idr: fix top layer handling
[deliverable/linux.git] / lib / idr.c
1 /*
2 * 2002-10-18 written by Jim Houston jim.houston@ccur.com
3 * Copyright (C) 2002 by Concurrent Computer Corporation
4 * Distributed under the GNU GPL license version 2.
5 *
6 * Modified by George Anzinger to reuse immediately and to use
7 * find bit instructions. Also removed _irq on spinlocks.
8 *
9 * Modified by Nadia Derbey to make it RCU safe.
10 *
11 * Small id to pointer translation service.
12 *
13 * It uses a radix tree like structure as a sparse array indexed
14 * by the id to obtain the pointer. The bitmap makes allocating
15 * a new id quick.
16 *
17 * You call it to allocate an id (an int) an associate with that id a
18 * pointer or what ever, we treat it as a (void *). You can pass this
19 * id to a user for him to pass back at a later time. You then pass
20 * that id to this code and it returns your pointer.
21
22 * You can release ids at any time. When all ids are released, most of
23 * the memory is returned (we keep MAX_IDR_FREE) in a local pool so we
24 * don't need to go to the memory "store" during an id allocate, just
25 * so you don't need to be too concerned about locking and conflicts
26 * with the slab allocator.
27 */
28
29 #ifndef TEST // to test in user space...
30 #include <linux/slab.h>
31 #include <linux/init.h>
32 #include <linux/export.h>
33 #endif
34 #include <linux/err.h>
35 #include <linux/string.h>
36 #include <linux/idr.h>
37 #include <linux/spinlock.h>
38 #include <linux/percpu.h>
39 #include <linux/hardirq.h>
40
41 static struct kmem_cache *idr_layer_cache;
42 static DEFINE_PER_CPU(struct idr_layer *, idr_preload_head);
43 static DEFINE_PER_CPU(int, idr_preload_cnt);
44 static DEFINE_SPINLOCK(simple_ida_lock);
45
46 /* the maximum ID which can be allocated given idr->layers */
47 static int idr_max(int layers)
48 {
49 int bits = min_t(int, layers * IDR_BITS, MAX_IDR_SHIFT);
50
51 return (1 << bits) - 1;
52 }
53
54 static struct idr_layer *get_from_free_list(struct idr *idp)
55 {
56 struct idr_layer *p;
57 unsigned long flags;
58
59 spin_lock_irqsave(&idp->lock, flags);
60 if ((p = idp->id_free)) {
61 idp->id_free = p->ary[0];
62 idp->id_free_cnt--;
63 p->ary[0] = NULL;
64 }
65 spin_unlock_irqrestore(&idp->lock, flags);
66 return(p);
67 }
68
69 /**
70 * idr_layer_alloc - allocate a new idr_layer
71 * @gfp_mask: allocation mask
72 * @layer_idr: optional idr to allocate from
73 *
74 * If @layer_idr is %NULL, directly allocate one using @gfp_mask or fetch
75 * one from the per-cpu preload buffer. If @layer_idr is not %NULL, fetch
76 * an idr_layer from @idr->id_free.
77 *
78 * @layer_idr is to maintain backward compatibility with the old alloc
79 * interface - idr_pre_get() and idr_get_new*() - and will be removed
80 * together with per-pool preload buffer.
81 */
82 static struct idr_layer *idr_layer_alloc(gfp_t gfp_mask, struct idr *layer_idr)
83 {
84 struct idr_layer *new;
85
86 /* this is the old path, bypass to get_from_free_list() */
87 if (layer_idr)
88 return get_from_free_list(layer_idr);
89
90 /* try to allocate directly from kmem_cache */
91 new = kmem_cache_zalloc(idr_layer_cache, gfp_mask);
92 if (new)
93 return new;
94
95 /*
96 * Try to fetch one from the per-cpu preload buffer if in process
97 * context. See idr_preload() for details.
98 */
99 if (in_interrupt())
100 return NULL;
101
102 preempt_disable();
103 new = __this_cpu_read(idr_preload_head);
104 if (new) {
105 __this_cpu_write(idr_preload_head, new->ary[0]);
106 __this_cpu_dec(idr_preload_cnt);
107 new->ary[0] = NULL;
108 }
109 preempt_enable();
110 return new;
111 }
112
113 static void idr_layer_rcu_free(struct rcu_head *head)
114 {
115 struct idr_layer *layer;
116
117 layer = container_of(head, struct idr_layer, rcu_head);
118 kmem_cache_free(idr_layer_cache, layer);
119 }
120
121 static inline void free_layer(struct idr_layer *p)
122 {
123 call_rcu(&p->rcu_head, idr_layer_rcu_free);
124 }
125
126 /* only called when idp->lock is held */
127 static void __move_to_free_list(struct idr *idp, struct idr_layer *p)
128 {
129 p->ary[0] = idp->id_free;
130 idp->id_free = p;
131 idp->id_free_cnt++;
132 }
133
134 static void move_to_free_list(struct idr *idp, struct idr_layer *p)
135 {
136 unsigned long flags;
137
138 /*
139 * Depends on the return element being zeroed.
