swiotlb: remove swiotlb_arch_range_needs_mapping
[deliverable/linux.git] / lib / swiotlb.c
1 /*
2 * Dynamic DMA mapping support.
3 *
4 * This implementation is a fallback for platforms that do not support
5 * I/O TLBs (aka DMA address translation hardware).
6 * Copyright (C) 2000 Asit Mallick <Asit.K.Mallick@intel.com>
7 * Copyright (C) 2000 Goutham Rao <goutham.rao@intel.com>
8 * Copyright (C) 2000, 2003 Hewlett-Packard Co
9 * David Mosberger-Tang <davidm@hpl.hp.com>
10 *
11 * 03/05/07 davidm Switch from PCI-DMA to generic device DMA API.
12 * 00/12/13 davidm Rename to swiotlb.c and add mark_clean() to avoid
13 * unnecessary i-cache flushing.
14 * 04/07/.. ak Better overflow handling. Assorted fixes.
15 * 05/09/10 linville Add support for syncing ranges, support syncing for
16 * DMA_BIDIRECTIONAL mappings, miscellaneous cleanup.
17 * 08/12/11 beckyb Add highmem support
18 */
19
20 #include <linux/cache.h>
21 #include <linux/dma-mapping.h>
22 #include <linux/mm.h>
23 #include <linux/module.h>
24 #include <linux/spinlock.h>
25 #include <linux/string.h>
26 #include <linux/swiotlb.h>
27 #include <linux/pfn.h>
28 #include <linux/types.h>
29 #include <linux/ctype.h>
30 #include <linux/highmem.h>
31
32 #include <asm/io.h>
33 #include <asm/dma.h>
34 #include <asm/scatterlist.h>
35
36 #include <linux/init.h>
37 #include <linux/bootmem.h>
38 #include <linux/iommu-helper.h>
39
40 #define OFFSET(val,align) ((unsigned long) \
41 ( (val) & ( (align) - 1)))
42
43 #define SLABS_PER_PAGE (1 << (PAGE_SHIFT - IO_TLB_SHIFT))
44
45 /*
46 * Minimum IO TLB size to bother booting with. Systems with mainly
47 * 64bit capable cards will only lightly use the swiotlb. If we can't
48 * allocate a contiguous 1MB, we're probably in trouble anyway.
49 */
50 #define IO_TLB_MIN_SLABS ((1<<20) >> IO_TLB_SHIFT)
51
52 /*
53 * Enumeration for sync targets
54 */
55 enum dma_sync_target {
56 SYNC_FOR_CPU = 0,
57 SYNC_FOR_DEVICE = 1,
58 };
59
60 int swiotlb_force;
61
62 /*
63 * Used to do a quick range check in unmap_single and
64 * sync_single_*, to see if the memory was in fact allocated by this
65 * API.
66 */
67 static char *io_tlb_start, *io_tlb_end;
68
69 /*
70 * The number of IO TLB blocks (in groups of 64) betweeen io_tlb_start and
71 * io_tlb_end. This is command line adjustable via setup_io_tlb_npages.
72 */
73 static unsigned long io_tlb_nslabs;
74
75 /*
76 * When the IOMMU overflows we return a fallback buffer. This sets the size.
77 */
78 static unsigned long io_tlb_overflow = 32*1024;
79
80 void *io_tlb_overflow_buffer;
81
82 /*
83 * This is a free list describing the number of free entries available from
84 * each index
85 */
86 static unsigned int *io_tlb_list;
87 static unsigned int io_tlb_index;
88
89 /*
90 * We need to save away the original address corresponding to a mapped entry
91 * for the sync operations.
