radix-tree: tidy up __radix_tree_create()
[deliverable/linux.git] / lib / radix-tree.c
1 /*
2 * Copyright (C) 2001 Momchil Velikov
3 * Portions Copyright (C) 2001 Christoph Hellwig
4 * Copyright (C) 2005 SGI, Christoph Lameter
5 * Copyright (C) 2006 Nick Piggin
6 * Copyright (C) 2012 Konstantin Khlebnikov
7 * Copyright (C) 2016 Intel, Matthew Wilcox
8 * Copyright (C) 2016 Intel, Ross Zwisler
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License as
12 * published by the Free Software Foundation; either version 2, or (at
13 * your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23 */
24
25 #include <linux/errno.h>
26 #include <linux/init.h>
27 #include <linux/kernel.h>
28 #include <linux/export.h>
29 #include <linux/radix-tree.h>
30 #include <linux/percpu.h>
31 #include <linux/slab.h>
32 #include <linux/kmemleak.h>
33 #include <linux/notifier.h>
34 #include <linux/cpu.h>
35 #include <linux/string.h>
36 #include <linux/bitops.h>
37 #include <linux/rcupdate.h>
38 #include <linux/preempt.h> /* in_interrupt() */
39
40
41 /*
42 * Radix tree node cache.
43 */
44 static struct kmem_cache *radix_tree_node_cachep;
45
46 /*
47 * The radix tree is variable-height, so an insert operation not only has
48 * to build the branch to its corresponding item, it also has to build the
49 * branch to existing items if the size has to be increased (by
50 * radix_tree_extend).
51 *
52 * The worst case is a zero height tree with just a single item at index 0,
53 * and then inserting an item at index ULONG_MAX. This requires 2 new branches
54 * of RADIX_TREE_MAX_PATH size to be created, with only the root node shared.
55 * Hence:
56 */
57 #define RADIX_TREE_PRELOAD_SIZE (RADIX_TREE_MAX_PATH * 2 - 1)
58
59 /*
60 * Per-cpu pool of preloaded nodes
61 */
62 struct radix_tree_preload {
63 unsigned nr;
64 /* nodes->private_data points to next preallocated node */
65 struct radix_tree_node *nodes;
66 };
67 static DEFINE_PER_CPU(struct radix_tree_preload, radix_tree_preloads) = { 0, };
68
69 static inline void *node_to_entry(void *ptr)
70 {
71 return (void *)((unsigned long)ptr | RADIX_TREE_INTERNAL_NODE);
72 }
73
74 #define RADIX_TREE_RETRY node_to_entry(NULL)
75
76 #ifdef CONFIG_RADIX_TREE_MULTIORDER
77 /* Sibling slots point directly to another slot in the same node */
78 static inline bool is_sibling_entry(struct radix_tree_node *parent, void *node)
79 {
80 void **ptr = node;
81 return (parent->slots <= ptr) &&
82 (ptr < parent->slots + RADIX_TREE_MAP_SIZE);
83 }
84 #else
85 static inline bool is_sibling_entry(struct radix_tree_node *parent, void *node)
86 {
87 return false;
88 }
89 #endif
90
91 static inline unsigned long get_slot_offset(struct radix_tree_node *parent,
92 void **slot)
93 {
94 return slot - parent->slots;
95 }
96
97 static unsigned radix_tree_descend(struct radix_tree_node *parent,
98 struct radix_tree_node **nodep, unsigned offset)
99 {
100 void **entry = rcu_dereference_raw(parent->slots[offset]);
101
102 #ifdef CONFIG_RADIX_TREE_MULTIORDER
103 if (radix_tree_is_internal_node(entry)) {
104 unsigned long siboff = get_slot_offset(parent, entry);
105 if (siboff < RADIX_TREE_MAP_SIZE) {
106 offset = siboff;
107 entry = rcu_dereference_raw(parent->slots[offset]);
108 }
109 }
110 #endif
111
112 *nodep = (void *)entry;
113 return offset;
114 }
115
116 static inline gfp_t root_gfp_mask(struct radix_tree_root *root)
117 {
118 return root->gfp_mask & __GFP_BITS_MASK;
119 }
120
121 static inline void tag_set(struct radix_tree_node *node, unsigned int tag,
122 int offset)
123 {
124 __set_bit(offset, node->tags[tag]);
125 }
126
127 static inline void tag_clear(struct radix_tree_node *node, unsigned int tag,
128 int offset)
129 {
130 __clear_bit(offset, node->tags[tag]);
131 }
132
133 static inline int tag_get(struct radix_tree_node *node, unsigned int tag,
134 int offset)
135 {
136 return test_bit(offset, node->tags[tag]);
137 }
138
139 static inline void root_tag_set(struct radix_tree_root *root, unsigned int tag)
140 {
141 root->gfp_mask |= (__force gfp_t)(1 << (tag + __GFP_BITS_SHIFT));
142 }
143
144 static inline void root_tag_clear(struct radix_tree_root *root, unsigned tag)
145 {
146 root->gfp_mask &= (__force gfp_t)~(1 << (tag + __GFP_BITS_SHIFT));
147 }
148
149 static inline void root_tag_clear_all(struct radix_tree_root *root)
150 {
151 root->gfp_mask &= __GFP_BITS_MASK;
152 }
153
154 static inline int root_tag_get(struct radix_tree_root *root, unsigned int tag)
155 {
156 return (__force int)root->gfp_mask & (1 << (tag + __GFP_BITS_SHIFT));
157 }
158
159 static inline unsigned root_tags_get(struct radix_tree_root *root)
160 {
161 return (__force unsigned)root->gfp_mask >> __GFP_BITS_SHIFT;
162 }
163
164 /*
165 * Returns 1 if any slot in the node has this tag set.
166 * Otherwise returns 0.
167 */
168 static inline int any_tag_set(struct radix_tree_node *node, unsigned int tag)
169 {
170 unsigned idx;
171 for (idx = 0; idx < RADIX_TREE_TAG_LONGS; idx++) {
172 if (node->tags[tag][idx])
173 return 1;
174 }
175 return 0;
176 }
177
178 /**
179 * radix_tree_find_next_bit - find the next set bit in a memory region
180 *
181 * @addr: The address to base the search on
182 * @size: The bitmap size in bits
183 * @offset: The bitnumber to start searching at
184 *
185 * Unrollable variant of find_next_bit() for constant size arrays.
186 * Tail bits starting from size to roundup(size, BITS_PER_LONG) must be zero.
187 * Returns next bit offset, or size if nothing found.
