slob: record page flag overlays explicitly
[deliverable/linux.git] / mm / bootmem.c
1 /*
2 * linux/mm/bootmem.c
3 *
4 * Copyright (C) 1999 Ingo Molnar
5 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
6 *
7 * simple boot-time physical memory area allocator and
8 * free memory collector. It's used to deal with reserved
9 * system memory and memory holes as well.
10 */
11 #include <linux/init.h>
12 #include <linux/pfn.h>
13 #include <linux/bootmem.h>
14 #include <linux/module.h>
15
16 #include <asm/bug.h>
17 #include <asm/io.h>
18 #include <asm/processor.h>
19
20 #include "internal.h"
21
22 /*
23 * Access to this subsystem has to be serialized externally. (this is
24 * true for the boot process anyway)
25 */
26 unsigned long max_low_pfn;
27 unsigned long min_low_pfn;
28 unsigned long max_pfn;
29
30 static LIST_HEAD(bdata_list);
31 #ifdef CONFIG_CRASH_DUMP
32 /*
33 * If we have booted due to a crash, max_pfn will be a very low value. We need
34 * to know the amount of memory that the previous kernel used.
35 */
36 unsigned long saved_max_pfn;
37 #endif
38
39 bootmem_data_t bootmem_node_data[MAX_NUMNODES] __initdata;
40
41 /* return the number of _pages_ that will be allocated for the boot bitmap */
42 unsigned long __init bootmem_bootmap_pages(unsigned long pages)
43 {
44 unsigned long mapsize;
45
46 mapsize = (pages+7)/8;
47 mapsize = (mapsize + ~PAGE_MASK) & PAGE_MASK;
48 mapsize >>= PAGE_SHIFT;
49
50 return mapsize;
51 }
52
53 /*
54 * link bdata in order
55 */
56 static void __init link_bootmem(bootmem_data_t *bdata)
57 {
58 bootmem_data_t *ent;
59
60 if (list_empty(&bdata_list)) {
61 list_add(&bdata->list, &bdata_list);
62 return;
63 }
64 /* insert in order */
65 list_for_each_entry(ent, &bdata_list, list) {
66 if (bdata->node_boot_start < ent->node_boot_start) {
67 list_add_tail(&bdata->list, &ent->list);
68 return;
69 }
70 }
71 list_add_tail(&bdata->list, &bdata_list);
72 }
73
74 /*
75 * Given an initialised bdata, it returns the size of the boot bitmap
76 */
77 static unsigned long __init get_mapsize(bootmem_data_t *bdata)
78 {
79 unsigned long mapsize;
80 unsigned long start = PFN_DOWN(bdata->node_boot_start);
81 unsigned long end = bdata->node_low_pfn;
82
83 mapsize = ((end - start) + 7) / 8;
84 return ALIGN(mapsize, sizeof(long));
85 }
86
87 /*
88 * Called once to set up the allocator itself.
89 */
90 static unsigned long __init init_bootmem_core(bootmem_data_t *bdata,
91 unsigned long mapstart, unsigned long start, unsigned long end)
92 {
93 unsigned long mapsize;
94
95 mminit_validate_memmodel_limits(&start, &end);
96 bdata->node_bootmem_map = phys_to_virt(PFN_PHYS(mapstart));
97 bdata->node_boot_start = PFN_PHYS(start);
98 bdata->node_low_pfn = end;
99 link_bootmem(bdata);
100
101 /*
102 * Initially all pages are reserved - setup_arch() has to
103 * register free RAM areas explicitly.
104 */
105 mapsize = get_mapsize(bdata);
106 memset(bdata->node_bootmem_map, 0xff, mapsize);
107
108 return mapsize;
109 }
110
111 /*
112 * Marks a particular physical memory range as unallocatable. Usable RAM
113 * might be used for boot-time allocations - or it might get added
114 * to the free page pool later on.
115 */
116 static int __init can_reserve_bootmem_core(bootmem_data_t *bdata,
117 unsigned long addr, unsigned long size, int flags)
118 {
119 unsigned long sidx, eidx;
120 unsigned long i;
121
122 BUG_ON(!size);
123
124 /* out of range, don't hold other */
125 if (addr + size < bdata->node_boot_start ||
126 PFN_DOWN(addr) > bdata->node_low_pfn)
127 return 0;
128
129 /*
130 * Round up to index to the range.
