prio_tree: remove unnecessary code in prio_tree_replace
[deliverable/linux.git] / lib / prio_tree.c
1 /*
2 * lib/prio_tree.c - priority search tree
3 *
4 * Copyright (C) 2004, Rajesh Venkatasubramanian <vrajesh@umich.edu>
5 *
6 * This file is released under the GPL v2.
7 *
8 * Based on the radix priority search tree proposed by Edward M. McCreight
9 * SIAM Journal of Computing, vol. 14, no.2, pages 257-276, May 1985
10 *
11 * 02Feb2004 Initial version
12 */
13
14 #include <linux/init.h>
15 #include <linux/mm.h>
16 #include <linux/prio_tree.h>
17
18 /*
19 * A clever mix of heap and radix trees forms a radix priority search tree (PST)
20 * which is useful for storing intervals, e.g, we can consider a vma as a closed
21 * interval of file pages [offset_begin, offset_end], and store all vmas that
22 * map a file in a PST. Then, using the PST, we can answer a stabbing query,
23 * i.e., selecting a set of stored intervals (vmas) that overlap with (map) a
24 * given input interval X (a set of consecutive file pages), in "O(log n + m)"
25 * time where 'log n' is the height of the PST, and 'm' is the number of stored
26 * intervals (vmas) that overlap (map) with the input interval X (the set of
27 * consecutive file pages).
28 *
29 * In our implementation, we store closed intervals of the form [radix_index,
30 * heap_index]. We assume that always radix_index <= heap_index. McCreight's PST
31 * is designed for storing intervals with unique radix indices, i.e., each
32 * interval have different radix_index. However, this limitation can be easily
33 * overcome by using the size, i.e., heap_index - radix_index, as part of the
34 * index, so we index the tree using [(radix_index,size), heap_index].
35 *
36 * When the above-mentioned indexing scheme is used, theoretically, in a 32 bit
37 * machine, the maximum height of a PST can be 64. We can use a balanced version
38 * of the priority search tree to optimize the tree height, but the balanced
39 * tree proposed by McCreight is too complex and memory-hungry for our purpose.
40 */
41
42 /*
43 * The following macros are used for implementing prio_tree for i_mmap
44 */
45
46 #define RADIX_INDEX(vma) ((vma)->vm_pgoff)
47 #define VMA_SIZE(vma) (((vma)->vm_end - (vma)->vm_start) >> PAGE_SHIFT)
48 /* avoid overflow */
49 #define HEAP_INDEX(vma) ((vma)->vm_pgoff + (VMA_SIZE(vma) - 1))
50
51
52 static void get_index(const struct prio_tree_root *root,
53 const struct prio_tree_node *node,
54 unsigned long *radix, unsigned long *heap)
55 {
56 if (root->raw) {
57 struct vm_area_struct *vma = prio_tree_entry(
58 node, struct vm_area_struct, shared.prio_tree_node);
59
60 *radix = RADIX_INDEX(vma);
61 *heap = HEAP_INDEX(vma);
62 }
63 else {
64 *radix = node->start;
65 *heap = node->last;
66 }
67 }
68
69 static unsigned long index_bits_to_maxindex[BITS_PER_LONG];
70
71 void __init prio_tree_init(void)
72 {
73 unsigned int i;
74
75 for (i = 0; i < ARRAY_SIZE(index_bits_to_maxindex) - 1; i++)
76 index_bits_to_maxindex[i] = (1UL << (i + 1)) - 1;
77 index_bits_to_maxindex[ARRAY_SIZE(index_bits_to_maxindex) - 1] = ~0UL;
78 }
79
80 /*
81 * Maximum heap_index that can be stored in a PST with index_bits bits
82 */
83 static inline unsigned long prio_tree_maxindex(unsigned int bits)
84 {
85 return index_bits_to_maxindex[bits - 1];
86 }
87
88 /*
89 * Extend a priority search tree so that it can store a node with heap_index
90 * max_heap_index. In the worst case, this algorithm takes O((log n)^2).
91 * However, this function is used rarely and the common case performance is
92 * not bad.
