radix-tree: miscellaneous fixes
[deliverable/linux.git] / lib / radix-tree.c
1 /*
2 * Copyright (C) 2001 Momchil Velikov
3 * Portions Copyright (C) 2001 Christoph Hellwig
4 * Copyright (C) 2005 SGI, Christoph Lameter
5 * Copyright (C) 2006 Nick Piggin
6 * Copyright (C) 2012 Konstantin Khlebnikov
7 * Copyright (C) 2016 Intel, Matthew Wilcox
8 * Copyright (C) 2016 Intel, Ross Zwisler
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License as
12 * published by the Free Software Foundation; either version 2, or (at
13 * your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23 */
24
25 #include <linux/errno.h>
26 #include <linux/init.h>
27 #include <linux/kernel.h>
28 #include <linux/export.h>
29 #include <linux/radix-tree.h>
30 #include <linux/percpu.h>
31 #include <linux/slab.h>
32 #include <linux/kmemleak.h>
33 #include <linux/notifier.h>
34 #include <linux/cpu.h>
35 #include <linux/string.h>
36 #include <linux/bitops.h>
37 #include <linux/rcupdate.h>
38 #include <linux/preempt.h> /* in_interrupt() */
39
40
41 /*
42 * The height_to_maxindex array needs to be one deeper than the maximum
43 * path as height 0 holds only 1 entry.
44 */
45 static unsigned long height_to_maxindex[RADIX_TREE_MAX_PATH + 1] __read_mostly;
46
47 /*
48 * Radix tree node cache.
49 */
50 static struct kmem_cache *radix_tree_node_cachep;
51
52 /*
53 * The radix tree is variable-height, so an insert operation not only has
54 * to build the branch to its corresponding item, it also has to build the
55 * branch to existing items if the size has to be increased (by
56 * radix_tree_extend).
57 *
58 * The worst case is a zero height tree with just a single item at index 0,
59 * and then inserting an item at index ULONG_MAX. This requires 2 new branches
60 * of RADIX_TREE_MAX_PATH size to be created, with only the root node shared.
61 * Hence:
62 */
63 #define RADIX_TREE_PRELOAD_SIZE (RADIX_TREE_MAX_PATH * 2 - 1)
64
65 /*
66 * Per-cpu pool of preloaded nodes
67 */
68 struct radix_tree_preload {
69 unsigned nr;
70 /* nodes->private_data points to next preallocated node */
71 struct radix_tree_node *nodes;
72 };
73 static DEFINE_PER_CPU(struct radix_tree_preload, radix_tree_preloads) = { 0, };
74
75 static inline void *ptr_to_indirect(void *ptr)
76 {
77 return (void *)((unsigned long)ptr | RADIX_TREE_INDIRECT_PTR);
78 }
79
80 #define RADIX_TREE_RETRY ptr_to_indirect(NULL)
81
82 #ifdef CONFIG_RADIX_TREE_MULTIORDER
83 /* Sibling slots point directly to another slot in the same node */
84 static inline bool is_sibling_entry(struct radix_tree_node *parent, void *node)
85 {
86 void **ptr = node;
87 return (parent->slots <= ptr) &&
88 (ptr < parent->slots + RADIX_TREE_MAP_SIZE);
89 }
90 #else
91 static inline bool is_sibling_entry(struct radix_tree_node *parent, void *node)
92 {
93 return false;
94 }
95 #endif
96
97 static inline unsigned long get_slot_offset(struct radix_tree_node *parent,
98 void **slot)
99 {
100 return slot - parent->slots;
101 }
102
103 static unsigned radix_tree_descend(struct radix_tree_node *parent,
104 struct radix_tree_node **nodep, unsigned offset)
105 {
106 void **entry = rcu_dereference_raw(parent->slots[offset]);
107
108 #ifdef CONFIG_RADIX_TREE_MULTIORDER
109 if (radix_tree_is_indirect_ptr(entry)) {
110 unsigned long siboff = get_slot_offset(parent, entry);
111 if (siboff < RADIX_TREE_MAP_SIZE) {
112 offset = siboff;
113 entry = rcu_dereference_raw(parent->slots[offset]);
114 }
115 }
116 #endif
117
118 *nodep = (void *)entry;
119 return offset;
120 }
121
122 static inline gfp_t root_gfp_mask(struct radix_tree_root *root)
123 {
124 return root->gfp_mask & __GFP_BITS_MASK;
125 }
126
127 static inline void tag_set(struct radix_tree_node *node, unsigned int tag,
128 int offset)
129 {
130 __set_bit(offset, node->tags[tag]);
131 }
132
133 static inline void tag_clear(struct radix_tree_node *node, unsigned int tag,
134 int offset)
135 {
136 __clear_bit(offset, node->tags[tag]);
137 }
138
139 static inline int tag_get(struct radix_tree_node *node, unsigned int tag,
140 int offset)
141 {
142 return test_bit(offset, node->tags[tag]);
143 }
144
145 static inline void root_tag_set(struct radix_tree_root *root, unsigned int tag)
146 {
147 root->gfp_mask |= (__force gfp_t)(1 << (tag + __GFP_BITS_SHIFT));
148 }
149
150 static inline void root_tag_clear(struct radix_tree_root *root, unsigned tag)
151 {
152 root->gfp_mask &= (__force gfp_t)~(1 << (tag + __GFP_BITS_SHIFT));
153 }
154
155 static inline void root_tag_clear_all(struct radix_tree_root *root)
156 {
157 root->gfp_mask &= __GFP_BITS_MASK;
158 }
159
160 static inline int root_tag_get(struct radix_tree_root *root, unsigned int tag)
161 {
162 return (__force int)root->gfp_mask & (1 << (tag + __GFP_BITS_SHIFT));
163 }
164
165 static inline unsigned root_tags_get(struct radix_tree_root *root)
166 {
167 return (__force unsigned)root->gfp_mask >> __GFP_BITS_SHIFT;
168 }
169
170 /*
171 * Returns 1 if any slot in the node has this tag set.
172 * Otherwise returns 0.
173 */
174 static inline int any_tag_set(struct radix_tree_node *node, unsigned int tag)
175 {
176 unsigned idx;
177 for (idx = 0; idx < RADIX_TREE_TAG_LONGS; idx++) {
178 if (node->tags[tag][idx])
179 return 1;
180 }
181 return 0;
182 }
183
184 /**
185 * radix_tree_find_next_bit - find the next set bit in a memory region
186 *
187 * @addr: The address to base the search on
188 * @size: The bitmap size in bits
189 * @offset: The bitnumber to start searching at
190 *
191 * Unrollable variant of find_next_bit() for constant size arrays.
192 * Tail bits starting from size to roundup(size, BITS_PER_LONG) must be zero.
193 * Returns next bit offset, or size if nothing found.