188 */
189 static __always_inline unsigned long
190 radix_tree_find_next_bit(const unsigned long *addr,
191 unsigned long size, unsigned long offset)
192 {
193 if (!__builtin_constant_p(size))
194 return find_next_bit(addr, size, offset);
195
196 if (offset < size) {
197 unsigned long tmp;
198
199 addr += offset / BITS_PER_LONG;
200 tmp = *addr >> (offset % BITS_PER_LONG);
201 if (tmp)
202 return __ffs(tmp) + offset;
203 offset = (offset + BITS_PER_LONG) & ~(BITS_PER_LONG - 1);
204 while (offset < size) {
205 tmp = *++addr;
206 if (tmp)
207 return __ffs(tmp) + offset;
208 offset += BITS_PER_LONG;
209 }
210 }
211 return size;
212 }
213
214 #ifndef __KERNEL__
215 static void dump_node(struct radix_tree_node *node, unsigned long index)
216 {
217 unsigned long i;
218
219 pr_debug("radix node: %p offset %d tags %lx %lx %lx shift %d count %d parent %p\n",
220 node, node->offset,
221 node->tags[0][0], node->tags[1][0], node->tags[2][0],
222 node->shift, node->count, node->parent);
223
224 for (i = 0; i < RADIX_TREE_MAP_SIZE; i++) {
225 unsigned long first = index | (i << node->shift);
226 unsigned long last = first | ((1UL << node->shift) - 1);
227 void *entry = node->slots[i];
228 if (!entry)
229 continue;
230 if (is_sibling_entry(node, entry)) {
231 pr_debug("radix sblng %p offset %ld val %p indices %ld-%ld\n",
232 entry, i,
233 *(void **)entry_to_node(entry),
234 first, last);
235 } else if (!radix_tree_is_internal_node(entry)) {
236 pr_debug("radix entry %p offset %ld indices %ld-%ld\n",
237 entry, i, first, last);
238 } else {
239 dump_node(entry_to_node(entry), first);
240 }
241 }
242 }
243
244 /* For debug */
245 static void radix_tree_dump(struct radix_tree_root *root)
246 {
247 pr_debug("radix root: %p rnode %p tags %x\n",
248 root, root->rnode,
249 root->gfp_mask >> __GFP_BITS_SHIFT);
250 if (!radix_tree_is_internal_node(root->rnode))
251 return;
252 dump_node(entry_to_node(root->rnode), 0);
253 }
254 #endif
255
256 /*
257 * This assumes that the caller has performed appropriate preallocation, and
258 * that the caller has pinned this thread of control to the current CPU.
259 */
260 static struct radix_tree_node *
261 radix_tree_node_alloc(struct radix_tree_root *root)
262 {
263 struct radix_tree_node *ret = NULL;
264 gfp_t gfp_mask = root_gfp_mask(root);
265
266 /*
267 * Preload code isn't irq safe and it doesn't make sense to use
268 * preloading during an interrupt anyway as all the allocations have
269 * to be atomic. So just do normal allocation when in interrupt.
270 */
271 if (!gfpflags_allow_blocking(gfp_mask) && !in_interrupt()) {
272 struct radix_tree_preload *rtp;
273
274 /*
275 * Even if the caller has preloaded, try to allocate from the
276 * cache first for the new node to get accounted.
277 */
278 ret = kmem_cache_alloc(radix_tree_node_cachep,
279 gfp_mask | __GFP_ACCOUNT | __GFP_NOWARN);
280 if (ret)
281 goto out;
282
283 /*
284 * Provided the caller has preloaded here, we will always
285 * succeed in getting a node here (and never reach
286 * kmem_cache_alloc)
287 */
288 rtp = this_cpu_ptr(&radix_tree_preloads);
289 if (rtp->nr) {
290 ret = rtp->nodes;
291 rtp->nodes = ret->private_data;
292 ret->private_data = NULL;
293 rtp->nr--;
294 }
295 /*
296 * Update the allocation stack trace as this is more useful
297 * for debugging.
298 */
299 kmemleak_update_trace(ret);
300 goto out;
301 }
302 ret = kmem_cache_alloc(radix_tree_node_cachep,
303 gfp_mask | __GFP_ACCOUNT);
304 out:
305 BUG_ON(radix_tree_is_internal_node(ret));
306 return ret;
307 }
308
309 static void radix_tree_node_rcu_free(struct rcu_head *head)
310 {
311 struct radix_tree_node *node =
312 container_of(head, struct radix_tree_node, rcu_head);
313 int i;
314
315 /*
316 * must only free zeroed nodes into the slab. radix_tree_shrink
317 * can leave us with a non-NULL entry in the first slot, so clear
318 * that here to make sure.
319 */
320 for (i = 0; i < RADIX_TREE_MAX_TAGS; i++)
321 tag_clear(node, i, 0);
322
323 node->slots[0] = NULL;
324 node->count = 0;
325
326 kmem_cache_free(radix_tree_node_cachep, node);
327 }
328
329 static inline void
330 radix_tree_node_free(struct radix_tree_node *node)
331 {
332 call_rcu(&node->rcu_head, radix_tree_node_rcu_free);
333 }
334
335 /*
336 * Load up this CPU's radix_tree_node buffer with sufficient objects to
337 * ensure that the addition of a single element in the tree cannot fail. On
338 * success, return zero, with preemption disabled. On error, return -ENOMEM
339 * with preemption not disabled.
340 *
341 * To make use of this facility, the radix tree must be initialised without
342 * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
343 */
344 static int __radix_tree_preload(gfp_t gfp_mask)
345 {
346 struct radix_tree_preload *rtp;
347 struct radix_tree_node *node;
348 int ret = -ENOMEM;
349
350 preempt_disable();
351 rtp = this_cpu_ptr(&radix_tree_preloads);
352 while (rtp->nr < RADIX_TREE_PRELOAD_SIZE) {
353 preempt_enable();
354 node = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
355 if (node == NULL)
356 goto out;
357 preempt_disable();
358 rtp = this_cpu_ptr(&radix_tree_preloads);
359 if (rtp->nr < RADIX_TREE_PRELOAD_SIZE) {
360 node->private_data = rtp->nodes;
361 rtp->nodes = node;
362 rtp->nr++;
363 } else {
364 kmem_cache_free(radix_tree_node_cachep, node);
365 }
366 }
367 ret = 0;
368 out:
369 return ret;
370 }
371
372 /*
373 * Load up this CPU's radix_tree_node buffer with sufficient objects to
374 * ensure that the addition of a single element in the tree cannot fail. On
375 * success, return zero, with preemption disabled. On error, return -ENOMEM
376 * with preemption not disabled.
377 *
378 * To make use of this facility, the radix tree must be initialised without
379 * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
380 */
381 int radix_tree_preload(gfp_t gfp_mask)
382 {
383 /* Warn on non-sensical use... */
384 WARN_ON_ONCE(!gfpflags_allow_blocking(gfp_mask));
385 return __radix_tree_preload(gfp_mask);
386 }
387 EXPORT_SYMBOL(radix_tree_preload);
388
389 /*
390 * The same as above function, except we don't guarantee preloading happens.
391 * We do it, if we decide it helps. On success, return zero with preemption
392 * disabled. On error, return -ENOMEM with preemption not disabled.