93 */
94 static struct prio_tree_node *prio_tree_expand(struct prio_tree_root *root,
95 struct prio_tree_node *node, unsigned long max_heap_index)
96 {
97 struct prio_tree_node *first = NULL, *prev, *last = NULL;
98
99 if (max_heap_index > prio_tree_maxindex(root->index_bits))
100 root->index_bits++;
101
102 while (max_heap_index > prio_tree_maxindex(root->index_bits)) {
103 root->index_bits++;
104
105 if (prio_tree_empty(root))
106 continue;
107
108 if (first == NULL) {
109 first = root->prio_tree_node;
110 prio_tree_remove(root, root->prio_tree_node);
111 INIT_PRIO_TREE_NODE(first);
112 last = first;
113 } else {
114 prev = last;
115 last = root->prio_tree_node;
116 prio_tree_remove(root, root->prio_tree_node);
117 INIT_PRIO_TREE_NODE(last);
118 prev->left = last;
119 last->parent = prev;
120 }
121 }
122
123 INIT_PRIO_TREE_NODE(node);
124
125 if (first) {
126 node->left = first;
127 first->parent = node;
128 } else
129 last = node;
130
131 if (!prio_tree_empty(root)) {
132 last->left = root->prio_tree_node;
133 last->left->parent = last;
134 }
135
136 root->prio_tree_node = node;
137 return node;
138 }
139
140 /*
141 * Replace a prio_tree_node with a new node and return the old node
142 */
143 struct prio_tree_node *prio_tree_replace(struct prio_tree_root *root,
144 struct prio_tree_node *old, struct prio_tree_node *node)
145 {
146 INIT_PRIO_TREE_NODE(node);
147
148 if (prio_tree_root(old)) {
149 BUG_ON(root->prio_tree_node != old);
150 /*
151 * We can reduce root->index_bits here. However, it is complex
152 * and does not help much to improve performance (IMO).
153 */
154 root->prio_tree_node = node;
155 } else {
156 node->parent = old->parent;
157 if (old->parent->left == old)
158 old->parent->left = node;
159 else
160 old->parent->right = node;
161 }
162
163 if (!prio_tree_left_empty(old)) {
164 node->left = old->left;
165 old->left->parent = node;
166 }
167
168 if (!prio_tree_right_empty(old)) {
169 node->right = old->right;
170 old->right->parent = node;
171 }
172
173 return old;
174 }
175
176 /*
177 * Insert a prio_tree_node @node into a radix priority search tree @root. The
178 * algorithm typically takes O(log n) time where 'log n' is the number of bits
179 * required to represent the maximum heap_index. In the worst case, the algo
180 * can take O((log n)^2) - check prio_tree_expand.
181 *
182 * If a prior node with same radix_index and heap_index is already found in
183 * the tree, then returns the address of the prior node. Otherwise, inserts
184 * @node into the tree and returns @node.
185 */
186 struct prio_tree_node *prio_tree_insert(struct prio_tree_root *root,
187 struct prio_tree_node *node)
188 {
189 struct prio_tree_node *cur, *res = node;
190 unsigned long radix_index, heap_index;
191 unsigned long r_index, h_index, index, mask;
192 int size_flag = 0;
193
194 get_index(root, node, &radix_index, &heap_index);
195
196 if (prio_tree_empty(root) ||
197 heap_index > prio_tree_maxindex(root->index_bits))
198 return prio_tree_expand(root, node, heap_index);
199
200 cur = root->prio_tree_node;
201 mask = 1UL << (root->index_bits - 1);
202
203 while (mask) {
204 get_index(root, cur, &r_index, &h_index);
205
206 if (r_index == radix_index && h_index == heap_index)
207 return cur;
208
209 if (h_index < heap_index ||
210 (h_index == heap_index && r_index > radix_index)) {
211 struct prio_tree_node *tmp = node;
212 node = prio_tree_replace(root, cur, node);
213 cur = tmp;
214 /* swap indices */
215 index = r_index;
216 r_index = radix_index;
217 radix_index = index;
218 index = h_index;
219 h_index = heap_index;
220 heap_index = index;
221 }
222
223 if (size_flag)
224 index = heap_index - radix_index;
225 else
226 index = radix_index;
227
228 if (index & mask) {
229 if (prio_tree_right_empty(cur)) {
230 INIT_PRIO_TREE_NODE(node);
231 cur->right = node;
232 node->parent = cur;
233 return res;
234 } else
235 cur = cur->right;
236 } else {
237 if (prio_tree_left_empty(cur)) {
238 INIT_PRIO_TREE_NODE(node);
239 cur->left = node;
240 node->parent = cur;
241 return res;
242 } else
243 cur = cur->left;
244 }
245
246 mask >>= 1;
247
248 if (!mask) {
249 mask = 1UL << (BITS_PER_LONG - 1);
250 size_flag = 1;
251 }
252 }
253 /* Should not reach here */
254 BUG();
255 return NULL;
256 }
257
258 /*
259 * Remove a prio_tree_node @node from a radix priority search tree @root. The
260 * algorithm takes O(log n) time where 'log n' is the number of bits required
261 * to represent the maximum heap_index.
