 /* SEC_EXCLUDE is ignored when doing a relocatable link, except in
6243 the special case of debug info. (See bfd/stabs.c)
6244 Twiddle the flag here, to simplify later linker code. */
6245 if (link_info.relocatable)
6246 {
6247 LANG_FOR_EACH_INPUT_STATEMENT (f)
6248 {
6249 asection *sec;
6250 for (sec = f->the_bfd->sections; sec != NULL; sec = sec->next)
6251 if ((sec->flags & SEC_DEBUGGING) == 0)
6252 sec->flags &= ~SEC_EXCLUDE;
6253 }
6254 }
6255
6256 if (link_info.gc_sections)
6257 bfd_gc_sections (link_info.output_bfd, &link_info);
6258 }
6259
6260 /* Worker for lang_find_relro_sections_1. */
6261
6262 static void
6263 find_relro_section_callback (lang_wild_statement_type *ptr ATTRIBUTE_UNUSED,
6264 struct wildcard_list *sec ATTRIBUTE_UNUSED,
6265 asection *section,
6266 lang_input_statement_type *file ATTRIBUTE_UNUSED,
6267 void *data)
6268 {
6269 /* Discarded, excluded and ignored sections effectively have zero
6270 size. */
6271 if (section->output_section != NULL
6272 && section->output_section->owner == link_info.output_bfd
6273 && (section->output_section->flags & SEC_EXCLUDE) == 0
6274 && !IGNORE_SECTION (section)
6275 && section->size != 0)
6276 {
6277 bfd_boolean *has_relro_section = (bfd_boolean *) data;
6278 *has_relro_section = TRUE;
6279 }
6280 }
6281
6282 /* Iterate over sections for relro sections. */
6283
6284 static void
6285 lang_find_relro_sections_1 (lang_statement_union_type *s,
6286 bfd_boolean *has_relro_section)
6287 {
6288 if (*has_relro_section)
6289 return;
6290
6291 for (; s != NULL; s = s->header.next)
6292 {
6293 if (s == expld.dataseg.relro_end_stat)
6294 break;
6295
6296 switch (s->header.type)
6297 {
6298 case lang_wild_statement_enum:
6299 walk_wild (&s->wild_statement,
6300 find_relro_section_callback,
6301 has_relro_section);
6302 break;
6303 case lang_constructors_statement_enum:
6304 lang_find_relro_sections_1 (constructor_list.head,
6305 has_relro_section);
6306 break;
6307 case lang_output_section_statement_enum:
6308 lang_find_relro_sections_1 (s->output_section_statement.children.head,
6309 has_relro_section);
6310 break;
6311 case lang_group_statement_enum:
6312 lang_find_relro_sections_1 (s->group_statement.children.head,
6313 has_relro_section);
6314 break;
6315 default:
6316 break;
6317 }
6318 }
6319 }
6320
6321 static void
6322 lang_find_relro_sections (void)
6323 {
6324 bfd_boolean has_relro_section = FALSE;
6325
6326 /* Check all sections in the link script. */
6327
6328 lang_find_relro_sections_1 (expld.dataseg.relro_start_stat,
6329 &has_relro_section);
6330
6331 if (!has_relro_section)
6332 link_info.relro = FALSE;
6333 }
6334
6335 /* Relax all sections until bfd_relax_section gives up. */
6336
6337 void
6338 lang_relax_sections (bfd_boolean need_layout)
6339 {
6340 if (RELAXATION_ENABLED)
6341 {
6342 /* We may need more than one relaxation pass. */
6343 int i = link_info.relax_pass;
6344
6345 /* The backend can use it to determine the current pass. */
6346 link_info.relax_pass = 0;
6347
6348 while (i--)
6349 {
6350 /* Keep relaxing until bfd_relax_section gives up. */
6351 bfd_boolean relax_again;
6352
6353 link_info.relax_trip = -1;
6354 do
6355 {
6356 link_info.relax_trip++;
6357
6358 /* Note: pe-dll.c does something like this also. If you find
6359 you need to change this code, you probably need to change
6360 pe-dll.c also. DJ */
6361
6362 /* Do all the assignments with our current guesses as to
6363 section sizes. */
6364 lang_do_assignments ();
6365
6366 /* We must do this after lang_do_assignments, because it uses
6367 size. */
6368 lang_reset_memory_regions ();
6369
6370 /* Perform another relax pass - this time we know where the
6371 globals are, so can make a better guess. */
6372 relax_again = FALSE;
6373 lang_size_sections (&relax_again, FALSE);
6374 }
6375 while (relax_again);
6376
6377 link_info.relax_pass++;
6378 }
6379 need_layout = TRUE;
6380 }
6381
6382 if (need_layout)
6383 {
6384 /* Final extra sizing to report errors. */
6385 lang_do_assignments ();
6386 lang_reset_memory_regions ();
6387 lang_size_sections (NULL, TRUE);
6388 }
6389 }
6390
6391 void
6392 lang_process (void)
6393 {
6394 /* Finalize dynamic list. */
6395 if (link_info.dynamic_list)
6396 lang_finalize_version_expr_head (&link_info.dynamic_list->head);
6397
6398 current_target = default_target;
6399
6400 /* Open the output file. */
6401 lang_for_each_statement (ldlang_open_output);
6402 init_opb ();
6403
6404 ldemul_create_output_section_statements ();
6405
6406 /* Add to the hash table all undefineds on the command line. */
6407 lang_place_undefineds ();
6408
6409 if (!bfd_section_already_linked_table_init ())
6410 einfo (_("%P%F: Failed to create hash table\n"));
6411
6412 /* Create a bfd for each input file. */
6413 current_target = default_target;
6414 open_input_bfds (statement_list.head, FALSE);
6415
6416 #ifdef ENABLE_PLUGINS
6417 {
6418 union lang_statement_union **listend;
6419 /* Now all files are read, let the plugin(s) decide if there
6420 are any more to be added to the link before we call the
6421 emulation's after_open hook. */
6422 listend = statement_list.tail;
6423 ASSERT (!*listend);
6424 if (plugin_call_all_symbols_read ())
6425 einfo (_("%P%F: %s: plugin reported error after all symbols read\n"),
6426 plugin_error_plugin ());
6427 /* If any new files were added, they will be on the end of the
6428 statement list, and we can open them now by getting open_input_bfds
6429 to carry on from where it ended last time. */
6430 if (*listend)
6431 open_input_bfds (*listend, FALSE);
6432 }
6433 #endif /* ENABLE_PLUGINS */
6434
6435 link_info.gc_sym_list = &entry_symbol;
6436 if (entry_symbol.name == NULL)
6437 link_info.gc_sym_list = ldlang_undef_chain_list_head;
