radix-tree: rename ptr_to_indirect() to node_to_entry()
[deliverable/linux.git] / lib / radix-tree.c
1 /*
2 * Copyright (C) 2001 Momchil Velikov
3 * Portions Copyright (C) 2001 Christoph Hellwig
4 * Copyright (C) 2005 SGI, Christoph Lameter
5 * Copyright (C) 2006 Nick Piggin
6 * Copyright (C) 2012 Konstantin Khlebnikov
7 * Copyright (C) 2016 Intel, Matthew Wilcox
8 * Copyright (C) 2016 Intel, Ross Zwisler
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License as
12 * published by the Free Software Foundation; either version 2, or (at
13 * your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23 */
24
25 #include <linux/errno.h>
26 #include <linux/init.h>
27 #include <linux/kernel.h>
28 #include <linux/export.h>
29 #include <linux/radix-tree.h>
30 #include <linux/percpu.h>
31 #include <linux/slab.h>
32 #include <linux/kmemleak.h>
33 #include <linux/notifier.h>
34 #include <linux/cpu.h>
35 #include <linux/string.h>
36 #include <linux/bitops.h>
37 #include <linux/rcupdate.h>
38 #include <linux/preempt.h> /* in_interrupt() */
39
40
41 /*
42 * Radix tree node cache.
43 */
44 static struct kmem_cache *radix_tree_node_cachep;
45
46 /*
47 * The radix tree is variable-height, so an insert operation not only has
48 * to build the branch to its corresponding item, it also has to build the
49 * branch to existing items if the size has to be increased (by
50 * radix_tree_extend).
51 *
52 * The worst case is a zero height tree with just a single item at index 0,
53 * and then inserting an item at index ULONG_MAX. This requires 2 new branches
54 * of RADIX_TREE_MAX_PATH size to be created, with only the root node shared.
55 * Hence:
56 */
57 #define RADIX_TREE_PRELOAD_SIZE (RADIX_TREE_MAX_PATH * 2 - 1)
58
59 /*
60 * Per-cpu pool of preloaded nodes
61 */
62 struct radix_tree_preload {
63 unsigned nr;
64 /* nodes->private_data points to next preallocated node */
65 struct radix_tree_node *nodes;
66 };
67 static DEFINE_PER_CPU(struct radix_tree_preload, radix_tree_preloads) = { 0, };
68
69 static inline void *node_to_entry(void *ptr)
70 {
71 return (void *)((unsigned long)ptr | RADIX_TREE_INTERNAL_NODE);
72 }
73
74 #define RADIX_TREE_RETRY node_to_entry(NULL)
75
76 #ifdef CONFIG_RADIX_TREE_MULTIORDER
77 /* Sibling slots point directly to another slot in the same node */
78 static inline bool is_sibling_entry(struct radix_tree_node *parent, void *node)
79 {
80 void **ptr = node;
81 return (parent->slots <= ptr) &&
82 (ptr < parent->slots + RADIX_TREE_MAP_SIZE);
83 }
84 #else
85 static inline bool is_sibling_entry(struct radix_tree_node *parent, void *node)
86 {
87 return false;
88 }
89 #endif
90
91 static inline unsigned long get_slot_offset(struct radix_tree_node *parent,
92 void **slot)
93 {
94 return slot - parent->slots;
95 }
96
97 static unsigned radix_tree_descend(struct radix_tree_node *parent,
98 struct radix_tree_node **nodep, unsigned offset)
99 {
100 void **entry = rcu_dereference_raw(parent->slots[offset]);
101
102 #ifdef CONFIG_RADIX_TREE_MULTIORDER
103 if (radix_tree_is_indirect_ptr(entry)) {
104 unsigned long siboff = get_slot_offset(parent, entry);
105 if (siboff < RADIX_TREE_MAP_SIZE) {
106 offset = siboff;
107 entry = rcu_dereference_raw(parent->slots[offset]);
108 }
109 }
110 #endif
111
112 *nodep = (void *)entry;
113 return offset;
114 }
115
116 static inline gfp_t root_gfp_mask(struct radix_tree_root *root)
117 {
118 return root->gfp_mask & __GFP_BITS_MASK;
119 }
120
121 static inline void tag_set(struct radix_tree_node *node, unsigned int tag,
122 int offset)
123 {
124 __set_bit(offset, node->tags[tag]);
125 }
126
127 static inline void tag_clear(struct radix_tree_node *node, unsigned int tag,
128 int offset)
129 {
130 __clear_bit(offset, node->tags[tag]);
131 }
132
133 static inline int tag_get(struct radix_tree_node *node, unsigned int tag,
134 int offset)
135 {
136 return test_bit(offset, node->tags[tag]);
137 }
138
139 static inline void root_tag_set(struct radix_tree_root *root, unsigned int tag)
140 {
141 root->gfp_mask |= (__force gfp_t)(1 << (tag + __GFP_BITS_SHIFT));
142 }
143
144 static inline void root_tag_clear(struct radix_tree_root *root, unsigned tag)
145 {
146 root->gfp_mask &= (__force gfp_t)~(1 << (tag + __GFP_BITS_SHIFT));
147 }
148
149 static inline void root_tag_clear_all(struct radix_tree_root *root)
150 {
151 root->gfp_mask &= __GFP_BITS_MASK;
152 }
153
154 static inline int root_tag_get(struct radix_tree_root *root, unsigned int tag)
155 {
156 return (__force int)root->gfp_mask & (1 << (tag + __GFP_BITS_SHIFT));
157 }
158
159 static inline unsigned root_tags_get(struct radix_tree_root *root)
160 {
161 return (__force unsigned)root->gfp_mask >> __GFP_BITS_SHIFT;
162 }
163
164 /*
165 * Returns 1 if any slot in the node has this tag set.
166 * Otherwise returns 0.
167 */
168 static inline int any_tag_set(struct radix_tree_node *node, unsigned int tag)
169 {
170 unsigned idx;
171 for (idx = 0; idx < RADIX_TREE_TAG_LONGS; idx++) {
172 if (node->tags[tag][idx])
173 return 1;
174 }
175 return 0;
176 }
177
178 /**
179 * radix_tree_find_next_bit - find the next set bit in a memory region
180 *
181 * @addr: The address to base the search on
182 * @size: The bitmap size in bits
183 * @offset: The bitnumber to start searching at
184 *
185 * Unrollable variant of find_next_bit() for constant size arrays.
186 * Tail bits starting from size to roundup(size, BITS_PER_LONG) must be zero.
187 * Returns next bit offset, or size if nothing found.