393 */
394 int radix_tree_maybe_preload(gfp_t gfp_mask)
395 {
396 if (gfpflags_allow_blocking(gfp_mask))
397 return __radix_tree_preload(gfp_mask);
398 /* Preloading doesn't help anything with this gfp mask, skip it */
399 preempt_disable();
400 return 0;
401 }
402 EXPORT_SYMBOL(radix_tree_maybe_preload);
403
404 /*
405 * The maximum index which can be stored in a radix tree
406 */
407 static inline unsigned long shift_maxindex(unsigned int shift)
408 {
409 return (RADIX_TREE_MAP_SIZE << shift) - 1;
410 }
411
412 static inline unsigned long node_maxindex(struct radix_tree_node *node)
413 {
414 return shift_maxindex(node->shift);
415 }
416
417 static unsigned radix_tree_load_root(struct radix_tree_root *root,
418 struct radix_tree_node **nodep, unsigned long *maxindex)
419 {
420 struct radix_tree_node *node = rcu_dereference_raw(root->rnode);
421
422 *nodep = node;
423
424 if (likely(radix_tree_is_internal_node(node))) {
425 node = entry_to_node(node);
426 *maxindex = node_maxindex(node);
427 return node->shift + RADIX_TREE_MAP_SHIFT;
428 }
429
430 *maxindex = 0;
431 return 0;
432 }
433
434 /*
435 * Extend a radix tree so it can store key @index.
436 */
437 static int radix_tree_extend(struct radix_tree_root *root,
438 unsigned long index, unsigned int shift)
439 {
440 struct radix_tree_node *slot;
441 unsigned int maxshift;
442 int tag;
443
444 /* Figure out what the shift should be. */
445 maxshift = shift;
446 while (index > shift_maxindex(maxshift))
447 maxshift += RADIX_TREE_MAP_SHIFT;
448
449 slot = root->rnode;
450 if (!slot)
451 goto out;
452
453 do {
454 struct radix_tree_node *node = radix_tree_node_alloc(root);
455
456 if (!node)
457 return -ENOMEM;
458
459 /* Propagate the aggregated tag info into the new root */
460 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
461 if (root_tag_get(root, tag))
462 tag_set(node, tag, 0);
463 }
464
465 BUG_ON(shift > BITS_PER_LONG);
466 node->shift = shift;
467 node->offset = 0;
468 node->count = 1;
469 node->parent = NULL;
470 if (radix_tree_is_internal_node(slot))
471 entry_to_node(slot)->parent = node;
472 node->slots[0] = slot;
473 slot = node_to_entry(node);
474 rcu_assign_pointer(root->rnode, slot);
475 shift += RADIX_TREE_MAP_SHIFT;
476 } while (shift <= maxshift);
477 out:
478 return maxshift + RADIX_TREE_MAP_SHIFT;
479 }
480
481 /**
482 * __radix_tree_create - create a slot in a radix tree
483 * @root: radix tree root
484 * @index: index key
485 * @order: index occupies 2^order aligned slots
486 * @nodep: returns node
487 * @slotp: returns slot
488 *
489 * Create, if necessary, and return the node and slot for an item
490 * at position @index in the radix tree @root.
491 *
492 * Until there is more than one item in the tree, no nodes are
493 * allocated and @root->rnode is used as a direct slot instead of
494 * pointing to a node, in which case *@nodep will be NULL.
495 *
496 * Returns -ENOMEM, or 0 for success.
497 */
498 int __radix_tree_create(struct radix_tree_root *root, unsigned long index,
499 unsigned order, struct radix_tree_node **nodep,
500 void ***slotp)
501 {
502 struct radix_tree_node *node = NULL, *child;
503 void **slot = (void **)&root->rnode;
504 unsigned long maxindex;
505 unsigned int shift, offset = 0;
506 unsigned long max = index | ((1UL << order) - 1);
507
508 shift = radix_tree_load_root(root, &child, &maxindex);
509
510 /* Make sure the tree is high enough. */
511 if (max > maxindex) {
512 int error = radix_tree_extend(root, max, shift);
513 if (error < 0)
514 return error;
515 shift = error;
516 child = root->rnode;
517 if (order == shift)
518 shift += RADIX_TREE_MAP_SHIFT;
519 }
520
521 while (shift > order) {
522 shift -= RADIX_TREE_MAP_SHIFT;
523 if (child == NULL) {
524 /* Have to add a child node. */
525 child = radix_tree_node_alloc(root);
526 if (!child)
527 return -ENOMEM;
528 child->shift = shift;
529 child->offset = offset;
530 child->parent = node;
531 rcu_assign_pointer(*slot, node_to_entry(child));
532 if (node)
533 node->count++;
534 } else if (!radix_tree_is_internal_node(child))
535 break;
536
537 /* Go a level down */
538 node = entry_to_node(child);
539 offset = (index >> shift) & RADIX_TREE_MAP_MASK;
540 offset = radix_tree_descend(node, &child, offset);
541 slot = &node->slots[offset];
542 }
543
544 #ifdef CONFIG_RADIX_TREE_MULTIORDER
545 /* Insert pointers to the canonical entry */
546 if (order > shift) {
547 unsigned i, n = 1 << (order - shift);
548 offset = offset & ~(n - 1);
549 slot = &node->slots[offset];
550 child = node_to_entry(slot);
551 for (i = 0; i < n; i++) {
552 if (slot[i])
553 return -EEXIST;
554 }
555
556 for (i = 1; i < n; i++) {
557 rcu_assign_pointer(slot[i], child);
558 node->count++;
559 }
560 }
561 #endif
562
563 if (nodep)
564 *nodep = node;
565 if (slotp)
566 *slotp = slot;
567 return 0;
568 }
569
570 /**
571 * __radix_tree_insert - insert into a radix tree
572 * @root: radix tree root
573 * @index: index key
574 * @order: key covers the 2^order indices around index
575 * @item: item to insert
576 *
577 * Insert an item into the radix tree at position @index.
578 */
579 int __radix_tree_insert(struct radix_tree_root *root, unsigned long index,
580 unsigned order, void *item)
581 {
582 struct radix_tree_node *node;
583 void **slot;
584 int error;
585
586 BUG_ON(radix_tree_is_internal_node(item));
587
588 error = __radix_tree_create(root, index, order, &node, &slot);
589 if (error)
590 return error;
591 if (*slot != NULL)
592 return -EEXIST;
593 rcu_assign_pointer(*slot, item);
594
595 if (node) {
596 unsigned offset = get_slot_offset(node, slot);
597 node->count++;
598 BUG_ON(tag_get(node, 0, offset));
599 BUG_ON(tag_get(node, 1, offset));
600 BUG_ON(tag_get(node, 2, offset));
601 } else {
602 BUG_ON(root_tags_get(root));
603 }
604
605 return 0;
606 }
607 EXPORT_SYMBOL(__radix_tree_insert);
608
609 /**
610 * __radix_tree_lookup - lookup an item in a radix tree
611 * @root: radix tree root
612 * @index: index key
613 * @nodep: returns node
614 * @slotp: returns slot
615 *
616 * Lookup and return the item at position @index in the radix
617 * tree @root.