6438
6439 ldemul_after_open ();
6440
6441 bfd_section_already_linked_table_free ();
6442
6443 /* Make sure that we're not mixing architectures. We call this
6444 after all the input files have been opened, but before we do any
6445 other processing, so that any operations merge_private_bfd_data
6446 does on the output file will be known during the rest of the
6447 link. */
6448 lang_check ();
6449
6450 /* Handle .exports instead of a version script if we're told to do so. */
6451 if (command_line.version_exports_section)
6452 lang_do_version_exports_section ();
6453
6454 /* Build all sets based on the information gathered from the input
6455 files. */
6456 ldctor_build_sets ();
6457
6458 /* Remove unreferenced sections if asked to. */
6459 lang_gc_sections ();
6460
6461 /* Size up the common data. */
6462 lang_common ();
6463
6464 /* Update wild statements. */
6465 update_wild_statements (statement_list.head);
6466
6467 /* Run through the contours of the script and attach input sections
6468 to the correct output sections. */
6469 lang_statement_iteration++;
6470 map_input_to_output_sections (statement_list.head, NULL, NULL);
6471
6472 process_insert_statements ();
6473
6474 /* Find any sections not attached explicitly and handle them. */
6475 lang_place_orphans ();
6476
6477 if (! link_info.relocatable)
6478 {
6479 asection *found;
6480
6481 /* Merge SEC_MERGE sections. This has to be done after GC of
6482 sections, so that GCed sections are not merged, but before
6483 assigning dynamic symbols, since removing whole input sections
6484 is hard then. */
6485 bfd_merge_sections (link_info.output_bfd, &link_info);
6486
6487 /* Look for a text section and set the readonly attribute in it. */
6488 found = bfd_get_section_by_name (link_info.output_bfd, ".text");
6489
6490 if (found != NULL)
6491 {
6492 if (config.text_read_only)
6493 found->flags |= SEC_READONLY;
6494 else
6495 found->flags &= ~SEC_READONLY;
6496 }
6497 }
6498
6499 /* Do anything special before sizing sections. This is where ELF
6500 and other back-ends size dynamic sections. */
6501 ldemul_before_allocation ();
6502
6503 /* We must record the program headers before we try to fix the
6504 section positions, since they will affect SIZEOF_HEADERS. */
6505 lang_record_phdrs ();
6506
6507 /* Check relro sections. */
6508 if (link_info.relro && ! link_info.relocatable)
6509 lang_find_relro_sections ();
6510
6511 /* Size up the sections. */
6512 lang_size_sections (NULL, ! RELAXATION_ENABLED);
6513
6514 /* See if anything special should be done now we know how big
6515 everything is. This is where relaxation is done. */
6516 ldemul_after_allocation ();
6517
6518 /* Fix any .startof. or .sizeof. symbols. */
6519 lang_set_startof ();
6520
6521 /* Do all the assignments, now that we know the final resting places
6522 of all the symbols. */
6523
6524 lang_do_assignments ();
6525
6526 ldemul_finish ();
6527
6528 /* Make sure that the section addresses make sense. */
6529 if (command_line.check_section_addresses)
6530 lang_check_section_addresses ();
6531
6532 lang_end ();
6533 }
6534
6535 /* EXPORTED TO YACC */
6536
6537 void
6538 lang_add_wild (struct wildcard_spec *filespec,
6539 struct wildcard_list *section_list,
6540 bfd_boolean keep_sections)
6541 {
6542 struct wildcard_list *curr, *next;
6543 lang_wild_statement_type *new_stmt;
6544
6545 /* Reverse the list as the parser puts it back to front. */
6546 for (curr = section_list, section_list = NULL;
6547 curr != NULL;
6548 section_list = curr, curr = next)
6549 {
6550 if (curr->spec.name != NULL && strcmp (curr->spec.name, "COMMON") == 0)
6551 placed_commons = TRUE;
6552
6553 next = curr->next;
6554 curr->next = section_list;
6555 }
6556
6557 if (filespec != NULL && filespec->name != NULL)
6558 {
6559 if (strcmp (filespec->name, "*") == 0)
6560 filespec->name = NULL;
6561 else if (! wildcardp (filespec->name))
6562 lang_has_input_file = TRUE;
6563 }
6564
6565 new_stmt = new_stat (lang_wild_statement, stat_ptr);
6566 new_stmt->filename = NULL;
6567 new_stmt->filenames_sorted = FALSE;
6568 if (filespec != NULL)
6569 {
6570 new_stmt->filename = filespec->name;
6571 new_stmt->filenames_sorted = filespec->sorted == by_name;
6572 }
6573 new_stmt->section_list = section_list;
6574 new_stmt->keep_sections = keep_sections;
6575 lang_list_init (&new_stmt->children);
6576 analyze_walk_wild_section_handler (new_stmt);
6577 }
6578
6579 void
6580 lang_section_start (const char *name, etree_type *address,
6581 const segment_type *segment)
6582 {
6583 lang_address_statement_type *ad;
6584
6585 ad = new_stat (lang_address_statement, stat_ptr);
6586 ad->section_name = name;
6587 ad->address = address;
6588 ad->segment = segment;
6589 }
6590
6591 /* Set the start symbol to NAME. CMDLINE is nonzero if this is called
6592 because of a -e argument on the command line, or zero if this is
6593 called by ENTRY in a linker script. Command line arguments take
6594 precedence. */
6595
6596 void
6597 lang_add_entry (const char *name, bfd_boolean cmdline)
6598 {
6599 if (entry_symbol.name == NULL
6600 || cmdline
6601 || ! entry_from_cmdline)
6602 {
6603 entry_symbol.name = name;
6604 entry_from_cmdline = cmdline;
6605 }
6606 }
6607
6608 /* Set the default start symbol to NAME. .em files should use this,
6609 not lang_add_entry, to override the use of "start" if neither the
6610 linker script nor the command line specifies an entry point. NAME
6611 must be permanently allocated. */
6612 void
6613 lang_default_entry (const char *name)
6614 {
6615 entry_symbol_default = name;
6616 }
6617
6618 void
6619 lang_add_target (const char *name)
6620 {
6621 lang_target_statement_type *new_stmt;