92 */
93 static phys_addr_t *io_tlb_orig_addr;
94
95 /*
96 * Protect the above data structures in the map and unmap calls
97 */
98 static DEFINE_SPINLOCK(io_tlb_lock);
99
100 static int __init
101 setup_io_tlb_npages(char *str)
102 {
103 if (isdigit(*str)) {
104 io_tlb_nslabs = simple_strtoul(str, &str, 0);
105 /* avoid tail segment of size < IO_TLB_SEGSIZE */
106 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
107 }
108 if (*str == ',')
109 ++str;
110 if (!strcmp(str, "force"))
111 swiotlb_force = 1;
112 return 1;
113 }
114 __setup("swiotlb=", setup_io_tlb_npages);
115 /* make io_tlb_overflow tunable too? */
116
117 dma_addr_t __weak swiotlb_phys_to_bus(struct device *hwdev, phys_addr_t paddr)
118 {
119 return paddr;
120 }
121
122 phys_addr_t __weak swiotlb_bus_to_phys(struct device *hwdev, dma_addr_t baddr)
123 {
124 return baddr;
125 }
126
127 static dma_addr_t swiotlb_virt_to_bus(struct device *hwdev,
128 volatile void *address)
129 {
130 return swiotlb_phys_to_bus(hwdev, virt_to_phys(address));
131 }
132
133 void * __weak swiotlb_bus_to_virt(struct device *hwdev, dma_addr_t address)
134 {
135 return phys_to_virt(swiotlb_bus_to_phys(hwdev, address));
136 }
137
138 int __weak swiotlb_arch_address_needs_mapping(struct device *hwdev,
139 dma_addr_t addr, size_t size)
140 {
141 return !is_buffer_dma_capable(dma_get_mask(hwdev), addr, size);
142 }
143
144 static void swiotlb_print_info(unsigned long bytes)
145 {
146 phys_addr_t pstart, pend;
147
148 pstart = virt_to_phys(io_tlb_start);
149 pend = virt_to_phys(io_tlb_end);
150
151 printk(KERN_INFO "Placing %luMB software IO TLB between %p - %p\n",
152 bytes >> 20, io_tlb_start, io_tlb_end);
153 printk(KERN_INFO "software IO TLB at phys %#llx - %#llx\n",
154 (unsigned long long)pstart,
155 (unsigned long long)pend);
156 }
157
158 /*
159 * Statically reserve bounce buffer space and initialize bounce buffer data
160 * structures for the software IO TLB used to implement the DMA API.
161 */
162 void __init
163 swiotlb_init_with_default_size(size_t default_size)
164 {
165 unsigned long i, bytes;
166
167 if (!io_tlb_nslabs) {
168 io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
169 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
170 }
171
172 bytes = io_tlb_nslabs << IO_TLB_SHIFT;
173
174 /*
175 * Get IO TLB memory from the low pages
176 */
177 io_tlb_start = alloc_bootmem_low_pages(bytes);
178 if (!io_tlb_start)
179 panic("Cannot allocate SWIOTLB buffer");
180 io_tlb_end = io_tlb_start + bytes;
181
182 /*
183 * Allocate and initialize the free list array. This array is used
184 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
185 * between io_tlb_start and io_tlb_end.
186 */
187 io_tlb_list = alloc_bootmem(io_tlb_nslabs * sizeof(int));
188 for (i = 0; i < io_tlb_nslabs; i++)
189 io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
190 io_tlb_index = 0;
191 io_tlb_orig_addr = alloc_bootmem(io_tlb_nslabs * sizeof(phys_addr_t));
192
193 /*
194 * Get the overflow emergency buffer
195 */
196 io_tlb_overflow_buffer = alloc_bootmem_low(io_tlb_overflow);
197 if (!io_tlb_overflow_buffer)
198 panic("Cannot allocate SWIOTLB overflow buffer!\n");
199
200 swiotlb_print_info(bytes);
201 }
202
203 void __init
204 swiotlb_init(void)
205 {
206 swiotlb_init_with_default_size(64 * (1<<20)); /* default to 64MB */
207 }
208
209 /*
210 * Systems with larger DMA zones (those that don't support ISA) can
211 * initialize the swiotlb later using the slab allocator if needed.
212 * This should be just like above, but with some error catching.