188 */
189 static __always_inline unsigned long
190 radix_tree_find_next_bit(const unsigned long *addr,
191 unsigned long size, unsigned long offset)
192 {
193 if (!__builtin_constant_p(size))
194 return find_next_bit(addr, size, offset);
195
196 if (offset < size) {
197 unsigned long tmp;
198
199 addr += offset / BITS_PER_LONG;
200 tmp = *addr >> (offset % BITS_PER_LONG);
201 if (tmp)
202 return __ffs(tmp) + offset;
203 offset = (offset + BITS_PER_LONG) & ~(BITS_PER_LONG - 1);
204 while (offset < size) {
205 tmp = *++addr;
206 if (tmp)
207 return __ffs(tmp) + offset;
208 offset += BITS_PER_LONG;
209 }
210 }
211 return size;
212 }
213
214 #ifndef __KERNEL__
215 static void dump_node(struct radix_tree_node *node, unsigned long index)
216 {
217 unsigned long i;
218
219 pr_debug("radix node: %p offset %d tags %lx %lx %lx shift %d count %d parent %p\n",
220 node, node->offset,
221 node->tags[0][0], node->tags[1][0], node->tags[2][0],
222 node->shift, node->count, node->parent);
223
224 for (i = 0; i < RADIX_TREE_MAP_SIZE; i++) {
225 unsigned long first = index | (i << node->shift);
226 unsigned long last = first | ((1UL << node->shift) - 1);
227 void *entry = node->slots[i];
228 if (!entry)
229 continue;
230 if (is_sibling_entry(node, entry)) {
231 pr_debug("radix sblng %p offset %ld val %p indices %ld-%ld\n",
232 entry, i,
233 *(void **)indirect_to_ptr(entry),
234 first, last);
235 } else if (!radix_tree_is_indirect_ptr(entry)) {
236 pr_debug("radix entry %p offset %ld indices %ld-%ld\n",
237 entry, i, first, last);
238 } else {
239 dump_node(indirect_to_ptr(entry), first);
240 }
241 }
242 }
243
244 /* For debug */
245 static void radix_tree_dump(struct radix_tree_root *root)
246 {
247 pr_debug("radix root: %p rnode %p tags %x\n",
248 root, root->rnode,
249 root->gfp_mask >> __GFP_BITS_SHIFT);
250 if (!radix_tree_is_indirect_ptr(root->rnode))
251 return;
252 dump_node(indirect_to_ptr(root->rnode), 0);
253 }
254 #endif
255
256 /*
257 * This assumes that the caller has performed appropriate preallocation, and
258 * that the caller has pinned this thread of control to the current CPU.
259 */
260 static struct radix_tree_node *
261 radix_tree_node_alloc(struct radix_tree_root *root)
262 {
263 struct radix_tree_node *ret = NULL;
264 gfp_t gfp_mask = root_gfp_mask(root);
265
266 /*
267 * Preload code isn't irq safe and it doesn't make sense to use
268 * preloading during an interrupt anyway as all the allocations have
269 * to be atomic. So just do normal allocation when in interrupt.
270 */
271 if (!gfpflags_allow_blocking(gfp_mask) && !in_interrupt()) {
272 struct radix_tree_preload *rtp;
273
274 /*
275 * Even if the caller has preloaded, try to allocate from the
276 * cache first for the new node to get accounted.
277 */
278 ret = kmem_cache_alloc(radix_tree_node_cachep,
279 gfp_mask | __GFP_ACCOUNT | __GFP_NOWARN);
280 if (ret)
281 goto out;
282
283 /*
284 * Provided the caller has preloaded here, we will always
285 * succeed in getting a node here (and never reach
286 * kmem_cache_alloc)
287 */
288 rtp = this_cpu_ptr(&radix_tree_preloads);
289 if (rtp->nr) {
290 ret = rtp->nodes;
291 rtp->nodes = ret->private_data;
292 ret->private_data = NULL;
293 rtp->nr--;
294 }
295 /*
296 * Update the allocation stack trace as this is more useful
297 * for debugging.
298 */
299 kmemleak_update_trace(ret);
300 goto out;
301 }
302 ret = kmem_cache_alloc(radix_tree_node_cachep,
303 gfp_mask | __GFP_ACCOUNT);
304 out:
305 BUG_ON(radix_tree_is_indirect_ptr(ret));
306 return ret;
307 }
308
309 static void radix_tree_node_rcu_free(struct rcu_head *head)
310 {
311 struct radix_tree_node *node =
312 container_of(head, struct radix_tree_node, rcu_head);
313 int i;
314
315 /*
316 * must only free zeroed nodes into the slab. radix_tree_shrink
317 * can leave us with a non-NULL entry in the first slot, so clear
318 * that here to make sure.
319 */
320 for (i = 0; i < RADIX_TREE_MAX_TAGS; i++)
321 tag_clear(node, i, 0);
322
323 node->slots[0] = NULL;
324 node->count = 0;
325
326 kmem_cache_free(radix_tree_node_cachep, node);
327 }
328
329 static inline void
330 radix_tree_node_free(struct radix_tree_node *node)
331 {
332 call_rcu(&node->rcu_head, radix_tree_node_rcu_free);
333 }
334
335 /*
336 * Load up this CPU's radix_tree_node buffer with sufficient objects to
337 * ensure that the addition of a single element in the tree cannot fail. On
338 * success, return zero, with preemption disabled. On error, return -ENOMEM
339 * with preemption not disabled.
340 *
341 * To make use of this facility, the radix tree must be initialised without
342 * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
343 */
344 static int __radix_tree_preload(gfp_t gfp_mask)
345 {
346 struct radix_tree_preload *rtp;
347 struct radix_tree_node *node;
348 int ret = -ENOMEM;
349
350 preempt_disable();
351 rtp = this_cpu_ptr(&radix_tree_preloads);
352 while (rtp->nr < RADIX_TREE_PRELOAD_SIZE) {
353 preempt_enable();
354 node = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
355 if (node == NULL)
356 goto out;
357 preempt_disable();
358 rtp = this_cpu_ptr(&radix_tree_preloads);
359 if (rtp->nr < RADIX_TREE_PRELOAD_SIZE) {
360 node->private_data = rtp->nodes;
361 rtp->nodes = node;
362 rtp->nr++;
363 } else {
364 kmem_cache_free(radix_tree_node_cachep, node);
365 }
366 }
367 ret = 0;
368 out:
369 return ret;
370 }
371
372 /*
373 * Load up this CPU's radix_tree_node buffer with sufficient objects to
374 * ensure that the addition of a single element in the tree cannot fail. On
375 * success, return zero, with preemption disabled. On error, return -ENOMEM
376 * with preemption not disabled.
377 *
378 * To make use of this facility, the radix tree must be initialised without
379 * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
380 */
381 int radix_tree_preload(gfp_t gfp_mask)
382 {
383 /* Warn on non-sensical use... */
384 WARN_ON_ONCE(!gfpflags_allow_blocking(gfp_mask));
385 return __radix_tree_preload(gfp_mask);
386 }
387 EXPORT_SYMBOL(radix_tree_preload);
388
389 /*
390 * The same as above function, except we don't guarantee preloading happens.
391 * We do it, if we decide it helps. On success, return zero with preemption
392 * disabled. On error, return -ENOMEM with preemption not disabled.