194 */
195 static __always_inline unsigned long
196 radix_tree_find_next_bit(const unsigned long *addr,
197 unsigned long size, unsigned long offset)
198 {
199 if (!__builtin_constant_p(size))
200 return find_next_bit(addr, size, offset);
201
202 if (offset < size) {
203 unsigned long tmp;
204
205 addr += offset / BITS_PER_LONG;
206 tmp = *addr >> (offset % BITS_PER_LONG);
207 if (tmp)
208 return __ffs(tmp) + offset;
209 offset = (offset + BITS_PER_LONG) & ~(BITS_PER_LONG - 1);
210 while (offset < size) {
211 tmp = *++addr;
212 if (tmp)
213 return __ffs(tmp) + offset;
214 offset += BITS_PER_LONG;
215 }
216 }
217 return size;
218 }
219
220 #ifndef __KERNEL__
221 static void dump_node(struct radix_tree_node *node, unsigned offset,
222 unsigned shift, unsigned long index)
223 {
224 unsigned long i;
225
226 pr_debug("radix node: %p offset %d tags %lx %lx %lx path %x count %d parent %p\n",
227 node, offset,
228 node->tags[0][0], node->tags[1][0], node->tags[2][0],
229 node->path, node->count, node->parent);
230
231 for (i = 0; i < RADIX_TREE_MAP_SIZE; i++) {
232 unsigned long first = index | (i << shift);
233 unsigned long last = first | ((1UL << shift) - 1);
234 void *entry = node->slots[i];
235 if (!entry)
236 continue;
237 if (is_sibling_entry(node, entry)) {
238 pr_debug("radix sblng %p offset %ld val %p indices %ld-%ld\n",
239 entry, i,
240 *(void **)indirect_to_ptr(entry),
241 first, last);
242 } else if (!radix_tree_is_indirect_ptr(entry)) {
243 pr_debug("radix entry %p offset %ld indices %ld-%ld\n",
244 entry, i, first, last);
245 } else {
246 dump_node(indirect_to_ptr(entry), i,
247 shift - RADIX_TREE_MAP_SHIFT, first);
248 }
249 }
250 }
251
252 /* For debug */
253 static void radix_tree_dump(struct radix_tree_root *root)
254 {
255 pr_debug("radix root: %p height %d rnode %p tags %x\n",
256 root, root->height, root->rnode,
257 root->gfp_mask >> __GFP_BITS_SHIFT);
258 if (!radix_tree_is_indirect_ptr(root->rnode))
259 return;
260 dump_node(indirect_to_ptr(root->rnode), 0,
261 (root->height - 1) * RADIX_TREE_MAP_SHIFT, 0);
262 }
263 #endif
264
265 /*
266 * This assumes that the caller has performed appropriate preallocation, and
267 * that the caller has pinned this thread of control to the current CPU.
268 */
269 static struct radix_tree_node *
270 radix_tree_node_alloc(struct radix_tree_root *root)
271 {
272 struct radix_tree_node *ret = NULL;
273 gfp_t gfp_mask = root_gfp_mask(root);
274
275 /*
276 * Preload code isn't irq safe and it doesn't make sense to use
277 * preloading during an interrupt anyway as all the allocations have
278 * to be atomic. So just do normal allocation when in interrupt.
279 */
280 if (!gfpflags_allow_blocking(gfp_mask) && !in_interrupt()) {
281 struct radix_tree_preload *rtp;
282
283 /*
284 * Even if the caller has preloaded, try to allocate from the
285 * cache first for the new node to get accounted.
286 */
287 ret = kmem_cache_alloc(radix_tree_node_cachep,
288 gfp_mask | __GFP_ACCOUNT | __GFP_NOWARN);
289 if (ret)
290 goto out;
291
292 /*
293 * Provided the caller has preloaded here, we will always
294 * succeed in getting a node here (and never reach
295 * kmem_cache_alloc)
296 */
297 rtp = this_cpu_ptr(&radix_tree_preloads);
298 if (rtp->nr) {
299 ret = rtp->nodes;
300 rtp->nodes = ret->private_data;
301 ret->private_data = NULL;
302 rtp->nr--;
303 }
304 /*
305 * Update the allocation stack trace as this is more useful
306 * for debugging.
307 */
308 kmemleak_update_trace(ret);
309 goto out;
310 }
311 ret = kmem_cache_alloc(radix_tree_node_cachep,
312 gfp_mask | __GFP_ACCOUNT);
313 out:
314 BUG_ON(radix_tree_is_indirect_ptr(ret));
315 return ret;
316 }
317
318 static void radix_tree_node_rcu_free(struct rcu_head *head)
319 {
320 struct radix_tree_node *node =
321 container_of(head, struct radix_tree_node, rcu_head);
322 int i;
323
324 /*
325 * must only free zeroed nodes into the slab. radix_tree_shrink
326 * can leave us with a non-NULL entry in the first slot, so clear
327 * that here to make sure.
328 */
329 for (i = 0; i < RADIX_TREE_MAX_TAGS; i++)
330 tag_clear(node, i, 0);
331
332 node->slots[0] = NULL;
333 node->count = 0;
334
335 kmem_cache_free(radix_tree_node_cachep, node);
336 }
337
338 static inline void
339 radix_tree_node_free(struct radix_tree_node *node)
340 {
341 call_rcu(&node->rcu_head, radix_tree_node_rcu_free);
342 }
343
344 /*
345 * Load up this CPU's radix_tree_node buffer with sufficient objects to
346 * ensure that the addition of a single element in the tree cannot fail. On
347 * success, return zero, with preemption disabled. On error, return -ENOMEM
348 * with preemption not disabled.
349 *
350 * To make use of this facility, the radix tree must be initialised without
351 * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
352 */
353 static int __radix_tree_preload(gfp_t gfp_mask)
354 {
355 struct radix_tree_preload *rtp;
356 struct radix_tree_node *node;
357 int ret = -ENOMEM;
358
359 preempt_disable();
360 rtp = this_cpu_ptr(&radix_tree_preloads);
361 while (rtp->nr < RADIX_TREE_PRELOAD_SIZE) {
362 preempt_enable();
363 node = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
364 if (node == NULL)
365 goto out;
366 preempt_disable();
367 rtp = this_cpu_ptr(&radix_tree_preloads);
368 if (rtp->nr < RADIX_TREE_PRELOAD_SIZE) {
369 node->private_data = rtp->nodes;
370 rtp->nodes = node;
371 rtp->nr++;
372 } else {
373 kmem_cache_free(radix_tree_node_cachep, node);
374 }
375 }
376 ret = 0;
377 out:
378 return ret;
379 }
380
381 /*
382 * Load up this CPU's radix_tree_node buffer with sufficient objects to
383 * ensure that the addition of a single element in the tree cannot fail. On
384 * success, return zero, with preemption disabled. On error, return -ENOMEM
385 * with preemption not disabled.
386 *
387 * To make use of this facility, the radix tree must be initialised without
388 * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
389 */
390 int radix_tree_preload(gfp_t gfp_mask)
391 {
392 /* Warn on non-sensical use... */
393 WARN_ON_ONCE(!gfpflags_allow_blocking(gfp_mask));
394 return __radix_tree_preload(gfp_mask);
395 }
396 EXPORT_SYMBOL(radix_tree_preload);
397
398 /*
399 * The same as above function, except we don't guarantee preloading happens.
400 * We do it, if we decide it helps. On success, return zero with preemption
401 * disabled. On error, return -ENOMEM with preemption not disabled.
402 */
403 int radix_tree_maybe_preload(gfp_t gfp_mask)
404 {
405 if (gfpflags_allow_blocking(gfp_mask))
406 return __radix_tree_preload(gfp_mask);
407 /* Preloading doesn't help anything with this gfp mask, skip it */
408 preempt_disable();
409 return 0;
410 }
411 EXPORT_SYMBOL(radix_tree_maybe_preload);
412
413 /*
414 * Return the maximum key which can be store into a
415 * radix tree with height HEIGHT.
