radix-tree: remove a use of root->height from delete_node
[deliverable/linux.git] / lib / radix-tree.c
1 /*
2 * Copyright (C) 2001 Momchil Velikov
3 * Portions Copyright (C) 2001 Christoph Hellwig
4 * Copyright (C) 2005 SGI, Christoph Lameter
5 * Copyright (C) 2006 Nick Piggin
6 * Copyright (C) 2012 Konstantin Khlebnikov
7 * Copyright (C) 2016 Intel, Matthew Wilcox
8 * Copyright (C) 2016 Intel, Ross Zwisler
9 *
10 * This program is free software; you can redistribute it and/or
11 * modify it under the terms of the GNU General Public License as
12 * published by the Free Software Foundation; either version 2, or (at
13 * your option) any later version.
14 *
15 * This program is distributed in the hope that it will be useful, but
16 * WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
18 * General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with this program; if not, write to the Free Software
22 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
23 */
24
25 #include <linux/errno.h>
26 #include <linux/init.h>
27 #include <linux/kernel.h>
28 #include <linux/export.h>
29 #include <linux/radix-tree.h>
30 #include <linux/percpu.h>
31 #include <linux/slab.h>
32 #include <linux/kmemleak.h>
33 #include <linux/notifier.h>
34 #include <linux/cpu.h>
35 #include <linux/string.h>
36 #include <linux/bitops.h>
37 #include <linux/rcupdate.h>
38 #include <linux/preempt.h> /* in_interrupt() */
39
40
41 /*
42 * The height_to_maxindex array needs to be one deeper than the maximum
43 * path as height 0 holds only 1 entry.
44 */
45 static unsigned long height_to_maxindex[RADIX_TREE_MAX_PATH + 1] __read_mostly;
46
47 /*
48 * Radix tree node cache.
49 */
50 static struct kmem_cache *radix_tree_node_cachep;
51
52 /*
53 * The radix tree is variable-height, so an insert operation not only has
54 * to build the branch to its corresponding item, it also has to build the
55 * branch to existing items if the size has to be increased (by
56 * radix_tree_extend).
57 *
58 * The worst case is a zero height tree with just a single item at index 0,
59 * and then inserting an item at index ULONG_MAX. This requires 2 new branches
60 * of RADIX_TREE_MAX_PATH size to be created, with only the root node shared.
61 * Hence:
62 */
63 #define RADIX_TREE_PRELOAD_SIZE (RADIX_TREE_MAX_PATH * 2 - 1)
64
65 /*
66 * Per-cpu pool of preloaded nodes
67 */
68 struct radix_tree_preload {
69 unsigned nr;
70 /* nodes->private_data points to next preallocated node */
71 struct radix_tree_node *nodes;
72 };
73 static DEFINE_PER_CPU(struct radix_tree_preload, radix_tree_preloads) = { 0, };
74
75 static inline void *ptr_to_indirect(void *ptr)
76 {
77 return (void *)((unsigned long)ptr | RADIX_TREE_INDIRECT_PTR);
78 }
79
80 #define RADIX_TREE_RETRY ptr_to_indirect(NULL)
81
82 #ifdef CONFIG_RADIX_TREE_MULTIORDER
83 /* Sibling slots point directly to another slot in the same node */
84 static inline bool is_sibling_entry(struct radix_tree_node *parent, void *node)
85 {
86 void **ptr = node;
87 return (parent->slots <= ptr) &&
88 (ptr < parent->slots + RADIX_TREE_MAP_SIZE);
89 }
90 #else
91 static inline bool is_sibling_entry(struct radix_tree_node *parent, void *node)
92 {
93 return false;
94 }
95 #endif
96
97 static inline unsigned long get_slot_offset(struct radix_tree_node *parent,
98 void **slot)
99 {
100 return slot - parent->slots;
101 }
102
103 static unsigned radix_tree_descend(struct radix_tree_node *parent,
104 struct radix_tree_node **nodep, unsigned offset)
105 {
106 void **entry = rcu_dereference_raw(parent->slots[offset]);
107
108 #ifdef CONFIG_RADIX_TREE_MULTIORDER
109 if (radix_tree_is_indirect_ptr(entry)) {
110 unsigned long siboff = get_slot_offset(parent, entry);
111 if (siboff < RADIX_TREE_MAP_SIZE) {
112 offset = siboff;
113 entry = rcu_dereference_raw(parent->slots[offset]);
114 }
115 }
116 #endif
117
118 *nodep = (void *)entry;
119 return offset;
120 }
121
122 static inline gfp_t root_gfp_mask(struct radix_tree_root *root)
123 {
124 return root->gfp_mask & __GFP_BITS_MASK;
125 }
126
127 static inline void tag_set(struct radix_tree_node *node, unsigned int tag,
128 int offset)
129 {
130 __set_bit(offset, node->tags[tag]);
131 }
132
133 static inline void tag_clear(struct radix_tree_node *node, unsigned int tag,
134 int offset)
135 {
136 __clear_bit(offset, node->tags[tag]);
137 }
138
139 static inline int tag_get(struct radix_tree_node *node, unsigned int tag,
140 int offset)
141 {
142 return test_bit(offset, node->tags[tag]);
143 }
144
145 static inline void root_tag_set(struct radix_tree_root *root, unsigned int tag)
146 {
147 root->gfp_mask |= (__force gfp_t)(1 << (tag + __GFP_BITS_SHIFT));
148 }
149
150 static inline void root_tag_clear(struct radix_tree_root *root, unsigned tag)
151 {
152 root->gfp_mask &= (__force gfp_t)~(1 << (tag + __GFP_BITS_SHIFT));
153 }
154
155 static inline void root_tag_clear_all(struct radix_tree_root *root)
156 {
157 root->gfp_mask &= __GFP_BITS_MASK;
158 }
159
160 static inline int root_tag_get(struct radix_tree_root *root, unsigned int tag)
161 {
162 return (__force int)root->gfp_mask & (1 << (tag + __GFP_BITS_SHIFT));
163 }
164
165 static inline unsigned root_tags_get(struct radix_tree_root *root)
166 {
167 return (__force unsigned)root->gfp_mask >> __GFP_BITS_SHIFT;
168 }
169
170 /*
171 * Returns 1 if any slot in the node has this tag set.
172 * Otherwise returns 0.
173 */
174 static inline int any_tag_set(struct radix_tree_node *node, unsigned int tag)
175 {
176 unsigned idx;
177 for (idx = 0; idx < RADIX_TREE_TAG_LONGS; idx++) {
178 if (node->tags[tag][idx])
179 return 1;
180 }
181 return 0;
182 }
183
184 /**
185 * radix_tree_find_next_bit - find the next set bit in a memory region
186 *
187 * @addr: The address to base the search on
188 * @size: The bitmap size in bits
189 * @offset: The bitnumber to start searching at
190 *
191 * Unrollable variant of find_next_bit() for constant size arrays.
192 * Tail bits starting from size to roundup(size, BITS_PER_LONG) must be zero.
193 * Returns next bit offset, or size if nothing found.