213 */
214 int
215 swiotlb_late_init_with_default_size(size_t default_size)
216 {
217 unsigned long i, bytes, req_nslabs = io_tlb_nslabs;
218 unsigned int order;
219
220 if (!io_tlb_nslabs) {
221 io_tlb_nslabs = (default_size >> IO_TLB_SHIFT);
222 io_tlb_nslabs = ALIGN(io_tlb_nslabs, IO_TLB_SEGSIZE);
223 }
224
225 /*
226 * Get IO TLB memory from the low pages
227 */
228 order = get_order(io_tlb_nslabs << IO_TLB_SHIFT);
229 io_tlb_nslabs = SLABS_PER_PAGE << order;
230 bytes = io_tlb_nslabs << IO_TLB_SHIFT;
231
232 while ((SLABS_PER_PAGE << order) > IO_TLB_MIN_SLABS) {
233 io_tlb_start = (void *)__get_free_pages(GFP_DMA | __GFP_NOWARN,
234 order);
235 if (io_tlb_start)
236 break;
237 order--;
238 }
239
240 if (!io_tlb_start)
241 goto cleanup1;
242
243 if (order != get_order(bytes)) {
244 printk(KERN_WARNING "Warning: only able to allocate %ld MB "
245 "for software IO TLB\n", (PAGE_SIZE << order) >> 20);
246 io_tlb_nslabs = SLABS_PER_PAGE << order;
247 bytes = io_tlb_nslabs << IO_TLB_SHIFT;
248 }
249 io_tlb_end = io_tlb_start + bytes;
250 memset(io_tlb_start, 0, bytes);
251
252 /*
253 * Allocate and initialize the free list array. This array is used
254 * to find contiguous free memory regions of size up to IO_TLB_SEGSIZE
255 * between io_tlb_start and io_tlb_end.
256 */
257 io_tlb_list = (unsigned int *)__get_free_pages(GFP_KERNEL,
258 get_order(io_tlb_nslabs * sizeof(int)));
259 if (!io_tlb_list)
260 goto cleanup2;
261
262 for (i = 0; i < io_tlb_nslabs; i++)
263 io_tlb_list[i] = IO_TLB_SEGSIZE - OFFSET(i, IO_TLB_SEGSIZE);
264 io_tlb_index = 0;
265
266 io_tlb_orig_addr = (phys_addr_t *)
267 __get_free_pages(GFP_KERNEL,
268 get_order(io_tlb_nslabs *
269 sizeof(phys_addr_t)));
270 if (!io_tlb_orig_addr)
271 goto cleanup3;
272
273 memset(io_tlb_orig_addr, 0, io_tlb_nslabs * sizeof(phys_addr_t));
274
275 /*
276 * Get the overflow emergency buffer
277 */
278 io_tlb_overflow_buffer = (void *)__get_free_pages(GFP_DMA,
279 get_order(io_tlb_overflow));
280 if (!io_tlb_overflow_buffer)
281 goto cleanup4;
282
283 swiotlb_print_info(bytes);
284
285 return 0;
286
287 cleanup4:
288 free_pages((unsigned long)io_tlb_orig_addr,
289 get_order(io_tlb_nslabs * sizeof(phys_addr_t)));
290 io_tlb_orig_addr = NULL;
291 cleanup3:
292 free_pages((unsigned long)io_tlb_list, get_order(io_tlb_nslabs *
293 sizeof(int)));
294 io_tlb_list = NULL;
295 cleanup2:
296 io_tlb_end = NULL;
297 free_pages((unsigned long)io_tlb_start, order);
298 io_tlb_start = NULL;
299 cleanup1:
300 io_tlb_nslabs = req_nslabs;
301 return -ENOMEM;
302 }
303
304 static inline int
305 address_needs_mapping(struct device *hwdev, dma_addr_t addr, size_t size)
306 {
307 return swiotlb_arch_address_needs_mapping(hwdev, addr, size);
308 }
309
310 static int is_swiotlb_buffer(char *addr)
311 {
312 return addr >= io_tlb_start && addr < io_tlb_end;
313 }
314
315 /*
316 * Bounce: copy the swiotlb buffer back to the original dma location
317 */
318 static void swiotlb_bounce(phys_addr_t phys, char *dma_addr, size_t size,
319 enum dma_data_direction dir)
320 {
321 unsigned long pfn = PFN_DOWN(phys);
322
323 if (PageHighMem(pfn_to_page(pfn))) {
324 /* The buffer does not have a mapping. Map it in and copy */
325 unsigned int offset = phys & ~PAGE_MASK;
326 char *buffer;
327 unsigned int sz = 0;
328 unsigned long flags;
329
330 while (size) {
331 sz = min_t(size_t, PAGE_SIZE - offset, size);
332
333 local_irq_save(flags);
334 buffer = kmap_atomic(pfn_to_page(pfn),
335 KM_BOUNCE_READ);
336 if (dir == DMA_TO_DEVICE)
337 memcpy(dma_addr, buffer + offset, sz);
338 else
339 memcpy(buffer + offset, dma_addr, sz);
340 kunmap_atomic(buffer, KM_BOUNCE_READ);
341 local_irq_restore(flags);
342
343 size -= sz;
344 pfn++;
345 dma_addr += sz;
346 offset = 0;
347 }
348 } else {
349 if (dir == DMA_TO_DEVICE)
350 memcpy(dma_addr, phys_to_virt(phys), size);
351 else
352 memcpy(phys_to_virt(phys), dma_addr, size);
353 }
354 }
355
356 /*
357 * Allocates bounce buffer and returns its kernel virtual address.