140 */
141 spin_lock_irqsave(&idp->lock, flags);
142 __move_to_free_list(idp, p);
143 spin_unlock_irqrestore(&idp->lock, flags);
144 }
145
146 static void idr_mark_full(struct idr_layer **pa, int id)
147 {
148 struct idr_layer *p = pa[0];
149 int l = 0;
150
151 __set_bit(id & IDR_MASK, &p->bitmap);
152 /*
153 * If this layer is full mark the bit in the layer above to
154 * show that this part of the radix tree is full. This may
155 * complete the layer above and require walking up the radix
156 * tree.
157 */
158 while (p->bitmap == IDR_FULL) {
159 if (!(p = pa[++l]))
160 break;
161 id = id >> IDR_BITS;
162 __set_bit((id & IDR_MASK), &p->bitmap);
163 }
164 }
165
166 /**
167 * idr_pre_get - reserve resources for idr allocation
168 * @idp: idr handle
169 * @gfp_mask: memory allocation flags
170 *
171 * This function should be called prior to calling the idr_get_new* functions.
172 * It preallocates enough memory to satisfy the worst possible allocation. The
173 * caller should pass in GFP_KERNEL if possible. This of course requires that
174 * no spinning locks be held.
175 *
176 * If the system is REALLY out of memory this function returns %0,
177 * otherwise %1.
178 */
179 int idr_pre_get(struct idr *idp, gfp_t gfp_mask)
180 {
181 while (idp->id_free_cnt < MAX_IDR_FREE) {
182 struct idr_layer *new;
183 new = kmem_cache_zalloc(idr_layer_cache, gfp_mask);
184 if (new == NULL)
185 return (0);
186 move_to_free_list(idp, new);
187 }
188 return 1;
189 }
190 EXPORT_SYMBOL(idr_pre_get);
191
192 /**
193 * sub_alloc - try to allocate an id without growing the tree depth
194 * @idp: idr handle
195 * @starting_id: id to start search at
196 * @id: pointer to the allocated handle
197 * @pa: idr_layer[MAX_IDR_LEVEL] used as backtrack buffer
198 * @gfp_mask: allocation mask for idr_layer_alloc()
199 * @layer_idr: optional idr passed to idr_layer_alloc()
200 *
201 * Allocate an id in range [@starting_id, INT_MAX] from @idp without
202 * growing its depth. Returns
203 *
204 * the allocated id >= 0 if successful,
205 * -EAGAIN if the tree needs to grow for allocation to succeed,
206 * -ENOSPC if the id space is exhausted,
207 * -ENOMEM if more idr_layers need to be allocated.
208 */
209 static int sub_alloc(struct idr *idp, int *starting_id, struct idr_layer **pa,
210 gfp_t gfp_mask, struct idr *layer_idr)
211 {
212 int n, m, sh;
213 struct idr_layer *p, *new;
214 int l, id, oid;
215 unsigned long bm;
216
217 id = *starting_id;
218 restart:
219 p = idp->top;
220 l = idp->layers;
221 pa[l--] = NULL;
222 while (1) {
223 /*
224 * We run around this while until we reach the leaf node...
225 */
226 n = (id >> (IDR_BITS*l)) & IDR_MASK;
227 bm = ~p->bitmap;
228 m = find_next_bit(&bm, IDR_SIZE, n);
229 if (m == IDR_SIZE) {
230 /* no space available go back to previous layer. */
231 l++;
232 oid = id;
233 id = (id | ((1 << (IDR_BITS * l)) - 1)) + 1;
234
235 /* if already at the top layer, we need to grow */
236 if (id >= 1 << (idp->layers * IDR_BITS)) {
237 *starting_id = id;
238 return -EAGAIN;
239 }
240 p = pa[l];
241 BUG_ON(!p);
242
243 /* If we need to go up one layer, continue the
244 * loop; otherwise, restart from the top.
245 */
246 sh = IDR_BITS * (l + 1);
247 if (oid >> sh == id >> sh)
248 continue;
249 else
250 goto restart;
251 }
252 if (m != n) {
253 sh = IDR_BITS*l;
254 id = ((id >> sh) ^ n ^ m) << sh;
255 }
256 if ((id >= MAX_IDR_BIT) || (id < 0))
257 return -ENOSPC;
258 if (l == 0)
259 break;
260 /*
261 * Create the layer below if it is missing.
