[PATCH] Revise linker plugin API to better preserve link order.
[deliverable/binutils-gdb.git] / ld / ldlang.c
1 /* Linker command language support.
2 Copyright 1991, 1992, 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000,
3 2001, 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010, 2011
4 Free Software Foundation, Inc.
5
6 This file is part of the GNU Binutils.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 3 of the License, or
11 (at your option) any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
21 MA 02110-1301, USA. */
22
23 #include "sysdep.h"
24 #include "bfd.h"
25 #include "libiberty.h"
26 #include "filenames.h"
27 #include "safe-ctype.h"
28 #include "obstack.h"
29 #include "bfdlink.h"
30
31 #include "ld.h"
32 #include "ldmain.h"
33 #include "ldexp.h"
34 #include "ldlang.h"
35 #include <ldgram.h>
36 #include "ldlex.h"
37 #include "ldmisc.h"
38 #include "ldctor.h"
39 #include "ldfile.h"
40 #include "ldemul.h"
41 #include "fnmatch.h"
42 #include "demangle.h"
43 #include "hashtab.h"
44 #include "libbfd.h"
45 #ifdef ENABLE_PLUGINS
46 #include "plugin.h"
47 #endif /* ENABLE_PLUGINS */
48
49 #ifndef offsetof
50 #define offsetof(TYPE, MEMBER) ((size_t) & (((TYPE*) 0)->MEMBER))
51 #endif
52
53 /* Locals variables. */
54 static struct obstack stat_obstack;
55 static struct obstack map_obstack;
56
57 #define obstack_chunk_alloc xmalloc
58 #define obstack_chunk_free free
59 static const char *entry_symbol_default = "start";
60 static bfd_boolean placed_commons = FALSE;
61 static bfd_boolean stripped_excluded_sections = FALSE;
62 static lang_output_section_statement_type *default_common_section;
63 static bfd_boolean map_option_f;
64 static bfd_vma print_dot;
65 static lang_input_statement_type *first_file;
66 static const char *current_target;
67 static lang_statement_list_type statement_list;
68 static struct bfd_hash_table lang_definedness_table;
69 static lang_statement_list_type *stat_save[10];
70 static lang_statement_list_type **stat_save_ptr = &stat_save[0];
71 static struct unique_sections *unique_section_list;
72 static bfd_boolean ldlang_sysrooted_script = FALSE;
73
74 /* Forward declarations. */
75 static void exp_init_os (etree_type *);
76 static void init_map_userdata (bfd *, asection *, void *);
77 static lang_input_statement_type *lookup_name (const char *);
78 static struct bfd_hash_entry *lang_definedness_newfunc
79 (struct bfd_hash_entry *, struct bfd_hash_table *, const char *);
80 static void insert_undefined (const char *);
81 static bfd_boolean sort_def_symbol (struct bfd_link_hash_entry *, void *);
82 static void print_statement (lang_statement_union_type *,
83 lang_output_section_statement_type *);
84 static void print_statement_list (lang_statement_union_type *,
85 lang_output_section_statement_type *);
86 static void print_statements (void);
87 static void print_input_section (asection *, bfd_boolean);
88 static bfd_boolean lang_one_common (struct bfd_link_hash_entry *, void *);
89 #ifdef ENABLE_PLUGINS
90 static void lang_list_insert_after (lang_statement_list_type *destlist,
91 lang_statement_list_type *srclist,
92 lang_statement_union_type **field);
93 static void lang_list_remove_tail (lang_statement_list_type *destlist,
94 lang_statement_list_type *origlist);
95 #endif /* ENABLE_PLUGINS */
96 static void lang_record_phdrs (void);
97 static void lang_do_version_exports_section (void);
98 static void lang_finalize_version_expr_head
99 (struct bfd_elf_version_expr_head *);
100
101 /* Exported variables. */
102 const char *output_target;
103 lang_output_section_statement_type *abs_output_section;
104 lang_statement_list_type lang_output_section_statement;
105 lang_statement_list_type *stat_ptr = &statement_list;
106 lang_statement_list_type file_chain = { NULL, NULL };
107 lang_statement_list_type input_file_chain;
108 struct bfd_sym_chain entry_symbol = { NULL, NULL };
109 const char *entry_section = ".text";
110 bfd_boolean entry_from_cmdline;
111 bfd_boolean undef_from_cmdline;
112 bfd_boolean lang_has_input_file = FALSE;
113 bfd_boolean had_output_filename = FALSE;
114 bfd_boolean lang_float_flag = FALSE;
115 bfd_boolean delete_output_file_on_failure = FALSE;
116 struct lang_phdr *lang_phdr_list;
117 struct lang_nocrossrefs *nocrossref_list;
118 bfd_boolean missing_file = FALSE;
119
120 /* Functions that traverse the linker script and might evaluate
121 DEFINED() need to increment this. */
122 int lang_statement_iteration = 0;
123
124 etree_type *base; /* Relocation base - or null */
125
126 /* Return TRUE if the PATTERN argument is a wildcard pattern.
127 Although backslashes are treated specially if a pattern contains
128 wildcards, we do not consider the mere presence of a backslash to
129 be enough to cause the pattern to be treated as a wildcard.
130 That lets us handle DOS filenames more naturally. */
131 #define wildcardp(pattern) (strpbrk ((pattern), "?*[") != NULL)
132
133 #define new_stat(x, y) \
134 (x##_type *) new_statement (x##_enum, sizeof (x##_type), y)
135
136 #define outside_section_address(q) \
137 ((q)->output_offset + (q)->output_section->vma)
138
139 #define outside_symbol_address(q) \
140 ((q)->value + outside_section_address (q->section))
141
142 #define SECTION_NAME_MAP_LENGTH (16)
143
144 void *
145 stat_alloc (size_t size)
146 {
147 return obstack_alloc (&stat_obstack, size);
148 }
149
150 static int
151 name_match (const char *pattern, const char *name)
152 {
153 if (wildcardp (pattern))
154 return fnmatch (pattern, name, 0);
155 return strcmp (pattern, name);
156 }
157
158 /* If PATTERN is of the form archive:file, return a pointer to the
159 separator. If not, return NULL. */
160
161 static char *
162 archive_path (const char *pattern)
163 {
164 char *p = NULL;
165
166 if (link_info.path_separator == 0)
167 return p;
168
169 p = strchr (pattern, link_info.path_separator);
170 #ifdef HAVE_DOS_BASED_FILE_SYSTEM
171 if (p == NULL || link_info.path_separator != ':')
172 return p;
173
174 /* Assume a match on the second char is part of drive specifier,
175 as in "c:\silly.dos". */
176 if (p == pattern + 1 && ISALPHA (*pattern))
177 p = strchr (p + 1, link_info.path_separator);
178 #endif
179 return p;
180 }
181
182 /* Given that FILE_SPEC results in a non-NULL SEP result from archive_path,
183 return whether F matches FILE_SPEC. */
184
185 static bfd_boolean
186 input_statement_is_archive_path (const char *file_spec, char *sep,
187 lang_input_statement_type *f)
188 {
189 bfd_boolean match = FALSE;
190
191 if ((*(sep + 1) == 0
192 || name_match (sep + 1, f->filename) == 0)
193 && ((sep != file_spec)
194 == (f->the_bfd != NULL && f->the_bfd->my_archive != NULL)))
195 {
196 match = TRUE;
197
198 if (sep != file_spec)
199 {
200 const char *aname = f->the_bfd->my_archive->filename;
201 *sep = 0;
202 match = name_match (file_spec, aname) == 0;
203 *sep = link_info.path_separator;
204 }
205 }
206 return match;
207 }
208
209 static bfd_boolean
210 unique_section_p (const asection *sec,
211 const lang_output_section_statement_type *os)
212 {
213 struct unique_sections *unam;
214 const char *secnam;
215
216 if (link_info.relocatable
217 && sec->owner != NULL
218 && bfd_is_group_section (sec->owner, sec))
219 return !(os != NULL
220 && strcmp (os->name, DISCARD_SECTION_NAME) == 0);
221
222 secnam = sec->name;
223 for (unam = unique_section_list; unam; unam = unam->next)
224 if (name_match (unam->name, secnam) == 0)
225 return TRUE;
226
227 return FALSE;
228 }
229
230 /* Generic traversal routines for finding matching sections. */
231
232 /* Try processing a section against a wildcard. This just calls
233 the callback unless the filename exclusion list is present
234 and excludes the file. It's hardly ever present so this
235 function is very fast. */
236
237 static void
238 walk_wild_consider_section (lang_wild_statement_type *ptr,
239 lang_input_statement_type *file,
240 asection *s,
241 struct wildcard_list *sec,
242 callback_t callback,
243 void *data)
244 {
245 struct name_list *list_tmp;
246
247 /* Don't process sections from files which were excluded. */
248 for (list_tmp = sec->spec.exclude_name_list;
249 list_tmp;
250 list_tmp = list_tmp->next)
251 {
252 char *p = archive_path (list_tmp->name);
253
254 if (p != NULL)
255 {
256 if (input_statement_is_archive_path (list_tmp->name, p, file))
257 return;
258 }
259
260 else if (name_match (list_tmp->name, file->filename) == 0)
261 return;
262
263 /* FIXME: Perhaps remove the following at some stage? Matching
264 unadorned archives like this was never documented and has
265 been superceded by the archive:path syntax. */
266 else if (file->the_bfd != NULL
267 && file->the_bfd->my_archive != NULL
268 && name_match (list_tmp->name,
269 file->the_bfd->my_archive->filename) == 0)
270 return;
271 }
272
273 (*callback) (ptr, sec, s, file, data);
274 }
275
276 /* Lowest common denominator routine that can handle everything correctly,
277 but slowly. */
278
279 static void
280 walk_wild_section_general (lang_wild_statement_type *ptr,
281 lang_input_statement_type *file,
282 callback_t callback,
283 void *data)
284 {
285 asection *s;
286 struct wildcard_list *sec;
287
288 for (s = file->the_bfd->sections; s != NULL; s = s->next)
289 {
290 sec = ptr->section_list;
291 if (sec == NULL)
292 (*callback) (ptr, sec, s, file, data);
293
294 while (sec != NULL)
295 {
296 bfd_boolean skip = FALSE;
297
298 if (sec->spec.name != NULL)
299 {
300 const char *sname = bfd_get_section_name (file->the_bfd, s);
301
302 skip = name_match (sec->spec.name, sname) != 0;
303 }
304
305 if (!skip)
306 walk_wild_consider_section (ptr, file, s, sec, callback, data);
307
308 sec = sec->next;
309 }
310 }
311 }
312
313 /* Routines to find a single section given its name. If there's more
314 than one section with that name, we report that. */
315
316 typedef struct
317 {
318 asection *found_section;
319 bfd_boolean multiple_sections_found;
320 } section_iterator_callback_data;
321
322 static bfd_boolean
323 section_iterator_callback (bfd *abfd ATTRIBUTE_UNUSED, asection *s, void *data)
324 {
325 section_iterator_callback_data *d = (section_iterator_callback_data *) data;
326
327 if (d->found_section != NULL)
328 {
329 d->multiple_sections_found = TRUE;
330 return TRUE;
331 }
332
333 d->found_section = s;
334 return FALSE;
335 }
336
337 static asection *
338 find_section (lang_input_statement_type *file,
339 struct wildcard_list *sec,
340 bfd_boolean *multiple_sections_found)
341 {
342 section_iterator_callback_data cb_data = { NULL, FALSE };
343
344 bfd_get_section_by_name_if (file->the_bfd, sec->spec.name,
345 section_iterator_callback, &cb_data);
346 *multiple_sections_found = cb_data.multiple_sections_found;
347 return cb_data.found_section;
348 }
349
350 /* Code for handling simple wildcards without going through fnmatch,
351 which can be expensive because of charset translations etc. */
352
353 /* A simple wild is a literal string followed by a single '*',
354 where the literal part is at least 4 characters long. */
355
356 static bfd_boolean
357 is_simple_wild (const char *name)
358 {
359 size_t len = strcspn (name, "*?[");
360 return len >= 4 && name[len] == '*' && name[len + 1] == '\0';
361 }
362
363 static bfd_boolean
364 match_simple_wild (const char *pattern, const char *name)
365 {
366 /* The first four characters of the pattern are guaranteed valid
367 non-wildcard characters. So we can go faster. */
368 if (pattern[0] != name[0] || pattern[1] != name[1]
369 || pattern[2] != name[2] || pattern[3] != name[3])
370 return FALSE;
371
372 pattern += 4;
373 name += 4;
374 while (*pattern != '*')
375 if (*name++ != *pattern++)
376 return FALSE;
377
378 return TRUE;
379 }
380
381 /* Return the numerical value of the init_priority attribute from
382 section name NAME. */
383
384 static unsigned long
385 get_init_priority (const char *name)
386 {
387 char *end;
388 unsigned long init_priority;
389
390 /* GCC uses the following section names for the init_priority
391 attribute with numerical values 101 and 65535 inclusive. A
392 lower value means a higher priority.
393
394 1: .init_array.NNNN/.fini_array.NNNN: Where NNNN is the
395 decimal numerical value of the init_priority attribute.
396 The order of execution in .init_array is forward and
397 .fini_array is backward.
398 2: .ctors.NNNN/.ctors.NNNN: Where NNNN is 65535 minus the
399 decimal numerical value of the init_priority attribute.
400 The order of execution in .ctors is backward and .dtors
401 is forward.
402 */
403 if (strncmp (name, ".init_array.", 12) == 0
404 || strncmp (name, ".fini_array.", 12) == 0)
405 {
406 init_priority = strtoul (name + 12, &end, 10);
407 return *end ? 0 : init_priority;
408 }
409 else if (strncmp (name, ".ctors.", 7) == 0
410 || strncmp (name, ".dtors.", 7) == 0)
411 {
412 init_priority = strtoul (name + 7, &end, 10);
413 return *end ? 0 : 65535 - init_priority;
414 }
415
416 return 0;
417 }
418
419 /* Compare sections ASEC and BSEC according to SORT. */
420
421 static int
422 compare_section (sort_type sort, asection *asec, asection *bsec)
423 {
424 int ret;
425 unsigned long ainit_priority, binit_priority;
426
427 switch (sort)
428 {
429 default:
430 abort ();
431
432 case by_init_priority:
433 ainit_priority
434 = get_init_priority (bfd_get_section_name (asec->owner, asec));
435 binit_priority
436 = get_init_priority (bfd_get_section_name (bsec->owner, bsec));
437 if (ainit_priority == 0 || binit_priority == 0)
438 goto sort_by_name;
439 ret = ainit_priority - binit_priority;
440 if (ret)
441 break;
442 else
443 goto sort_by_name;
444
445 case by_alignment_name:
446 ret = (bfd_section_alignment (bsec->owner, bsec)
447 - bfd_section_alignment (asec->owner, asec));
448 if (ret)
449 break;
450 /* Fall through. */
451
452 case by_name:
453 sort_by_name:
454 ret = strcmp (bfd_get_section_name (asec->owner, asec),
455 bfd_get_section_name (bsec->owner, bsec));
456 break;
457
458 case by_name_alignment:
459 ret = strcmp (bfd_get_section_name (asec->owner, asec),
460 bfd_get_section_name (bsec->owner, bsec));
461 if (ret)
462 break;
463 /* Fall through. */
464
465 case by_alignment:
466 ret = (bfd_section_alignment (bsec->owner, bsec)
467 - bfd_section_alignment (asec->owner, asec));
468 break;
469 }
470
471 return ret;
472 }
473
474 /* Build a Binary Search Tree to sort sections, unlike insertion sort
475 used in wild_sort(). BST is considerably faster if the number of
476 of sections are large. */
477
478 static lang_section_bst_type **
479 wild_sort_fast (lang_wild_statement_type *wild,
480 struct wildcard_list *sec,
481 lang_input_statement_type *file ATTRIBUTE_UNUSED,
482 asection *section)
483 {
484 lang_section_bst_type **tree;
485
486 tree = &wild->tree;
487 if (!wild->filenames_sorted
488 && (sec == NULL || sec->spec.sorted == none))
489 {
490 /* Append at the right end of tree. */
491 while (*tree)
492 tree = &((*tree)->right);
493 return tree;
494 }
495
496 while (*tree)
497 {
498 /* Find the correct node to append this section. */
499 if (compare_section (sec->spec.sorted, section, (*tree)->section) < 0)
500 tree = &((*tree)->left);
501 else
502 tree = &((*tree)->right);
503 }
504
505 return tree;
506 }
507
508 /* Use wild_sort_fast to build a BST to sort sections. */
509
510 static void
511 output_section_callback_fast (lang_wild_statement_type *ptr,
512 struct wildcard_list *sec,
513 asection *section,
514 lang_input_statement_type *file,
515 void *output)
516 {
517 lang_section_bst_type *node;
518 lang_section_bst_type **tree;
519 lang_output_section_statement_type *os;
520
521 os = (lang_output_section_statement_type *) output;
522
523 if (unique_section_p (section, os))
524 return;
525
526 node = (lang_section_bst_type *) xmalloc (sizeof (lang_section_bst_type));
527 node->left = 0;
528 node->right = 0;
529 node->section = section;
530
531 tree = wild_sort_fast (ptr, sec, file, section);
532 if (tree != NULL)
533 *tree = node;
534 }
535
536 /* Convert a sorted sections' BST back to list form. */
537
538 static void
539 output_section_callback_tree_to_list (lang_wild_statement_type *ptr,
540 lang_section_bst_type *tree,
541 void *output)
542 {
543 if (tree->left)
544 output_section_callback_tree_to_list (ptr, tree->left, output);
545
546 lang_add_section (&ptr->children, tree->section,
547 (lang_output_section_statement_type *) output);
548
549 if (tree->right)
550 output_section_callback_tree_to_list (ptr, tree->right, output);
551
552 free (tree);
553 }
554
555 /* Specialized, optimized routines for handling different kinds of
556 wildcards */
557
558 static void
559 walk_wild_section_specs1_wild0 (lang_wild_statement_type *ptr,
560 lang_input_statement_type *file,
561 callback_t callback,
562 void *data)
563 {
564 /* We can just do a hash lookup for the section with the right name.
565 But if that lookup discovers more than one section with the name
566 (should be rare), we fall back to the general algorithm because
567 we would otherwise have to sort the sections to make sure they
568 get processed in the bfd's order. */
569 bfd_boolean multiple_sections_found;
570 struct wildcard_list *sec0 = ptr->handler_data[0];
571 asection *s0 = find_section (file, sec0, &multiple_sections_found);
572
573 if (multiple_sections_found)
574 walk_wild_section_general (ptr, file, callback, data);
575 else if (s0)
576 walk_wild_consider_section (ptr, file, s0, sec0, callback, data);
577 }
578
579 static void
580 walk_wild_section_specs1_wild1 (lang_wild_statement_type *ptr,
581 lang_input_statement_type *file,
582 callback_t callback,
583 void *data)
584 {
585 asection *s;
586 struct wildcard_list *wildsec0 = ptr->handler_data[0];
587
588 for (s = file->the_bfd->sections; s != NULL; s = s->next)
589 {
590 const char *sname = bfd_get_section_name (file->the_bfd, s);
591 bfd_boolean skip = !match_simple_wild (wildsec0->spec.name, sname);
592
593 if (!skip)
594 walk_wild_consider_section (ptr, file, s, wildsec0, callback, data);
595 }
596 }
597
598 static void
599 walk_wild_section_specs2_wild1 (lang_wild_statement_type *ptr,
600 lang_input_statement_type *file,
601 callback_t callback,
602 void *data)
603 {
604 asection *s;
605 struct wildcard_list *sec0 = ptr->handler_data[0];
606 struct wildcard_list *wildsec1 = ptr->handler_data[1];
607 bfd_boolean multiple_sections_found;
608 asection *s0 = find_section (file, sec0, &multiple_sections_found);
609
610 if (multiple_sections_found)
611 {
612 walk_wild_section_general (ptr, file, callback, data);
613 return;
614 }
615
616 /* Note that if the section was not found, s0 is NULL and
617 we'll simply never succeed the s == s0 test below. */
618 for (s = file->the_bfd->sections; s != NULL; s = s->next)
619 {
620 /* Recall that in this code path, a section cannot satisfy more
621 than one spec, so if s == s0 then it cannot match
622 wildspec1. */
623 if (s == s0)
624 walk_wild_consider_section (ptr, file, s, sec0, callback, data);
625 else
626 {
627 const char *sname = bfd_get_section_name (file->the_bfd, s);
628 bfd_boolean skip = !match_simple_wild (wildsec1->spec.name, sname);
629
630 if (!skip)
631 walk_wild_consider_section (ptr, file, s, wildsec1, callback,
632 data);
633 }
634 }
635 }
636
637 static void
638 walk_wild_section_specs3_wild2 (lang_wild_statement_type *ptr,
639 lang_input_statement_type *file,
640 callback_t callback,
641 void *data)
642 {
643 asection *s;
644 struct wildcard_list *sec0 = ptr->handler_data[0];
645 struct wildcard_list *wildsec1 = ptr->handler_data[1];
646 struct wildcard_list *wildsec2 = ptr->handler_data[2];
647 bfd_boolean multiple_sections_found;
648 asection *s0 = find_section (file, sec0, &multiple_sections_found);
649
650 if (multiple_sections_found)
651 {
652 walk_wild_section_general (ptr, file, callback, data);
653 return;
654 }
655
656 for (s = file->the_bfd->sections; s != NULL; s = s->next)
657 {
658 if (s == s0)
659 walk_wild_consider_section (ptr, file, s, sec0, callback, data);
660 else
661 {
662 const char *sname = bfd_get_section_name (file->the_bfd, s);
663 bfd_boolean skip = !match_simple_wild (wildsec1->spec.name, sname);
664
665 if (!skip)
666 walk_wild_consider_section (ptr, file, s, wildsec1, callback, data);
667 else
668 {
669 skip = !match_simple_wild (wildsec2->spec.name, sname);
670 if (!skip)
671 walk_wild_consider_section (ptr, file, s, wildsec2, callback,
672 data);
673 }
674 }
675 }
676 }
677
678 static void
679 walk_wild_section_specs4_wild2 (lang_wild_statement_type *ptr,
680 lang_input_statement_type *file,
681 callback_t callback,
682 void *data)
683 {
684 asection *s;
685 struct wildcard_list *sec0 = ptr->handler_data[0];
686 struct wildcard_list *sec1 = ptr->handler_data[1];
687 struct wildcard_list *wildsec2 = ptr->handler_data[2];
688 struct wildcard_list *wildsec3 = ptr->handler_data[3];
689 bfd_boolean multiple_sections_found;
690 asection *s0 = find_section (file, sec0, &multiple_sections_found), *s1;
691
692 if (multiple_sections_found)
693 {
694 walk_wild_section_general (ptr, file, callback, data);
695 return;
696 }
697
698 s1 = find_section (file, sec1, &multiple_sections_found);
699 if (multiple_sections_found)
700 {
701 walk_wild_section_general (ptr, file, callback, data);
702 return;
703 }
704
705 for (s = file->the_bfd->sections; s != NULL; s = s->next)
706 {
707 if (s == s0)
708 walk_wild_consider_section (ptr, file, s, sec0, callback, data);
709 else
710 if (s == s1)
711 walk_wild_consider_section (ptr, file, s, sec1, callback, data);
712 else
713 {
714 const char *sname = bfd_get_section_name (file->the_bfd, s);
715 bfd_boolean skip = !match_simple_wild (wildsec2->spec.name,
716 sname);
717
718 if (!skip)
719 walk_wild_consider_section (ptr, file, s, wildsec2, callback,
720 data);
721 else
722 {
723 skip = !match_simple_wild (wildsec3->spec.name, sname);
724 if (!skip)
725 walk_wild_consider_section (ptr, file, s, wildsec3,
726 callback, data);
727 }
728 }
729 }
730 }
731
732 static void
733 walk_wild_section (lang_wild_statement_type *ptr,
734 lang_input_statement_type *file,
735 callback_t callback,
736 void *data)
737 {
738 if (file->just_syms_flag)
739 return;
740
741 (*ptr->walk_wild_section_handler) (ptr, file, callback, data);
742 }
743
744 /* Returns TRUE when name1 is a wildcard spec that might match
745 something name2 can match. We're conservative: we return FALSE
746 only if the prefixes of name1 and name2 are different up to the
747 first wildcard character. */
748
749 static bfd_boolean
750 wild_spec_can_overlap (const char *name1, const char *name2)
751 {
752 size_t prefix1_len = strcspn (name1, "?*[");
753 size_t prefix2_len = strcspn (name2, "?*[");
754 size_t min_prefix_len;
755
756 /* Note that if there is no wildcard character, then we treat the
757 terminating 0 as part of the prefix. Thus ".text" won't match
758 ".text." or ".text.*", for example. */
759 if (name1[prefix1_len] == '\0')
760 prefix1_len++;
761 if (name2[prefix2_len] == '\0')
762 prefix2_len++;
763
764 min_prefix_len = prefix1_len < prefix2_len ? prefix1_len : prefix2_len;
765
766 return memcmp (name1, name2, min_prefix_len) == 0;
767 }
768
769 /* Select specialized code to handle various kinds of wildcard
770 statements. */
771
772 static void
773 analyze_walk_wild_section_handler (lang_wild_statement_type *ptr)
774 {
775 int sec_count = 0;
776 int wild_name_count = 0;
777 struct wildcard_list *sec;
778 int signature;
779 int data_counter;
780
781 ptr->walk_wild_section_handler = walk_wild_section_general;
782 ptr->handler_data[0] = NULL;
783 ptr->handler_data[1] = NULL;
784 ptr->handler_data[2] = NULL;
785 ptr->handler_data[3] = NULL;
786 ptr->tree = NULL;
787
788 /* Count how many wildcard_specs there are, and how many of those
789 actually use wildcards in the name. Also, bail out if any of the
790 wildcard names are NULL. (Can this actually happen?
791 walk_wild_section used to test for it.) And bail out if any
792 of the wildcards are more complex than a simple string
793 ending in a single '*'. */
794 for (sec = ptr->section_list; sec != NULL; sec = sec->next)
795 {
796 ++sec_count;
797 if (sec->spec.name == NULL)
798 return;
799 if (wildcardp (sec->spec.name))
800 {
801 ++wild_name_count;
802 if (!is_simple_wild (sec->spec.name))
803 return;
804 }
805 }
806
807 /* The zero-spec case would be easy to optimize but it doesn't
808 happen in practice. Likewise, more than 4 specs doesn't
809 happen in practice. */
810 if (sec_count == 0 || sec_count > 4)
811 return;
812
813 /* Check that no two specs can match the same section. */
814 for (sec = ptr->section_list; sec != NULL; sec = sec->next)
815 {
816 struct wildcard_list *sec2;
817 for (sec2 = sec->next; sec2 != NULL; sec2 = sec2->next)
818 {
819 if (wild_spec_can_overlap (sec->spec.name, sec2->spec.name))
820 return;
821 }
822 }
823
824 signature = (sec_count << 8) + wild_name_count;
825 switch (signature)
826 {
827 case 0x0100:
828 ptr->walk_wild_section_handler = walk_wild_section_specs1_wild0;
829 break;
830 case 0x0101:
831 ptr->walk_wild_section_handler = walk_wild_section_specs1_wild1;
832 break;
833 case 0x0201:
834 ptr->walk_wild_section_handler = walk_wild_section_specs2_wild1;
835 break;
836 case 0x0302:
837 ptr->walk_wild_section_handler = walk_wild_section_specs3_wild2;
838 break;
839 case 0x0402:
840 ptr->walk_wild_section_handler = walk_wild_section_specs4_wild2;
841 break;
842 default:
843 return;
844 }
845
846 /* Now fill the data array with pointers to the specs, first the
847 specs with non-wildcard names, then the specs with wildcard
848 names. It's OK to process the specs in different order from the
849 given order, because we've already determined that no section
850 will match more than one spec. */
851 data_counter = 0;
852 for (sec = ptr->section_list; sec != NULL; sec = sec->next)
853 if (!wildcardp (sec->spec.name))
854 ptr->handler_data[data_counter++] = sec;
855 for (sec = ptr->section_list; sec != NULL; sec = sec->next)
856 if (wildcardp (sec->spec.name))
857 ptr->handler_data[data_counter++] = sec;
858 }
859
860 /* Handle a wild statement for a single file F. */
861
862 static void
863 walk_wild_file (lang_wild_statement_type *s,
864 lang_input_statement_type *f,
865 callback_t callback,
866 void *data)
867 {
868 if (f->the_bfd == NULL
869 || ! bfd_check_format (f->the_bfd, bfd_archive))
870 walk_wild_section (s, f, callback, data);
871 else
872 {
873 bfd *member;
874
875 /* This is an archive file. We must map each member of the
876 archive separately. */
877 member = bfd_openr_next_archived_file (f->the_bfd, NULL);
878 while (member != NULL)
879 {
880 /* When lookup_name is called, it will call the add_symbols
881 entry point for the archive. For each element of the
882 archive which is included, BFD will call ldlang_add_file,
883 which will set the usrdata field of the member to the
884 lang_input_statement. */
885 if (member->usrdata != NULL)
886 {
887 walk_wild_section (s,
888 (lang_input_statement_type *) member->usrdata,
889 callback, data);
890 }
891
892 member = bfd_openr_next_archived_file (f->the_bfd, member);
893 }
894 }
895 }
896
897 static void
898 walk_wild (lang_wild_statement_type *s, callback_t callback, void *data)
899 {
900 const char *file_spec = s->filename;
901 char *p;
902
903 if (file_spec == NULL)
904 {
905 /* Perform the iteration over all files in the list. */
906 LANG_FOR_EACH_INPUT_STATEMENT (f)
907 {
908 walk_wild_file (s, f, callback, data);
909 }
910 }
911 else if ((p = archive_path (file_spec)) != NULL)
912 {
913 LANG_FOR_EACH_INPUT_STATEMENT (f)
914 {
915 if (input_statement_is_archive_path (file_spec, p, f))
916 walk_wild_file (s, f, callback, data);
917 }
918 }
919 else if (wildcardp (file_spec))
920 {
921 LANG_FOR_EACH_INPUT_STATEMENT (f)
922 {
923 if (fnmatch (file_spec, f->filename, 0) == 0)
924 walk_wild_file (s, f, callback, data);
925 }
926 }
927 else
928 {
929 lang_input_statement_type *f;
930
931 /* Perform the iteration over a single file. */
932 f = lookup_name (file_spec);
933 if (f)
934 walk_wild_file (s, f, callback, data);
935 }
936 }
937
938 /* lang_for_each_statement walks the parse tree and calls the provided
939 function for each node, except those inside output section statements
940 with constraint set to -1. */
941
942 void
943 lang_for_each_statement_worker (void (*func) (lang_statement_union_type *),
944 lang_statement_union_type *s)
945 {
946 for (; s != NULL; s = s->header.next)
947 {
948 func (s);
949
950 switch (s->header.type)
951 {
952 case lang_constructors_statement_enum:
953 lang_for_each_statement_worker (func, constructor_list.head);
954 break;
955 case lang_output_section_statement_enum:
956 if (s->output_section_statement.constraint != -1)
957 lang_for_each_statement_worker
958 (func, s->output_section_statement.children.head);
959 break;
960 case lang_wild_statement_enum:
961 lang_for_each_statement_worker (func,
962 s->wild_statement.children.head);
963 break;
964 case lang_group_statement_enum:
965 lang_for_each_statement_worker (func,
966 s->group_statement.children.head);
967 break;
968 case lang_data_statement_enum:
969 case lang_reloc_statement_enum:
970 case lang_object_symbols_statement_enum:
971 case lang_output_statement_enum:
972 case lang_target_statement_enum:
973 case lang_input_section_enum:
974 case lang_input_statement_enum:
975 case lang_assignment_statement_enum:
976 case lang_padding_statement_enum:
977 case lang_address_statement_enum:
978 case lang_fill_statement_enum:
979 case lang_insert_statement_enum:
980 break;
981 default:
982 FAIL ();
983 break;
984 }
985 }
986 }
987
988 void
989 lang_for_each_statement (void (*func) (lang_statement_union_type *))
990 {
991 lang_for_each_statement_worker (func, statement_list.head);
992 }
993
994 /*----------------------------------------------------------------------*/
995
996 void
997 lang_list_init (lang_statement_list_type *list)
998 {
999 list->head = NULL;
1000 list->tail = &list->head;
1001 }
1002
1003 void
1004 push_stat_ptr (lang_statement_list_type *new_ptr)
1005 {
1006 if (stat_save_ptr >= stat_save + sizeof (stat_save) / sizeof (stat_save[0]))
1007 abort ();
1008 *stat_save_ptr++ = stat_ptr;
1009 stat_ptr = new_ptr;
1010 }
1011
1012 void
1013 pop_stat_ptr (void)
1014 {
1015 if (stat_save_ptr <= stat_save)
1016 abort ();
1017 stat_ptr = *--stat_save_ptr;
1018 }
1019
1020 /* Build a new statement node for the parse tree. */
1021
1022 static lang_statement_union_type *
1023 new_statement (enum statement_enum type,
1024 size_t size,
1025 lang_statement_list_type *list)
1026 {
1027 lang_statement_union_type *new_stmt;
1028
1029 new_stmt = (lang_statement_union_type *) stat_alloc (size);
1030 new_stmt->header.type = type;
1031 new_stmt->header.next = NULL;
1032 lang_statement_append (list, new_stmt, &new_stmt->header.next);
1033 return new_stmt;
1034 }
1035
1036 /* Build a new input file node for the language. There are several
1037 ways in which we treat an input file, eg, we only look at symbols,
1038 or prefix it with a -l etc.