416 */
417 static inline unsigned long radix_tree_maxindex(unsigned int height)
418 {
419 return height_to_maxindex[height];
420 }
421
422 static inline unsigned long node_maxindex(struct radix_tree_node *node)
423 {
424 return radix_tree_maxindex(node->path & RADIX_TREE_HEIGHT_MASK);
425 }
426
427 static unsigned radix_tree_load_root(struct radix_tree_root *root,
428 struct radix_tree_node **nodep, unsigned long *maxindex)
429 {
430 struct radix_tree_node *node = rcu_dereference_raw(root->rnode);
431
432 *nodep = node;
433
434 if (likely(radix_tree_is_indirect_ptr(node))) {
435 node = indirect_to_ptr(node);
436 *maxindex = node_maxindex(node);
437 return (node->path & RADIX_TREE_HEIGHT_MASK) *
438 RADIX_TREE_MAP_SHIFT;
439 }
440
441 *maxindex = 0;
442 return 0;
443 }
444
445 /*
446 * Extend a radix tree so it can store key @index.
447 */
448 static int radix_tree_extend(struct radix_tree_root *root,
449 unsigned long index)
450 {
451 struct radix_tree_node *slot;
452 unsigned int height;
453 int tag;
454
455 /* Figure out what the height should be. */
456 height = root->height + 1;
457 while (index > radix_tree_maxindex(height))
458 height++;
459
460 if (root->rnode == NULL) {
461 root->height = height;
462 goto out;
463 }
464
465 do {
466 unsigned int newheight;
467 struct radix_tree_node *node = radix_tree_node_alloc(root);
468
469 if (!node)
470 return -ENOMEM;
471
472 /* Propagate the aggregated tag info into the new root */
473 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
474 if (root_tag_get(root, tag))
475 tag_set(node, tag, 0);
476 }
477
478 /* Increase the height. */
479 newheight = root->height+1;
480 BUG_ON(newheight & ~RADIX_TREE_HEIGHT_MASK);
481 node->path = newheight;
482 node->count = 1;
483 node->parent = NULL;
484 slot = root->rnode;
485 if (radix_tree_is_indirect_ptr(slot)) {
486 slot = indirect_to_ptr(slot);
487 slot->parent = node;
488 slot = ptr_to_indirect(slot);
489 }
490 node->slots[0] = slot;
491 node = ptr_to_indirect(node);
492 rcu_assign_pointer(root->rnode, node);
493 root->height = newheight;
494 } while (height > root->height);
495 out:
496 return height * RADIX_TREE_MAP_SHIFT;
497 }
498
499 /**
500 * __radix_tree_create - create a slot in a radix tree
501 * @root: radix tree root
502 * @index: index key
503 * @order: index occupies 2^order aligned slots
504 * @nodep: returns node
505 * @slotp: returns slot
506 *
507 * Create, if necessary, and return the node and slot for an item
508 * at position @index in the radix tree @root.
509 *
510 * Until there is more than one item in the tree, no nodes are
511 * allocated and @root->rnode is used as a direct slot instead of
512 * pointing to a node, in which case *@nodep will be NULL.
513 *
514 * Returns -ENOMEM, or 0 for success.
515 */
516 int __radix_tree_create(struct radix_tree_root *root, unsigned long index,
517 unsigned order, struct radix_tree_node **nodep,
518 void ***slotp)
519 {
520 struct radix_tree_node *node = NULL, *slot;
521 unsigned long maxindex;
522 unsigned int height, shift, offset;
523 unsigned long max = index | ((1UL << order) - 1);
524
525 shift = radix_tree_load_root(root, &slot, &maxindex);
526
527 /* Make sure the tree is high enough. */
528 if (max > maxindex) {
529 int error = radix_tree_extend(root, max);
530 if (error < 0)
531 return error;
532 shift = error;
533 slot = root->rnode;
534 if (order == shift) {
535 shift += RADIX_TREE_MAP_SHIFT;
536 root->height++;
537 }
538 }
539
540 height = root->height;
541
542 offset = 0; /* uninitialised var warning */
543 while (shift > order) {
544 if (slot == NULL) {
545 /* Have to add a child node. */
546 slot = radix_tree_node_alloc(root);
547 if (!slot)
548 return -ENOMEM;
549 slot->path = height;
550 slot->parent = node;
551 if (node) {
552 rcu_assign_pointer(node->slots[offset],
553 ptr_to_indirect(slot));
554 node->count++;
555 slot->path |= offset << RADIX_TREE_HEIGHT_SHIFT;
556 } else
557 rcu_assign_pointer(root->rnode,
558 ptr_to_indirect(slot));
559 } else if (!radix_tree_is_indirect_ptr(slot))
560 break;
561
562 /* Go a level down */
563 height--;
564 shift -= RADIX_TREE_MAP_SHIFT;
565 node = indirect_to_ptr(slot);
566 offset = (index >> shift) & RADIX_TREE_MAP_MASK;
567 offset = radix_tree_descend(node, &slot, offset);
568 }
569
570 #ifdef CONFIG_RADIX_TREE_MULTIORDER
571 /* Insert pointers to the canonical entry */
572 if (order > shift) {
573 int i, n = 1 << (order - shift);
574 offset = offset & ~(n - 1);
575 slot = ptr_to_indirect(&node->slots[offset]);
576 for (i = 0; i < n; i++) {
577 if (node->slots[offset + i])
578 return -EEXIST;
579 }
580
581 for (i = 1; i < n; i++) {
582 rcu_assign_pointer(node->slots[offset + i], slot);
583 node->count++;
584 }
585 }
586 #endif
587
588 if (nodep)
589 *nodep = node;
590 if (slotp)
591 *slotp = node ? node->slots + offset : (void **)&root->rnode;
592 return 0;
593 }
594
595 /**
596 * __radix_tree_insert - insert into a radix tree
597 * @root: radix tree root
598 * @index: index key
599 * @order: key covers the 2^order indices around index
600 * @item: item to insert
601 *
602 * Insert an item into the radix tree at position @index.
603 */
604 int __radix_tree_insert(struct radix_tree_root *root, unsigned long index,
605 unsigned order, void *item)
606 {
607 struct radix_tree_node *node;
608 void **slot;
609 int error;
610
611 BUG_ON(radix_tree_is_indirect_ptr(item));
612
613 error = __radix_tree_create(root, index, order, &node, &slot);
614 if (error)
615 return error;
616 if (*slot != NULL)
617 return -EEXIST;
618 rcu_assign_pointer(*slot, item);
619
620 if (node) {
621 unsigned offset = get_slot_offset(node, slot);
622 node->count++;
623 BUG_ON(tag_get(node, 0, offset));
624 BUG_ON(tag_get(node, 1, offset));
625 BUG_ON(tag_get(node, 2, offset));
626 } else {
627 BUG_ON(root_tags_get(root));
628 }
629
630 return 0;
631 }
632 EXPORT_SYMBOL(__radix_tree_insert);
633
634 /**
635 * __radix_tree_lookup - lookup an item in a radix tree
636 * @root: radix tree root
637 * @index: index key
638 * @nodep: returns node
639 * @slotp: returns slot
640 *
641 * Lookup and return the item at position @index in the radix
642 * tree @root.
