rhashtable: Use __vmalloc with GFP_ATOMIC for table allocation
[deliverable/linux.git] / lib / rhashtable.c
1 /*
2 * Resizable, Scalable, Concurrent Hash Table
3 *
4 * Copyright (c) 2015 Herbert Xu <herbert@gondor.apana.org.au>
5 * Copyright (c) 2014-2015 Thomas Graf <tgraf@suug.ch>
6 * Copyright (c) 2008-2014 Patrick McHardy <kaber@trash.net>
7 *
8 * Code partially derived from nft_hash
9 * Rewritten with rehash code from br_multicast plus single list
10 * pointer as suggested by Josh Triplett
11 *
12 * This program is free software; you can redistribute it and/or modify
13 * it under the terms of the GNU General Public License version 2 as
14 * published by the Free Software Foundation.
15 */
16
17 #include <linux/atomic.h>
18 #include <linux/kernel.h>
19 #include <linux/init.h>
20 #include <linux/log2.h>
21 #include <linux/sched.h>
22 #include <linux/slab.h>
23 #include <linux/vmalloc.h>
24 #include <linux/mm.h>
25 #include <linux/jhash.h>
26 #include <linux/random.h>
27 #include <linux/rhashtable.h>
28 #include <linux/err.h>
29 #include <linux/export.h>
30
31 #define HASH_DEFAULT_SIZE 64UL
32 #define HASH_MIN_SIZE 4U
33 #define BUCKET_LOCKS_PER_CPU 128UL
34
35 static u32 head_hashfn(struct rhashtable *ht,
36 const struct bucket_table *tbl,
37 const struct rhash_head *he)
38 {
39 return rht_head_hashfn(ht, tbl, he, ht->p);
40 }
41
42 #ifdef CONFIG_PROVE_LOCKING
43 #define ASSERT_RHT_MUTEX(HT) BUG_ON(!lockdep_rht_mutex_is_held(HT))
44
45 int lockdep_rht_mutex_is_held(struct rhashtable *ht)
46 {
47 return (debug_locks) ? lockdep_is_held(&ht->mutex) : 1;
48 }
49 EXPORT_SYMBOL_GPL(lockdep_rht_mutex_is_held);
50
51 int lockdep_rht_bucket_is_held(const struct bucket_table *tbl, u32 hash)
52 {
53 spinlock_t *lock = rht_bucket_lock(tbl, hash);
54
55 return (debug_locks) ? lockdep_is_held(lock) : 1;
56 }
57 EXPORT_SYMBOL_GPL(lockdep_rht_bucket_is_held);
58 #else
59 #define ASSERT_RHT_MUTEX(HT)
60 #endif
61
62
63 static int alloc_bucket_locks(struct rhashtable *ht, struct bucket_table *tbl,
64 gfp_t gfp)
65 {
66 unsigned int i, size;
67 #if defined(CONFIG_PROVE_LOCKING)
68 unsigned int nr_pcpus = 2;
69 #else
70 unsigned int nr_pcpus = num_possible_cpus();
71 #endif
72
73 nr_pcpus = min_t(unsigned int, nr_pcpus, 32UL);
74 size = roundup_pow_of_two(nr_pcpus * ht->p.locks_mul);
75
76 /* Never allocate more than 0.5 locks per bucket */
77 size = min_t(unsigned int, size, tbl->size >> 1);
78
79 if (sizeof(spinlock_t) != 0) {
80 #ifdef CONFIG_NUMA
81 if (size * sizeof(spinlock_t) > PAGE_SIZE &&
82 gfp == GFP_KERNEL)
83 tbl->locks = vmalloc(size * sizeof(spinlock_t));
84 else
85 #endif
86 tbl->locks = kmalloc_array(size, sizeof(spinlock_t),
87 gfp);
88 if (!tbl->locks)
89 return -ENOMEM;
90 for (i = 0; i < size; i++)
91 spin_lock_init(&tbl->locks[i]);
92 }
93 tbl->locks_mask = size - 1;
94
95 return 0;
96 }
97
98 static void bucket_table_free(const struct bucket_table *tbl)
99 {
100 if (tbl)
101 kvfree(tbl->locks);
102
103 kvfree(tbl);
104 }
105
106 static void bucket_table_free_rcu(struct rcu_head *head)
107 {
108 bucket_table_free(container_of(head, struct bucket_table, rcu));
109 }
110
111 static struct bucket_table *bucket_table_alloc(struct rhashtable *ht,
112 size_t nbuckets,