1039
1040 We can be supplied with requests for input files more than once;
1041 they may, for example be split over several lines like foo.o(.text)
1042 foo.o(.data) etc, so when asked for a file we check that we haven't
1043 got it already so we don't duplicate the bfd. */
1044
1045 static lang_input_statement_type *
1046 new_afile (const char *name,
1047 lang_input_file_enum_type file_type,
1048 const char *target,
1049 bfd_boolean add_to_list)
1050 {
1051 lang_input_statement_type *p;
1052
1053 if (add_to_list)
1054 p = (lang_input_statement_type *) new_stat (lang_input_statement, stat_ptr);
1055 else
1056 {
1057 p = (lang_input_statement_type *)
1058 stat_alloc (sizeof (lang_input_statement_type));
1059 p->header.type = lang_input_statement_enum;
1060 p->header.next = NULL;
1061 }
1062
1063 lang_has_input_file = TRUE;
1064 p->target = target;
1065 p->sysrooted = FALSE;
1066
1067 if (file_type == lang_input_file_is_l_enum
1068 && name[0] == ':' && name[1] != '\0')
1069 {
1070 file_type = lang_input_file_is_search_file_enum;
1071 name = name + 1;
1072 }
1073
1074 switch (file_type)
1075 {
1076 case lang_input_file_is_symbols_only_enum:
1077 p->filename = name;
1078 p->maybe_archive = FALSE;
1079 p->real = TRUE;
1080 p->local_sym_name = name;
1081 p->just_syms_flag = TRUE;
1082 p->search_dirs_flag = FALSE;
1083 break;
1084 case lang_input_file_is_fake_enum:
1085 p->filename = name;
1086 p->maybe_archive = FALSE;
1087 p->real = FALSE;
1088 p->local_sym_name = name;
1089 p->just_syms_flag = FALSE;
1090 p->search_dirs_flag = FALSE;
1091 break;
1092 case lang_input_file_is_l_enum:
1093 p->maybe_archive = TRUE;
1094 p->filename = name;
1095 p->real = TRUE;
1096 p->local_sym_name = concat ("-l", name, (const char *) NULL);
1097 p->just_syms_flag = FALSE;
1098 p->search_dirs_flag = TRUE;
1099 break;
1100 case lang_input_file_is_marker_enum:
1101 p->filename = name;
1102 p->maybe_archive = FALSE;
1103 p->real = FALSE;
1104 p->local_sym_name = name;
1105 p->just_syms_flag = FALSE;
1106 p->search_dirs_flag = TRUE;
1107 break;
1108 case lang_input_file_is_search_file_enum:
1109 p->sysrooted = ldlang_sysrooted_script;
1110 p->filename = name;
1111 p->maybe_archive = FALSE;
1112 p->real = TRUE;
1113 p->local_sym_name = name;
1114 p->just_syms_flag = FALSE;
1115 p->search_dirs_flag = TRUE;
1116 break;
1117 case lang_input_file_is_file_enum:
1118 p->filename = name;
1119 p->maybe_archive = FALSE;
1120 p->real = TRUE;
1121 p->local_sym_name = name;
1122 p->just_syms_flag = FALSE;
1123 p->search_dirs_flag = FALSE;
1124 break;
1125 default:
1126 FAIL ();
1127 }
1128 p->the_bfd = NULL;
1129 p->next_real_file = NULL;
1130 p->next = NULL;
1131 p->dynamic = config.dynamic_link;
1132 p->add_DT_NEEDED_for_dynamic = add_DT_NEEDED_for_dynamic;
1133 p->add_DT_NEEDED_for_regular = add_DT_NEEDED_for_regular;
1134 p->whole_archive = whole_archive;
1135 p->loaded = FALSE;
1136 p->missing_file = FALSE;
1137 #ifdef ENABLE_PLUGINS
1138 p->claimed = FALSE;
1139 p->claim_archive = FALSE;
1140 #endif /* ENABLE_PLUGINS */
1141
1142 lang_statement_append (&input_file_chain,
1143 (lang_statement_union_type *) p,
1144 &p->next_real_file);
1145 return p;
1146 }
1147
1148 lang_input_statement_type *
1149 lang_add_input_file (const char *name,
1150 lang_input_file_enum_type file_type,
1151 const char *target)
1152 {
1153 return new_afile (name, file_type, target, TRUE);
1154 }
1155
1156 struct out_section_hash_entry
1157 {
1158 struct bfd_hash_entry root;
1159 lang_statement_union_type s;
1160 };
1161
1162 /* The hash table. */
1163
1164 static struct bfd_hash_table output_section_statement_table;
1165
1166 /* Support routines for the hash table used by lang_output_section_find,
1167 initialize the table, fill in an entry and remove the table. */
1168
1169 static struct bfd_hash_entry *
1170 output_section_statement_newfunc (struct bfd_hash_entry *entry,
1171 struct bfd_hash_table *table,
1172 const char *string)
1173 {
1174 lang_output_section_statement_type **nextp;
1175 struct out_section_hash_entry *ret;
1176
1177 if (entry == NULL)
1178 {
1179 entry = (struct bfd_hash_entry *) bfd_hash_allocate (table,
1180 sizeof (*ret));
1181 if (entry == NULL)
1182 return entry;
1183 }
1184
1185 entry = bfd_hash_newfunc (entry, table, string);
1186 if (entry == NULL)
1187 return entry;
1188
1189 ret = (struct out_section_hash_entry *) entry;
1190 memset (&ret->s, 0, sizeof (ret->s));
1191 ret->s.header.type = lang_output_section_statement_enum;
1192 ret->s.output_section_statement.subsection_alignment = -1;
1193 ret->s.output_section_statement.section_alignment = -1;
1194 ret->s.output_section_statement.block_value = 1;
1195 lang_list_init (&ret->s.output_section_statement.children);
1196 lang_statement_append (stat_ptr, &ret->s, &ret->s.header.next);
1197
1198 /* For every output section statement added to the list, except the
1199 first one, lang_output_section_statement.tail points to the "next"
1200 field of the last element of the list. */
1201 if (lang_output_section_statement.head != NULL)
1202 ret->s.output_section_statement.prev
1203 = ((lang_output_section_statement_type *)
1204 ((char *) lang_output_section_statement.tail
1205 - offsetof (lang_output_section_statement_type, next)));
1206
1207 /* GCC's strict aliasing rules prevent us from just casting the
1208 address, so we store the pointer in a variable and cast that
1209 instead. */
1210 nextp = &ret->s.output_section_statement.next;
1211 lang_statement_append (&lang_output_section_statement,
1212 &ret->s,
1213 (lang_statement_union_type **) nextp);
1214 return &ret->root;
1215 }
1216
1217 static void
1218 output_section_statement_table_init (void)
1219 {
1220 if (!bfd_hash_table_init_n (&output_section_statement_table,
1221 output_section_statement_newfunc,
1222 sizeof (struct out_section_hash_entry),
1223 61))
1224 einfo (_("%P%F: can not create hash table: %E\n"));
1225 }
1226
1227 static void
1228 output_section_statement_table_free (void)
1229 {
1230 bfd_hash_table_free (&output_section_statement_table);
1231 }
1232
1233 /* Build enough state so that the parser can build its tree. */
1234
1235 void
1236 lang_init (void)
1237 {
1238 obstack_begin (&stat_obstack, 1000);
1239
1240 stat_ptr = &statement_list;
1241
1242 output_section_statement_table_init ();
1243
1244 lang_list_init (stat_ptr);
1245
1246 lang_list_init (&input_file_chain);
1247 lang_list_init (&lang_output_section_statement);
1248 lang_list_init (&file_chain);
1249 first_file = lang_add_input_file (NULL, lang_input_file_is_marker_enum,
1250 NULL);
1251 abs_output_section =
1252 lang_output_section_statement_lookup (BFD_ABS_SECTION_NAME, 0, TRUE);
1253
1254 abs_output_section->bfd_section = bfd_abs_section_ptr;
1255
1256 /* The value "3" is ad-hoc, somewhat related to the expected number of
1257 DEFINED expressions in a linker script. For most default linker
1258 scripts, there are none. Why a hash table then? Well, it's somewhat
1259 simpler to re-use working machinery than using a linked list in terms
1260 of code-complexity here in ld, besides the initialization which just
1261 looks like other code here. */
1262 if (!bfd_hash_table_init_n (&lang_definedness_table,
1263 lang_definedness_newfunc,
1264 sizeof (struct lang_definedness_hash_entry),
1265 3))
1266 einfo (_("%P%F: can not create hash table: %E\n"));
1267 }
1268
1269 void
1270 lang_finish (void)
1271 {
1272 output_section_statement_table_free ();
1273 }
1274
1275 /*----------------------------------------------------------------------
1276 A region is an area of memory declared with the
1277 MEMORY { name:org=exp, len=exp ... }
1278 syntax.
1279
1280 We maintain a list of all the regions here.
1281
1282 If no regions are specified in the script, then the default is used
1283 which is created when looked up to be the entire data space.
1284
1285 If create is true we are creating a region inside a MEMORY block.
1286 In this case it is probably an error to create a region that has
1287 already been created. If we are not inside a MEMORY block it is
1288 dubious to use an undeclared region name (except DEFAULT_MEMORY_REGION)
1289 and so we issue a warning.
1290
1291 Each region has at least one name. The first name is either
1292 DEFAULT_MEMORY_REGION or the name given in the MEMORY block. You can add
1293 alias names to an existing region within a script with
1294 REGION_ALIAS (alias, region_name). Each name corresponds to at most one
1295 region. */
1296
1297 static lang_memory_region_type *lang_memory_region_list;
1298 static lang_memory_region_type **lang_memory_region_list_tail
1299 = &lang_memory_region_list;
1300
1301 lang_memory_region_type *
1302 lang_memory_region_lookup (const char *const name, bfd_boolean create)
1303 {
1304 lang_memory_region_name *n;
1305 lang_memory_region_type *r;
1306 lang_memory_region_type *new_region;
1307
1308 /* NAME is NULL for LMA memspecs if no region was specified. */
1309 if (name == NULL)
1310 return NULL;
1311
1312 for (r = lang_memory_region_list; r != NULL; r = r->next)
1313 for (n = &r->name_list; n != NULL; n = n->next)
1314 if (strcmp (n->name, name) == 0)
1315 {
1316 if (create)
1317 einfo (_("%P:%S: warning: redeclaration of memory region `%s'\n"),
1318 name);
1319 return r;
1320 }
1321
1322 if (!create && strcmp (name, DEFAULT_MEMORY_REGION))
1323 einfo (_("%P:%S: warning: memory region `%s' not declared\n"), name);
1324
1325 new_region = (lang_memory_region_type *)
1326 stat_alloc (sizeof (lang_memory_region_type));
1327
1328 new_region->name_list.name = xstrdup (name);
1329 new_region->name_list.next = NULL;
1330 new_region->next = NULL;
1331 new_region->origin = 0;
1332 new_region->length = ~(bfd_size_type) 0;
1333 new_region->current = 0;
1334 new_region->last_os = NULL;
1335 new_region->flags = 0;
1336 new_region->not_flags = 0;
1337 new_region->had_full_message = FALSE;
1338
1339 *lang_memory_region_list_tail = new_region;
1340 lang_memory_region_list_tail = &new_region->next;
1341
1342 return new_region;
1343 }
1344
1345 void
1346 lang_memory_region_alias (const char * alias, const char * region_name)
1347 {
1348 lang_memory_region_name * n;
1349 lang_memory_region_type * r;
1350 lang_memory_region_type * region;
1351
1352 /* The default region must be unique. This ensures that it is not necessary
1353 to iterate through the name list if someone wants the check if a region is
1354 the default memory region. */
1355 if (strcmp (region_name, DEFAULT_MEMORY_REGION) == 0
1356 || strcmp (alias, DEFAULT_MEMORY_REGION) == 0)
1357 einfo (_("%F%P:%S: error: alias for default memory region\n"));
1358
1359 /* Look for the target region and check if the alias is not already
1360 in use. */
1361 region = NULL;
1362 for (r = lang_memory_region_list; r != NULL; r = r->next)
1363 for (n = &r->name_list; n != NULL; n = n->next)
1364 {
1365 if (region == NULL && strcmp (n->name, region_name) == 0)
1366 region = r;
1367 if (strcmp (n->name, alias) == 0)
1368 einfo (_("%F%P:%S: error: redefinition of memory region "
1369 "alias `%s'\n"),
1370 alias);
1371 }
1372
1373 /* Check if the target region exists. */
1374 if (region == NULL)
1375 einfo (_("%F%P:%S: error: memory region `%s' "
1376 "for alias `%s' does not exist\n"),
1377 region_name,
1378 alias);
1379
1380 /* Add alias to region name list. */
1381 n = (lang_memory_region_name *) stat_alloc (sizeof (lang_memory_region_name));
1382 n->name = xstrdup (alias);
1383 n->next = region->name_list.next;
1384 region->name_list.next = n;
1385 }
1386
1387 static lang_memory_region_type *
1388 lang_memory_default (asection * section)
1389 {
1390 lang_memory_region_type *p;
1391
1392 flagword sec_flags = section->flags;
1393
1394 /* Override SEC_DATA to mean a writable section. */
1395 if ((sec_flags & (SEC_ALLOC | SEC_READONLY | SEC_CODE)) == SEC_ALLOC)
1396 sec_flags |= SEC_DATA;
1397
1398 for (p = lang_memory_region_list; p != NULL; p = p->next)
1399 {
1400 if ((p->flags & sec_flags) != 0
1401 && (p->not_flags & sec_flags) == 0)
1402 {
1403 return p;
1404 }
1405 }
1406 return lang_memory_region_lookup (DEFAULT_MEMORY_REGION, FALSE);
1407 }
1408
1409 /* Find or create an output_section_statement with the given NAME.
1410 If CONSTRAINT is non-zero match one with that constraint, otherwise
1411 match any non-negative constraint. If CREATE, always make a
1412 new output_section_statement for SPECIAL CONSTRAINT. */
1413
1414 lang_output_section_statement_type *
1415 lang_output_section_statement_lookup (const char *name,
1416 int constraint,
1417 bfd_boolean create)
1418 {
1419 struct out_section_hash_entry *entry;
1420
1421 entry = ((struct out_section_hash_entry *)
1422 bfd_hash_lookup (&output_section_statement_table, name,
1423 create, FALSE));
1424 if (entry == NULL)
1425 {
1426 if (create)
1427 einfo (_("%P%F: failed creating section `%s': %E\n"), name);
1428 return NULL;
1429 }
1430
1431 if (entry->s.output_section_statement.name != NULL)
1432 {
1433 /* We have a section of this name, but it might not have the correct
1434 constraint. */
1435 struct out_section_hash_entry *last_ent;
1436
1437 name = entry->s.output_section_statement.name;
1438 if (create && constraint == SPECIAL)
1439 /* Not traversing to the end reverses the order of the second
1440 and subsequent SPECIAL sections in the hash table chain,
1441 but that shouldn't matter. */
1442 last_ent = entry;
1443 else
1444 do
1445 {
1446 if (constraint == entry->s.output_section_statement.constraint
1447 || (constraint == 0
1448 && entry->s.output_section_statement.constraint >= 0))
1449 return &entry->s.output_section_statement;
1450 last_ent = entry;
1451 entry = (struct out_section_hash_entry *) entry->root.next;
1452 }
1453 while (entry != NULL
1454 && name == entry->s.output_section_statement.name);
1455
1456 if (!create)
1457 return NULL;
1458
1459 entry
1460 = ((struct out_section_hash_entry *)
1461 output_section_statement_newfunc (NULL,
1462 &output_section_statement_table,
1463 name));
1464 if (entry == NULL)
1465 {
1466 einfo (_("%P%F: failed creating section `%s': %E\n"), name);
1467 return NULL;
1468 }
1469 entry->root = last_ent->root;
1470 last_ent->root.next = &entry->root;
1471 }
1472
1473 entry->s.output_section_statement.name = name;
1474 entry->s.output_section_statement.constraint = constraint;
1475 return &entry->s.output_section_statement;
1476 }
1477
1478 /* Find the next output_section_statement with the same name as OS.
1479 If CONSTRAINT is non-zero, find one with that constraint otherwise
1480 match any non-negative constraint. */
1481
1482 lang_output_section_statement_type *
1483 next_matching_output_section_statement (lang_output_section_statement_type *os,
1484 int constraint)
1485 {
1486 /* All output_section_statements are actually part of a
1487 struct out_section_hash_entry. */
1488 struct out_section_hash_entry *entry = (struct out_section_hash_entry *)
1489 ((char *) os
1490 - offsetof (struct out_section_hash_entry, s.output_section_statement));
1491 const char *name = os->name;
1492
1493 ASSERT (name == entry->root.string);
1494 do
1495 {
1496 entry = (struct out_section_hash_entry *) entry->root.next;
1497 if (entry == NULL
1498 || name != entry->s.output_section_statement.name)
1499 return NULL;
1500 }
1501 while (constraint != entry->s.output_section_statement.constraint
1502 && (constraint != 0
1503 || entry->s.output_section_statement.constraint < 0));
1504
1505 return &entry->s.output_section_statement;
1506 }
1507
1508 /* A variant of lang_output_section_find used by place_orphan.
1509 Returns the output statement that should precede a new output
1510 statement for SEC. If an exact match is found on certain flags,
1511 sets *EXACT too. */
1512
1513 lang_output_section_statement_type *
1514 lang_output_section_find_by_flags (const asection *sec,
1515 lang_output_section_statement_type **exact,
1516 lang_match_sec_type_func match_type)
1517 {
1518 lang_output_section_statement_type *first, *look, *found;
1519 flagword flags;
1520
1521 /* We know the first statement on this list is *ABS*. May as well
1522 skip it. */
1523 first = &lang_output_section_statement.head->output_section_statement;
1524 first = first->next;
1525
1526 /* First try for an exact match. */
1527 found = NULL;
1528 for (look = first; look; look = look->next)
1529 {
1530 flags = look->flags;
1531 if (look->bfd_section != NULL)
1532 {
1533 flags = look->bfd_section->flags;
1534 if (match_type && !match_type (link_info.output_bfd,
1535 look->bfd_section,
1536 sec->owner, sec))
1537 continue;
1538 }
1539 flags ^= sec->flags;
1540 if (!(flags & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD | SEC_READONLY
1541 | SEC_CODE | SEC_SMALL_DATA | SEC_THREAD_LOCAL)))
1542 found = look;
1543 }
1544 if (found != NULL)
1545 {
1546 if (exact != NULL)
1547 *exact = found;
1548 return found;
1549 }
1550
1551 if ((sec->flags & SEC_CODE) != 0
1552 && (sec->flags & SEC_ALLOC) != 0)
1553 {
1554 /* Try for a rw code section. */
1555 for (look = first; look; look = look->next)
1556 {
1557 flags = look->flags;
1558 if (look->bfd_section != NULL)
1559 {
1560 flags = look->bfd_section->flags;
1561 if (match_type && !match_type (link_info.output_bfd,
1562 look->bfd_section,
1563 sec->owner, sec))
1564 continue;
1565 }
1566 flags ^= sec->flags;
1567 if (!(flags & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD
1568 | SEC_CODE | SEC_SMALL_DATA | SEC_THREAD_LOCAL)))
1569 found = look;
1570 }
1571 }
1572 else if ((sec->flags & (SEC_READONLY | SEC_THREAD_LOCAL)) != 0
1573 && (sec->flags & SEC_ALLOC) != 0)
1574 {
1575 /* .rodata can go after .text, .sdata2 after .rodata. */
1576 for (look = first; look; look = look->next)
1577 {
1578 flags = look->flags;
1579 if (look->bfd_section != NULL)
1580 {
1581 flags = look->bfd_section->flags;
1582 if (match_type && !match_type (link_info.output_bfd,
1583 look->bfd_section,
1584 sec->owner, sec))
1585 continue;
1586 }
1587 flags ^= sec->flags;
1588 if (!(flags & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD
1589 | SEC_READONLY))
1590 && !(look->flags & (SEC_SMALL_DATA | SEC_THREAD_LOCAL)))
1591 found = look;
1592 }
1593 }
1594 else if ((sec->flags & SEC_SMALL_DATA) != 0
1595 && (sec->flags & SEC_ALLOC) != 0)
1596 {
1597 /* .sdata goes after .data, .sbss after .sdata. */
1598 for (look = first; look; look = look->next)
1599 {
1600 flags = look->flags;
1601 if (look->bfd_section != NULL)
1602 {
1603 flags = look->bfd_section->flags;
1604 if (match_type && !match_type (link_info.output_bfd,
1605 look->bfd_section,
1606 sec->owner, sec))
1607 continue;
1608 }
1609 flags ^= sec->flags;
1610 if (!(flags & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD
1611 | SEC_THREAD_LOCAL))
1612 || ((look->flags & SEC_SMALL_DATA)
1613 && !(sec->flags & SEC_HAS_CONTENTS)))
1614 found = look;
1615 }
1616 }
1617 else if ((sec->flags & SEC_HAS_CONTENTS) != 0
1618 && (sec->flags & SEC_ALLOC) != 0)
1619 {
1620 /* .data goes after .rodata. */
1621 for (look = first; look; look = look->next)
1622 {
1623 flags = look->flags;
1624 if (look->bfd_section != NULL)
1625 {
1626 flags = look->bfd_section->flags;
1627 if (match_type && !match_type (link_info.output_bfd,
1628 look->bfd_section,
1629 sec->owner, sec))
1630 continue;
1631 }
1632 flags ^= sec->flags;
1633 if (!(flags & (SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD
1634 | SEC_SMALL_DATA | SEC_THREAD_LOCAL)))
1635 found = look;
1636 }
1637 }
1638 else if ((sec->flags & SEC_ALLOC) != 0)
1639 {
1640 /* .bss goes after any other alloc section. */
1641 for (look = first; look; look = look->next)
1642 {
1643 flags = look->flags;
1644 if (look->bfd_section != NULL)
1645 {
1646 flags = look->bfd_section->flags;
1647 if (match_type && !match_type (link_info.output_bfd,
1648 look->bfd_section,
1649 sec->owner, sec))
1650 continue;
1651 }
1652 flags ^= sec->flags;
1653 if (!(flags & SEC_ALLOC))
1654 found = look;
1655 }
1656 }
1657 else
1658 {
1659 /* non-alloc go last. */
1660 for (look = first; look; look = look->next)
1661 {
1662 flags = look->flags;
1663 if (look->bfd_section != NULL)
1664 flags = look->bfd_section->flags;
1665 flags ^= sec->flags;
1666 if (!(flags & SEC_DEBUGGING))
1667 found = look;
1668 }
1669 return found;
1670 }
1671
1672 if (found || !match_type)
1673 return found;
1674
1675 return lang_output_section_find_by_flags (sec, NULL, NULL);
1676 }
1677
1678 /* Find the last output section before given output statement.
1679 Used by place_orphan. */
1680
1681 static asection *
1682 output_prev_sec_find (lang_output_section_statement_type *os)
1683 {
1684 lang_output_section_statement_type *lookup;
1685
1686 for (lookup = os->prev; lookup != NULL; lookup = lookup->prev)
1687 {
1688 if (lookup->constraint < 0)
1689 continue;
1690
1691 if (lookup->bfd_section != NULL && lookup->bfd_section->owner != NULL)
1692 return lookup->bfd_section;
1693 }
1694
1695 return NULL;
1696 }
1697
1698 /* Look for a suitable place for a new output section statement. The
1699 idea is to skip over anything that might be inside a SECTIONS {}
1700 statement in a script, before we find another output section
1701 statement. Assignments to "dot" before an output section statement
1702 are assumed to belong to it, except in two cases; The first
1703 assignment to dot, and assignments before non-alloc sections.
1704 Otherwise we might put an orphan before . = . + SIZEOF_HEADERS or
1705 similar assignments that set the initial address, or we might
1706 insert non-alloc note sections among assignments setting end of
1707 image symbols. */
1708
1709 static lang_statement_union_type **
1710 insert_os_after (lang_output_section_statement_type *after)
1711 {
1712 lang_statement_union_type **where;
1713 lang_statement_union_type **assign = NULL;
1714 bfd_boolean ignore_first;
1715
1716 ignore_first
1717 = after == &lang_output_section_statement.head->output_section_statement;
1718
1719 for (where = &after->header.next;
1720 *where != NULL;
1721 where = &(*where)->header.next)
1722 {
1723 switch ((*where)->header.type)
1724 {
1725 case lang_assignment_statement_enum:
1726 if (assign == NULL)
1727 {
1728 lang_assignment_statement_type *ass;
1729
1730 ass = &(*where)->assignment_statement;
1731 if (ass->exp->type.node_class != etree_assert
1732 && ass->exp->assign.dst[0] == '.'
1733 && ass->exp->assign.dst[1] == 0
1734 && !ignore_first)
1735 assign = where;
1736 }
1737 ignore_first = FALSE;
1738 continue;
1739 case lang_wild_statement_enum:
1740 case lang_input_section_enum:
1741 case lang_object_symbols_statement_enum:
1742 case lang_fill_statement_enum:
1743 case lang_data_statement_enum:
1744 case lang_reloc_statement_enum:
1745 case lang_padding_statement_enum:
1746 case lang_constructors_statement_enum:
1747 assign = NULL;
1748 continue;
1749 case lang_output_section_statement_enum:
1750 if (assign != NULL)
1751 {
1752 asection *s = (*where)->output_section_statement.bfd_section;
1753
1754 if (s == NULL
1755 || s->map_head.s == NULL
1756 || (s->flags & SEC_ALLOC) != 0)
1757 where = assign;
1758 }
1759 break;
1760 case lang_input_statement_enum:
1761 case lang_address_statement_enum:
1762 case lang_target_statement_enum:
1763 case lang_output_statement_enum:
1764 case lang_group_statement_enum:
1765 case lang_insert_statement_enum:
1766 continue;
1767 }
1768 break;
1769 }
1770
1771 return where;
1772 }
1773
1774 lang_output_section_statement_type *
1775 lang_insert_orphan (asection *s,
1776 const char *secname,
1777 int constraint,
1778 lang_output_section_statement_type *after,
1779 struct orphan_save *place,
1780 etree_type *address,
1781 lang_statement_list_type *add_child)
1782 {
1783 lang_statement_list_type add;
1784 const char *ps;
1785 lang_output_section_statement_type *os;
1786 lang_output_section_statement_type **os_tail;
1787
1788 /* If we have found an appropriate place for the output section
1789 statements for this orphan, add them to our own private list,
1790 inserting them later into the global statement list. */
1791 if (after != NULL)
1792 {
1793 lang_list_init (&add);
1794 push_stat_ptr (&add);
1795 }
1796
1797 if (link_info.relocatable || (s->flags & (SEC_LOAD | SEC_ALLOC)) == 0)
1798 address = exp_intop (0);
1799
1800 os_tail = ((lang_output_section_statement_type **)
1801 lang_output_section_statement.tail);
1802 os = lang_enter_output_section_statement (secname, address, normal_section,
1803 NULL, NULL, NULL, constraint);
1804
1805 ps = NULL;
1806 if (config.build_constructors && *os_tail == os)
1807 {
1808 /* If the name of the section is representable in C, then create
1809 symbols to mark the start and the end of the section. */
1810 for (ps = secname; *ps != '\0'; ps++)
1811 if (! ISALNUM ((unsigned char) *ps) && *ps != '_')
1812 break;
1813 if (*ps == '\0')
1814 {
1815 char *symname;
1816 etree_type *e_align;
1817
1818 symname = (char *) xmalloc (ps - secname + sizeof "__start_" + 1);
1819 symname[0] = bfd_get_symbol_leading_char (link_info.output_bfd);
1820 sprintf (symname + (symname[0] != 0), "__start_%s", secname);
1821 e_align = exp_unop (ALIGN_K,
1822 exp_intop ((bfd_vma) 1 << s->alignment_power));
1823 lang_add_assignment (exp_assign (".", e_align));
1824 lang_add_assignment (exp_provide (symname,
1825 exp_unop (ABSOLUTE,
1826 exp_nameop (NAME, ".")),
1827 FALSE));
1828 }
1829 }
1830
1831 if (add_child == NULL)
1832 add_child = &os->children;
1833 lang_add_section (add_child, s, os);
1834
1835 if (after && (s->flags & (SEC_LOAD | SEC_ALLOC)) != 0)
1836 {
1837 const char *region = (after->region
1838 ? after->region->name_list.name
1839 : DEFAULT_MEMORY_REGION);
1840 const char *lma_region = (after->lma_region
1841 ? after->lma_region->name_list.name
1842 : NULL);
1843 lang_leave_output_section_statement (NULL, region, after->phdrs,
1844 lma_region);
1845 }
1846 else
1847 lang_leave_output_section_statement (NULL, DEFAULT_MEMORY_REGION, NULL,
1848 NULL);
1849
1850 if (ps != NULL && *ps == '\0')
1851 {
1852 char *symname;
1853
1854 symname = (char *) xmalloc (ps - secname + sizeof "__stop_" + 1);
1855 symname[0] = bfd_get_symbol_leading_char (link_info.output_bfd);
1856 sprintf (symname + (symname[0] != 0), "__stop_%s", secname);
1857 lang_add_assignment (exp_provide (symname,
1858 exp_nameop (NAME, "."),
1859 FALSE));
1860 }
1861
1862 /* Restore the global list pointer. */
1863 if (after != NULL)
1864 pop_stat_ptr ();
1865
1866 if (after != NULL && os->bfd_section != NULL)
1867 {
1868 asection *snew, *as;
1869
1870 snew = os->bfd_section;
1871
1872 /* Shuffle the bfd section list to make the output file look
1873 neater. This is really only cosmetic. */
1874 if (place->section == NULL
1875 && after != (&lang_output_section_statement.head
1876 ->output_section_statement))
1877 {
1878 asection *bfd_section = after->bfd_section;
1879
1880 /* If the output statement hasn't been used to place any input
1881 sections (and thus doesn't have an output bfd_section),
1882 look for the closest prior output statement having an
1883 output section. */
1884 if (bfd_section == NULL)
1885 bfd_section = output_prev_sec_find (after);
1886
1887 if (bfd_section != NULL && bfd_section != snew)
1888 place->section = &bfd_section->next;
1889 }
1890
1891 if (place->section == NULL)
1892 place->section = &link_info.output_bfd->sections;
1893
1894 as = *place->section;
1895
1896 if (!as)
1897 {
1898 /* Put the section at the end of the list. */
1899
1900 /* Unlink the section. */
1901 bfd_section_list_remove (link_info.output_bfd, snew);
1902
1903 /* Now tack it back on in the right place. */
1904 bfd_section_list_append (link_info.output_bfd, snew);
1905 }
1906 else if (as != snew && as->prev != snew)
1907 {
1908 /* Unlink the section. */
1909 bfd_section_list_remove (link_info.output_bfd, snew);
1910
1911 /* Now tack it back on in the right place. */
1912 bfd_section_list_insert_before (link_info.output_bfd, as, snew);
1913 }
1914
1915 /* Save the end of this list. Further ophans of this type will
1916 follow the one we've just added. */
1917 place->section = &snew->next;
1918
1919 /* The following is non-cosmetic. We try to put the output
1920 statements in some sort of reasonable order here, because they
1921 determine the final load addresses of the orphan sections.
1922 In addition, placing output statements in the wrong order may
1923 require extra segments. For instance, given a typical
1924 situation of all read-only sections placed in one segment and
1925 following that a segment containing all the read-write
1926 sections, we wouldn't want to place an orphan read/write
1927 section before or amongst the read-only ones. */
1928 if (add.head != NULL)
1929 {
1930 lang_output_section_statement_type *newly_added_os;
1931
1932 if (place->stmt == NULL)
1933 {
1934 lang_statement_union_type **where = insert_os_after (after);
1935
1936 *add.tail = *where;
1937 *where = add.head;
1938
1939 place->os_tail = &after->next;
1940 }
1941 else
1942 {
1943 /* Put it after the last orphan statement we added. */
1944 *add.tail = *place->stmt;
1945 *place->stmt = add.head;
1946 }
1947
1948 /* Fix the global list pointer if we happened to tack our
1949 new list at the tail. */
1950 if (*stat_ptr->tail == add.head)
1951 stat_ptr->tail = add.tail;
1952
1953 /* Save the end of this list. */
1954 place->stmt = add.tail;
1955
1956 /* Do the same for the list of output section statements. */
1957 newly_added_os = *os_tail;
1958 *os_tail = NULL;
1959 newly_added_os->prev = (lang_output_section_statement_type *)
1960 ((char *) place->os_tail
1961 - offsetof (lang_output_section_statement_type, next));
1962 newly_added_os->next = *place->os_tail;
1963 if (newly_added_os->next != NULL)
1964 newly_added_os->next->prev = newly_added_os;
1965 *place->os_tail = newly_added_os;
1966 place->os_tail = &newly_added_os->next;
1967
1968 /* Fixing the global list pointer here is a little different.