194 */
195 static __always_inline unsigned long
196 radix_tree_find_next_bit(const unsigned long *addr,
197 unsigned long size, unsigned long offset)
198 {
199 if (!__builtin_constant_p(size))
200 return find_next_bit(addr, size, offset);
201
202 if (offset < size) {
203 unsigned long tmp;
204
205 addr += offset / BITS_PER_LONG;
206 tmp = *addr >> (offset % BITS_PER_LONG);
207 if (tmp)
208 return __ffs(tmp) + offset;
209 offset = (offset + BITS_PER_LONG) & ~(BITS_PER_LONG - 1);
210 while (offset < size) {
211 tmp = *++addr;
212 if (tmp)
213 return __ffs(tmp) + offset;
214 offset += BITS_PER_LONG;
215 }
216 }
217 return size;
218 }
219
220 #ifndef __KERNEL__
221 static void dump_node(struct radix_tree_node *node,
222 unsigned shift, unsigned long index)
223 {
224 unsigned long i;
225
226 pr_debug("radix node: %p offset %d tags %lx %lx %lx shift %d count %d parent %p\n",
227 node, node->offset,
228 node->tags[0][0], node->tags[1][0], node->tags[2][0],
229 node->shift, node->count, node->parent);
230
231 for (i = 0; i < RADIX_TREE_MAP_SIZE; i++) {
232 unsigned long first = index | (i << shift);
233 unsigned long last = first | ((1UL << shift) - 1);
234 void *entry = node->slots[i];
235 if (!entry)
236 continue;
237 if (is_sibling_entry(node, entry)) {
238 pr_debug("radix sblng %p offset %ld val %p indices %ld-%ld\n",
239 entry, i,
240 *(void **)indirect_to_ptr(entry),
241 first, last);
242 } else if (!radix_tree_is_indirect_ptr(entry)) {
243 pr_debug("radix entry %p offset %ld indices %ld-%ld\n",
244 entry, i, first, last);
245 } else {
246 dump_node(indirect_to_ptr(entry),
247 shift - RADIX_TREE_MAP_SHIFT, first);
248 }
249 }
250 }
251
252 /* For debug */
253 static void radix_tree_dump(struct radix_tree_root *root)
254 {
255 pr_debug("radix root: %p height %d rnode %p tags %x\n",
256 root, root->height, root->rnode,
257 root->gfp_mask >> __GFP_BITS_SHIFT);
258 if (!radix_tree_is_indirect_ptr(root->rnode))
259 return;
260 dump_node(indirect_to_ptr(root->rnode),
261 (root->height - 1) * RADIX_TREE_MAP_SHIFT, 0);
262 }
263 #endif
264
265 /*
266 * This assumes that the caller has performed appropriate preallocation, and
267 * that the caller has pinned this thread of control to the current CPU.
268 */
269 static struct radix_tree_node *
270 radix_tree_node_alloc(struct radix_tree_root *root)
271 {
272 struct radix_tree_node *ret = NULL;
273 gfp_t gfp_mask = root_gfp_mask(root);
274
275 /*
276 * Preload code isn't irq safe and it doesn't make sense to use
277 * preloading during an interrupt anyway as all the allocations have
278 * to be atomic. So just do normal allocation when in interrupt.
279 */
280 if (!gfpflags_allow_blocking(gfp_mask) && !in_interrupt()) {
281 struct radix_tree_preload *rtp;
282
283 /*
284 * Even if the caller has preloaded, try to allocate from the
285 * cache first for the new node to get accounted.
286 */
287 ret = kmem_cache_alloc(radix_tree_node_cachep,
288 gfp_mask | __GFP_ACCOUNT | __GFP_NOWARN);
289 if (ret)
290 goto out;
291
292 /*
293 * Provided the caller has preloaded here, we will always
294 * succeed in getting a node here (and never reach
295 * kmem_cache_alloc)
296 */
297 rtp = this_cpu_ptr(&radix_tree_preloads);
298 if (rtp->nr) {
299 ret = rtp->nodes;
300 rtp->nodes = ret->private_data;
301 ret->private_data = NULL;
302 rtp->nr--;
303 }
304 /*
305 * Update the allocation stack trace as this is more useful
306 * for debugging.
307 */
308 kmemleak_update_trace(ret);
309 goto out;
310 }
311 ret = kmem_cache_alloc(radix_tree_node_cachep,
312 gfp_mask | __GFP_ACCOUNT);
313 out:
314 BUG_ON(radix_tree_is_indirect_ptr(ret));
315 return ret;
316 }
317
318 static void radix_tree_node_rcu_free(struct rcu_head *head)
319 {
320 struct radix_tree_node *node =
321 container_of(head, struct radix_tree_node, rcu_head);
322 int i;
323
324 /*
325 * must only free zeroed nodes into the slab. radix_tree_shrink
326 * can leave us with a non-NULL entry in the first slot, so clear
327 * that here to make sure.
328 */
329 for (i = 0; i < RADIX_TREE_MAX_TAGS; i++)
330 tag_clear(node, i, 0);
331
332 node->slots[0] = NULL;
333 node->count = 0;
334
335 kmem_cache_free(radix_tree_node_cachep, node);
336 }
337
338 static inline void
339 radix_tree_node_free(struct radix_tree_node *node)
340 {
341 call_rcu(&node->rcu_head, radix_tree_node_rcu_free);
342 }
343
344 /*
345 * Load up this CPU's radix_tree_node buffer with sufficient objects to
346 * ensure that the addition of a single element in the tree cannot fail. On
347 * success, return zero, with preemption disabled. On error, return -ENOMEM
348 * with preemption not disabled.
349 *
350 * To make use of this facility, the radix tree must be initialised without
351 * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
352 */
353 static int __radix_tree_preload(gfp_t gfp_mask)
354 {
355 struct radix_tree_preload *rtp;
356 struct radix_tree_node *node;
357 int ret = -ENOMEM;
358
359 preempt_disable();
360 rtp = this_cpu_ptr(&radix_tree_preloads);
361 while (rtp->nr < RADIX_TREE_PRELOAD_SIZE) {
362 preempt_enable();
363 node = kmem_cache_alloc(radix_tree_node_cachep, gfp_mask);
364 if (node == NULL)
365 goto out;
366 preempt_disable();
367 rtp = this_cpu_ptr(&radix_tree_preloads);
368 if (rtp->nr < RADIX_TREE_PRELOAD_SIZE) {
369 node->private_data = rtp->nodes;
370 rtp->nodes = node;
371 rtp->nr++;
372 } else {
373 kmem_cache_free(radix_tree_node_cachep, node);
374 }
375 }
376 ret = 0;
377 out:
378 return ret;
379 }
380
381 /*
382 * Load up this CPU's radix_tree_node buffer with sufficient objects to
383 * ensure that the addition of a single element in the tree cannot fail. On
384 * success, return zero, with preemption disabled. On error, return -ENOMEM
385 * with preemption not disabled.
386 *
387 * To make use of this facility, the radix tree must be initialised without
388 * __GFP_DIRECT_RECLAIM being passed to INIT_RADIX_TREE().
389 */
390 int radix_tree_preload(gfp_t gfp_mask)
391 {
392 /* Warn on non-sensical use... */
393 WARN_ON_ONCE(!gfpflags_allow_blocking(gfp_mask));
394 return __radix_tree_preload(gfp_mask);
395 }
396 EXPORT_SYMBOL(radix_tree_preload);
397
398 /*
399 * The same as above function, except we don't guarantee preloading happens.
400 * We do it, if we decide it helps. On success, return zero with preemption
401 * disabled. On error, return -ENOMEM with preemption not disabled.