113 gfp_t gfp)
114 {
115 struct bucket_table *tbl = NULL;
116 size_t size;
117 int i;
118
119 size = sizeof(*tbl) + nbuckets * sizeof(tbl->buckets[0]);
120 if (size <= (PAGE_SIZE << PAGE_ALLOC_COSTLY_ORDER) ||
121 gfp != GFP_KERNEL)
122 tbl = kzalloc(size, gfp | __GFP_NOWARN | __GFP_NORETRY);
123 if (tbl == NULL)
124 tbl = __vmalloc(size, gfp | __GFP_HIGHMEM | __GFP_ZERO,
125 PAGE_KERNEL);
126 if (tbl == NULL)
127 return NULL;
128
129 tbl->size = nbuckets;
130
131 if (alloc_bucket_locks(ht, tbl, gfp) < 0) {
132 bucket_table_free(tbl);
133 return NULL;
134 }
135
136 INIT_LIST_HEAD(&tbl->walkers);
137
138 get_random_bytes(&tbl->hash_rnd, sizeof(tbl->hash_rnd));
139
140 for (i = 0; i < nbuckets; i++)
141 INIT_RHT_NULLS_HEAD(tbl->buckets[i], ht, i);
142
143 return tbl;
144 }
145
146 static struct bucket_table *rhashtable_last_table(struct rhashtable *ht,
147 struct bucket_table *tbl)
148 {
149 struct bucket_table *new_tbl;
150
151 do {
152 new_tbl = tbl;
153 tbl = rht_dereference_rcu(tbl->future_tbl, ht);
154 } while (tbl);
155
156 return new_tbl;
157 }
158
159 static int rhashtable_rehash_one(struct rhashtable *ht, unsigned int old_hash)
160 {
161 struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
162 struct bucket_table *new_tbl = rhashtable_last_table(ht,
163 rht_dereference_rcu(old_tbl->future_tbl, ht));
164 struct rhash_head __rcu **pprev = &old_tbl->buckets[old_hash];
165 int err = -ENOENT;
166 struct rhash_head *head, *next, *entry;
167 spinlock_t *new_bucket_lock;
168 unsigned int new_hash;
169
170 rht_for_each(entry, old_tbl, old_hash) {
171 err = 0;
172 next = rht_dereference_bucket(entry->next, old_tbl, old_hash);
173
174 if (rht_is_a_nulls(next))
175 break;
176
177 pprev = &entry->next;
178 }
179
180 if (err)
181 goto out;
182
183 new_hash = head_hashfn(ht, new_tbl, entry);
184
185 new_bucket_lock = rht_bucket_lock(new_tbl, new_hash);
186
187 spin_lock_nested(new_bucket_lock, SINGLE_DEPTH_NESTING);
188 head = rht_dereference_bucket(new_tbl->buckets[new_hash],
189 new_tbl, new_hash);
190
191 RCU_INIT_POINTER(entry->next, head);
192
193 rcu_assign_pointer(new_tbl->buckets[new_hash], entry);
194 spin_unlock(new_bucket_lock);
195
196 rcu_assign_pointer(*pprev, next);
197
198 out:
199 return err;
200 }
201
202 static void rhashtable_rehash_chain(struct rhashtable *ht,
203 unsigned int old_hash)
204 {
205 struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
206 spinlock_t *old_bucket_lock;
207
208 old_bucket_lock = rht_bucket_lock(old_tbl, old_hash);
209
210 spin_lock_bh(old_bucket_lock);
211 while (!rhashtable_rehash_one(ht, old_hash))
212 ;
213 old_tbl->rehash++;
214 spin_unlock_bh(old_bucket_lock);
215 }
216
217 static int rhashtable_rehash_attach(struct rhashtable *ht,
218 struct bucket_table *old_tbl,
219 struct bucket_table *new_tbl)
220 {
221 /* Protect future_tbl using the first bucket lock. */
222 spin_lock_bh(old_tbl->locks);
223
224 /* Did somebody beat us to it? */
225 if (rcu_access_pointer(old_tbl->future_tbl)) {
226 spin_unlock_bh(old_tbl->locks);
227 return -EEXIST;
228 }
229
230 /* Make insertions go into the new, empty table right away. Deletions
231 * and lookups will be attempted in both tables until we synchronize.