643 *
644 * Until there is more than one item in the tree, no nodes are
645 * allocated and @root->rnode is used as a direct slot instead of
646 * pointing to a node, in which case *@nodep will be NULL.
647 */
648 void *__radix_tree_lookup(struct radix_tree_root *root, unsigned long index,
649 struct radix_tree_node **nodep, void ***slotp)
650 {
651 struct radix_tree_node *node, *parent;
652 unsigned long maxindex;
653 unsigned int shift;
654 void **slot;
655
656 restart:
657 parent = NULL;
658 slot = (void **)&root->rnode;
659 shift = radix_tree_load_root(root, &node, &maxindex);
660 if (index > maxindex)
661 return NULL;
662
663 while (radix_tree_is_indirect_ptr(node)) {
664 unsigned offset;
665
666 if (node == RADIX_TREE_RETRY)
667 goto restart;
668 parent = indirect_to_ptr(node);
669 shift -= RADIX_TREE_MAP_SHIFT;
670 offset = (index >> shift) & RADIX_TREE_MAP_MASK;
671 offset = radix_tree_descend(parent, &node, offset);
672 slot = parent->slots + offset;
673 }
674
675 if (nodep)
676 *nodep = parent;
677 if (slotp)
678 *slotp = slot;
679 return node;
680 }
681
682 /**
683 * radix_tree_lookup_slot - lookup a slot in a radix tree
684 * @root: radix tree root
685 * @index: index key
686 *
687 * Returns: the slot corresponding to the position @index in the
688 * radix tree @root. This is useful for update-if-exists operations.
689 *
690 * This function can be called under rcu_read_lock iff the slot is not
691 * modified by radix_tree_replace_slot, otherwise it must be called
692 * exclusive from other writers. Any dereference of the slot must be done
693 * using radix_tree_deref_slot.
694 */
695 void **radix_tree_lookup_slot(struct radix_tree_root *root, unsigned long index)
696 {
697 void **slot;
698
699 if (!__radix_tree_lookup(root, index, NULL, &slot))
700 return NULL;
701 return slot;
702 }
703 EXPORT_SYMBOL(radix_tree_lookup_slot);
704
705 /**
706 * radix_tree_lookup - perform lookup operation on a radix tree
707 * @root: radix tree root
708 * @index: index key
709 *
710 * Lookup the item at the position @index in the radix tree @root.
711 *
712 * This function can be called under rcu_read_lock, however the caller
713 * must manage lifetimes of leaf nodes (eg. RCU may also be used to free
714 * them safely). No RCU barriers are required to access or modify the
715 * returned item, however.
716 */
717 void *radix_tree_lookup(struct radix_tree_root *root, unsigned long index)
718 {
719 return __radix_tree_lookup(root, index, NULL, NULL);
720 }
721 EXPORT_SYMBOL(radix_tree_lookup);
722
723 /**
724 * radix_tree_tag_set - set a tag on a radix tree node
725 * @root: radix tree root
726 * @index: index key
727 * @tag: tag index
728 *
729 * Set the search tag (which must be < RADIX_TREE_MAX_TAGS)
730 * corresponding to @index in the radix tree. From
731 * the root all the way down to the leaf node.
732 *
733 * Returns the address of the tagged item. Setting a tag on a not-present
734 * item is a bug.
735 */
736 void *radix_tree_tag_set(struct radix_tree_root *root,
737 unsigned long index, unsigned int tag)
738 {
739 struct radix_tree_node *node, *parent;
740 unsigned long maxindex;
741 unsigned int shift;
742
743 shift = radix_tree_load_root(root, &node, &maxindex);
744 BUG_ON(index > maxindex);
745
746 while (radix_tree_is_indirect_ptr(node)) {
747 unsigned offset;
748
749 shift -= RADIX_TREE_MAP_SHIFT;
750 offset = (index >> shift) & RADIX_TREE_MAP_MASK;
751
752 parent = indirect_to_ptr(node);
753 offset = radix_tree_descend(parent, &node, offset);
754 BUG_ON(!node);
755
756 if (!tag_get(parent, tag, offset))
757 tag_set(parent, tag, offset);
758 }
759
760 /* set the root's tag bit */
761 if (!root_tag_get(root, tag))
762 root_tag_set(root, tag);
763
764 return node;
765 }
766 EXPORT_SYMBOL(radix_tree_tag_set);
767
768 /**
769 * radix_tree_tag_clear - clear a tag on a radix tree node
770 * @root: radix tree root
771 * @index: index key
772 * @tag: tag index
773 *
774 * Clear the search tag (which must be < RADIX_TREE_MAX_TAGS)
775 * corresponding to @index in the radix tree. If this causes
776 * the leaf node to have no tags set then clear the tag in the
777 * next-to-leaf node, etc.
778 *
779 * Returns the address of the tagged item on success, else NULL. ie:
780 * has the same return value and semantics as radix_tree_lookup().
781 */
782 void *radix_tree_tag_clear(struct radix_tree_root *root,
783 unsigned long index, unsigned int tag)
784 {
785 struct radix_tree_node *node, *parent;
786 unsigned long maxindex;
787 unsigned int shift;
788 int uninitialized_var(offset);
789
790 shift = radix_tree_load_root(root, &node, &maxindex);
791 if (index > maxindex)
792 return NULL;
793
794 parent = NULL;
795
796 while (radix_tree_is_indirect_ptr(node)) {
797 shift -= RADIX_TREE_MAP_SHIFT;
798 offset = (index >> shift) & RADIX_TREE_MAP_MASK;
799
800 parent = indirect_to_ptr(node);
801 offset = radix_tree_descend(parent, &node, offset);
802 }
803
804 if (node == NULL)
805 goto out;
806
807 index >>= shift;
808
809 while (parent) {
810 if (!tag_get(parent, tag, offset))
811 goto out;
812 tag_clear(parent, tag, offset);
813 if (any_tag_set(parent, tag))
814 goto out;
815
816 index >>= RADIX_TREE_MAP_SHIFT;
817 offset = index & RADIX_TREE_MAP_MASK;
818 parent = parent->parent;
819 }
820
821 /* clear the root's tag bit */
822 if (root_tag_get(root, tag))
823 root_tag_clear(root, tag);
824
825 out:
826 return node;
827 }
828 EXPORT_SYMBOL(radix_tree_tag_clear);
829
830 /**
831 * radix_tree_tag_get - get a tag on a radix tree node
832 * @root: radix tree root
833 * @index: index key
834 * @tag: tag index (< RADIX_TREE_MAX_TAGS)
835 *
836 * Return values:
837 *
838 * 0: tag not present or not set
839 * 1: tag set
840 *
841 * Note that the return value of this function may not be relied on, even if
842 * the RCU lock is held, unless tag modification and node deletion are excluded
843 * from concurrency.