262 */
263 void prio_tree_remove(struct prio_tree_root *root, struct prio_tree_node *node)
264 {
265 struct prio_tree_node *cur;
266 unsigned long r_index, h_index_right, h_index_left;
267
268 cur = node;
269
270 while (!prio_tree_left_empty(cur) || !prio_tree_right_empty(cur)) {
271 if (!prio_tree_left_empty(cur))
272 get_index(root, cur->left, &r_index, &h_index_left);
273 else {
274 cur = cur->right;
275 continue;
276 }
277
278 if (!prio_tree_right_empty(cur))
279 get_index(root, cur->right, &r_index, &h_index_right);
280 else {
281 cur = cur->left;
282 continue;
283 }
284
285 /* both h_index_left and h_index_right cannot be 0 */
286 if (h_index_left >= h_index_right)
287 cur = cur->left;
288 else
289 cur = cur->right;
290 }
291
292 if (prio_tree_root(cur)) {
293 BUG_ON(root->prio_tree_node != cur);
294 __INIT_PRIO_TREE_ROOT(root, root->raw);
295 return;
296 }
297
298 if (cur->parent->right == cur)
299 cur->parent->right = cur->parent;
300 else
301 cur->parent->left = cur->parent;
302
303 while (cur != node)
304 cur = prio_tree_replace(root, cur->parent, cur);
305 }
306
307 /*
308 * Following functions help to enumerate all prio_tree_nodes in the tree that
309 * overlap with the input interval X [radix_index, heap_index]. The enumeration
310 * takes O(log n + m) time where 'log n' is the height of the tree (which is
311 * proportional to # of bits required to represent the maximum heap_index) and
312 * 'm' is the number of prio_tree_nodes that overlap the interval X.