232 */
233 rcu_assign_pointer(old_tbl->future_tbl, new_tbl);
234
235 /* Ensure the new table is visible to readers. */
236 smp_wmb();
237
238 spin_unlock_bh(old_tbl->locks);
239
240 return 0;
241 }
242
243 static int rhashtable_rehash_table(struct rhashtable *ht)
244 {
245 struct bucket_table *old_tbl = rht_dereference(ht->tbl, ht);
246 struct bucket_table *new_tbl;
247 struct rhashtable_walker *walker;
248 unsigned int old_hash;
249
250 new_tbl = rht_dereference(old_tbl->future_tbl, ht);
251 if (!new_tbl)
252 return 0;
253
254 for (old_hash = 0; old_hash < old_tbl->size; old_hash++)
255 rhashtable_rehash_chain(ht, old_hash);
256
257 /* Publish the new table pointer. */
258 rcu_assign_pointer(ht->tbl, new_tbl);
259
260 spin_lock(&ht->lock);
261 list_for_each_entry(walker, &old_tbl->walkers, list)
262 walker->tbl = NULL;
263 spin_unlock(&ht->lock);
264
265 /* Wait for readers. All new readers will see the new
266 * table, and thus no references to the old table will
267 * remain.
268 */
269 call_rcu(&old_tbl->rcu, bucket_table_free_rcu);
270
271 return rht_dereference(new_tbl->future_tbl, ht) ? -EAGAIN : 0;
272 }
273
274 /**
275 * rhashtable_expand - Expand hash table while allowing concurrent lookups
276 * @ht: the hash table to expand
277 *
278 * A secondary bucket array is allocated and the hash entries are migrated.
279 *
280 * This function may only be called in a context where it is safe to call
281 * synchronize_rcu(), e.g. not within a rcu_read_lock() section.
282 *
283 * The caller must ensure that no concurrent resizing occurs by holding
284 * ht->mutex.
285 *
286 * It is valid to have concurrent insertions and deletions protected by per
287 * bucket locks or concurrent RCU protected lookups and traversals.
288 */
289 static int rhashtable_expand(struct rhashtable *ht)
290 {
291 struct bucket_table *new_tbl, *old_tbl = rht_dereference(ht->tbl, ht);
292 int err;
293
294 ASSERT_RHT_MUTEX(ht);
295
296 old_tbl = rhashtable_last_table(ht, old_tbl);
297
298 new_tbl = bucket_table_alloc(ht, old_tbl->size * 2, GFP_KERNEL);
299 if (new_tbl == NULL)
300 return -ENOMEM;
301
302 err = rhashtable_rehash_attach(ht, old_tbl, new_tbl);
303 if (err)
304 bucket_table_free(new_tbl);
305
306 return err;
307 }
308
309 /**
310 * rhashtable_shrink - Shrink hash table while allowing concurrent lookups
311 * @ht: the hash table to shrink
312 *
313 * This function shrinks the hash table to fit, i.e., the smallest
314 * size would not cause it to expand right away automatically.
315 *
316 * The caller must ensure that no concurrent resizing occurs by holding
317 * ht->mutex.
318 *
319 * The caller must ensure that no concurrent table mutations take place.
320 * It is however valid to have concurrent lookups if they are RCU protected.
321 *
322 * It is valid to have concurrent insertions and deletions protected by per
323 * bucket locks or concurrent RCU protected lookups and traversals.