262 */
263 if (!p->ary[m]) {
264 new = idr_layer_alloc(gfp_mask, layer_idr);
265 if (!new)
266 return -ENOMEM;
267 new->layer = l-1;
268 rcu_assign_pointer(p->ary[m], new);
269 p->count++;
270 }
271 pa[l--] = p;
272 p = p->ary[m];
273 }
274
275 pa[l] = p;
276 return id;
277 }
278
279 static int idr_get_empty_slot(struct idr *idp, int starting_id,
280 struct idr_layer **pa, gfp_t gfp_mask,
281 struct idr *layer_idr)
282 {
283 struct idr_layer *p, *new;
284 int layers, v, id;
285 unsigned long flags;
286
287 id = starting_id;
288 build_up:
289 p = idp->top;
290 layers = idp->layers;
291 if (unlikely(!p)) {
292 if (!(p = idr_layer_alloc(gfp_mask, layer_idr)))
293 return -ENOMEM;
294 p->layer = 0;
295 layers = 1;
296 }
297 /*
298 * Add a new layer to the top of the tree if the requested
299 * id is larger than the currently allocated space.
300 */
301 while (id > idr_max(layers)) {
302 layers++;
303 if (!p->count) {
304 /* special case: if the tree is currently empty,
305 * then we grow the tree by moving the top node
306 * upwards.
307 */
308 p->layer++;
309 continue;
310 }
311 if (!(new = idr_layer_alloc(gfp_mask, layer_idr))) {
312 /*
313 * The allocation failed. If we built part of
314 * the structure tear it down.
315 */
316 spin_lock_irqsave(&idp->lock, flags);
317 for (new = p; p && p != idp->top; new = p) {
318 p = p->ary[0];
319 new->ary[0] = NULL;
320 new->bitmap = new->count = 0;
321 __move_to_free_list(idp, new);
322 }
323 spin_unlock_irqrestore(&idp->lock, flags);
324 return -ENOMEM;
325 }
326 new->ary[0] = p;
327 new->count = 1;
328 new->layer = layers-1;
329 if (p->bitmap == IDR_FULL)
330 __set_bit(0, &new->bitmap);
331 p = new;
332 }
333 rcu_assign_pointer(idp->top, p);
334 idp->layers = layers;
335 v = sub_alloc(idp, &id, pa, gfp_mask, layer_idr);
336 if (v == -EAGAIN)
337 goto build_up;
338 return(v);
339 }
340
341 /*
342 * @id and @pa are from a successful allocation from idr_get_empty_slot().
343 * Install the user pointer @ptr and mark the slot full.
344 */
345 static void idr_fill_slot(void *ptr, int id, struct idr_layer **pa)
346 {
347 rcu_assign_pointer(pa[0]->ary[id & IDR_MASK], (struct idr_layer *)ptr);
348 pa[0]->count++;
349 idr_mark_full(pa, id);
350 }
351
352 /**
353 * idr_get_new_above - allocate new idr entry above or equal to a start id
354 * @idp: idr handle
355 * @ptr: pointer you want associated with the id
356 * @starting_id: id to start search at
357 * @id: pointer to the allocated handle
358 *
359 * This is the allocate id function. It should be called with any
360 * required locks.
361 *
362 * If allocation from IDR's private freelist fails, idr_get_new_above() will
363 * return %-EAGAIN. The caller should retry the idr_pre_get() call to refill
364 * IDR's preallocation and then retry the idr_get_new_above() call.
365 *
366 * If the idr is full idr_get_new_above() will return %-ENOSPC.
367 *
368 * @id returns a value in the range @starting_id ... %0x7fffffff
369 */
370 int idr_get_new_above(struct idr *idp, void *ptr, int starting_id, int *id)
371 {
372 struct idr_layer *pa[MAX_IDR_LEVEL + 1];
373 int rv;
374
375 rv = idr_get_empty_slot(idp, starting_id, pa, 0, idp);
376 if (rv < 0)
377 return rv == -ENOMEM ? -EAGAIN : rv;
378
379 idr_fill_slot(ptr, rv, pa);
380 *id = rv;
381 return 0;
382 }
383 EXPORT_SYMBOL(idr_get_new_above);
384
385 /**
386 * idr_preload - preload for idr_alloc()
387 * @gfp_mask: allocation mask to use for preloading
388 *
389 * Preload per-cpu layer buffer for idr_alloc(). Can only be used from
390 * process context and each idr_preload() invocation should be matched with
391 * idr_preload_end(). Note that preemption is disabled while preloaded.
392 *
393 * The first idr_alloc() in the preloaded section can be treated as if it
394 * were invoked with @gfp_mask used for preloading. This allows using more
395 * permissive allocation masks for idrs protected by spinlocks.
396 *
397 * For example, if idr_alloc() below fails, the failure can be treated as
398 * if idr_alloc() were called with GFP_KERNEL rather than GFP_NOWAIT.
399 *
400 * idr_preload(GFP_KERNEL);
401 * spin_lock(lock);
402 *
403 * id = idr_alloc(idr, ptr, start, end, GFP_NOWAIT);
404 *
405 * spin_unlock(lock);
406 * idr_preload_end();
407 * if (id < 0)
408 * error;
409 */
410 void idr_preload(gfp_t gfp_mask)
411 {
412 /*
413 * Consuming preload buffer from non-process context breaks preload
414 * allocation guarantee. Disallow usage from those contexts.