844 */
845 int radix_tree_tag_get(struct radix_tree_root *root,
846 unsigned long index, unsigned int tag)
847 {
848 struct radix_tree_node *node, *parent;
849 unsigned long maxindex;
850 unsigned int shift;
851
852 if (!root_tag_get(root, tag))
853 return 0;
854
855 shift = radix_tree_load_root(root, &node, &maxindex);
856 if (index > maxindex)
857 return 0;
858 if (node == NULL)
859 return 0;
860
861 while (radix_tree_is_indirect_ptr(node)) {
862 int offset;
863
864 shift -= RADIX_TREE_MAP_SHIFT;
865 offset = (index >> shift) & RADIX_TREE_MAP_MASK;
866
867 parent = indirect_to_ptr(node);
868 offset = radix_tree_descend(parent, &node, offset);
869
870 if (!node)
871 return 0;
872 if (!tag_get(parent, tag, offset))
873 return 0;
874 if (node == RADIX_TREE_RETRY)
875 break;
876 }
877
878 return 1;
879 }
880 EXPORT_SYMBOL(radix_tree_tag_get);
881
882 static inline void __set_iter_shift(struct radix_tree_iter *iter,
883 unsigned int shift)
884 {
885 #ifdef CONFIG_RADIX_TREE_MULTIORDER
886 iter->shift = shift;
887 #endif
888 }
889
890 /**
891 * radix_tree_next_chunk - find next chunk of slots for iteration
892 *
893 * @root: radix tree root
894 * @iter: iterator state
895 * @flags: RADIX_TREE_ITER_* flags and tag index
896 * Returns: pointer to chunk first slot, or NULL if iteration is over
897 */
898 void **radix_tree_next_chunk(struct radix_tree_root *root,
899 struct radix_tree_iter *iter, unsigned flags)
900 {
901 unsigned shift, tag = flags & RADIX_TREE_ITER_TAG_MASK;
902 struct radix_tree_node *rnode, *node;
903 unsigned long index, offset, maxindex;
904
905 if ((flags & RADIX_TREE_ITER_TAGGED) && !root_tag_get(root, tag))
906 return NULL;
907
908 /*
909 * Catch next_index overflow after ~0UL. iter->index never overflows
910 * during iterating; it can be zero only at the beginning.
911 * And we cannot overflow iter->next_index in a single step,
912 * because RADIX_TREE_MAP_SHIFT < BITS_PER_LONG.
913 *
914 * This condition also used by radix_tree_next_slot() to stop
915 * contiguous iterating, and forbid swithing to the next chunk.
916 */
917 index = iter->next_index;
918 if (!index && iter->index)
919 return NULL;
920
921 restart:
922 shift = radix_tree_load_root(root, &rnode, &maxindex);
923 if (index > maxindex)
924 return NULL;
925
926 if (radix_tree_is_indirect_ptr(rnode)) {
927 rnode = indirect_to_ptr(rnode);
928 } else if (rnode) {
929 /* Single-slot tree */
930 iter->index = index;
931 iter->next_index = maxindex + 1;
932 iter->tags = 1;
933 __set_iter_shift(iter, shift);
934 return (void **)&root->rnode;
935 } else
936 return NULL;
937
938 shift -= RADIX_TREE_MAP_SHIFT;
939 offset = index >> shift;
940
941 node = rnode;
942 while (1) {
943 struct radix_tree_node *slot;
944 unsigned new_off = radix_tree_descend(node, &slot, offset);
945
946 if (new_off < offset) {
947 offset = new_off;
948 index &= ~((RADIX_TREE_MAP_SIZE << shift) - 1);
949 index |= offset << shift;
950 }
951
952 if ((flags & RADIX_TREE_ITER_TAGGED) ?
953 !tag_get(node, tag, offset) : !slot) {
954 /* Hole detected */
955 if (flags & RADIX_TREE_ITER_CONTIG)
956 return NULL;
957
958 if (flags & RADIX_TREE_ITER_TAGGED)
959 offset = radix_tree_find_next_bit(
960 node->tags[tag],
961 RADIX_TREE_MAP_SIZE,
962 offset + 1);
963 else
964 while (++offset < RADIX_TREE_MAP_SIZE) {
965 void *slot = node->slots[offset];
966 if (is_sibling_entry(node, slot))
967 continue;
968 if (slot)
969 break;
970 }
971 index &= ~((RADIX_TREE_MAP_SIZE << shift) - 1);
972 index += offset << shift;
973 /* Overflow after ~0UL */
974 if (!index)
975 return NULL;
976 if (offset == RADIX_TREE_MAP_SIZE)
977 goto restart;
978 slot = rcu_dereference_raw(node->slots[offset]);
979 }
980
981 if ((slot == NULL) || (slot == RADIX_TREE_RETRY))
982 goto restart;
983 if (!radix_tree_is_indirect_ptr(slot))
984 break;
985
986 node = indirect_to_ptr(slot);
987 shift -= RADIX_TREE_MAP_SHIFT;
988 offset = (index >> shift) & RADIX_TREE_MAP_MASK;
989 }
990
991 /* Update the iterator state */
992 iter->index = index & ~((1 << shift) - 1);
993 iter->next_index = (index | ((RADIX_TREE_MAP_SIZE << shift) - 1)) + 1;
994 __set_iter_shift(iter, shift);
995
996 /* Construct iter->tags bit-mask from node->tags[tag] array */
997 if (flags & RADIX_TREE_ITER_TAGGED) {
998 unsigned tag_long, tag_bit;
999
1000 tag_long = offset / BITS_PER_LONG;
1001 tag_bit = offset % BITS_PER_LONG;
1002 iter->tags = node->tags[tag][tag_long] >> tag_bit;
1003 /* This never happens if RADIX_TREE_TAG_LONGS == 1 */
1004 if (tag_long < RADIX_TREE_TAG_LONGS - 1) {
1005 /* Pick tags from next element */
1006 if (tag_bit)
1007 iter->tags |= node->tags[tag][tag_long + 1] <<
1008 (BITS_PER_LONG - tag_bit);
1009 /* Clip chunk size, here only BITS_PER_LONG tags */
1010 iter->next_index = index + BITS_PER_LONG;
1011 }
1012 }
1013
1014 return node->slots + offset;
1015 }
1016 EXPORT_SYMBOL(radix_tree_next_chunk);
1017
1018 /**
1019 * radix_tree_range_tag_if_tagged - for each item in given range set given
1020 * tag if item has another tag set
1021 * @root: radix tree root
1022 * @first_indexp: pointer to a starting index of a range to scan
1023 * @last_index: last index of a range to scan
1024 * @nr_to_tag: maximum number items to tag
1025 * @iftag: tag index to test
1026 * @settag: tag index to set if tested tag is set
1027 *
1028 * This function scans range of radix tree from first_index to last_index
1029 * (inclusive). For each item in the range if iftag is set, the function sets
1030 * also settag. The function stops either after tagging nr_to_tag items or
1031 * after reaching last_index.
1032 *
1033 * The tags must be set from the leaf level only and propagated back up the
1034 * path to the root. We must do this so that we resolve the full path before
1035 * setting any tags on intermediate nodes. If we set tags as we descend, then
1036 * we can get to the leaf node and find that the index that has the iftag
1037 * set is outside the range we are scanning. This reults in dangling tags and
1038 * can lead to problems with later tag operations (e.g. livelocks on lookups).
1039 *
1040 * The function returns the number of leaves where the tag was set and sets
1041 * *first_indexp to the first unscanned index.
1042 * WARNING! *first_indexp can wrap if last_index is ULONG_MAX. Caller must
1043 * be prepared to handle that.