131 */
132 if (addr > bdata->node_boot_start)
133 sidx= PFN_DOWN(addr - bdata->node_boot_start);
134 else
135 sidx = 0;
136
137 eidx = PFN_UP(addr + size - bdata->node_boot_start);
138 if (eidx > bdata->node_low_pfn - PFN_DOWN(bdata->node_boot_start))
139 eidx = bdata->node_low_pfn - PFN_DOWN(bdata->node_boot_start);
140
141 for (i = sidx; i < eidx; i++) {
142 if (test_bit(i, bdata->node_bootmem_map)) {
143 if (flags & BOOTMEM_EXCLUSIVE)
144 return -EBUSY;
145 }
146 }
147
148 return 0;
149
150 }
151
152 static void __init reserve_bootmem_core(bootmem_data_t *bdata,
153 unsigned long addr, unsigned long size, int flags)
154 {
155 unsigned long sidx, eidx;
156 unsigned long i;
157
158 BUG_ON(!size);
159
160 /* out of range */
161 if (addr + size < bdata->node_boot_start ||
162 PFN_DOWN(addr) > bdata->node_low_pfn)
163 return;
164
165 /*
166 * Round up to index to the range.
167 */
168 if (addr > bdata->node_boot_start)
169 sidx= PFN_DOWN(addr - bdata->node_boot_start);
170 else
171 sidx = 0;
172
173 eidx = PFN_UP(addr + size - bdata->node_boot_start);
174 if (eidx > bdata->node_low_pfn - PFN_DOWN(bdata->node_boot_start))
175 eidx = bdata->node_low_pfn - PFN_DOWN(bdata->node_boot_start);
176
177 for (i = sidx; i < eidx; i++) {
178 if (test_and_set_bit(i, bdata->node_bootmem_map)) {
179 #ifdef CONFIG_DEBUG_BOOTMEM
180 printk("hm, page %08lx reserved twice.\n", i*PAGE_SIZE);
181 #endif
182 }
183 }
184 }
185
186 static void __init free_bootmem_core(bootmem_data_t *bdata, unsigned long addr,
187 unsigned long size)
188 {
189 unsigned long sidx, eidx;
190 unsigned long i;
191
192 BUG_ON(!size);
193
194 /* out range */
195 if (addr + size < bdata->node_boot_start ||
196 PFN_DOWN(addr) > bdata->node_low_pfn)
197 return;
198 /*
199 * round down end of usable mem, partially free pages are
200 * considered reserved.
201 */
202
203 if (addr >= bdata->node_boot_start && addr < bdata->last_success)
204 bdata->last_success = addr;
205
206 /*
207 * Round up to index to the range.
208 */
209 if (PFN_UP(addr) > PFN_DOWN(bdata->node_boot_start))
210 sidx = PFN_UP(addr) - PFN_DOWN(bdata->node_boot_start);
211 else
212 sidx = 0;
213
214 eidx = PFN_DOWN(addr + size - bdata->node_boot_start);
215 if (eidx > bdata->node_low_pfn - PFN_DOWN(bdata->node_boot_start))
216 eidx = bdata->node_low_pfn - PFN_DOWN(bdata->node_boot_start);
217
218 for (i = sidx; i < eidx; i++) {
219 if (unlikely(!test_and_clear_bit(i, bdata->node_bootmem_map)))
220 BUG();
221 }
222 }
223
224 /*
225 * We 'merge' subsequent allocations to save space. We might 'lose'
226 * some fraction of a page if allocations cannot be satisfied due to
227 * size constraints on boxes where there is physical RAM space
228 * fragmentation - in these cases (mostly large memory boxes) this
229 * is not a problem.
230 *
231 * On low memory boxes we get it right in 100% of the cases.
232 *
233 * alignment has to be a power of 2 value.
234 *
235 * NOTE: This function is _not_ reentrant.