618 *
619 * Until there is more than one item in the tree, no nodes are
620 * allocated and @root->rnode is used as a direct slot instead of
621 * pointing to a node, in which case *@nodep will be NULL.
622 */
623 void *__radix_tree_lookup(struct radix_tree_root *root, unsigned long index,
624 struct radix_tree_node **nodep, void ***slotp)
625 {
626 struct radix_tree_node *node, *parent;
627 unsigned long maxindex;
628 unsigned int shift;
629 void **slot;
630
631 restart:
632 parent = NULL;
633 slot = (void **)&root->rnode;
634 shift = radix_tree_load_root(root, &node, &maxindex);
635 if (index > maxindex)
636 return NULL;
637
638 while (radix_tree_is_internal_node(node)) {
639 unsigned offset;
640
641 if (node == RADIX_TREE_RETRY)
642 goto restart;
643 parent = entry_to_node(node);
644 shift -= RADIX_TREE_MAP_SHIFT;
645 offset = (index >> shift) & RADIX_TREE_MAP_MASK;
646 offset = radix_tree_descend(parent, &node, offset);
647 slot = parent->slots + offset;
648 }
649
650 if (nodep)
651 *nodep = parent;
652 if (slotp)
653 *slotp = slot;
654 return node;
655 }
656
657 /**
658 * radix_tree_lookup_slot - lookup a slot in a radix tree
659 * @root: radix tree root
660 * @index: index key
661 *
662 * Returns: the slot corresponding to the position @index in the
663 * radix tree @root. This is useful for update-if-exists operations.
664 *
665 * This function can be called under rcu_read_lock iff the slot is not
666 * modified by radix_tree_replace_slot, otherwise it must be called
667 * exclusive from other writers. Any dereference of the slot must be done
668 * using radix_tree_deref_slot.
669 */
670 void **radix_tree_lookup_slot(struct radix_tree_root *root, unsigned long index)
671 {
672 void **slot;
673
674 if (!__radix_tree_lookup(root, index, NULL, &slot))
675 return NULL;
676 return slot;
677 }
678 EXPORT_SYMBOL(radix_tree_lookup_slot);
679
680 /**
681 * radix_tree_lookup - perform lookup operation on a radix tree
682 * @root: radix tree root
683 * @index: index key
684 *
685 * Lookup the item at the position @index in the radix tree @root.
686 *
687 * This function can be called under rcu_read_lock, however the caller
688 * must manage lifetimes of leaf nodes (eg. RCU may also be used to free
689 * them safely). No RCU barriers are required to access or modify the
690 * returned item, however.
691 */
692 void *radix_tree_lookup(struct radix_tree_root *root, unsigned long index)
693 {
694 return __radix_tree_lookup(root, index, NULL, NULL);
695 }
696 EXPORT_SYMBOL(radix_tree_lookup);
697
698 /**
699 * radix_tree_tag_set - set a tag on a radix tree node
700 * @root: radix tree root
701 * @index: index key
702 * @tag: tag index
703 *
704 * Set the search tag (which must be < RADIX_TREE_MAX_TAGS)
705 * corresponding to @index in the radix tree. From
706 * the root all the way down to the leaf node.
707 *
708 * Returns the address of the tagged item. Setting a tag on a not-present
709 * item is a bug.
710 */
711 void *radix_tree_tag_set(struct radix_tree_root *root,
712 unsigned long index, unsigned int tag)
713 {
714 struct radix_tree_node *node, *parent;
715 unsigned long maxindex;
716 unsigned int shift;
717
718 shift = radix_tree_load_root(root, &node, &maxindex);
719 BUG_ON(index > maxindex);
720
721 while (radix_tree_is_internal_node(node)) {
722 unsigned offset;
723
724 shift -= RADIX_TREE_MAP_SHIFT;
725 offset = (index >> shift) & RADIX_TREE_MAP_MASK;
726
727 parent = entry_to_node(node);
728 offset = radix_tree_descend(parent, &node, offset);
729 BUG_ON(!node);
730
731 if (!tag_get(parent, tag, offset))
732 tag_set(parent, tag, offset);
733 }
734
735 /* set the root's tag bit */
736 if (!root_tag_get(root, tag))
737 root_tag_set(root, tag);
738
739 return node;
740 }
741 EXPORT_SYMBOL(radix_tree_tag_set);
742
743 /**
744 * radix_tree_tag_clear - clear a tag on a radix tree node
745 * @root: radix tree root
746 * @index: index key
747 * @tag: tag index
748 *
749 * Clear the search tag (which must be < RADIX_TREE_MAX_TAGS)
750 * corresponding to @index in the radix tree. If this causes
751 * the leaf node to have no tags set then clear the tag in the
752 * next-to-leaf node, etc.
753 *
754 * Returns the address of the tagged item on success, else NULL. ie:
755 * has the same return value and semantics as radix_tree_lookup().
756 */
757 void *radix_tree_tag_clear(struct radix_tree_root *root,
758 unsigned long index, unsigned int tag)
759 {
760 struct radix_tree_node *node, *parent;
761 unsigned long maxindex;
762 unsigned int shift;
763 int uninitialized_var(offset);
764
765 shift = radix_tree_load_root(root, &node, &maxindex);
766 if (index > maxindex)
767 return NULL;
768
769 parent = NULL;
770
771 while (radix_tree_is_internal_node(node)) {
772 shift -= RADIX_TREE_MAP_SHIFT;
773 offset = (index >> shift) & RADIX_TREE_MAP_MASK;
774
775 parent = entry_to_node(node);
776 offset = radix_tree_descend(parent, &node, offset);
777 }
778
779 if (node == NULL)
780 goto out;
781
782 index >>= shift;
783
784 while (parent) {
785 if (!tag_get(parent, tag, offset))
786 goto out;
787 tag_clear(parent, tag, offset);
788 if (any_tag_set(parent, tag))
789 goto out;
790
791 index >>= RADIX_TREE_MAP_SHIFT;
792 offset = index & RADIX_TREE_MAP_MASK;
793 parent = parent->parent;
794 }
795
796 /* clear the root's tag bit */
797 if (root_tag_get(root, tag))
798 root_tag_clear(root, tag);
799
800 out:
801 return node;
802 }
803 EXPORT_SYMBOL(radix_tree_tag_clear);
804
805 /**
806 * radix_tree_tag_get - get a tag on a radix tree node
807 * @root: radix tree root
808 * @index: index key
809 * @tag: tag index (< RADIX_TREE_MAX_TAGS)
810 *
811 * Return values:
812 *
813 * 0: tag not present or not set
814 * 1: tag set
815 *
816 * Note that the return value of this function may not be relied on, even if
817 * the RCU lock is held, unless tag modification and node deletion are excluded
818 * from concurrency.