1969 We added to the list in lang_enter_output_section_statement,
1970 trimmed off the new output_section_statment above when
1971 assigning *os_tail = NULL, but possibly added it back in
1972 the same place when assigning *place->os_tail. */
1973 if (*os_tail == NULL)
1974 lang_output_section_statement.tail
1975 = (lang_statement_union_type **) os_tail;
1976 }
1977 }
1978 return os;
1979 }
1980
1981 static void
1982 lang_map_flags (flagword flag)
1983 {
1984 if (flag & SEC_ALLOC)
1985 minfo ("a");
1986
1987 if (flag & SEC_CODE)
1988 minfo ("x");
1989
1990 if (flag & SEC_READONLY)
1991 minfo ("r");
1992
1993 if (flag & SEC_DATA)
1994 minfo ("w");
1995
1996 if (flag & SEC_LOAD)
1997 minfo ("l");
1998 }
1999
2000 void
2001 lang_map (void)
2002 {
2003 lang_memory_region_type *m;
2004 bfd_boolean dis_header_printed = FALSE;
2005 bfd *p;
2006
2007 LANG_FOR_EACH_INPUT_STATEMENT (file)
2008 {
2009 asection *s;
2010
2011 if ((file->the_bfd->flags & (BFD_LINKER_CREATED | DYNAMIC)) != 0
2012 || file->just_syms_flag)
2013 continue;
2014
2015 for (s = file->the_bfd->sections; s != NULL; s = s->next)
2016 if ((s->output_section == NULL
2017 || s->output_section->owner != link_info.output_bfd)
2018 && (s->flags & (SEC_LINKER_CREATED | SEC_KEEP)) == 0)
2019 {
2020 if (! dis_header_printed)
2021 {
2022 fprintf (config.map_file, _("\nDiscarded input sections\n\n"));
2023 dis_header_printed = TRUE;
2024 }
2025
2026 print_input_section (s, TRUE);
2027 }
2028 }
2029
2030 minfo (_("\nMemory Configuration\n\n"));
2031 fprintf (config.map_file, "%-16s %-18s %-18s %s\n",
2032 _("Name"), _("Origin"), _("Length"), _("Attributes"));
2033
2034 for (m = lang_memory_region_list; m != NULL; m = m->next)
2035 {
2036 char buf[100];
2037 int len;
2038
2039 fprintf (config.map_file, "%-16s ", m->name_list.name);
2040
2041 sprintf_vma (buf, m->origin);
2042 minfo ("0x%s ", buf);
2043 len = strlen (buf);
2044 while (len < 16)
2045 {
2046 print_space ();
2047 ++len;
2048 }
2049
2050 minfo ("0x%V", m->length);
2051 if (m->flags || m->not_flags)
2052 {
2053 #ifndef BFD64
2054 minfo (" ");
2055 #endif
2056 if (m->flags)
2057 {
2058 print_space ();
2059 lang_map_flags (m->flags);
2060 }
2061
2062 if (m->not_flags)
2063 {
2064 minfo (" !");
2065 lang_map_flags (m->not_flags);
2066 }
2067 }
2068
2069 print_nl ();
2070 }
2071
2072 fprintf (config.map_file, _("\nLinker script and memory map\n\n"));
2073
2074 if (! link_info.reduce_memory_overheads)
2075 {
2076 obstack_begin (&map_obstack, 1000);
2077 for (p = link_info.input_bfds; p != (bfd *) NULL; p = p->link_next)
2078 bfd_map_over_sections (p, init_map_userdata, 0);
2079 bfd_link_hash_traverse (link_info.hash, sort_def_symbol, 0);
2080 }
2081 lang_statement_iteration ++;
2082 print_statements ();
2083 }
2084
2085 static void
2086 init_map_userdata (bfd *abfd ATTRIBUTE_UNUSED,
2087 asection *sec,
2088 void *data ATTRIBUTE_UNUSED)
2089 {
2090 fat_section_userdata_type *new_data
2091 = ((fat_section_userdata_type *) (stat_alloc
2092 (sizeof (fat_section_userdata_type))));
2093
2094 ASSERT (get_userdata (sec) == NULL);
2095 get_userdata (sec) = new_data;
2096 new_data->map_symbol_def_tail = &new_data->map_symbol_def_head;
2097 new_data->map_symbol_def_count = 0;
2098 }
2099
2100 static bfd_boolean
2101 sort_def_symbol (struct bfd_link_hash_entry *hash_entry,
2102 void *info ATTRIBUTE_UNUSED)
2103 {
2104 if (hash_entry->type == bfd_link_hash_warning)
2105 hash_entry = (struct bfd_link_hash_entry *) hash_entry->u.i.link;
2106
2107 if (hash_entry->type == bfd_link_hash_defined
2108 || hash_entry->type == bfd_link_hash_defweak)
2109 {
2110 struct fat_user_section_struct *ud;
2111 struct map_symbol_def *def;
2112
2113 ud = (struct fat_user_section_struct *)
2114 get_userdata (hash_entry->u.def.section);
2115 if (! ud)
2116 {
2117 /* ??? What do we have to do to initialize this beforehand? */
2118 /* The first time we get here is bfd_abs_section... */
2119 init_map_userdata (0, hash_entry->u.def.section, 0);
2120 ud = (struct fat_user_section_struct *)
2121 get_userdata (hash_entry->u.def.section);
2122 }
2123 else if (!ud->map_symbol_def_tail)
2124 ud->map_symbol_def_tail = &ud->map_symbol_def_head;
2125
2126 def = (struct map_symbol_def *) obstack_alloc (&map_obstack, sizeof *def);
2127 def->entry = hash_entry;
2128 *(ud->map_symbol_def_tail) = def;
2129 ud->map_symbol_def_tail = &def->next;
2130 ud->map_symbol_def_count++;
2131 }
2132 return TRUE;
2133 }
2134
2135 /* Initialize an output section. */
2136
2137 static void
2138 init_os (lang_output_section_statement_type *s, flagword flags)
2139 {
2140 if (strcmp (s->name, DISCARD_SECTION_NAME) == 0)
2141 einfo (_("%P%F: Illegal use of `%s' section\n"), DISCARD_SECTION_NAME);
2142
2143 if (s->constraint != SPECIAL)
2144 s->bfd_section = bfd_get_section_by_name (link_info.output_bfd, s->name);
2145 if (s->bfd_section == NULL)
2146 s->bfd_section = bfd_make_section_anyway_with_flags (link_info.output_bfd,
2147 s->name, flags);
2148 if (s->bfd_section == NULL)
2149 {
2150 einfo (_("%P%F: output format %s cannot represent section called %s\n"),
2151 link_info.output_bfd->xvec->name, s->name);
2152 }
2153 s->bfd_section->output_section = s->bfd_section;
2154 s->bfd_section->output_offset = 0;
2155
2156 if (!link_info.reduce_memory_overheads)
2157 {
2158 fat_section_userdata_type *new_userdata = (fat_section_userdata_type *)
2159 stat_alloc (sizeof (fat_section_userdata_type));
2160 memset (new_userdata, 0, sizeof (fat_section_userdata_type));
2161 get_userdata (s->bfd_section) = new_userdata;
2162 }
2163
2164 /* If there is a base address, make sure that any sections it might
2165 mention are initialized. */
2166 if (s->addr_tree != NULL)
2167 exp_init_os (s->addr_tree);
2168
2169 if (s->load_base != NULL)
2170 exp_init_os (s->load_base);
2171
2172 /* If supplied an alignment, set it. */
2173 if (s->section_alignment != -1)
2174 s->bfd_section->alignment_power = s->section_alignment;
2175 }
2176
2177 /* Make sure that all output sections mentioned in an expression are
2178 initialized. */
2179
2180 static void
2181 exp_init_os (etree_type *exp)
2182 {
2183 switch (exp->type.node_class)
2184 {
2185 case etree_assign:
2186 case etree_provide:
2187 exp_init_os (exp->assign.src);
2188 break;
2189
2190 case etree_binary:
2191 exp_init_os (exp->binary.lhs);
2192 exp_init_os (exp->binary.rhs);
2193 break;
2194
2195 case etree_trinary:
2196 exp_init_os (exp->trinary.cond);
2197 exp_init_os (exp->trinary.lhs);
2198 exp_init_os (exp->trinary.rhs);
2199 break;
2200
2201 case etree_assert:
2202 exp_init_os (exp->assert_s.child);
2203 break;
2204
2205 case etree_unary:
2206 exp_init_os (exp->unary.child);
2207 break;
2208
2209 case etree_name:
2210 switch (exp->type.node_code)
2211 {
2212 case ADDR:
2213 case LOADADDR:
2214 case SIZEOF:
2215 {
2216 lang_output_section_statement_type *os;
2217
2218 os = lang_output_section_find (exp->name.name);
2219 if (os != NULL && os->bfd_section == NULL)
2220 init_os (os, 0);
2221 }
2222 }
2223 break;
2224
2225 default:
2226 break;
2227 }
2228 }
2229 \f
2230 static void
2231 section_already_linked (bfd *abfd, asection *sec, void *data)
2232 {
2233 lang_input_statement_type *entry = (lang_input_statement_type *) data;
2234
2235 /* If we are only reading symbols from this object, then we want to
2236 discard all sections. */
2237 if (entry->just_syms_flag)
2238 {
2239 bfd_link_just_syms (abfd, sec, &link_info);
2240 return;
2241 }
2242
2243 if (!(abfd->flags & DYNAMIC))
2244 bfd_section_already_linked (abfd, sec, &link_info);
2245 }
2246 \f
2247 /* The wild routines.
2248
2249 These expand statements like *(.text) and foo.o to a list of
2250 explicit actions, like foo.o(.text), bar.o(.text) and
2251 foo.o(.text, .data). */
2252
2253 /* Add SECTION to the output section OUTPUT. Do this by creating a
2254 lang_input_section statement which is placed at PTR. FILE is the
2255 input file which holds SECTION. */
2256
2257 void
2258 lang_add_section (lang_statement_list_type *ptr,
2259 asection *section,
2260 lang_output_section_statement_type *output)
2261 {
2262 flagword flags = section->flags;
2263 bfd_boolean discard;
2264 lang_input_section_type *new_section;
2265
2266 /* Discard sections marked with SEC_EXCLUDE. */
2267 discard = (flags & SEC_EXCLUDE) != 0;
2268
2269 /* Discard input sections which are assigned to a section named
2270 DISCARD_SECTION_NAME. */
2271 if (strcmp (output->name, DISCARD_SECTION_NAME) == 0)
2272 discard = TRUE;
2273
2274 /* Discard debugging sections if we are stripping debugging
2275 information. */
2276 if ((link_info.strip == strip_debugger || link_info.strip == strip_all)
2277 && (flags & SEC_DEBUGGING) != 0)
2278 discard = TRUE;
2279
2280 if (discard)
2281 {
2282 if (section->output_section == NULL)
2283 {
2284 /* This prevents future calls from assigning this section. */
2285 section->output_section = bfd_abs_section_ptr;
2286 }
2287 return;
2288 }
2289
2290 if (section->output_section != NULL)
2291 return;
2292
2293 /* We don't copy the SEC_NEVER_LOAD flag from an input section
2294 to an output section, because we want to be able to include a
2295 SEC_NEVER_LOAD section in the middle of an otherwise loaded
2296 section (I don't know why we want to do this, but we do).
2297 build_link_order in ldwrite.c handles this case by turning
2298 the embedded SEC_NEVER_LOAD section into a fill. */
2299 flags &= ~ SEC_NEVER_LOAD;
2300
2301 /* If final link, don't copy the SEC_LINK_ONCE flags, they've
2302 already been processed. One reason to do this is that on pe
2303 format targets, .text$foo sections go into .text and it's odd
2304 to see .text with SEC_LINK_ONCE set. */
2305
2306 if (!link_info.relocatable)
2307 flags &= ~(SEC_LINK_ONCE | SEC_LINK_DUPLICATES | SEC_RELOC);
2308
2309 switch (output->sectype)
2310 {
2311 case normal_section:
2312 case overlay_section:
2313 break;
2314 case noalloc_section:
2315 flags &= ~SEC_ALLOC;
2316 break;
2317 case noload_section:
2318 flags &= ~SEC_LOAD;
2319 flags |= SEC_NEVER_LOAD;
2320 /* Unfortunately GNU ld has managed to evolve two different
2321 meanings to NOLOAD in scripts. ELF gets a .bss style noload,
2322 alloc, no contents section. All others get a noload, noalloc
2323 section. */
2324 if (bfd_get_flavour (link_info.output_bfd) == bfd_target_elf_flavour)
2325 flags &= ~SEC_HAS_CONTENTS;
2326 else
2327 flags &= ~SEC_ALLOC;
2328 break;
2329 }
2330
2331 if (output->bfd_section == NULL)
2332 init_os (output, flags);
2333
2334 /* If SEC_READONLY is not set in the input section, then clear
2335 it from the output section. */
2336 output->bfd_section->flags &= flags | ~SEC_READONLY;
2337
2338 if (output->bfd_section->linker_has_input)
2339 {
2340 /* Only set SEC_READONLY flag on the first input section. */
2341 flags &= ~ SEC_READONLY;
2342
2343 /* Keep SEC_MERGE and SEC_STRINGS only if they are the same. */
2344 if ((output->bfd_section->flags & (SEC_MERGE | SEC_STRINGS))
2345 != (flags & (SEC_MERGE | SEC_STRINGS))
2346 || ((flags & SEC_MERGE) != 0
2347 && output->bfd_section->entsize != section->entsize))
2348 {
2349 output->bfd_section->flags &= ~ (SEC_MERGE | SEC_STRINGS);
2350 flags &= ~ (SEC_MERGE | SEC_STRINGS);
2351 }
2352 }
2353 output->bfd_section->flags |= flags;
2354
2355 if (!output->bfd_section->linker_has_input)
2356 {
2357 output->bfd_section->linker_has_input = 1;
2358 /* This must happen after flags have been updated. The output
2359 section may have been created before we saw its first input
2360 section, eg. for a data statement. */
2361 bfd_init_private_section_data (section->owner, section,
2362 link_info.output_bfd,
2363 output->bfd_section,
2364 &link_info);
2365 if ((flags & SEC_MERGE) != 0)
2366 output->bfd_section->entsize = section->entsize;
2367 }
2368
2369 if ((flags & SEC_TIC54X_BLOCK) != 0
2370 && bfd_get_arch (section->owner) == bfd_arch_tic54x)
2371 {
2372 /* FIXME: This value should really be obtained from the bfd... */
2373 output->block_value = 128;
2374 }
2375
2376 if (section->alignment_power > output->bfd_section->alignment_power)
2377 output->bfd_section->alignment_power = section->alignment_power;
2378
2379 section->output_section = output->bfd_section;
2380
2381 if (!link_info.relocatable
2382 && !stripped_excluded_sections)
2383 {
2384 asection *s = output->bfd_section->map_tail.s;
2385 output->bfd_section->map_tail.s = section;
2386 section->map_head.s = NULL;
2387 section->map_tail.s = s;
2388 if (s != NULL)
2389 s->map_head.s = section;
2390 else
2391 output->bfd_section->map_head.s = section;
2392 }
2393
2394 /* Add a section reference to the list. */
2395 new_section = new_stat (lang_input_section, ptr);
2396 new_section->section = section;
2397 }
2398
2399 /* Handle wildcard sorting. This returns the lang_input_section which
2400 should follow the one we are going to create for SECTION and FILE,
2401 based on the sorting requirements of WILD. It returns NULL if the
2402 new section should just go at the end of the current list. */
2403
2404 static lang_statement_union_type *
2405 wild_sort (lang_wild_statement_type *wild,
2406 struct wildcard_list *sec,
2407 lang_input_statement_type *file,
2408 asection *section)
2409 {
2410 lang_statement_union_type *l;
2411
2412 if (!wild->filenames_sorted
2413 && (sec == NULL || sec->spec.sorted == none))
2414 return NULL;
2415
2416 for (l = wild->children.head; l != NULL; l = l->header.next)
2417 {
2418 lang_input_section_type *ls;
2419
2420 if (l->header.type != lang_input_section_enum)
2421 continue;
2422 ls = &l->input_section;
2423
2424 /* Sorting by filename takes precedence over sorting by section
2425 name. */
2426
2427 if (wild->filenames_sorted)
2428 {
2429 const char *fn, *ln;
2430 bfd_boolean fa, la;
2431 int i;
2432
2433 /* The PE support for the .idata section as generated by
2434 dlltool assumes that files will be sorted by the name of
2435 the archive and then the name of the file within the
2436 archive. */
2437
2438 if (file->the_bfd != NULL
2439 && bfd_my_archive (file->the_bfd) != NULL)
2440 {
2441 fn = bfd_get_filename (bfd_my_archive (file->the_bfd));
2442 fa = TRUE;
2443 }
2444 else
2445 {
2446 fn = file->filename;
2447 fa = FALSE;
2448 }
2449
2450 if (bfd_my_archive (ls->section->owner) != NULL)
2451 {
2452 ln = bfd_get_filename (bfd_my_archive (ls->section->owner));
2453 la = TRUE;
2454 }
2455 else
2456 {
2457 ln = ls->section->owner->filename;
2458 la = FALSE;
2459 }
2460
2461 i = filename_cmp (fn, ln);
2462 if (i > 0)
2463 continue;
2464 else if (i < 0)
2465 break;
2466
2467 if (fa || la)
2468 {
2469 if (fa)
2470 fn = file->filename;
2471 if (la)
2472 ln = ls->section->owner->filename;
2473
2474 i = filename_cmp (fn, ln);
2475 if (i > 0)
2476 continue;
2477 else if (i < 0)
2478 break;
2479 }
2480 }
2481
2482 /* Here either the files are not sorted by name, or we are
2483 looking at the sections for this file. */
2484
2485 if (sec != NULL && sec->spec.sorted != none)
2486 if (compare_section (sec->spec.sorted, section, ls->section) < 0)
2487 break;
2488 }
2489
2490 return l;
2491 }
2492
2493 /* Expand a wild statement for a particular FILE. SECTION may be
2494 NULL, in which case it is a wild card. */
2495
2496 static void
2497 output_section_callback (lang_wild_statement_type *ptr,
2498 struct wildcard_list *sec,
2499 asection *section,
2500 lang_input_statement_type *file,
2501 void *output)
2502 {
2503 lang_statement_union_type *before;
2504 lang_output_section_statement_type *os;
2505
2506 os = (lang_output_section_statement_type *) output;
2507
2508 /* Exclude sections that match UNIQUE_SECTION_LIST. */
2509 if (unique_section_p (section, os))
2510 return;
2511
2512 before = wild_sort (ptr, sec, file, section);
2513
2514 /* Here BEFORE points to the lang_input_section which
2515 should follow the one we are about to add. If BEFORE
2516 is NULL, then the section should just go at the end
2517 of the current list. */
2518
2519 if (before == NULL)
2520 lang_add_section (&ptr->children, section, os);
2521 else
2522 {
2523 lang_statement_list_type list;
2524 lang_statement_union_type **pp;
2525
2526 lang_list_init (&list);
2527 lang_add_section (&list, section, os);
2528
2529 /* If we are discarding the section, LIST.HEAD will
2530 be NULL. */
2531 if (list.head != NULL)
2532 {
2533 ASSERT (list.head->header.next == NULL);
2534
2535 for (pp = &ptr->children.head;
2536 *pp != before;
2537 pp = &(*pp)->header.next)
2538 ASSERT (*pp != NULL);
2539
2540 list.head->header.next = *pp;
2541 *pp = list.head;
2542 }
2543 }
2544 }
2545
2546 /* Check if all sections in a wild statement for a particular FILE
2547 are readonly. */
2548
2549 static void
2550 check_section_callback (lang_wild_statement_type *ptr ATTRIBUTE_UNUSED,
2551 struct wildcard_list *sec ATTRIBUTE_UNUSED,
2552 asection *section,
2553 lang_input_statement_type *file ATTRIBUTE_UNUSED,
2554 void *output)
2555 {
2556 lang_output_section_statement_type *os;
2557
2558 os = (lang_output_section_statement_type *) output;
2559
2560 /* Exclude sections that match UNIQUE_SECTION_LIST. */
2561 if (unique_section_p (section, os))
2562 return;
2563
2564 if (section->output_section == NULL && (section->flags & SEC_READONLY) == 0)
2565 os->all_input_readonly = FALSE;
2566 }
2567
2568 /* This is passed a file name which must have been seen already and
2569 added to the statement tree. We will see if it has been opened
2570 already and had its symbols read. If not then we'll read it. */
2571
2572 static lang_input_statement_type *
2573 lookup_name (const char *name)
2574 {
2575 lang_input_statement_type *search;
2576
2577 for (search = (lang_input_statement_type *) input_file_chain.head;
2578 search != NULL;
2579 search = (lang_input_statement_type *) search->next_real_file)
2580 {
2581 /* Use the local_sym_name as the name of the file that has
2582 already been loaded as filename might have been transformed
2583 via the search directory lookup mechanism. */
2584 const char *filename = search->local_sym_name;
2585
2586 if (filename != NULL
2587 && filename_cmp (filename, name) == 0)
2588 break;
2589 }
2590
2591 if (search == NULL)
2592 search = new_afile (name, lang_input_file_is_search_file_enum,
2593 default_target, FALSE);
2594
2595 /* If we have already added this file, or this file is not real
2596 don't add this file. */
2597 if (search->loaded || !search->real)
2598 return search;
2599
2600 if (! load_symbols (search, NULL))
2601 return NULL;
2602
2603 return search;
2604 }
2605
2606 /* Save LIST as a list of libraries whose symbols should not be exported. */
2607
2608 struct excluded_lib
2609 {
2610 char *name;
2611 struct excluded_lib *next;
2612 };
2613 static struct excluded_lib *excluded_libs;
2614
2615 void
2616 add_excluded_libs (const char *list)
2617 {
2618 const char *p = list, *end;
2619
2620 while (*p != '\0')
2621 {
2622 struct excluded_lib *entry;
2623 end = strpbrk (p, ",:");
2624 if (end == NULL)
2625 end = p + strlen (p);
2626 entry = (struct excluded_lib *) xmalloc (sizeof (*entry));
2627 entry->next = excluded_libs;
2628 entry->name = (char *) xmalloc (end - p + 1);
2629 memcpy (entry->name, p, end - p);
2630 entry->name[end - p] = '\0';
2631 excluded_libs = entry;
2632 if (*end == '\0')
2633 break;
2634 p = end + 1;
2635 }
2636 }
2637
2638 static void
2639 check_excluded_libs (bfd *abfd)
2640 {
2641 struct excluded_lib *lib = excluded_libs;
2642
2643 while (lib)
2644 {
2645 int len = strlen (lib->name);
2646 const char *filename = lbasename (abfd->filename);
2647
2648 if (strcmp (lib->name, "ALL") == 0)
2649 {
2650 abfd->no_export = TRUE;
2651 return;
2652 }
2653
2654 if (filename_ncmp (lib->name, filename, len) == 0
2655 && (filename[len] == '\0'
2656 || (filename[len] == '.' && filename[len + 1] == 'a'
2657 && filename[len + 2] == '\0')))
2658 {
2659 abfd->no_export = TRUE;
2660 return;
2661 }
2662
2663 lib = lib->next;
2664 }
2665 }
2666
2667 /* Get the symbols for an input file. */
2668
2669 bfd_boolean
2670 load_symbols (lang_input_statement_type *entry,
2671 lang_statement_list_type *place)
2672 {
2673 char **matching;
2674
2675 if (entry->loaded)
2676 return TRUE;
2677
2678 ldfile_open_file (entry);
2679
2680 /* Do not process further if the file was missing. */
2681 if (entry->missing_file)
2682 return TRUE;
2683
2684 if (! bfd_check_format (entry->the_bfd, bfd_archive)
2685 && ! bfd_check_format_matches (entry->the_bfd, bfd_object, &matching))
2686 {
2687 bfd_error_type err;
2688 bfd_boolean save_ldlang_sysrooted_script;
2689 bfd_boolean save_add_DT_NEEDED_for_regular;
2690 bfd_boolean save_add_DT_NEEDED_for_dynamic;
2691 bfd_boolean save_whole_archive;
2692
2693 err = bfd_get_error ();
2694
2695 /* See if the emulation has some special knowledge. */
2696 if (ldemul_unrecognized_file (entry))
2697 return TRUE;
2698
2699 if (err == bfd_error_file_ambiguously_recognized)
2700 {
2701 char **p;
2702
2703 einfo (_("%B: file not recognized: %E\n"), entry->the_bfd);
2704 einfo (_("%B: matching formats:"), entry->the_bfd);
2705 for (p = matching; *p != NULL; p++)
2706 einfo (" %s", *p);
2707 einfo ("%F\n");
2708 }
2709 else if (err != bfd_error_file_not_recognized
2710 || place == NULL)
2711 einfo (_("%F%B: file not recognized: %E\n"), entry->the_bfd);
2712
2713 bfd_close (entry->the_bfd);
2714 entry->the_bfd = NULL;
2715
2716 /* Try to interpret the file as a linker script. */
2717 ldfile_open_command_file (entry->filename);
2718
2719 push_stat_ptr (place);
2720 save_ldlang_sysrooted_script = ldlang_sysrooted_script;
2721 ldlang_sysrooted_script = entry->sysrooted;
2722 save_add_DT_NEEDED_for_regular = add_DT_NEEDED_for_regular;
2723 add_DT_NEEDED_for_regular = entry->add_DT_NEEDED_for_regular;
2724 save_add_DT_NEEDED_for_dynamic = add_DT_NEEDED_for_dynamic;
2725 add_DT_NEEDED_for_dynamic = entry->add_DT_NEEDED_for_dynamic;
2726 save_whole_archive = whole_archive;
2727 whole_archive = entry->whole_archive;
2728
2729 ldfile_assumed_script = TRUE;
2730 parser_input = input_script;
2731 /* We want to use the same -Bdynamic/-Bstatic as the one for
2732 ENTRY. */
2733 config.dynamic_link = entry->dynamic;
2734 yyparse ();
2735 ldfile_assumed_script = FALSE;
2736
2737 ldlang_sysrooted_script = save_ldlang_sysrooted_script;
2738 add_DT_NEEDED_for_regular = save_add_DT_NEEDED_for_regular;
2739 add_DT_NEEDED_for_dynamic = save_add_DT_NEEDED_for_dynamic;
2740 whole_archive = save_whole_archive;
2741 pop_stat_ptr ();
2742
2743 return TRUE;
2744 }
2745
2746 if (ldemul_recognized_file (entry))
2747 return TRUE;
2748
2749 /* We don't call ldlang_add_file for an archive. Instead, the
2750 add_symbols entry point will call ldlang_add_file, via the
2751 add_archive_element callback, for each element of the archive
2752 which is used. */
2753 switch (bfd_get_format (entry->the_bfd))
2754 {
2755 default:
2756 break;
2757
2758 case bfd_object:
2759 ldlang_add_file (entry);
2760 if (trace_files || trace_file_tries)
2761 info_msg ("%I\n", entry);
2762 break;
2763
2764 case bfd_archive:
2765 check_excluded_libs (entry->the_bfd);
2766
2767 if (entry->whole_archive)
2768 {
2769 bfd *member = NULL;
2770 bfd_boolean loaded = TRUE;
2771
2772 for (;;)
2773 {
2774 bfd *subsbfd;
2775 member = bfd_openr_next_archived_file (entry->the_bfd, member);
2776
2777 if (member == NULL)
2778 break;
2779
2780 if (! bfd_check_format (member, bfd_object))
2781 {
2782 einfo (_("%F%B: member %B in archive is not an object\n"),
2783 entry->the_bfd, member);
2784 loaded = FALSE;
2785 }
2786
2787 subsbfd = member;
2788 if (!(*link_info.callbacks
2789 ->add_archive_element) (&link_info, member,
2790 "--whole-archive", &subsbfd))
2791 abort ();
2792
2793 /* Potentially, the add_archive_element hook may have set a
2794 substitute BFD for us. */
2795 if (!bfd_link_add_symbols (subsbfd, &link_info))
2796 {
2797 einfo (_("%F%B: could not read symbols: %E\n"), member);
2798 loaded = FALSE;
2799 }
2800 }
2801
2802 entry->loaded = loaded;
2803 return loaded;
2804 }
2805 break;
2806 }
2807
2808 if (bfd_link_add_symbols (entry->the_bfd, &link_info))
2809 entry->loaded = TRUE;
2810 else
2811 einfo (_("%F%B: could not read symbols: %E\n"), entry->the_bfd);
2812
2813 return entry->loaded;
2814 }
2815
2816 /* Handle a wild statement. S->FILENAME or S->SECTION_LIST or both
2817 may be NULL, indicating that it is a wildcard. Separate
2818 lang_input_section statements are created for each part of the
2819 expansion; they are added after the wild statement S. OUTPUT is
2820 the output section. */
2821
2822 static void
2823 wild (lang_wild_statement_type *s,
2824 const char *target ATTRIBUTE_UNUSED,
2825 lang_output_section_statement_type *output)
2826 {
2827 struct wildcard_list *sec;
2828
2829 if (s->handler_data[0]
2830 && s->handler_data[0]->spec.sorted == by_name
2831 && !s->filenames_sorted)
2832 {
2833 lang_section_bst_type *tree;
2834
2835 walk_wild (s, output_section_callback_fast, output);
2836
2837 tree = s->tree;
2838 if (tree)
2839 {
2840 output_section_callback_tree_to_list (s, tree, output);
2841 s->tree = NULL;
2842 }
2843 }
2844 else
2845 walk_wild (s, output_section_callback, output);
2846
2847 if (default_common_section == NULL)
2848 for (sec = s->section_list; sec != NULL; sec = sec->next)
2849 if (sec->spec.name != NULL && strcmp (sec->spec.name, "COMMON") == 0)
2850 {
2851 /* Remember the section that common is going to in case we
2852 later get something which doesn't know where to put it. */
2853 default_common_section = output;
2854 break;
2855 }
2856 }
2857
2858 /* Return TRUE iff target is the sought target. */
2859
2860 static int
2861 get_target (const bfd_target *target, void *data)
2862 {
2863 const char *sought = (const char *) data;
2864
2865 return strcmp (target->name, sought) == 0;
2866 }
2867
2868 /* Like strcpy() but convert to lower case as well. */
2869
2870 static void
2871 stricpy (char *dest, char *src)
2872 {
2873 char c;
2874
2875 while ((c = *src++) != 0)
2876 *dest++ = TOLOWER (c);
2877
2878 *dest = 0;
2879 }
2880
2881 /* Remove the first occurrence of needle (if any) in haystack
2882 from haystack. */
2883
2884 static void
2885 strcut (char *haystack, char *needle)
2886 {
2887 haystack = strstr (haystack, needle);
2888
2889 if (haystack)
2890 {
2891 char *src;
2892
2893 for (src = haystack + strlen (needle); *src;)
2894 *haystack++ = *src++;
2895
2896 *haystack = 0;
2897 }
2898 }
2899
2900 /* Compare two target format name strings.
2901 Return a value indicating how "similar" they are. */
2902
2903 static int
2904 name_compare (char *first, char *second)
2905 {
2906 char *copy1;
2907 char *copy2;
2908 int result;
2909
2910 copy1 = (char *) xmalloc (strlen (first) + 1);
2911 copy2 = (char *) xmalloc (strlen (second) + 1);
2912
2913 /* Convert the names to lower case. */
2914 stricpy (copy1, first);
2915 stricpy (copy2, second);
2916
2917 /* Remove size and endian strings from the name. */
2918 strcut (copy1, "big");
2919 strcut (copy1, "little");
2920 strcut (copy2, "big");
2921 strcut (copy2, "little");
2922
2923 /* Return a value based on how many characters match,
2924 starting from the beginning. If both strings are
2925 the same then return 10 * their length. */
2926 for (result = 0; copy1[result] == copy2[result]; result++)
2927 if (copy1[result] == 0)
2928 {
2929 result *= 10;
2930 break;
2931 }
2932
2933 free (copy1);
2934 free (copy2);
2935
2936 return result;
2937 }
2938
2939 /* Set by closest_target_match() below. */
2940 static const bfd_target *winner;
2941
2942 /* Scan all the valid bfd targets looking for one that has the endianness
2943 requirement that was specified on the command line, and is the nearest
2944 match to the original output target. */
2945
2946 static int
2947 closest_target_match (const bfd_target *target, void *data)
2948 {
2949 const bfd_target *original = (const bfd_target *) data;
2950
2951 if (command_line.endian == ENDIAN_BIG
2952 && target->byteorder != BFD_ENDIAN_BIG)
2953 return 0;
2954
2955 if (command_line.endian == ENDIAN_LITTLE
2956 && target->byteorder != BFD_ENDIAN_LITTLE)
2957 return 0;
2958
2959 /* Must be the same flavour. */
2960 if (target->flavour != original->flavour)
2961 return 0;
2962
2963 /* Ignore generic big and little endian elf vectors. */
2964 if (strcmp (target->name, "elf32-big") == 0
2965 || strcmp (target->name, "elf64-big") == 0
2966 || strcmp (target->name, "elf32-little") == 0
2967 || strcmp (target->name, "elf64-little") == 0)
2968 return 0;
2969
2970 /* If we have not found a potential winner yet, then record this one. */
2971 if (winner == NULL)
2972 {
2973 winner = target;
2974 return 0;
2975 }
2976
2977 /* Oh dear, we now have two potential candidates for a successful match.