1044 */
1045 unsigned long radix_tree_range_tag_if_tagged(struct radix_tree_root *root,
1046 unsigned long *first_indexp, unsigned long last_index,
1047 unsigned long nr_to_tag,
1048 unsigned int iftag, unsigned int settag)
1049 {
1050 struct radix_tree_node *slot, *node = NULL;
1051 unsigned long maxindex;
1052 unsigned int shift = radix_tree_load_root(root, &slot, &maxindex);
1053 unsigned long tagged = 0;
1054 unsigned long index = *first_indexp;
1055
1056 last_index = min(last_index, maxindex);
1057 if (index > last_index)
1058 return 0;
1059 if (!nr_to_tag)
1060 return 0;
1061 if (!root_tag_get(root, iftag)) {
1062 *first_indexp = last_index + 1;
1063 return 0;
1064 }
1065 if (!radix_tree_is_indirect_ptr(slot)) {
1066 *first_indexp = last_index + 1;
1067 root_tag_set(root, settag);
1068 return 1;
1069 }
1070
1071 node = indirect_to_ptr(slot);
1072 shift -= RADIX_TREE_MAP_SHIFT;
1073
1074 for (;;) {
1075 unsigned long upindex;
1076 unsigned offset;
1077
1078 offset = (index >> shift) & RADIX_TREE_MAP_MASK;
1079 offset = radix_tree_descend(node, &slot, offset);
1080 if (!slot)
1081 goto next;
1082 if (!tag_get(node, iftag, offset))
1083 goto next;
1084 /* Sibling slots never have tags set on them */
1085 if (radix_tree_is_indirect_ptr(slot)) {
1086 node = indirect_to_ptr(slot);
1087 shift -= RADIX_TREE_MAP_SHIFT;
1088 continue;
1089 }
1090
1091 /* tag the leaf */
1092 tagged++;
1093 tag_set(node, settag, offset);
1094
1095 slot = node->parent;
1096 /* walk back up the path tagging interior nodes */
1097 upindex = index >> shift;
1098 while (slot) {
1099 upindex >>= RADIX_TREE_MAP_SHIFT;
1100 offset = upindex & RADIX_TREE_MAP_MASK;
1101
1102 /* stop if we find a node with the tag already set */
1103 if (tag_get(slot, settag, offset))
1104 break;
1105 tag_set(slot, settag, offset);
1106 slot = slot->parent;
1107 }
1108
1109 next:
1110 /* Go to next item at level determined by 'shift' */
1111 index = ((index >> shift) + 1) << shift;
1112 /* Overflow can happen when last_index is ~0UL... */
1113 if (index > last_index || !index)
1114 break;
1115 offset = (index >> shift) & RADIX_TREE_MAP_MASK;
1116 while (offset == 0) {
1117 /*
1118 * We've fully scanned this node. Go up. Because
1119 * last_index is guaranteed to be in the tree, what
1120 * we do below cannot wander astray.
1121 */
1122 node = node->parent;
1123 shift += RADIX_TREE_MAP_SHIFT;
1124 offset = (index >> shift) & RADIX_TREE_MAP_MASK;
1125 }
1126 if (is_sibling_entry(node, node->slots[offset]))
1127 goto next;
1128 if (tagged >= nr_to_tag)
1129 break;
1130 }
1131 /*
1132 * We need not to tag the root tag if there is no tag which is set with
1133 * settag within the range from *first_indexp to last_index.
1134 */
1135 if (tagged > 0)
1136 root_tag_set(root, settag);
1137 *first_indexp = index;
1138
1139 return tagged;
1140 }
1141 EXPORT_SYMBOL(radix_tree_range_tag_if_tagged);
1142
1143 /**
1144 * radix_tree_gang_lookup - perform multiple lookup on a radix tree
1145 * @root: radix tree root
1146 * @results: where the results of the lookup are placed
1147 * @first_index: start the lookup from this key
1148 * @max_items: place up to this many items at *results
1149 *
1150 * Performs an index-ascending scan of the tree for present items. Places
1151 * them at *@results and returns the number of items which were placed at
1152 * *@results.
1153 *
1154 * The implementation is naive.
1155 *
1156 * Like radix_tree_lookup, radix_tree_gang_lookup may be called under
1157 * rcu_read_lock. In this case, rather than the returned results being
1158 * an atomic snapshot of the tree at a single point in time, the
1159 * semantics of an RCU protected gang lookup are as though multiple
1160 * radix_tree_lookups have been issued in individual locks, and results
1161 * stored in 'results'.
1162 */
1163 unsigned int
1164 radix_tree_gang_lookup(struct radix_tree_root *root, void **results,
1165 unsigned long first_index, unsigned int max_items)
1166 {
1167 struct radix_tree_iter iter;
1168 void **slot;
1169 unsigned int ret = 0;
1170
1171 if (unlikely(!max_items))
1172 return 0;
1173
1174 radix_tree_for_each_slot(slot, root, &iter, first_index) {
1175 results[ret] = rcu_dereference_raw(*slot);
1176 if (!results[ret])
1177 continue;
1178 if (radix_tree_is_indirect_ptr(results[ret])) {
1179 slot = radix_tree_iter_retry(&iter);
1180 continue;
1181 }
1182 if (++ret == max_items)
1183 break;
1184 }
1185
1186 return ret;
1187 }
1188 EXPORT_SYMBOL(radix_tree_gang_lookup);
1189
1190 /**
1191 * radix_tree_gang_lookup_slot - perform multiple slot lookup on radix tree
1192 * @root: radix tree root
1193 * @results: where the results of the lookup are placed
1194 * @indices: where their indices should be placed (but usually NULL)
1195 * @first_index: start the lookup from this key
1196 * @max_items: place up to this many items at *results
1197 *
1198 * Performs an index-ascending scan of the tree for present items. Places
1199 * their slots at *@results and returns the number of items which were
1200 * placed at *@results.
1201 *
1202 * The implementation is naive.
1203 *
1204 * Like radix_tree_gang_lookup as far as RCU and locking goes. Slots must
1205 * be dereferenced with radix_tree_deref_slot, and if using only RCU
1206 * protection, radix_tree_deref_slot may fail requiring a retry.
1207 */
1208 unsigned int
1209 radix_tree_gang_lookup_slot(struct radix_tree_root *root,
1210 void ***results, unsigned long *indices,
1211 unsigned long first_index, unsigned int max_items)
1212 {
1213 struct radix_tree_iter iter;
1214 void **slot;
1215 unsigned int ret = 0;
1216
1217 if (unlikely(!max_items))
1218 return 0;
1219
1220 radix_tree_for_each_slot(slot, root, &iter, first_index) {
1221 results[ret] = slot;
1222 if (indices)
1223 indices[ret] = iter.index;
1224 if (++ret == max_items)
1225 break;
1226 }
1227
1228 return ret;
1229 }
1230 EXPORT_SYMBOL(radix_tree_gang_lookup_slot);
1231
1232 /**
1233 * radix_tree_gang_lookup_tag - perform multiple lookup on a radix tree
1234 * based on a tag
1235 * @root: radix tree root
1236 * @results: where the results of the lookup are placed
1237 * @first_index: start the lookup from this key
1238 * @max_items: place up to this many items at *results
1239 * @tag: the tag index (< RADIX_TREE_MAX_TAGS)
1240 *
1241 * Performs an index-ascending scan of the tree for present items which
1242 * have the tag indexed by @tag set. Places the items at *@results and
1243 * returns the number of items which were placed at *@results.