415 */
416 WARN_ON_ONCE(in_interrupt());
417 might_sleep_if(gfp_mask & __GFP_WAIT);
418
419 preempt_disable();
420
421 /*
422 * idr_alloc() is likely to succeed w/o full idr_layer buffer and
423 * return value from idr_alloc() needs to be checked for failure
424 * anyway. Silently give up if allocation fails. The caller can
425 * treat failures from idr_alloc() as if idr_alloc() were called
426 * with @gfp_mask which should be enough.
427 */
428 while (__this_cpu_read(idr_preload_cnt) < MAX_IDR_FREE) {
429 struct idr_layer *new;
430
431 preempt_enable();
432 new = kmem_cache_zalloc(idr_layer_cache, gfp_mask);
433 preempt_disable();
434 if (!new)
435 break;
436
437 /* link the new one to per-cpu preload list */
438 new->ary[0] = __this_cpu_read(idr_preload_head);
439 __this_cpu_write(idr_preload_head, new);
440 __this_cpu_inc(idr_preload_cnt);
441 }
442 }
443 EXPORT_SYMBOL(idr_preload);
444
445 /**
446 * idr_alloc - allocate new idr entry
447 * @idr: the (initialized) idr
448 * @ptr: pointer to be associated with the new id
449 * @start: the minimum id (inclusive)
450 * @end: the maximum id (exclusive, <= 0 for max)
451 * @gfp_mask: memory allocation flags
452 *
453 * Allocate an id in [start, end) and associate it with @ptr. If no ID is
454 * available in the specified range, returns -ENOSPC. On memory allocation
455 * failure, returns -ENOMEM.
456 *
457 * Note that @end is treated as max when <= 0. This is to always allow
458 * using @start + N as @end as long as N is inside integer range.
459 *
460 * The user is responsible for exclusively synchronizing all operations
461 * which may modify @idr. However, read-only accesses such as idr_find()
462 * or iteration can be performed under RCU read lock provided the user
463 * destroys @ptr in RCU-safe way after removal from idr.
464 */
465 int idr_alloc(struct idr *idr, void *ptr, int start, int end, gfp_t gfp_mask)
466 {
467 int max = end > 0 ? end - 1 : INT_MAX; /* inclusive upper limit */
468 struct idr_layer *pa[MAX_IDR_LEVEL + 1];
469 int id;
470
471 might_sleep_if(gfp_mask & __GFP_WAIT);
472
473 /* sanity checks */
474 if (WARN_ON_ONCE(start < 0))
475 return -EINVAL;
476 if (unlikely(max < start))
477 return -ENOSPC;
478
479 /* allocate id */
480 id = idr_get_empty_slot(idr, start, pa, gfp_mask, NULL);
481 if (unlikely(id < 0))
482 return id;
483 if (unlikely(id > max))
484 return -ENOSPC;
485
486 idr_fill_slot(ptr, id, pa);
487 return id;
488 }
489 EXPORT_SYMBOL_GPL(idr_alloc);
490
491 static void idr_remove_warning(int id)
492 {
493 printk(KERN_WARNING
494 "idr_remove called for id=%d which is not allocated.\n", id);
495 dump_stack();
496 }
497
498 static void sub_remove(struct idr *idp, int shift, int id)
499 {
500 struct idr_layer *p = idp->top;
501 struct idr_layer **pa[MAX_IDR_LEVEL + 1];
502 struct idr_layer ***paa = &pa[0];
503 struct idr_layer *to_free;
504 int n;
505
506 *paa = NULL;
507 *++paa = &idp->top;
508
509 while ((shift > 0) && p) {
510 n = (id >> shift) & IDR_MASK;
511 __clear_bit(n, &p->bitmap);
512 *++paa = &p->ary[n];
513 p = p->ary[n];
514 shift -= IDR_BITS;
515 }
516 n = id & IDR_MASK;
517 if (likely(p != NULL && test_bit(n, &p->bitmap))){
518 __clear_bit(n, &p->bitmap);
519 rcu_assign_pointer(p->ary[n], NULL);
520 to_free = NULL;
521 while(*paa && ! --((**paa)->count)){
522 if (to_free)
523 free_layer(to_free);
524 to_free = **paa;
525 **paa-- = NULL;
526 }
527 if (!*paa)
528 idp->layers = 0;
529 if (to_free)
530 free_layer(to_free);
531 } else
532 idr_remove_warning(id);
533 }
534
535 /**
536 * idr_remove - remove the given id and free its slot
537 * @idp: idr handle
538 * @id: unique key
539 */
540 void idr_remove(struct idr *idp, int id)
541 {
542 struct idr_layer *p;
543 struct idr_layer *to_free;
544
545 /* Mask off upper bits we don't use for the search. */
546 id &= MAX_IDR_MASK;
547
548 sub_remove(idp, (idp->layers - 1) * IDR_BITS, id);
549 if (idp->top && idp->top->count == 1 && (idp->layers > 1) &&
550 idp->top->ary[0]) {
551 /*
552 * Single child at leftmost slot: we can shrink the tree.