402 */
403 int radix_tree_maybe_preload(gfp_t gfp_mask)
404 {
405 if (gfpflags_allow_blocking(gfp_mask))
406 return __radix_tree_preload(gfp_mask);
407 /* Preloading doesn't help anything with this gfp mask, skip it */
408 preempt_disable();
409 return 0;
410 }
411 EXPORT_SYMBOL(radix_tree_maybe_preload);
412
413 /*
414 * Return the maximum key which can be store into a
415 * radix tree with height HEIGHT.
416 */
417 static inline unsigned long radix_tree_maxindex(unsigned int height)
418 {
419 return height_to_maxindex[height];
420 }
421
422 static inline unsigned long shift_maxindex(unsigned int shift)
423 {
424 return (RADIX_TREE_MAP_SIZE << shift) - 1;
425 }
426
427 static inline unsigned long node_maxindex(struct radix_tree_node *node)
428 {
429 return shift_maxindex(node->shift);
430 }
431
432 static unsigned radix_tree_load_root(struct radix_tree_root *root,
433 struct radix_tree_node **nodep, unsigned long *maxindex)
434 {
435 struct radix_tree_node *node = rcu_dereference_raw(root->rnode);
436
437 *nodep = node;
438
439 if (likely(radix_tree_is_indirect_ptr(node))) {
440 node = indirect_to_ptr(node);
441 *maxindex = node_maxindex(node);
442 return node->shift + RADIX_TREE_MAP_SHIFT;
443 }
444
445 *maxindex = 0;
446 return 0;
447 }
448
449 /*
450 * Extend a radix tree so it can store key @index.
451 */
452 static int radix_tree_extend(struct radix_tree_root *root,
453 unsigned long index)
454 {
455 struct radix_tree_node *slot;
456 unsigned int height;
457 int tag;
458
459 /* Figure out what the height should be. */
460 height = root->height + 1;
461 while (index > radix_tree_maxindex(height))
462 height++;
463
464 if (root->rnode == NULL) {
465 root->height = height;
466 goto out;
467 }
468
469 do {
470 unsigned int newheight;
471 struct radix_tree_node *node = radix_tree_node_alloc(root);
472
473 if (!node)
474 return -ENOMEM;
475
476 /* Propagate the aggregated tag info into the new root */
477 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
478 if (root_tag_get(root, tag))
479 tag_set(node, tag, 0);
480 }
481
482 /* Increase the height. */
483 newheight = root->height;
484 BUG_ON(newheight > BITS_PER_LONG);
485 node->shift = newheight * RADIX_TREE_MAP_SHIFT;
486 node->offset = 0;
487 node->count = 1;
488 node->parent = NULL;
489 slot = root->rnode;
490 if (radix_tree_is_indirect_ptr(slot)) {
491 slot = indirect_to_ptr(slot);
492 slot->parent = node;
493 slot = ptr_to_indirect(slot);
494 }
495 node->slots[0] = slot;
496 node = ptr_to_indirect(node);
497 rcu_assign_pointer(root->rnode, node);
498 root->height = ++newheight;
499 } while (height > root->height);
500 out:
501 return height * RADIX_TREE_MAP_SHIFT;
502 }
503
504 /**
505 * __radix_tree_create - create a slot in a radix tree
506 * @root: radix tree root
507 * @index: index key
508 * @order: index occupies 2^order aligned slots
509 * @nodep: returns node
510 * @slotp: returns slot
511 *
512 * Create, if necessary, and return the node and slot for an item
513 * at position @index in the radix tree @root.
514 *
515 * Until there is more than one item in the tree, no nodes are
516 * allocated and @root->rnode is used as a direct slot instead of
517 * pointing to a node, in which case *@nodep will be NULL.
518 *
519 * Returns -ENOMEM, or 0 for success.
520 */
521 int __radix_tree_create(struct radix_tree_root *root, unsigned long index,
522 unsigned order, struct radix_tree_node **nodep,
523 void ***slotp)
524 {
525 struct radix_tree_node *node = NULL, *slot;
526 unsigned long maxindex;
527 unsigned int shift, offset;
528 unsigned long max = index | ((1UL << order) - 1);
529
530 shift = radix_tree_load_root(root, &slot, &maxindex);
531
532 /* Make sure the tree is high enough. */
533 if (max > maxindex) {
534 int error = radix_tree_extend(root, max);
535 if (error < 0)
536 return error;
537 shift = error;
538 slot = root->rnode;
539 if (order == shift) {
540 shift += RADIX_TREE_MAP_SHIFT;
541 root->height++;
542 }
543 }
544
545 offset = 0; /* uninitialised var warning */
546 while (shift > order) {
547 shift -= RADIX_TREE_MAP_SHIFT;
548 if (slot == NULL) {
549 /* Have to add a child node. */
550 slot = radix_tree_node_alloc(root);
551 if (!slot)
552 return -ENOMEM;
553 slot->shift = shift;
554 slot->offset = offset;
555 slot->parent = node;
556 if (node) {
557 rcu_assign_pointer(node->slots[offset],
558 ptr_to_indirect(slot));
559 node->count++;
560 } else
561 rcu_assign_pointer(root->rnode,
562 ptr_to_indirect(slot));
563 } else if (!radix_tree_is_indirect_ptr(slot))
564 break;
565
566 /* Go a level down */
567 node = indirect_to_ptr(slot);
568 offset = (index >> shift) & RADIX_TREE_MAP_MASK;
569 offset = radix_tree_descend(node, &slot, offset);
570 }
571
572 #ifdef CONFIG_RADIX_TREE_MULTIORDER
573 /* Insert pointers to the canonical entry */
574 if (order > shift) {
575 int i, n = 1 << (order - shift);
576 offset = offset & ~(n - 1);
577 slot = ptr_to_indirect(&node->slots[offset]);
578 for (i = 0; i < n; i++) {
579 if (node->slots[offset + i])
580 return -EEXIST;
581 }
582
583 for (i = 1; i < n; i++) {
584 rcu_assign_pointer(node->slots[offset + i], slot);
585 node->count++;
586 }
587 }
588 #endif
589
590 if (nodep)
591 *nodep = node;
592 if (slotp)
593 *slotp = node ? node->slots + offset : (void **)&root->rnode;
594 return 0;
595 }
596
597 /**
598 * __radix_tree_insert - insert into a radix tree
599 * @root: radix tree root
600 * @index: index key
601 * @order: key covers the 2^order indices around index
602 * @item: item to insert
603 *
604 * Insert an item into the radix tree at position @index.
605 */
606 int __radix_tree_insert(struct radix_tree_root *root, unsigned long index,
607 unsigned order, void *item)
608 {
609 struct radix_tree_node *node;
610 void **slot;
611 int error;
612
613 BUG_ON(radix_tree_is_indirect_ptr(item));
614
615 error = __radix_tree_create(root, index, order, &node, &slot);
616 if (error)
617 return error;
618 if (*slot != NULL)
619 return -EEXIST;
620 rcu_assign_pointer(*slot, item);
621
622 if (node) {
623 unsigned offset = get_slot_offset(node, slot);
624 node->count++;
625 BUG_ON(tag_get(node, 0, offset));
626 BUG_ON(tag_get(node, 1, offset));
627 BUG_ON(tag_get(node, 2, offset));
628 } else {
629 BUG_ON(root_tags_get(root));
630 }
631
632 return 0;
633 }
634 EXPORT_SYMBOL(__radix_tree_insert);
635
636 /**
637 * __radix_tree_lookup - lookup an item in a radix tree
638 * @root: radix tree root
639 * @index: index key
640 * @nodep: returns node
641 * @slotp: returns slot
642 *
643 * Lookup and return the item at position @index in the radix
644 * tree @root.