6622
6623 new_stmt = new_stat (lang_target_statement, stat_ptr);
6624 new_stmt->target = name;
6625 }
6626
6627 void
6628 lang_add_map (const char *name)
6629 {
6630 while (*name)
6631 {
6632 switch (*name)
6633 {
6634 case 'F':
6635 map_option_f = TRUE;
6636 break;
6637 }
6638 name++;
6639 }
6640 }
6641
6642 void
6643 lang_add_fill (fill_type *fill)
6644 {
6645 lang_fill_statement_type *new_stmt;
6646
6647 new_stmt = new_stat (lang_fill_statement, stat_ptr);
6648 new_stmt->fill = fill;
6649 }
6650
6651 void
6652 lang_add_data (int type, union etree_union *exp)
6653 {
6654 lang_data_statement_type *new_stmt;
6655
6656 new_stmt = new_stat (lang_data_statement, stat_ptr);
6657 new_stmt->exp = exp;
6658 new_stmt->type = type;
6659 }
6660
6661 /* Create a new reloc statement. RELOC is the BFD relocation type to
6662 generate. HOWTO is the corresponding howto structure (we could
6663 look this up, but the caller has already done so). SECTION is the
6664 section to generate a reloc against, or NAME is the name of the
6665 symbol to generate a reloc against. Exactly one of SECTION and
6666 NAME must be NULL. ADDEND is an expression for the addend. */
6667
6668 void
6669 lang_add_reloc (bfd_reloc_code_real_type reloc,
6670 reloc_howto_type *howto,
6671 asection *section,
6672 const char *name,
6673 union etree_union *addend)
6674 {
6675 lang_reloc_statement_type *p = new_stat (lang_reloc_statement, stat_ptr);
6676
6677 p->reloc = reloc;
6678 p->howto = howto;
6679 p->section = section;
6680 p->name = name;
6681 p->addend_exp = addend;
6682
6683 p->addend_value = 0;
6684 p->output_section = NULL;
6685 p->output_offset = 0;
6686 }
6687
6688 lang_assignment_statement_type *
6689 lang_add_assignment (etree_type *exp)
6690 {
6691 lang_assignment_statement_type *new_stmt;
6692
6693 new_stmt = new_stat (lang_assignment_statement, stat_ptr);
6694 new_stmt->exp = exp;
6695 return new_stmt;
6696 }
6697
6698 void
6699 lang_add_attribute (enum statement_enum attribute)
6700 {
6701 new_statement (attribute, sizeof (lang_statement_header_type), stat_ptr);
6702 }
6703
6704 void
6705 lang_startup (const char *name)
6706 {
6707 if (first_file->filename != NULL)
6708 {
6709 einfo (_("%P%F: multiple STARTUP files\n"));
6710 }
6711 first_file->filename = name;
6712 first_file->local_sym_name = name;
6713 first_file->real = TRUE;
6714 }
6715
6716 void
6717 lang_float (bfd_boolean maybe)
6718 {
6719 lang_float_flag = maybe;
6720 }
6721
6722
6723 /* Work out the load- and run-time regions from a script statement, and
6724 store them in *LMA_REGION and *REGION respectively.
6725
6726 MEMSPEC is the name of the run-time region, or the value of
6727 DEFAULT_MEMORY_REGION if the statement didn't specify one.
6728 LMA_MEMSPEC is the name of the load-time region, or null if the
6729 statement didn't specify one.HAVE_LMA_P is TRUE if the statement
6730 had an explicit load address.
6731
6732 It is an error to specify both a load region and a load address. */
6733
6734 static void
6735 lang_get_regions (lang_memory_region_type **region,
6736 lang_memory_region_type **lma_region,
6737 const char *memspec,
6738 const char *lma_memspec,
6739 bfd_boolean have_lma,
6740 bfd_boolean have_vma)
6741 {
6742 *lma_region = lang_memory_region_lookup (lma_memspec, FALSE);
6743
6744 /* If no runtime region or VMA has been specified, but the load region
6745 has been specified, then use the load region for the runtime region
6746 as well. */
6747 if (lma_memspec != NULL
6748 && ! have_vma
6749 && strcmp (memspec, DEFAULT_MEMORY_REGION) == 0)
6750 *region = *lma_region;
6751 else
6752 *region = lang_memory_region_lookup (memspec, FALSE);
6753
6754 if (have_lma && lma_memspec != 0)
6755 einfo (_("%X%P:%S: section has both a load address and a load region\n"));
6756 }
6757
6758 void
6759 lang_leave_output_section_statement (fill_type *fill, const char *memspec,
6760 lang_output_section_phdr_list *phdrs,
6761 const char *lma_memspec)
6762 {
6763 lang_get_regions (&current_section->region,
6764 &current_section->lma_region,
6765 memspec, lma_memspec,
6766 current_section->load_base != NULL,
6767 current_section->addr_tree != NULL);
6768
6769 /* If this section has no load region or base, but has the same
6770 region as the previous section, then propagate the previous
6771 section's load region. */
6772
6773 if (!current_section->lma_region && !current_section->load_base
6774 && current_section->region == current_section->prev->region)
6775 current_section->lma_region = current_section->prev->lma_region;
6776
6777 current_section->fill = fill;
6778 current_section->phdrs = phdrs;
6779 pop_stat_ptr ();
6780 }
6781
6782 /* Create an absolute symbol with the given name with the value of the
6783 address of first byte of the section named.
6784
6785 If the symbol already exists, then do nothing. */
6786
6787 void
6788 lang_abs_symbol_at_beginning_of (const char *secname, const char *name)
6789 {
6790 struct bfd_link_hash_entry *h;
6791
6792 h = bfd_link_hash_lookup (link_info.hash, name, TRUE, TRUE, TRUE);
6793 if (h == NULL)
6794 einfo (_("%P%F: bfd_link_hash_lookup failed: %E\n"));
6795
6796 if (h->type == bfd_link_hash_new
6797 || h->type == bfd_link_hash_undefined)
6798 {
6799 asection *sec;
6800
6801 h->type = bfd_link_hash_defined;
6802
6803 sec = bfd_get_section_by_name (link_info.output_bfd, secname);
6804 if (sec == NULL)
6805 h->u.def.value = 0;
6806 else
6807 h->u.def.value = bfd_get_section_vma (link_info.output_bfd, sec);
6808
6809 h->u.def.section = bfd_abs_section_ptr;
6810 }
6811 }
6812
6813 /* Create an absolute symbol with the given name with the value of the
6814 address of the first byte after the end of the section named.