2978 Compare their names and choose the better one. */
2979 if (name_compare (target->name, original->name)
2980 > name_compare (winner->name, original->name))
2981 winner = target;
2982
2983 /* Keep on searching until wqe have checked them all. */
2984 return 0;
2985 }
2986
2987 /* Return the BFD target format of the first input file. */
2988
2989 static char *
2990 get_first_input_target (void)
2991 {
2992 char *target = NULL;
2993
2994 LANG_FOR_EACH_INPUT_STATEMENT (s)
2995 {
2996 if (s->header.type == lang_input_statement_enum
2997 && s->real)
2998 {
2999 ldfile_open_file (s);
3000
3001 if (s->the_bfd != NULL
3002 && bfd_check_format (s->the_bfd, bfd_object))
3003 {
3004 target = bfd_get_target (s->the_bfd);
3005
3006 if (target != NULL)
3007 break;
3008 }
3009 }
3010 }
3011
3012 return target;
3013 }
3014
3015 const char *
3016 lang_get_output_target (void)
3017 {
3018 const char *target;
3019
3020 /* Has the user told us which output format to use? */
3021 if (output_target != NULL)
3022 return output_target;
3023
3024 /* No - has the current target been set to something other than
3025 the default? */
3026 if (current_target != default_target)
3027 return current_target;
3028
3029 /* No - can we determine the format of the first input file? */
3030 target = get_first_input_target ();
3031 if (target != NULL)
3032 return target;
3033
3034 /* Failed - use the default output target. */
3035 return default_target;
3036 }
3037
3038 /* Open the output file. */
3039
3040 static void
3041 open_output (const char *name)
3042 {
3043 output_target = lang_get_output_target ();
3044
3045 /* Has the user requested a particular endianness on the command
3046 line? */
3047 if (command_line.endian != ENDIAN_UNSET)
3048 {
3049 const bfd_target *target;
3050 enum bfd_endian desired_endian;
3051
3052 /* Get the chosen target. */
3053 target = bfd_search_for_target (get_target, (void *) output_target);
3054
3055 /* If the target is not supported, we cannot do anything. */
3056 if (target != NULL)
3057 {
3058 if (command_line.endian == ENDIAN_BIG)
3059 desired_endian = BFD_ENDIAN_BIG;
3060 else
3061 desired_endian = BFD_ENDIAN_LITTLE;
3062
3063 /* See if the target has the wrong endianness. This should
3064 not happen if the linker script has provided big and
3065 little endian alternatives, but some scrips don't do
3066 this. */
3067 if (target->byteorder != desired_endian)
3068 {
3069 /* If it does, then see if the target provides
3070 an alternative with the correct endianness. */
3071 if (target->alternative_target != NULL
3072 && (target->alternative_target->byteorder == desired_endian))
3073 output_target = target->alternative_target->name;
3074 else
3075 {
3076 /* Try to find a target as similar as possible to
3077 the default target, but which has the desired
3078 endian characteristic. */
3079 bfd_search_for_target (closest_target_match,
3080 (void *) target);
3081
3082 /* Oh dear - we could not find any targets that
3083 satisfy our requirements. */
3084 if (winner == NULL)
3085 einfo (_("%P: warning: could not find any targets"
3086 " that match endianness requirement\n"));
3087 else
3088 output_target = winner->name;
3089 }
3090 }
3091 }
3092 }
3093
3094 link_info.output_bfd = bfd_openw (name, output_target);
3095
3096 if (link_info.output_bfd == NULL)
3097 {
3098 if (bfd_get_error () == bfd_error_invalid_target)
3099 einfo (_("%P%F: target %s not found\n"), output_target);
3100
3101 einfo (_("%P%F: cannot open output file %s: %E\n"), name);
3102 }
3103
3104 delete_output_file_on_failure = TRUE;
3105
3106 if (! bfd_set_format (link_info.output_bfd, bfd_object))
3107 einfo (_("%P%F:%s: can not make object file: %E\n"), name);
3108 if (! bfd_set_arch_mach (link_info.output_bfd,
3109 ldfile_output_architecture,
3110 ldfile_output_machine))
3111 einfo (_("%P%F:%s: can not set architecture: %E\n"), name);
3112
3113 link_info.hash = bfd_link_hash_table_create (link_info.output_bfd);
3114 if (link_info.hash == NULL)
3115 einfo (_("%P%F: can not create hash table: %E\n"));
3116
3117 bfd_set_gp_size (link_info.output_bfd, g_switch_value);
3118 }
3119
3120 static void
3121 ldlang_open_output (lang_statement_union_type *statement)
3122 {
3123 switch (statement->header.type)
3124 {
3125 case lang_output_statement_enum:
3126 ASSERT (link_info.output_bfd == NULL);
3127 open_output (statement->output_statement.name);
3128 ldemul_set_output_arch ();
3129 if (config.magic_demand_paged && !link_info.relocatable)
3130 link_info.output_bfd->flags |= D_PAGED;
3131 else
3132 link_info.output_bfd->flags &= ~D_PAGED;
3133 if (config.text_read_only)
3134 link_info.output_bfd->flags |= WP_TEXT;
3135 else
3136 link_info.output_bfd->flags &= ~WP_TEXT;
3137 if (link_info.traditional_format)
3138 link_info.output_bfd->flags |= BFD_TRADITIONAL_FORMAT;
3139 else
3140 link_info.output_bfd->flags &= ~BFD_TRADITIONAL_FORMAT;
3141 break;
3142
3143 case lang_target_statement_enum:
3144 current_target = statement->target_statement.target;
3145 break;
3146 default:
3147 break;
3148 }
3149 }
3150
3151 /* Convert between addresses in bytes and sizes in octets.
3152 For currently supported targets, octets_per_byte is always a power
3153 of two, so we can use shifts. */
3154 #define TO_ADDR(X) ((X) >> opb_shift)
3155 #define TO_SIZE(X) ((X) << opb_shift)
3156
3157 /* Support the above. */
3158 static unsigned int opb_shift = 0;
3159
3160 static void
3161 init_opb (void)
3162 {
3163 unsigned x = bfd_arch_mach_octets_per_byte (ldfile_output_architecture,
3164 ldfile_output_machine);
3165 opb_shift = 0;
3166 if (x > 1)
3167 while ((x & 1) == 0)
3168 {
3169 x >>= 1;
3170 ++opb_shift;
3171 }
3172 ASSERT (x == 1);
3173 }
3174
3175 /* Open all the input files. */
3176
3177 static void
3178 open_input_bfds (lang_statement_union_type *s, bfd_boolean force)
3179 {
3180 for (; s != NULL; s = s->header.next)
3181 {
3182 switch (s->header.type)
3183 {
3184 case lang_constructors_statement_enum:
3185 open_input_bfds (constructor_list.head, force);
3186 break;
3187 case lang_output_section_statement_enum:
3188 open_input_bfds (s->output_section_statement.children.head, force);
3189 break;
3190 case lang_wild_statement_enum:
3191 /* Maybe we should load the file's symbols. */
3192 if (s->wild_statement.filename
3193 && !wildcardp (s->wild_statement.filename)
3194 && !archive_path (s->wild_statement.filename))
3195 lookup_name (s->wild_statement.filename);
3196 open_input_bfds (s->wild_statement.children.head, force);
3197 break;
3198 case lang_group_statement_enum:
3199 {
3200 struct bfd_link_hash_entry *undefs;
3201
3202 /* We must continually search the entries in the group
3203 until no new symbols are added to the list of undefined
3204 symbols. */
3205
3206 do
3207 {
3208 undefs = link_info.hash->undefs_tail;
3209 open_input_bfds (s->group_statement.children.head, TRUE);
3210 }
3211 while (undefs != link_info.hash->undefs_tail);
3212 }
3213 break;
3214 case lang_target_statement_enum:
3215 current_target = s->target_statement.target;
3216 break;
3217 case lang_input_statement_enum:
3218 if (s->input_statement.real)
3219 {
3220 lang_statement_union_type **os_tail;
3221 lang_statement_list_type add;
3222
3223 s->input_statement.target = current_target;
3224
3225 /* If we are being called from within a group, and this
3226 is an archive which has already been searched, then
3227 force it to be researched unless the whole archive
3228 has been loaded already. */
3229 if (force
3230 && !s->input_statement.whole_archive
3231 && s->input_statement.loaded
3232 && bfd_check_format (s->input_statement.the_bfd,
3233 bfd_archive))
3234 s->input_statement.loaded = FALSE;
3235
3236 os_tail = lang_output_section_statement.tail;
3237 lang_list_init (&add);
3238
3239 if (! load_symbols (&s->input_statement, &add))
3240 config.make_executable = FALSE;
3241
3242 if (add.head != NULL)
3243 {
3244 /* If this was a script with output sections then
3245 tack any added statements on to the end of the
3246 list. This avoids having to reorder the output
3247 section statement list. Very likely the user
3248 forgot -T, and whatever we do here will not meet
3249 naive user expectations. */
3250 if (os_tail != lang_output_section_statement.tail)
3251 {
3252 einfo (_("%P: warning: %s contains output sections;"
3253 " did you forget -T?\n"),
3254 s->input_statement.filename);
3255 *stat_ptr->tail = add.head;
3256 stat_ptr->tail = add.tail;
3257 }
3258 else
3259 {
3260 *add.tail = s->header.next;
3261 s->header.next = add.head;
3262 }
3263 }
3264 }
3265 break;
3266 case lang_assignment_statement_enum:
3267 if (s->assignment_statement.exp->assign.hidden)
3268 /* This is from a --defsym on the command line. */
3269 exp_fold_tree_no_dot (s->assignment_statement.exp);
3270 break;
3271 default:
3272 break;
3273 }
3274 }
3275
3276 /* Exit if any of the files were missing. */
3277 if (missing_file)
3278 einfo ("%F");
3279 }
3280
3281 /* Add a symbol to a hash of symbols used in DEFINED (NAME) expressions. */
3282
3283 void
3284 lang_track_definedness (const char *name)
3285 {
3286 if (bfd_hash_lookup (&lang_definedness_table, name, TRUE, FALSE) == NULL)
3287 einfo (_("%P%F: bfd_hash_lookup failed creating symbol %s\n"), name);
3288 }
3289
3290 /* New-function for the definedness hash table. */
3291
3292 static struct bfd_hash_entry *
3293 lang_definedness_newfunc (struct bfd_hash_entry *entry,
3294 struct bfd_hash_table *table ATTRIBUTE_UNUSED,
3295 const char *name ATTRIBUTE_UNUSED)
3296 {
3297 struct lang_definedness_hash_entry *ret
3298 = (struct lang_definedness_hash_entry *) entry;
3299
3300 if (ret == NULL)
3301 ret = (struct lang_definedness_hash_entry *)
3302 bfd_hash_allocate (table, sizeof (struct lang_definedness_hash_entry));
3303
3304 if (ret == NULL)
3305 einfo (_("%P%F: bfd_hash_allocate failed creating symbol %s\n"), name);
3306
3307 ret->iteration = -1;
3308 return &ret->root;
3309 }
3310
3311 /* Return the iteration when the definition of NAME was last updated. A
3312 value of -1 means that the symbol is not defined in the linker script
3313 or the command line, but may be defined in the linker symbol table. */
3314
3315 int
3316 lang_symbol_definition_iteration (const char *name)
3317 {
3318 struct lang_definedness_hash_entry *defentry
3319 = (struct lang_definedness_hash_entry *)
3320 bfd_hash_lookup (&lang_definedness_table, name, FALSE, FALSE);
3321
3322 /* We've already created this one on the presence of DEFINED in the
3323 script, so it can't be NULL unless something is borked elsewhere in
3324 the code. */
3325 if (defentry == NULL)
3326 FAIL ();
3327
3328 return defentry->iteration;
3329 }
3330
3331 /* Update the definedness state of NAME. */
3332
3333 void
3334 lang_update_definedness (const char *name, struct bfd_link_hash_entry *h)
3335 {
3336 struct lang_definedness_hash_entry *defentry
3337 = (struct lang_definedness_hash_entry *)
3338 bfd_hash_lookup (&lang_definedness_table, name, FALSE, FALSE);
3339
3340 /* We don't keep track of symbols not tested with DEFINED. */
3341 if (defentry == NULL)
3342 return;
3343
3344 /* If the symbol was already defined, and not from an earlier statement
3345 iteration, don't update the definedness iteration, because that'd
3346 make the symbol seem defined in the linker script at this point, and
3347 it wasn't; it was defined in some object. If we do anyway, DEFINED
3348 would start to yield false before this point and the construct "sym =
3349 DEFINED (sym) ? sym : X;" would change sym to X despite being defined
3350 in an object. */
3351 if (h->type != bfd_link_hash_undefined
3352 && h->type != bfd_link_hash_common
3353 && h->type != bfd_link_hash_new
3354 && defentry->iteration == -1)
3355 return;
3356
3357 defentry->iteration = lang_statement_iteration;
3358 }
3359
3360 /* Add the supplied name to the symbol table as an undefined reference.
3361 This is a two step process as the symbol table doesn't even exist at
3362 the time the ld command line is processed. First we put the name
3363 on a list, then, once the output file has been opened, transfer the
3364 name to the symbol table. */
3365
3366 typedef struct bfd_sym_chain ldlang_undef_chain_list_type;
3367
3368 #define ldlang_undef_chain_list_head entry_symbol.next
3369
3370 void
3371 ldlang_add_undef (const char *const name, bfd_boolean cmdline)
3372 {
3373 ldlang_undef_chain_list_type *new_undef;
3374
3375 undef_from_cmdline = undef_from_cmdline || cmdline;
3376 new_undef = (ldlang_undef_chain_list_type *) stat_alloc (sizeof (*new_undef));
3377 new_undef->next = ldlang_undef_chain_list_head;
3378 ldlang_undef_chain_list_head = new_undef;
3379
3380 new_undef->name = xstrdup (name);
3381
3382 if (link_info.output_bfd != NULL)
3383 insert_undefined (new_undef->name);
3384 }
3385
3386 /* Insert NAME as undefined in the symbol table. */
3387
3388 static void
3389 insert_undefined (const char *name)
3390 {
3391 struct bfd_link_hash_entry *h;
3392
3393 h = bfd_link_hash_lookup (link_info.hash, name, TRUE, FALSE, TRUE);
3394 if (h == NULL)
3395 einfo (_("%P%F: bfd_link_hash_lookup failed: %E\n"));
3396 if (h->type == bfd_link_hash_new)
3397 {
3398 h->type = bfd_link_hash_undefined;
3399 h->u.undef.abfd = NULL;
3400 bfd_link_add_undef (link_info.hash, h);
3401 }
3402 }
3403
3404 /* Run through the list of undefineds created above and place them
3405 into the linker hash table as undefined symbols belonging to the
3406 script file. */
3407
3408 static void
3409 lang_place_undefineds (void)
3410 {
3411 ldlang_undef_chain_list_type *ptr;
3412
3413 for (ptr = ldlang_undef_chain_list_head; ptr != NULL; ptr = ptr->next)
3414 insert_undefined (ptr->name);
3415 }
3416
3417 /* Check for all readonly or some readwrite sections. */
3418
3419 static void
3420 check_input_sections
3421 (lang_statement_union_type *s,
3422 lang_output_section_statement_type *output_section_statement)
3423 {
3424 for (; s != (lang_statement_union_type *) NULL; s = s->header.next)
3425 {
3426 switch (s->header.type)
3427 {
3428 case lang_wild_statement_enum:
3429 walk_wild (&s->wild_statement, check_section_callback,
3430 output_section_statement);
3431 if (! output_section_statement->all_input_readonly)
3432 return;
3433 break;
3434 case lang_constructors_statement_enum:
3435 check_input_sections (constructor_list.head,
3436 output_section_statement);
3437 if (! output_section_statement->all_input_readonly)
3438 return;
3439 break;
3440 case lang_group_statement_enum:
3441 check_input_sections (s->group_statement.children.head,
3442 output_section_statement);
3443 if (! output_section_statement->all_input_readonly)
3444 return;
3445 break;
3446 default:
3447 break;
3448 }
3449 }
3450 }
3451
3452 /* Update wildcard statements if needed. */
3453
3454 static void
3455 update_wild_statements (lang_statement_union_type *s)
3456 {
3457 struct wildcard_list *sec;
3458
3459 switch (sort_section)
3460 {
3461 default:
3462 FAIL ();
3463
3464 case none:
3465 break;
3466
3467 case by_name:
3468 case by_alignment:
3469 for (; s != NULL; s = s->header.next)
3470 {
3471 switch (s->header.type)
3472 {
3473 default:
3474 break;
3475
3476 case lang_wild_statement_enum:
3477 sec = s->wild_statement.section_list;
3478 for (sec = s->wild_statement.section_list; sec != NULL;
3479 sec = sec->next)
3480 {
3481 switch (sec->spec.sorted)
3482 {
3483 case none:
3484 sec->spec.sorted = sort_section;
3485 break;
3486 case by_name:
3487 if (sort_section == by_alignment)
3488 sec->spec.sorted = by_name_alignment;
3489 break;
3490 case by_alignment:
3491 if (sort_section == by_name)
3492 sec->spec.sorted = by_alignment_name;
3493 break;
3494 default:
3495 break;
3496 }
3497 }
3498 break;
3499
3500 case lang_constructors_statement_enum:
3501 update_wild_statements (constructor_list.head);
3502 break;
3503
3504 case lang_output_section_statement_enum:
3505 update_wild_statements
3506 (s->output_section_statement.children.head);
3507 break;
3508
3509 case lang_group_statement_enum:
3510 update_wild_statements (s->group_statement.children.head);
3511 break;
3512 }
3513 }
3514 break;
3515 }
3516 }
3517
3518 /* Open input files and attach to output sections. */
3519
3520 static void
3521 map_input_to_output_sections
3522 (lang_statement_union_type *s, const char *target,
3523 lang_output_section_statement_type *os)
3524 {
3525 for (; s != NULL; s = s->header.next)
3526 {
3527 lang_output_section_statement_type *tos;
3528 flagword flags;
3529
3530 switch (s->header.type)
3531 {
3532 case lang_wild_statement_enum:
3533 wild (&s->wild_statement, target, os);
3534 break;
3535 case lang_constructors_statement_enum:
3536 map_input_to_output_sections (constructor_list.head,
3537 target,
3538 os);
3539 break;
3540 case lang_output_section_statement_enum:
3541 tos = &s->output_section_statement;
3542 if (tos->constraint != 0)
3543 {
3544 if (tos->constraint != ONLY_IF_RW
3545 && tos->constraint != ONLY_IF_RO)
3546 break;
3547 tos->all_input_readonly = TRUE;
3548 check_input_sections (tos->children.head, tos);
3549 if (tos->all_input_readonly != (tos->constraint == ONLY_IF_RO))
3550 {
3551 tos->constraint = -1;
3552 break;
3553 }
3554 }
3555 map_input_to_output_sections (tos->children.head,
3556 target,
3557 tos);
3558 break;
3559 case lang_output_statement_enum:
3560 break;
3561 case lang_target_statement_enum:
3562 target = s->target_statement.target;
3563 break;
3564 case lang_group_statement_enum:
3565 map_input_to_output_sections (s->group_statement.children.head,
3566 target,
3567 os);
3568 break;
3569 case lang_data_statement_enum:
3570 /* Make sure that any sections mentioned in the expression
3571 are initialized. */
3572 exp_init_os (s->data_statement.exp);
3573 /* The output section gets CONTENTS, ALLOC and LOAD, but
3574 these may be overridden by the script. */
3575 flags = SEC_HAS_CONTENTS | SEC_ALLOC | SEC_LOAD;
3576 switch (os->sectype)
3577 {
3578 case normal_section:
3579 case overlay_section:
3580 break;
3581 case noalloc_section:
3582 flags = SEC_HAS_CONTENTS;
3583 break;
3584 case noload_section:
3585 if (bfd_get_flavour (link_info.output_bfd)
3586 == bfd_target_elf_flavour)
3587 flags = SEC_NEVER_LOAD | SEC_ALLOC;
3588 else
3589 flags = SEC_NEVER_LOAD | SEC_HAS_CONTENTS;
3590 break;
3591 }
3592 if (os->bfd_section == NULL)
3593 init_os (os, flags);
3594 else
3595 os->bfd_section->flags |= flags;
3596 break;
3597 case lang_input_section_enum:
3598 break;
3599 case lang_fill_statement_enum:
3600 case lang_object_symbols_statement_enum:
3601 case lang_reloc_statement_enum:
3602 case lang_padding_statement_enum:
3603 case lang_input_statement_enum:
3604 if (os != NULL && os->bfd_section == NULL)
3605 init_os (os, 0);
3606 break;
3607 case lang_assignment_statement_enum:
3608 if (os != NULL && os->bfd_section == NULL)
3609 init_os (os, 0);
3610
3611 /* Make sure that any sections mentioned in the assignment
3612 are initialized. */
3613 exp_init_os (s->assignment_statement.exp);
3614 break;
3615 case lang_address_statement_enum:
3616 /* Mark the specified section with the supplied address.
3617 If this section was actually a segment marker, then the
3618 directive is ignored if the linker script explicitly
3619 processed the segment marker. Originally, the linker
3620 treated segment directives (like -Ttext on the
3621 command-line) as section directives. We honor the
3622 section directive semantics for backwards compatibilty;
3623 linker scripts that do not specifically check for
3624 SEGMENT_START automatically get the old semantics. */
3625 if (!s->address_statement.segment
3626 || !s->address_statement.segment->used)
3627 {
3628 const char *name = s->address_statement.section_name;
3629
3630 /* Create the output section statement here so that
3631 orphans with a set address will be placed after other
3632 script sections. If we let the orphan placement code
3633 place them in amongst other sections then the address
3634 will affect following script sections, which is
3635 likely to surprise naive users. */
3636 tos = lang_output_section_statement_lookup (name, 0, TRUE);
3637 tos->addr_tree = s->address_statement.address;
3638 if (tos->bfd_section == NULL)
3639 init_os (tos, 0);
3640 }
3641 break;
3642 case lang_insert_statement_enum:
3643 break;
3644 }
3645 }
3646 }
3647
3648 /* An insert statement snips out all the linker statements from the
3649 start of the list and places them after the output section
3650 statement specified by the insert. This operation is complicated
3651 by the fact that we keep a doubly linked list of output section
3652 statements as well as the singly linked list of all statements. */
3653
3654 static void
3655 process_insert_statements (void)
3656 {
3657 lang_statement_union_type **s;
3658 lang_output_section_statement_type *first_os = NULL;
3659 lang_output_section_statement_type *last_os = NULL;
3660 lang_output_section_statement_type *os;
3661
3662 /* "start of list" is actually the statement immediately after
3663 the special abs_section output statement, so that it isn't
3664 reordered. */
3665 s = &lang_output_section_statement.head;
3666 while (*(s = &(*s)->header.next) != NULL)
3667 {
3668 if ((*s)->header.type == lang_output_section_statement_enum)
3669 {
3670 /* Keep pointers to the first and last output section
3671 statement in the sequence we may be about to move. */
3672 os = &(*s)->output_section_statement;
3673
3674 ASSERT (last_os == NULL || last_os->next == os);
3675 last_os = os;
3676
3677 /* Set constraint negative so that lang_output_section_find
3678 won't match this output section statement. At this
3679 stage in linking constraint has values in the range
3680 [-1, ONLY_IN_RW]. */
3681 last_os->constraint = -2 - last_os->constraint;
3682 if (first_os == NULL)
3683 first_os = last_os;
3684 }
3685 else if ((*s)->header.type == lang_insert_statement_enum)
3686 {
3687 lang_insert_statement_type *i = &(*s)->insert_statement;
3688 lang_output_section_statement_type *where;
3689 lang_statement_union_type **ptr;
3690 lang_statement_union_type *first;
3691
3692 where = lang_output_section_find (i->where);
3693 if (where != NULL && i->is_before)
3694 {
3695 do
3696 where = where->prev;
3697 while (where != NULL && where->constraint < 0);
3698 }
3699 if (where == NULL)
3700 {
3701 einfo (_("%F%P: %s not found for insert\n"), i->where);
3702 return;
3703 }
3704
3705 /* Deal with reordering the output section statement list. */
3706 if (last_os != NULL)
3707 {
3708 asection *first_sec, *last_sec;
3709 struct lang_output_section_statement_struct **next;
3710
3711 /* Snip out the output sections we are moving. */
3712 first_os->prev->next = last_os->next;
3713 if (last_os->next == NULL)
3714 {
3715 next = &first_os->prev->next;
3716 lang_output_section_statement.tail
3717 = (lang_statement_union_type **) next;
3718 }
3719 else
3720 last_os->next->prev = first_os->prev;
3721 /* Add them in at the new position. */
3722 last_os->next = where->next;
3723 if (where->next == NULL)
3724 {
3725 next = &last_os->next;
3726 lang_output_section_statement.tail
3727 = (lang_statement_union_type **) next;
3728 }
3729 else
3730 where->next->prev = last_os;
3731 first_os->prev = where;
3732 where->next = first_os;
3733
3734 /* Move the bfd sections in the same way. */
3735 first_sec = NULL;
3736 last_sec = NULL;
3737 for (os = first_os; os != NULL; os = os->next)
3738 {
3739 os->constraint = -2 - os->constraint;
3740 if (os->bfd_section != NULL
3741 && os->bfd_section->owner != NULL)
3742 {
3743 last_sec = os->bfd_section;
3744 if (first_sec == NULL)
3745 first_sec = last_sec;
3746 }
3747 if (os == last_os)
3748 break;
3749 }
3750 if (last_sec != NULL)
3751 {
3752 asection *sec = where->bfd_section;
3753 if (sec == NULL)
3754 sec = output_prev_sec_find (where);
3755
3756 /* The place we want to insert must come after the
3757 sections we are moving. So if we find no
3758 section or if the section is the same as our
3759 last section, then no move is needed. */
3760 if (sec != NULL && sec != last_sec)
3761 {
3762 /* Trim them off. */
3763 if (first_sec->prev != NULL)
3764 first_sec->prev->next = last_sec->next;
3765 else
3766 link_info.output_bfd->sections = last_sec->next;
3767 if (last_sec->next != NULL)
3768 last_sec->next->prev = first_sec->prev;
3769 else
3770 link_info.output_bfd->section_last = first_sec->prev;
3771 /* Add back. */
3772 last_sec->next = sec->next;
3773 if (sec->next != NULL)
3774 sec->next->prev = last_sec;
3775 else
3776 link_info.output_bfd->section_last = last_sec;
3777 first_sec->prev = sec;
3778 sec->next = first_sec;
3779 }
3780 }
3781
3782 first_os = NULL;
3783 last_os = NULL;
3784 }
3785
3786 ptr = insert_os_after (where);
3787 /* Snip everything after the abs_section output statement we
3788 know is at the start of the list, up to and including
3789 the insert statement we are currently processing. */
3790 first = lang_output_section_statement.head->header.next;
3791 lang_output_section_statement.head->header.next = (*s)->header.next;
3792 /* Add them back where they belong. */
3793 *s = *ptr;
3794 if (*s == NULL)
3795 statement_list.tail = s;
3796 *ptr = first;
3797 s = &lang_output_section_statement.head;
3798 }
3799 }
3800
3801 /* Undo constraint twiddling. */
3802 for (os = first_os; os != NULL; os = os->next)
3803 {
3804 os->constraint = -2 - os->constraint;
3805 if (os == last_os)
3806 break;
3807 }
3808 }
3809
3810 /* An output section might have been removed after its statement was
3811 added. For example, ldemul_before_allocation can remove dynamic
3812 sections if they turn out to be not needed. Clean them up here. */
3813
3814 void
3815 strip_excluded_output_sections (void)
3816 {
3817 lang_output_section_statement_type *os;
3818
3819 /* Run lang_size_sections (if not already done). */
3820 if (expld.phase != lang_mark_phase_enum)
3821 {
3822 expld.phase = lang_mark_phase_enum;
3823 expld.dataseg.phase = exp_dataseg_none;
3824 one_lang_size_sections_pass (NULL, FALSE);
3825 lang_reset_memory_regions ();
3826 }
3827
3828 for (os = &lang_output_section_statement.head->output_section_statement;
3829 os != NULL;
3830 os = os->next)
3831 {
3832 asection *output_section;
3833 bfd_boolean exclude;
3834
3835 if (os->constraint < 0)
3836 continue;
3837
3838 output_section = os->bfd_section;
3839 if (output_section == NULL)
3840 continue;
3841
3842 exclude = (output_section->rawsize == 0
3843 && (output_section->flags & SEC_KEEP) == 0
3844 && !bfd_section_removed_from_list (link_info.output_bfd,
3845 output_section));
3846
3847 /* Some sections have not yet been sized, notably .gnu.version,
3848 .dynsym, .dynstr and .hash. These all have SEC_LINKER_CREATED
3849 input sections, so don't drop output sections that have such
3850 input sections unless they are also marked SEC_EXCLUDE. */
3851 if (exclude && output_section->map_head.s != NULL)
3852 {
3853 asection *s;
3854
3855 for (s = output_section->map_head.s; s != NULL; s = s->map_head.s)
3856 if ((s->flags & SEC_LINKER_CREATED) != 0
3857 && (s->flags & SEC_EXCLUDE) == 0)
3858 {
3859 exclude = FALSE;
3860 break;
3861 }
3862 }
3863
3864 /* TODO: Don't just junk map_head.s, turn them into link_orders. */
3865 output_section->map_head.link_order = NULL;
3866 output_section->map_tail.link_order = NULL;
3867
3868 if (exclude)
3869 {
3870 /* We don't set bfd_section to NULL since bfd_section of the
3871 removed output section statement may still be used. */
3872 if (!os->section_relative_symbol
3873 && !os->update_dot_tree)
3874 os->ignored = TRUE;
3875 output_section->flags |= SEC_EXCLUDE;
3876 bfd_section_list_remove (link_info.output_bfd, output_section);
3877 link_info.output_bfd->section_count--;
3878 }
3879 }
3880
3881 /* Stop future calls to lang_add_section from messing with map_head
3882 and map_tail link_order fields. */
3883 stripped_excluded_sections = TRUE;
3884 }
3885
3886 static void
3887 print_output_section_statement
3888 (lang_output_section_statement_type *output_section_statement)
3889 {
3890 asection *section = output_section_statement->bfd_section;
3891 int len;
3892
3893 if (output_section_statement != abs_output_section)
3894 {
3895 minfo ("\n%s", output_section_statement->name);
3896
3897 if (section != NULL)
3898 {
3899 print_dot = section->vma;
3900
3901 len = strlen (output_section_statement->name);
3902 if (len >= SECTION_NAME_MAP_LENGTH - 1)
3903 {
3904 print_nl ();
3905 len = 0;
3906 }
3907 while (len < SECTION_NAME_MAP_LENGTH)
3908 {
3909 print_space ();
3910 ++len;
3911 }
3912
3913 minfo ("0x%V %W", section->vma, section->size);
3914
3915 if (section->vma != section->lma)
3916 minfo (_(" load address 0x%V"), section->lma);
3917
3918 if (output_section_statement->update_dot_tree != NULL)
3919 exp_fold_tree (output_section_statement->update_dot_tree,
3920 bfd_abs_section_ptr, &print_dot);
3921 }
3922
3923 print_nl ();
3924 }
3925
3926 print_statement_list (output_section_statement->children.head,
3927 output_section_statement);
3928 }
3929
3930 /* Scan for the use of the destination in the right hand side
3931 of an expression. In such cases we will not compute the
3932 correct expression, since the value of DST that is used on
3933 the right hand side will be its final value, not its value
3934 just before this expression is evaluated. */
3935
3936 static bfd_boolean
3937 scan_for_self_assignment (const char * dst, etree_type * rhs)
3938 {
3939 if (rhs == NULL || dst == NULL)
3940 return FALSE;
3941
3942 switch (rhs->type.node_class)
3943 {
3944 case etree_binary:
3945 return (scan_for_self_assignment (dst, rhs->binary.lhs)
3946 || scan_for_self_assignment (dst, rhs->binary.rhs));
3947
3948 case etree_trinary:
3949 return (scan_for_self_assignment (dst, rhs->trinary.lhs)
3950 || scan_for_self_assignment (dst, rhs->trinary.rhs));
3951
3952 case etree_assign:
3953 case etree_provided:
3954 case etree_provide:
3955 if (strcmp (dst, rhs->assign.dst) == 0)
3956 return TRUE;
3957 return scan_for_self_assignment (dst, rhs->assign.src);
3958
3959 case etree_unary:
3960 return scan_for_self_assignment (dst, rhs->unary.child);
3961
3962 case etree_value:
3963 if (rhs->value.str)
3964 return strcmp (dst, rhs->value.str) == 0;
3965 return FALSE;
3966
3967 case etree_name:
3968 if (rhs->name.name)
3969 return strcmp (dst, rhs->name.name) == 0;
3970 return FALSE;
3971
3972 default:
3973 break;
3974 }
3975
3976 return FALSE;
3977 }
3978
3979
3980 static void
3981 print_assignment (lang_assignment_statement_type *assignment,
3982 lang_output_section_statement_type *output_section)