393 */
394 int radix_tree_maybe_preload(gfp_t gfp_mask)
395 {
396 if (gfpflags_allow_blocking(gfp_mask))
397 return __radix_tree_preload(gfp_mask);
398 /* Preloading doesn't help anything with this gfp mask, skip it */
399 preempt_disable();
400 return 0;
401 }
402 EXPORT_SYMBOL(radix_tree_maybe_preload);
403
404 /*
405 * The maximum index which can be stored in a radix tree
406 */
407 static inline unsigned long shift_maxindex(unsigned int shift)
408 {
409 return (RADIX_TREE_MAP_SIZE << shift) - 1;
410 }
411
412 static inline unsigned long node_maxindex(struct radix_tree_node *node)
413 {
414 return shift_maxindex(node->shift);
415 }
416
417 static unsigned radix_tree_load_root(struct radix_tree_root *root,
418 struct radix_tree_node **nodep, unsigned long *maxindex)
419 {
420 struct radix_tree_node *node = rcu_dereference_raw(root->rnode);
421
422 *nodep = node;
423
424 if (likely(radix_tree_is_indirect_ptr(node))) {
425 node = indirect_to_ptr(node);
426 *maxindex = node_maxindex(node);
427 return node->shift + RADIX_TREE_MAP_SHIFT;
428 }
429
430 *maxindex = 0;
431 return 0;
432 }
433
434 /*
435 * Extend a radix tree so it can store key @index.
436 */
437 static int radix_tree_extend(struct radix_tree_root *root,
438 unsigned long index, unsigned int shift)
439 {
440 struct radix_tree_node *slot;
441 unsigned int maxshift;
442 int tag;
443
444 /* Figure out what the shift should be. */
445 maxshift = shift;
446 while (index > shift_maxindex(maxshift))
447 maxshift += RADIX_TREE_MAP_SHIFT;
448
449 slot = root->rnode;
450 if (!slot)
451 goto out;
452
453 do {
454 struct radix_tree_node *node = radix_tree_node_alloc(root);
455
456 if (!node)
457 return -ENOMEM;
458
459 /* Propagate the aggregated tag info into the new root */
460 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
461 if (root_tag_get(root, tag))
462 tag_set(node, tag, 0);
463 }
464
465 BUG_ON(shift > BITS_PER_LONG);
466 node->shift = shift;
467 node->offset = 0;
468 node->count = 1;
469 node->parent = NULL;
470 if (radix_tree_is_indirect_ptr(slot)) {
471 slot = indirect_to_ptr(slot);
472 slot->parent = node;
473 slot = node_to_entry(slot);
474 }
475 node->slots[0] = slot;
476 slot = node_to_entry(node);
477 rcu_assign_pointer(root->rnode, slot);
478 shift += RADIX_TREE_MAP_SHIFT;
479 } while (shift <= maxshift);
480 out:
481 return maxshift + RADIX_TREE_MAP_SHIFT;
482 }
483
484 /**
485 * __radix_tree_create - create a slot in a radix tree
486 * @root: radix tree root
487 * @index: index key
488 * @order: index occupies 2^order aligned slots
489 * @nodep: returns node
490 * @slotp: returns slot
491 *
492 * Create, if necessary, and return the node and slot for an item
493 * at position @index in the radix tree @root.
494 *
495 * Until there is more than one item in the tree, no nodes are
496 * allocated and @root->rnode is used as a direct slot instead of
497 * pointing to a node, in which case *@nodep will be NULL.
498 *
499 * Returns -ENOMEM, or 0 for success.
500 */
501 int __radix_tree_create(struct radix_tree_root *root, unsigned long index,
502 unsigned order, struct radix_tree_node **nodep,
503 void ***slotp)
504 {
505 struct radix_tree_node *node = NULL, *slot;
506 unsigned long maxindex;
507 unsigned int shift, offset;
508 unsigned long max = index | ((1UL << order) - 1);
509
510 shift = radix_tree_load_root(root, &slot, &maxindex);
511
512 /* Make sure the tree is high enough. */
513 if (max > maxindex) {
514 int error = radix_tree_extend(root, max, shift);
515 if (error < 0)
516 return error;
517 shift = error;
518 slot = root->rnode;
519 if (order == shift)
520 shift += RADIX_TREE_MAP_SHIFT;
521 }
522
523 offset = 0; /* uninitialised var warning */
524 while (shift > order) {
525 shift -= RADIX_TREE_MAP_SHIFT;
526 if (slot == NULL) {
527 /* Have to add a child node. */
528 slot = radix_tree_node_alloc(root);
529 if (!slot)
530 return -ENOMEM;
531 slot->shift = shift;
532 slot->offset = offset;
533 slot->parent = node;
534 if (node) {
535 rcu_assign_pointer(node->slots[offset],
536 node_to_entry(slot));
537 node->count++;
538 } else
539 rcu_assign_pointer(root->rnode,
540 node_to_entry(slot));
541 } else if (!radix_tree_is_indirect_ptr(slot))
542 break;
543
544 /* Go a level down */
545 node = indirect_to_ptr(slot);
546 offset = (index >> shift) & RADIX_TREE_MAP_MASK;
547 offset = radix_tree_descend(node, &slot, offset);
548 }
549
550 #ifdef CONFIG_RADIX_TREE_MULTIORDER
551 /* Insert pointers to the canonical entry */
552 if (order > shift) {
553 int i, n = 1 << (order - shift);
554 offset = offset & ~(n - 1);
555 slot = node_to_entry(&node->slots[offset]);
556 for (i = 0; i < n; i++) {
557 if (node->slots[offset + i])
558 return -EEXIST;
559 }
560
561 for (i = 1; i < n; i++) {
562 rcu_assign_pointer(node->slots[offset + i], slot);
563 node->count++;
564 }
565 }
566 #endif
567
568 if (nodep)
569 *nodep = node;
570 if (slotp)
571 *slotp = node ? node->slots + offset : (void **)&root->rnode;
572 return 0;
573 }
574
575 /**
576 * __radix_tree_insert - insert into a radix tree
577 * @root: radix tree root
578 * @index: index key
579 * @order: key covers the 2^order indices around index
580 * @item: item to insert
581 *
582 * Insert an item into the radix tree at position @index.
583 */
584 int __radix_tree_insert(struct radix_tree_root *root, unsigned long index,
585 unsigned order, void *item)
586 {
587 struct radix_tree_node *node;
588 void **slot;
589 int error;
590
591 BUG_ON(radix_tree_is_indirect_ptr(item));
592
593 error = __radix_tree_create(root, index, order, &node, &slot);
594 if (error)
595 return error;
596 if (*slot != NULL)
597 return -EEXIST;
598 rcu_assign_pointer(*slot, item);
599
600 if (node) {
601 unsigned offset = get_slot_offset(node, slot);
602 node->count++;
603 BUG_ON(tag_get(node, 0, offset));
604 BUG_ON(tag_get(node, 1, offset));
605 BUG_ON(tag_get(node, 2, offset));
606 } else {
607 BUG_ON(root_tags_get(root));
608 }
609
610 return 0;
611 }
612 EXPORT_SYMBOL(__radix_tree_insert);
613
614 /**
615 * __radix_tree_lookup - lookup an item in a radix tree
616 * @root: radix tree root
617 * @index: index key
618 * @nodep: returns node
619 * @slotp: returns slot
620 *
621 * Lookup and return the item at position @index in the radix
622 * tree @root.
623 *
624 * Until there is more than one item in the tree, no nodes are
625 * allocated and @root->rnode is used as a direct slot instead of
626 * pointing to a node, in which case *@nodep will be NULL.