819 */
820 int radix_tree_tag_get(struct radix_tree_root *root,
821 unsigned long index, unsigned int tag)
822 {
823 struct radix_tree_node *node, *parent;
824 unsigned long maxindex;
825 unsigned int shift;
826
827 if (!root_tag_get(root, tag))
828 return 0;
829
830 shift = radix_tree_load_root(root, &node, &maxindex);
831 if (index > maxindex)
832 return 0;
833 if (node == NULL)
834 return 0;
835
836 while (radix_tree_is_internal_node(node)) {
837 int offset;
838
839 shift -= RADIX_TREE_MAP_SHIFT;
840 offset = (index >> shift) & RADIX_TREE_MAP_MASK;
841
842 parent = entry_to_node(node);
843 offset = radix_tree_descend(parent, &node, offset);
844
845 if (!node)
846 return 0;
847 if (!tag_get(parent, tag, offset))
848 return 0;
849 if (node == RADIX_TREE_RETRY)
850 break;
851 }
852
853 return 1;
854 }
855 EXPORT_SYMBOL(radix_tree_tag_get);
856
857 static inline void __set_iter_shift(struct radix_tree_iter *iter,
858 unsigned int shift)
859 {
860 #ifdef CONFIG_RADIX_TREE_MULTIORDER
861 iter->shift = shift;
862 #endif
863 }
864
865 /**
866 * radix_tree_next_chunk - find next chunk of slots for iteration
867 *
868 * @root: radix tree root
869 * @iter: iterator state
870 * @flags: RADIX_TREE_ITER_* flags and tag index
871 * Returns: pointer to chunk first slot, or NULL if iteration is over
872 */
873 void **radix_tree_next_chunk(struct radix_tree_root *root,
874 struct radix_tree_iter *iter, unsigned flags)
875 {
876 unsigned shift, tag = flags & RADIX_TREE_ITER_TAG_MASK;
877 struct radix_tree_node *node, *child;
878 unsigned long index, offset, maxindex;
879
880 if ((flags & RADIX_TREE_ITER_TAGGED) && !root_tag_get(root, tag))
881 return NULL;
882
883 /*
884 * Catch next_index overflow after ~0UL. iter->index never overflows
885 * during iterating; it can be zero only at the beginning.
886 * And we cannot overflow iter->next_index in a single step,
887 * because RADIX_TREE_MAP_SHIFT < BITS_PER_LONG.
888 *
889 * This condition also used by radix_tree_next_slot() to stop
890 * contiguous iterating, and forbid swithing to the next chunk.
891 */
892 index = iter->next_index;
893 if (!index && iter->index)
894 return NULL;
895
896 restart:
897 shift = radix_tree_load_root(root, &child, &maxindex);
898 if (index > maxindex)
899 return NULL;
900 if (!child)
901 return NULL;
902
903 if (!radix_tree_is_internal_node(child)) {
904 /* Single-slot tree */
905 iter->index = index;
906 iter->next_index = maxindex + 1;
907 iter->tags = 1;
908 __set_iter_shift(iter, 0);
909 return (void **)&root->rnode;
910 }
911
912 do {
913 node = entry_to_node(child);
914 shift -= RADIX_TREE_MAP_SHIFT;
915 offset = (index >> shift) & RADIX_TREE_MAP_MASK;
916 offset = radix_tree_descend(node, &child, offset);
917
918 if ((flags & RADIX_TREE_ITER_TAGGED) ?
919 !tag_get(node, tag, offset) : !child) {
920 /* Hole detected */
921 if (flags & RADIX_TREE_ITER_CONTIG)
922 return NULL;
923
924 if (flags & RADIX_TREE_ITER_TAGGED)
925 offset = radix_tree_find_next_bit(
926 node->tags[tag],
927 RADIX_TREE_MAP_SIZE,
928 offset + 1);
929 else
930 while (++offset < RADIX_TREE_MAP_SIZE) {
931 void *slot = node->slots[offset];
932 if (is_sibling_entry(node, slot))
933 continue;
934 if (slot)
935 break;
936 }
937 index &= ~node_maxindex(node);
938 index += offset << shift;
939 /* Overflow after ~0UL */
940 if (!index)
941 return NULL;
942 if (offset == RADIX_TREE_MAP_SIZE)
943 goto restart;
944 child = rcu_dereference_raw(node->slots[offset]);
945 }
946
947 if ((child == NULL) || (child == RADIX_TREE_RETRY))
948 goto restart;
949 } while (radix_tree_is_internal_node(child));
950
951 /* Update the iterator state */
952 iter->index = (index &~ node_maxindex(node)) | (offset << node->shift);
953 iter->next_index = (index | node_maxindex(node)) + 1;
954 __set_iter_shift(iter, shift);
955
956 /* Construct iter->tags bit-mask from node->tags[tag] array */
957 if (flags & RADIX_TREE_ITER_TAGGED) {
958 unsigned tag_long, tag_bit;
959
960 tag_long = offset / BITS_PER_LONG;
961 tag_bit = offset % BITS_PER_LONG;
962 iter->tags = node->tags[tag][tag_long] >> tag_bit;
963 /* This never happens if RADIX_TREE_TAG_LONGS == 1 */
964 if (tag_long < RADIX_TREE_TAG_LONGS - 1) {
965 /* Pick tags from next element */
966 if (tag_bit)
967 iter->tags |= node->tags[tag][tag_long + 1] <<
968 (BITS_PER_LONG - tag_bit);
969 /* Clip chunk size, here only BITS_PER_LONG tags */
970 iter->next_index = index + BITS_PER_LONG;
971 }
972 }
973
974 return node->slots + offset;
975 }
976 EXPORT_SYMBOL(radix_tree_next_chunk);
977
978 /**
979 * radix_tree_range_tag_if_tagged - for each item in given range set given
980 * tag if item has another tag set
981 * @root: radix tree root
982 * @first_indexp: pointer to a starting index of a range to scan
983 * @last_index: last index of a range to scan
984 * @nr_to_tag: maximum number items to tag
985 * @iftag: tag index to test
986 * @settag: tag index to set if tested tag is set
987 *
988 * This function scans range of radix tree from first_index to last_index
989 * (inclusive). For each item in the range if iftag is set, the function sets
990 * also settag. The function stops either after tagging nr_to_tag items or
991 * after reaching last_index.
992 *
993 * The tags must be set from the leaf level only and propagated back up the
994 * path to the root. We must do this so that we resolve the full path before
995 * setting any tags on intermediate nodes. If we set tags as we descend, then
996 * we can get to the leaf node and find that the index that has the iftag
997 * set is outside the range we are scanning. This reults in dangling tags and
998 * can lead to problems with later tag operations (e.g. livelocks on lookups).
999 *
1000 * The function returns the number of leaves where the tag was set and sets
1001 * *first_indexp to the first unscanned index.
1002 * WARNING! *first_indexp can wrap if last_index is ULONG_MAX. Caller must
1003 * be prepared to handle that.