6815
6816 If the symbol already exists, then do nothing. */
6817
6818 void
6819 lang_abs_symbol_at_end_of (const char *secname, const char *name)
6820 {
6821 struct bfd_link_hash_entry *h;
6822
6823 h = bfd_link_hash_lookup (link_info.hash, name, TRUE, TRUE, TRUE);
6824 if (h == NULL)
6825 einfo (_("%P%F: bfd_link_hash_lookup failed: %E\n"));
6826
6827 if (h->type == bfd_link_hash_new
6828 || h->type == bfd_link_hash_undefined)
6829 {
6830 asection *sec;
6831
6832 h->type = bfd_link_hash_defined;
6833
6834 sec = bfd_get_section_by_name (link_info.output_bfd, secname);
6835 if (sec == NULL)
6836 h->u.def.value = 0;
6837 else
6838 h->u.def.value = (bfd_get_section_vma (link_info.output_bfd, sec)
6839 + TO_ADDR (sec->size));
6840
6841 h->u.def.section = bfd_abs_section_ptr;
6842 }
6843 }
6844
6845 void
6846 lang_statement_append (lang_statement_list_type *list,
6847 lang_statement_union_type *element,
6848 lang_statement_union_type **field)
6849 {
6850 *(list->tail) = element;
6851 list->tail = field;
6852 }
6853
6854 /* Set the output format type. -oformat overrides scripts. */
6855
6856 void
6857 lang_add_output_format (const char *format,
6858 const char *big,
6859 const char *little,
6860 int from_script)
6861 {
6862 if (output_target == NULL || !from_script)
6863 {
6864 if (command_line.endian == ENDIAN_BIG
6865 && big != NULL)
6866 format = big;
6867 else if (command_line.endian == ENDIAN_LITTLE
6868 && little != NULL)
6869 format = little;
6870
6871 output_target = format;
6872 }
6873 }
6874
6875 void
6876 lang_add_insert (const char *where, int is_before)
6877 {
6878 lang_insert_statement_type *new_stmt;
6879
6880 new_stmt = new_stat (lang_insert_statement, stat_ptr);
6881 new_stmt->where = where;
6882 new_stmt->is_before = is_before;
6883 saved_script_handle = previous_script_handle;
6884 }
6885
6886 /* Enter a group. This creates a new lang_group_statement, and sets
6887 stat_ptr to build new statements within the group. */
6888
6889 void
6890 lang_enter_group (void)
6891 {
6892 lang_group_statement_type *g;
6893
6894 g = new_stat (lang_group_statement, stat_ptr);
6895 lang_list_init (&g->children);
6896 push_stat_ptr (&g->children);
6897 }
6898
6899 /* Leave a group. This just resets stat_ptr to start writing to the
6900 regular list of statements again. Note that this will not work if
6901 groups can occur inside anything else which can adjust stat_ptr,
6902 but currently they can't. */
6903
6904 void
6905 lang_leave_group (void)
6906 {
6907 pop_stat_ptr ();
6908 }
6909
6910 /* Add a new program header. This is called for each entry in a PHDRS
6911 command in a linker script. */
6912
6913 void
6914 lang_new_phdr (const char *name,
6915 etree_type *type,
6916 bfd_boolean filehdr,
6917 bfd_boolean phdrs,
6918 etree_type *at,
6919 etree_type *flags)
6920 {
6921 struct lang_phdr *n, **pp;
6922 bfd_boolean hdrs;
6923
6924 n = (struct lang_phdr *) stat_alloc (sizeof (struct lang_phdr));
6925 n->next = NULL;
6926 n->name = name;
6927 n->type = exp_get_value_int (type, 0, "program header type");
6928 n->filehdr = filehdr;
6929 n->phdrs = phdrs;
6930 n->at = at;
6931 n->flags = flags;
6932
6933 hdrs = n->type == 1 && (phdrs || filehdr);
6934
6935 for (pp = &lang_phdr_list; *pp != NULL; pp = &(*pp)->next)
6936 if (hdrs
6937 && (*pp)->type == 1
6938 && !((*pp)->filehdr || (*pp)->phdrs))
6939 {
6940 einfo (_("%X%P:%S: PHDRS and FILEHDR are not supported when prior PT_LOAD headers lack them\n"));
6941 hdrs = FALSE;
6942 }
6943
6944 *pp = n;
6945 }
6946
6947 /* Record the program header information in the output BFD. FIXME: We
6948 should not be calling an ELF specific function here. */
6949
6950 static void
6951 lang_record_phdrs (void)
6952 {
6953 unsigned int alc;
6954 asection **secs;
6955 lang_output_section_phdr_list *last;
6956 struct lang_phdr *l;
6957 lang_output_section_statement_type *os;
6958
6959 alc = 10;
6960 secs = (asection **) xmalloc (alc * sizeof (asection *));
6961 last = NULL;
6962
6963 for (l = lang_phdr_list; l != NULL; l = l->next)
6964 {
6965 unsigned int c;
6966 flagword flags;
6967 bfd_vma at;
6968
6969 c = 0;
6970 for (os = &lang_output_section_statement.head->output_section_statement;
6971 os != NULL;
6972 os = os->next)
6973 {
6974 lang_output_section_phdr_list *pl;
6975
6976 if (os->constraint < 0)
6977 continue;
6978
6979 pl = os->phdrs;
6980 if (pl != NULL)
6981 last = pl;
6982 else
6983 {
6984 if (os->sectype == noload_section
6985 || os->bfd_section == NULL
6986 || (os->bfd_section->flags & SEC_ALLOC) == 0)
6987 continue;
6988
6989 /* Don't add orphans to PT_INTERP header. */
6990 if (l->type == 3)
6991 continue;
6992
6993 if (last == NULL)
6994 {
6995 lang_output_section_statement_type * tmp_os;
6996
6997 /* If we have not run across a section with a program
6998 header assigned to it yet, then scan forwards to find
6999 one. This prevents inconsistencies in the linker's
7000 behaviour when a script has specified just a single
7001 header and there are sections in that script which are
7002 not assigned to it, and which occur before the first
7003 use of that header. See here for more details:
7004 http://sourceware.org/ml/binutils/2007-02/msg00291.html */
7005 for (tmp_os = os; tmp_os; tmp_os = tmp_os->next)
7006 if (tmp_os->phdrs)
7007 {
7008 last = tmp_os->phdrs;
7009 break;
7010 }
7011 if (last == NULL)
7012 einfo (_("%F%P: no sections assigned to phdrs\n"));
7013 }
7014 pl = last;
7015 }
7016
7017 if (os->bfd_section == NULL)
7018 continue;
7019
7020 for (; pl != NULL; pl = pl->next)
7021 {
7022 if (strcmp (pl->name, l->name) == 0)
7023 {
7024 if (c >= alc)
7025 {
7026 alc *= 2;
7027 secs = (asection **) xrealloc (secs,
7028 alc * sizeof (asection *));
7029 }
7030 secs[c] = os->bfd_section;
7031 ++c;
7032 pl->used = TRUE;
7033 }
7034 }
7035 }
7036
7037 if (l->flags == NULL)
7038 flags = 0;
7039 else
7040 flags = exp_get_vma (l->flags, 0, "phdr flags");