324 */
325 static int rhashtable_shrink(struct rhashtable *ht)
326 {
327 struct bucket_table *new_tbl, *old_tbl = rht_dereference(ht->tbl, ht);
328 unsigned int size;
329 int err;
330
331 ASSERT_RHT_MUTEX(ht);
332
333 size = roundup_pow_of_two(atomic_read(&ht->nelems) * 3 / 2);
334 if (size < ht->p.min_size)
335 size = ht->p.min_size;
336
337 if (old_tbl->size <= size)
338 return 0;
339
340 if (rht_dereference(old_tbl->future_tbl, ht))
341 return -EEXIST;
342
343 new_tbl = bucket_table_alloc(ht, size, GFP_KERNEL);
344 if (new_tbl == NULL)
345 return -ENOMEM;
346
347 err = rhashtable_rehash_attach(ht, old_tbl, new_tbl);
348 if (err)
349 bucket_table_free(new_tbl);
350
351 return err;
352 }
353
354 static void rht_deferred_worker(struct work_struct *work)
355 {
356 struct rhashtable *ht;
357 struct bucket_table *tbl;
358 int err = 0;
359
360 ht = container_of(work, struct rhashtable, run_work);
361 mutex_lock(&ht->mutex);
362
363 tbl = rht_dereference(ht->tbl, ht);
364 tbl = rhashtable_last_table(ht, tbl);
365
366 if (rht_grow_above_75(ht, tbl))
367 rhashtable_expand(ht);
368 else if (ht->p.automatic_shrinking && rht_shrink_below_30(ht, tbl))
369 rhashtable_shrink(ht);
370
371 err = rhashtable_rehash_table(ht);
372
373 mutex_unlock(&ht->mutex);
374
375 if (err)
376 schedule_work(&ht->run_work);
377 }
378
379 static bool rhashtable_check_elasticity(struct rhashtable *ht,
380 struct bucket_table *tbl,
381 unsigned int hash)
382 {
383 unsigned int elasticity = ht->elasticity;
384 struct rhash_head *head;
385
386 rht_for_each(head, tbl, hash)
387 if (!--elasticity)
388 return true;
389
390 return false;
391 }
392
393 int rhashtable_insert_rehash(struct rhashtable *ht,
394 struct bucket_table *tbl)
395 {
396 struct bucket_table *old_tbl;
397 struct bucket_table *new_tbl;
398 unsigned int size;
399 int err;
400
401 old_tbl = rht_dereference_rcu(ht->tbl, ht);
402
403 size = tbl->size;
404
405 err = -EBUSY;
406
407 if (rht_grow_above_75(ht, tbl))
408 size *= 2;
409 /* Do not schedule more than one rehash */
410 else if (old_tbl != tbl)
411 goto fail;
412
413 err = -ENOMEM;
414
415 new_tbl = bucket_table_alloc(ht, size, GFP_ATOMIC);
416 if (new_tbl == NULL)
417 goto fail;
418
419 err = rhashtable_rehash_attach(ht, tbl, new_tbl);
420 if (err) {
421 bucket_table_free(new_tbl);
422 if (err == -EEXIST)
423 err = 0;
424 } else
425 schedule_work(&ht->run_work);
426
427 return err;
428
429 fail:
430 /* Do not fail the insert if someone else did a rehash. */
431 if (likely(rcu_dereference_raw(tbl->future_tbl)))
432 return 0;
433
434 /* Schedule async rehash to retry allocation in process context. */
435 if (err == -ENOMEM)
436 schedule_work(&ht->run_work);
437
438 return err;
439 }
440 EXPORT_SYMBOL_GPL(rhashtable_insert_rehash);
441
442 struct bucket_table *rhashtable_insert_slow(struct rhashtable *ht,
443 const void *key,
444 struct rhash_head *obj,
445 struct bucket_table *tbl)
446 {
447 struct rhash_head *head;
448 unsigned int hash;
449 int err;
450
451 tbl = rhashtable_last_table(ht, tbl);
452 hash = head_hashfn(ht, tbl, obj);
453 spin_lock_nested(rht_bucket_lock(tbl, hash), SINGLE_DEPTH_NESTING);
454
455 err = -EEXIST;
456 if (key && rhashtable_lookup_fast(ht, key, ht->p))
457 goto exit;
458
459 err = -E2BIG;
460 if (unlikely(rht_grow_above_max(ht, tbl)))
461 goto exit;
462
463 err = -EAGAIN;
464 if (rhashtable_check_elasticity(ht, tbl, hash) ||
465 rht_grow_above_100(ht, tbl))
466 goto exit;
467
468 err = 0;
469
470 head = rht_dereference_bucket(tbl->buckets[hash], tbl, hash);
471
472 RCU_INIT_POINTER(obj->next, head);
473
474 rcu_assign_pointer(tbl->buckets[hash], obj);
475
476 atomic_inc(&ht->nelems);
477
478 exit:
479 spin_unlock(rht_bucket_lock(tbl, hash));
480
481 if (err == 0)
482 return NULL;
483 else if (err == -EAGAIN)
484 return tbl;
485 else
486 return ERR_PTR(err);
487 }
488 EXPORT_SYMBOL_GPL(rhashtable_insert_slow);
489
490 /**
491 * rhashtable_walk_init - Initialise an iterator
492 * @ht: Table to walk over
493 * @iter: Hash table Iterator
494 *
495 * This function prepares a hash table walk.