553 * This level is not needed anymore since when layers are
554 * inserted, they are inserted at the top of the existing
555 * tree.
556 */
557 to_free = idp->top;
558 p = idp->top->ary[0];
559 rcu_assign_pointer(idp->top, p);
560 --idp->layers;
561 to_free->bitmap = to_free->count = 0;
562 free_layer(to_free);
563 }
564 while (idp->id_free_cnt >= MAX_IDR_FREE) {
565 p = get_from_free_list(idp);
566 /*
567 * Note: we don't call the rcu callback here, since the only
568 * layers that fall into the freelist are those that have been
569 * preallocated.
570 */
571 kmem_cache_free(idr_layer_cache, p);
572 }
573 return;
574 }
575 EXPORT_SYMBOL(idr_remove);
576
577 void __idr_remove_all(struct idr *idp)
578 {
579 int n, id, max;
580 int bt_mask;
581 struct idr_layer *p;
582 struct idr_layer *pa[MAX_IDR_LEVEL + 1];
583 struct idr_layer **paa = &pa[0];
584
585 n = idp->layers * IDR_BITS;
586 p = idp->top;
587 rcu_assign_pointer(idp->top, NULL);
588 max = idr_max(idp->layers);
589
590 id = 0;
591 while (id >= 0 && id <= max) {
592 while (n > IDR_BITS && p) {
593 n -= IDR_BITS;
594 *paa++ = p;
595 p = p->ary[(id >> n) & IDR_MASK];
596 }
597
598 bt_mask = id;
599 id += 1 << n;
600 /* Get the highest bit that the above add changed from 0->1. */
601 while (n < fls(id ^ bt_mask)) {
602 if (p)
603 free_layer(p);
604 n += IDR_BITS;
605 p = *--paa;
606 }
607 }
608 idp->layers = 0;
609 }
610 EXPORT_SYMBOL(__idr_remove_all);
611
612 /**
613 * idr_destroy - release all cached layers within an idr tree
614 * @idp: idr handle
615 *
616 * Free all id mappings and all idp_layers. After this function, @idp is
617 * completely unused and can be freed / recycled. The caller is
618 * responsible for ensuring that no one else accesses @idp during or after
619 * idr_destroy().
620 *
621 * A typical clean-up sequence for objects stored in an idr tree will use
622 * idr_for_each() to free all objects, if necessay, then idr_destroy() to
623 * free up the id mappings and cached idr_layers.
624 */
625 void idr_destroy(struct idr *idp)
626 {
627 __idr_remove_all(idp);
628
629 while (idp->id_free_cnt) {
630 struct idr_layer *p = get_from_free_list(idp);
631 kmem_cache_free(idr_layer_cache, p);
632 }
633 }
634 EXPORT_SYMBOL(idr_destroy);
635
636 /**
637 * idr_find - return pointer for given id
638 * @idp: idr handle
639 * @id: lookup key
640 *
641 * Return the pointer given the id it has been registered with. A %NULL
642 * return indicates that @id is not valid or you passed %NULL in
643 * idr_get_new().
644 *
645 * This function can be called under rcu_read_lock(), given that the leaf
646 * pointers lifetimes are correctly managed.
647 */
648 void *idr_find(struct idr *idp, int id)
649 {
650 int n;
651 struct idr_layer *p;
652
653 p = rcu_dereference_raw(idp->top);
654 if (!p)
655 return NULL;
656 n = (p->layer+1) * IDR_BITS;
657
658 /* Mask off upper bits we don't use for the search. */
659 id &= MAX_IDR_MASK;
660
661 if (id > idr_max(p->layer + 1))
662 return NULL;
663 BUG_ON(n == 0);
664
665 while (n > 0 && p) {
666 n -= IDR_BITS;
667 BUG_ON(n != p->layer*IDR_BITS);
668 p = rcu_dereference_raw(p->ary[(id >> n) & IDR_MASK]);
669 }
670 return((void *)p);
671 }
672 EXPORT_SYMBOL(idr_find);
673
674 /**
675 * idr_for_each - iterate through all stored pointers
676 * @idp: idr handle
677 * @fn: function to be called for each pointer
678 * @data: data passed back to callback function
679 *
680 * Iterate over the pointers registered with the given idr. The
681 * callback function will be called for each pointer currently
682 * registered, passing the id, the pointer and the data pointer passed
683 * to this function. It is not safe to modify the idr tree while in
684 * the callback, so functions such as idr_get_new and idr_remove are
685 * not allowed.
686 *
687 * We check the return of @fn each time. If it returns anything other
688 * than %0, we break out and return that value.
689 *
690 * The caller must serialize idr_for_each() vs idr_get_new() and idr_remove().