7041
7042 if (l->at == NULL)
7043 at = 0;
7044 else
7045 at = exp_get_vma (l->at, 0, "phdr load address");
7046
7047 if (! bfd_record_phdr (link_info.output_bfd, l->type,
7048 l->flags != NULL, flags, l->at != NULL,
7049 at, l->filehdr, l->phdrs, c, secs))
7050 einfo (_("%F%P: bfd_record_phdr failed: %E\n"));
7051 }
7052
7053 free (secs);
7054
7055 /* Make sure all the phdr assignments succeeded. */
7056 for (os = &lang_output_section_statement.head->output_section_statement;
7057 os != NULL;
7058 os = os->next)
7059 {
7060 lang_output_section_phdr_list *pl;
7061
7062 if (os->constraint < 0
7063 || os->bfd_section == NULL)
7064 continue;
7065
7066 for (pl = os->phdrs;
7067 pl != NULL;
7068 pl = pl->next)
7069 if (! pl->used && strcmp (pl->name, "NONE") != 0)
7070 einfo (_("%X%P: section `%s' assigned to non-existent phdr `%s'\n"),
7071 os->name, pl->name);
7072 }
7073 }
7074
7075 /* Record a list of sections which may not be cross referenced. */
7076
7077 void
7078 lang_add_nocrossref (lang_nocrossref_type *l)
7079 {
7080 struct lang_nocrossrefs *n;
7081
7082 n = (struct lang_nocrossrefs *) xmalloc (sizeof *n);
7083 n->next = nocrossref_list;
7084 n->list = l;
7085 nocrossref_list = n;
7086
7087 /* Set notice_all so that we get informed about all symbols. */
7088 link_info.notice_all = TRUE;
7089 }
7090 \f
7091 /* Overlay handling. We handle overlays with some static variables. */
7092
7093 /* The overlay virtual address. */
7094 static etree_type *overlay_vma;
7095 /* And subsection alignment. */
7096 static etree_type *overlay_subalign;
7097
7098 /* An expression for the maximum section size seen so far. */
7099 static etree_type *overlay_max;
7100
7101 /* A list of all the sections in this overlay. */
7102
7103 struct overlay_list {
7104 struct overlay_list *next;
7105 lang_output_section_statement_type *os;
7106 };
7107
7108 static struct overlay_list *overlay_list;
7109
7110 /* Start handling an overlay. */
7111
7112 void
7113 lang_enter_overlay (etree_type *vma_expr, etree_type *subalign)
7114 {
7115 /* The grammar should prevent nested overlays from occurring. */
7116 ASSERT (overlay_vma == NULL
7117 && overlay_subalign == NULL
7118 && overlay_max == NULL);
7119
7120 overlay_vma = vma_expr;
7121 overlay_subalign = subalign;
7122 }
7123
7124 /* Start a section in an overlay. We handle this by calling
7125 lang_enter_output_section_statement with the correct VMA.
7126 lang_leave_overlay sets up the LMA and memory regions. */
7127
7128 void
7129 lang_enter_overlay_section (const char *name)
7130 {
7131 struct overlay_list *n;
7132 etree_type *size;
7133
7134 lang_enter_output_section_statement (name, overlay_vma, overlay_section,
7135 0, overlay_subalign, 0, 0);
7136
7137 /* If this is the first section, then base the VMA of future
7138 sections on this one. This will work correctly even if `.' is
7139 used in the addresses. */
7140 if (overlay_list == NULL)
7141 overlay_vma = exp_nameop (ADDR, name);
7142
7143 /* Remember the section. */
7144 n = (struct overlay_list *) xmalloc (sizeof *n);
7145 n->os = current_section;
7146 n->next = overlay_list;
7147 overlay_list = n;
7148
7149 size = exp_nameop (SIZEOF, name);
7150
7151 /* Arrange to work out the maximum section end address. */
7152 if (overlay_max == NULL)
7153 overlay_max = size;
7154 else
7155 overlay_max = exp_binop (MAX_K, overlay_max, size);
7156 }
7157
7158 /* Finish a section in an overlay. There isn't any special to do
7159 here. */
7160
7161 void
7162 lang_leave_overlay_section (fill_type *fill,
7163 lang_output_section_phdr_list *phdrs)
7164 {
7165 const char *name;
7166 char *clean, *s2;
7167 const char *s1;
7168 char *buf;
7169
7170 name = current_section->name;
7171
7172 /* For now, assume that DEFAULT_MEMORY_REGION is the run-time memory
7173 region and that no load-time region has been specified. It doesn't
7174 really matter what we say here, since lang_leave_overlay will
7175 override it. */
7176 lang_leave_output_section_statement (fill, DEFAULT_MEMORY_REGION, phdrs, 0);
7177
7178 /* Define the magic symbols. */
7179
7180 clean = (char *) xmalloc (strlen (name) + 1);
7181 s2 = clean;
7182 for (s1 = name; *s1 != '\0'; s1++)
7183 if (ISALNUM (*s1) || *s1 == '_')
7184 *s2++ = *s1;
7185 *s2 = '\0';
7186
7187 buf = (char *) xmalloc (strlen (clean) + sizeof "__load_start_");
7188 sprintf (buf, "__load_start_%s", clean);
7189 lang_add_assignment (exp_provide (buf,
7190 exp_nameop (LOADADDR, name),
7191 FALSE));
7192
7193 buf = (char *) xmalloc (strlen (clean) + sizeof "__load_stop_");
7194 sprintf (buf, "__load_stop_%s", clean);
7195 lang_add_assignment (exp_provide (buf,
7196 exp_binop ('+',
7197 exp_nameop (LOADADDR, name),
7198 exp_nameop (SIZEOF, name)),
7199 FALSE));
7200
7201 free (clean);
7202 }
7203
7204 /* Finish an overlay. If there are any overlay wide settings, this
7205 looks through all the sections in the overlay and sets them. */
7206
7207 void
7208 lang_leave_overlay (etree_type *lma_expr,
7209 int nocrossrefs,
7210 fill_type *fill,
7211 const char *memspec,
7212 lang_output_section_phdr_list *phdrs,
7213 const char *lma_memspec)
7214 {
7215 lang_memory_region_type *region;
7216 lang_memory_region_type *lma_region;
7217 struct overlay_list *l;
7218 lang_nocrossref_type *nocrossref;
7219
7220 lang_get_regions (&region, &lma_region,
7221 memspec, lma_memspec,
7222 lma_expr != NULL, FALSE);
7223
7224 nocrossref = NULL;
7225
7226 /* After setting the size of the last section, set '.' to end of the
7227 overlay region. */
7228 if (overlay_list != NULL)
7229 overlay_list->os->update_dot_tree
7230 = exp_assop ('=', ".", exp_binop ('+', overlay_vma, overlay_max));
7231
7232 l = overlay_list;
7233 while (l != NULL)
7234 {
7235 struct overlay_list *next;
7236
7237 if (fill != NULL && l->os->fill == NULL)
7238 l->os->fill = fill;
7239
7240 l->os->region = region;
7241 l->os->lma_region = lma_region;