236 */
237 static void * __init
238 alloc_bootmem_core(struct bootmem_data *bdata, unsigned long size,
239 unsigned long align, unsigned long goal, unsigned long limit)
240 {
241 unsigned long areasize, preferred;
242 unsigned long i, start = 0, incr, eidx, end_pfn;
243 void *ret;
244 unsigned long node_boot_start;
245 void *node_bootmem_map;
246
247 if (!size) {
248 printk("alloc_bootmem_core(): zero-sized request\n");
249 BUG();
250 }
251 BUG_ON(align & (align-1));
252
253 /* on nodes without memory - bootmem_map is NULL */
254 if (!bdata->node_bootmem_map)
255 return NULL;
256
257 /* bdata->node_boot_start is supposed to be (12+6)bits alignment on x86_64 ? */
258 node_boot_start = bdata->node_boot_start;
259 node_bootmem_map = bdata->node_bootmem_map;
260 if (align) {
261 node_boot_start = ALIGN(bdata->node_boot_start, align);
262 if (node_boot_start > bdata->node_boot_start)
263 node_bootmem_map = (unsigned long *)bdata->node_bootmem_map +
264 PFN_DOWN(node_boot_start - bdata->node_boot_start)/BITS_PER_LONG;
265 }
266
267 if (limit && node_boot_start >= limit)
268 return NULL;
269
270 end_pfn = bdata->node_low_pfn;
271 limit = PFN_DOWN(limit);
272 if (limit && end_pfn > limit)
273 end_pfn = limit;
274
275 eidx = end_pfn - PFN_DOWN(node_boot_start);
276
277 /*
278 * We try to allocate bootmem pages above 'goal'
279 * first, then we try to allocate lower pages.
280 */
281 preferred = 0;
282 if (goal && PFN_DOWN(goal) < end_pfn) {
283 if (goal > node_boot_start)
284 preferred = goal - node_boot_start;
285
286 if (bdata->last_success > node_boot_start &&
287 bdata->last_success - node_boot_start >= preferred)
288 if (!limit || (limit && limit > bdata->last_success))
289 preferred = bdata->last_success - node_boot_start;
290 }
291
292 preferred = PFN_DOWN(ALIGN(preferred, align));
293 areasize = (size + PAGE_SIZE-1) / PAGE_SIZE;
294 incr = align >> PAGE_SHIFT ? : 1;
295
296 restart_scan:
297 for (i = preferred; i < eidx;) {
298 unsigned long j;
299
300 i = find_next_zero_bit(node_bootmem_map, eidx, i);
301 i = ALIGN(i, incr);
302 if (i >= eidx)
303 break;
304 if (test_bit(i, node_bootmem_map)) {
305 i += incr;
306 continue;
307 }
308 for (j = i + 1; j < i + areasize; ++j) {
309 if (j >= eidx)
310 goto fail_block;
311 if (test_bit(j, node_bootmem_map))
312 goto fail_block;
313 }
314 start = i;
315 goto found;
316 fail_block:
317 i = ALIGN(j, incr);
318 if (i == j)
319 i += incr;
320 }
321
322 if (preferred > 0) {
323 preferred = 0;
324 goto restart_scan;
325 }
326 return NULL;
327
328 found:
329 bdata->last_success = PFN_PHYS(start) + node_boot_start;
330 BUG_ON(start >= eidx);
331
332 /*
333 * Is the next page of the previous allocation-end the start
334 * of this allocation's buffer? If yes then we can 'merge'
335 * the previous partial page with this allocation.
336 */
337 if (align < PAGE_SIZE &&
338 bdata->last_offset && bdata->last_pos+1 == start) {
339 unsigned long offset, remaining_size;
340 offset = ALIGN(bdata->last_offset, align);
341 BUG_ON(offset > PAGE_SIZE);
342 remaining_size = PAGE_SIZE - offset;
343 if (size < remaining_size) {
344 areasize = 0;
345 /* last_pos unchanged */
346 bdata->last_offset = offset + size;
347 ret = phys_to_virt(bdata->last_pos * PAGE_SIZE +
348 offset + node_boot_start);
349 } else {
350 remaining_size = size - remaining_size;
351 areasize = (remaining_size + PAGE_SIZE-1) / PAGE_SIZE;
352 ret = phys_to_virt(bdata->last_pos * PAGE_SIZE +
353 offset + node_boot_start);
354 bdata->last_pos = start + areasize - 1;
355 bdata->last_offset = remaining_size;
356 }
357 bdata->last_offset &= ~PAGE_MASK;
358 } else {
359 bdata->last_pos = start + areasize - 1;
360 bdata->last_offset = size & ~PAGE_MASK;
361 ret = phys_to_virt(start * PAGE_SIZE + node_boot_start);
362 }
363
364 /*
365 * Reserve the area now:
366 */
367 for (i = start; i < start + areasize; i++)
368 if (unlikely(test_and_set_bit(i, node_bootmem_map)))
369 BUG();
370 memset(ret, 0, size);
371 return ret;
372 }
373
374 static unsigned long __init free_all_bootmem_core(bootmem_data_t *bdata)
375 {
376 struct page *page;
377 unsigned long pfn;
378 unsigned long i, count;
379 unsigned long idx;
380 unsigned long *map;
381 int gofast = 0;
382
383 BUG_ON(!bdata->node_bootmem_map);
384
385 count = 0;
386 /* first extant page of the node */
387 pfn = PFN_DOWN(bdata->node_boot_start);
388 idx = bdata->node_low_pfn - pfn;
389 map = bdata->node_bootmem_map;
390 /*
391 * Check if we are aligned to BITS_PER_LONG pages. If so, we might
392 * be able to free page orders of that size at once.
