perf, probe-finder: Build fix on Debian
[deliverable/linux.git] / mm / bootmem.c
1 /*
2 * bootmem - A boot-time physical memory allocator and configurator
3 *
4 * Copyright (C) 1999 Ingo Molnar
5 * 1999 Kanoj Sarcar, SGI
6 * 2008 Johannes Weiner
7 *
8 * Access to this subsystem has to be serialized externally (which is true
9 * for the boot process anyway).
10 */
11 #include <linux/init.h>
12 #include <linux/pfn.h>
13 #include <linux/bootmem.h>
14 #include <linux/module.h>
15 #include <linux/kmemleak.h>
16 #include <linux/range.h>
17
18 #include <asm/bug.h>
19 #include <asm/io.h>
20 #include <asm/processor.h>
21
22 #include "internal.h"
23
24 unsigned long max_low_pfn;
25 unsigned long min_low_pfn;
26 unsigned long max_pfn;
27
28 #ifdef CONFIG_CRASH_DUMP
29 /*
30 * If we have booted due to a crash, max_pfn will be a very low value. We need
31 * to know the amount of memory that the previous kernel used.
32 */
33 unsigned long saved_max_pfn;
34 #endif
35
36 #ifndef CONFIG_NO_BOOTMEM
37 bootmem_data_t bootmem_node_data[MAX_NUMNODES] __initdata;
38
39 static struct list_head bdata_list __initdata = LIST_HEAD_INIT(bdata_list);
40
41 static int bootmem_debug;
42
43 static int __init bootmem_debug_setup(char *buf)
44 {
45 bootmem_debug = 1;
46 return 0;
47 }
48 early_param("bootmem_debug", bootmem_debug_setup);
49
50 #define bdebug(fmt, args...) ({ \
51 if (unlikely(bootmem_debug)) \
52 printk(KERN_INFO \
53 "bootmem::%s " fmt, \
54 __func__, ## args); \
55 })
56
57 static unsigned long __init bootmap_bytes(unsigned long pages)
58 {
59 unsigned long bytes = (pages + 7) / 8;
60
61 return ALIGN(bytes, sizeof(long));
62 }
63
64 /**
65 * bootmem_bootmap_pages - calculate bitmap size in pages
66 * @pages: number of pages the bitmap has to represent
67 */
68 unsigned long __init bootmem_bootmap_pages(unsigned long pages)
69 {
70 unsigned long bytes = bootmap_bytes(pages);
71
72 return PAGE_ALIGN(bytes) >> PAGE_SHIFT;
73 }
74
75 /*
76 * link bdata in order
77 */
78 static void __init link_bootmem(bootmem_data_t *bdata)
79 {
80 struct list_head *iter;
81
82 list_for_each(iter, &bdata_list) {
83 bootmem_data_t *ent;
84
85 ent = list_entry(iter, bootmem_data_t, list);
86 if (bdata->node_min_pfn < ent->node_min_pfn)
87 break;
88 }
89 list_add_tail(&bdata->list, iter);
90 }
91
92 /*
93 * Called once to set up the allocator itself.
94 */
95 static unsigned long __init init_bootmem_core(bootmem_data_t *bdata,
96 unsigned long mapstart, unsigned long start, unsigned long end)
97 {
98 unsigned long mapsize;
99
100 mminit_validate_memmodel_limits(&start, &end);
101 bdata->node_bootmem_map = phys_to_virt(PFN_PHYS(mapstart));
102 bdata->node_min_pfn = start;
103 bdata->node_low_pfn = end;
104 link_bootmem(bdata);
105
106 /*
107 * Initially all pages are reserved - setup_arch() has to
108 * register free RAM areas explicitly.
109 */
110 mapsize = bootmap_bytes(end - start);
111 memset(bdata->node_bootmem_map, 0xff, mapsize);
112
113 bdebug("nid=%td start=%lx map=%lx end=%lx mapsize=%lx\n",
114 bdata - bootmem_node_data, start, mapstart, end, mapsize);
115
116 return mapsize;
117 }
118
119 /**
120 * init_bootmem_node - register a node as boot memory
121 * @pgdat: node to register
122 * @freepfn: pfn where the bitmap for this node is to be placed
123 * @startpfn: first pfn on the node
124 * @endpfn: first pfn after the node
125 *
126 * Returns the number of bytes needed to hold the bitmap for this node.
127 */
128 unsigned long __init init_bootmem_node(pg_data_t *pgdat, unsigned long freepfn,
129 unsigned long startpfn, unsigned long endpfn)
130 {
131 return init_bootmem_core(pgdat->bdata, freepfn, startpfn, endpfn);
132 }
133
134 /**
135 * init_bootmem - register boot memory
136 * @start: pfn where the bitmap is to be placed
137 * @pages: number of available physical pages
138 *
139 * Returns the number of bytes needed to hold the bitmap.
140 */
141 unsigned long __init init_bootmem(unsigned long start, unsigned long pages)
142 {
143 max_low_pfn = pages;
144 min_low_pfn = start;
145 return init_bootmem_core(NODE_DATA(0)->bdata, start, 0, pages);
146 }
147 #endif
148 /*
149 * free_bootmem_late - free bootmem pages directly to page allocator
150 * @addr: starting address of the range
151 * @size: size of the range in bytes
152 *
153 * This is only useful when the bootmem allocator has already been torn
154 * down, but we are still initializing the system. Pages are given directly
155 * to the page allocator, no bootmem metadata is updated because it is gone.