7242
7243 /* The first section has the load address specified in the
7244 OVERLAY statement. The rest are worked out from that.
7245 The base address is not needed (and should be null) if
7246 an LMA region was specified. */
7247 if (l->next == 0)
7248 {
7249 l->os->load_base = lma_expr;
7250 l->os->sectype = normal_section;
7251 }
7252 if (phdrs != NULL && l->os->phdrs == NULL)
7253 l->os->phdrs = phdrs;
7254
7255 if (nocrossrefs)
7256 {
7257 lang_nocrossref_type *nc;
7258
7259 nc = (lang_nocrossref_type *) xmalloc (sizeof *nc);
7260 nc->name = l->os->name;
7261 nc->next = nocrossref;
7262 nocrossref = nc;
7263 }
7264
7265 next = l->next;
7266 free (l);
7267 l = next;
7268 }
7269
7270 if (nocrossref != NULL)
7271 lang_add_nocrossref (nocrossref);
7272
7273 overlay_vma = NULL;
7274 overlay_list = NULL;
7275 overlay_max = NULL;
7276 }
7277 \f
7278 /* Version handling. This is only useful for ELF. */
7279
7280 /* This global variable holds the version tree that we build. */
7281
7282 struct bfd_elf_version_tree *lang_elf_version_info;
7283
7284 /* If PREV is NULL, return first version pattern matching particular symbol.
7285 If PREV is non-NULL, return first version pattern matching particular
7286 symbol after PREV (previously returned by lang_vers_match). */
7287
7288 static struct bfd_elf_version_expr *
7289 lang_vers_match (struct bfd_elf_version_expr_head *head,
7290 struct bfd_elf_version_expr *prev,
7291 const char *sym)
7292 {
7293 const char *cxx_sym = sym;
7294 const char *java_sym = sym;
7295 struct bfd_elf_version_expr *expr = NULL;
7296
7297 if (head->mask & BFD_ELF_VERSION_CXX_TYPE)
7298 {
7299 cxx_sym = cplus_demangle (sym, DMGL_PARAMS | DMGL_ANSI);
7300 if (!cxx_sym)
7301 cxx_sym = sym;
7302 }
7303 if (head->mask & BFD_ELF_VERSION_JAVA_TYPE)
7304 {
7305 java_sym = cplus_demangle (sym, DMGL_JAVA);
7306 if (!java_sym)
7307 java_sym = sym;
7308 }
7309
7310 if (head->htab && (prev == NULL || prev->literal))
7311 {
7312 struct bfd_elf_version_expr e;
7313
7314 switch (prev ? prev->mask : 0)
7315 {
7316 case 0:
7317 if (head->mask & BFD_ELF_VERSION_C_TYPE)
7318 {
7319 e.pattern = sym;
7320 expr = (struct bfd_elf_version_expr *)
7321 htab_find ((htab_t) head->htab, &e);
7322 while (expr && strcmp (expr->pattern, sym) == 0)
7323 if (expr->mask == BFD_ELF_VERSION_C_TYPE)
7324 goto out_ret;
7325 else
7326 expr = expr->next;
7327 }
7328 /* Fallthrough */
7329 case BFD_ELF_VERSION_C_TYPE:
7330 if (head->mask & BFD_ELF_VERSION_CXX_TYPE)
7331 {
7332 e.pattern = cxx_sym;
7333 expr = (struct bfd_elf_version_expr *)
7334 htab_find ((htab_t) head->htab, &e);
7335 while (expr && strcmp (expr->pattern, cxx_sym) == 0)
7336 if (expr->mask == BFD_ELF_VERSION_CXX_TYPE)
7337 goto out_ret;
7338 else
7339 expr = expr->next;
7340 }
7341 /* Fallthrough */
7342 case BFD_ELF_VERSION_CXX_TYPE:
7343 if (head->mask & BFD_ELF_VERSION_JAVA_TYPE)
7344 {
7345 e.pattern = java_sym;
7346 expr = (struct bfd_elf_version_expr *)
7347 htab_find ((htab_t) head->htab, &e);
7348 while (expr && strcmp (expr->pattern, java_sym) == 0)
7349 if (expr->mask == BFD_ELF_VERSION_JAVA_TYPE)
7350 goto out_ret;
7351 else
7352 expr = expr->next;
7353 }
7354 /* Fallthrough */
7355 default:
7356 break;
7357 }
7358 }
7359
7360 /* Finally, try the wildcards. */
7361 if (prev == NULL || prev->literal)
7362 expr = head->remaining;
7363 else
7364 expr = prev->next;
7365 for (; expr; expr = expr->next)
7366 {
7367 const char *s;
7368
7369 if (!expr->pattern)
7370 continue;
7371
7372 if (expr->pattern[0] == '*' && expr->pattern[1] == '\0')
7373 break;
7374
7375 if (expr->mask == BFD_ELF_VERSION_JAVA_TYPE)
7376 s = java_sym;
7377 else if (expr->mask == BFD_ELF_VERSION_CXX_TYPE)
7378 s = cxx_sym;
7379 else
7380 s = sym;
7381 if (fnmatch (expr->pattern, s, 0) == 0)
7382 break;
7383 }
7384
7385 out_ret:
7386 if (cxx_sym != sym)
7387 free ((char *) cxx_sym);
7388 if (java_sym != sym)
7389 free ((char *) java_sym);
7390 return expr;
7391 }
7392
7393 /* Return NULL if the PATTERN argument is a glob pattern, otherwise,
7394 return a pointer to the symbol name with any backslash quotes removed. */
7395
7396 static const char *
7397 realsymbol (const char *pattern)
7398 {
7399 const char *p;
7400 bfd_boolean changed = FALSE, backslash = FALSE;
7401 char *s, *symbol = (char *) xmalloc (strlen (pattern) + 1);
7402
7403 for (p = pattern, s = symbol; *p != '\0'; ++p)
7404 {
7405 /* It is a glob pattern only if there is no preceding
7406 backslash. */
7407 if (backslash)
7408 {
7409 /* Remove the preceding backslash. */
7410 *(s - 1) = *p;
7411 backslash = FALSE;
7412 changed = TRUE;
7413 }
7414 else
7415 {
7416 if (*p == '?' || *p == '*' || *p == '[')
7417 {
7418 free (symbol);
7419 return NULL;
7420 }
7421
7422 *s++ = *p;
7423 backslash = *p == '\\';
7424 }
7425 }
7426
7427 if (changed)
7428 {
7429 *s = '\0';
7430 return symbol;
7431 }
7432 else
7433 {
7434 free (symbol);
7435 return pattern;
7436 }
7437 }
7438
7439 /* This is called for each variable name or match expression. NEW_NAME is
7440 the name of the symbol to match, or, if LITERAL_P is FALSE, a glob
7441 pattern to be matched against symbol names. */
7442
7443 struct bfd_elf_version_expr *
7444 lang_new_vers_pattern (struct bfd_elf_version_expr *orig,
7445 const char *new_name,
7446 const char *lang,
7447 bfd_boolean literal_p)
7448 {