645 *
646 * Until there is more than one item in the tree, no nodes are
647 * allocated and @root->rnode is used as a direct slot instead of
648 * pointing to a node, in which case *@nodep will be NULL.
649 */
650 void *__radix_tree_lookup(struct radix_tree_root *root, unsigned long index,
651 struct radix_tree_node **nodep, void ***slotp)
652 {
653 struct radix_tree_node *node, *parent;
654 unsigned long maxindex;
655 unsigned int shift;
656 void **slot;
657
658 restart:
659 parent = NULL;
660 slot = (void **)&root->rnode;
661 shift = radix_tree_load_root(root, &node, &maxindex);
662 if (index > maxindex)
663 return NULL;
664
665 while (radix_tree_is_indirect_ptr(node)) {
666 unsigned offset;
667
668 if (node == RADIX_TREE_RETRY)
669 goto restart;
670 parent = indirect_to_ptr(node);
671 shift -= RADIX_TREE_MAP_SHIFT;
672 offset = (index >> shift) & RADIX_TREE_MAP_MASK;
673 offset = radix_tree_descend(parent, &node, offset);
674 slot = parent->slots + offset;
675 }
676
677 if (nodep)
678 *nodep = parent;
679 if (slotp)
680 *slotp = slot;
681 return node;
682 }
683
684 /**
685 * radix_tree_lookup_slot - lookup a slot in a radix tree
686 * @root: radix tree root
687 * @index: index key
688 *
689 * Returns: the slot corresponding to the position @index in the
690 * radix tree @root. This is useful for update-if-exists operations.
691 *
692 * This function can be called under rcu_read_lock iff the slot is not
693 * modified by radix_tree_replace_slot, otherwise it must be called
694 * exclusive from other writers. Any dereference of the slot must be done
695 * using radix_tree_deref_slot.
696 */
697 void **radix_tree_lookup_slot(struct radix_tree_root *root, unsigned long index)
698 {
699 void **slot;
700
701 if (!__radix_tree_lookup(root, index, NULL, &slot))
702 return NULL;
703 return slot;
704 }
705 EXPORT_SYMBOL(radix_tree_lookup_slot);
706
707 /**
708 * radix_tree_lookup - perform lookup operation on a radix tree
709 * @root: radix tree root
710 * @index: index key
711 *
712 * Lookup the item at the position @index in the radix tree @root.
713 *
714 * This function can be called under rcu_read_lock, however the caller
715 * must manage lifetimes of leaf nodes (eg. RCU may also be used to free
716 * them safely). No RCU barriers are required to access or modify the
717 * returned item, however.
718 */
719 void *radix_tree_lookup(struct radix_tree_root *root, unsigned long index)
720 {
721 return __radix_tree_lookup(root, index, NULL, NULL);
722 }
723 EXPORT_SYMBOL(radix_tree_lookup);
724
725 /**
726 * radix_tree_tag_set - set a tag on a radix tree node
727 * @root: radix tree root
728 * @index: index key
729 * @tag: tag index
730 *
731 * Set the search tag (which must be < RADIX_TREE_MAX_TAGS)
732 * corresponding to @index in the radix tree. From
733 * the root all the way down to the leaf node.
734 *
735 * Returns the address of the tagged item. Setting a tag on a not-present
736 * item is a bug.
737 */
738 void *radix_tree_tag_set(struct radix_tree_root *root,
739 unsigned long index, unsigned int tag)
740 {
741 struct radix_tree_node *node, *parent;
742 unsigned long maxindex;
743 unsigned int shift;
744
745 shift = radix_tree_load_root(root, &node, &maxindex);
746 BUG_ON(index > maxindex);
747
748 while (radix_tree_is_indirect_ptr(node)) {
749 unsigned offset;
750
751 shift -= RADIX_TREE_MAP_SHIFT;
752 offset = (index >> shift) & RADIX_TREE_MAP_MASK;
753
754 parent = indirect_to_ptr(node);
755 offset = radix_tree_descend(parent, &node, offset);
756 BUG_ON(!node);
757
758 if (!tag_get(parent, tag, offset))
759 tag_set(parent, tag, offset);
760 }
761
762 /* set the root's tag bit */
763 if (!root_tag_get(root, tag))
764 root_tag_set(root, tag);
765
766 return node;
767 }
768 EXPORT_SYMBOL(radix_tree_tag_set);
769
770 /**
771 * radix_tree_tag_clear - clear a tag on a radix tree node
772 * @root: radix tree root
773 * @index: index key
774 * @tag: tag index
775 *
776 * Clear the search tag (which must be < RADIX_TREE_MAX_TAGS)
777 * corresponding to @index in the radix tree. If this causes
778 * the leaf node to have no tags set then clear the tag in the
779 * next-to-leaf node, etc.
780 *
781 * Returns the address of the tagged item on success, else NULL. ie:
782 * has the same return value and semantics as radix_tree_lookup().
783 */
784 void *radix_tree_tag_clear(struct radix_tree_root *root,
785 unsigned long index, unsigned int tag)
786 {
787 struct radix_tree_node *node, *parent;
788 unsigned long maxindex;
789 unsigned int shift;
790 int uninitialized_var(offset);
791
792 shift = radix_tree_load_root(root, &node, &maxindex);
793 if (index > maxindex)
794 return NULL;
795
796 parent = NULL;
797
798 while (radix_tree_is_indirect_ptr(node)) {
799 shift -= RADIX_TREE_MAP_SHIFT;
800 offset = (index >> shift) & RADIX_TREE_MAP_MASK;
801
802 parent = indirect_to_ptr(node);
803 offset = radix_tree_descend(parent, &node, offset);
804 }
805
806 if (node == NULL)
807 goto out;
808
809 index >>= shift;
810
811 while (parent) {
812 if (!tag_get(parent, tag, offset))
813 goto out;
814 tag_clear(parent, tag, offset);
815 if (any_tag_set(parent, tag))
816 goto out;
817
818 index >>= RADIX_TREE_MAP_SHIFT;
819 offset = index & RADIX_TREE_MAP_MASK;
820 parent = parent->parent;
821 }
822
823 /* clear the root's tag bit */
824 if (root_tag_get(root, tag))
825 root_tag_clear(root, tag);
826
827 out:
828 return node;
829 }
830 EXPORT_SYMBOL(radix_tree_tag_clear);
831
832 /**
833 * radix_tree_tag_get - get a tag on a radix tree node
834 * @root: radix tree root
835 * @index: index key
836 * @tag: tag index (< RADIX_TREE_MAX_TAGS)
837 *
838 * Return values:
839 *
840 * 0: tag not present or not set
841 * 1: tag set
842 *
843 * Note that the return value of this function may not be relied on, even if
844 * the RCU lock is held, unless tag modification and node deletion are excluded
845 * from concurrency.