1004 */
1005 unsigned long radix_tree_range_tag_if_tagged(struct radix_tree_root *root,
1006 unsigned long *first_indexp, unsigned long last_index,
1007 unsigned long nr_to_tag,
1008 unsigned int iftag, unsigned int settag)
1009 {
1010 struct radix_tree_node *parent, *node, *child;
1011 unsigned long maxindex;
1012 unsigned int shift = radix_tree_load_root(root, &child, &maxindex);
1013 unsigned long tagged = 0;
1014 unsigned long index = *first_indexp;
1015
1016 last_index = min(last_index, maxindex);
1017 if (index > last_index)
1018 return 0;
1019 if (!nr_to_tag)
1020 return 0;
1021 if (!root_tag_get(root, iftag)) {
1022 *first_indexp = last_index + 1;
1023 return 0;
1024 }
1025 if (!radix_tree_is_internal_node(child)) {
1026 *first_indexp = last_index + 1;
1027 root_tag_set(root, settag);
1028 return 1;
1029 }
1030
1031 node = entry_to_node(child);
1032 shift -= RADIX_TREE_MAP_SHIFT;
1033
1034 for (;;) {
1035 unsigned offset = (index >> shift) & RADIX_TREE_MAP_MASK;
1036 offset = radix_tree_descend(node, &child, offset);
1037 if (!child)
1038 goto next;
1039 if (!tag_get(node, iftag, offset))
1040 goto next;
1041 /* Sibling slots never have tags set on them */
1042 if (radix_tree_is_internal_node(child)) {
1043 node = entry_to_node(child);
1044 shift -= RADIX_TREE_MAP_SHIFT;
1045 continue;
1046 }
1047
1048 /* tag the leaf */
1049 tagged++;
1050 tag_set(node, settag, offset);
1051
1052 /* walk back up the path tagging interior nodes */
1053 parent = node;
1054 for (;;) {
1055 offset = parent->offset;
1056 parent = parent->parent;
1057 if (!parent)
1058 break;
1059 /* stop if we find a node with the tag already set */
1060 if (tag_get(parent, settag, offset))
1061 break;
1062 tag_set(parent, settag, offset);
1063 }
1064 next:
1065 /* Go to next item at level determined by 'shift' */
1066 index = ((index >> shift) + 1) << shift;
1067 /* Overflow can happen when last_index is ~0UL... */
1068 if (index > last_index || !index)
1069 break;
1070 offset = (index >> shift) & RADIX_TREE_MAP_MASK;
1071 while (offset == 0) {
1072 /*
1073 * We've fully scanned this node. Go up. Because
1074 * last_index is guaranteed to be in the tree, what
1075 * we do below cannot wander astray.
1076 */
1077 node = node->parent;
1078 shift += RADIX_TREE_MAP_SHIFT;
1079 offset = (index >> shift) & RADIX_TREE_MAP_MASK;
1080 }
1081 if (is_sibling_entry(node, node->slots[offset]))
1082 goto next;
1083 if (tagged >= nr_to_tag)
1084 break;
1085 }
1086 /*
1087 * We need not to tag the root tag if there is no tag which is set with
1088 * settag within the range from *first_indexp to last_index.
1089 */
1090 if (tagged > 0)
1091 root_tag_set(root, settag);
1092 *first_indexp = index;
1093
1094 return tagged;
1095 }
1096 EXPORT_SYMBOL(radix_tree_range_tag_if_tagged);
1097
1098 /**
1099 * radix_tree_gang_lookup - perform multiple lookup on a radix tree
1100 * @root: radix tree root
1101 * @results: where the results of the lookup are placed
1102 * @first_index: start the lookup from this key
1103 * @max_items: place up to this many items at *results
1104 *
1105 * Performs an index-ascending scan of the tree for present items. Places
1106 * them at *@results and returns the number of items which were placed at
1107 * *@results.
1108 *
1109 * The implementation is naive.
1110 *
1111 * Like radix_tree_lookup, radix_tree_gang_lookup may be called under
1112 * rcu_read_lock. In this case, rather than the returned results being
1113 * an atomic snapshot of the tree at a single point in time, the
1114 * semantics of an RCU protected gang lookup are as though multiple
1115 * radix_tree_lookups have been issued in individual locks, and results
1116 * stored in 'results'.
1117 */
1118 unsigned int
1119 radix_tree_gang_lookup(struct radix_tree_root *root, void **results,
1120 unsigned long first_index, unsigned int max_items)
1121 {
1122 struct radix_tree_iter iter;
1123 void **slot;
1124 unsigned int ret = 0;
1125
1126 if (unlikely(!max_items))
1127 return 0;
1128
1129 radix_tree_for_each_slot(slot, root, &iter, first_index) {
1130 results[ret] = rcu_dereference_raw(*slot);
1131 if (!results[ret])
1132 continue;
1133 if (radix_tree_is_internal_node(results[ret])) {
1134 slot = radix_tree_iter_retry(&iter);
1135 continue;
1136 }
1137 if (++ret == max_items)
1138 break;
1139 }
1140
1141 return ret;
1142 }
1143 EXPORT_SYMBOL(radix_tree_gang_lookup);
1144
1145 /**
1146 * radix_tree_gang_lookup_slot - perform multiple slot lookup on radix tree
1147 * @root: radix tree root
1148 * @results: where the results of the lookup are placed
1149 * @indices: where their indices should be placed (but usually NULL)
1150 * @first_index: start the lookup from this key
1151 * @max_items: place up to this many items at *results
1152 *
1153 * Performs an index-ascending scan of the tree for present items. Places
1154 * their slots at *@results and returns the number of items which were
1155 * placed at *@results.
1156 *
1157 * The implementation is naive.
1158 *
1159 * Like radix_tree_gang_lookup as far as RCU and locking goes. Slots must
1160 * be dereferenced with radix_tree_deref_slot, and if using only RCU
1161 * protection, radix_tree_deref_slot may fail requiring a retry.
1162 */
1163 unsigned int
1164 radix_tree_gang_lookup_slot(struct radix_tree_root *root,
1165 void ***results, unsigned long *indices,
1166 unsigned long first_index, unsigned int max_items)
1167 {
1168 struct radix_tree_iter iter;
1169 void **slot;
1170 unsigned int ret = 0;
1171
1172 if (unlikely(!max_items))
1173 return 0;
1174
1175 radix_tree_for_each_slot(slot, root, &iter, first_index) {
1176 results[ret] = slot;
1177 if (indices)
1178 indices[ret] = iter.index;
1179 if (++ret == max_items)
1180 break;
1181 }
1182
1183 return ret;
1184 }
1185 EXPORT_SYMBOL(radix_tree_gang_lookup_slot);
1186
1187 /**
1188 * radix_tree_gang_lookup_tag - perform multiple lookup on a radix tree
1189 * based on a tag
1190 * @root: radix tree root
1191 * @results: where the results of the lookup are placed
1192 * @first_index: start the lookup from this key
1193 * @max_items: place up to this many items at *results
1194 * @tag: the tag index (< RADIX_TREE_MAX_TAGS)
1195 *
1196 * Performs an index-ascending scan of the tree for present items which
1197 * have the tag indexed by @tag set. Places the items at *@results and
1198 * returns the number of items which were placed at *@results.