7449 struct bfd_elf_version_expr *ret;
7450
7451 ret = (struct bfd_elf_version_expr *) xmalloc (sizeof *ret);
7452 ret->next = orig;
7453 ret->symver = 0;
7454 ret->script = 0;
7455 ret->literal = TRUE;
7456 ret->pattern = literal_p ? new_name : realsymbol (new_name);
7457 if (ret->pattern == NULL)
7458 {
7459 ret->pattern = new_name;
7460 ret->literal = FALSE;
7461 }
7462
7463 if (lang == NULL || strcasecmp (lang, "C") == 0)
7464 ret->mask = BFD_ELF_VERSION_C_TYPE;
7465 else if (strcasecmp (lang, "C++") == 0)
7466 ret->mask = BFD_ELF_VERSION_CXX_TYPE;
7467 else if (strcasecmp (lang, "Java") == 0)
7468 ret->mask = BFD_ELF_VERSION_JAVA_TYPE;
7469 else
7470 {
7471 einfo (_("%X%P: unknown language `%s' in version information\n"),
7472 lang);
7473 ret->mask = BFD_ELF_VERSION_C_TYPE;
7474 }
7475
7476 return ldemul_new_vers_pattern (ret);
7477 }
7478
7479 /* This is called for each set of variable names and match
7480 expressions. */
7481
7482 struct bfd_elf_version_tree *
7483 lang_new_vers_node (struct bfd_elf_version_expr *globals,
7484 struct bfd_elf_version_expr *locals)
7485 {
7486 struct bfd_elf_version_tree *ret;
7487
7488 ret = (struct bfd_elf_version_tree *) xcalloc (1, sizeof *ret);
7489 ret->globals.list = globals;
7490 ret->locals.list = locals;
7491 ret->match = lang_vers_match;
7492 ret->name_indx = (unsigned int) -1;
7493 return ret;
7494 }
7495
7496 /* This static variable keeps track of version indices. */
7497
7498 static int version_index;
7499
7500 static hashval_t
7501 version_expr_head_hash (const void *p)
7502 {
7503 const struct bfd_elf_version_expr *e =
7504 (const struct bfd_elf_version_expr *) p;
7505
7506 return htab_hash_string (e->pattern);
7507 }
7508
7509 static int
7510 version_expr_head_eq (const void *p1, const void *p2)
7511 {
7512 const struct bfd_elf_version_expr *e1 =
7513 (const struct bfd_elf_version_expr *) p1;
7514 const struct bfd_elf_version_expr *e2 =
7515 (const struct bfd_elf_version_expr *) p2;
7516
7517 return strcmp (e1->pattern, e2->pattern) == 0;
7518 }
7519
7520 static void
7521 lang_finalize_version_expr_head (struct bfd_elf_version_expr_head *head)
7522 {
7523 size_t count = 0;
7524 struct bfd_elf_version_expr *e, *next;
7525 struct bfd_elf_version_expr **list_loc, **remaining_loc;
7526
7527 for (e = head->list; e; e = e->next)
7528 {
7529 if (e->literal)
7530 count++;
7531 head->mask |= e->mask;
7532 }
7533
7534 if (count)
7535 {
7536 head->htab = htab_create (count * 2, version_expr_head_hash,
7537 version_expr_head_eq, NULL);
7538 list_loc = &head->list;
7539 remaining_loc = &head->remaining;
7540 for (e = head->list; e; e = next)
7541 {
7542 next = e->next;
7543 if (!e->literal)
7544 {
7545 *remaining_loc = e;
7546 remaining_loc = &e->next;
7547 }
7548 else
7549 {
7550 void **loc = htab_find_slot ((htab_t) head->htab, e, INSERT);
7551
7552 if (*loc)
7553 {
7554 struct bfd_elf_version_expr *e1, *last;
7555
7556 e1 = (struct bfd_elf_version_expr *) *loc;
7557 last = NULL;
7558 do
7559 {
7560 if (e1->mask == e->mask)
7561 {
7562 last = NULL;
7563 break;
7564 }
7565 last = e1;
7566 e1 = e1->next;
7567 }
7568 while (e1 && strcmp (e1->pattern, e->pattern) == 0);
7569
7570 if (last == NULL)
7571 {
7572 /* This is a duplicate. */
7573 /* FIXME: Memory leak. Sometimes pattern is not
7574 xmalloced alone, but in larger chunk of memory. */
7575 /* free (e->pattern); */
7576 free (e);
7577 }
7578 else
7579 {
7580 e->next = last->next;
7581 last->next = e;
7582 }
7583 }
7584 else
7585 {
7586 *loc = e;
7587 *list_loc = e;
7588 list_loc = &e->next;
7589 }
7590 }
7591 }
7592 *remaining_loc = NULL;
7593 *list_loc = head->remaining;
7594 }
7595 else
7596 head->remaining = head->list;
7597 }
7598
7599 /* This is called when we know the name and dependencies of the
7600 version. */
7601
7602 void
7603 lang_register_vers_node (const char *name,
7604 struct bfd_elf_version_tree *version,
7605 struct bfd_elf_version_deps *deps)
7606 {
7607 struct bfd_elf_version_tree *t, **pp;
7608 struct bfd_elf_version_expr *e1;
7609
7610 if (name == NULL)
7611 name = "";
7612
7613 if ((name[0] == '\0' && lang_elf_version_info != NULL)
7614 || (lang_elf_version_info && lang_elf_version_info->name[0] == '\0'))
7615 {
7616 einfo (_("%X%P: anonymous version tag cannot be combined"
7617 " with other version tags\n"));
7618 free (version);
7619 return;
7620 }
7621
7622 /* Make sure this node has a unique name. */
7623 for (t = lang_elf_version_info; t != NULL; t = t->next)
7624 if (strcmp (t->name, name) == 0)
7625 einfo (_("%X%P: duplicate version tag `%s'\n"), name);
7626
7627 lang_finalize_version_expr_head (&version->globals);
7628 lang_finalize_version_expr_head (&version->locals);
7629
7630 /* Check the global and local match names, and make sure there
7631 aren't any duplicates. */
7632
7633 for (e1 = version->globals.list; e1 != NULL; e1 = e1->next)
7634 {
7635 for (t = lang_elf_version_info; t != NULL; t = t->next)
7636 {
7637 struct bfd_elf_version_expr *e2;
7638
7639 if (t->locals.htab && e1->literal)
7640 {
7641 e2 = (struct bfd_elf_version_expr *)
7642 htab_find ((htab_t) t->locals.htab, e1);
7643 while (e2 && strcmp (e1->pattern, e2->pattern) == 0)
7644 {
7645 if (e1->mask == e2->mask)
7646 einfo (_("%X%P: duplicate expression `%s'"
7647 " in version information\n"), e1->pattern);
7648 e2 = e2->next;
7649 }
7650 }