358 */
359 static void *
360 map_single(struct device *hwdev, phys_addr_t phys, size_t size, int dir)
361 {
362 unsigned long flags;
363 char *dma_addr;
364 unsigned int nslots, stride, index, wrap;
365 int i;
366 unsigned long start_dma_addr;
367 unsigned long mask;
368 unsigned long offset_slots;
369 unsigned long max_slots;
370
371 mask = dma_get_seg_boundary(hwdev);
372 start_dma_addr = swiotlb_virt_to_bus(hwdev, io_tlb_start) & mask;
373
374 offset_slots = ALIGN(start_dma_addr, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
375
376 /*
377 * Carefully handle integer overflow which can occur when mask == ~0UL.
378 */
379 max_slots = mask + 1
380 ? ALIGN(mask + 1, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT
381 : 1UL << (BITS_PER_LONG - IO_TLB_SHIFT);
382
383 /*
384 * For mappings greater than a page, we limit the stride (and
385 * hence alignment) to a page size.
386 */
387 nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
388 if (size > PAGE_SIZE)
389 stride = (1 << (PAGE_SHIFT - IO_TLB_SHIFT));
390 else
391 stride = 1;
392
393 BUG_ON(!nslots);
394
395 /*
396 * Find suitable number of IO TLB entries size that will fit this
397 * request and allocate a buffer from that IO TLB pool.
398 */
399 spin_lock_irqsave(&io_tlb_lock, flags);
400 index = ALIGN(io_tlb_index, stride);
401 if (index >= io_tlb_nslabs)
402 index = 0;
403 wrap = index;
404
405 do {
406 while (iommu_is_span_boundary(index, nslots, offset_slots,
407 max_slots)) {
408 index += stride;
409 if (index >= io_tlb_nslabs)
410 index = 0;
411 if (index == wrap)
412 goto not_found;
413 }
414
415 /*
416 * If we find a slot that indicates we have 'nslots' number of
417 * contiguous buffers, we allocate the buffers from that slot
418 * and mark the entries as '0' indicating unavailable.
419 */
420 if (io_tlb_list[index] >= nslots) {
421 int count = 0;
422
423 for (i = index; i < (int) (index + nslots); i++)
424 io_tlb_list[i] = 0;
425 for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE - 1) && io_tlb_list[i]; i--)
426 io_tlb_list[i] = ++count;
427 dma_addr = io_tlb_start + (index << IO_TLB_SHIFT);
428
429 /*
430 * Update the indices to avoid searching in the next
431 * round.
432 */
433 io_tlb_index = ((index + nslots) < io_tlb_nslabs
434 ? (index + nslots) : 0);
435
436 goto found;
437 }
438 index += stride;
439 if (index >= io_tlb_nslabs)
440 index = 0;
441 } while (index != wrap);
442
443 not_found:
444 spin_unlock_irqrestore(&io_tlb_lock, flags);
445 return NULL;
446 found:
447 spin_unlock_irqrestore(&io_tlb_lock, flags);
448
449 /*
450 * Save away the mapping from the original address to the DMA address.
451 * This is needed when we sync the memory. Then we sync the buffer if
452 * needed.
453 */
454 for (i = 0; i < nslots; i++)
455 io_tlb_orig_addr[index+i] = phys + (i << IO_TLB_SHIFT);
456 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)
457 swiotlb_bounce(phys, dma_addr, size, DMA_TO_DEVICE);
458
459 return dma_addr;
460 }
461
462 /*
463 * dma_addr is the kernel virtual address of the bounce buffer to unmap.