393 */
394 if (!(pfn & (BITS_PER_LONG-1)))
395 gofast = 1;
396
397 for (i = 0; i < idx; ) {
398 unsigned long v = ~map[i / BITS_PER_LONG];
399
400 if (gofast && v == ~0UL) {
401 int order;
402
403 page = pfn_to_page(pfn);
404 count += BITS_PER_LONG;
405 order = ffs(BITS_PER_LONG) - 1;
406 __free_pages_bootmem(page, order);
407 i += BITS_PER_LONG;
408 page += BITS_PER_LONG;
409 } else if (v) {
410 unsigned long m;
411
412 page = pfn_to_page(pfn);
413 for (m = 1; m && i < idx; m<<=1, page++, i++) {
414 if (v & m) {
415 count++;
416 __free_pages_bootmem(page, 0);
417 }
418 }
419 } else {
420 i += BITS_PER_LONG;
421 }
422 pfn += BITS_PER_LONG;
423 }
424
425 /*
426 * Now free the allocator bitmap itself, it's not
427 * needed anymore:
428 */
429 page = virt_to_page(bdata->node_bootmem_map);
430 idx = (get_mapsize(bdata) + PAGE_SIZE-1) >> PAGE_SHIFT;
431 for (i = 0; i < idx; i++, page++)
432 __free_pages_bootmem(page, 0);
433 count += i;
434 bdata->node_bootmem_map = NULL;
435
436 return count;
437 }
438
439 unsigned long __init init_bootmem_node(pg_data_t *pgdat, unsigned long freepfn,
440 unsigned long startpfn, unsigned long endpfn)
441 {
442 return init_bootmem_core(pgdat->bdata, freepfn, startpfn, endpfn);
443 }
444
445 int __init reserve_bootmem_node(pg_data_t *pgdat, unsigned long physaddr,
446 unsigned long size, int flags)
447 {
448 int ret;
449
450 ret = can_reserve_bootmem_core(pgdat->bdata, physaddr, size, flags);
451 if (ret < 0)
452 return -ENOMEM;
453 reserve_bootmem_core(pgdat->bdata, physaddr, size, flags);
454
455 return 0;
456 }
457
458 void __init free_bootmem_node(pg_data_t *pgdat, unsigned long physaddr,
459 unsigned long size)
460 {
461 free_bootmem_core(pgdat->bdata, physaddr, size);
462 }
463
464 unsigned long __init free_all_bootmem_node(pg_data_t *pgdat)
465 {
466 register_page_bootmem_info_node(pgdat);
467 return free_all_bootmem_core(pgdat->bdata);
468 }
469
470 unsigned long __init init_bootmem(unsigned long start, unsigned long pages)
471 {
472 max_low_pfn = pages;
473 min_low_pfn = start;
474 return init_bootmem_core(NODE_DATA(0)->bdata, start, 0, pages);
475 }
476
477 #ifndef CONFIG_HAVE_ARCH_BOOTMEM_NODE
478 int __init reserve_bootmem(unsigned long addr, unsigned long size,
479 int flags)
480 {
481 bootmem_data_t *bdata;
482 int ret;
483
484 list_for_each_entry(bdata, &bdata_list, list) {
485 ret = can_reserve_bootmem_core(bdata, addr, size, flags);
486 if (ret < 0)
487 return ret;
488 }
489 list_for_each_entry(bdata, &bdata_list, list)
490 reserve_bootmem_core(bdata, addr, size, flags);
491
492 return 0;
493 }
494 #endif /* !CONFIG_HAVE_ARCH_BOOTMEM_NODE */
495
496 void __init free_bootmem(unsigned long addr, unsigned long size)
497 {
498 bootmem_data_t *bdata;
499 list_for_each_entry(bdata, &bdata_list, list)
500 free_bootmem_core(bdata, addr, size);
501 }
502
503 unsigned long __init free_all_bootmem(void)
504 {
505 return free_all_bootmem_core(NODE_DATA(0)->bdata);
506 }
507
508 void * __init __alloc_bootmem_nopanic(unsigned long size, unsigned long align,
509 unsigned long goal)
510 {
511 bootmem_data_t *bdata;
512 void *ptr;
513
514 list_for_each_entry(bdata, &bdata_list, list) {
515 ptr = alloc_bootmem_core(bdata, size, align, goal, 0);
516 if (ptr)
517 return ptr;
518 }
519 return NULL;
520 }
521
522 void * __init __alloc_bootmem(unsigned long size, unsigned long align,
523 unsigned long goal)
524 {
525 void *mem = __alloc_bootmem_nopanic(size,align,goal);
526
527 if (mem)
528 return mem;
529 /*
530 * Whoops, we cannot satisfy the allocation request.