7651 else if (!e1->literal)
7652 for (e2 = t->locals.remaining; e2 != NULL; e2 = e2->next)
7653 if (strcmp (e1->pattern, e2->pattern) == 0
7654 && e1->mask == e2->mask)
7655 einfo (_("%X%P: duplicate expression `%s'"
7656 " in version information\n"), e1->pattern);
7657 }
7658 }
7659
7660 for (e1 = version->locals.list; e1 != NULL; e1 = e1->next)
7661 {
7662 for (t = lang_elf_version_info; t != NULL; t = t->next)
7663 {
7664 struct bfd_elf_version_expr *e2;
7665
7666 if (t->globals.htab && e1->literal)
7667 {
7668 e2 = (struct bfd_elf_version_expr *)
7669 htab_find ((htab_t) t->globals.htab, e1);
7670 while (e2 && strcmp (e1->pattern, e2->pattern) == 0)
7671 {
7672 if (e1->mask == e2->mask)
7673 einfo (_("%X%P: duplicate expression `%s'"
7674 " in version information\n"),
7675 e1->pattern);
7676 e2 = e2->next;
7677 }
7678 }
7679 else if (!e1->literal)
7680 for (e2 = t->globals.remaining; e2 != NULL; e2 = e2->next)
7681 if (strcmp (e1->pattern, e2->pattern) == 0
7682 && e1->mask == e2->mask)
7683 einfo (_("%X%P: duplicate expression `%s'"
7684 " in version information\n"), e1->pattern);
7685 }
7686 }
7687
7688 version->deps = deps;
7689 version->name = name;
7690 if (name[0] != '\0')
7691 {
7692 ++version_index;
7693 version->vernum = version_index;
7694 }
7695 else
7696 version->vernum = 0;
7697
7698 for (pp = &lang_elf_version_info; *pp != NULL; pp = &(*pp)->next)
7699 ;
7700 *pp = version;
7701 }
7702
7703 /* This is called when we see a version dependency. */
7704
7705 struct bfd_elf_version_deps *
7706 lang_add_vers_depend (struct bfd_elf_version_deps *list, const char *name)
7707 {
7708 struct bfd_elf_version_deps *ret;
7709 struct bfd_elf_version_tree *t;
7710
7711 ret = (struct bfd_elf_version_deps *) xmalloc (sizeof *ret);
7712 ret->next = list;
7713
7714 for (t = lang_elf_version_info; t != NULL; t = t->next)
7715 {
7716 if (strcmp (t->name, name) == 0)
7717 {
7718 ret->version_needed = t;
7719 return ret;
7720 }
7721 }
7722
7723 einfo (_("%X%P: unable to find version dependency `%s'\n"), name);
7724
7725 ret->version_needed = NULL;
7726 return ret;
7727 }
7728
7729 static void
7730 lang_do_version_exports_section (void)
7731 {
7732 struct bfd_elf_version_expr *greg = NULL, *lreg;
7733
7734 LANG_FOR_EACH_INPUT_STATEMENT (is)
7735 {
7736 asection *sec = bfd_get_section_by_name (is->the_bfd, ".exports");
7737 char *contents, *p;
7738 bfd_size_type len;
7739
7740 if (sec == NULL)
7741 continue;
7742
7743 len = sec->size;
7744 contents = (char *) xmalloc (len);
7745 if (!bfd_get_section_contents (is->the_bfd, sec, contents, 0, len))
7746 einfo (_("%X%P: unable to read .exports section contents\n"), sec);
7747
7748 p = contents;
7749 while (p < contents + len)
7750 {
7751 greg = lang_new_vers_pattern (greg, p, NULL, FALSE);
7752 p = strchr (p, '\0') + 1;
7753 }
7754
7755 /* Do not free the contents, as we used them creating the regex. */
7756
7757 /* Do not include this section in the link. */
7758 sec->flags |= SEC_EXCLUDE | SEC_KEEP;
7759 }
7760
7761 lreg = lang_new_vers_pattern (NULL, "*", NULL, FALSE);
7762 lang_register_vers_node (command_line.version_exports_section,
7763 lang_new_vers_node (greg, lreg), NULL);
7764 }
7765
7766 void
7767 lang_add_unique (const char *name)
7768 {
7769 struct unique_sections *ent;
7770
7771 for (ent = unique_section_list; ent; ent = ent->next)
7772 if (strcmp (ent->name, name) == 0)
7773 return;
7774
7775 ent = (struct unique_sections *) xmalloc (sizeof *ent);
7776 ent->name = xstrdup (name);
7777 ent->next = unique_section_list;
7778 unique_section_list = ent;
7779 }
7780
7781 /* Append the list of dynamic symbols to the existing one. */
7782
7783 void
7784 lang_append_dynamic_list (struct bfd_elf_version_expr *dynamic)
7785 {
7786 if (link_info.dynamic_list)
7787 {
7788 struct bfd_elf_version_expr *tail;
7789 for (tail = dynamic; tail->next != NULL; tail = tail->next)
7790 ;
7791 tail->next = link_info.dynamic_list->head.list;
7792 link_info.dynamic_list->head.list = dynamic;
7793 }
7794 else
7795 {
7796 struct bfd_elf_dynamic_list *d;
7797
7798 d = (struct bfd_elf_dynamic_list *) xcalloc (1, sizeof *d);
7799 d->head.list = dynamic;
7800 d->match = lang_vers_match;
7801 link_info.dynamic_list = d;
7802 }
7803 }
7804
7805 /* Append the list of C++ typeinfo dynamic symbols to the existing
7806 one. */
7807
7808 void
7809 lang_append_dynamic_list_cpp_typeinfo (void)
7810 {
7811 const char * symbols [] =
7812 {
7813 "typeinfo name for*",
7814 "typeinfo for*"
7815 };
7816 struct bfd_elf_version_expr *dynamic = NULL;
7817 unsigned int i;
7818
7819 for (i = 0; i < ARRAY_SIZE (symbols); i++)
7820 dynamic = lang_new_vers_pattern (dynamic, symbols [i], "C++",
7821 FALSE);
7822
7823 lang_append_dynamic_list (dynamic);
7824 }
7825
7826 /* Append the list of C++ operator new and delete dynamic symbols to the
7827 existing one. */
7828
7829 void
7830 lang_append_dynamic_list_cpp_new (void)
7831 {
7832 const char * symbols [] =
7833 {
7834 "operator new*",
7835 "operator delete*"
7836 };
7837 struct bfd_elf_version_expr *dynamic = NULL;
7838 unsigned int i;
7839
7840 for (i = 0; i < ARRAY_SIZE (symbols); i++)
7841 dynamic = lang_new_vers_pattern (dynamic, symbols [i], "C++",
7842 FALSE);
7843
7844 lang_append_dynamic_list (dynamic);
7845 }
This page took 0.184103 seconds and 5 git commands to generate.