846 */
847 int radix_tree_tag_get(struct radix_tree_root *root,
848 unsigned long index, unsigned int tag)
849 {
850 struct radix_tree_node *node, *parent;
851 unsigned long maxindex;
852 unsigned int shift;
853
854 if (!root_tag_get(root, tag))
855 return 0;
856
857 shift = radix_tree_load_root(root, &node, &maxindex);
858 if (index > maxindex)
859 return 0;
860 if (node == NULL)
861 return 0;
862
863 while (radix_tree_is_indirect_ptr(node)) {
864 int offset;
865
866 shift -= RADIX_TREE_MAP_SHIFT;
867 offset = (index >> shift) & RADIX_TREE_MAP_MASK;
868
869 parent = indirect_to_ptr(node);
870 offset = radix_tree_descend(parent, &node, offset);
871
872 if (!node)
873 return 0;
874 if (!tag_get(parent, tag, offset))
875 return 0;
876 if (node == RADIX_TREE_RETRY)
877 break;
878 }
879
880 return 1;
881 }
882 EXPORT_SYMBOL(radix_tree_tag_get);
883
884 static inline void __set_iter_shift(struct radix_tree_iter *iter,
885 unsigned int shift)
886 {
887 #ifdef CONFIG_RADIX_TREE_MULTIORDER
888 iter->shift = shift;
889 #endif
890 }
891
892 /**
893 * radix_tree_next_chunk - find next chunk of slots for iteration
894 *
895 * @root: radix tree root
896 * @iter: iterator state
897 * @flags: RADIX_TREE_ITER_* flags and tag index
898 * Returns: pointer to chunk first slot, or NULL if iteration is over
899 */
900 void **radix_tree_next_chunk(struct radix_tree_root *root,
901 struct radix_tree_iter *iter, unsigned flags)
902 {
903 unsigned shift, tag = flags & RADIX_TREE_ITER_TAG_MASK;
904 struct radix_tree_node *rnode, *node;
905 unsigned long index, offset, maxindex;
906
907 if ((flags & RADIX_TREE_ITER_TAGGED) && !root_tag_get(root, tag))
908 return NULL;
909
910 /*
911 * Catch next_index overflow after ~0UL. iter->index never overflows
912 * during iterating; it can be zero only at the beginning.
913 * And we cannot overflow iter->next_index in a single step,
914 * because RADIX_TREE_MAP_SHIFT < BITS_PER_LONG.
915 *
916 * This condition also used by radix_tree_next_slot() to stop
917 * contiguous iterating, and forbid swithing to the next chunk.
918 */
919 index = iter->next_index;
920 if (!index && iter->index)
921 return NULL;
922
923 restart:
924 shift = radix_tree_load_root(root, &rnode, &maxindex);
925 if (index > maxindex)
926 return NULL;
927
928 if (radix_tree_is_indirect_ptr(rnode)) {
929 rnode = indirect_to_ptr(rnode);
930 } else if (rnode) {
931 /* Single-slot tree */
932 iter->index = index;
933 iter->next_index = maxindex + 1;
934 iter->tags = 1;
935 __set_iter_shift(iter, shift);
936 return (void **)&root->rnode;
937 } else
938 return NULL;
939
940 shift -= RADIX_TREE_MAP_SHIFT;
941 offset = index >> shift;
942
943 node = rnode;
944 while (1) {
945 struct radix_tree_node *slot;
946 unsigned new_off = radix_tree_descend(node, &slot, offset);
947
948 if (new_off < offset) {
949 offset = new_off;
950 index &= ~((RADIX_TREE_MAP_SIZE << shift) - 1);
951 index |= offset << shift;
952 }
953
954 if ((flags & RADIX_TREE_ITER_TAGGED) ?
955 !tag_get(node, tag, offset) : !slot) {
956 /* Hole detected */
957 if (flags & RADIX_TREE_ITER_CONTIG)
958 return NULL;
959
960 if (flags & RADIX_TREE_ITER_TAGGED)
961 offset = radix_tree_find_next_bit(
962 node->tags[tag],
963 RADIX_TREE_MAP_SIZE,
964 offset + 1);
965 else
966 while (++offset < RADIX_TREE_MAP_SIZE) {
967 void *slot = node->slots[offset];
968 if (is_sibling_entry(node, slot))
969 continue;
970 if (slot)
971 break;
972 }
973 index &= ~((RADIX_TREE_MAP_SIZE << shift) - 1);
974 index += offset << shift;
975 /* Overflow after ~0UL */
976 if (!index)
977 return NULL;
978 if (offset == RADIX_TREE_MAP_SIZE)
979 goto restart;
980 slot = rcu_dereference_raw(node->slots[offset]);
981 }
982
983 if ((slot == NULL) || (slot == RADIX_TREE_RETRY))
984 goto restart;
985 if (!radix_tree_is_indirect_ptr(slot))
986 break;
987
988 node = indirect_to_ptr(slot);
989 shift -= RADIX_TREE_MAP_SHIFT;
990 offset = (index >> shift) & RADIX_TREE_MAP_MASK;
991 }
992
993 /* Update the iterator state */
994 iter->index = index & ~((1 << shift) - 1);
995 iter->next_index = (index | ((RADIX_TREE_MAP_SIZE << shift) - 1)) + 1;
996 __set_iter_shift(iter, shift);
997
998 /* Construct iter->tags bit-mask from node->tags[tag] array */
999 if (flags & RADIX_TREE_ITER_TAGGED) {
1000 unsigned tag_long, tag_bit;
1001
1002 tag_long = offset / BITS_PER_LONG;
1003 tag_bit = offset % BITS_PER_LONG;
1004 iter->tags = node->tags[tag][tag_long] >> tag_bit;
1005 /* This never happens if RADIX_TREE_TAG_LONGS == 1 */
1006 if (tag_long < RADIX_TREE_TAG_LONGS - 1) {
1007 /* Pick tags from next element */
1008 if (tag_bit)
1009 iter->tags |= node->tags[tag][tag_long + 1] <<
1010 (BITS_PER_LONG - tag_bit);
1011 /* Clip chunk size, here only BITS_PER_LONG tags */
1012 iter->next_index = index + BITS_PER_LONG;
1013 }
1014 }
1015
1016 return node->slots + offset;
1017 }
1018 EXPORT_SYMBOL(radix_tree_next_chunk);
1019
1020 /**
1021 * radix_tree_range_tag_if_tagged - for each item in given range set given
1022 * tag if item has another tag set
1023 * @root: radix tree root
1024 * @first_indexp: pointer to a starting index of a range to scan
1025 * @last_index: last index of a range to scan
1026 * @nr_to_tag: maximum number items to tag
1027 * @iftag: tag index to test
1028 * @settag: tag index to set if tested tag is set
1029 *
1030 * This function scans range of radix tree from first_index to last_index
1031 * (inclusive). For each item in the range if iftag is set, the function sets
1032 * also settag. The function stops either after tagging nr_to_tag items or
1033 * after reaching last_index.
1034 *
1035 * The tags must be set from the leaf level only and propagated back up the
1036 * path to the root. We must do this so that we resolve the full path before
1037 * setting any tags on intermediate nodes. If we set tags as we descend, then
1038 * we can get to the leaf node and find that the index that has the iftag
1039 * set is outside the range we are scanning. This reults in dangling tags and
1040 * can lead to problems with later tag operations (e.g. livelocks on lookups).
1041 *
1042 * The function returns the number of leaves where the tag was set and sets
1043 * *first_indexp to the first unscanned index.
1044 * WARNING! *first_indexp can wrap if last_index is ULONG_MAX. Caller must
1045 * be prepared to handle that.