496 *
497 * Note that if you restart a walk after rhashtable_walk_stop you
498 * may see the same object twice. Also, you may miss objects if
499 * there are removals in between rhashtable_walk_stop and the next
500 * call to rhashtable_walk_start.
501 *
502 * For a completely stable walk you should construct your own data
503 * structure outside the hash table.
504 *
505 * This function may sleep so you must not call it from interrupt
506 * context or with spin locks held.
507 *
508 * You must call rhashtable_walk_exit if this function returns
509 * successfully.
510 */
511 int rhashtable_walk_init(struct rhashtable *ht, struct rhashtable_iter *iter)
512 {
513 iter->ht = ht;
514 iter->p = NULL;
515 iter->slot = 0;
516 iter->skip = 0;
517
518 iter->walker = kmalloc(sizeof(*iter->walker), GFP_KERNEL);
519 if (!iter->walker)
520 return -ENOMEM;
521
522 mutex_lock(&ht->mutex);
523 iter->walker->tbl = rht_dereference(ht->tbl, ht);
524 list_add(&iter->walker->list, &iter->walker->tbl->walkers);
525 mutex_unlock(&ht->mutex);
526
527 return 0;
528 }
529 EXPORT_SYMBOL_GPL(rhashtable_walk_init);
530
531 /**
532 * rhashtable_walk_exit - Free an iterator
533 * @iter: Hash table Iterator
534 *
535 * This function frees resources allocated by rhashtable_walk_init.
536 */
537 void rhashtable_walk_exit(struct rhashtable_iter *iter)
538 {
539 mutex_lock(&iter->ht->mutex);
540 if (iter->walker->tbl)
541 list_del(&iter->walker->list);
542 mutex_unlock(&iter->ht->mutex);
543 kfree(iter->walker);
544 }
545 EXPORT_SYMBOL_GPL(rhashtable_walk_exit);
546
547 /**
548 * rhashtable_walk_start - Start a hash table walk
549 * @iter: Hash table iterator
550 *
551 * Start a hash table walk. Note that we take the RCU lock in all
552 * cases including when we return an error. So you must always call
553 * rhashtable_walk_stop to clean up.
554 *
555 * Returns zero if successful.
556 *
557 * Returns -EAGAIN if resize event occured. Note that the iterator
558 * will rewind back to the beginning and you may use it immediately
559 * by calling rhashtable_walk_next.
560 */
561 int rhashtable_walk_start(struct rhashtable_iter *iter)
562 __acquires(RCU)
563 {
564 struct rhashtable *ht = iter->ht;
565
566 mutex_lock(&ht->mutex);
567
568 if (iter->walker->tbl)
569 list_del(&iter->walker->list);
570
571 rcu_read_lock();
572
573 mutex_unlock(&ht->mutex);
574
575 if (!iter->walker->tbl) {
576 iter->walker->tbl = rht_dereference_rcu(ht->tbl, ht);
577 return -EAGAIN;
578 }
579
580 return 0;
581 }
582 EXPORT_SYMBOL_GPL(rhashtable_walk_start);
583
584 /**
585 * rhashtable_walk_next - Return the next object and advance the iterator
586 * @iter: Hash table iterator
587 *
588 * Note that you must call rhashtable_walk_stop when you are finished
589 * with the walk.
590 *
591 * Returns the next object or NULL when the end of the table is reached.
592 *
593 * Returns -EAGAIN if resize event occured. Note that the iterator
594 * will rewind back to the beginning and you may continue to use it.