464 */
465 static void
466 do_unmap_single(struct device *hwdev, char *dma_addr, size_t size, int dir)
467 {
468 unsigned long flags;
469 int i, count, nslots = ALIGN(size, 1 << IO_TLB_SHIFT) >> IO_TLB_SHIFT;
470 int index = (dma_addr - io_tlb_start) >> IO_TLB_SHIFT;
471 phys_addr_t phys = io_tlb_orig_addr[index];
472
473 /*
474 * First, sync the memory before unmapping the entry
475 */
476 if (phys && ((dir == DMA_FROM_DEVICE) || (dir == DMA_BIDIRECTIONAL)))
477 swiotlb_bounce(phys, dma_addr, size, DMA_FROM_DEVICE);
478
479 /*
480 * Return the buffer to the free list by setting the corresponding
481 * entries to indicate the number of contigous entries available.
482 * While returning the entries to the free list, we merge the entries
483 * with slots below and above the pool being returned.
484 */
485 spin_lock_irqsave(&io_tlb_lock, flags);
486 {
487 count = ((index + nslots) < ALIGN(index + 1, IO_TLB_SEGSIZE) ?
488 io_tlb_list[index + nslots] : 0);
489 /*
490 * Step 1: return the slots to the free list, merging the
491 * slots with superceeding slots
492 */
493 for (i = index + nslots - 1; i >= index; i--)
494 io_tlb_list[i] = ++count;
495 /*
496 * Step 2: merge the returned slots with the preceding slots,
497 * if available (non zero)
498 */
499 for (i = index - 1; (OFFSET(i, IO_TLB_SEGSIZE) != IO_TLB_SEGSIZE -1) && io_tlb_list[i]; i--)
500 io_tlb_list[i] = ++count;
501 }
502 spin_unlock_irqrestore(&io_tlb_lock, flags);
503 }
504
505 static void
506 sync_single(struct device *hwdev, char *dma_addr, size_t size,
507 int dir, int target)
508 {
509 int index = (dma_addr - io_tlb_start) >> IO_TLB_SHIFT;
510 phys_addr_t phys = io_tlb_orig_addr[index];
511
512 phys += ((unsigned long)dma_addr & ((1 << IO_TLB_SHIFT) - 1));
513
514 switch (target) {
515 case SYNC_FOR_CPU:
516 if (likely(dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL))
517 swiotlb_bounce(phys, dma_addr, size, DMA_FROM_DEVICE);
518 else
519 BUG_ON(dir != DMA_TO_DEVICE);
520 break;
521 case SYNC_FOR_DEVICE:
522 if (likely(dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL))
523 swiotlb_bounce(phys, dma_addr, size, DMA_TO_DEVICE);
524 else
525 BUG_ON(dir != DMA_FROM_DEVICE);
526 break;
527 default:
528 BUG();
529 }
530 }
531
532 void *
533 swiotlb_alloc_coherent(struct device *hwdev, size_t size,
534 dma_addr_t *dma_handle, gfp_t flags)
535 {
536 dma_addr_t dev_addr;
537 void *ret;
538 int order = get_order(size);
539 u64 dma_mask = DMA_BIT_MASK(32);
540
541 if (hwdev && hwdev->coherent_dma_mask)
542 dma_mask = hwdev->coherent_dma_mask;
543
544 ret = (void *)__get_free_pages(flags, order);
545 if (ret &&
546 !is_buffer_dma_capable(dma_mask, swiotlb_virt_to_bus(hwdev, ret),
547 size)) {
548 /*
549 * The allocated memory isn't reachable by the device.
550 */
551 free_pages((unsigned long) ret, order);
552 ret = NULL;
553 }
554 if (!ret) {
555 /*
556 * We are either out of memory or the device can't DMA
557 * to GFP_DMA memory; fall back on map_single(), which
558 * will grab memory from the lowest available address range.
559 */
560 ret = map_single(hwdev, 0, size, DMA_FROM_DEVICE);
561 if (!ret)
562 return NULL;
563 }
564
565 memset(ret, 0, size);
566 dev_addr = swiotlb_virt_to_bus(hwdev, ret);
567
568 /* Confirm address can be DMA'd by device */
569 if (!is_buffer_dma_capable(dma_mask, dev_addr, size)) {
570 printk("hwdev DMA mask = 0x%016Lx, dev_addr = 0x%016Lx\n",
571 (unsigned long long)dma_mask,
572 (unsigned long long)dev_addr);
573
574 /* DMA_TO_DEVICE to avoid memcpy in unmap_single */
575 do_unmap_single(hwdev, ret, size, DMA_TO_DEVICE);
576 return NULL;
577 }
578 *dma_handle = dev_addr;
579 return ret;
580 }
581 EXPORT_SYMBOL(swiotlb_alloc_coherent);
582
583 void
584 swiotlb_free_coherent(struct device *hwdev, size_t size, void *vaddr,
585 dma_addr_t dma_handle)
586 {
587 WARN_ON(irqs_disabled());
588 if (!is_swiotlb_buffer(vaddr))
589 free_pages((unsigned long) vaddr, get_order(size));
590 else
591 /* DMA_TO_DEVICE to avoid memcpy in unmap_single */
592 do_unmap_single(hwdev, vaddr, size, DMA_TO_DEVICE);
593 }
594 EXPORT_SYMBOL(swiotlb_free_coherent);
595
596 static void
597 swiotlb_full(struct device *dev, size_t size, int dir, int do_panic)
598 {
599 /*
600 * Ran out of IOMMU space for this operation. This is very bad.