1046 */
1047 unsigned long radix_tree_range_tag_if_tagged(struct radix_tree_root *root,
1048 unsigned long *first_indexp, unsigned long last_index,
1049 unsigned long nr_to_tag,
1050 unsigned int iftag, unsigned int settag)
1051 {
1052 struct radix_tree_node *slot, *node = NULL;
1053 unsigned long maxindex;
1054 unsigned int shift = radix_tree_load_root(root, &slot, &maxindex);
1055 unsigned long tagged = 0;
1056 unsigned long index = *first_indexp;
1057
1058 last_index = min(last_index, maxindex);
1059 if (index > last_index)
1060 return 0;
1061 if (!nr_to_tag)
1062 return 0;
1063 if (!root_tag_get(root, iftag)) {
1064 *first_indexp = last_index + 1;
1065 return 0;
1066 }
1067 if (!radix_tree_is_indirect_ptr(slot)) {
1068 *first_indexp = last_index + 1;
1069 root_tag_set(root, settag);
1070 return 1;
1071 }
1072
1073 node = indirect_to_ptr(slot);
1074 shift -= RADIX_TREE_MAP_SHIFT;
1075
1076 for (;;) {
1077 unsigned long upindex;
1078 unsigned offset;
1079
1080 offset = (index >> shift) & RADIX_TREE_MAP_MASK;
1081 offset = radix_tree_descend(node, &slot, offset);
1082 if (!slot)
1083 goto next;
1084 if (!tag_get(node, iftag, offset))
1085 goto next;
1086 /* Sibling slots never have tags set on them */
1087 if (radix_tree_is_indirect_ptr(slot)) {
1088 node = indirect_to_ptr(slot);
1089 shift -= RADIX_TREE_MAP_SHIFT;
1090 continue;
1091 }
1092
1093 /* tag the leaf */
1094 tagged++;
1095 tag_set(node, settag, offset);
1096
1097 slot = node->parent;
1098 /* walk back up the path tagging interior nodes */
1099 upindex = index >> shift;
1100 while (slot) {
1101 upindex >>= RADIX_TREE_MAP_SHIFT;
1102 offset = upindex & RADIX_TREE_MAP_MASK;
1103
1104 /* stop if we find a node with the tag already set */
1105 if (tag_get(slot, settag, offset))
1106 break;
1107 tag_set(slot, settag, offset);
1108 slot = slot->parent;
1109 }
1110
1111 next:
1112 /* Go to next item at level determined by 'shift' */
1113 index = ((index >> shift) + 1) << shift;
1114 /* Overflow can happen when last_index is ~0UL... */
1115 if (index > last_index || !index)
1116 break;
1117 offset = (index >> shift) & RADIX_TREE_MAP_MASK;
1118 while (offset == 0) {
1119 /*
1120 * We've fully scanned this node. Go up. Because
1121 * last_index is guaranteed to be in the tree, what
1122 * we do below cannot wander astray.
1123 */
1124 node = node->parent;
1125 shift += RADIX_TREE_MAP_SHIFT;
1126 offset = (index >> shift) & RADIX_TREE_MAP_MASK;
1127 }
1128 if (is_sibling_entry(node, node->slots[offset]))
1129 goto next;
1130 if (tagged >= nr_to_tag)
1131 break;
1132 }
1133 /*
1134 * We need not to tag the root tag if there is no tag which is set with
1135 * settag within the range from *first_indexp to last_index.
1136 */
1137 if (tagged > 0)
1138 root_tag_set(root, settag);
1139 *first_indexp = index;
1140
1141 return tagged;
1142 }
1143 EXPORT_SYMBOL(radix_tree_range_tag_if_tagged);
1144
1145 /**
1146 * radix_tree_gang_lookup - perform multiple lookup on a radix tree
1147 * @root: radix tree root
1148 * @results: where the results of the lookup are placed
1149 * @first_index: start the lookup from this key
1150 * @max_items: place up to this many items at *results
1151 *
1152 * Performs an index-ascending scan of the tree for present items. Places
1153 * them at *@results and returns the number of items which were placed at
1154 * *@results.
1155 *
1156 * The implementation is naive.
1157 *
1158 * Like radix_tree_lookup, radix_tree_gang_lookup may be called under
1159 * rcu_read_lock. In this case, rather than the returned results being
1160 * an atomic snapshot of the tree at a single point in time, the
1161 * semantics of an RCU protected gang lookup are as though multiple
1162 * radix_tree_lookups have been issued in individual locks, and results
1163 * stored in 'results'.
1164 */
1165 unsigned int
1166 radix_tree_gang_lookup(struct radix_tree_root *root, void **results,
1167 unsigned long first_index, unsigned int max_items)
1168 {
1169 struct radix_tree_iter iter;
1170 void **slot;
1171 unsigned int ret = 0;
1172
1173 if (unlikely(!max_items))
1174 return 0;
1175
1176 radix_tree_for_each_slot(slot, root, &iter, first_index) {
1177 results[ret] = rcu_dereference_raw(*slot);
1178 if (!results[ret])
1179 continue;
1180 if (radix_tree_is_indirect_ptr(results[ret])) {
1181 slot = radix_tree_iter_retry(&iter);
1182 continue;
1183 }
1184 if (++ret == max_items)
1185 break;
1186 }
1187
1188 return ret;
1189 }
1190 EXPORT_SYMBOL(radix_tree_gang_lookup);
1191
1192 /**
1193 * radix_tree_gang_lookup_slot - perform multiple slot lookup on radix tree
1194 * @root: radix tree root
1195 * @results: where the results of the lookup are placed
1196 * @indices: where their indices should be placed (but usually NULL)
1197 * @first_index: start the lookup from this key
1198 * @max_items: place up to this many items at *results
1199 *
1200 * Performs an index-ascending scan of the tree for present items. Places
1201 * their slots at *@results and returns the number of items which were
1202 * placed at *@results.
1203 *
1204 * The implementation is naive.
1205 *
1206 * Like radix_tree_gang_lookup as far as RCU and locking goes. Slots must
1207 * be dereferenced with radix_tree_deref_slot, and if using only RCU
1208 * protection, radix_tree_deref_slot may fail requiring a retry.
1209 */
1210 unsigned int
1211 radix_tree_gang_lookup_slot(struct radix_tree_root *root,
1212 void ***results, unsigned long *indices,
1213 unsigned long first_index, unsigned int max_items)
1214 {
1215 struct radix_tree_iter iter;
1216 void **slot;
1217 unsigned int ret = 0;
1218
1219 if (unlikely(!max_items))
1220 return 0;
1221
1222 radix_tree_for_each_slot(slot, root, &iter, first_index) {
1223 results[ret] = slot;
1224 if (indices)
1225 indices[ret] = iter.index;
1226 if (++ret == max_items)
1227 break;
1228 }
1229
1230 return ret;
1231 }
1232 EXPORT_SYMBOL(radix_tree_gang_lookup_slot);
1233
1234 /**
1235 * radix_tree_gang_lookup_tag - perform multiple lookup on a radix tree
1236 * based on a tag
1237 * @root: radix tree root
1238 * @results: where the results of the lookup are placed
1239 * @first_index: start the lookup from this key
1240 * @max_items: place up to this many items at *results
1241 * @tag: the tag index (< RADIX_TREE_MAX_TAGS)
1242 *
1243 * Performs an index-ascending scan of the tree for present items which
1244 * have the tag indexed by @tag set. Places the items at *@results and
1245 * returns the number of items which were placed at *@results.