627 */
628 void *__radix_tree_lookup(struct radix_tree_root *root, unsigned long index,
629 struct radix_tree_node **nodep, void ***slotp)
630 {
631 struct radix_tree_node *node, *parent;
632 unsigned long maxindex;
633 unsigned int shift;
634 void **slot;
635
636 restart:
637 parent = NULL;
638 slot = (void **)&root->rnode;
639 shift = radix_tree_load_root(root, &node, &maxindex);
640 if (index > maxindex)
641 return NULL;
642
643 while (radix_tree_is_indirect_ptr(node)) {
644 unsigned offset;
645
646 if (node == RADIX_TREE_RETRY)
647 goto restart;
648 parent = indirect_to_ptr(node);
649 shift -= RADIX_TREE_MAP_SHIFT;
650 offset = (index >> shift) & RADIX_TREE_MAP_MASK;
651 offset = radix_tree_descend(parent, &node, offset);
652 slot = parent->slots + offset;
653 }
654
655 if (nodep)
656 *nodep = parent;
657 if (slotp)
658 *slotp = slot;
659 return node;
660 }
661
662 /**
663 * radix_tree_lookup_slot - lookup a slot in a radix tree
664 * @root: radix tree root
665 * @index: index key
666 *
667 * Returns: the slot corresponding to the position @index in the
668 * radix tree @root. This is useful for update-if-exists operations.
669 *
670 * This function can be called under rcu_read_lock iff the slot is not
671 * modified by radix_tree_replace_slot, otherwise it must be called
672 * exclusive from other writers. Any dereference of the slot must be done
673 * using radix_tree_deref_slot.
674 */
675 void **radix_tree_lookup_slot(struct radix_tree_root *root, unsigned long index)
676 {
677 void **slot;
678
679 if (!__radix_tree_lookup(root, index, NULL, &slot))
680 return NULL;
681 return slot;
682 }
683 EXPORT_SYMBOL(radix_tree_lookup_slot);
684
685 /**
686 * radix_tree_lookup - perform lookup operation on a radix tree
687 * @root: radix tree root
688 * @index: index key
689 *
690 * Lookup the item at the position @index in the radix tree @root.
691 *
692 * This function can be called under rcu_read_lock, however the caller
693 * must manage lifetimes of leaf nodes (eg. RCU may also be used to free
694 * them safely). No RCU barriers are required to access or modify the
695 * returned item, however.
696 */
697 void *radix_tree_lookup(struct radix_tree_root *root, unsigned long index)
698 {
699 return __radix_tree_lookup(root, index, NULL, NULL);
700 }
701 EXPORT_SYMBOL(radix_tree_lookup);
702
703 /**
704 * radix_tree_tag_set - set a tag on a radix tree node
705 * @root: radix tree root
706 * @index: index key
707 * @tag: tag index
708 *
709 * Set the search tag (which must be < RADIX_TREE_MAX_TAGS)
710 * corresponding to @index in the radix tree. From
711 * the root all the way down to the leaf node.
712 *
713 * Returns the address of the tagged item. Setting a tag on a not-present
714 * item is a bug.
715 */
716 void *radix_tree_tag_set(struct radix_tree_root *root,
717 unsigned long index, unsigned int tag)
718 {
719 struct radix_tree_node *node, *parent;
720 unsigned long maxindex;
721 unsigned int shift;
722
723 shift = radix_tree_load_root(root, &node, &maxindex);
724 BUG_ON(index > maxindex);
725
726 while (radix_tree_is_indirect_ptr(node)) {
727 unsigned offset;
728
729 shift -= RADIX_TREE_MAP_SHIFT;
730 offset = (index >> shift) & RADIX_TREE_MAP_MASK;
731
732 parent = indirect_to_ptr(node);
733 offset = radix_tree_descend(parent, &node, offset);
734 BUG_ON(!node);
735
736 if (!tag_get(parent, tag, offset))
737 tag_set(parent, tag, offset);
738 }
739
740 /* set the root's tag bit */
741 if (!root_tag_get(root, tag))
742 root_tag_set(root, tag);
743
744 return node;
745 }
746 EXPORT_SYMBOL(radix_tree_tag_set);
747
748 /**
749 * radix_tree_tag_clear - clear a tag on a radix tree node
750 * @root: radix tree root
751 * @index: index key
752 * @tag: tag index
753 *
754 * Clear the search tag (which must be < RADIX_TREE_MAX_TAGS)
755 * corresponding to @index in the radix tree. If this causes
756 * the leaf node to have no tags set then clear the tag in the
757 * next-to-leaf node, etc.
758 *
759 * Returns the address of the tagged item on success, else NULL. ie:
760 * has the same return value and semantics as radix_tree_lookup().
761 */
762 void *radix_tree_tag_clear(struct radix_tree_root *root,
763 unsigned long index, unsigned int tag)
764 {
765 struct radix_tree_node *node, *parent;
766 unsigned long maxindex;
767 unsigned int shift;
768 int uninitialized_var(offset);
769
770 shift = radix_tree_load_root(root, &node, &maxindex);
771 if (index > maxindex)
772 return NULL;
773
774 parent = NULL;
775
776 while (radix_tree_is_indirect_ptr(node)) {
777 shift -= RADIX_TREE_MAP_SHIFT;
778 offset = (index >> shift) & RADIX_TREE_MAP_MASK;
779
780 parent = indirect_to_ptr(node);
781 offset = radix_tree_descend(parent, &node, offset);
782 }
783
784 if (node == NULL)
785 goto out;
786
787 index >>= shift;
788
789 while (parent) {
790 if (!tag_get(parent, tag, offset))
791 goto out;
792 tag_clear(parent, tag, offset);
793 if (any_tag_set(parent, tag))
794 goto out;
795
796 index >>= RADIX_TREE_MAP_SHIFT;
797 offset = index & RADIX_TREE_MAP_MASK;
798 parent = parent->parent;
799 }
800
801 /* clear the root's tag bit */
802 if (root_tag_get(root, tag))
803 root_tag_clear(root, tag);
804
805 out:
806 return node;
807 }
808 EXPORT_SYMBOL(radix_tree_tag_clear);
809
810 /**
811 * radix_tree_tag_get - get a tag on a radix tree node
812 * @root: radix tree root
813 * @index: index key
814 * @tag: tag index (< RADIX_TREE_MAX_TAGS)
815 *
816 * Return values:
817 *
818 * 0: tag not present or not set
819 * 1: tag set
820 *
821 * Note that the return value of this function may not be relied on, even if
822 * the RCU lock is held, unless tag modification and node deletion are excluded
823 * from concurrency.