1199 */
1200 unsigned int
1201 radix_tree_gang_lookup_tag(struct radix_tree_root *root, void **results,
1202 unsigned long first_index, unsigned int max_items,
1203 unsigned int tag)
1204 {
1205 struct radix_tree_iter iter;
1206 void **slot;
1207 unsigned int ret = 0;
1208
1209 if (unlikely(!max_items))
1210 return 0;
1211
1212 radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
1213 results[ret] = rcu_dereference_raw(*slot);
1214 if (!results[ret])
1215 continue;
1216 if (radix_tree_is_internal_node(results[ret])) {
1217 slot = radix_tree_iter_retry(&iter);
1218 continue;
1219 }
1220 if (++ret == max_items)
1221 break;
1222 }
1223
1224 return ret;
1225 }
1226 EXPORT_SYMBOL(radix_tree_gang_lookup_tag);
1227
1228 /**
1229 * radix_tree_gang_lookup_tag_slot - perform multiple slot lookup on a
1230 * radix tree based on a tag
1231 * @root: radix tree root
1232 * @results: where the results of the lookup are placed
1233 * @first_index: start the lookup from this key
1234 * @max_items: place up to this many items at *results
1235 * @tag: the tag index (< RADIX_TREE_MAX_TAGS)
1236 *
1237 * Performs an index-ascending scan of the tree for present items which
1238 * have the tag indexed by @tag set. Places the slots at *@results and
1239 * returns the number of slots which were placed at *@results.
1240 */
1241 unsigned int
1242 radix_tree_gang_lookup_tag_slot(struct radix_tree_root *root, void ***results,
1243 unsigned long first_index, unsigned int max_items,
1244 unsigned int tag)
1245 {
1246 struct radix_tree_iter iter;
1247 void **slot;
1248 unsigned int ret = 0;
1249
1250 if (unlikely(!max_items))
1251 return 0;
1252
1253 radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
1254 results[ret] = slot;
1255 if (++ret == max_items)
1256 break;
1257 }
1258
1259 return ret;
1260 }
1261 EXPORT_SYMBOL(radix_tree_gang_lookup_tag_slot);
1262
1263 #if defined(CONFIG_SHMEM) && defined(CONFIG_SWAP)
1264 #include <linux/sched.h> /* for cond_resched() */
1265
1266 struct locate_info {
1267 unsigned long found_index;
1268 bool stop;
1269 };
1270
1271 /*
1272 * This linear search is at present only useful to shmem_unuse_inode().
1273 */
1274 static unsigned long __locate(struct radix_tree_node *slot, void *item,
1275 unsigned long index, struct locate_info *info)
1276 {
1277 unsigned int shift;
1278 unsigned long i;
1279
1280 shift = slot->shift + RADIX_TREE_MAP_SHIFT;
1281
1282 do {
1283 shift -= RADIX_TREE_MAP_SHIFT;
1284
1285 for (i = (index >> shift) & RADIX_TREE_MAP_MASK;
1286 i < RADIX_TREE_MAP_SIZE;
1287 i++, index += (1UL << shift)) {
1288 struct radix_tree_node *node =
1289 rcu_dereference_raw(slot->slots[i]);
1290 if (node == RADIX_TREE_RETRY)
1291 goto out;
1292 if (!radix_tree_is_internal_node(node)) {
1293 if (node == item) {
1294 info->found_index = index;
1295 info->stop = true;
1296 goto out;
1297 }
1298 continue;
1299 }
1300 node = entry_to_node(node);
1301 if (is_sibling_entry(slot, node))
1302 continue;
1303 slot = node;
1304 break;
1305 }
1306 if (i == RADIX_TREE_MAP_SIZE)
1307 break;
1308 } while (shift);
1309
1310 out:
1311 if ((index == 0) && (i == RADIX_TREE_MAP_SIZE))
1312 info->stop = true;
1313 return index;
1314 }
1315
1316 /**
1317 * radix_tree_locate_item - search through radix tree for item
1318 * @root: radix tree root
1319 * @item: item to be found
1320 *
1321 * Returns index where item was found, or -1 if not found.
1322 * Caller must hold no lock (since this time-consuming function needs
1323 * to be preemptible), and must check afterwards if item is still there.
1324 */
1325 unsigned long radix_tree_locate_item(struct radix_tree_root *root, void *item)
1326 {
1327 struct radix_tree_node *node;
1328 unsigned long max_index;
1329 unsigned long cur_index = 0;
1330 struct locate_info info = {
1331 .found_index = -1,
1332 .stop = false,
1333 };
1334
1335 do {
1336 rcu_read_lock();
1337 node = rcu_dereference_raw(root->rnode);
1338 if (!radix_tree_is_internal_node(node)) {
1339 rcu_read_unlock();
1340 if (node == item)
1341 info.found_index = 0;
1342 break;
1343 }
1344
1345 node = entry_to_node(node);
1346
1347 max_index = node_maxindex(node);
1348 if (cur_index > max_index) {
1349 rcu_read_unlock();
1350 break;
1351 }
1352
1353 cur_index = __locate(node, item, cur_index, &info);
1354 rcu_read_unlock();
1355 cond_resched();
1356 } while (!info.stop && cur_index <= max_index);
1357
1358 return info.found_index;
1359 }
1360 #else
1361 unsigned long radix_tree_locate_item(struct radix_tree_root *root, void *item)
1362 {
1363 return -1;
1364 }
1365 #endif /* CONFIG_SHMEM && CONFIG_SWAP */
1366
1367 /**
1368 * radix_tree_shrink - shrink radix tree to minimum height
1369 * @root radix tree root
1370 */
1371 static inline bool radix_tree_shrink(struct radix_tree_root *root)
1372 {
1373 bool shrunk = false;
1374
1375 for (;;) {
1376 struct radix_tree_node *node = root->rnode;
1377 struct radix_tree_node *child;
1378
1379 if (!radix_tree_is_internal_node(node))
1380 break;
1381 node = entry_to_node(node);
1382
1383 /*
1384 * The candidate node has more than one child, or its child
1385 * is not at the leftmost slot, or the child is a multiorder
1386 * entry, we cannot shrink.
1387 */
1388 if (node->count != 1)
1389 break;
1390 child = node->slots[0];
1391 if (!child)
1392 break;
1393 if (!radix_tree_is_internal_node(child) && node->shift)
1394 break;
1395
1396 if (radix_tree_is_internal_node(child))
1397 entry_to_node(child)->parent = NULL;
1398
1399 /*
1400 * We don't need rcu_assign_pointer(), since we are simply
1401 * moving the node from one part of the tree to another: if it
1402 * was safe to dereference the old pointer to it
1403 * (node->slots[0]), it will be safe to dereference the new
1404 * one (root->rnode) as far as dependent read barriers go.