601 * Unfortunately the drivers cannot handle this operation properly.
602 * unless they check for dma_mapping_error (most don't)
603 * When the mapping is small enough return a static buffer to limit
604 * the damage, or panic when the transfer is too big.
605 */
606 printk(KERN_ERR "DMA: Out of SW-IOMMU space for %zu bytes at "
607 "device %s\n", size, dev ? dev_name(dev) : "?");
608
609 if (size > io_tlb_overflow && do_panic) {
610 if (dir == DMA_FROM_DEVICE || dir == DMA_BIDIRECTIONAL)
611 panic("DMA: Memory would be corrupted\n");
612 if (dir == DMA_TO_DEVICE || dir == DMA_BIDIRECTIONAL)
613 panic("DMA: Random memory would be DMAed\n");
614 }
615 }
616
617 /*
618 * Map a single buffer of the indicated size for DMA in streaming mode. The
619 * physical address to use is returned.
620 *
621 * Once the device is given the dma address, the device owns this memory until
622 * either swiotlb_unmap_page or swiotlb_dma_sync_single is performed.
623 */
624 dma_addr_t swiotlb_map_page(struct device *dev, struct page *page,
625 unsigned long offset, size_t size,
626 enum dma_data_direction dir,
627 struct dma_attrs *attrs)
628 {
629 phys_addr_t phys = page_to_phys(page) + offset;
630 dma_addr_t dev_addr = swiotlb_phys_to_bus(dev, phys);
631 void *map;
632
633 BUG_ON(dir == DMA_NONE);
634 /*
635 * If the address happens to be in the device's DMA window,
636 * we can safely return the device addr and not worry about bounce
637 * buffering it.
638 */
639 if (!address_needs_mapping(dev, dev_addr, size) && !swiotlb_force)
640 return dev_addr;
641
642 /*
643 * Oh well, have to allocate and map a bounce buffer.
644 */
645 map = map_single(dev, phys, size, dir);
646 if (!map) {
647 swiotlb_full(dev, size, dir, 1);
648 map = io_tlb_overflow_buffer;
649 }
650
651 dev_addr = swiotlb_virt_to_bus(dev, map);
652
653 /*
654 * Ensure that the address returned is DMA'ble
655 */
656 if (address_needs_mapping(dev, dev_addr, size))
657 panic("map_single: bounce buffer is not DMA'ble");
658
659 return dev_addr;
660 }
661 EXPORT_SYMBOL_GPL(swiotlb_map_page);
662
663 /*
664 * Unmap a single streaming mode DMA translation. The dma_addr and size must
665 * match what was provided for in a previous swiotlb_map_page call. All
666 * other usages are undefined.
667 *
668 * After this call, reads by the cpu to the buffer are guaranteed to see
669 * whatever the device wrote there.
670 */
671 static void unmap_single(struct device *hwdev, dma_addr_t dev_addr,
672 size_t size, int dir)
673 {
674 char *dma_addr = swiotlb_bus_to_virt(hwdev, dev_addr);
675
676 BUG_ON(dir == DMA_NONE);
677
678 if (is_swiotlb_buffer(dma_addr)) {
679 do_unmap_single(hwdev, dma_addr, size, dir);
680 return;
681 }
682
683 if (dir != DMA_FROM_DEVICE)
684 return;
685
686 dma_mark_clean(dma_addr, size);
687 }
688
689 void swiotlb_unmap_page(struct device *hwdev, dma_addr_t dev_addr,
690 size_t size, enum dma_data_direction dir,
691 struct dma_attrs *attrs)
692 {
693 unmap_single(hwdev, dev_addr, size, dir);
694 }
695 EXPORT_SYMBOL_GPL(swiotlb_unmap_page);
696
697 /*
698 * Make physical memory consistent for a single streaming mode DMA translation
699 * after a transfer.