824 */
825 int radix_tree_tag_get(struct radix_tree_root *root,
826 unsigned long index, unsigned int tag)
827 {
828 struct radix_tree_node *node, *parent;
829 unsigned long maxindex;
830 unsigned int shift;
831
832 if (!root_tag_get(root, tag))
833 return 0;
834
835 shift = radix_tree_load_root(root, &node, &maxindex);
836 if (index > maxindex)
837 return 0;
838 if (node == NULL)
839 return 0;
840
841 while (radix_tree_is_indirect_ptr(node)) {
842 int offset;
843
844 shift -= RADIX_TREE_MAP_SHIFT;
845 offset = (index >> shift) & RADIX_TREE_MAP_MASK;
846
847 parent = indirect_to_ptr(node);
848 offset = radix_tree_descend(parent, &node, offset);
849
850 if (!node)
851 return 0;
852 if (!tag_get(parent, tag, offset))
853 return 0;
854 if (node == RADIX_TREE_RETRY)
855 break;
856 }
857
858 return 1;
859 }
860 EXPORT_SYMBOL(radix_tree_tag_get);
861
862 static inline void __set_iter_shift(struct radix_tree_iter *iter,
863 unsigned int shift)
864 {
865 #ifdef CONFIG_RADIX_TREE_MULTIORDER
866 iter->shift = shift;
867 #endif
868 }
869
870 /**
871 * radix_tree_next_chunk - find next chunk of slots for iteration
872 *
873 * @root: radix tree root
874 * @iter: iterator state
875 * @flags: RADIX_TREE_ITER_* flags and tag index
876 * Returns: pointer to chunk first slot, or NULL if iteration is over
877 */
878 void **radix_tree_next_chunk(struct radix_tree_root *root,
879 struct radix_tree_iter *iter, unsigned flags)
880 {
881 unsigned shift, tag = flags & RADIX_TREE_ITER_TAG_MASK;
882 struct radix_tree_node *rnode, *node;
883 unsigned long index, offset, maxindex;
884
885 if ((flags & RADIX_TREE_ITER_TAGGED) && !root_tag_get(root, tag))
886 return NULL;
887
888 /*
889 * Catch next_index overflow after ~0UL. iter->index never overflows
890 * during iterating; it can be zero only at the beginning.
891 * And we cannot overflow iter->next_index in a single step,
892 * because RADIX_TREE_MAP_SHIFT < BITS_PER_LONG.
893 *
894 * This condition also used by radix_tree_next_slot() to stop
895 * contiguous iterating, and forbid swithing to the next chunk.
896 */
897 index = iter->next_index;
898 if (!index && iter->index)
899 return NULL;
900
901 restart:
902 shift = radix_tree_load_root(root, &rnode, &maxindex);
903 if (index > maxindex)
904 return NULL;
905
906 if (radix_tree_is_indirect_ptr(rnode)) {
907 rnode = indirect_to_ptr(rnode);
908 } else if (rnode) {
909 /* Single-slot tree */
910 iter->index = index;
911 iter->next_index = maxindex + 1;
912 iter->tags = 1;
913 __set_iter_shift(iter, shift);
914 return (void **)&root->rnode;
915 } else
916 return NULL;
917
918 shift -= RADIX_TREE_MAP_SHIFT;
919 offset = index >> shift;
920
921 node = rnode;
922 while (1) {
923 struct radix_tree_node *slot;
924 unsigned new_off = radix_tree_descend(node, &slot, offset);
925
926 if (new_off < offset) {
927 offset = new_off;
928 index &= ~((RADIX_TREE_MAP_SIZE << shift) - 1);
929 index |= offset << shift;
930 }
931
932 if ((flags & RADIX_TREE_ITER_TAGGED) ?
933 !tag_get(node, tag, offset) : !slot) {
934 /* Hole detected */
935 if (flags & RADIX_TREE_ITER_CONTIG)
936 return NULL;
937
938 if (flags & RADIX_TREE_ITER_TAGGED)
939 offset = radix_tree_find_next_bit(
940 node->tags[tag],
941 RADIX_TREE_MAP_SIZE,
942 offset + 1);
943 else
944 while (++offset < RADIX_TREE_MAP_SIZE) {
945 void *slot = node->slots[offset];
946 if (is_sibling_entry(node, slot))
947 continue;
948 if (slot)
949 break;
950 }
951 index &= ~((RADIX_TREE_MAP_SIZE << shift) - 1);
952 index += offset << shift;
953 /* Overflow after ~0UL */
954 if (!index)
955 return NULL;
956 if (offset == RADIX_TREE_MAP_SIZE)
957 goto restart;
958 slot = rcu_dereference_raw(node->slots[offset]);
959 }
960
961 if ((slot == NULL) || (slot == RADIX_TREE_RETRY))
962 goto restart;
963 if (!radix_tree_is_indirect_ptr(slot))
964 break;
965
966 node = indirect_to_ptr(slot);
967 shift -= RADIX_TREE_MAP_SHIFT;
968 offset = (index >> shift) & RADIX_TREE_MAP_MASK;
969 }
970
971 /* Update the iterator state */
972 iter->index = index & ~((1 << shift) - 1);
973 iter->next_index = (index | ((RADIX_TREE_MAP_SIZE << shift) - 1)) + 1;
974 __set_iter_shift(iter, shift);
975
976 /* Construct iter->tags bit-mask from node->tags[tag] array */
977 if (flags & RADIX_TREE_ITER_TAGGED) {
978 unsigned tag_long, tag_bit;
979
980 tag_long = offset / BITS_PER_LONG;
981 tag_bit = offset % BITS_PER_LONG;
982 iter->tags = node->tags[tag][tag_long] >> tag_bit;
983 /* This never happens if RADIX_TREE_TAG_LONGS == 1 */
984 if (tag_long < RADIX_TREE_TAG_LONGS - 1) {
985 /* Pick tags from next element */
986 if (tag_bit)
987 iter->tags |= node->tags[tag][tag_long + 1] <<
988 (BITS_PER_LONG - tag_bit);
989 /* Clip chunk size, here only BITS_PER_LONG tags */
990 iter->next_index = index + BITS_PER_LONG;
991 }
992 }
993
994 return node->slots + offset;
995 }
996 EXPORT_SYMBOL(radix_tree_next_chunk);
997
998 /**
999 * radix_tree_range_tag_if_tagged - for each item in given range set given
1000 * tag if item has another tag set
1001 * @root: radix tree root
1002 * @first_indexp: pointer to a starting index of a range to scan
1003 * @last_index: last index of a range to scan
1004 * @nr_to_tag: maximum number items to tag
1005 * @iftag: tag index to test
1006 * @settag: tag index to set if tested tag is set
1007 *
1008 * This function scans range of radix tree from first_index to last_index
1009 * (inclusive). For each item in the range if iftag is set, the function sets
1010 * also settag. The function stops either after tagging nr_to_tag items or
1011 * after reaching last_index.
1012 *
1013 * The tags must be set from the leaf level only and propagated back up the
1014 * path to the root. We must do this so that we resolve the full path before
1015 * setting any tags on intermediate nodes. If we set tags as we descend, then
1016 * we can get to the leaf node and find that the index that has the iftag
1017 * set is outside the range we are scanning. This reults in dangling tags and
1018 * can lead to problems with later tag operations (e.g. livelocks on lookups).
1019 *
1020 * The function returns the number of leaves where the tag was set and sets
1021 * *first_indexp to the first unscanned index.
1022 * WARNING! *first_indexp can wrap if last_index is ULONG_MAX. Caller must
1023 * be prepared to handle that.