691 */
692 int idr_for_each(struct idr *idp,
693 int (*fn)(int id, void *p, void *data), void *data)
694 {
695 int n, id, max, error = 0;
696 struct idr_layer *p;
697 struct idr_layer *pa[MAX_IDR_LEVEL + 1];
698 struct idr_layer **paa = &pa[0];
699
700 n = idp->layers * IDR_BITS;
701 p = rcu_dereference_raw(idp->top);
702 max = idr_max(idp->layers);
703
704 id = 0;
705 while (id >= 0 && id <= max) {
706 while (n > 0 && p) {
707 n -= IDR_BITS;
708 *paa++ = p;
709 p = rcu_dereference_raw(p->ary[(id >> n) & IDR_MASK]);
710 }
711
712 if (p) {
713 error = fn(id, (void *)p, data);
714 if (error)
715 break;
716 }
717
718 id += 1 << n;
719 while (n < fls(id)) {
720 n += IDR_BITS;
721 p = *--paa;
722 }
723 }
724
725 return error;
726 }
727 EXPORT_SYMBOL(idr_for_each);
728
729 /**
730 * idr_get_next - lookup next object of id to given id.
731 * @idp: idr handle
732 * @nextidp: pointer to lookup key
733 *
734 * Returns pointer to registered object with id, which is next number to
735 * given id. After being looked up, *@nextidp will be updated for the next
736 * iteration.
737 *
738 * This function can be called under rcu_read_lock(), given that the leaf
739 * pointers lifetimes are correctly managed.
740 */
741 void *idr_get_next(struct idr *idp, int *nextidp)
742 {
743 struct idr_layer *p, *pa[MAX_IDR_LEVEL + 1];
744 struct idr_layer **paa = &pa[0];
745 int id = *nextidp;
746 int n, max;
747
748 /* find first ent */
749 p = rcu_dereference_raw(idp->top);
750 if (!p)
751 return NULL;
752 n = (p->layer + 1) * IDR_BITS;
753 max = idr_max(p->layer + 1);
754
755 while (id >= 0 && id <= max) {
756 while (n > 0 && p) {
757 n -= IDR_BITS;
758 *paa++ = p;
759 p = rcu_dereference_raw(p->ary[(id >> n) & IDR_MASK]);
760 }
761
762 if (p) {
763 *nextidp = id;
764 return p;
765 }
766
767 /*
768 * Proceed to the next layer at the current level. Unlike
769 * idr_for_each(), @id isn't guaranteed to be aligned to
770 * layer boundary at this point and adding 1 << n may
771 * incorrectly skip IDs. Make sure we jump to the
772 * beginning of the next layer using round_up().
773 */
774 id = round_up(id + 1, 1 << n);
775 while (n < fls(id)) {
776 n += IDR_BITS;
777 p = *--paa;
778 }
779 }
780 return NULL;
781 }
782 EXPORT_SYMBOL(idr_get_next);
783
784
785 /**
786 * idr_replace - replace pointer for given id
787 * @idp: idr handle
788 * @ptr: pointer you want associated with the id
789 * @id: lookup key
790 *
791 * Replace the pointer registered with an id and return the old value.
792 * A %-ENOENT return indicates that @id was not found.
793 * A %-EINVAL return indicates that @id was not within valid constraints.
794 *
795 * The caller must serialize with writers.
796 */
797 void *idr_replace(struct idr *idp, void *ptr, int id)
798 {
799 int n;
800 struct idr_layer *p, *old_p;
801
802 p = idp->top;
803 if (!p)
804 return ERR_PTR(-EINVAL);
805
806 n = (p->layer+1) * IDR_BITS;
807
808 id &= MAX_IDR_MASK;
809
810 if (id >= (1 << n))
811 return ERR_PTR(-EINVAL);
812
813 n -= IDR_BITS;
814 while ((n > 0) && p) {
815 p = p->ary[(id >> n) & IDR_MASK];
816 n -= IDR_BITS;
817 }
818
819 n = id & IDR_MASK;
820 if (unlikely(p == NULL || !test_bit(n, &p->bitmap)))
821 return ERR_PTR(-ENOENT);
822
823 old_p = p->ary[n];
824 rcu_assign_pointer(p->ary[n], ptr);
825
826 return old_p;
827 }
828 EXPORT_SYMBOL(idr_replace);
829
830 void __init idr_init_cache(void)
831 {
832 idr_layer_cache = kmem_cache_create("idr_layer_cache",
833 sizeof(struct idr_layer), 0, SLAB_PANIC, NULL);
834 }
835
836 /**
837 * idr_init - initialize idr handle
838 * @idp: idr handle
839 *
840 * This function is use to set up the handle (@idp) that you will pass
841 * to the rest of the functions.
842 */
843 void idr_init(struct idr *idp)
844 {
845 memset(idp, 0, sizeof(struct idr));
846 spin_lock_init(&idp->lock);
847 }
848 EXPORT_SYMBOL(idr_init);
849
850
851 /**
852 * DOC: IDA description
853 * IDA - IDR based ID allocator
854 *
855 * This is id allocator without id -> pointer translation. Memory
856 * usage is much lower than full blown idr because each id only
857 * occupies a bit. ida uses a custom leaf node which contains
858 * IDA_BITMAP_BITS slots.