531 */
532 printk(KERN_ALERT "bootmem alloc of %lu bytes failed!\n", size);
533 panic("Out of memory");
534 return NULL;
535 }
536
537
538 void * __init __alloc_bootmem_node(pg_data_t *pgdat, unsigned long size,
539 unsigned long align, unsigned long goal)
540 {
541 void *ptr;
542
543 ptr = alloc_bootmem_core(pgdat->bdata, size, align, goal, 0);
544 if (ptr)
545 return ptr;
546
547 return __alloc_bootmem(size, align, goal);
548 }
549
550 #ifdef CONFIG_SPARSEMEM
551 void * __init alloc_bootmem_section(unsigned long size,
552 unsigned long section_nr)
553 {
554 void *ptr;
555 unsigned long limit, goal, start_nr, end_nr, pfn;
556 struct pglist_data *pgdat;
557
558 pfn = section_nr_to_pfn(section_nr);
559 goal = PFN_PHYS(pfn);
560 limit = PFN_PHYS(section_nr_to_pfn(section_nr + 1)) - 1;
561 pgdat = NODE_DATA(early_pfn_to_nid(pfn));
562 ptr = alloc_bootmem_core(pgdat->bdata, size, SMP_CACHE_BYTES, goal,
563 limit);
564
565 if (!ptr)
566 return NULL;
567
568 start_nr = pfn_to_section_nr(PFN_DOWN(__pa(ptr)));
569 end_nr = pfn_to_section_nr(PFN_DOWN(__pa(ptr) + size));
570 if (start_nr != section_nr || end_nr != section_nr) {
571 printk(KERN_WARNING "alloc_bootmem failed on section %ld.\n",
572 section_nr);
573 free_bootmem_core(pgdat->bdata, __pa(ptr), size);
574 ptr = NULL;
575 }
576
577 return ptr;
578 }
579 #endif
580
581 #ifndef ARCH_LOW_ADDRESS_LIMIT
582 #define ARCH_LOW_ADDRESS_LIMIT 0xffffffffUL
583 #endif
584
585 void * __init __alloc_bootmem_low(unsigned long size, unsigned long align,
586 unsigned long goal)
587 {
588 bootmem_data_t *bdata;
589 void *ptr;
590
591 list_for_each_entry(bdata, &bdata_list, list) {
592 ptr = alloc_bootmem_core(bdata, size, align, goal,
593 ARCH_LOW_ADDRESS_LIMIT);
594 if (ptr)
595 return ptr;
596 }
597
598 /*
599 * Whoops, we cannot satisfy the allocation request.
600 */
601 printk(KERN_ALERT "low bootmem alloc of %lu bytes failed!\n", size);
602 panic("Out of low memory");
603 return NULL;
604 }
605
606 void * __init __alloc_bootmem_low_node(pg_data_t *pgdat, unsigned long size,
607 unsigned long align, unsigned long goal)
608 {
609 return alloc_bootmem_core(pgdat->bdata, size, align, goal,
610 ARCH_LOW_ADDRESS_LIMIT);
611 }
This page took 0.045818 seconds and 5 git commands to generate.