595 */
596 void *rhashtable_walk_next(struct rhashtable_iter *iter)
597 {
598 struct bucket_table *tbl = iter->walker->tbl;
599 struct rhashtable *ht = iter->ht;
600 struct rhash_head *p = iter->p;
601
602 if (p) {
603 p = rht_dereference_bucket_rcu(p->next, tbl, iter->slot);
604 goto next;
605 }
606
607 for (; iter->slot < tbl->size; iter->slot++) {
608 int skip = iter->skip;
609
610 rht_for_each_rcu(p, tbl, iter->slot) {
611 if (!skip)
612 break;
613 skip--;
614 }
615
616 next:
617 if (!rht_is_a_nulls(p)) {
618 iter->skip++;
619 iter->p = p;
620 return rht_obj(ht, p);
621 }
622
623 iter->skip = 0;
624 }
625
626 iter->p = NULL;
627
628 /* Ensure we see any new tables. */
629 smp_rmb();
630
631 iter->walker->tbl = rht_dereference_rcu(tbl->future_tbl, ht);
632 if (iter->walker->tbl) {
633 iter->slot = 0;
634 iter->skip = 0;
635 return ERR_PTR(-EAGAIN);
636 }
637
638 return NULL;
639 }
640 EXPORT_SYMBOL_GPL(rhashtable_walk_next);
641
642 /**
643 * rhashtable_walk_stop - Finish a hash table walk
644 * @iter: Hash table iterator
645 *
646 * Finish a hash table walk.
647 */
648 void rhashtable_walk_stop(struct rhashtable_iter *iter)
649 __releases(RCU)
650 {
651 struct rhashtable *ht;
652 struct bucket_table *tbl = iter->walker->tbl;
653
654 if (!tbl)
655 goto out;
656
657 ht = iter->ht;
658
659 spin_lock(&ht->lock);
660 if (tbl->rehash < tbl->size)
661 list_add(&iter->walker->list, &tbl->walkers);
662 else
663 iter->walker->tbl = NULL;
664 spin_unlock(&ht->lock);
665
666 iter->p = NULL;
667
668 out:
669 rcu_read_unlock();
670 }
671 EXPORT_SYMBOL_GPL(rhashtable_walk_stop);
672
673 static size_t rounded_hashtable_size(const struct rhashtable_params *params)
674 {
675 return max(roundup_pow_of_two(params->nelem_hint * 4 / 3),
676 (unsigned long)params->min_size);
677 }
678
679 static u32 rhashtable_jhash2(const void *key, u32 length, u32 seed)
680 {
681 return jhash2(key, length, seed);
682 }
683
684 /**
685 * rhashtable_init - initialize a new hash table
686 * @ht: hash table to be initialized
687 * @params: configuration parameters
688 *
689 * Initializes a new hash table based on the provided configuration
690 * parameters. A table can be configured either with a variable or
691 * fixed length key:
692 *
693 * Configuration Example 1: Fixed length keys
694 * struct test_obj {
695 * int key;
696 * void * my_member;
697 * struct rhash_head node;
698 * };
699 *
700 * struct rhashtable_params params = {
701 * .head_offset = offsetof(struct test_obj, node),
702 * .key_offset = offsetof(struct test_obj, key),
703 * .key_len = sizeof(int),
704 * .hashfn = jhash,
705 * .nulls_base = (1U << RHT_BASE_SHIFT),
706 * };
707 *
708 * Configuration Example 2: Variable length keys
709 * struct test_obj {
710 * [...]
711 * struct rhash_head node;
712 * };
713 *
714 * u32 my_hash_fn(const void *data, u32 len, u32 seed)
715 * {
716 * struct test_obj *obj = data;
717 *
718 * return [... hash ...];
719 * }
720 *
721 * struct rhashtable_params params = {
722 * .head_offset = offsetof(struct test_obj, node),
723 * .hashfn = jhash,
724 * .obj_hashfn = my_hash_fn,
725 * };
726 */
727 int rhashtable_init(struct rhashtable *ht,
728 const struct rhashtable_params *params)
729 {
730 struct bucket_table *tbl;
731 size_t size;
732
733 size = HASH_DEFAULT_SIZE;
734
735 if ((!params->key_len && !params->obj_hashfn) ||
736 (params->obj_hashfn && !params->obj_cmpfn))
737 return -EINVAL;
738
739 if (params->nulls_base && params->nulls_base < (1U << RHT_BASE_SHIFT))
740 return -EINVAL;
741
742 if (params->nelem_hint)
743 size = rounded_hashtable_size(params);
744
745 memset(ht, 0, sizeof(*ht));
746 mutex_init(&ht->mutex);
747 spin_lock_init(&ht->lock);
748 memcpy(&ht->p, params, sizeof(*params));
749
750 if (params->min_size)
751 ht->p.min_size = roundup_pow_of_two(params->min_size);
752
753 if (params->max_size)
754 ht->p.max_size = rounddown_pow_of_two(params->max_size);
755
756 if (params->insecure_max_entries)
757 ht->p.insecure_max_entries =
758 rounddown_pow_of_two(params->insecure_max_entries);
759 else
760 ht->p.insecure_max_entries = ht->p.max_size * 2;
761
762 ht->p.min_size = max(ht->p.min_size, HASH_MIN_SIZE);
763
764 /* The maximum (not average) chain length grows with the
765 * size of the hash table, at a rate of (log N)/(log log N).