313 */
314
315 static struct prio_tree_node *prio_tree_left(struct prio_tree_iter *iter,
316 unsigned long *r_index, unsigned long *h_index)
317 {
318 if (prio_tree_left_empty(iter->cur))
319 return NULL;
320
321 get_index(iter->root, iter->cur->left, r_index, h_index);
322
323 if (iter->r_index <= *h_index) {
324 iter->cur = iter->cur->left;
325 iter->mask >>= 1;
326 if (iter->mask) {
327 if (iter->size_level)
328 iter->size_level++;
329 } else {
330 if (iter->size_level) {
331 BUG_ON(!prio_tree_left_empty(iter->cur));
332 BUG_ON(!prio_tree_right_empty(iter->cur));
333 iter->size_level++;
334 iter->mask = ULONG_MAX;
335 } else {
336 iter->size_level = 1;
337 iter->mask = 1UL << (BITS_PER_LONG - 1);
338 }
339 }
340 return iter->cur;
341 }
342
343 return NULL;
344 }
345
346 static struct prio_tree_node *prio_tree_right(struct prio_tree_iter *iter,
347 unsigned long *r_index, unsigned long *h_index)
348 {
349 unsigned long value;
350
351 if (prio_tree_right_empty(iter->cur))
352 return NULL;
353
354 if (iter->size_level)
355 value = iter->value;
356 else
357 value = iter->value | iter->mask;
358
359 if (iter->h_index < value)
360 return NULL;
361
362 get_index(iter->root, iter->cur->right, r_index, h_index);
363
364 if (iter->r_index <= *h_index) {
365 iter->cur = iter->cur->right;
366 iter->mask >>= 1;
367 iter->value = value;
368 if (iter->mask) {
369 if (iter->size_level)
370 iter->size_level++;
371 } else {
372 if (iter->size_level) {
373 BUG_ON(!prio_tree_left_empty(iter->cur));
374 BUG_ON(!prio_tree_right_empty(iter->cur));
375 iter->size_level++;
376 iter->mask = ULONG_MAX;
377 } else {
378 iter->size_level = 1;
379 iter->mask = 1UL << (BITS_PER_LONG - 1);
380 }
381 }
382 return iter->cur;
383 }
384
385 return NULL;
386 }
387
388 static struct prio_tree_node *prio_tree_parent(struct prio_tree_iter *iter)
389 {
390 iter->cur = iter->cur->parent;
391 if (iter->mask == ULONG_MAX)
392 iter->mask = 1UL;
393 else if (iter->size_level == 1)
394 iter->mask = 1UL;
395 else
396 iter->mask <<= 1;
397 if (iter->size_level)
398 iter->size_level--;
399 if (!iter->size_level && (iter->value & iter->mask))
400 iter->value ^= iter->mask;
401 return iter->cur;
402 }
403
404 static inline int overlap(struct prio_tree_iter *iter,
405 unsigned long r_index, unsigned long h_index)
406 {
407 return iter->h_index >= r_index && iter->r_index <= h_index;
408 }
409
410 /*
411 * prio_tree_first:
412 *
413 * Get the first prio_tree_node that overlaps with the interval [radix_index,
414 * heap_index]. Note that always radix_index <= heap_index. We do a pre-order
415 * traversal of the tree.
416 */
417 static struct prio_tree_node *prio_tree_first(struct prio_tree_iter *iter)
418 {
419 struct prio_tree_root *root;
420 unsigned long r_index, h_index;
421
422 INIT_PRIO_TREE_ITER(iter);
423
424 root = iter->root;
425 if (prio_tree_empty(root))
426 return NULL;
427
428 get_index(root, root->prio_tree_node, &r_index, &h_index);
429
430 if (iter->r_index > h_index)
431 return NULL;
432
433 iter->mask = 1UL << (root->index_bits - 1);
434 iter->cur = root->prio_tree_node;
435
436 while (1) {
437 if (overlap(iter, r_index, h_index))
438 return iter->cur;
439
440 if (prio_tree_left(iter, &r_index, &h_index))
441 continue;
442
443 if (prio_tree_right(iter, &r_index, &h_index))
444 continue;
445
446 break;
447 }
448 return NULL;
449 }
450
451 /*
452 * prio_tree_next:
453 *
454 * Get the next prio_tree_node that overlaps with the input interval in iter
455 */
456 struct prio_tree_node *prio_tree_next(struct prio_tree_iter *iter)
457 {
458 unsigned long r_index, h_index;
459
460 if (iter->cur == NULL)
461 return prio_tree_first(iter);
462
463 repeat:
464 while (prio_tree_left(iter, &r_index, &h_index))
465 if (overlap(iter, r_index, h_index))
466 return iter->cur;
467
468 while (!prio_tree_right(iter, &r_index, &h_index)) {
469 while (!prio_tree_root(iter->cur) &&
470 iter->cur->parent->right == iter->cur)
471 prio_tree_parent(iter);
472
473 if (prio_tree_root(iter->cur))
474 return NULL;
475
476 prio_tree_parent(iter);
477 }
478
479 if (overlap(iter, r_index, h_index))
480 return iter->cur;
481
482 goto repeat;
483 }
This page took 0.056374 seconds and 6 git commands to generate.