3983 {
3984 unsigned int i;
3985 bfd_boolean is_dot;
3986 bfd_boolean computation_is_valid = TRUE;
3987 etree_type *tree;
3988 asection *osec;
3989
3990 for (i = 0; i < SECTION_NAME_MAP_LENGTH; i++)
3991 print_space ();
3992
3993 if (assignment->exp->type.node_class == etree_assert)
3994 {
3995 is_dot = FALSE;
3996 tree = assignment->exp->assert_s.child;
3997 computation_is_valid = TRUE;
3998 }
3999 else
4000 {
4001 const char *dst = assignment->exp->assign.dst;
4002
4003 is_dot = (dst[0] == '.' && dst[1] == 0);
4004 tree = assignment->exp->assign.src;
4005 computation_is_valid = is_dot || !scan_for_self_assignment (dst, tree);
4006 }
4007
4008 osec = output_section->bfd_section;
4009 if (osec == NULL)
4010 osec = bfd_abs_section_ptr;
4011 exp_fold_tree (tree, osec, &print_dot);
4012 if (expld.result.valid_p)
4013 {
4014 bfd_vma value;
4015
4016 if (computation_is_valid)
4017 {
4018 value = expld.result.value;
4019
4020 if (expld.result.section != NULL)
4021 value += expld.result.section->vma;
4022
4023 minfo ("0x%V", value);
4024 if (is_dot)
4025 print_dot = value;
4026 }
4027 else
4028 {
4029 struct bfd_link_hash_entry *h;
4030
4031 h = bfd_link_hash_lookup (link_info.hash, assignment->exp->assign.dst,
4032 FALSE, FALSE, TRUE);
4033 if (h)
4034 {
4035 value = h->u.def.value;
4036
4037 if (expld.result.section != NULL)
4038 value += expld.result.section->vma;
4039
4040 minfo ("[0x%V]", value);
4041 }
4042 else
4043 minfo ("[unresolved]");
4044 }
4045 }
4046 else
4047 {
4048 minfo ("*undef* ");
4049 #ifdef BFD64
4050 minfo (" ");
4051 #endif
4052 }
4053
4054 minfo (" ");
4055 exp_print_tree (assignment->exp);
4056 print_nl ();
4057 }
4058
4059 static void
4060 print_input_statement (lang_input_statement_type *statm)
4061 {
4062 if (statm->filename != NULL
4063 && (statm->the_bfd == NULL
4064 || (statm->the_bfd->flags & BFD_LINKER_CREATED) == 0))
4065 fprintf (config.map_file, "LOAD %s\n", statm->filename);
4066 }
4067
4068 /* Print all symbols defined in a particular section. This is called
4069 via bfd_link_hash_traverse, or by print_all_symbols. */
4070
4071 static bfd_boolean
4072 print_one_symbol (struct bfd_link_hash_entry *hash_entry, void *ptr)
4073 {
4074 asection *sec = (asection *) ptr;
4075
4076 if ((hash_entry->type == bfd_link_hash_defined
4077 || hash_entry->type == bfd_link_hash_defweak)
4078 && sec == hash_entry->u.def.section)
4079 {
4080 int i;
4081
4082 for (i = 0; i < SECTION_NAME_MAP_LENGTH; i++)
4083 print_space ();
4084 minfo ("0x%V ",
4085 (hash_entry->u.def.value
4086 + hash_entry->u.def.section->output_offset
4087 + hash_entry->u.def.section->output_section->vma));
4088
4089 minfo (" %T\n", hash_entry->root.string);
4090 }
4091
4092 return TRUE;
4093 }
4094
4095 static int
4096 hash_entry_addr_cmp (const void *a, const void *b)
4097 {
4098 const struct bfd_link_hash_entry *l = *(const struct bfd_link_hash_entry **)a;
4099 const struct bfd_link_hash_entry *r = *(const struct bfd_link_hash_entry **)b;
4100
4101 if (l->u.def.value < r->u.def.value)
4102 return -1;
4103 else if (l->u.def.value > r->u.def.value)
4104 return 1;
4105 else
4106 return 0;
4107 }
4108
4109 static void
4110 print_all_symbols (asection *sec)
4111 {
4112 struct fat_user_section_struct *ud =
4113 (struct fat_user_section_struct *) get_userdata (sec);
4114 struct map_symbol_def *def;
4115 struct bfd_link_hash_entry **entries;
4116 unsigned int i;
4117
4118 if (!ud)
4119 return;
4120
4121 *ud->map_symbol_def_tail = 0;
4122
4123 /* Sort the symbols by address. */
4124 entries = (struct bfd_link_hash_entry **)
4125 obstack_alloc (&map_obstack, ud->map_symbol_def_count * sizeof (*entries));
4126
4127 for (i = 0, def = ud->map_symbol_def_head; def; def = def->next, i++)
4128 entries[i] = def->entry;
4129
4130 qsort (entries, ud->map_symbol_def_count, sizeof (*entries),
4131 hash_entry_addr_cmp);
4132
4133 /* Print the symbols. */
4134 for (i = 0; i < ud->map_symbol_def_count; i++)
4135 print_one_symbol (entries[i], sec);
4136
4137 obstack_free (&map_obstack, entries);
4138 }
4139
4140 /* Print information about an input section to the map file. */
4141
4142 static void
4143 print_input_section (asection *i, bfd_boolean is_discarded)
4144 {
4145 bfd_size_type size = i->size;
4146 int len;
4147 bfd_vma addr;
4148
4149 init_opb ();
4150
4151 print_space ();
4152 minfo ("%s", i->name);
4153
4154 len = 1 + strlen (i->name);
4155 if (len >= SECTION_NAME_MAP_LENGTH - 1)
4156 {
4157 print_nl ();
4158 len = 0;
4159 }
4160 while (len < SECTION_NAME_MAP_LENGTH)
4161 {
4162 print_space ();
4163 ++len;
4164 }
4165
4166 if (i->output_section != NULL
4167 && i->output_section->owner == link_info.output_bfd)
4168 addr = i->output_section->vma + i->output_offset;
4169 else
4170 {
4171 addr = print_dot;
4172 if (!is_discarded)
4173 size = 0;
4174 }
4175
4176 minfo ("0x%V %W %B\n", addr, TO_ADDR (size), i->owner);
4177
4178 if (size != i->rawsize && i->rawsize != 0)
4179 {
4180 len = SECTION_NAME_MAP_LENGTH + 3;
4181 #ifdef BFD64
4182 len += 16;
4183 #else
4184 len += 8;
4185 #endif
4186 while (len > 0)
4187 {
4188 print_space ();
4189 --len;
4190 }
4191
4192 minfo (_("%W (size before relaxing)\n"), i->rawsize);
4193 }
4194
4195 if (i->output_section != NULL
4196 && i->output_section->owner == link_info.output_bfd)
4197 {
4198 if (link_info.reduce_memory_overheads)
4199 bfd_link_hash_traverse (link_info.hash, print_one_symbol, i);
4200 else
4201 print_all_symbols (i);
4202
4203 /* Update print_dot, but make sure that we do not move it
4204 backwards - this could happen if we have overlays and a
4205 later overlay is shorter than an earier one. */
4206 if (addr + TO_ADDR (size) > print_dot)
4207 print_dot = addr + TO_ADDR (size);
4208 }
4209 }
4210
4211 static void
4212 print_fill_statement (lang_fill_statement_type *fill)
4213 {
4214 size_t size;
4215 unsigned char *p;
4216 fputs (" FILL mask 0x", config.map_file);
4217 for (p = fill->fill->data, size = fill->fill->size; size != 0; p++, size--)
4218 fprintf (config.map_file, "%02x", *p);
4219 fputs ("\n", config.map_file);
4220 }
4221
4222 static void
4223 print_data_statement (lang_data_statement_type *data)
4224 {
4225 int i;
4226 bfd_vma addr;
4227 bfd_size_type size;
4228 const char *name;
4229
4230 init_opb ();
4231 for (i = 0; i < SECTION_NAME_MAP_LENGTH; i++)
4232 print_space ();
4233
4234 addr = data->output_offset;
4235 if (data->output_section != NULL)
4236 addr += data->output_section->vma;
4237
4238 switch (data->type)
4239 {
4240 default:
4241 abort ();
4242 case BYTE:
4243 size = BYTE_SIZE;
4244 name = "BYTE";
4245 break;
4246 case SHORT:
4247 size = SHORT_SIZE;
4248 name = "SHORT";
4249 break;
4250 case LONG:
4251 size = LONG_SIZE;
4252 name = "LONG";
4253 break;
4254 case QUAD:
4255 size = QUAD_SIZE;
4256 name = "QUAD";
4257 break;
4258 case SQUAD:
4259 size = QUAD_SIZE;
4260 name = "SQUAD";
4261 break;
4262 }
4263
4264 minfo ("0x%V %W %s 0x%v", addr, size, name, data->value);
4265
4266 if (data->exp->type.node_class != etree_value)
4267 {
4268 print_space ();
4269 exp_print_tree (data->exp);
4270 }
4271
4272 print_nl ();
4273
4274 print_dot = addr + TO_ADDR (size);
4275 }
4276
4277 /* Print an address statement. These are generated by options like
4278 -Ttext. */
4279
4280 static void
4281 print_address_statement (lang_address_statement_type *address)
4282 {
4283 minfo (_("Address of section %s set to "), address->section_name);
4284 exp_print_tree (address->address);
4285 print_nl ();
4286 }
4287
4288 /* Print a reloc statement. */
4289
4290 static void
4291 print_reloc_statement (lang_reloc_statement_type *reloc)
4292 {
4293 int i;
4294 bfd_vma addr;
4295 bfd_size_type size;
4296
4297 init_opb ();
4298 for (i = 0; i < SECTION_NAME_MAP_LENGTH; i++)
4299 print_space ();
4300
4301 addr = reloc->output_offset;
4302 if (reloc->output_section != NULL)
4303 addr += reloc->output_section->vma;
4304
4305 size = bfd_get_reloc_size (reloc->howto);
4306
4307 minfo ("0x%V %W RELOC %s ", addr, size, reloc->howto->name);
4308
4309 if (reloc->name != NULL)
4310 minfo ("%s+", reloc->name);
4311 else
4312 minfo ("%s+", reloc->section->name);
4313
4314 exp_print_tree (reloc->addend_exp);
4315
4316 print_nl ();
4317
4318 print_dot = addr + TO_ADDR (size);
4319 }
4320
4321 static void
4322 print_padding_statement (lang_padding_statement_type *s)
4323 {
4324 int len;
4325 bfd_vma addr;
4326
4327 init_opb ();
4328 minfo (" *fill*");
4329
4330 len = sizeof " *fill*" - 1;
4331 while (len < SECTION_NAME_MAP_LENGTH)
4332 {
4333 print_space ();
4334 ++len;
4335 }
4336
4337 addr = s->output_offset;
4338 if (s->output_section != NULL)
4339 addr += s->output_section->vma;
4340 minfo ("0x%V %W ", addr, (bfd_vma) s->size);
4341
4342 if (s->fill->size != 0)
4343 {
4344 size_t size;
4345 unsigned char *p;
4346 for (p = s->fill->data, size = s->fill->size; size != 0; p++, size--)
4347 fprintf (config.map_file, "%02x", *p);
4348 }
4349
4350 print_nl ();
4351
4352 print_dot = addr + TO_ADDR (s->size);
4353 }
4354
4355 static void
4356 print_wild_statement (lang_wild_statement_type *w,
4357 lang_output_section_statement_type *os)
4358 {
4359 struct wildcard_list *sec;
4360
4361 print_space ();
4362
4363 if (w->filenames_sorted)
4364 minfo ("SORT(");
4365 if (w->filename != NULL)
4366 minfo ("%s", w->filename);
4367 else
4368 minfo ("*");
4369 if (w->filenames_sorted)
4370 minfo (")");
4371
4372 minfo ("(");
4373 for (sec = w->section_list; sec; sec = sec->next)
4374 {
4375 if (sec->spec.sorted)
4376 minfo ("SORT(");
4377 if (sec->spec.exclude_name_list != NULL)
4378 {
4379 name_list *tmp;
4380 minfo ("EXCLUDE_FILE(%s", sec->spec.exclude_name_list->name);
4381 for (tmp = sec->spec.exclude_name_list->next; tmp; tmp = tmp->next)
4382 minfo (" %s", tmp->name);
4383 minfo (") ");
4384 }
4385 if (sec->spec.name != NULL)
4386 minfo ("%s", sec->spec.name);
4387 else
4388 minfo ("*");
4389 if (sec->spec.sorted)
4390 minfo (")");
4391 if (sec->next)
4392 minfo (" ");
4393 }
4394 minfo (")");
4395
4396 print_nl ();
4397
4398 print_statement_list (w->children.head, os);
4399 }
4400
4401 /* Print a group statement. */
4402
4403 static void
4404 print_group (lang_group_statement_type *s,
4405 lang_output_section_statement_type *os)
4406 {
4407 fprintf (config.map_file, "START GROUP\n");
4408 print_statement_list (s->children.head, os);
4409 fprintf (config.map_file, "END GROUP\n");
4410 }
4411
4412 /* Print the list of statements in S.
4413 This can be called for any statement type. */
4414
4415 static void
4416 print_statement_list (lang_statement_union_type *s,
4417 lang_output_section_statement_type *os)
4418 {
4419 while (s != NULL)
4420 {
4421 print_statement (s, os);
4422 s = s->header.next;
4423 }
4424 }
4425
4426 /* Print the first statement in statement list S.
4427 This can be called for any statement type. */
4428
4429 static void
4430 print_statement (lang_statement_union_type *s,
4431 lang_output_section_statement_type *os)
4432 {
4433 switch (s->header.type)
4434 {
4435 default:
4436 fprintf (config.map_file, _("Fail with %d\n"), s->header.type);
4437 FAIL ();
4438 break;
4439 case lang_constructors_statement_enum:
4440 if (constructor_list.head != NULL)
4441 {
4442 if (constructors_sorted)
4443 minfo (" SORT (CONSTRUCTORS)\n");
4444 else
4445 minfo (" CONSTRUCTORS\n");
4446 print_statement_list (constructor_list.head, os);
4447 }
4448 break;
4449 case lang_wild_statement_enum:
4450 print_wild_statement (&s->wild_statement, os);
4451 break;
4452 case lang_address_statement_enum:
4453 print_address_statement (&s->address_statement);
4454 break;
4455 case lang_object_symbols_statement_enum:
4456 minfo (" CREATE_OBJECT_SYMBOLS\n");
4457 break;
4458 case lang_fill_statement_enum:
4459 print_fill_statement (&s->fill_statement);
4460 break;
4461 case lang_data_statement_enum:
4462 print_data_statement (&s->data_statement);
4463 break;
4464 case lang_reloc_statement_enum:
4465 print_reloc_statement (&s->reloc_statement);
4466 break;
4467 case lang_input_section_enum:
4468 print_input_section (s->input_section.section, FALSE);
4469 break;
4470 case lang_padding_statement_enum:
4471 print_padding_statement (&s->padding_statement);
4472 break;
4473 case lang_output_section_statement_enum:
4474 print_output_section_statement (&s->output_section_statement);
4475 break;
4476 case lang_assignment_statement_enum:
4477 print_assignment (&s->assignment_statement, os);
4478 break;
4479 case lang_target_statement_enum:
4480 fprintf (config.map_file, "TARGET(%s)\n", s->target_statement.target);
4481 break;
4482 case lang_output_statement_enum:
4483 minfo ("OUTPUT(%s", s->output_statement.name);
4484 if (output_target != NULL)
4485 minfo (" %s", output_target);
4486 minfo (")\n");
4487 break;
4488 case lang_input_statement_enum:
4489 print_input_statement (&s->input_statement);
4490 break;
4491 case lang_group_statement_enum:
4492 print_group (&s->group_statement, os);
4493 break;
4494 case lang_insert_statement_enum:
4495 minfo ("INSERT %s %s\n",
4496 s->insert_statement.is_before ? "BEFORE" : "AFTER",
4497 s->insert_statement.where);
4498 break;
4499 }
4500 }
4501
4502 static void
4503 print_statements (void)
4504 {
4505 print_statement_list (statement_list.head, abs_output_section);
4506 }
4507
4508 /* Print the first N statements in statement list S to STDERR.
4509 If N == 0, nothing is printed.
4510 If N < 0, the entire list is printed.
4511 Intended to be called from GDB. */
4512
4513 void
4514 dprint_statement (lang_statement_union_type *s, int n)
4515 {
4516 FILE *map_save = config.map_file;
4517
4518 config.map_file = stderr;
4519
4520 if (n < 0)
4521 print_statement_list (s, abs_output_section);
4522 else
4523 {
4524 while (s && --n >= 0)
4525 {
4526 print_statement (s, abs_output_section);
4527 s = s->header.next;
4528 }
4529 }
4530
4531 config.map_file = map_save;
4532 }
4533
4534 static void
4535 insert_pad (lang_statement_union_type **ptr,
4536 fill_type *fill,
4537 unsigned int alignment_needed,
4538 asection *output_section,
4539 bfd_vma dot)
4540 {
4541 static fill_type zero_fill = { 1, { 0 } };
4542 lang_statement_union_type *pad = NULL;
4543
4544 if (ptr != &statement_list.head)
4545 pad = ((lang_statement_union_type *)
4546 ((char *) ptr - offsetof (lang_statement_union_type, header.next)));
4547 if (pad != NULL
4548 && pad->header.type == lang_padding_statement_enum
4549 && pad->padding_statement.output_section == output_section)
4550 {
4551 /* Use the existing pad statement. */
4552 }
4553 else if ((pad = *ptr) != NULL
4554 && pad->header.type == lang_padding_statement_enum
4555 && pad->padding_statement.output_section == output_section)
4556 {
4557 /* Use the existing pad statement. */
4558 }
4559 else
4560 {
4561 /* Make a new padding statement, linked into existing chain. */
4562 pad = (lang_statement_union_type *)
4563 stat_alloc (sizeof (lang_padding_statement_type));
4564 pad->header.next = *ptr;
4565 *ptr = pad;
4566 pad->header.type = lang_padding_statement_enum;
4567 pad->padding_statement.output_section = output_section;
4568 if (fill == NULL)
4569 fill = &zero_fill;
4570 pad->padding_statement.fill = fill;
4571 }
4572 pad->padding_statement.output_offset = dot - output_section->vma;
4573 pad->padding_statement.size = alignment_needed;
4574 output_section->size += alignment_needed;
4575 }
4576
4577 /* Work out how much this section will move the dot point. */
4578
4579 static bfd_vma
4580 size_input_section
4581 (lang_statement_union_type **this_ptr,
4582 lang_output_section_statement_type *output_section_statement,
4583 fill_type *fill,
4584 bfd_vma dot)
4585 {
4586 lang_input_section_type *is = &((*this_ptr)->input_section);
4587 asection *i = is->section;
4588
4589 if (!((lang_input_statement_type *) i->owner->usrdata)->just_syms_flag
4590 && (i->flags & SEC_EXCLUDE) == 0)
4591 {
4592 unsigned int alignment_needed;
4593 asection *o;
4594
4595 /* Align this section first to the input sections requirement,
4596 then to the output section's requirement. If this alignment
4597 is greater than any seen before, then record it too. Perform
4598 the alignment by inserting a magic 'padding' statement. */
4599
4600 if (output_section_statement->subsection_alignment != -1)
4601 i->alignment_power = output_section_statement->subsection_alignment;
4602
4603 o = output_section_statement->bfd_section;
4604 if (o->alignment_power < i->alignment_power)
4605 o->alignment_power = i->alignment_power;
4606
4607 alignment_needed = align_power (dot, i->alignment_power) - dot;
4608
4609 if (alignment_needed != 0)
4610 {
4611 insert_pad (this_ptr, fill, TO_SIZE (alignment_needed), o, dot);
4612 dot += alignment_needed;
4613 }
4614
4615 /* Remember where in the output section this input section goes. */
4616
4617 i->output_offset = dot - o->vma;
4618
4619 /* Mark how big the output section must be to contain this now. */
4620 dot += TO_ADDR (i->size);
4621 o->size = TO_SIZE (dot - o->vma);
4622 }
4623 else
4624 {
4625 i->output_offset = i->vma - output_section_statement->bfd_section->vma;
4626 }
4627
4628 return dot;
4629 }
4630
4631 static int
4632 sort_sections_by_lma (const void *arg1, const void *arg2)
4633 {
4634 const asection *sec1 = *(const asection **) arg1;
4635 const asection *sec2 = *(const asection **) arg2;
4636
4637 if (bfd_section_lma (sec1->owner, sec1)
4638 < bfd_section_lma (sec2->owner, sec2))
4639 return -1;
4640 else if (bfd_section_lma (sec1->owner, sec1)
4641 > bfd_section_lma (sec2->owner, sec2))
4642 return 1;
4643 else if (sec1->id < sec2->id)
4644 return -1;
4645 else if (sec1->id > sec2->id)
4646 return 1;
4647
4648 return 0;
4649 }
4650
4651 #define IGNORE_SECTION(s) \
4652 ((s->flags & SEC_ALLOC) == 0 \
4653 || ((s->flags & SEC_THREAD_LOCAL) != 0 \
4654 && (s->flags & SEC_LOAD) == 0))
4655
4656 /* Check to see if any allocated sections overlap with other allocated
4657 sections. This can happen if a linker script specifies the output
4658 section addresses of the two sections. Also check whether any memory
4659 region has overflowed. */
4660
4661 static void
4662 lang_check_section_addresses (void)
4663 {
4664 asection *s, *p;
4665 asection **sections, **spp;
4666 unsigned int count;
4667 bfd_vma s_start;
4668 bfd_vma s_end;
4669 bfd_vma p_start;
4670 bfd_vma p_end;
4671 bfd_size_type amt;
4672 lang_memory_region_type *m;
4673
4674 if (bfd_count_sections (link_info.output_bfd) <= 1)
4675 return;
4676
4677 amt = bfd_count_sections (link_info.output_bfd) * sizeof (asection *);
4678 sections = (asection **) xmalloc (amt);
4679
4680 /* Scan all sections in the output list. */
4681 count = 0;
4682 for (s = link_info.output_bfd->sections; s != NULL; s = s->next)
4683 {
4684 /* Only consider loadable sections with real contents. */
4685 if (!(s->flags & SEC_LOAD)
4686 || !(s->flags & SEC_ALLOC)
4687 || s->size == 0)
4688 continue;
4689
4690 sections[count] = s;
4691 count++;
4692 }
4693
4694 if (count <= 1)
4695 return;
4696
4697 qsort (sections, (size_t) count, sizeof (asection *),
4698 sort_sections_by_lma);
4699
4700 spp = sections;
4701 s = *spp++;
4702 s_start = s->lma;
4703 s_end = s_start + TO_ADDR (s->size) - 1;
4704 for (count--; count; count--)
4705 {
4706 /* We must check the sections' LMA addresses not their VMA
4707 addresses because overlay sections can have overlapping VMAs
4708 but they must have distinct LMAs. */
4709 p = s;
4710 p_start = s_start;
4711 p_end = s_end;
4712 s = *spp++;
4713 s_start = s->lma;
4714 s_end = s_start + TO_ADDR (s->size) - 1;
4715
4716 /* Look for an overlap. We have sorted sections by lma, so we
4717 know that s_start >= p_start. Besides the obvious case of
4718 overlap when the current section starts before the previous
4719 one ends, we also must have overlap if the previous section
4720 wraps around the address space. */
4721 if (s_start <= p_end
4722 || p_end < p_start)
4723 einfo (_("%X%P: section %s loaded at [%V,%V] overlaps section %s loaded at [%V,%V]\n"),
4724 s->name, s_start, s_end, p->name, p_start, p_end);
4725 }
4726
4727 free (sections);
4728
4729 /* If any memory region has overflowed, report by how much.
4730 We do not issue this diagnostic for regions that had sections
4731 explicitly placed outside their bounds; os_region_check's
4732 diagnostics are adequate for that case.
4733
4734 FIXME: It is conceivable that m->current - (m->origin + m->length)
4735 might overflow a 32-bit integer. There is, alas, no way to print
4736 a bfd_vma quantity in decimal. */
4737 for (m = lang_memory_region_list; m; m = m->next)
4738 if (m->had_full_message)
4739 einfo (_("%X%P: region `%s' overflowed by %ld bytes\n"),
4740 m->name_list.name, (long)(m->current - (m->origin + m->length)));
4741
4742 }
4743
4744 /* Make sure the new address is within the region. We explicitly permit the
4745 current address to be at the exact end of the region when the address is
4746 non-zero, in case the region is at the end of addressable memory and the
4747 calculation wraps around. */
4748
4749 static void
4750 os_region_check (lang_output_section_statement_type *os,
4751 lang_memory_region_type *region,
4752 etree_type *tree,
4753 bfd_vma rbase)
4754 {
4755 if ((region->current < region->origin
4756 || (region->current - region->origin > region->length))
4757 && ((region->current != region->origin + region->length)
4758 || rbase == 0))
4759 {
4760 if (tree != NULL)
4761 {
4762 einfo (_("%X%P: address 0x%v of %B section `%s'"
4763 " is not within region `%s'\n"),
4764 region->current,
4765 os->bfd_section->owner,
4766 os->bfd_section->name,
4767 region->name_list.name);
4768 }
4769 else if (!region->had_full_message)
4770 {
4771 region->had_full_message = TRUE;
4772
4773 einfo (_("%X%P: %B section `%s' will not fit in region `%s'\n"),
4774 os->bfd_section->owner,
4775 os->bfd_section->name,
4776 region->name_list.name);
4777 }
4778 }
4779 }
4780
4781 /* Set the sizes for all the output sections. */
4782
4783 static bfd_vma
4784 lang_size_sections_1
4785 (lang_statement_union_type **prev,
4786 lang_output_section_statement_type *output_section_statement,
4787 fill_type *fill,
4788 bfd_vma dot,
4789 bfd_boolean *relax,
4790 bfd_boolean check_regions)
4791 {
4792 lang_statement_union_type *s;
4793
4794 /* Size up the sections from their constituent parts. */
4795 for (s = *prev; s != NULL; s = s->header.next)
4796 {
4797 switch (s->header.type)
4798 {
4799 case lang_output_section_statement_enum:
4800 {
4801 bfd_vma newdot, after;
4802 lang_output_section_statement_type *os;
4803 lang_memory_region_type *r;
4804 int section_alignment = 0;
4805
4806 os = &s->output_section_statement;
4807 if (os->constraint == -1)
4808 break;
4809
4810 /* FIXME: We shouldn't need to zero section vmas for ld -r
4811 here, in lang_insert_orphan, or in the default linker scripts.
4812 This is covering for coff backend linker bugs. See PR6945. */
4813 if (os->addr_tree == NULL
4814 && link_info.relocatable
4815 && (bfd_get_flavour (link_info.output_bfd)
4816 == bfd_target_coff_flavour))
4817 os->addr_tree = exp_intop (0);
4818 if (os->addr_tree != NULL)
4819 {
4820 os->processed_vma = FALSE;
4821 exp_fold_tree (os->addr_tree, bfd_abs_section_ptr, &dot);
4822
4823 if (expld.result.valid_p)
4824 {
4825 dot = expld.result.value;
4826 if (expld.result.section != NULL)
4827 dot += expld.result.section->vma;
4828 }
4829 else if (expld.phase != lang_mark_phase_enum)
4830 einfo (_("%F%S: non constant or forward reference"
4831 " address expression for section %s\n"),
4832 os->name);
4833 }
4834
4835 if (os->bfd_section == NULL)
4836 /* This section was removed or never actually created. */
4837 break;
4838
4839 /* If this is a COFF shared library section, use the size and
4840 address from the input section. FIXME: This is COFF
4841 specific; it would be cleaner if there were some other way
4842 to do this, but nothing simple comes to mind. */
4843 if (((bfd_get_flavour (link_info.output_bfd)
4844 == bfd_target_ecoff_flavour)
4845 || (bfd_get_flavour (link_info.output_bfd)
4846 == bfd_target_coff_flavour))
4847 && (os->bfd_section->flags & SEC_COFF_SHARED_LIBRARY) != 0)
4848 {
4849 asection *input;
4850
4851 if (os->children.head == NULL
4852 || os->children.head->header.next != NULL
4853 || (os->children.head->header.type
4854 != lang_input_section_enum))
4855 einfo (_("%P%X: Internal error on COFF shared library"
4856 " section %s\n"), os->name);
4857
4858 input = os->children.head->input_section.section;
4859 bfd_set_section_vma (os->bfd_section->owner,
4860 os->bfd_section,
4861 bfd_section_vma (input->owner, input));
4862 os->bfd_section->size = input->size;
4863 break;
4864 }
4865
4866 newdot = dot;
4867 if (bfd_is_abs_section (os->bfd_section))
4868 {
4869 /* No matter what happens, an abs section starts at zero. */
4870 ASSERT (os->bfd_section->vma == 0);
4871 }
4872 else
4873 {
4874 if (os->addr_tree == NULL)
4875 {
4876 /* No address specified for this section, get one
4877 from the region specification. */
4878 if (os->region == NULL
4879 || ((os->bfd_section->flags & (SEC_ALLOC | SEC_LOAD))
4880 && os->region->name_list.name[0] == '*'
4881 && strcmp (os->region->name_list.name,
4882 DEFAULT_MEMORY_REGION) == 0))
4883 {
4884 os->region = lang_memory_default (os->bfd_section);
4885 }
4886
4887 /* If a loadable section is using the default memory
4888 region, and some non default memory regions were
4889 defined, issue an error message. */
4890 if (!os->ignored
4891 && !IGNORE_SECTION (os->bfd_section)
4892 && ! link_info.relocatable
4893 && check_regions
4894 && strcmp (os->region->name_list.name,
4895 DEFAULT_MEMORY_REGION) == 0
4896 && lang_memory_region_list != NULL
4897 && (strcmp (lang_memory_region_list->name_list.name,
4898 DEFAULT_MEMORY_REGION) != 0
4899 || lang_memory_region_list->next != NULL)
4900 && expld.phase != lang_mark_phase_enum)
4901 {
4902 /* By default this is an error rather than just a
4903 warning because if we allocate the section to the
4904 default memory region we can end up creating an
4905 excessively large binary, or even seg faulting when
4906 attempting to perform a negative seek. See
4907 sources.redhat.com/ml/binutils/2003-04/msg00423.html
4908 for an example of this. This behaviour can be
4909 overridden by the using the --no-check-sections
4910 switch. */
4911 if (command_line.check_section_addresses)
4912 einfo (_("%P%F: error: no memory region specified"
4913 " for loadable section `%s'\n"),
4914 bfd_get_section_name (link_info.output_bfd,
4915 os->bfd_section));
4916 else
4917 einfo (_("%P: warning: no memory region specified"
4918 " for loadable section `%s'\n"),
4919 bfd_get_section_name (link_info.output_bfd,
4920 os->bfd_section));
4921 }
4922
4923 newdot = os->region->current;
4924 section_alignment = os->bfd_section->alignment_power;
4925 }
4926 else
4927 section_alignment = os->section_alignment;
4928
4929 /* Align to what the section needs. */
4930 if (section_alignment > 0)
4931 {
4932 bfd_vma savedot = newdot;
4933 newdot = align_power (newdot, section_alignment);
4934
4935 if (newdot != savedot
4936 && (config.warn_section_align
4937 || os->addr_tree != NULL)
4938 && expld.phase != lang_mark_phase_enum)
4939 einfo (_("%P: warning: changing start of section"
4940 " %s by %lu bytes\n"),
4941 os->name, (unsigned long) (newdot - savedot));
4942 }
4943
4944 bfd_set_section_vma (0, os->bfd_section, newdot);
4945
4946 os->bfd_section->output_offset = 0;
4947 }
4948
4949 lang_size_sections_1 (&os->children.head, os,
4950 os->fill, newdot, relax, check_regions);
4951
4952 os->processed_vma = TRUE;
4953
4954 if (bfd_is_abs_section (os->bfd_section) || os->ignored)
4955 /* Except for some special linker created sections,
4956 no output section should change from zero size
4957 after strip_excluded_output_sections. A non-zero
4958 size on an ignored section indicates that some
4959 input section was not sized early enough. */
4960 ASSERT (os->bfd_section->size == 0);
4961 else
4962 {
4963 dot = os->bfd_section->vma;
4964
4965 /* Put the section within the requested block size, or
4966 align at the block boundary. */
4967 after = ((dot
4968 + TO_ADDR (os->bfd_section->size)
4969 + os->block_value - 1)
4970 & - (bfd_vma) os->block_value);
4971
4972 os->bfd_section->size = TO_SIZE (after - os->bfd_section->vma);
4973 }
4974
4975 /* Set section lma. */
4976 r = os->region;
4977 if (r == NULL)
4978 r = lang_memory_region_lookup (DEFAULT_MEMORY_REGION, FALSE);
4979
4980 if (os->load_base)
4981 {
4982 bfd_vma lma = exp_get_abs_int (os->load_base, 0, "load base");
4983 os->bfd_section->lma = lma;
4984 }
4985 else if (os->lma_region != NULL)
4986 {
4987 bfd_vma lma = os->lma_region->current;
4988
4989 if (section_alignment > 0)
4990 lma = align_power (lma, section_alignment);
4991 os->bfd_section->lma = lma;
4992 }
4993 else if (r->last_os != NULL
4994 && (os->bfd_section->flags & SEC_ALLOC) != 0)
4995 {
4996 bfd_vma lma;
4997 asection *last;
4998
4999 last = r->last_os->output_section_statement.bfd_section;
5000
5001 /* A backwards move of dot should be accompanied by
5002 an explicit assignment to the section LMA (ie.
5003 os->load_base set) because backwards moves can
5004 create overlapping LMAs. */
5005 if (dot < last->vma
5006 && os->bfd_section->size != 0
5007 && dot + os->bfd_section->size <= last->vma)
5008 {
5009 /* If dot moved backwards then leave lma equal to
5010 vma. This is the old default lma, which might
5011 just happen to work when the backwards move is
5012 sufficiently large. Nag if this changes anything,
5013 so people can fix their linker scripts. */
5014
5015 if (last->vma != last->lma)
5016 einfo (_("%P: warning: dot moved backwards before `%s'\n"),
5017 os->name);
5018 }
5019 else
5020 {
5021 /* If this is an overlay, set the current lma to that
5022 at the end of the previous section. */
5023 if (os->sectype == overlay_section)
5024 lma = last->lma + last->size;
5025
5026 /* Otherwise, keep the same lma to vma relationship
5027 as the previous section. */
5028 else
5029 lma = dot + last->lma - last->vma;
5030
5031 if (section_alignment > 0)
5032 lma = align_power (lma, section_alignment);
5033 os->bfd_section->lma = lma;
5034 }
5035 }
5036 os->processed_lma = TRUE;
5037
5038 if (bfd_is_abs_section (os->bfd_section) || os->ignored)
5039 break;
5040
5041 /* Keep track of normal sections using the default
5042 lma region. We use this to set the lma for
5043 following sections. Overlays or other linker
5044 script assignment to lma might mean that the
5045 default lma == vma is incorrect.