1244 */
1245 unsigned int
1246 radix_tree_gang_lookup_tag(struct radix_tree_root *root, void **results,
1247 unsigned long first_index, unsigned int max_items,
1248 unsigned int tag)
1249 {
1250 struct radix_tree_iter iter;
1251 void **slot;
1252 unsigned int ret = 0;
1253
1254 if (unlikely(!max_items))
1255 return 0;
1256
1257 radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
1258 results[ret] = rcu_dereference_raw(*slot);
1259 if (!results[ret])
1260 continue;
1261 if (radix_tree_is_indirect_ptr(results[ret])) {
1262 slot = radix_tree_iter_retry(&iter);
1263 continue;
1264 }
1265 if (++ret == max_items)
1266 break;
1267 }
1268
1269 return ret;
1270 }
1271 EXPORT_SYMBOL(radix_tree_gang_lookup_tag);
1272
1273 /**
1274 * radix_tree_gang_lookup_tag_slot - perform multiple slot lookup on a
1275 * radix tree based on a tag
1276 * @root: radix tree root
1277 * @results: where the results of the lookup are placed
1278 * @first_index: start the lookup from this key
1279 * @max_items: place up to this many items at *results
1280 * @tag: the tag index (< RADIX_TREE_MAX_TAGS)
1281 *
1282 * Performs an index-ascending scan of the tree for present items which
1283 * have the tag indexed by @tag set. Places the slots at *@results and
1284 * returns the number of slots which were placed at *@results.
1285 */
1286 unsigned int
1287 radix_tree_gang_lookup_tag_slot(struct radix_tree_root *root, void ***results,
1288 unsigned long first_index, unsigned int max_items,
1289 unsigned int tag)
1290 {
1291 struct radix_tree_iter iter;
1292 void **slot;
1293 unsigned int ret = 0;
1294
1295 if (unlikely(!max_items))
1296 return 0;
1297
1298 radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
1299 results[ret] = slot;
1300 if (++ret == max_items)
1301 break;
1302 }
1303
1304 return ret;
1305 }
1306 EXPORT_SYMBOL(radix_tree_gang_lookup_tag_slot);
1307
1308 #if defined(CONFIG_SHMEM) && defined(CONFIG_SWAP)
1309 #include <linux/sched.h> /* for cond_resched() */
1310
1311 struct locate_info {
1312 unsigned long found_index;
1313 bool stop;
1314 };
1315
1316 /*
1317 * This linear search is at present only useful to shmem_unuse_inode().
1318 */
1319 static unsigned long __locate(struct radix_tree_node *slot, void *item,
1320 unsigned long index, struct locate_info *info)
1321 {
1322 unsigned int shift, height;
1323 unsigned long i;
1324
1325 height = slot->path & RADIX_TREE_HEIGHT_MASK;
1326 shift = height * RADIX_TREE_MAP_SHIFT;
1327
1328 do {
1329 shift -= RADIX_TREE_MAP_SHIFT;
1330
1331 for (i = (index >> shift) & RADIX_TREE_MAP_MASK;
1332 i < RADIX_TREE_MAP_SIZE;
1333 i++, index += (1UL << shift)) {
1334 struct radix_tree_node *node =
1335 rcu_dereference_raw(slot->slots[i]);
1336 if (node == RADIX_TREE_RETRY)
1337 goto out;
1338 if (!radix_tree_is_indirect_ptr(node)) {
1339 if (node == item) {
1340 info->found_index = index;
1341 info->stop = true;
1342 goto out;
1343 }
1344 continue;
1345 }
1346 node = indirect_to_ptr(node);
1347 if (is_sibling_entry(slot, node))
1348 continue;
1349 slot = node;
1350 break;
1351 }
1352 if (i == RADIX_TREE_MAP_SIZE)
1353 break;
1354 } while (shift);
1355
1356 out:
1357 if ((index == 0) && (i == RADIX_TREE_MAP_SIZE))
1358 info->stop = true;
1359 return index;
1360 }
1361
1362 /**
1363 * radix_tree_locate_item - search through radix tree for item
1364 * @root: radix tree root
1365 * @item: item to be found
1366 *
1367 * Returns index where item was found, or -1 if not found.
1368 * Caller must hold no lock (since this time-consuming function needs
1369 * to be preemptible), and must check afterwards if item is still there.
1370 */
1371 unsigned long radix_tree_locate_item(struct radix_tree_root *root, void *item)
1372 {
1373 struct radix_tree_node *node;
1374 unsigned long max_index;
1375 unsigned long cur_index = 0;
1376 struct locate_info info = {
1377 .found_index = -1,
1378 .stop = false,
1379 };
1380
1381 do {
1382 rcu_read_lock();
1383 node = rcu_dereference_raw(root->rnode);
1384 if (!radix_tree_is_indirect_ptr(node)) {
1385 rcu_read_unlock();
1386 if (node == item)
1387 info.found_index = 0;
1388 break;
1389 }
1390
1391 node = indirect_to_ptr(node);
1392
1393 max_index = node_maxindex(node);
1394 if (cur_index > max_index) {
1395 rcu_read_unlock();
1396 break;
1397 }
1398
1399 cur_index = __locate(node, item, cur_index, &info);
1400 rcu_read_unlock();
1401 cond_resched();
1402 } while (!info.stop && cur_index <= max_index);
1403
1404 return info.found_index;
1405 }
1406 #else
1407 unsigned long radix_tree_locate_item(struct radix_tree_root *root, void *item)
1408 {
1409 return -1;
1410 }
1411 #endif /* CONFIG_SHMEM && CONFIG_SWAP */
1412
1413 /**
1414 * radix_tree_shrink - shrink height of a radix tree to minimal
1415 * @root radix tree root
1416 */
1417 static inline void radix_tree_shrink(struct radix_tree_root *root)
1418 {
1419 /* try to shrink tree height */
1420 while (root->height > 0) {
1421 struct radix_tree_node *to_free = root->rnode;
1422 struct radix_tree_node *slot;
1423
1424 BUG_ON(!radix_tree_is_indirect_ptr(to_free));
1425 to_free = indirect_to_ptr(to_free);
1426
1427 /*
1428 * The candidate node has more than one child, or its child
1429 * is not at the leftmost slot, or it is a multiorder entry,
1430 * we cannot shrink.
1431 */
1432 if (to_free->count != 1)
1433 break;
1434 slot = to_free->slots[0];
1435 if (!slot)
1436 break;
1437 if (!radix_tree_is_indirect_ptr(slot) && (root->height > 1))
1438 break;
1439
1440 if (radix_tree_is_indirect_ptr(slot)) {
1441 slot = indirect_to_ptr(slot);
1442 slot->parent = NULL;
1443 slot = ptr_to_indirect(slot);
1444 }
1445
1446 /*
1447 * We don't need rcu_assign_pointer(), since we are simply
1448 * moving the node from one part of the tree to another: if it
1449 * was safe to dereference the old pointer to it
1450 * (to_free->slots[0]), it will be safe to dereference the new
1451 * one (root->rnode) as far as dependent read barriers go.
1452 */
1453 root->rnode = slot;
1454 root->height--;
1455
1456 /*
1457 * We have a dilemma here. The node's slot[0] must not be
1458 * NULLed in case there are concurrent lookups expecting to
1459 * find the item. However if this was a bottom-level node,
1460 * then it may be subject to the slot pointer being visible
1461 * to callers dereferencing it. If item corresponding to
1462 * slot[0] is subsequently deleted, these callers would expect
1463 * their slot to become empty sooner or later.