1024 */
1025 unsigned long radix_tree_range_tag_if_tagged(struct radix_tree_root *root,
1026 unsigned long *first_indexp, unsigned long last_index,
1027 unsigned long nr_to_tag,
1028 unsigned int iftag, unsigned int settag)
1029 {
1030 struct radix_tree_node *slot, *node = NULL;
1031 unsigned long maxindex;
1032 unsigned int shift = radix_tree_load_root(root, &slot, &maxindex);
1033 unsigned long tagged = 0;
1034 unsigned long index = *first_indexp;
1035
1036 last_index = min(last_index, maxindex);
1037 if (index > last_index)
1038 return 0;
1039 if (!nr_to_tag)
1040 return 0;
1041 if (!root_tag_get(root, iftag)) {
1042 *first_indexp = last_index + 1;
1043 return 0;
1044 }
1045 if (!radix_tree_is_indirect_ptr(slot)) {
1046 *first_indexp = last_index + 1;
1047 root_tag_set(root, settag);
1048 return 1;
1049 }
1050
1051 node = indirect_to_ptr(slot);
1052 shift -= RADIX_TREE_MAP_SHIFT;
1053
1054 for (;;) {
1055 unsigned long upindex;
1056 unsigned offset;
1057
1058 offset = (index >> shift) & RADIX_TREE_MAP_MASK;
1059 offset = radix_tree_descend(node, &slot, offset);
1060 if (!slot)
1061 goto next;
1062 if (!tag_get(node, iftag, offset))
1063 goto next;
1064 /* Sibling slots never have tags set on them */
1065 if (radix_tree_is_indirect_ptr(slot)) {
1066 node = indirect_to_ptr(slot);
1067 shift -= RADIX_TREE_MAP_SHIFT;
1068 continue;
1069 }
1070
1071 /* tag the leaf */
1072 tagged++;
1073 tag_set(node, settag, offset);
1074
1075 slot = node->parent;
1076 /* walk back up the path tagging interior nodes */
1077 upindex = index >> shift;
1078 while (slot) {
1079 upindex >>= RADIX_TREE_MAP_SHIFT;
1080 offset = upindex & RADIX_TREE_MAP_MASK;
1081
1082 /* stop if we find a node with the tag already set */
1083 if (tag_get(slot, settag, offset))
1084 break;
1085 tag_set(slot, settag, offset);
1086 slot = slot->parent;
1087 }
1088
1089 next:
1090 /* Go to next item at level determined by 'shift' */
1091 index = ((index >> shift) + 1) << shift;
1092 /* Overflow can happen when last_index is ~0UL... */
1093 if (index > last_index || !index)
1094 break;
1095 offset = (index >> shift) & RADIX_TREE_MAP_MASK;
1096 while (offset == 0) {
1097 /*
1098 * We've fully scanned this node. Go up. Because
1099 * last_index is guaranteed to be in the tree, what
1100 * we do below cannot wander astray.
1101 */
1102 node = node->parent;
1103 shift += RADIX_TREE_MAP_SHIFT;
1104 offset = (index >> shift) & RADIX_TREE_MAP_MASK;
1105 }
1106 if (is_sibling_entry(node, node->slots[offset]))
1107 goto next;
1108 if (tagged >= nr_to_tag)
1109 break;
1110 }
1111 /*
1112 * We need not to tag the root tag if there is no tag which is set with
1113 * settag within the range from *first_indexp to last_index.
1114 */
1115 if (tagged > 0)
1116 root_tag_set(root, settag);
1117 *first_indexp = index;
1118
1119 return tagged;
1120 }
1121 EXPORT_SYMBOL(radix_tree_range_tag_if_tagged);
1122
1123 /**
1124 * radix_tree_gang_lookup - perform multiple lookup on a radix tree
1125 * @root: radix tree root
1126 * @results: where the results of the lookup are placed
1127 * @first_index: start the lookup from this key
1128 * @max_items: place up to this many items at *results
1129 *
1130 * Performs an index-ascending scan of the tree for present items. Places
1131 * them at *@results and returns the number of items which were placed at
1132 * *@results.
1133 *
1134 * The implementation is naive.
1135 *
1136 * Like radix_tree_lookup, radix_tree_gang_lookup may be called under
1137 * rcu_read_lock. In this case, rather than the returned results being
1138 * an atomic snapshot of the tree at a single point in time, the
1139 * semantics of an RCU protected gang lookup are as though multiple
1140 * radix_tree_lookups have been issued in individual locks, and results
1141 * stored in 'results'.
1142 */
1143 unsigned int
1144 radix_tree_gang_lookup(struct radix_tree_root *root, void **results,
1145 unsigned long first_index, unsigned int max_items)
1146 {
1147 struct radix_tree_iter iter;
1148 void **slot;
1149 unsigned int ret = 0;
1150
1151 if (unlikely(!max_items))
1152 return 0;
1153
1154 radix_tree_for_each_slot(slot, root, &iter, first_index) {
1155 results[ret] = rcu_dereference_raw(*slot);
1156 if (!results[ret])
1157 continue;
1158 if (radix_tree_is_indirect_ptr(results[ret])) {
1159 slot = radix_tree_iter_retry(&iter);
1160 continue;
1161 }
1162 if (++ret == max_items)
1163 break;
1164 }
1165
1166 return ret;
1167 }
1168 EXPORT_SYMBOL(radix_tree_gang_lookup);
1169
1170 /**
1171 * radix_tree_gang_lookup_slot - perform multiple slot lookup on radix tree
1172 * @root: radix tree root
1173 * @results: where the results of the lookup are placed
1174 * @indices: where their indices should be placed (but usually NULL)
1175 * @first_index: start the lookup from this key
1176 * @max_items: place up to this many items at *results
1177 *
1178 * Performs an index-ascending scan of the tree for present items. Places
1179 * their slots at *@results and returns the number of items which were
1180 * placed at *@results.
1181 *
1182 * The implementation is naive.
1183 *
1184 * Like radix_tree_gang_lookup as far as RCU and locking goes. Slots must
1185 * be dereferenced with radix_tree_deref_slot, and if using only RCU
1186 * protection, radix_tree_deref_slot may fail requiring a retry.
1187 */
1188 unsigned int
1189 radix_tree_gang_lookup_slot(struct radix_tree_root *root,
1190 void ***results, unsigned long *indices,
1191 unsigned long first_index, unsigned int max_items)
1192 {
1193 struct radix_tree_iter iter;
1194 void **slot;
1195 unsigned int ret = 0;
1196
1197 if (unlikely(!max_items))
1198 return 0;
1199
1200 radix_tree_for_each_slot(slot, root, &iter, first_index) {
1201 results[ret] = slot;
1202 if (indices)
1203 indices[ret] = iter.index;
1204 if (++ret == max_items)
1205 break;
1206 }
1207
1208 return ret;
1209 }
1210 EXPORT_SYMBOL(radix_tree_gang_lookup_slot);
1211
1212 /**
1213 * radix_tree_gang_lookup_tag - perform multiple lookup on a radix tree
1214 * based on a tag
1215 * @root: radix tree root
1216 * @results: where the results of the lookup are placed
1217 * @first_index: start the lookup from this key
1218 * @max_items: place up to this many items at *results
1219 * @tag: the tag index (< RADIX_TREE_MAX_TAGS)
1220 *
1221 * Performs an index-ascending scan of the tree for present items which
1222 * have the tag indexed by @tag set. Places the items at *@results and
1223 * returns the number of items which were placed at *@results.