1246 */
1247 unsigned int
1248 radix_tree_gang_lookup_tag(struct radix_tree_root *root, void **results,
1249 unsigned long first_index, unsigned int max_items,
1250 unsigned int tag)
1251 {
1252 struct radix_tree_iter iter;
1253 void **slot;
1254 unsigned int ret = 0;
1255
1256 if (unlikely(!max_items))
1257 return 0;
1258
1259 radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
1260 results[ret] = rcu_dereference_raw(*slot);
1261 if (!results[ret])
1262 continue;
1263 if (radix_tree_is_indirect_ptr(results[ret])) {
1264 slot = radix_tree_iter_retry(&iter);
1265 continue;
1266 }
1267 if (++ret == max_items)
1268 break;
1269 }
1270
1271 return ret;
1272 }
1273 EXPORT_SYMBOL(radix_tree_gang_lookup_tag);
1274
1275 /**
1276 * radix_tree_gang_lookup_tag_slot - perform multiple slot lookup on a
1277 * radix tree based on a tag
1278 * @root: radix tree root
1279 * @results: where the results of the lookup are placed
1280 * @first_index: start the lookup from this key
1281 * @max_items: place up to this many items at *results
1282 * @tag: the tag index (< RADIX_TREE_MAX_TAGS)
1283 *
1284 * Performs an index-ascending scan of the tree for present items which
1285 * have the tag indexed by @tag set. Places the slots at *@results and
1286 * returns the number of slots which were placed at *@results.
1287 */
1288 unsigned int
1289 radix_tree_gang_lookup_tag_slot(struct radix_tree_root *root, void ***results,
1290 unsigned long first_index, unsigned int max_items,
1291 unsigned int tag)
1292 {
1293 struct radix_tree_iter iter;
1294 void **slot;
1295 unsigned int ret = 0;
1296
1297 if (unlikely(!max_items))
1298 return 0;
1299
1300 radix_tree_for_each_tagged(slot, root, &iter, first_index, tag) {
1301 results[ret] = slot;
1302 if (++ret == max_items)
1303 break;
1304 }
1305
1306 return ret;
1307 }
1308 EXPORT_SYMBOL(radix_tree_gang_lookup_tag_slot);
1309
1310 #if defined(CONFIG_SHMEM) && defined(CONFIG_SWAP)
1311 #include <linux/sched.h> /* for cond_resched() */
1312
1313 struct locate_info {
1314 unsigned long found_index;
1315 bool stop;
1316 };
1317
1318 /*
1319 * This linear search is at present only useful to shmem_unuse_inode().
1320 */
1321 static unsigned long __locate(struct radix_tree_node *slot, void *item,
1322 unsigned long index, struct locate_info *info)
1323 {
1324 unsigned int shift;
1325 unsigned long i;
1326
1327 shift = slot->shift + RADIX_TREE_MAP_SHIFT;
1328
1329 do {
1330 shift -= RADIX_TREE_MAP_SHIFT;
1331
1332 for (i = (index >> shift) & RADIX_TREE_MAP_MASK;
1333 i < RADIX_TREE_MAP_SIZE;
1334 i++, index += (1UL << shift)) {
1335 struct radix_tree_node *node =
1336 rcu_dereference_raw(slot->slots[i]);
1337 if (node == RADIX_TREE_RETRY)
1338 goto out;
1339 if (!radix_tree_is_indirect_ptr(node)) {
1340 if (node == item) {
1341 info->found_index = index;
1342 info->stop = true;
1343 goto out;
1344 }
1345 continue;
1346 }
1347 node = indirect_to_ptr(node);
1348 if (is_sibling_entry(slot, node))
1349 continue;
1350 slot = node;
1351 break;
1352 }
1353 if (i == RADIX_TREE_MAP_SIZE)
1354 break;
1355 } while (shift);
1356
1357 out:
1358 if ((index == 0) && (i == RADIX_TREE_MAP_SIZE))
1359 info->stop = true;
1360 return index;
1361 }
1362
1363 /**
1364 * radix_tree_locate_item - search through radix tree for item
1365 * @root: radix tree root
1366 * @item: item to be found
1367 *
1368 * Returns index where item was found, or -1 if not found.
1369 * Caller must hold no lock (since this time-consuming function needs
1370 * to be preemptible), and must check afterwards if item is still there.
1371 */
1372 unsigned long radix_tree_locate_item(struct radix_tree_root *root, void *item)
1373 {
1374 struct radix_tree_node *node;
1375 unsigned long max_index;
1376 unsigned long cur_index = 0;
1377 struct locate_info info = {
1378 .found_index = -1,
1379 .stop = false,
1380 };
1381
1382 do {
1383 rcu_read_lock();
1384 node = rcu_dereference_raw(root->rnode);
1385 if (!radix_tree_is_indirect_ptr(node)) {
1386 rcu_read_unlock();
1387 if (node == item)
1388 info.found_index = 0;
1389 break;
1390 }
1391
1392 node = indirect_to_ptr(node);
1393
1394 max_index = node_maxindex(node);
1395 if (cur_index > max_index) {
1396 rcu_read_unlock();
1397 break;
1398 }
1399
1400 cur_index = __locate(node, item, cur_index, &info);
1401 rcu_read_unlock();
1402 cond_resched();
1403 } while (!info.stop && cur_index <= max_index);
1404
1405 return info.found_index;
1406 }
1407 #else
1408 unsigned long radix_tree_locate_item(struct radix_tree_root *root, void *item)
1409 {
1410 return -1;
1411 }
1412 #endif /* CONFIG_SHMEM && CONFIG_SWAP */
1413
1414 /**
1415 * radix_tree_shrink - shrink height of a radix tree to minimal
1416 * @root radix tree root
1417 */
1418 static inline bool radix_tree_shrink(struct radix_tree_root *root)
1419 {
1420 bool shrunk = false;
1421
1422 /* try to shrink tree height */
1423 while (root->height > 0) {
1424 struct radix_tree_node *to_free = root->rnode;
1425 struct radix_tree_node *slot;
1426
1427 BUG_ON(!radix_tree_is_indirect_ptr(to_free));
1428 to_free = indirect_to_ptr(to_free);
1429
1430 /*
1431 * The candidate node has more than one child, or its child
1432 * is not at the leftmost slot, or it is a multiorder entry,
1433 * we cannot shrink.
1434 */
1435 if (to_free->count != 1)
1436 break;
1437 slot = to_free->slots[0];
1438 if (!slot)
1439 break;
1440 if (!radix_tree_is_indirect_ptr(slot) && (root->height > 1))
1441 break;
1442
1443 if (radix_tree_is_indirect_ptr(slot)) {
1444 slot = indirect_to_ptr(slot);
1445 slot->parent = NULL;
1446 slot = ptr_to_indirect(slot);
1447 }
1448
1449 /*
1450 * We don't need rcu_assign_pointer(), since we are simply
1451 * moving the node from one part of the tree to another: if it
1452 * was safe to dereference the old pointer to it
1453 * (to_free->slots[0]), it will be safe to dereference the new
1454 * one (root->rnode) as far as dependent read barriers go.
1455 */
1456 root->rnode = slot;
1457 root->height--;
1458
1459 /*
1460 * We have a dilemma here. The node's slot[0] must not be
1461 * NULLed in case there are concurrent lookups expecting to
1462 * find the item. However if this was a bottom-level node,
1463 * then it may be subject to the slot pointer being visible
1464 * to callers dereferencing it. If item corresponding to
1465 * slot[0] is subsequently deleted, these callers would expect
1466 * their slot to become empty sooner or later.