1464 *
1465 * For example, lockless pagecache will look up a slot, deref
1466 * the page pointer, and if the page has 0 refcount it means it
1467 * was concurrently deleted from pagecache so try the deref
1468 * again. Fortunately there is already a requirement for logic
1469 * to retry the entire slot lookup -- the indirect pointer
1470 * problem (replacing direct root node with an indirect pointer
1471 * also results in a stale slot). So tag the slot as indirect
1472 * to force callers to retry.
1473 */
1474 if (!radix_tree_is_indirect_ptr(slot))
1475 to_free->slots[0] = RADIX_TREE_RETRY;
1476
1477 radix_tree_node_free(to_free);
1478 }
1479 }
1480
1481 /**
1482 * __radix_tree_delete_node - try to free node after clearing a slot
1483 * @root: radix tree root
1484 * @node: node containing @index
1485 *
1486 * After clearing the slot at @index in @node from radix tree
1487 * rooted at @root, call this function to attempt freeing the
1488 * node and shrinking the tree.
1489 *
1490 * Returns %true if @node was freed, %false otherwise.
1491 */
1492 bool __radix_tree_delete_node(struct radix_tree_root *root,
1493 struct radix_tree_node *node)
1494 {
1495 bool deleted = false;
1496
1497 do {
1498 struct radix_tree_node *parent;
1499
1500 if (node->count) {
1501 if (node == indirect_to_ptr(root->rnode)) {
1502 radix_tree_shrink(root);
1503 if (root->height == 0)
1504 deleted = true;
1505 }
1506 return deleted;
1507 }
1508
1509 parent = node->parent;
1510 if (parent) {
1511 unsigned int offset;
1512
1513 offset = node->path >> RADIX_TREE_HEIGHT_SHIFT;
1514 parent->slots[offset] = NULL;
1515 parent->count--;
1516 } else {
1517 root_tag_clear_all(root);
1518 root->height = 0;
1519 root->rnode = NULL;
1520 }
1521
1522 radix_tree_node_free(node);
1523 deleted = true;
1524
1525 node = parent;
1526 } while (node);
1527
1528 return deleted;
1529 }
1530
1531 static inline void delete_sibling_entries(struct radix_tree_node *node,
1532 void *ptr, unsigned offset)
1533 {
1534 #ifdef CONFIG_RADIX_TREE_MULTIORDER
1535 int i;
1536 for (i = 1; offset + i < RADIX_TREE_MAP_SIZE; i++) {
1537 if (node->slots[offset + i] != ptr)
1538 break;
1539 node->slots[offset + i] = NULL;
1540 node->count--;
1541 }
1542 #endif
1543 }
1544
1545 /**
1546 * radix_tree_delete_item - delete an item from a radix tree
1547 * @root: radix tree root
1548 * @index: index key
1549 * @item: expected item
1550 *
1551 * Remove @item at @index from the radix tree rooted at @root.
1552 *
1553 * Returns the address of the deleted item, or NULL if it was not present
1554 * or the entry at the given @index was not @item.
1555 */
1556 void *radix_tree_delete_item(struct radix_tree_root *root,
1557 unsigned long index, void *item)
1558 {
1559 struct radix_tree_node *node;
1560 unsigned int offset;
1561 void **slot;
1562 void *entry;
1563 int tag;
1564
1565 entry = __radix_tree_lookup(root, index, &node, &slot);
1566 if (!entry)
1567 return NULL;
1568
1569 if (item && entry != item)
1570 return NULL;
1571
1572 if (!node) {
1573 root_tag_clear_all(root);
1574 root->rnode = NULL;
1575 return entry;
1576 }
1577
1578 offset = get_slot_offset(node, slot);
1579
1580 /*
1581 * Clear all tags associated with the item to be deleted.
1582 * This way of doing it would be inefficient, but seldom is any set.
1583 */
1584 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
1585 if (tag_get(node, tag, offset))
1586 radix_tree_tag_clear(root, index, tag);
1587 }
1588
1589 delete_sibling_entries(node, ptr_to_indirect(slot), offset);
1590 node->slots[offset] = NULL;
1591 node->count--;
1592
1593 __radix_tree_delete_node(root, node);
1594
1595 return entry;
1596 }
1597 EXPORT_SYMBOL(radix_tree_delete_item);
1598
1599 /**
1600 * radix_tree_delete - delete an item from a radix tree
1601 * @root: radix tree root
1602 * @index: index key
1603 *
1604 * Remove the item at @index from the radix tree rooted at @root.
1605 *
1606 * Returns the address of the deleted item, or NULL if it was not present.
1607 */
1608 void *radix_tree_delete(struct radix_tree_root *root, unsigned long index)
1609 {
1610 return radix_tree_delete_item(root, index, NULL);
1611 }
1612 EXPORT_SYMBOL(radix_tree_delete);
1613
1614 /**
1615 * radix_tree_tagged - test whether any items in the tree are tagged
1616 * @root: radix tree root
1617 * @tag: tag to test
1618 */
1619 int radix_tree_tagged(struct radix_tree_root *root, unsigned int tag)
1620 {
1621 return root_tag_get(root, tag);
1622 }
1623 EXPORT_SYMBOL(radix_tree_tagged);
1624
1625 static void
1626 radix_tree_node_ctor(void *arg)
1627 {
1628 struct radix_tree_node *node = arg;
1629
1630 memset(node, 0, sizeof(*node));
1631 INIT_LIST_HEAD(&node->private_list);
1632 }
1633
1634 static __init unsigned long __maxindex(unsigned int height)
1635 {
1636 unsigned int width = height * RADIX_TREE_MAP_SHIFT;
1637 int shift = RADIX_TREE_INDEX_BITS - width;
1638
1639 if (shift < 0)
1640 return ~0UL;
1641 if (shift >= BITS_PER_LONG)
1642 return 0UL;
1643 return ~0UL >> shift;
1644 }
1645
1646 static __init void radix_tree_init_maxindex(void)
1647 {
1648 unsigned int i;
1649
1650 for (i = 0; i < ARRAY_SIZE(height_to_maxindex); i++)
1651 height_to_maxindex[i] = __maxindex(i);
1652 }
1653
1654 static int radix_tree_callback(struct notifier_block *nfb,
1655 unsigned long action, void *hcpu)
1656 {
1657 int cpu = (long)hcpu;
1658 struct radix_tree_preload *rtp;
1659 struct radix_tree_node *node;
1660
1661 /* Free per-cpu pool of preloaded nodes */
1662 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
1663 rtp = &per_cpu(radix_tree_preloads, cpu);
1664 while (rtp->nr) {
1665 node = rtp->nodes;
1666 rtp->nodes = node->private_data;
1667 kmem_cache_free(radix_tree_node_cachep, node);
1668 rtp->nr--;
1669 }
1670 }
1671 return NOTIFY_OK;
1672 }
1673
1674 void __init radix_tree_init(void)
1675 {
1676 radix_tree_node_cachep = kmem_cache_create("radix_tree_node",
1677 sizeof(struct radix_tree_node), 0,
1678 SLAB_PANIC | SLAB_RECLAIM_ACCOUNT,
1679 radix_tree_node_ctor);
1680 radix_tree_init_maxindex();
1681 hotcpu_notifier(radix_tree_callback, 0);
1682 }
This page took 0.065763 seconds and 5 git commands to generate.