1224 */
1225 unsigned int
1226 radix_tree_gang_lookup_tag(struct radix_tree_root *root, void **results,
1227 unsigned long first_index, unsigned int max_items,
1228 unsigned int tag)
1229 {
1230 struct radix_tree_iter iter;
1231 void **slot;
1232 unsigned int ret = 0;
1233
1234 if (unlikely(!max_items))
1235 return 0;
1236
1237 radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
1238 results[ret] = rcu_dereference_raw(*slot);
1239 if (!results[ret])
1240 continue;
1241 if (radix_tree_is_indirect_ptr(results[ret])) {
1242 slot = radix_tree_iter_retry(&iter);
1243 continue;
1244 }
1245 if (++ret == max_items)
1246 break;
1247 }
1248
1249 return ret;
1250 }
1251 EXPORT_SYMBOL(radix_tree_gang_lookup_tag);
1252
1253 /**
1254 * radix_tree_gang_lookup_tag_slot - perform multiple slot lookup on a
1255 * radix tree based on a tag
1256 * @root: radix tree root
1257 * @results: where the results of the lookup are placed
1258 * @first_index: start the lookup from this key
1259 * @max_items: place up to this many items at *results
1260 * @tag: the tag index (< RADIX_TREE_MAX_TAGS)
1261 *
1262 * Performs an index-ascending scan of the tree for present items which
1263 * have the tag indexed by @tag set. Places the slots at *@results and
1264 * returns the number of slots which were placed at *@results.
1265 */
1266 unsigned int
1267 radix_tree_gang_lookup_tag_slot(struct radix_tree_root *root, void ***results,
1268 unsigned long first_index, unsigned int max_items,
1269 unsigned int tag)
1270 {
1271 struct radix_tree_iter iter;
1272 void **slot;
1273 unsigned int ret = 0;
1274
1275 if (unlikely(!max_items))
1276 return 0;
1277
1278 radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
1279 results[ret] = slot;
1280 if (++ret == max_items)
1281 break;
1282 }
1283
1284 return ret;
1285 }
1286 EXPORT_SYMBOL(radix_tree_gang_lookup_tag_slot);
1287
1288 #if defined(CONFIG_SHMEM) && defined(CONFIG_SWAP)
1289 #include <linux/sched.h> /* for cond_resched() */
1290
1291 struct locate_info {
1292 unsigned long found_index;
1293 bool stop;
1294 };
1295
1296 /*
1297 * This linear search is at present only useful to shmem_unuse_inode().
1298 */
1299 static unsigned long __locate(struct radix_tree_node *slot, void *item,
1300 unsigned long index, struct locate_info *info)
1301 {
1302 unsigned int shift;
1303 unsigned long i;
1304
1305 shift = slot->shift + RADIX_TREE_MAP_SHIFT;
1306
1307 do {
1308 shift -= RADIX_TREE_MAP_SHIFT;
1309
1310 for (i = (index >> shift) & RADIX_TREE_MAP_MASK;
1311 i < RADIX_TREE_MAP_SIZE;
1312 i++, index += (1UL << shift)) {
1313 struct radix_tree_node *node =
1314 rcu_dereference_raw(slot->slots[i]);
1315 if (node == RADIX_TREE_RETRY)
1316 goto out;
1317 if (!radix_tree_is_indirect_ptr(node)) {
1318 if (node == item) {
1319 info->found_index = index;
1320 info->stop = true;
1321 goto out;
1322 }
1323 continue;
1324 }
1325 node = indirect_to_ptr(node);
1326 if (is_sibling_entry(slot, node))
1327 continue;
1328 slot = node;
1329 break;
1330 }
1331 if (i == RADIX_TREE_MAP_SIZE)
1332 break;
1333 } while (shift);
1334
1335 out:
1336 if ((index == 0) && (i == RADIX_TREE_MAP_SIZE))
1337 info->stop = true;
1338 return index;
1339 }
1340
1341 /**
1342 * radix_tree_locate_item - search through radix tree for item
1343 * @root: radix tree root
1344 * @item: item to be found
1345 *
1346 * Returns index where item was found, or -1 if not found.
1347 * Caller must hold no lock (since this time-consuming function needs
1348 * to be preemptible), and must check afterwards if item is still there.
1349 */
1350 unsigned long radix_tree_locate_item(struct radix_tree_root *root, void *item)
1351 {
1352 struct radix_tree_node *node;
1353 unsigned long max_index;
1354 unsigned long cur_index = 0;
1355 struct locate_info info = {
1356 .found_index = -1,
1357 .stop = false,
1358 };
1359
1360 do {
1361 rcu_read_lock();
1362 node = rcu_dereference_raw(root->rnode);
1363 if (!radix_tree_is_indirect_ptr(node)) {
1364 rcu_read_unlock();
1365 if (node == item)
1366 info.found_index = 0;
1367 break;
1368 }
1369
1370 node = indirect_to_ptr(node);
1371
1372 max_index = node_maxindex(node);
1373 if (cur_index > max_index) {
1374 rcu_read_unlock();
1375 break;
1376 }
1377
1378 cur_index = __locate(node, item, cur_index, &info);
1379 rcu_read_unlock();
1380 cond_resched();
1381 } while (!info.stop && cur_index <= max_index);
1382
1383 return info.found_index;
1384 }
1385 #else
1386 unsigned long radix_tree_locate_item(struct radix_tree_root *root, void *item)
1387 {
1388 return -1;
1389 }
1390 #endif /* CONFIG_SHMEM && CONFIG_SWAP */
1391
1392 /**
1393 * radix_tree_shrink - shrink radix tree to minimum height
1394 * @root radix tree root
1395 */
1396 static inline bool radix_tree_shrink(struct radix_tree_root *root)
1397 {
1398 bool shrunk = false;
1399
1400 for (;;) {
1401 struct radix_tree_node *to_free = root->rnode;
1402 struct radix_tree_node *slot;
1403
1404 if (!radix_tree_is_indirect_ptr(to_free))
1405 break;
1406 to_free = indirect_to_ptr(to_free);
1407
1408 /*
1409 * The candidate node has more than one child, or its child
1410 * is not at the leftmost slot, or the child is a multiorder
1411 * entry, we cannot shrink.
1412 */
1413 if (to_free->count != 1)
1414 break;
1415 slot = to_free->slots[0];
1416 if (!slot)
1417 break;
1418 if (!radix_tree_is_indirect_ptr(slot) && to_free->shift)
1419 break;
1420
1421 if (radix_tree_is_indirect_ptr(slot)) {
1422 slot = indirect_to_ptr(slot);
1423 slot->parent = NULL;
1424 slot = node_to_entry(slot);
1425 }
1426
1427 /*
1428 * We don't need rcu_assign_pointer(), since we are simply
1429 * moving the node from one part of the tree to another: if it
1430 * was safe to dereference the old pointer to it
1431 * (to_free->slots[0]), it will be safe to dereference the new
1432 * one (root->rnode) as far as dependent read barriers go.