700 *
701 * If you perform a swiotlb_map_page() but wish to interrogate the buffer
702 * using the cpu, yet do not wish to teardown the dma mapping, you must
703 * call this function before doing so. At the next point you give the dma
704 * address back to the card, you must first perform a
705 * swiotlb_dma_sync_for_device, and then the device again owns the buffer
706 */
707 static void
708 swiotlb_sync_single(struct device *hwdev, dma_addr_t dev_addr,
709 size_t size, int dir, int target)
710 {
711 char *dma_addr = swiotlb_bus_to_virt(hwdev, dev_addr);
712
713 BUG_ON(dir == DMA_NONE);
714
715 if (is_swiotlb_buffer(dma_addr)) {
716 sync_single(hwdev, dma_addr, size, dir, target);
717 return;
718 }
719
720 if (dir != DMA_FROM_DEVICE)
721 return;
722
723 dma_mark_clean(dma_addr, size);
724 }
725
726 void
727 swiotlb_sync_single_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
728 size_t size, enum dma_data_direction dir)
729 {
730 swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_CPU);
731 }
732 EXPORT_SYMBOL(swiotlb_sync_single_for_cpu);
733
734 void
735 swiotlb_sync_single_for_device(struct device *hwdev, dma_addr_t dev_addr,
736 size_t size, enum dma_data_direction dir)
737 {
738 swiotlb_sync_single(hwdev, dev_addr, size, dir, SYNC_FOR_DEVICE);
739 }
740 EXPORT_SYMBOL(swiotlb_sync_single_for_device);
741
742 /*
743 * Same as above, but for a sub-range of the mapping.
744 */
745 static void
746 swiotlb_sync_single_range(struct device *hwdev, dma_addr_t dev_addr,
747 unsigned long offset, size_t size,
748 int dir, int target)
749 {
750 swiotlb_sync_single(hwdev, dev_addr + offset, size, dir, target);
751 }
752
753 void
754 swiotlb_sync_single_range_for_cpu(struct device *hwdev, dma_addr_t dev_addr,
755 unsigned long offset, size_t size,
756 enum dma_data_direction dir)
757 {
758 swiotlb_sync_single_range(hwdev, dev_addr, offset, size, dir,
759 SYNC_FOR_CPU);
760 }
761 EXPORT_SYMBOL_GPL(swiotlb_sync_single_range_for_cpu);
762
763 void
764 swiotlb_sync_single_range_for_device(struct device *hwdev, dma_addr_t dev_addr,
765 unsigned long offset, size_t size,
766 enum dma_data_direction dir)
767 {
768 swiotlb_sync_single_range(hwdev, dev_addr, offset, size, dir,
769 SYNC_FOR_DEVICE);
770 }
771 EXPORT_SYMBOL_GPL(swiotlb_sync_single_range_for_device);
772
773 /*
774 * Map a set of buffers described by scatterlist in streaming mode for DMA.
775 * This is the scatter-gather version of the above swiotlb_map_page
776 * interface. Here the scatter gather list elements are each tagged with the
777 * appropriate dma address and length. They are obtained via
778 * sg_dma_{address,length}(SG).
779 *
780 * NOTE: An implementation may be able to use a smaller number of
781 * DMA address/length pairs than there are SG table elements.
782 * (for example via virtual mapping capabilities)
783 * The routine returns the number of addr/length pairs actually
784 * used, at most nents.
785 *
786 * Device ownership issues as mentioned above for swiotlb_map_page are the
787 * same here.