859 *
860 * 2007-04-25 written by Tejun Heo <htejun@gmail.com>
861 */
862
863 static void free_bitmap(struct ida *ida, struct ida_bitmap *bitmap)
864 {
865 unsigned long flags;
866
867 if (!ida->free_bitmap) {
868 spin_lock_irqsave(&ida->idr.lock, flags);
869 if (!ida->free_bitmap) {
870 ida->free_bitmap = bitmap;
871 bitmap = NULL;
872 }
873 spin_unlock_irqrestore(&ida->idr.lock, flags);
874 }
875
876 kfree(bitmap);
877 }
878
879 /**
880 * ida_pre_get - reserve resources for ida allocation
881 * @ida: ida handle
882 * @gfp_mask: memory allocation flag
883 *
884 * This function should be called prior to locking and calling the
885 * following function. It preallocates enough memory to satisfy the
886 * worst possible allocation.
887 *
888 * If the system is REALLY out of memory this function returns %0,
889 * otherwise %1.
890 */
891 int ida_pre_get(struct ida *ida, gfp_t gfp_mask)
892 {
893 /* allocate idr_layers */
894 if (!idr_pre_get(&ida->idr, gfp_mask))
895 return 0;
896
897 /* allocate free_bitmap */
898 if (!ida->free_bitmap) {
899 struct ida_bitmap *bitmap;
900
901 bitmap = kmalloc(sizeof(struct ida_bitmap), gfp_mask);
902 if (!bitmap)
903 return 0;
904
905 free_bitmap(ida, bitmap);
906 }
907
908 return 1;
909 }
910 EXPORT_SYMBOL(ida_pre_get);
911
912 /**
913 * ida_get_new_above - allocate new ID above or equal to a start id
914 * @ida: ida handle
915 * @starting_id: id to start search at
916 * @p_id: pointer to the allocated handle
917 *
918 * Allocate new ID above or equal to @starting_id. It should be called
919 * with any required locks.
920 *
921 * If memory is required, it will return %-EAGAIN, you should unlock
922 * and go back to the ida_pre_get() call. If the ida is full, it will
923 * return %-ENOSPC.
924 *
925 * @p_id returns a value in the range @starting_id ... %0x7fffffff.
926 */
927 int ida_get_new_above(struct ida *ida, int starting_id, int *p_id)
928 {
929 struct idr_layer *pa[MAX_IDR_LEVEL + 1];
930 struct ida_bitmap *bitmap;
931 unsigned long flags;
932 int idr_id = starting_id / IDA_BITMAP_BITS;
933 int offset = starting_id % IDA_BITMAP_BITS;
934 int t, id;
935
936 restart:
937 /* get vacant slot */
938 t = idr_get_empty_slot(&ida->idr, idr_id, pa, 0, &ida->idr);
939 if (t < 0)
940 return t == -ENOMEM ? -EAGAIN : t;
941
942 if (t * IDA_BITMAP_BITS >= MAX_IDR_BIT)
943 return -ENOSPC;
944
945 if (t != idr_id)
946 offset = 0;
947 idr_id = t;
948
949 /* if bitmap isn't there, create a new one */
950 bitmap = (void *)pa[0]->ary[idr_id & IDR_MASK];
951 if (!bitmap) {
952 spin_lock_irqsave(&ida->idr.lock, flags);
953 bitmap = ida->free_bitmap;
954 ida->free_bitmap = NULL;
955 spin_unlock_irqrestore(&ida->idr.lock, flags);
956
957 if (!bitmap)
958 return -EAGAIN;
959
960 memset(bitmap, 0, sizeof(struct ida_bitmap));
961 rcu_assign_pointer(pa[0]->ary[idr_id & IDR_MASK],
962 (void *)bitmap);
963 pa[0]->count++;
964 }
965
966 /* lookup for empty slot */
967 t = find_next_zero_bit(bitmap->bitmap, IDA_BITMAP_BITS, offset);
968 if (t == IDA_BITMAP_BITS) {
969 /* no empty slot after offset, continue to the next chunk */
970 idr_id++;
971 offset = 0;
972 goto restart;
973 }
974
975 id = idr_id * IDA_BITMAP_BITS + t;
976 if (id >= MAX_IDR_BIT)
977 return -ENOSPC;
978
979 __set_bit(t, bitmap->bitmap);
980 if (++bitmap->nr_busy == IDA_BITMAP_BITS)
981 idr_mark_full(pa, idr_id);
982
983 *p_id = id;
984
985 /* Each leaf node can handle nearly a thousand slots and the
986 * whole idea of ida is to have small memory foot print.
987 * Throw away extra resources one by one after each successful
988 * allocation.