1433 */
1434 root->rnode = slot;
1435
1436 /*
1437 * We have a dilemma here. The node's slot[0] must not be
1438 * NULLed in case there are concurrent lookups expecting to
1439 * find the item. However if this was a bottom-level node,
1440 * then it may be subject to the slot pointer being visible
1441 * to callers dereferencing it. If item corresponding to
1442 * slot[0] is subsequently deleted, these callers would expect
1443 * their slot to become empty sooner or later.
1444 *
1445 * For example, lockless pagecache will look up a slot, deref
1446 * the page pointer, and if the page has 0 refcount it means it
1447 * was concurrently deleted from pagecache so try the deref
1448 * again. Fortunately there is already a requirement for logic
1449 * to retry the entire slot lookup -- the indirect pointer
1450 * problem (replacing direct root node with an indirect pointer
1451 * also results in a stale slot). So tag the slot as indirect
1452 * to force callers to retry.
1453 */
1454 if (!radix_tree_is_indirect_ptr(slot))
1455 to_free->slots[0] = RADIX_TREE_RETRY;
1456
1457 radix_tree_node_free(to_free);
1458 shrunk = true;
1459 }
1460
1461 return shrunk;
1462 }
1463
1464 /**
1465 * __radix_tree_delete_node - try to free node after clearing a slot
1466 * @root: radix tree root
1467 * @node: node containing @index
1468 *
1469 * After clearing the slot at @index in @node from radix tree
1470 * rooted at @root, call this function to attempt freeing the
1471 * node and shrinking the tree.
1472 *
1473 * Returns %true if @node was freed, %false otherwise.
1474 */
1475 bool __radix_tree_delete_node(struct radix_tree_root *root,
1476 struct radix_tree_node *node)
1477 {
1478 bool deleted = false;
1479
1480 do {
1481 struct radix_tree_node *parent;
1482
1483 if (node->count) {
1484 if (node == indirect_to_ptr(root->rnode))
1485 deleted |= radix_tree_shrink(root);
1486 return deleted;
1487 }
1488
1489 parent = node->parent;
1490 if (parent) {
1491 parent->slots[node->offset] = NULL;
1492 parent->count--;
1493 } else {
1494 root_tag_clear_all(root);
1495 root->rnode = NULL;
1496 }
1497
1498 radix_tree_node_free(node);
1499 deleted = true;
1500
1501 node = parent;
1502 } while (node);
1503
1504 return deleted;
1505 }
1506
1507 static inline void delete_sibling_entries(struct radix_tree_node *node,
1508 void *ptr, unsigned offset)
1509 {
1510 #ifdef CONFIG_RADIX_TREE_MULTIORDER
1511 int i;
1512 for (i = 1; offset + i < RADIX_TREE_MAP_SIZE; i++) {
1513 if (node->slots[offset + i] != ptr)
1514 break;
1515 node->slots[offset + i] = NULL;
1516 node->count--;
1517 }
1518 #endif
1519 }
1520
1521 /**
1522 * radix_tree_delete_item - delete an item from a radix tree
1523 * @root: radix tree root
1524 * @index: index key
1525 * @item: expected item
1526 *
1527 * Remove @item at @index from the radix tree rooted at @root.
1528 *
1529 * Returns the address of the deleted item, or NULL if it was not present
1530 * or the entry at the given @index was not @item.
1531 */
1532 void *radix_tree_delete_item(struct radix_tree_root *root,
1533 unsigned long index, void *item)
1534 {
1535 struct radix_tree_node *node;
1536 unsigned int offset;
1537 void **slot;
1538 void *entry;
1539 int tag;
1540
1541 entry = __radix_tree_lookup(root, index, &node, &slot);
1542 if (!entry)
1543 return NULL;
1544
1545 if (item && entry != item)
1546 return NULL;
1547
1548 if (!node) {
1549 root_tag_clear_all(root);
1550 root->rnode = NULL;
1551 return entry;
1552 }
1553
1554 offset = get_slot_offset(node, slot);
1555
1556 /*
1557 * Clear all tags associated with the item to be deleted.
1558 * This way of doing it would be inefficient, but seldom is any set.
1559 */
1560 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
1561 if (tag_get(node, tag, offset))
1562 radix_tree_tag_clear(root, index, tag);
1563 }
1564
1565 delete_sibling_entries(node, node_to_entry(slot), offset);
1566 node->slots[offset] = NULL;
1567 node->count--;
1568
1569 __radix_tree_delete_node(root, node);
1570
1571 return entry;
1572 }
1573 EXPORT_SYMBOL(radix_tree_delete_item);
1574
1575 /**
1576 * radix_tree_delete - delete an item from a radix tree
1577 * @root: radix tree root
1578 * @index: index key
1579 *
1580 * Remove the item at @index from the radix tree rooted at @root.
1581 *
1582 * Returns the address of the deleted item, or NULL if it was not present.
1583 */
1584 void *radix_tree_delete(struct radix_tree_root *root, unsigned long index)
1585 {
1586 return radix_tree_delete_item(root, index, NULL);
1587 }
1588 EXPORT_SYMBOL(radix_tree_delete);
1589
1590 /**
1591 * radix_tree_tagged - test whether any items in the tree are tagged
1592 * @root: radix tree root
1593 * @tag: tag to test
1594 */
1595 int radix_tree_tagged(struct radix_tree_root *root, unsigned int tag)
1596 {
1597 return root_tag_get(root, tag);
1598 }
1599 EXPORT_SYMBOL(radix_tree_tagged);
1600
1601 static void
1602 radix_tree_node_ctor(void *arg)
1603 {
1604 struct radix_tree_node *node = arg;
1605
1606 memset(node, 0, sizeof(*node));
1607 INIT_LIST_HEAD(&node->private_list);
1608 }
1609
1610 static int radix_tree_callback(struct notifier_block *nfb,
1611 unsigned long action, void *hcpu)
1612 {
1613 int cpu = (long)hcpu;
1614 struct radix_tree_preload *rtp;
1615 struct radix_tree_node *node;
1616
1617 /* Free per-cpu pool of preloaded nodes */
1618 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
1619 rtp = &per_cpu(radix_tree_preloads, cpu);
1620 while (rtp->nr) {
1621 node = rtp->nodes;
1622 rtp->nodes = node->private_data;
1623 kmem_cache_free(radix_tree_node_cachep, node);
1624 rtp->nr--;
1625 }
1626 }
1627 return NOTIFY_OK;
1628 }
1629
1630 void __init radix_tree_init(void)
1631 {
1632 radix_tree_node_cachep = kmem_cache_create("radix_tree_node",
1633 sizeof(struct radix_tree_node), 0,
1634 SLAB_PANIC | SLAB_RECLAIM_ACCOUNT,
1635 radix_tree_node_ctor);
1636 hotcpu_notifier(radix_tree_callback, 0);
1637 }
This page took 0.061387 seconds and 6 git commands to generate.