766 * The value of 16 is selected so that even if the hash
767 * table grew to 2^32 you would not expect the maximum
768 * chain length to exceed it unless we are under attack
769 * (or extremely unlucky).
770 *
771 * As this limit is only to detect attacks, we don't need
772 * to set it to a lower value as you'd need the chain
773 * length to vastly exceed 16 to have any real effect
774 * on the system.
775 */
776 if (!params->insecure_elasticity)
777 ht->elasticity = 16;
778
779 if (params->locks_mul)
780 ht->p.locks_mul = roundup_pow_of_two(params->locks_mul);
781 else
782 ht->p.locks_mul = BUCKET_LOCKS_PER_CPU;
783
784 ht->key_len = ht->p.key_len;
785 if (!params->hashfn) {
786 ht->p.hashfn = jhash;
787
788 if (!(ht->key_len & (sizeof(u32) - 1))) {
789 ht->key_len /= sizeof(u32);
790 ht->p.hashfn = rhashtable_jhash2;
791 }
792 }
793
794 tbl = bucket_table_alloc(ht, size, GFP_KERNEL);
795 if (tbl == NULL)
796 return -ENOMEM;
797
798 atomic_set(&ht->nelems, 0);
799
800 RCU_INIT_POINTER(ht->tbl, tbl);
801
802 INIT_WORK(&ht->run_work, rht_deferred_worker);
803
804 return 0;
805 }
806 EXPORT_SYMBOL_GPL(rhashtable_init);
807
808 /**
809 * rhashtable_free_and_destroy - free elements and destroy hash table
810 * @ht: the hash table to destroy
811 * @free_fn: callback to release resources of element
812 * @arg: pointer passed to free_fn
813 *
814 * Stops an eventual async resize. If defined, invokes free_fn for each
815 * element to releasal resources. Please note that RCU protected
816 * readers may still be accessing the elements. Releasing of resources
817 * must occur in a compatible manner. Then frees the bucket array.
818 *
819 * This function will eventually sleep to wait for an async resize
820 * to complete. The caller is responsible that no further write operations
821 * occurs in parallel.
822 */
823 void rhashtable_free_and_destroy(struct rhashtable *ht,
824 void (*free_fn)(void *ptr, void *arg),
825 void *arg)
826 {
827 const struct bucket_table *tbl;
828 unsigned int i;
829
830 cancel_work_sync(&ht->run_work);
831
832 mutex_lock(&ht->mutex);
833 tbl = rht_dereference(ht->tbl, ht);
834 if (free_fn) {
835 for (i = 0; i < tbl->size; i++) {
836 struct rhash_head *pos, *next;
837
838 for (pos = rht_dereference(tbl->buckets[i], ht),
839 next = !rht_is_a_nulls(pos) ?
840 rht_dereference(pos->next, ht) : NULL;
841 !rht_is_a_nulls(pos);
842 pos = next,
843 next = !rht_is_a_nulls(pos) ?
844 rht_dereference(pos->next, ht) : NULL)
845 free_fn(rht_obj(ht, pos), arg);
846 }
847 }
848
849 bucket_table_free(tbl);
850 mutex_unlock(&ht->mutex);
851 }
852 EXPORT_SYMBOL_GPL(rhashtable_free_and_destroy);
853
854 void rhashtable_destroy(struct rhashtable *ht)
855 {
856 return rhashtable_free_and_destroy(ht, NULL, NULL);
857 }
858 EXPORT_SYMBOL_GPL(rhashtable_destroy);
This page took 0.076405 seconds and 6 git commands to generate.