989 */
990 if (ida->idr.id_free_cnt || ida->free_bitmap) {
991 struct idr_layer *p = get_from_free_list(&ida->idr);
992 if (p)
993 kmem_cache_free(idr_layer_cache, p);
994 }
995
996 return 0;
997 }
998 EXPORT_SYMBOL(ida_get_new_above);
999
1000 /**
1001 * ida_remove - remove the given ID
1002 * @ida: ida handle
1003 * @id: ID to free
1004 */
1005 void ida_remove(struct ida *ida, int id)
1006 {
1007 struct idr_layer *p = ida->idr.top;
1008 int shift = (ida->idr.layers - 1) * IDR_BITS;
1009 int idr_id = id / IDA_BITMAP_BITS;
1010 int offset = id % IDA_BITMAP_BITS;
1011 int n;
1012 struct ida_bitmap *bitmap;
1013
1014 /* clear full bits while looking up the leaf idr_layer */
1015 while ((shift > 0) && p) {
1016 n = (idr_id >> shift) & IDR_MASK;
1017 __clear_bit(n, &p->bitmap);
1018 p = p->ary[n];
1019 shift -= IDR_BITS;
1020 }
1021
1022 if (p == NULL)
1023 goto err;
1024
1025 n = idr_id & IDR_MASK;
1026 __clear_bit(n, &p->bitmap);
1027
1028 bitmap = (void *)p->ary[n];
1029 if (!test_bit(offset, bitmap->bitmap))
1030 goto err;
1031
1032 /* update bitmap and remove it if empty */
1033 __clear_bit(offset, bitmap->bitmap);
1034 if (--bitmap->nr_busy == 0) {
1035 __set_bit(n, &p->bitmap); /* to please idr_remove() */
1036 idr_remove(&ida->idr, idr_id);
1037 free_bitmap(ida, bitmap);
1038 }
1039
1040 return;
1041
1042 err:
1043 printk(KERN_WARNING
1044 "ida_remove called for id=%d which is not allocated.\n", id);
1045 }
1046 EXPORT_SYMBOL(ida_remove);
1047
1048 /**
1049 * ida_destroy - release all cached layers within an ida tree
1050 * @ida: ida handle
1051 */
1052 void ida_destroy(struct ida *ida)
1053 {
1054 idr_destroy(&ida->idr);
1055 kfree(ida->free_bitmap);
1056 }
1057 EXPORT_SYMBOL(ida_destroy);
1058
1059 /**
1060 * ida_simple_get - get a new id.
1061 * @ida: the (initialized) ida.
1062 * @start: the minimum id (inclusive, < 0x8000000)
1063 * @end: the maximum id (exclusive, < 0x8000000 or 0)
1064 * @gfp_mask: memory allocation flags
1065 *
1066 * Allocates an id in the range start <= id < end, or returns -ENOSPC.
1067 * On memory allocation failure, returns -ENOMEM.
1068 *
1069 * Use ida_simple_remove() to get rid of an id.
1070 */
1071 int ida_simple_get(struct ida *ida, unsigned int start, unsigned int end,
1072 gfp_t gfp_mask)
1073 {
1074 int ret, id;
1075 unsigned int max;
1076 unsigned long flags;
1077
1078 BUG_ON((int)start < 0);
1079 BUG_ON((int)end < 0);
1080
1081 if (end == 0)
1082 max = 0x80000000;
1083 else {
1084 BUG_ON(end < start);
1085 max = end - 1;
1086 }
1087
1088 again:
1089 if (!ida_pre_get(ida, gfp_mask))
1090 return -ENOMEM;
1091
1092 spin_lock_irqsave(&simple_ida_lock, flags);
1093 ret = ida_get_new_above(ida, start, &id);
1094 if (!ret) {
1095 if (id > max) {
1096 ida_remove(ida, id);
1097 ret = -ENOSPC;
1098 } else {
1099 ret = id;
1100 }
1101 }
1102 spin_unlock_irqrestore(&simple_ida_lock, flags);
1103
1104 if (unlikely(ret == -EAGAIN))
1105 goto again;
1106
1107 return ret;
1108 }
1109 EXPORT_SYMBOL(ida_simple_get);
1110
1111 /**
1112 * ida_simple_remove - remove an allocated id.
1113 * @ida: the (initialized) ida.
1114 * @id: the id returned by ida_simple_get.
1115 */
1116 void ida_simple_remove(struct ida *ida, unsigned int id)
1117 {
1118 unsigned long flags;
1119
1120 BUG_ON((int)id < 0);
1121 spin_lock_irqsave(&simple_ida_lock, flags);
1122 ida_remove(ida, id);
1123 spin_unlock_irqrestore(&simple_ida_lock, flags);
1124 }
1125 EXPORT_SYMBOL(ida_simple_remove);
1126
1127 /**
1128 * ida_init - initialize ida handle
1129 * @ida: ida handle
1130 *
1131 * This function is use to set up the handle (@ida) that you will pass
1132 * to the rest of the functions.
1133 */
1134 void ida_init(struct ida *ida)
1135 {
1136 memset(ida, 0, sizeof(struct ida));
1137 idr_init(&ida->idr);
1138
1139 }
1140 EXPORT_SYMBOL(ida_init);
This page took 0.074891 seconds and 5 git commands to generate.