1405 */
1406 root->rnode = child;
1407
1408 /*
1409 * We have a dilemma here. The node's slot[0] must not be
1410 * NULLed in case there are concurrent lookups expecting to
1411 * find the item. However if this was a bottom-level node,
1412 * then it may be subject to the slot pointer being visible
1413 * to callers dereferencing it. If item corresponding to
1414 * slot[0] is subsequently deleted, these callers would expect
1415 * their slot to become empty sooner or later.
1416 *
1417 * For example, lockless pagecache will look up a slot, deref
1418 * the page pointer, and if the page has 0 refcount it means it
1419 * was concurrently deleted from pagecache so try the deref
1420 * again. Fortunately there is already a requirement for logic
1421 * to retry the entire slot lookup -- the indirect pointer
1422 * problem (replacing direct root node with an indirect pointer
1423 * also results in a stale slot). So tag the slot as indirect
1424 * to force callers to retry.
1425 */
1426 if (!radix_tree_is_internal_node(child))
1427 node->slots[0] = RADIX_TREE_RETRY;
1428
1429 radix_tree_node_free(node);
1430 shrunk = true;
1431 }
1432
1433 return shrunk;
1434 }
1435
1436 /**
1437 * __radix_tree_delete_node - try to free node after clearing a slot
1438 * @root: radix tree root
1439 * @node: node containing @index
1440 *
1441 * After clearing the slot at @index in @node from radix tree
1442 * rooted at @root, call this function to attempt freeing the
1443 * node and shrinking the tree.
1444 *
1445 * Returns %true if @node was freed, %false otherwise.
1446 */
1447 bool __radix_tree_delete_node(struct radix_tree_root *root,
1448 struct radix_tree_node *node)
1449 {
1450 bool deleted = false;
1451
1452 do {
1453 struct radix_tree_node *parent;
1454
1455 if (node->count) {
1456 if (node == entry_to_node(root->rnode))
1457 deleted |= radix_tree_shrink(root);
1458 return deleted;
1459 }
1460
1461 parent = node->parent;
1462 if (parent) {
1463 parent->slots[node->offset] = NULL;
1464 parent->count--;
1465 } else {
1466 root_tag_clear_all(root);
1467 root->rnode = NULL;
1468 }
1469
1470 radix_tree_node_free(node);
1471 deleted = true;
1472
1473 node = parent;
1474 } while (node);
1475
1476 return deleted;
1477 }
1478
1479 static inline void delete_sibling_entries(struct radix_tree_node *node,
1480 void *ptr, unsigned offset)
1481 {
1482 #ifdef CONFIG_RADIX_TREE_MULTIORDER
1483 int i;
1484 for (i = 1; offset + i < RADIX_TREE_MAP_SIZE; i++) {
1485 if (node->slots[offset + i] != ptr)
1486 break;
1487 node->slots[offset + i] = NULL;
1488 node->count--;
1489 }
1490 #endif
1491 }
1492
1493 /**
1494 * radix_tree_delete_item - delete an item from a radix tree
1495 * @root: radix tree root
1496 * @index: index key
1497 * @item: expected item
1498 *
1499 * Remove @item at @index from the radix tree rooted at @root.
1500 *
1501 * Returns the address of the deleted item, or NULL if it was not present
1502 * or the entry at the given @index was not @item.
1503 */
1504 void *radix_tree_delete_item(struct radix_tree_root *root,
1505 unsigned long index, void *item)
1506 {
1507 struct radix_tree_node *node;
1508 unsigned int offset;
1509 void **slot;
1510 void *entry;
1511 int tag;
1512
1513 entry = __radix_tree_lookup(root, index, &node, &slot);
1514 if (!entry)
1515 return NULL;
1516
1517 if (item && entry != item)
1518 return NULL;
1519
1520 if (!node) {
1521 root_tag_clear_all(root);
1522 root->rnode = NULL;
1523 return entry;
1524 }
1525
1526 offset = get_slot_offset(node, slot);
1527
1528 /*
1529 * Clear all tags associated with the item to be deleted.
1530 * This way of doing it would be inefficient, but seldom is any set.
1531 */
1532 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
1533 if (tag_get(node, tag, offset))
1534 radix_tree_tag_clear(root, index, tag);
1535 }
1536
1537 delete_sibling_entries(node, node_to_entry(slot), offset);
1538 node->slots[offset] = NULL;
1539 node->count--;
1540
1541 __radix_tree_delete_node(root, node);
1542
1543 return entry;
1544 }
1545 EXPORT_SYMBOL(radix_tree_delete_item);
1546
1547 /**
1548 * radix_tree_delete - delete an item from a radix tree
1549 * @root: radix tree root
1550 * @index: index key
1551 *
1552 * Remove the item at @index from the radix tree rooted at @root.
1553 *
1554 * Returns the address of the deleted item, or NULL if it was not present.
1555 */
1556 void *radix_tree_delete(struct radix_tree_root *root, unsigned long index)
1557 {
1558 return radix_tree_delete_item(root, index, NULL);
1559 }
1560 EXPORT_SYMBOL(radix_tree_delete);
1561
1562 /**
1563 * radix_tree_tagged - test whether any items in the tree are tagged
1564 * @root: radix tree root
1565 * @tag: tag to test
1566 */
1567 int radix_tree_tagged(struct radix_tree_root *root, unsigned int tag)
1568 {
1569 return root_tag_get(root, tag);
1570 }
1571 EXPORT_SYMBOL(radix_tree_tagged);
1572
1573 static void
1574 radix_tree_node_ctor(void *arg)
1575 {
1576 struct radix_tree_node *node = arg;
1577
1578 memset(node, 0, sizeof(*node));
1579 INIT_LIST_HEAD(&node->private_list);
1580 }
1581
1582 static int radix_tree_callback(struct notifier_block *nfb,
1583 unsigned long action, void *hcpu)
1584 {
1585 int cpu = (long)hcpu;
1586 struct radix_tree_preload *rtp;
1587 struct radix_tree_node *node;
1588
1589 /* Free per-cpu pool of preloaded nodes */
1590 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
1591 rtp = &per_cpu(radix_tree_preloads, cpu);
1592 while (rtp->nr) {
1593 node = rtp->nodes;
1594 rtp->nodes = node->private_data;
1595 kmem_cache_free(radix_tree_node_cachep, node);
1596 rtp->nr--;
1597 }
1598 }
1599 return NOTIFY_OK;
1600 }
1601
1602 void __init radix_tree_init(void)
1603 {
1604 radix_tree_node_cachep = kmem_cache_create("radix_tree_node",
1605 sizeof(struct radix_tree_node), 0,
1606 SLAB_PANIC | SLAB_RECLAIM_ACCOUNT,
1607 radix_tree_node_ctor);
1608 hotcpu_notifier(radix_tree_callback, 0);
1609 }
This page took 0.084322 seconds and 6 git commands to generate.