1467 *
1468 * For example, lockless pagecache will look up a slot, deref
1469 * the page pointer, and if the page has 0 refcount it means it
1470 * was concurrently deleted from pagecache so try the deref
1471 * again. Fortunately there is already a requirement for logic
1472 * to retry the entire slot lookup -- the indirect pointer
1473 * problem (replacing direct root node with an indirect pointer
1474 * also results in a stale slot). So tag the slot as indirect
1475 * to force callers to retry.
1476 */
1477 if (!radix_tree_is_indirect_ptr(slot))
1478 to_free->slots[0] = RADIX_TREE_RETRY;
1479
1480 radix_tree_node_free(to_free);
1481 shrunk = true;
1482 }
1483
1484 return shrunk;
1485 }
1486
1487 /**
1488 * __radix_tree_delete_node - try to free node after clearing a slot
1489 * @root: radix tree root
1490 * @node: node containing @index
1491 *
1492 * After clearing the slot at @index in @node from radix tree
1493 * rooted at @root, call this function to attempt freeing the
1494 * node and shrinking the tree.
1495 *
1496 * Returns %true if @node was freed, %false otherwise.
1497 */
1498 bool __radix_tree_delete_node(struct radix_tree_root *root,
1499 struct radix_tree_node *node)
1500 {
1501 bool deleted = false;
1502
1503 do {
1504 struct radix_tree_node *parent;
1505
1506 if (node->count) {
1507 if (node == indirect_to_ptr(root->rnode))
1508 deleted |= radix_tree_shrink(root);
1509 return deleted;
1510 }
1511
1512 parent = node->parent;
1513 if (parent) {
1514 parent->slots[node->offset] = NULL;
1515 parent->count--;
1516 } else {
1517 root_tag_clear_all(root);
1518 root->height = 0;
1519 root->rnode = NULL;
1520 }
1521
1522 radix_tree_node_free(node);
1523 deleted = true;
1524
1525 node = parent;
1526 } while (node);
1527
1528 return deleted;
1529 }
1530
1531 static inline void delete_sibling_entries(struct radix_tree_node *node,
1532 void *ptr, unsigned offset)
1533 {
1534 #ifdef CONFIG_RADIX_TREE_MULTIORDER
1535 int i;
1536 for (i = 1; offset + i < RADIX_TREE_MAP_SIZE; i++) {
1537 if (node->slots[offset + i] != ptr)
1538 break;
1539 node->slots[offset + i] = NULL;
1540 node->count--;
1541 }
1542 #endif
1543 }
1544
1545 /**
1546 * radix_tree_delete_item - delete an item from a radix tree
1547 * @root: radix tree root
1548 * @index: index key
1549 * @item: expected item
1550 *
1551 * Remove @item at @index from the radix tree rooted at @root.
1552 *
1553 * Returns the address of the deleted item, or NULL if it was not present
1554 * or the entry at the given @index was not @item.
1555 */
1556 void *radix_tree_delete_item(struct radix_tree_root *root,
1557 unsigned long index, void *item)
1558 {
1559 struct radix_tree_node *node;
1560 unsigned int offset;
1561 void **slot;
1562 void *entry;
1563 int tag;
1564
1565 entry = __radix_tree_lookup(root, index, &node, &slot);
1566 if (!entry)
1567 return NULL;
1568
1569 if (item && entry != item)
1570 return NULL;
1571
1572 if (!node) {
1573 root_tag_clear_all(root);
1574 root->rnode = NULL;
1575 return entry;
1576 }
1577
1578 offset = get_slot_offset(node, slot);
1579
1580 /*
1581 * Clear all tags associated with the item to be deleted.
1582 * This way of doing it would be inefficient, but seldom is any set.
1583 */
1584 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
1585 if (tag_get(node, tag, offset))
1586 radix_tree_tag_clear(root, index, tag);
1587 }
1588
1589 delete_sibling_entries(node, ptr_to_indirect(slot), offset);
1590 node->slots[offset] = NULL;
1591 node->count--;
1592
1593 __radix_tree_delete_node(root, node);
1594
1595 return entry;
1596 }
1597 EXPORT_SYMBOL(radix_tree_delete_item);
1598
1599 /**
1600 * radix_tree_delete - delete an item from a radix tree
1601 * @root: radix tree root
1602 * @index: index key
1603 *
1604 * Remove the item at @index from the radix tree rooted at @root.
1605 *
1606 * Returns the address of the deleted item, or NULL if it was not present.
1607 */
1608 void *radix_tree_delete(struct radix_tree_root *root, unsigned long index)
1609 {
1610 return radix_tree_delete_item(root, index, NULL);
1611 }
1612 EXPORT_SYMBOL(radix_tree_delete);
1613
1614 /**
1615 * radix_tree_tagged - test whether any items in the tree are tagged
1616 * @root: radix tree root
1617 * @tag: tag to test
1618 */
1619 int radix_tree_tagged(struct radix_tree_root *root, unsigned int tag)
1620 {
1621 return root_tag_get(root, tag);
1622 }
1623 EXPORT_SYMBOL(radix_tree_tagged);
1624
1625 static void
1626 radix_tree_node_ctor(void *arg)
1627 {
1628 struct radix_tree_node *node = arg;
1629
1630 memset(node, 0, sizeof(*node));
1631 INIT_LIST_HEAD(&node->private_list);
1632 }
1633
1634 static __init unsigned long __maxindex(unsigned int height)
1635 {
1636 unsigned int width = height * RADIX_TREE_MAP_SHIFT;
1637 int shift = RADIX_TREE_INDEX_BITS - width;
1638
1639 if (shift < 0)
1640 return ~0UL;
1641 if (shift >= BITS_PER_LONG)
1642 return 0UL;
1643 return ~0UL >> shift;
1644 }
1645
1646 static __init void radix_tree_init_maxindex(void)
1647 {
1648 unsigned int i;
1649
1650 for (i = 0; i < ARRAY_SIZE(height_to_maxindex); i++)
1651 height_to_maxindex[i] = __maxindex(i);
1652 }
1653
1654 static int radix_tree_callback(struct notifier_block *nfb,
1655 unsigned long action, void *hcpu)
1656 {
1657 int cpu = (long)hcpu;
1658 struct radix_tree_preload *rtp;
1659 struct radix_tree_node *node;
1660
1661 /* Free per-cpu pool of preloaded nodes */
1662 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
1663 rtp = &per_cpu(radix_tree_preloads, cpu);
1664 while (rtp->nr) {
1665 node = rtp->nodes;
1666 rtp->nodes = node->private_data;
1667 kmem_cache_free(radix_tree_node_cachep, node);
1668 rtp->nr--;
1669 }
1670 }
1671 return NOTIFY_OK;
1672 }
1673
1674 void __init radix_tree_init(void)
1675 {
1676 radix_tree_node_cachep = kmem_cache_create("radix_tree_node",
1677 sizeof(struct radix_tree_node), 0,
1678 SLAB_PANIC | SLAB_RECLAIM_ACCOUNT,
1679 radix_tree_node_ctor);
1680 radix_tree_init_maxindex();
1681 hotcpu_notifier(radix_tree_callback, 0);
1682 }
This page took 0.085358 seconds and 6 git commands to generate.