5046 To avoid warnings about dot moving backwards when using
5047 -Ttext, don't start tracking sections until we find one
5048 of non-zero size or with lma set differently to vma. */
5049 if (((os->bfd_section->flags & SEC_HAS_CONTENTS) != 0
5050 || (os->bfd_section->flags & SEC_THREAD_LOCAL) == 0)
5051 && (os->bfd_section->flags & SEC_ALLOC) != 0
5052 && (os->bfd_section->size != 0
5053 || (r->last_os == NULL
5054 && os->bfd_section->vma != os->bfd_section->lma)
5055 || (r->last_os != NULL
5056 && dot >= (r->last_os->output_section_statement
5057 .bfd_section->vma)))
5058 && os->lma_region == NULL
5059 && !link_info.relocatable)
5060 r->last_os = s;
5061
5062 /* .tbss sections effectively have zero size. */
5063 if ((os->bfd_section->flags & SEC_HAS_CONTENTS) != 0
5064 || (os->bfd_section->flags & SEC_THREAD_LOCAL) == 0
5065 || link_info.relocatable)
5066 dot += TO_ADDR (os->bfd_section->size);
5067
5068 if (os->update_dot_tree != 0)
5069 exp_fold_tree (os->update_dot_tree, bfd_abs_section_ptr, &dot);
5070
5071 /* Update dot in the region ?
5072 We only do this if the section is going to be allocated,
5073 since unallocated sections do not contribute to the region's
5074 overall size in memory. */
5075 if (os->region != NULL
5076 && (os->bfd_section->flags & (SEC_ALLOC | SEC_LOAD)))
5077 {
5078 os->region->current = dot;
5079
5080 if (check_regions)
5081 /* Make sure the new address is within the region. */
5082 os_region_check (os, os->region, os->addr_tree,
5083 os->bfd_section->vma);
5084
5085 if (os->lma_region != NULL && os->lma_region != os->region
5086 && (os->bfd_section->flags & SEC_LOAD))
5087 {
5088 os->lma_region->current
5089 = os->bfd_section->lma + TO_ADDR (os->bfd_section->size);
5090
5091 if (check_regions)
5092 os_region_check (os, os->lma_region, NULL,
5093 os->bfd_section->lma);
5094 }
5095 }
5096 }
5097 break;
5098
5099 case lang_constructors_statement_enum:
5100 dot = lang_size_sections_1 (&constructor_list.head,
5101 output_section_statement,
5102 fill, dot, relax, check_regions);
5103 break;
5104
5105 case lang_data_statement_enum:
5106 {
5107 unsigned int size = 0;
5108
5109 s->data_statement.output_offset =
5110 dot - output_section_statement->bfd_section->vma;
5111 s->data_statement.output_section =
5112 output_section_statement->bfd_section;
5113
5114 /* We might refer to provided symbols in the expression, and
5115 need to mark them as needed. */
5116 exp_fold_tree (s->data_statement.exp, bfd_abs_section_ptr, &dot);
5117
5118 switch (s->data_statement.type)
5119 {
5120 default:
5121 abort ();
5122 case QUAD:
5123 case SQUAD:
5124 size = QUAD_SIZE;
5125 break;
5126 case LONG:
5127 size = LONG_SIZE;
5128 break;
5129 case SHORT:
5130 size = SHORT_SIZE;
5131 break;
5132 case BYTE:
5133 size = BYTE_SIZE;
5134 break;
5135 }
5136 if (size < TO_SIZE ((unsigned) 1))
5137 size = TO_SIZE ((unsigned) 1);
5138 dot += TO_ADDR (size);
5139 output_section_statement->bfd_section->size += size;
5140 }
5141 break;
5142
5143 case lang_reloc_statement_enum:
5144 {
5145 int size;
5146
5147 s->reloc_statement.output_offset =
5148 dot - output_section_statement->bfd_section->vma;
5149 s->reloc_statement.output_section =
5150 output_section_statement->bfd_section;
5151 size = bfd_get_reloc_size (s->reloc_statement.howto);
5152 dot += TO_ADDR (size);
5153 output_section_statement->bfd_section->size += size;
5154 }
5155 break;
5156
5157 case lang_wild_statement_enum:
5158 dot = lang_size_sections_1 (&s->wild_statement.children.head,
5159 output_section_statement,
5160 fill, dot, relax, check_regions);
5161 break;
5162
5163 case lang_object_symbols_statement_enum:
5164 link_info.create_object_symbols_section =
5165 output_section_statement->bfd_section;
5166 break;
5167
5168 case lang_output_statement_enum:
5169 case lang_target_statement_enum:
5170 break;
5171
5172 case lang_input_section_enum:
5173 {
5174 asection *i;
5175
5176 i = s->input_section.section;
5177 if (relax)
5178 {
5179 bfd_boolean again;
5180
5181 if (! bfd_relax_section (i->owner, i, &link_info, &again))
5182 einfo (_("%P%F: can't relax section: %E\n"));
5183 if (again)
5184 *relax = TRUE;
5185 }
5186 dot = size_input_section (prev, output_section_statement,
5187 output_section_statement->fill, dot);
5188 }
5189 break;
5190
5191 case lang_input_statement_enum:
5192 break;
5193
5194 case lang_fill_statement_enum:
5195 s->fill_statement.output_section =
5196 output_section_statement->bfd_section;
5197
5198 fill = s->fill_statement.fill;
5199 break;
5200
5201 case lang_assignment_statement_enum:
5202 {
5203 bfd_vma newdot = dot;
5204 etree_type *tree = s->assignment_statement.exp;
5205
5206 expld.dataseg.relro = exp_dataseg_relro_none;
5207
5208 exp_fold_tree (tree,
5209 output_section_statement->bfd_section,
5210 &newdot);
5211
5212 if (expld.dataseg.relro == exp_dataseg_relro_start)
5213 {
5214 if (!expld.dataseg.relro_start_stat)
5215 expld.dataseg.relro_start_stat = s;
5216 else
5217 {
5218 ASSERT (expld.dataseg.relro_start_stat == s);
5219 }
5220 }
5221 else if (expld.dataseg.relro == exp_dataseg_relro_end)
5222 {
5223 if (!expld.dataseg.relro_end_stat)
5224 expld.dataseg.relro_end_stat = s;
5225 else
5226 {
5227 ASSERT (expld.dataseg.relro_end_stat == s);
5228 }
5229 }
5230 expld.dataseg.relro = exp_dataseg_relro_none;
5231
5232 /* This symbol is relative to this section. */
5233 if ((tree->type.node_class == etree_provided
5234 || tree->type.node_class == etree_assign)
5235 && (tree->assign.dst [0] != '.'
5236 || tree->assign.dst [1] != '\0'))
5237 output_section_statement->section_relative_symbol = 1;
5238
5239 if (!output_section_statement->ignored)
5240 {
5241 if (output_section_statement == abs_output_section)
5242 {
5243 /* If we don't have an output section, then just adjust
5244 the default memory address. */
5245 lang_memory_region_lookup (DEFAULT_MEMORY_REGION,
5246 FALSE)->current = newdot;
5247 }
5248 else if (newdot != dot)
5249 {
5250 /* Insert a pad after this statement. We can't
5251 put the pad before when relaxing, in case the
5252 assignment references dot. */
5253 insert_pad (&s->header.next, fill, TO_SIZE (newdot - dot),
5254 output_section_statement->bfd_section, dot);
5255
5256 /* Don't neuter the pad below when relaxing. */
5257 s = s->header.next;
5258
5259 /* If dot is advanced, this implies that the section
5260 should have space allocated to it, unless the
5261 user has explicitly stated that the section
5262 should not be allocated. */
5263 if (output_section_statement->sectype != noalloc_section
5264 && (output_section_statement->sectype != noload_section
5265 || (bfd_get_flavour (link_info.output_bfd)
5266 == bfd_target_elf_flavour)))
5267 output_section_statement->bfd_section->flags |= SEC_ALLOC;
5268 }
5269 dot = newdot;
5270 }
5271 }
5272 break;
5273
5274 case lang_padding_statement_enum:
5275 /* If this is the first time lang_size_sections is called,
5276 we won't have any padding statements. If this is the
5277 second or later passes when relaxing, we should allow
5278 padding to shrink. If padding is needed on this pass, it
5279 will be added back in. */
5280 s->padding_statement.size = 0;
5281
5282 /* Make sure output_offset is valid. If relaxation shrinks
5283 the section and this pad isn't needed, it's possible to
5284 have output_offset larger than the final size of the
5285 section. bfd_set_section_contents will complain even for
5286 a pad size of zero. */
5287 s->padding_statement.output_offset
5288 = dot - output_section_statement->bfd_section->vma;
5289 break;
5290
5291 case lang_group_statement_enum:
5292 dot = lang_size_sections_1 (&s->group_statement.children.head,
5293 output_section_statement,
5294 fill, dot, relax, check_regions);
5295 break;
5296
5297 case lang_insert_statement_enum:
5298 break;
5299
5300 /* We can only get here when relaxing is turned on. */
5301 case lang_address_statement_enum:
5302 break;
5303
5304 default:
5305 FAIL ();
5306 break;
5307 }
5308 prev = &s->header.next;
5309 }
5310 return dot;
5311 }
5312
5313 /* Callback routine that is used in _bfd_elf_map_sections_to_segments.
5314 The BFD library has set NEW_SEGMENT to TRUE iff it thinks that
5315 CURRENT_SECTION and PREVIOUS_SECTION ought to be placed into different
5316 segments. We are allowed an opportunity to override this decision. */
5317
5318 bfd_boolean
5319 ldlang_override_segment_assignment (struct bfd_link_info * info ATTRIBUTE_UNUSED,
5320 bfd * abfd ATTRIBUTE_UNUSED,
5321 asection * current_section,
5322 asection * previous_section,
5323 bfd_boolean new_segment)
5324 {
5325 lang_output_section_statement_type * cur;
5326 lang_output_section_statement_type * prev;
5327
5328 /* The checks below are only necessary when the BFD library has decided
5329 that the two sections ought to be placed into the same segment. */
5330 if (new_segment)
5331 return TRUE;
5332
5333 /* Paranoia checks. */
5334 if (current_section == NULL || previous_section == NULL)
5335 return new_segment;
5336
5337 /* Find the memory regions associated with the two sections.
5338 We call lang_output_section_find() here rather than scanning the list
5339 of output sections looking for a matching section pointer because if
5340 we have a large number of sections then a hash lookup is faster. */
5341 cur = lang_output_section_find (current_section->name);
5342 prev = lang_output_section_find (previous_section->name);
5343
5344 /* More paranoia. */
5345 if (cur == NULL || prev == NULL)
5346 return new_segment;
5347
5348 /* If the regions are different then force the sections to live in
5349 different segments. See the email thread starting at the following
5350 URL for the reasons why this is necessary:
5351 http://sourceware.org/ml/binutils/2007-02/msg00216.html */
5352 return cur->region != prev->region;
5353 }
5354
5355 void
5356 one_lang_size_sections_pass (bfd_boolean *relax, bfd_boolean check_regions)
5357 {
5358 lang_statement_iteration++;
5359 lang_size_sections_1 (&statement_list.head, abs_output_section,
5360 0, 0, relax, check_regions);
5361 }
5362
5363 void
5364 lang_size_sections (bfd_boolean *relax, bfd_boolean check_regions)
5365 {
5366 expld.phase = lang_allocating_phase_enum;
5367 expld.dataseg.phase = exp_dataseg_none;
5368
5369 one_lang_size_sections_pass (relax, check_regions);
5370 if (expld.dataseg.phase == exp_dataseg_end_seen
5371 && link_info.relro && expld.dataseg.relro_end)
5372 {
5373 /* If DATA_SEGMENT_ALIGN DATA_SEGMENT_RELRO_END pair was seen, try
5374 to put expld.dataseg.relro on a (common) page boundary. */
5375 bfd_vma min_base, old_base, relro_end, maxpage;
5376
5377 expld.dataseg.phase = exp_dataseg_relro_adjust;
5378 maxpage = expld.dataseg.maxpagesize;
5379 /* MIN_BASE is the absolute minimum address we are allowed to start the
5380 read-write segment (byte before will be mapped read-only). */
5381 min_base = (expld.dataseg.min_base + maxpage - 1) & ~(maxpage - 1);
5382 /* OLD_BASE is the address for a feasible minimum address which will
5383 still not cause a data overlap inside MAXPAGE causing file offset skip
5384 by MAXPAGE. */
5385 old_base = expld.dataseg.base;
5386 expld.dataseg.base += (-expld.dataseg.relro_end
5387 & (expld.dataseg.pagesize - 1));
5388 /* Compute the expected PT_GNU_RELRO segment end. */
5389 relro_end = ((expld.dataseg.relro_end + expld.dataseg.pagesize - 1)
5390 & ~(expld.dataseg.pagesize - 1));
5391 if (min_base + maxpage < expld.dataseg.base)
5392 {
5393 expld.dataseg.base -= maxpage;
5394 relro_end -= maxpage;
5395 }
5396 lang_reset_memory_regions ();
5397 one_lang_size_sections_pass (relax, check_regions);
5398 if (expld.dataseg.relro_end > relro_end)
5399 {
5400 /* The alignment of sections between DATA_SEGMENT_ALIGN
5401 and DATA_SEGMENT_RELRO_END caused huge padding to be
5402 inserted at DATA_SEGMENT_RELRO_END. Try to start a bit lower so
5403 that the section alignments will fit in. */
5404 asection *sec;
5405 unsigned int max_alignment_power = 0;
5406
5407 /* Find maximum alignment power of sections between
5408 DATA_SEGMENT_ALIGN and DATA_SEGMENT_RELRO_END. */
5409 for (sec = link_info.output_bfd->sections; sec; sec = sec->next)
5410 if (sec->vma >= expld.dataseg.base
5411 && sec->vma < expld.dataseg.relro_end
5412 && sec->alignment_power > max_alignment_power)
5413 max_alignment_power = sec->alignment_power;
5414
5415 if (((bfd_vma) 1 << max_alignment_power) < expld.dataseg.pagesize)
5416 {
5417 if (expld.dataseg.base - (1 << max_alignment_power) < old_base)
5418 expld.dataseg.base += expld.dataseg.pagesize;
5419 expld.dataseg.base -= (1 << max_alignment_power);
5420 lang_reset_memory_regions ();
5421 one_lang_size_sections_pass (relax, check_regions);
5422 }
5423 }
5424 link_info.relro_start = expld.dataseg.base;
5425 link_info.relro_end = expld.dataseg.relro_end;
5426 }
5427 else if (expld.dataseg.phase == exp_dataseg_end_seen)
5428 {
5429 /* If DATA_SEGMENT_ALIGN DATA_SEGMENT_END pair was seen, check whether
5430 a page could be saved in the data segment. */
5431 bfd_vma first, last;
5432
5433 first = -expld.dataseg.base & (expld.dataseg.pagesize - 1);
5434 last = expld.dataseg.end & (expld.dataseg.pagesize - 1);
5435 if (first && last
5436 && ((expld.dataseg.base & ~(expld.dataseg.pagesize - 1))
5437 != (expld.dataseg.end & ~(expld.dataseg.pagesize - 1)))
5438 && first + last <= expld.dataseg.pagesize)
5439 {
5440 expld.dataseg.phase = exp_dataseg_adjust;
5441 lang_reset_memory_regions ();
5442 one_lang_size_sections_pass (relax, check_regions);
5443 }
5444 else
5445 expld.dataseg.phase = exp_dataseg_done;
5446 }
5447 else
5448 expld.dataseg.phase = exp_dataseg_done;
5449 }
5450
5451 /* Worker function for lang_do_assignments. Recursiveness goes here. */
5452
5453 static bfd_vma
5454 lang_do_assignments_1 (lang_statement_union_type *s,
5455 lang_output_section_statement_type *current_os,
5456 fill_type *fill,
5457 bfd_vma dot)
5458 {
5459 for (; s != NULL; s = s->header.next)
5460 {
5461 switch (s->header.type)
5462 {
5463 case lang_constructors_statement_enum:
5464 dot = lang_do_assignments_1 (constructor_list.head,
5465 current_os, fill, dot);
5466 break;
5467
5468 case lang_output_section_statement_enum:
5469 {
5470 lang_output_section_statement_type *os;
5471
5472 os = &(s->output_section_statement);
5473 if (os->bfd_section != NULL && !os->ignored)
5474 {
5475 dot = os->bfd_section->vma;
5476
5477 lang_do_assignments_1 (os->children.head, os, os->fill, dot);
5478
5479 /* .tbss sections effectively have zero size. */
5480 if ((os->bfd_section->flags & SEC_HAS_CONTENTS) != 0
5481 || (os->bfd_section->flags & SEC_THREAD_LOCAL) == 0
5482 || link_info.relocatable)
5483 dot += TO_ADDR (os->bfd_section->size);
5484
5485 if (os->update_dot_tree != NULL)
5486 exp_fold_tree (os->update_dot_tree, bfd_abs_section_ptr, &dot);
5487 }
5488 }
5489 break;
5490
5491 case lang_wild_statement_enum:
5492
5493 dot = lang_do_assignments_1 (s->wild_statement.children.head,
5494 current_os, fill, dot);
5495 break;
5496
5497 case lang_object_symbols_statement_enum:
5498 case lang_output_statement_enum:
5499 case lang_target_statement_enum:
5500 break;
5501
5502 case lang_data_statement_enum:
5503 exp_fold_tree (s->data_statement.exp, bfd_abs_section_ptr, &dot);
5504 if (expld.result.valid_p)
5505 {
5506 s->data_statement.value = expld.result.value;
5507 if (expld.result.section != NULL)
5508 s->data_statement.value += expld.result.section->vma;
5509 }
5510 else
5511 einfo (_("%F%P: invalid data statement\n"));
5512 {
5513 unsigned int size;
5514 switch (s->data_statement.type)
5515 {
5516 default:
5517 abort ();
5518 case QUAD:
5519 case SQUAD:
5520 size = QUAD_SIZE;
5521 break;
5522 case LONG:
5523 size = LONG_SIZE;
5524 break;
5525 case SHORT:
5526 size = SHORT_SIZE;
5527 break;
5528 case BYTE:
5529 size = BYTE_SIZE;
5530 break;
5531 }
5532 if (size < TO_SIZE ((unsigned) 1))
5533 size = TO_SIZE ((unsigned) 1);
5534 dot += TO_ADDR (size);
5535 }
5536 break;
5537
5538 case lang_reloc_statement_enum:
5539 exp_fold_tree (s->reloc_statement.addend_exp,
5540 bfd_abs_section_ptr, &dot);
5541 if (expld.result.valid_p)
5542 s->reloc_statement.addend_value = expld.result.value;
5543 else
5544 einfo (_("%F%P: invalid reloc statement\n"));
5545 dot += TO_ADDR (bfd_get_reloc_size (s->reloc_statement.howto));
5546 break;
5547
5548 case lang_input_section_enum:
5549 {
5550 asection *in = s->input_section.section;
5551
5552 if ((in->flags & SEC_EXCLUDE) == 0)
5553 dot += TO_ADDR (in->size);
5554 }
5555 break;
5556
5557 case lang_input_statement_enum:
5558 break;
5559
5560 case lang_fill_statement_enum:
5561 fill = s->fill_statement.fill;
5562 break;
5563
5564 case lang_assignment_statement_enum:
5565 exp_fold_tree (s->assignment_statement.exp,
5566 current_os->bfd_section,
5567 &dot);
5568 break;
5569
5570 case lang_padding_statement_enum:
5571 dot += TO_ADDR (s->padding_statement.size);
5572 break;
5573
5574 case lang_group_statement_enum:
5575 dot = lang_do_assignments_1 (s->group_statement.children.head,
5576 current_os, fill, dot);
5577 break;
5578
5579 case lang_insert_statement_enum:
5580 break;
5581
5582 case lang_address_statement_enum:
5583 break;
5584
5585 default:
5586 FAIL ();
5587 break;
5588 }
5589 }
5590 return dot;
5591 }
5592
5593 void
5594 lang_do_assignments (void)
5595 {
5596 lang_statement_iteration++;
5597 lang_do_assignments_1 (statement_list.head, abs_output_section, NULL, 0);
5598 }
5599
5600 /* Fix any .startof. or .sizeof. symbols. When the assemblers see the
5601 operator .startof. (section_name), it produces an undefined symbol
5602 .startof.section_name. Similarly, when it sees
5603 .sizeof. (section_name), it produces an undefined symbol
5604 .sizeof.section_name. For all the output sections, we look for
5605 such symbols, and set them to the correct value. */
5606
5607 static void
5608 lang_set_startof (void)
5609 {
5610 asection *s;
5611
5612 if (link_info.relocatable)
5613 return;
5614
5615 for (s = link_info.output_bfd->sections; s != NULL; s = s->next)
5616 {
5617 const char *secname;
5618 char *buf;
5619 struct bfd_link_hash_entry *h;
5620
5621 secname = bfd_get_section_name (link_info.output_bfd, s);
5622 buf = (char *) xmalloc (10 + strlen (secname));
5623
5624 sprintf (buf, ".startof.%s", secname);
5625 h = bfd_link_hash_lookup (link_info.hash, buf, FALSE, FALSE, TRUE);
5626 if (h != NULL && h->type == bfd_link_hash_undefined)
5627 {
5628 h->type = bfd_link_hash_defined;
5629 h->u.def.value = bfd_get_section_vma (link_info.output_bfd, s);
5630 h->u.def.section = bfd_abs_section_ptr;
5631 }
5632
5633 sprintf (buf, ".sizeof.%s", secname);
5634 h = bfd_link_hash_lookup (link_info.hash, buf, FALSE, FALSE, TRUE);
5635 if (h != NULL && h->type == bfd_link_hash_undefined)
5636 {
5637 h->type = bfd_link_hash_defined;
5638 h->u.def.value = TO_ADDR (s->size);
5639 h->u.def.section = bfd_abs_section_ptr;
5640 }
5641
5642 free (buf);
5643 }
5644 }
5645
5646 static void
5647 lang_end (void)
5648 {
5649 struct bfd_link_hash_entry *h;
5650 bfd_boolean warn;
5651
5652 if ((link_info.relocatable && !link_info.gc_sections)
5653 || (link_info.shared && !link_info.executable))
5654 warn = entry_from_cmdline;
5655 else
5656 warn = TRUE;
5657
5658 /* Force the user to specify a root when generating a relocatable with
5659 --gc-sections. */
5660 if (link_info.gc_sections && link_info.relocatable
5661 && !(entry_from_cmdline || undef_from_cmdline))
5662 einfo (_("%P%F: gc-sections requires either an entry or "
5663 "an undefined symbol\n"));
5664
5665 if (entry_symbol.name == NULL)
5666 {
5667 /* No entry has been specified. Look for the default entry, but
5668 don't warn if we don't find it. */
5669 entry_symbol.name = entry_symbol_default;
5670 warn = FALSE;
5671 }
5672
5673 h = bfd_link_hash_lookup (link_info.hash, entry_symbol.name,
5674 FALSE, FALSE, TRUE);
5675 if (h != NULL
5676 && (h->type == bfd_link_hash_defined
5677 || h->type == bfd_link_hash_defweak)
5678 && h->u.def.section->output_section != NULL)
5679 {
5680 bfd_vma val;
5681
5682 val = (h->u.def.value
5683 + bfd_get_section_vma (link_info.output_bfd,
5684 h->u.def.section->output_section)
5685 + h->u.def.section->output_offset);
5686 if (! bfd_set_start_address (link_info.output_bfd, val))
5687 einfo (_("%P%F:%s: can't set start address\n"), entry_symbol.name);
5688 }
5689 else
5690 {
5691 bfd_vma val;
5692 const char *send;
5693
5694 /* We couldn't find the entry symbol. Try parsing it as a
5695 number. */
5696 val = bfd_scan_vma (entry_symbol.name, &send, 0);
5697 if (*send == '\0')
5698 {
5699 if (! bfd_set_start_address (link_info.output_bfd, val))
5700 einfo (_("%P%F: can't set start address\n"));
5701 }
5702 else
5703 {
5704 asection *ts;
5705
5706 /* Can't find the entry symbol, and it's not a number. Use
5707 the first address in the text section. */
5708 ts = bfd_get_section_by_name (link_info.output_bfd, entry_section);
5709 if (ts != NULL)
5710 {
5711 if (warn)
5712 einfo (_("%P: warning: cannot find entry symbol %s;"
5713 " defaulting to %V\n"),
5714 entry_symbol.name,
5715 bfd_get_section_vma (link_info.output_bfd, ts));
5716 if (!(bfd_set_start_address
5717 (link_info.output_bfd,
5718 bfd_get_section_vma (link_info.output_bfd, ts))))
5719 einfo (_("%P%F: can't set start address\n"));
5720 }
5721 else
5722 {
5723 if (warn)
5724 einfo (_("%P: warning: cannot find entry symbol %s;"
5725 " not setting start address\n"),
5726 entry_symbol.name);
5727 }
5728 }
5729 }
5730
5731 /* Don't bfd_hash_table_free (&lang_definedness_table);
5732 map file output may result in a call of lang_track_definedness. */
5733 }
5734
5735 /* This is a small function used when we want to ignore errors from
5736 BFD. */
5737
5738 static void
5739 ignore_bfd_errors (const char *s ATTRIBUTE_UNUSED, ...)