788 */
789 int
790 swiotlb_map_sg_attrs(struct device *hwdev, struct scatterlist *sgl, int nelems,
791 enum dma_data_direction dir, struct dma_attrs *attrs)
792 {
793 struct scatterlist *sg;
794 int i;
795
796 BUG_ON(dir == DMA_NONE);
797
798 for_each_sg(sgl, sg, nelems, i) {
799 phys_addr_t paddr = sg_phys(sg);
800 dma_addr_t dev_addr = swiotlb_phys_to_bus(hwdev, paddr);
801
802 if (swiotlb_force ||
803 address_needs_mapping(hwdev, dev_addr, sg->length)) {
804 void *map = map_single(hwdev, sg_phys(sg),
805 sg->length, dir);
806 if (!map) {
807 /* Don't panic here, we expect map_sg users
808 to do proper error handling. */
809 swiotlb_full(hwdev, sg->length, dir, 0);
810 swiotlb_unmap_sg_attrs(hwdev, sgl, i, dir,
811 attrs);
812 sgl[0].dma_length = 0;
813 return 0;
814 }
815 sg->dma_address = swiotlb_virt_to_bus(hwdev, map);
816 } else
817 sg->dma_address = dev_addr;
818 sg->dma_length = sg->length;
819 }
820 return nelems;
821 }
822 EXPORT_SYMBOL(swiotlb_map_sg_attrs);
823
824 int
825 swiotlb_map_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
826 int dir)
827 {
828 return swiotlb_map_sg_attrs(hwdev, sgl, nelems, dir, NULL);
829 }
830 EXPORT_SYMBOL(swiotlb_map_sg);
831
832 /*
833 * Unmap a set of streaming mode DMA translations. Again, cpu read rules
834 * concerning calls here are the same as for swiotlb_unmap_page() above.
835 */
836 void
837 swiotlb_unmap_sg_attrs(struct device *hwdev, struct scatterlist *sgl,
838 int nelems, enum dma_data_direction dir, struct dma_attrs *attrs)
839 {
840 struct scatterlist *sg;
841 int i;
842
843 BUG_ON(dir == DMA_NONE);
844
845 for_each_sg(sgl, sg, nelems, i)
846 unmap_single(hwdev, sg->dma_address, sg->dma_length, dir);
847
848 }
849 EXPORT_SYMBOL(swiotlb_unmap_sg_attrs);
850
851 void
852 swiotlb_unmap_sg(struct device *hwdev, struct scatterlist *sgl, int nelems,
853 int dir)
854 {
855 return swiotlb_unmap_sg_attrs(hwdev, sgl, nelems, dir, NULL);
856 }
857 EXPORT_SYMBOL(swiotlb_unmap_sg);
858
859 /*
860 * Make physical memory consistent for a set of streaming mode DMA translations
861 * after a transfer.
862 *
863 * The same as swiotlb_sync_single_* but for a scatter-gather list, same rules
864 * and usage.
865 */
866 static void
867 swiotlb_sync_sg(struct device *hwdev, struct scatterlist *sgl,
868 int nelems, int dir, int target)
869 {
870 struct scatterlist *sg;
871 int i;
872
873 for_each_sg(sgl, sg, nelems, i)
874 swiotlb_sync_single(hwdev, sg->dma_address,
875 sg->dma_length, dir, target);
876 }
877
878 void
879 swiotlb_sync_sg_for_cpu(struct device *hwdev, struct scatterlist *sg,
880 int nelems, enum dma_data_direction dir)
881 {
882 swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_CPU);
883 }
884 EXPORT_SYMBOL(swiotlb_sync_sg_for_cpu);
885
886 void
887 swiotlb_sync_sg_for_device(struct device *hwdev, struct scatterlist *sg,
888 int nelems, enum dma_data_direction dir)
889 {
890 swiotlb_sync_sg(hwdev, sg, nelems, dir, SYNC_FOR_DEVICE);
891 }
892 EXPORT_SYMBOL(swiotlb_sync_sg_for_device);
893
894 int
895 swiotlb_dma_mapping_error(struct device *hwdev, dma_addr_t dma_addr)
896 {
897 return (dma_addr == swiotlb_virt_to_bus(hwdev, io_tlb_overflow_buffer));
898 }
899 EXPORT_SYMBOL(swiotlb_dma_mapping_error);
900
901 /*
902 * Return whether the given device DMA address mask can be supported
903 * properly. For example, if your device can only drive the low 24-bits
904 * during bus mastering, then you would pass 0x00ffffff as the mask to
905 * this function.
906 */
907 int
908 swiotlb_dma_supported(struct device *hwdev, u64 mask)
909 {
910 return swiotlb_virt_to_bus(hwdev, io_tlb_end - 1) <= mask;
911 }
912 EXPORT_SYMBOL(swiotlb_dma_supported);
This page took 0.048152 seconds and 6 git commands to generate.