5740 {
5741 /* Don't do anything. */
5742 }
5743
5744 /* Check that the architecture of all the input files is compatible
5745 with the output file. Also call the backend to let it do any
5746 other checking that is needed. */
5747
5748 static void
5749 lang_check (void)
5750 {
5751 lang_statement_union_type *file;
5752 bfd *input_bfd;
5753 const bfd_arch_info_type *compatible;
5754
5755 for (file = file_chain.head; file != NULL; file = file->input_statement.next)
5756 {
5757 input_bfd = file->input_statement.the_bfd;
5758 compatible
5759 = bfd_arch_get_compatible (input_bfd, link_info.output_bfd,
5760 command_line.accept_unknown_input_arch);
5761
5762 /* In general it is not possible to perform a relocatable
5763 link between differing object formats when the input
5764 file has relocations, because the relocations in the
5765 input format may not have equivalent representations in
5766 the output format (and besides BFD does not translate
5767 relocs for other link purposes than a final link). */
5768 if ((link_info.relocatable || link_info.emitrelocations)
5769 && (compatible == NULL
5770 || (bfd_get_flavour (input_bfd)
5771 != bfd_get_flavour (link_info.output_bfd)))
5772 && (bfd_get_file_flags (input_bfd) & HAS_RELOC) != 0)
5773 {
5774 einfo (_("%P%F: Relocatable linking with relocations from"
5775 " format %s (%B) to format %s (%B) is not supported\n"),
5776 bfd_get_target (input_bfd), input_bfd,
5777 bfd_get_target (link_info.output_bfd), link_info.output_bfd);
5778 /* einfo with %F exits. */
5779 }
5780
5781 if (compatible == NULL)
5782 {
5783 if (command_line.warn_mismatch)
5784 einfo (_("%P%X: %s architecture of input file `%B'"
5785 " is incompatible with %s output\n"),
5786 bfd_printable_name (input_bfd), input_bfd,
5787 bfd_printable_name (link_info.output_bfd));
5788 }
5789 else if (bfd_count_sections (input_bfd))
5790 {
5791 /* If the input bfd has no contents, it shouldn't set the
5792 private data of the output bfd. */
5793
5794 bfd_error_handler_type pfn = NULL;
5795
5796 /* If we aren't supposed to warn about mismatched input
5797 files, temporarily set the BFD error handler to a
5798 function which will do nothing. We still want to call
5799 bfd_merge_private_bfd_data, since it may set up
5800 information which is needed in the output file. */
5801 if (! command_line.warn_mismatch)
5802 pfn = bfd_set_error_handler (ignore_bfd_errors);
5803 if (! bfd_merge_private_bfd_data (input_bfd, link_info.output_bfd))
5804 {
5805 if (command_line.warn_mismatch)
5806 einfo (_("%P%X: failed to merge target specific data"
5807 " of file %B\n"), input_bfd);
5808 }
5809 if (! command_line.warn_mismatch)
5810 bfd_set_error_handler (pfn);
5811 }
5812 }
5813 }
5814
5815 /* Look through all the global common symbols and attach them to the
5816 correct section. The -sort-common command line switch may be used
5817 to roughly sort the entries by alignment. */
5818
5819 static void
5820 lang_common (void)
5821 {
5822 if (command_line.inhibit_common_definition)
5823 return;
5824 if (link_info.relocatable
5825 && ! command_line.force_common_definition)
5826 return;
5827
5828 if (! config.sort_common)
5829 bfd_link_hash_traverse (link_info.hash, lang_one_common, NULL);
5830 else
5831 {
5832 unsigned int power;
5833
5834 if (config.sort_common == sort_descending)
5835 {
5836 for (power = 4; power > 0; power--)
5837 bfd_link_hash_traverse (link_info.hash, lang_one_common, &power);
5838
5839 power = 0;
5840 bfd_link_hash_traverse (link_info.hash, lang_one_common, &power);
5841 }
5842 else
5843 {
5844 for (power = 0; power <= 4; power++)
5845 bfd_link_hash_traverse (link_info.hash, lang_one_common, &power);
5846
5847 power = UINT_MAX;
5848 bfd_link_hash_traverse (link_info.hash, lang_one_common, &power);
5849 }
5850 }
5851 }
5852
5853 /* Place one common symbol in the correct section. */
5854
5855 static bfd_boolean
5856 lang_one_common (struct bfd_link_hash_entry *h, void *info)
5857 {
5858 unsigned int power_of_two;
5859 bfd_vma size;
5860 asection *section;
5861
5862 if (h->type != bfd_link_hash_common)
5863 return TRUE;
5864
5865 size = h->u.c.size;
5866 power_of_two = h->u.c.p->alignment_power;
5867
5868 if (config.sort_common == sort_descending
5869 && power_of_two < *(unsigned int *) info)
5870 return TRUE;
5871 else if (config.sort_common == sort_ascending
5872 && power_of_two > *(unsigned int *) info)
5873 return TRUE;
5874
5875 section = h->u.c.p->section;
5876 if (!bfd_define_common_symbol (link_info.output_bfd, &link_info, h))
5877 einfo (_("%P%F: Could not define common symbol `%T': %E\n"),
5878 h->root.string);
5879
5880 if (config.map_file != NULL)
5881 {
5882 static bfd_boolean header_printed;
5883 int len;
5884 char *name;
5885 char buf[50];
5886
5887 if (! header_printed)
5888 {
5889 minfo (_("\nAllocating common symbols\n"));
5890 minfo (_("Common symbol size file\n\n"));
5891 header_printed = TRUE;
5892 }
5893
5894 name = bfd_demangle (link_info.output_bfd, h->root.string,
5895 DMGL_ANSI | DMGL_PARAMS);
5896 if (name == NULL)
5897 {
5898 minfo ("%s", h->root.string);
5899 len = strlen (h->root.string);
5900 }
5901 else
5902 {
5903 minfo ("%s", name);
5904 len = strlen (name);
5905 free (name);
5906 }
5907
5908 if (len >= 19)
5909 {
5910 print_nl ();
5911 len = 0;
5912 }
5913 while (len < 20)
5914 {
5915 print_space ();
5916 ++len;
5917 }
5918
5919 minfo ("0x");
5920 if (size <= 0xffffffff)
5921 sprintf (buf, "%lx", (unsigned long) size);
5922 else
5923 sprintf_vma (buf, size);
5924 minfo ("%s", buf);
5925 len = strlen (buf);
5926
5927 while (len < 16)
5928 {
5929 print_space ();
5930 ++len;
5931 }
5932
5933 minfo ("%B\n", section->owner);
5934 }
5935
5936 return TRUE;
5937 }
5938
5939 /* Run through the input files and ensure that every input section has
5940 somewhere to go. If one is found without a destination then create
5941 an input request and place it into the statement tree. */
5942
5943 static void
5944 lang_place_orphans (void)
5945 {
5946 LANG_FOR_EACH_INPUT_STATEMENT (file)
5947 {
5948 asection *s;
5949
5950 for (s = file->the_bfd->sections; s != NULL; s = s->next)
5951 {
5952 if (s->output_section == NULL)
5953 {
5954 /* This section of the file is not attached, root
5955 around for a sensible place for it to go. */
5956
5957 if (file->just_syms_flag)
5958 bfd_link_just_syms (file->the_bfd, s, &link_info);
5959 else if ((s->flags & SEC_EXCLUDE) != 0)
5960 s->output_section = bfd_abs_section_ptr;
5961 else if (strcmp (s->name, "COMMON") == 0)
5962 {
5963 /* This is a lonely common section which must have
5964 come from an archive. We attach to the section
5965 with the wildcard. */
5966 if (! link_info.relocatable
5967 || command_line.force_common_definition)
5968 {
5969 if (default_common_section == NULL)
5970 default_common_section
5971 = lang_output_section_statement_lookup (".bss", 0,
5972 TRUE);
5973 lang_add_section (&default_common_section->children, s,
5974 default_common_section);
5975 }
5976 }
5977 else
5978 {
5979 const char *name = s->name;
5980 int constraint = 0;
5981
5982 if (config.unique_orphan_sections
5983 || unique_section_p (s, NULL))
5984 constraint = SPECIAL;
5985
5986 if (!ldemul_place_orphan (s, name, constraint))
5987 {
5988 lang_output_section_statement_type *os;
5989 os = lang_output_section_statement_lookup (name,
5990 constraint,
5991 TRUE);
5992 if (os->addr_tree == NULL
5993 && (link_info.relocatable
5994 || (s->flags & (SEC_LOAD | SEC_ALLOC)) == 0))
5995 os->addr_tree = exp_intop (0);
5996 lang_add_section (&os->children, s, os);
5997 }
5998 }
5999 }
6000 }
6001 }
6002 }
6003
6004 void
6005 lang_set_flags (lang_memory_region_type *ptr, const char *flags, int invert)
6006 {
6007 flagword *ptr_flags;
6008
6009 ptr_flags = invert ? &ptr->not_flags : &ptr->flags;
6010 while (*flags)
6011 {
6012 switch (*flags)
6013 {
6014 case 'A': case 'a':
6015 *ptr_flags |= SEC_ALLOC;
6016 break;
6017
6018 case 'R': case 'r':
6019 *ptr_flags |= SEC_READONLY;
6020 break;
6021
6022 case 'W': case 'w':
6023 *ptr_flags |= SEC_DATA;
6024 break;
6025
6026 case 'X': case 'x':
6027 *ptr_flags |= SEC_CODE;
6028 break;
6029
6030 case 'L': case 'l':
6031 case 'I': case 'i':
6032 *ptr_flags |= SEC_LOAD;
6033 break;
6034
6035 default:
6036 einfo (_("%P%F: invalid syntax in flags\n"));
6037 break;
6038 }
6039 flags++;
6040 }
6041 }
6042
6043 /* Call a function on each input file. This function will be called
6044 on an archive, but not on the elements. */
6045
6046 void
6047 lang_for_each_input_file (void (*func) (lang_input_statement_type *))
6048 {
6049 lang_input_statement_type *f;
6050
6051 for (f = (lang_input_statement_type *) input_file_chain.head;
6052 f != NULL;
6053 f = (lang_input_statement_type *) f->next_real_file)
6054 func (f);
6055 }
6056
6057 /* Call a function on each file. The function will be called on all
6058 the elements of an archive which are included in the link, but will
6059 not be called on the archive file itself. */
6060
6061 void
6062 lang_for_each_file (void (*func) (lang_input_statement_type *))
6063 {
6064 LANG_FOR_EACH_INPUT_STATEMENT (f)
6065 {
6066 func (f);
6067 }
6068 }
6069
6070 void
6071 ldlang_add_file (lang_input_statement_type *entry)
6072 {
6073 lang_statement_append (&file_chain,
6074 (lang_statement_union_type *) entry,
6075 &entry->next);
6076
6077 /* The BFD linker needs to have a list of all input BFDs involved in
6078 a link. */
6079 ASSERT (entry->the_bfd->link_next == NULL);
6080 ASSERT (entry->the_bfd != link_info.output_bfd);
6081
6082 *link_info.input_bfds_tail = entry->the_bfd;
6083 link_info.input_bfds_tail = &entry->the_bfd->link_next;
6084 entry->the_bfd->usrdata = entry;
6085 bfd_set_gp_size (entry->the_bfd, g_switch_value);
6086
6087 /* Look through the sections and check for any which should not be
6088 included in the link. We need to do this now, so that we can
6089 notice when the backend linker tries to report multiple
6090 definition errors for symbols which are in sections we aren't
6091 going to link. FIXME: It might be better to entirely ignore
6092 symbols which are defined in sections which are going to be
6093 discarded. This would require modifying the backend linker for
6094 each backend which might set the SEC_LINK_ONCE flag. If we do
6095 this, we should probably handle SEC_EXCLUDE in the same way. */
6096
6097 bfd_map_over_sections (entry->the_bfd, section_already_linked, entry);
6098 }
6099
6100 void
6101 lang_add_output (const char *name, int from_script)
6102 {
6103 /* Make -o on command line override OUTPUT in script. */
6104 if (!had_output_filename || !from_script)
6105 {
6106 output_filename = name;
6107 had_output_filename = TRUE;
6108 }
6109 }
6110
6111 static lang_output_section_statement_type *current_section;
6112
6113 static int
6114 topower (int x)
6115 {
6116 unsigned int i = 1;
6117 int l;
6118
6119 if (x < 0)
6120 return -1;
6121
6122 for (l = 0; l < 32; l++)
6123 {
6124 if (i >= (unsigned int) x)
6125 return l;
6126 i <<= 1;
6127 }
6128
6129 return 0;
6130 }
6131
6132 lang_output_section_statement_type *
6133 lang_enter_output_section_statement (const char *output_section_statement_name,
6134 etree_type *address_exp,
6135 enum section_type sectype,
6136 etree_type *align,
6137 etree_type *subalign,
6138 etree_type *ebase,
6139 int constraint)
6140 {
6141 lang_output_section_statement_type *os;
6142
6143 os = lang_output_section_statement_lookup (output_section_statement_name,
6144 constraint, TRUE);
6145 current_section = os;
6146
6147 if (os->addr_tree == NULL)
6148 {
6149 os->addr_tree = address_exp;
6150 }
6151 os->sectype = sectype;
6152 if (sectype != noload_section)
6153 os->flags = SEC_NO_FLAGS;
6154 else
6155 os->flags = SEC_NEVER_LOAD;
6156 os->block_value = 1;
6157
6158 /* Make next things chain into subchain of this. */
6159 push_stat_ptr (&os->children);
6160
6161 os->subsection_alignment =
6162 topower (exp_get_value_int (subalign, -1, "subsection alignment"));
6163 os->section_alignment =
6164 topower (exp_get_value_int (align, -1, "section alignment"));
6165
6166 os->load_base = ebase;
6167 return os;
6168 }
6169
6170 void
6171 lang_final (void)
6172 {
6173 lang_output_statement_type *new_stmt;
6174
6175 new_stmt = new_stat (lang_output_statement, stat_ptr);
6176 new_stmt->name = output_filename;
6177
6178 }
6179
6180 /* Reset the current counters in the regions. */
6181
6182 void
6183 lang_reset_memory_regions (void)
6184 {
6185 lang_memory_region_type *p = lang_memory_region_list;
6186 asection *o;
6187 lang_output_section_statement_type *os;
6188
6189 for (p = lang_memory_region_list; p != NULL; p = p->next)
6190 {
6191 p->current = p->origin;
6192 p->last_os = NULL;
6193 }
6194
6195 for (os = &lang_output_section_statement.head->output_section_statement;
6196 os != NULL;
6197 os = os->next)
6198 {
6199 os->processed_vma = FALSE;
6200 os->processed_lma = FALSE;
6201 }
6202
6203 for (o = link_info.output_bfd->sections; o != NULL; o = o->next)
6204 {
6205 /* Save the last size for possible use by bfd_relax_section. */
6206 o->rawsize = o->size;
6207 o->size = 0;
6208 }
6209 }
6210
6211 /* Worker for lang_gc_sections_1. */
6212
6213 static void
6214 gc_section_callback (lang_wild_statement_type *ptr,
6215 struct wildcard_list *sec ATTRIBUTE_UNUSED,
6216 asection *section,
6217 lang_input_statement_type *file ATTRIBUTE_UNUSED,
6218 void *data ATTRIBUTE_UNUSED)
6219 {
6220 /* If the wild pattern was marked KEEP, the member sections
6221 should be as well. */
6222 if (ptr->keep_sections)
6223 section->flags |= SEC_KEEP;
6224 }
6225
6226 /* Iterate over sections marking them against GC. */
6227
6228 static void
6229 lang_gc_sections_1 (lang_statement_union_type *s)
6230 {
6231 for (; s != NULL; s = s->header.next)
6232 {
6233 switch (s->header.type)
6234 {
6235 case lang_wild_statement_enum:
6236 walk_wild (&s->wild_statement, gc_section_callback, NULL);
6237 break;
6238 case lang_constructors_statement_enum:
6239 lang_gc_sections_1 (constructor_list.head);
6240 break;
6241 case lang_output_section_statement_enum:
6242 lang_gc_sections_1 (s->output_section_statement.children.head);
6243 break;
6244 case lang_group_statement_enum:
6245 lang_gc_sections_1 (s->group_statement.children.head);
6246 break;
6247 default:
6248 break;
6249 }
6250 }
6251 }
6252
6253 static void
6254 lang_gc_sections (void)
6255 {
6256 /* Keep all sections so marked in the link script. */
6257
6258 lang_gc_sections_1 (statement_list.head);
6259
6260 /* SEC_EXCLUDE is ignored when doing a relocatable link, except in
6261 the special case of debug info. (See bfd/stabs.c)
6262 Twiddle the flag here, to simplify later linker code. */
6263 if (link_info.relocatable)
6264 {
6265 LANG_FOR_EACH_INPUT_STATEMENT (f)
6266 {
6267 asection *sec;
6268 for (sec = f->the_bfd->sections; sec != NULL; sec = sec->next)
6269 if ((sec->flags & SEC_DEBUGGING) == 0)
6270 sec->flags &= ~SEC_EXCLUDE;
6271 }
6272 }
6273
6274 if (link_info.gc_sections)
6275 bfd_gc_sections (link_info.output_bfd, &link_info);
6276 }
6277
6278 /* Worker for lang_find_relro_sections_1. */
6279
6280 static void
6281 find_relro_section_callback (lang_wild_statement_type *ptr ATTRIBUTE_UNUSED,
6282 struct wildcard_list *sec ATTRIBUTE_UNUSED,
6283 asection *section,
6284 lang_input_statement_type *file ATTRIBUTE_UNUSED,
6285 void *data)
6286 {
6287 /* Discarded, excluded and ignored sections effectively have zero
6288 size. */
6289 if (section->output_section != NULL
6290 && section->output_section->owner == link_info.output_bfd
6291 && (section->output_section->flags & SEC_EXCLUDE) == 0
6292 && !IGNORE_SECTION (section)
6293 && section->size != 0)
6294 {
6295 bfd_boolean *has_relro_section = (bfd_boolean *) data;
6296 *has_relro_section = TRUE;
6297 }
6298 }
6299
6300 /* Iterate over sections for relro sections. */
6301
6302 static void
6303 lang_find_relro_sections_1 (lang_statement_union_type *s,
6304 bfd_boolean *has_relro_section)
6305 {
6306 if (*has_relro_section)
6307 return;
6308
6309 for (; s != NULL; s = s->header.next)
6310 {
6311 if (s == expld.dataseg.relro_end_stat)
6312 break;
6313
6314 switch (s->header.type)
6315 {
6316 case lang_wild_statement_enum:
6317 walk_wild (&s->wild_statement,
6318 find_relro_section_callback,
6319 has_relro_section);
6320 break;
6321 case lang_constructors_statement_enum:
6322 lang_find_relro_sections_1 (constructor_list.head,
6323 has_relro_section);
6324 break;
6325 case lang_output_section_statement_enum:
6326 lang_find_relro_sections_1 (s->output_section_statement.children.head,
6327 has_relro_section);
6328 break;
6329 case lang_group_statement_enum:
6330 lang_find_relro_sections_1 (s->group_statement.children.head,
6331 has_relro_section);
6332 break;
6333 default:
6334 break;
6335 }
6336 }
6337 }
6338
6339 static void
6340 lang_find_relro_sections (void)
6341 {
6342 bfd_boolean has_relro_section = FALSE;
6343
6344 /* Check all sections in the link script. */
6345
6346 lang_find_relro_sections_1 (expld.dataseg.relro_start_stat,
6347 &has_relro_section);
6348
6349 if (!has_relro_section)
6350 link_info.relro = FALSE;
6351 }
6352
6353 /* Relax all sections until bfd_relax_section gives up. */
6354
6355 void
6356 lang_relax_sections (bfd_boolean need_layout)
6357 {
6358 if (RELAXATION_ENABLED)
6359 {
6360 /* We may need more than one relaxation pass. */
6361 int i = link_info.relax_pass;
6362
6363 /* The backend can use it to determine the current pass. */
6364 link_info.relax_pass = 0;
6365
6366 while (i--)
6367 {
6368 /* Keep relaxing until bfd_relax_section gives up. */
6369 bfd_boolean relax_again;
6370
6371 link_info.relax_trip = -1;
6372 do
6373 {
6374 link_info.relax_trip++;
6375
6376 /* Note: pe-dll.c does something like this also. If you find
6377 you need to change this code, you probably need to change
6378 pe-dll.c also. DJ */
6379
6380 /* Do all the assignments with our current guesses as to
6381 section sizes. */
6382 lang_do_assignments ();
6383
6384 /* We must do this after lang_do_assignments, because it uses
6385 size. */
6386 lang_reset_memory_regions ();
6387
6388 /* Perform another relax pass - this time we know where the
6389 globals are, so can make a better guess. */
6390 relax_again = FALSE;
6391 lang_size_sections (&relax_again, FALSE);
6392 }
6393 while (relax_again);
6394
6395 link_info.relax_pass++;
6396 }
6397 need_layout = TRUE;
6398 }
6399
6400 if (need_layout)
6401 {
6402 /* Final extra sizing to report errors. */
6403 lang_do_assignments ();
6404 lang_reset_memory_regions ();
6405 lang_size_sections (NULL, TRUE);
6406 }
6407 }
6408
6409 #ifdef ENABLE_PLUGINS
6410 /* Find the insert point for the plugin's replacement files. We
6411 place them after the first claimed real object file, or if the
6412 first claimed object is an archive member, after the last real
6413 object file immediately preceding the archive. In the event
6414 no objects have been claimed at all, we return the first dummy
6415 object file on the list as the insert point; that works, but
6416 the callee must be careful when relinking the file_chain as it
6417 is not actually on that chain, only the statement_list and the
6418 input_file list; in that case, the replacement files must be
6419 inserted at the head of the file_chain. */
6420
6421 static lang_input_statement_type *
6422 find_replacements_insert_point (void)
6423 {
6424 lang_input_statement_type *claim1, *lastobject;
6425 lastobject = &input_file_chain.head->input_statement;
6426 for (claim1 = &file_chain.head->input_statement;
6427 claim1 != NULL;
6428 claim1 = &claim1->next->input_statement)
6429 {
6430 if (claim1->claimed)
6431 return claim1->claim_archive ? lastobject : claim1;
6432 /* Update lastobject if this is a real object file. */
6433 if (claim1->the_bfd && (claim1->the_bfd->my_archive == NULL))
6434 lastobject = claim1;
6435 }
6436 /* No files were claimed by the plugin. Choose the last object
6437 file found on the list (maybe the first, dummy entry) as the
6438 insert point. */
6439 return lastobject;
6440 }
6441 #endif /* ENABLE_PLUGINS */
6442
6443 void
6444 lang_process (void)
6445 {
6446 /* Finalize dynamic list. */
6447 if (link_info.dynamic_list)
6448 lang_finalize_version_expr_head (&link_info.dynamic_list->head);
6449
6450 current_target = default_target;
6451
6452 /* Open the output file. */
6453 lang_for_each_statement (ldlang_open_output);
6454 init_opb ();
6455
6456 ldemul_create_output_section_statements ();
6457
6458 /* Add to the hash table all undefineds on the command line. */
6459 lang_place_undefineds ();
6460
6461 if (!bfd_section_already_linked_table_init ())
6462 einfo (_("%P%F: Failed to create hash table\n"));
6463
6464 /* Create a bfd for each input file. */
6465 current_target = default_target;
6466 open_input_bfds (statement_list.head, FALSE);
6467
6468 #ifdef ENABLE_PLUGINS
6469 if (plugin_active_plugins_p ())
6470 {
6471 lang_statement_list_type added;
6472 lang_statement_list_type files, inputfiles;
6473 /* Now all files are read, let the plugin(s) decide if there
6474 are any more to be added to the link before we call the
6475 emulation's after_open hook. We create a private list of
6476 input statements for this purpose, which we will eventually
6477 insert into the global statment list after the first claimed
6478 file. */
6479 added = *stat_ptr;
6480 /* We need to manipulate all three chains in synchrony. */
6481 files = file_chain;
6482 inputfiles = input_file_chain;
6483 if (plugin_call_all_symbols_read ())
6484 einfo (_("%P%F: %s: plugin reported error after all symbols read\n"),
6485 plugin_error_plugin ());
6486 /* Open any newly added files, updating the file chains. */
6487 open_input_bfds (added.head, FALSE);
6488 /* Restore the global list pointer now they have all been added. */
6489 lang_list_remove_tail (stat_ptr, &added);
6490 /* And detach the fresh ends of the file lists. */
6491 lang_list_remove_tail (&file_chain, &files);
6492 lang_list_remove_tail (&input_file_chain, &inputfiles);
6493 /* Were any new files added? */
6494 if (added.head != NULL)
6495 {
6496 /* If so, we will insert them into the statement list immediately
6497 after the first input file that was claimed by the plugin. */
6498 lang_input_statement_type *claim1 = find_replacements_insert_point ();
6499 /* If a plugin adds input files without having claimed any, we
6500 don't really have a good idea where to place them. Just putting
6501 them at the start or end of the list is liable to leave them
6502 outside the crtbegin...crtend range. */
6503 ASSERT (claim1 != NULL);
6504 /* Splice the new statement list into the old one after claim1. */
6505 lang_list_insert_after (stat_ptr, &added, &claim1->header.next);
6506 /* Likewise for the file chains. */
6507 lang_list_insert_after (&input_file_chain, &inputfiles,
6508 &claim1->next_real_file);
6509 /* We must be careful when relinking file_chain; we may need to
6510 insert the new files at the head of the list if the insert
6511 point chosen is the dummy first input file. */
6512 if (claim1->filename)
6513 lang_list_insert_after (&file_chain, &files, &claim1->next);
6514 else
6515 lang_list_insert_after (&file_chain, &files, &file_chain.head);
6516 }
6517 }
6518 #endif /* ENABLE_PLUGINS */
6519
6520 link_info.gc_sym_list = &entry_symbol;
6521 if (entry_symbol.name == NULL)
6522 link_info.gc_sym_list = ldlang_undef_chain_list_head;
6523
6524 ldemul_after_open ();
6525
6526 bfd_section_already_linked_table_free ();
6527
6528 /* Make sure that we're not mixing architectures. We call this
6529 after all the input files have been opened, but before we do any
6530 other processing, so that any operations merge_private_bfd_data
6531 does on the output file will be known during the rest of the
6532 link. */
6533 lang_check ();
6534
6535 /* Handle .exports instead of a version script if we're told to do so. */
6536 if (command_line.version_exports_section)
6537 lang_do_version_exports_section ();
6538
6539 /* Build all sets based on the information gathered from the input
6540 files. */
6541 ldctor_build_sets ();
6542
6543 /* Remove unreferenced sections if asked to. */
6544 lang_gc_sections ();
6545
6546 /* Size up the common data. */
6547 lang_common ();
6548
6549 /* Update wild statements. */
6550 update_wild_statements (statement_list.head);
6551
6552 /* Run through the contours of the script and attach input sections
6553 to the correct output sections. */
6554 lang_statement_iteration++;
6555 map_input_to_output_sections (statement_list.head, NULL, NULL);
6556
6557 process_insert_statements ();
6558
6559 /* Find any sections not attached explicitly and handle them. */
6560 lang_place_orphans ();
6561
6562 if (! link_info.relocatable)
6563 {
6564 asection *found;
6565
6566 /* Merge SEC_MERGE sections. This has to be done after GC of
6567 sections, so that GCed sections are not merged, but before
6568 assigning dynamic symbols, since removing whole input sections
6569 is hard then. */
6570 bfd_merge_sections (link_info.output_bfd, &link_info);
6571
6572 /* Look for a text section and set the readonly attribute in it. */
6573 found = bfd_get_section_by_name (link_info.output_bfd, ".text");
6574
6575 if (found != NULL)
6576 {
6577 if (config.text_read_only)
6578 found->flags |= SEC_READONLY;
6579 else
6580 found->flags &= ~SEC_READONLY;
6581 }
6582 }
6583
6584 /* Do anything special before sizing sections. This is where ELF
6585 and other back-ends size dynamic sections. */
6586 ldemul_before_allocation ();
6587
6588 /* We must record the program headers before we try to fix the
6589 section positions, since they will affect SIZEOF_HEADERS. */
6590 lang_record_phdrs ();
6591
6592 /* Check relro sections. */
6593 if (link_info.relro && ! link_info.relocatable)
6594 lang_find_relro_sections ();
6595
6596 /* Size up the sections. */
6597 lang_size_sections (NULL, ! RELAXATION_ENABLED);
6598
6599 /* See if anything special should be done now we know how big
6600 everything is. This is where relaxation is done. */
6601 ldemul_after_allocation ();
6602
6603 /* Fix any .startof. or .sizeof. symbols. */
6604 lang_set_startof ();
6605
6606 /* Do all the assignments, now that we know the final resting places
6607 of all the symbols. */
6608 expld.phase = lang_final_phase_enum;
6609 lang_do_assignments ();
6610
6611 ldemul_finish ();
6612
6613 /* Make sure that the section addresses make sense. */
6614 if (command_line.check_section_addresses)
6615 lang_check_section_addresses ();
6616
6617 lang_end ();
6618 }
6619
6620 /* EXPORTED TO YACC */
6621
6622 void
6623 lang_add_wild (struct wildcard_spec *filespec,
6624 struct wildcard_list *section_list,
6625 bfd_boolean keep_sections)
6626 {
6627 struct wildcard_list *curr, *next;
6628 lang_wild_statement_type *new_stmt;
6629
6630 /* Reverse the list as the parser puts it back to front. */
6631 for (curr = section_list, section_list = NULL;
6632 curr != NULL;
6633 section_list = curr, curr = next)
6634 {
6635 if (curr->spec.name != NULL && strcmp (curr->spec.name, "COMMON") == 0)
6636 placed_commons = TRUE;
6637
6638 next = curr->next;
6639 curr->next = section_list;
6640 }
6641
6642 if (filespec != NULL && filespec->name != NULL)
6643 {
6644 if (strcmp (filespec->name, "*") == 0)
6645 filespec->name = NULL;
6646 else if (! wildcardp (filespec->name))
6647 lang_has_input_file = TRUE;
6648 }
6649
6650 new_stmt = new_stat (lang_wild_statement, stat_ptr);
6651 new_stmt->filename = NULL;
6652 new_stmt->filenames_sorted = FALSE;
6653 if (filespec != NULL)
6654 {
6655 new_stmt->filename = filespec->name;
6656 new_stmt->filenames_sorted = filespec->sorted == by_name;
6657 }
6658 new_stmt->section_list = section_list;
6659 new_stmt->keep_sections = keep_sections;
6660 lang_list_init (&new_stmt->children);
6661 analyze_walk_wild_section_handler (new_stmt);
6662 }
6663
6664 void
6665 lang_section_start (const char *name, etree_type *address,
6666 const segment_type *segment)
6667 {
6668 lang_address_statement_type *ad;
6669
6670 ad = new_stat (lang_address_statement, stat_ptr);
6671 ad->section_name = name;
6672 ad->address = address;
6673 ad->segment = segment;
6674 }
6675
6676 /* Set the start symbol to NAME. CMDLINE is nonzero if this is called
6677 because of a -e argument on the command line, or zero if this is
6678 called by ENTRY in a linker script. Command line arguments take
6679 precedence. */
6680
6681 void
6682 lang_add_entry (const char *name, bfd_boolean cmdline)
6683 {
6684 if (entry_symbol.name == NULL
6685 || cmdline
6686 || ! entry_from_cmdline)
6687 {
6688 entry_symbol.name = name;
6689 entry_from_cmdline = cmdline;
6690 }
6691 }
6692
6693 /* Set the default start symbol to NAME. .em files should use this,
6694 not lang_add_entry, to override the use of "start" if neither the
6695 linker script nor the command line specifies an entry point. NAME
6696 must be permanently allocated. */
6697 void
6698 lang_default_entry (const char *name)
6699 {
6700 entry_symbol_default = name;
6701 }
6702
6703 void
6704 lang_add_target (const char *name)
6705 {
6706 lang_target_statement_type *new_stmt;
6707
6708 new_stmt = new_stat (lang_target_statement, stat_ptr);
6709 new_stmt->target = name;
6710 }
6711
6712 void
6713 lang_add_map (const char *name)
6714 {
6715 while (*name)
6716 {
6717 switch (*name)
6718 {
6719 case 'F':
6720 map_option_f = TRUE;
6721 break;
6722 }
6723 name++;
6724 }
6725 }
6726
6727 void
6728 lang_add_fill (fill_type *fill)
6729 {
6730 lang_fill_statement_type *new_stmt;
6731
6732 new_stmt = new_stat (lang_fill_statement, stat_ptr);
6733 new_stmt->fill = fill;
6734 }
6735
6736 void
6737 lang_add_data (int type, union etree_union *exp)
6738 {
6739 lang_data_statement_type *new_stmt;
6740
6741 new_stmt = new_stat (lang_data_statement, stat_ptr);
6742 new_stmt->exp = exp;
6743 new_stmt->type = type;
6744 }
6745
6746 /* Create a new reloc statement. RELOC is the BFD relocation type to
6747 generate. HOWTO is the corresponding howto structure (we could
6748 look this up, but the caller has already done so). SECTION is the
6749 section to generate a reloc against, or NAME is the name of the
6750 symbol to generate a reloc against. Exactly one of SECTION and
6751 NAME must be NULL. ADDEND is an expression for the addend. */
6752
6753 void
6754 lang_add_reloc (bfd_reloc_code_real_type reloc,
6755 reloc_howto_type *howto,
6756 asection *section,
6757 const char *name,
6758 union etree_union *addend)
6759 {
6760 lang_reloc_statement_type *p = new_stat (lang_reloc_statement, stat_ptr);
6761
6762 p->reloc = reloc;
6763 p->howto = howto;
6764 p->section = section;
6765 p->name = name;
6766 p->addend_exp = addend;
6767
6768 p->addend_value = 0;
6769 p->output_section = NULL;
6770 p->output_offset = 0;
6771 }
6772
6773 lang_assignment_statement_type *
6774 lang_add_assignment (etree_type *exp)
6775 {
6776 lang_assignment_statement_type *new_stmt;
6777
6778 new_stmt = new_stat (lang_assignment_statement, stat_ptr);
6779 new_stmt->exp = exp;
6780 return new_stmt;
6781 }
6782
6783 void
6784 lang_add_attribute (enum statement_enum attribute)
6785 {
6786 new_statement (attribute, sizeof (lang_statement_header_type), stat_ptr);
6787 }
6788
6789 void
6790 lang_startup (const char *name)
6791 {
6792 if (first_file->filename != NULL)
6793 {
6794 einfo (_("%P%F: multiple STARTUP files\n"));
6795 }
6796 first_file->filename = name;
6797 first_file->local_sym_name = name;
6798 first_file->real = TRUE;
6799 }
6800
6801 void
6802 lang_float (bfd_boolean maybe)
6803 {
6804 lang_float_flag = maybe;
6805 }
6806
6807
6808 /* Work out the load- and run-time regions from a script statement, and
6809 store them in *LMA_REGION and *REGION respectively.
6810
6811 MEMSPEC is the name of the run-time region, or the value of
6812 DEFAULT_MEMORY_REGION if the statement didn't specify one.
6813 LMA_MEMSPEC is the name of the load-time region, or null if the
6814 statement didn't specify one.HAVE_LMA_P is TRUE if the statement
6815 had an explicit load address.
6816
6817 It is an error to specify both a load region and a load address. */
6818
6819 static void
6820 lang_get_regions (lang_memory_region_type **region,
6821 lang_memory_region_type **lma_region,
6822 const char *memspec,
6823 const char *lma_memspec,
6824 bfd_boolean have_lma,
6825 bfd_boolean have_vma)
6826 {
6827 *lma_region = lang_memory_region_lookup (lma_memspec, FALSE);
6828
6829 /* If no runtime region or VMA has been specified, but the load region
6830 has been specified, then use the load region for the runtime region
6831 as well. */
6832 if (lma_memspec != NULL
6833 && ! have_vma
6834 && strcmp (memspec, DEFAULT_MEMORY_REGION) == 0)
6835 *region = *lma_region;
6836 else
6837 *region = lang_memory_region_lookup (memspec, FALSE);
6838
6839 if (have_lma && lma_memspec != 0)
6840 einfo (_("%X%P:%S: section has both a load address and a load region\n"));
6841 }
6842
6843 void
6844 lang_leave_output_section_statement (fill_type *fill, const char *memspec,
6845 lang_output_section_phdr_list *phdrs,
6846 const char *lma_memspec)
6847 {
6848 lang_get_regions (&current_section->region,
6849 &current_section->lma_region,
6850 memspec, lma_memspec,
6851 current_section->load_base != NULL,
6852 current_section->addr_tree != NULL);
6853
6854 /* If this section has no load region or base, but has the same
6855 region as the previous section, then propagate the previous
6856 section's load region. */
6857
6858 if (!current_section->lma_region && !current_section->load_base
6859 && current_section->region == current_section->prev->region)
6860 current_section->lma_region = current_section->prev->lma_region;
6861
6862 current_section->fill = fill;
6863 current_section->phdrs = phdrs;
6864 pop_stat_ptr ();
6865 }
6866
6867 /* Create an absolute symbol with the given name with the value of the
6868 address of first byte of the section named.
6869
6870 If the symbol already exists, then do nothing. */
6871
6872 void
6873 lang_abs_symbol_at_beginning_of (const char *secname, const char *name)
6874 {
6875 struct bfd_link_hash_entry *h;
6876
6877 h = bfd_link_hash_lookup (link_info.hash, name, TRUE, TRUE, TRUE);
6878 if (h == NULL)
6879 einfo (_("%P%F: bfd_link_hash_lookup failed: %E\n"));
6880
6881 if (h->type == bfd_link_hash_new
6882 || h->type == bfd_link_hash_undefined)
6883 {
6884 asection *sec;
6885
6886 h->type = bfd_link_hash_defined;
6887
6888 sec = bfd_get_section_by_name (link_info.output_bfd, secname);
6889 if (sec == NULL)
6890 h->u.def.value = 0;
6891 else
6892 h->u.def.value = bfd_get_section_vma (link_info.output_bfd, sec);
6893
6894 h->u.def.section = bfd_abs_section_ptr;
6895 }
6896 }
6897
6898 /* Create an absolute symbol with the given name with the value of the
6899 address of the first byte after the end of the section named.
6900
6901 If the symbol already exists, then do nothing. */
6902
6903 void
6904 lang_abs_symbol_at_end_of (const char *secname, const char *name)
6905 {
6906 struct bfd_link_hash_entry *h;
6907
6908 h = bfd_link_hash_lookup (link_info.hash, name, TRUE, TRUE, TRUE);
6909 if (h == NULL)
6910 einfo (_("%P%F: bfd_link_hash_lookup failed: %E\n"));
6911
6912 if (h->type == bfd_link_hash_new
6913 || h->type == bfd_link_hash_undefined)
6914 {
6915 asection *sec;
6916
6917 h->type = bfd_link_hash_defined;
6918
6919 sec = bfd_get_section_by_name (link_info.output_bfd, secname);
6920 if (sec == NULL)
6921 h->u.def.value = 0;
6922 else
6923 h->u.def.value = (bfd_get_section_vma (link_info.output_bfd, sec)
6924 + TO_ADDR (sec->size));
6925
6926 h->u.def.section = bfd_abs_section_ptr;
6927 }
6928 }
6929
6930 void
6931 lang_statement_append (lang_statement_list_type *list,
6932 lang_statement_union_type *element,
6933 lang_statement_union_type **field)
6934 {
6935 *(list->tail) = element;
6936 list->tail = field;
6937 }
6938
6939 #ifdef ENABLE_PLUGINS
6940 /* Insert SRCLIST into DESTLIST after given element by chaining
6941 on FIELD as the next-pointer. (Counterintuitively does not need
6942 a pointer to the actual after-node itself, just its chain field.) */
6943
6944 static void
6945 lang_list_insert_after (lang_statement_list_type *destlist,
6946 lang_statement_list_type *srclist,
6947 lang_statement_union_type **field)
6948 {
6949 *(srclist->tail) = *field;
6950 *field = srclist->head;
6951 if (destlist->tail == field)
6952 destlist->tail = srclist->tail;
6953 }
6954
6955 /* Detach new nodes added to DESTLIST since the time ORIGLIST
6956 was taken as a copy of it and leave them in ORIGLIST. */
6957
6958 static void
6959 lang_list_remove_tail (lang_statement_list_type *destlist,
6960 lang_statement_list_type *origlist)
6961 {
6962 union lang_statement_union **savetail;
6963 /* Check that ORIGLIST really is an earlier state of DESTLIST. */
6964 ASSERT (origlist->head == destlist->head);
6965 savetail = origlist->tail;
6966 origlist->head = *(savetail);
6967 origlist->tail = destlist->tail;
6968 destlist->tail = savetail;
6969 *savetail = NULL;
6970 }
6971 #endif /* ENABLE_PLUGINS */
6972
6973 /* Set the output format type. -oformat overrides scripts. */
6974
6975 void
6976 lang_add_output_format (const char *format,
6977 const char *big,
6978 const char *little,
6979 int from_script)
6980 {
6981 if (output_target == NULL || !from_script)
6982 {
6983 if (command_line.endian == ENDIAN_BIG
6984 && big != NULL)
6985 format = big;
6986 else if (command_line.endian == ENDIAN_LITTLE
6987 && little != NULL)
6988 format = little;
6989
6990 output_target = format;
6991 }
6992 }
6993
6994 void
6995 lang_add_insert (const char *where, int is_before)
6996 {
6997 lang_insert_statement_type *new_stmt;
6998
6999 new_stmt = new_stat (lang_insert_statement, stat_ptr);
7000 new_stmt->where = where;
7001 new_stmt->is_before = is_before;
7002 saved_script_handle = previous_script_handle;
7003 }
7004
7005 /* Enter a group. This creates a new lang_group_statement, and sets
7006 stat_ptr to build new statements within the group. */
7007
7008 void
7009 lang_enter_group (void)
7010 {
7011 lang_group_statement_type *g;
7012
7013 g = new_stat (lang_group_statement, stat_ptr);
7014 lang_list_init (&g->children);
7015 push_stat_ptr (&g->children);
7016 }
7017
7018 /* Leave a group. This just resets stat_ptr to start writing to the
7019 regular list of statements again. Note that this will not work if
7020 groups can occur inside anything else which can adjust stat_ptr,
7021 but currently they can't. */
7022
7023 void
7024 lang_leave_group (void)
7025 {
7026 pop_stat_ptr ();
7027 }
7028
7029 /* Add a new program header. This is called for each entry in a PHDRS
7030 command in a linker script. */
7031
7032 void
7033 lang_new_phdr (const char *name,
7034 etree_type *type,
7035 bfd_boolean filehdr,
7036 bfd_boolean phdrs,
7037 etree_type *at,
7038 etree_type *flags)
7039 {
7040 struct lang_phdr *n, **pp;
7041 bfd_boolean hdrs;
7042
7043 n = (struct lang_phdr *) stat_alloc (sizeof (struct lang_phdr));
7044 n->next = NULL;
7045 n->name = name;
7046 n->type = exp_get_value_int (type, 0, "program header type");
7047 n->filehdr = filehdr;
7048 n->phdrs = phdrs;
7049 n->at = at;
7050 n->flags = flags;
7051
7052 hdrs = n->type == 1 && (phdrs || filehdr);
7053
7054 for (pp = &lang_phdr_list; *pp != NULL; pp = &(*pp)->next)
7055 if (hdrs
7056 && (*pp)->type == 1
7057 && !((*pp)->filehdr || (*pp)->phdrs))
7058 {
7059 einfo (_("%X%P:%S: PHDRS and FILEHDR are not supported when prior PT_LOAD headers lack them\n"));
7060 hdrs = FALSE;
7061 }
7062
7063 *pp = n;
7064 }
7065
7066 /* Record the program header information in the output BFD. FIXME: We
7067 should not be calling an ELF specific function here. */
7068
7069 static void
7070 lang_record_phdrs (void)
7071 {
7072 unsigned int alc;
7073 asection **secs;
7074 lang_output_section_phdr_list *last;
7075 struct lang_phdr *l;
7076 lang_output_section_statement_type *os;
7077
7078 alc = 10;
7079 secs = (asection **) xmalloc (alc * sizeof (asection *));
7080 last = NULL;
7081
7082 for (l = lang_phdr_list; l != NULL; l = l->next)
7083 {
7084 unsigned int c;
7085 flagword flags;
7086 bfd_vma at;
7087
7088 c = 0;
7089 for (os = &lang_output_section_statement.head->output_section_statement;
7090 os != NULL;
7091 os = os->next)
7092 {
7093 lang_output_section_phdr_list *pl;
7094
7095 if (os->constraint < 0)
7096 continue;
7097
7098 pl = os->phdrs;
7099 if (pl != NULL)
7100 last = pl;
7101 else
7102 {
7103 if (os->sectype == noload_section
7104 || os->bfd_section == NULL
7105 || (os->bfd_section->flags & SEC_ALLOC) == 0)
7106 continue;
7107
7108 /* Don't add orphans to PT_INTERP header. */
7109 if (l->type == 3)
7110 continue;
7111
7112 if (last == NULL)
7113 {
7114 lang_output_section_statement_type * tmp_os;
7115
7116 /* If we have not run across a section with a program
7117 header assigned to it yet, then scan forwards to find
7118 one. This prevents inconsistencies in the linker's
7119 behaviour when a script has specified just a single
7120 header and there are sections in that script which are
7121 not assigned to it, and which occur before the first
7122 use of that header. See here for more details:
7123 http://sourceware.org/ml/binutils/2007-02/msg00291.html */
7124 for (tmp_os = os; tmp_os; tmp_os = tmp_os->next)
7125 if (tmp_os->phdrs)
7126 {
7127 last = tmp_os->phdrs;
7128 break;
7129 }
7130 if (last == NULL)
7131 einfo (_("%F%P: no sections assigned to phdrs\n"));
7132 }
7133 pl = last;
7134 }
7135
7136 if (os->bfd_section == NULL)
7137 continue;
7138
7139 for (; pl != NULL; pl = pl->next)
7140 {
7141 if (strcmp (pl->name, l->name) == 0)
7142 {
7143 if (c >= alc)
7144 {
7145 alc *= 2;
7146 secs = (asection **) xrealloc (secs,
7147 alc * sizeof (asection *));
7148 }
7149 secs[c] = os->bfd_section;
7150 ++c;
7151 pl->used = TRUE;
7152 }
7153 }
7154 }
7155
7156 if (l->flags == NULL)
7157 flags = 0;
7158 else
7159 flags = exp_get_vma (l->flags, 0, "phdr flags");
7160
7161 if (l->at == NULL)
7162 at = 0;
7163 else
7164 at = exp_get_vma (l->at, 0, "phdr load address");
7165
7166 if (! bfd_record_phdr (link_info.output_bfd, l->type,
7167 l->flags != NULL, flags, l->at != NULL,
7168 at, l->filehdr, l->phdrs, c, secs))
7169 einfo (_("%F%P: bfd_record_phdr failed: %E\n"));
7170 }
7171
7172 free (secs);
7173
7174 /* Make sure all the phdr assignments succeeded. */
7175 for (os = &lang_output_section_statement.head->output_section_statement;
7176 os != NULL;
7177 os = os->next)
7178 {
7179 lang_output_section_phdr_list *pl;
7180
7181 if (os->constraint < 0
7182 || os->bfd_section == NULL)
7183 continue;
7184
7185 for (pl = os->phdrs;
7186 pl != NULL;
7187 pl = pl->next)
7188 if (! pl->used && strcmp (pl->name, "NONE") != 0)
7189 einfo (_("%X%P: section `%s' assigned to non-existent phdr `%s'\n"),
7190 os->name, pl->name);
7191 }
7192 }
7193
7194 /* Record a list of sections which may not be cross referenced. */
7195
7196 void
7197 lang_add_nocrossref (lang_nocrossref_type *l)
7198 {
7199 struct lang_nocrossrefs *n;
7200
7201 n = (struct lang_nocrossrefs *) xmalloc (sizeof *n);
7202 n->next = nocrossref_list;
7203 n->list = l;
7204 nocrossref_list = n;
7205
7206 /* Set notice_all so that we get informed about all symbols. */
7207 link_info.notice_all = TRUE;
7208 }
7209 \f
7210 /* Overlay handling. We handle overlays with some static variables. */
7211
7212 /* The overlay virtual address. */
7213 static etree_type *overlay_vma;
7214 /* And subsection alignment. */
7215 static etree_type *overlay_subalign;
7216
7217 /* An expression for the maximum section size seen so far. */
7218 static etree_type *overlay_max;
7219
7220 /* A list of all the sections in this overlay. */
7221
7222 struct overlay_list {
7223 struct overlay_list *next;
7224 lang_output_section_statement_type *os;
7225 };
7226
7227 static struct overlay_list *overlay_list;
7228
7229 /* Start handling an overlay. */
7230
7231 void
7232 lang_enter_overlay (etree_type *vma_expr, etree_type *subalign)
7233 {
7234 /* The grammar should prevent nested overlays from occurring. */
7235 ASSERT (overlay_vma == NULL
7236 && overlay_subalign == NULL
7237 && overlay_max == NULL);
7238
7239 overlay_vma = vma_expr;
7240 overlay_subalign = subalign;
7241 }
7242
7243 /* Start a section in an overlay. We handle this by calling
7244 lang_enter_output_section_statement with the correct VMA.
7245 lang_leave_overlay sets up the LMA and memory regions. */
7246
7247 void
7248 lang_enter_overlay_section (const char *name)
7249 {
7250 struct overlay_list *n;
7251 etree_type *size;
7252
7253 lang_enter_output_section_statement (name, overlay_vma, overlay_section,
7254 0, overlay_subalign, 0, 0);
7255
7256 /* If this is the first section, then base the VMA of future
7257 sections on this one. This will work correctly even if `.' is
7258 used in the addresses. */
7259 if (overlay_list == NULL)
7260 overlay_vma = exp_nameop (ADDR, name);
7261
7262 /* Remember the section. */
7263 n = (struct overlay_list *) xmalloc (sizeof *n);
7264 n->os = current_section;
7265 n->next = overlay_list;
7266 overlay_list = n;
7267
7268 size = exp_nameop (SIZEOF, name);
7269
7270 /* Arrange to work out the maximum section end address. */
7271 if (overlay_max == NULL)
7272 overlay_max = size;
7273 else
7274 overlay_max = exp_binop (MAX_K, overlay_max, size);
7275 }
7276
7277 /* Finish a section in an overlay. There isn't any special to do
7278 here. */
7279
7280 void
7281 lang_leave_overlay_section (fill_type *fill,
7282 lang_output_section_phdr_list *phdrs)
7283 {
7284 const char *name;
7285 char *clean, *s2;
7286 const char *s1;
7287 char *buf;
7288
7289 name = current_section->name;
7290
7291 /* For now, assume that DEFAULT_MEMORY_REGION is the run-time memory
7292 region and that no load-time region has been specified. It doesn't
7293 really matter what we say here, since lang_leave_overlay will
7294 override it. */
7295 lang_leave_output_section_statement (fill, DEFAULT_MEMORY_REGION, phdrs, 0);
7296
7297 /* Define the magic symbols. */
7298
7299 clean = (char *) xmalloc (strlen (name) + 1);
7300 s2 = clean;
7301 for (s1 = name; *s1 != '\0'; s1++)
7302 if (ISALNUM (*s1) || *s1 == '_')
7303 *s2++ = *s1;
7304 *s2 = '\0';
7305
7306 buf = (char *) xmalloc (strlen (clean) + sizeof "__load_start_");
7307 sprintf (buf, "__load_start_%s", clean);
7308 lang_add_assignment (exp_provide (buf,
7309 exp_nameop (LOADADDR, name),
7310 FALSE));
7311
7312 buf = (char *) xmalloc (strlen (clean) + sizeof "__load_stop_");
7313 sprintf (buf, "__load_stop_%s", clean);
7314 lang_add_assignment (exp_provide (buf,
7315 exp_binop ('+',
7316 exp_nameop (LOADADDR, name),
7317 exp_nameop (SIZEOF, name)),
7318 FALSE));
7319
7320 free (clean);
7321 }
7322
7323 /* Finish an overlay. If there are any overlay wide settings, this
7324 looks through all the sections in the overlay and sets them. */
7325
7326 void
7327 lang_leave_overlay (etree_type *lma_expr,
7328 int nocrossrefs,
7329 fill_type *fill,
7330 const char *memspec,
7331 lang_output_section_phdr_list *phdrs,
7332 const char *lma_memspec)
7333 {
7334 lang_memory_region_type *region;
7335 lang_memory_region_type *lma_region;
7336 struct overlay_list *l;
7337 lang_nocrossref_type *nocrossref;
7338
7339 lang_get_regions (&region, &lma_region,
7340 memspec, lma_memspec,
7341 lma_expr != NULL, FALSE);
7342
7343 nocrossref = NULL;
7344
7345 /* After setting the size of the last section, set '.' to end of the
7346 overlay region. */
7347 if (overlay_list != NULL)
7348 overlay_list->os->update_dot_tree
7349 = exp_assign (".", exp_binop ('+', overlay_vma, overlay_max));
7350
7351 l = overlay_list;
7352 while (l != NULL)
7353 {
7354 struct overlay_list *next;
7355
7356 if (fill != NULL && l->os->fill == NULL)
7357 l->os->fill = fill;
7358
7359 l->os->region = region;
7360 l->os->lma_region = lma_region;
7361
7362 /* The first section has the load address specified in the
7363 OVERLAY statement. The rest are worked out from that.
7364 The base address is not needed (and should be null) if
7365 an LMA region was specified. */
7366 if (l->next == 0)
7367 {
7368 l->os->load_base = lma_expr;
7369 l->os->sectype = normal_section;
7370 }
7371 if (phdrs != NULL && l->os->phdrs == NULL)
7372 l->os->phdrs = phdrs;
7373
7374 if (nocrossrefs)
7375 {
7376 lang_nocrossref_type *nc;
7377
7378 nc = (lang_nocrossref_type *) xmalloc (sizeof *nc);
7379 nc->name = l->os->name;
7380 nc->next = nocrossref;
7381 nocrossref = nc;
7382 }
7383
7384 next = l->next;
7385 free (l);
7386 l = next;
7387 }
7388
7389 if (nocrossref != NULL)
7390 lang_add_nocrossref (nocrossref);
7391
7392 overlay_vma = NULL;
7393 overlay_list = NULL;
7394 overlay_max = NULL;
7395 }
7396 \f
7397 /* Version handling. This is only useful for ELF. */
7398
7399 /* This global variable holds the version tree that we build. */
7400
7401 struct bfd_elf_version_tree *lang_elf_version_info;
7402
7403 /* If PREV is NULL, return first version pattern matching particular symbol.
7404 If PREV is non-NULL, return first version pattern matching particular
7405 symbol after PREV (previously returned by lang_vers_match). */
7406
7407 static struct bfd_elf_version_expr *
7408 lang_vers_match (struct bfd_elf_version_expr_head *head,
7409 struct bfd_elf_version_expr *prev,
7410 const char *sym)
7411 {
7412 const char *c_sym;
7413 const char *cxx_sym = sym;
7414 const char *java_sym = sym;
7415 struct bfd_elf_version_expr *expr = NULL;
7416 enum demangling_styles curr_style;
7417
7418 curr_style = CURRENT_DEMANGLING_STYLE;
7419 cplus_demangle_set_style (no_demangling);
7420 c_sym = bfd_demangle (link_info.output_bfd, sym, DMGL_NO_OPTS);
7421 if (!c_sym)
7422 c_sym = sym;
7423 cplus_demangle_set_style (curr_style);
7424
7425 if (head->mask & BFD_ELF_VERSION_CXX_TYPE)
7426 {
7427 cxx_sym = bfd_demangle (link_info.output_bfd, sym,
7428 DMGL_PARAMS | DMGL_ANSI);
7429 if (!cxx_sym)
7430 cxx_sym = sym;
7431 }
7432 if (head->mask & BFD_ELF_VERSION_JAVA_TYPE)
7433 {
7434 java_sym = bfd_demangle (link_info.output_bfd, sym, DMGL_JAVA);
7435 if (!java_sym)
7436 java_sym = sym;
7437 }
7438
7439 if (head->htab && (prev == NULL || prev->literal))
7440 {
7441 struct bfd_elf_version_expr e;
7442
7443 switch (prev ? prev->mask : 0)
7444 {
7445 case 0:
7446 if (head->mask & BFD_ELF_VERSION_C_TYPE)
7447 {
7448 e.pattern = c_sym;
7449 expr = (struct bfd_elf_version_expr *)
7450 htab_find ((htab_t) head->htab, &e);
7451 while (expr && strcmp (expr->pattern, c_sym) == 0)
7452 if (expr->mask == BFD_ELF_VERSION_C_TYPE)
7453 goto out_ret;
7454 else
7455 expr = expr->next;
7456 }
7457 /* Fallthrough */
7458 case BFD_ELF_VERSION_C_TYPE:
7459 if (head->mask & BFD_ELF_VERSION_CXX_TYPE)
7460 {
7461 e.pattern = cxx_sym;
7462 expr = (struct bfd_elf_version_expr *)
7463 htab_find ((htab_t) head->htab, &e);
7464 while (expr && strcmp (expr->pattern, cxx_sym) == 0)
7465 if (expr->mask == BFD_ELF_VERSION_CXX_TYPE)
7466 goto out_ret;
7467 else
7468 expr = expr->next;
7469 }
7470 /* Fallthrough */
7471 case BFD_ELF_VERSION_CXX_TYPE:
7472 if (head->mask & BFD_ELF_VERSION_JAVA_TYPE)
7473 {
7474 e.pattern = java_sym;
7475 expr = (struct bfd_elf_version_expr *)
7476 htab_find ((htab_t) head->htab, &e);
7477 while (expr && strcmp (expr->pattern, java_sym) == 0)
7478 if (expr->mask == BFD_ELF_VERSION_JAVA_TYPE)
7479 goto out_ret;
7480 else
7481 expr = expr->next;
7482 }
7483 /* Fallthrough */
7484 default:
7485 break;
7486 }
7487 }
7488
7489 /* Finally, try the wildcards. */
7490 if (prev == NULL || prev->literal)
7491 expr = head->remaining;
7492 else
7493 expr = prev->next;
7494 for (; expr; expr = expr->next)
7495 {
7496 const char *s;
7497
7498 if (!expr->pattern)
7499 continue;
7500
7501 if (expr->pattern[0] == '*' && expr->pattern[1] == '\0')
7502 break;
7503
7504 if (expr->mask == BFD_ELF_VERSION_JAVA_TYPE)
7505 s = java_sym;
7506 else if (expr->mask == BFD_ELF_VERSION_CXX_TYPE)
7507 s = cxx_sym;
7508 else
7509 s = c_sym;
7510 if (fnmatch (expr->pattern, s, 0) == 0)
7511 break;
7512 }
7513
7514 out_ret:
7515 if (c_sym != sym)
7516 free ((char *) c_sym);
7517 if (cxx_sym != sym)
7518 free ((char *) cxx_sym);
7519 if (java_sym != sym)
7520 free ((char *) java_sym);
7521 return expr;
7522 }
7523
7524 /* Return NULL if the PATTERN argument is a glob pattern, otherwise,
7525 return a pointer to the symbol name with any backslash quotes removed. */
7526
7527 static const char *
7528 realsymbol (const char *pattern)
7529 {
7530 const char *p;
7531 bfd_boolean changed = FALSE, backslash = FALSE;
7532 char *s, *symbol = (char *) xmalloc (strlen (pattern) + 1);
7533
7534 for (p = pattern, s = symbol; *p != '\0'; ++p)
7535 {
7536 /* It is a glob pattern only if there is no preceding
7537 backslash. */
7538 if (backslash)
7539 {
7540 /* Remove the preceding backslash. */
7541 *(s - 1) = *p;
7542 backslash = FALSE;
7543 changed = TRUE;
7544 }
7545 else
7546 {
7547 if (*p == '?' || *p == '*' || *p == '[')
7548 {
7549 free (symbol);
7550 return NULL;
7551 }
7552
7553 *s++ = *p;
7554 backslash = *p == '\\';
7555 }
7556 }
7557
7558 if (changed)
7559 {
7560 *s = '\0';
7561 return symbol;
7562 }
7563 else
7564 {
7565 free (symbol);
7566 return pattern;
7567 }
7568 }
7569
7570 /* This is called for each variable name or match expression. NEW_NAME is
7571 the name of the symbol to match, or, if LITERAL_P is FALSE, a glob
7572 pattern to be matched against symbol names. */
7573
7574 struct bfd_elf_version_expr *
7575 lang_new_vers_pattern (struct bfd_elf_version_expr *orig,
7576 const char *new_name,
7577 const char *lang,
7578 bfd_boolean literal_p)
7579 {
7580 struct bfd_elf_version_expr *ret;
7581
7582 ret = (struct bfd_elf_version_expr *) xmalloc (sizeof *ret);
7583 ret->next = orig;
7584 ret->symver = 0;
7585 ret->script = 0;
7586 ret->literal = TRUE;
7587 ret->pattern = literal_p ? new_name : realsymbol (new_name);
7588 if (ret->pattern == NULL)
7589 {
7590 ret->pattern = new_name;
7591 ret->literal = FALSE;
7592 }
7593
7594 if (lang == NULL || strcasecmp (lang, "C") == 0)
7595 ret->mask = BFD_ELF_VERSION_C_TYPE;
7596 else if (strcasecmp (lang, "C++") == 0)
7597 ret->mask = BFD_ELF_VERSION_CXX_TYPE;
7598 else if (strcasecmp (lang, "Java") == 0)
7599 ret->mask = BFD_ELF_VERSION_JAVA_TYPE;
7600 else
7601 {
7602 einfo (_("%X%P: unknown language `%s' in version information\n"),
7603 lang);
7604 ret->mask = BFD_ELF_VERSION_C_TYPE;
7605 }
7606
7607 return ldemul_new_vers_pattern (ret);
7608 }
7609
7610 /* This is called for each set of variable names and match
7611 expressions. */
7612
7613 struct bfd_elf_version_tree *
7614 lang_new_vers_node (struct bfd_elf_version_expr *globals,
7615 struct bfd_elf_version_expr *locals)
7616 {
7617 struct bfd_elf_version_tree *ret;
7618
7619 ret = (struct bfd_elf_version_tree *) xcalloc (1, sizeof *ret);
7620 ret->globals.list = globals;
7621 ret->locals.list = locals;
7622 ret->match = lang_vers_match;
7623 ret->name_indx = (unsigned int) -1;
7624 return ret;
7625 }
7626
7627 /* This static variable keeps track of version indices. */
7628
7629 static int version_index;
7630
7631 static hashval_t
7632 version_expr_head_hash (const void *p)
7633 {
7634 const struct bfd_elf_version_expr *e =
7635 (const struct bfd_elf_version_expr *) p;
7636
7637 return htab_hash_string (e->pattern);
7638 }
7639
7640 static int
7641 version_expr_head_eq (const void *p1, const void *p2)
7642 {
7643 const struct bfd_elf_version_expr *e1 =
7644 (const struct bfd_elf_version_expr *) p1;
7645 const struct bfd_elf_version_expr *e2 =
7646 (const struct bfd_elf_version_expr *) p2;
7647
7648 return strcmp (e1->pattern, e2->pattern) == 0;
7649 }
7650
7651 static void
7652 lang_finalize_version_expr_head (struct bfd_elf_version_expr_head *head)
7653 {
7654 size_t count = 0;
7655 struct bfd_elf_version_expr *e, *next;
7656 struct bfd_elf_version_expr **list_loc, **remaining_loc;
7657
7658 for (e = head->list; e; e = e->next)
7659 {
7660 if (e->literal)
7661 count++;
7662 head->mask |= e->mask;
7663 }
7664
7665 if (count)
7666 {
7667 head->htab = htab_create (count * 2, version_expr_head_hash,
7668 version_expr_head_eq, NULL);
7669 list_loc = &head->list;
7670 remaining_loc = &head->remaining;
7671 for (e = head->list; e; e = next)
7672 {
7673 next = e->next;
7674 if (!e->literal)
7675 {
7676 *remaining_loc = e;
7677 remaining_loc = &e->next;
7678 }
7679 else
7680 {
7681 void **loc = htab_find_slot ((htab_t) head->htab, e, INSERT);
7682
7683 if (*loc)
7684 {
7685 struct bfd_elf_version_expr *e1, *last;
7686
7687 e1 = (struct bfd_elf_version_expr *) *loc;
7688 last = NULL;
7689 do
7690 {
7691 if (e1->mask == e->mask)
7692 {
7693 last = NULL;
7694 break;
7695 }
7696 last = e1;
7697 e1 = e1->next;
7698 }
7699 while (e1 && strcmp (e1->pattern, e->pattern) == 0);
7700
7701 if (last == NULL)
7702 {
7703 /* This is a duplicate. */
7704 /* FIXME: Memory leak. Sometimes pattern is not
7705 xmalloced alone, but in larger chunk of memory. */
7706 /* free (e->pattern); */
7707 free (e);
7708 }
7709 else
7710 {
7711 e->next = last->next;
7712 last->next = e;
7713 }
7714 }
7715 else
7716 {
7717 *loc = e;
7718 *list_loc = e;
7719 list_loc = &e->next;
7720 }
7721 }
7722 }
7723 *remaining_loc = NULL;
7724 *list_loc = head->remaining;
7725 }
7726 else
7727 head->remaining = head->list;
7728 }
7729
7730 /* This is called when we know the name and dependencies of the
7731 version. */
7732
7733 void
7734 lang_register_vers_node (const char *name,
7735 struct bfd_elf_version_tree *version,
7736 struct bfd_elf_version_deps *deps)
7737 {
7738 struct bfd_elf_version_tree *t, **pp;
7739 struct bfd_elf_version_expr *e1;
7740
7741 if (name == NULL)
7742 name = "";
7743
7744 if ((name[0] == '\0' && lang_elf_version_info != NULL)
7745 || (lang_elf_version_info && lang_elf_version_info->name[0] == '\0'))
7746 {
7747 einfo (_("%X%P: anonymous version tag cannot be combined"
7748 " with other version tags\n"));
7749 free (version);
7750 return;
7751 }
7752
7753 /* Make sure this node has a unique name. */
7754 for (t = lang_elf_version_info; t != NULL; t = t->next)
7755 if (strcmp (t->name, name) == 0)
7756 einfo (_("%X%P: duplicate version tag `%s'\n"), name);
7757
7758 lang_finalize_version_expr_head (&version->globals);
7759 lang_finalize_version_expr_head (&version->locals);
7760
7761 /* Check the global and local match names, and make sure there
7762 aren't any duplicates. */
7763
7764 for (e1 = version->globals.list; e1 != NULL; e1 = e1->next)
7765 {
7766 for (t = lang_elf_version_info; t != NULL; t = t->next)
7767 {
7768 struct bfd_elf_version_expr *e2;
7769
7770 if (t->locals.htab && e1->literal)
7771 {
7772 e2 = (struct bfd_elf_version_expr *)
7773 htab_find ((htab_t) t->locals.htab, e1);
7774 while (e2 && strcmp (e1->pattern, e2->pattern) == 0)
7775 {
7776 if (e1->mask == e2->mask)
7777 einfo (_("%X%P: duplicate expression `%s'"
7778 " in version information\n"), e1->pattern);
7779 e2 = e2->next;
7780 }
7781 }
7782 else if (!e1->literal)
7783 for (e2 = t->locals.remaining; e2 != NULL; e2 = e2->next)
7784 if (strcmp (e1->pattern, e2->pattern) == 0
7785 && e1->mask == e2->mask)
7786 einfo (_("%X%P: duplicate expression `%s'"
7787 " in version information\n"), e1->pattern);
7788 }
7789 }
7790
7791 for (e1 = version->locals.list; e1 != NULL; e1 = e1->next)
7792 {
7793 for (t = lang_elf_version_info; t != NULL; t = t->next)
7794 {
7795 struct bfd_elf_version_expr *e2;
7796
7797 if (t->globals.htab && e1->literal)
7798 {
7799 e2 = (struct bfd_elf_version_expr *)
7800 htab_find ((htab_t) t->globals.htab, e1);
7801 while (e2 && strcmp (e1->pattern, e2->pattern) == 0)
7802 {
7803 if (e1->mask == e2->mask)
7804 einfo (_("%X%P: duplicate expression `%s'"
7805 " in version information\n"),
7806 e1->pattern);
7807 e2 = e2->next;
7808 }
7809 }
7810 else if (!e1->literal)
7811 for (e2 = t->globals.remaining; e2 != NULL; e2 = e2->next)
7812 if (strcmp (e1->pattern, e2->pattern) == 0
7813 && e1->mask == e2->mask)
7814 einfo (_("%X%P: duplicate expression `%s'"
7815 " in version information\n"), e1->pattern);
7816 }
7817 }
7818
7819 version->deps = deps;
7820 version->name = name;
7821 if (name[0] != '\0')
7822 {
7823 ++version_index;
7824 version->vernum = version_index;
7825 }
7826 else
7827 version->vernum = 0;
7828
7829 for (pp = &lang_elf_version_info; *pp != NULL; pp = &(*pp)->next)
7830 ;
7831 *pp = version;
7832 }
7833
7834 /* This is called when we see a version dependency. */
7835
7836 struct bfd_elf_version_deps *
7837 lang_add_vers_depend (struct bfd_elf_version_deps *list, const char *name)
7838 {
7839 struct bfd_elf_version_deps *ret;
7840 struct bfd_elf_version_tree *t;
7841
7842 ret = (struct bfd_elf_version_deps *) xmalloc (sizeof *ret);
7843 ret->next = list;
7844
7845 for (t = lang_elf_version_info; t != NULL; t = t->next)
7846 {
7847 if (strcmp (t->name, name) == 0)
7848 {
7849 ret->version_needed = t;
7850 return ret;
7851 }
7852 }
7853
7854 einfo (_("%X%P: unable to find version dependency `%s'\n"), name);
7855
7856 ret->version_needed = NULL;
7857 return ret;
7858 }
7859
7860 static void
7861 lang_do_version_exports_section (void)
7862 {
7863 struct bfd_elf_version_expr *greg = NULL, *lreg;
7864
7865 LANG_FOR_EACH_INPUT_STATEMENT (is)
7866 {
7867 asection *sec = bfd_get_section_by_name (is->the_bfd, ".exports");
7868 char *contents, *p;
7869 bfd_size_type len;
7870
7871 if (sec == NULL)
7872 continue;
7873
7874 len = sec->size;
7875 contents = (char *) xmalloc (len);
7876 if (!bfd_get_section_contents (is->the_bfd, sec, contents, 0, len))
7877 einfo (_("%X%P: unable to read .exports section contents\n"), sec);
7878
7879 p = contents;
7880 while (p < contents + len)
7881 {
7882 greg = lang_new_vers_pattern (greg, p, NULL, FALSE);
7883 p = strchr (p, '\0') + 1;
7884 }
7885
7886 /* Do not free the contents, as we used them creating the regex. */
7887
7888 /* Do not include this section in the link. */
7889 sec->flags |= SEC_EXCLUDE | SEC_KEEP;
7890 }
7891
7892 lreg = lang_new_vers_pattern (NULL, "*", NULL, FALSE);
7893 lang_register_vers_node (command_line.version_exports_section,
7894 lang_new_vers_node (greg, lreg), NULL);
7895 }
7896
7897 void
7898 lang_add_unique (const char *name)
7899 {
7900 struct unique_sections *ent;
7901
7902 for (ent = unique_section_list; ent; ent = ent->next)
7903 if (strcmp (ent->name, name) == 0)
7904 return;
7905
7906 ent = (struct unique_sections *) xmalloc (sizeof *ent);
7907 ent->name = xstrdup (name);
7908 ent->next = unique_section_list;
7909 unique_section_list = ent;
7910 }
7911
7912 /* Append the list of dynamic symbols to the existing one. */
7913
7914 void
7915 lang_append_dynamic_list (struct bfd_elf_version_expr *dynamic)
7916 {
7917 if (link_info.dynamic_list)
7918 {
7919 struct bfd_elf_version_expr *tail;
7920 for (tail = dynamic; tail->next != NULL; tail = tail->next)
7921 ;
7922 tail->next = link_info.dynamic_list->head.list;
7923 link_info.dynamic_list->head.list = dynamic;
7924 }
7925 else
7926 {
7927 struct bfd_elf_dynamic_list *d;
7928
7929 d = (struct bfd_elf_dynamic_list *) xcalloc (1, sizeof *d);
7930 d->head.list = dynamic;
7931 d->match = lang_vers_match;
7932 link_info.dynamic_list = d;
7933 }
7934 }
7935
7936 /* Append the list of C++ typeinfo dynamic symbols to the existing
7937 one. */
7938
7939 void
7940 lang_append_dynamic_list_cpp_typeinfo (void)
7941 {
7942 const char * symbols [] =
7943 {
7944 "typeinfo name for*",
7945 "typeinfo for*"
7946 };
7947 struct bfd_elf_version_expr *dynamic = NULL;
7948 unsigned int i;
7949
7950 for (i = 0; i < ARRAY_SIZE (symbols); i++)
7951 dynamic = lang_new_vers_pattern (dynamic, symbols [i], "C++",
7952 FALSE);
7953
7954 lang_append_dynamic_list (dynamic);
7955 }
7956
7957 /* Append the list of C++ operator new and delete dynamic symbols to the
7958 existing one. */
7959
7960 void
7961 lang_append_dynamic_list_cpp_new (void)
7962 {
7963 const char * symbols [] =
7964 {
7965 "operator new*",
7966 "operator delete*"
7967 };
7968 struct bfd_elf_version_expr *dynamic = NULL;
7969 unsigned int i;
7970
7971 for (i = 0; i < ARRAY_SIZE (symbols); i++)
7972 dynamic = lang_new_vers_pattern (dynamic, symbols [i], "C++",
7973 FALSE);
7974
7975 lang_append_dynamic_list (dynamic);
7976 }
7977
7978 /* Scan a space and/or comma separated string of features. */
7979
7980 void
7981 lang_ld_feature (char *str)
7982 {
7983 char *p, *q;
7984
7985 p = str;
7986 while (*p)
7987 {
7988 char sep;
7989 while (*p == ',' || ISSPACE (*p))
7990 ++p;
7991 if (!*p)
7992 break;
7993 q = p + 1;
7994 while (*q && *q != ',' && !ISSPACE (*q))
7995 ++q;
7996 sep = *q;
7997 *q = 0;
7998 if (strcasecmp (p, "SANE_EXPR") == 0)
7999 config.sane_expr = TRUE;
8000 else
8001 einfo (_("%X%P: unknown feature `%s'\n"), p);
8002 *q = sep;
8003 p = q;
8004 }
8005 }
This page took 0.17986 seconds and 5 git commands to generate.