156 */
157 void __init free_bootmem_late(unsigned long addr, unsigned long size)
158 {
159 unsigned long cursor, end;
160
161 kmemleak_free_part(__va(addr), size);
162
163 cursor = PFN_UP(addr);
164 end = PFN_DOWN(addr + size);
165
166 for (; cursor < end; cursor++) {
167 __free_pages_bootmem(pfn_to_page(cursor), 0);
168 totalram_pages++;
169 }
170 }
171
172 #ifdef CONFIG_NO_BOOTMEM
173 static void __init __free_pages_memory(unsigned long start, unsigned long end)
174 {
175 int i;
176 unsigned long start_aligned, end_aligned;
177 int order = ilog2(BITS_PER_LONG);
178
179 start_aligned = (start + (BITS_PER_LONG - 1)) & ~(BITS_PER_LONG - 1);
180 end_aligned = end & ~(BITS_PER_LONG - 1);
181
182 if (end_aligned <= start_aligned) {
183 for (i = start; i < end; i++)
184 __free_pages_bootmem(pfn_to_page(i), 0);
185
186 return;
187 }
188
189 for (i = start; i < start_aligned; i++)
190 __free_pages_bootmem(pfn_to_page(i), 0);
191
192 for (i = start_aligned; i < end_aligned; i += BITS_PER_LONG)
193 __free_pages_bootmem(pfn_to_page(i), order);
194
195 for (i = end_aligned; i < end; i++)
196 __free_pages_bootmem(pfn_to_page(i), 0);
197 }
198
199 unsigned long __init free_all_memory_core_early(int nodeid)
200 {
201 int i;
202 u64 start, end;
203 unsigned long count = 0;
204 struct range *range = NULL;
205 int nr_range;
206
207 nr_range = get_free_all_memory_range(&range, nodeid);
208
209 for (i = 0; i < nr_range; i++) {
210 start = range[i].start;
211 end = range[i].end;
212 count += end - start;
213 __free_pages_memory(start, end);
214 }
215
216 return count;
217 }
218 #else
219 static unsigned long __init free_all_bootmem_core(bootmem_data_t *bdata)
220 {
221 int aligned;
222 struct page *page;
223 unsigned long start, end, pages, count = 0;
224
225 if (!bdata->node_bootmem_map)
226 return 0;
227
228 start = bdata->node_min_pfn;
229 end = bdata->node_low_pfn;
230
231 /*
232 * If the start is aligned to the machines wordsize, we might
233 * be able to free pages in bulks of that order.
234 */
235 aligned = !(start & (BITS_PER_LONG - 1));
236
237 bdebug("nid=%td start=%lx end=%lx aligned=%d\n",
238 bdata - bootmem_node_data, start, end, aligned);
239
240 while (start < end) {
241 unsigned long *map, idx, vec;
242
243 map = bdata->node_bootmem_map;
244 idx = start - bdata->node_min_pfn;
245 vec = ~map[idx / BITS_PER_LONG];
246
247 if (aligned && vec == ~0UL && start + BITS_PER_LONG < end) {
248 int order = ilog2(BITS_PER_LONG);
249
250 __free_pages_bootmem(pfn_to_page(start), order);
251 count += BITS_PER_LONG;
252 } else {
253 unsigned long off = 0;
254
255 while (vec && off < BITS_PER_LONG) {
256 if (vec & 1) {
257 page = pfn_to_page(start + off);
258 __free_pages_bootmem(page, 0);
259 count++;
260 }
261 vec >>= 1;
262 off++;
263 }
264 }
265 start += BITS_PER_LONG;
266 }
267
268 page = virt_to_page(bdata->node_bootmem_map);
269 pages = bdata->node_low_pfn - bdata->node_min_pfn;
270 pages = bootmem_bootmap_pages(pages);
271 count += pages;
272 while (pages--)
273 __free_pages_bootmem(page++, 0);
274
275 bdebug("nid=%td released=%lx\n", bdata - bootmem_node_data, count);
276
277 return count;
278 }
279 #endif
280
281 /**
282 * free_all_bootmem_node - release a node's free pages to the buddy allocator
283 * @pgdat: node to be released
284 *
285 * Returns the number of pages actually released.
286 */
287 unsigned long __init free_all_bootmem_node(pg_data_t *pgdat)
288 {
289 register_page_bootmem_info_node(pgdat);
290 #ifdef CONFIG_NO_BOOTMEM
291 /* free_all_memory_core_early(MAX_NUMNODES) will be called later */
292 return 0;
293 #else
294 return free_all_bootmem_core(pgdat->bdata);
295 #endif
296 }
297
298 /**
299 * free_all_bootmem - release free pages to the buddy allocator
300 *
301 * Returns the number of pages actually released.
302 */
303 unsigned long __init free_all_bootmem(void)
304 {
305 #ifdef CONFIG_NO_BOOTMEM
306 return free_all_memory_core_early(NODE_DATA(0)->node_id);
307 #else
308 return free_all_bootmem_core(NODE_DATA(0)->bdata);
309 #endif
310 }
311
312 #ifndef CONFIG_NO_BOOTMEM
313 static void __init __free(bootmem_data_t *bdata,
314 unsigned long sidx, unsigned long eidx)
315 {
316 unsigned long idx;
317
318 bdebug("nid=%td start=%lx end=%lx\n", bdata - bootmem_node_data,
319 sidx + bdata->node_min_pfn,
320 eidx + bdata->node_min_pfn);
321
322 if (bdata->hint_idx > sidx)
323 bdata->hint_idx = sidx;
324
325 for (idx = sidx; idx < eidx; idx++)
326 if (!test_and_clear_bit(idx, bdata->node_bootmem_map))
327 BUG();
328 }
329
330 static int __init __reserve(bootmem_data_t *bdata, unsigned long sidx,
331 unsigned long eidx, int flags)
332 {
333 unsigned long idx;
334 int exclusive = flags & BOOTMEM_EXCLUSIVE;
335
336 bdebug("nid=%td start=%lx end=%lx flags=%x\n",
337 bdata - bootmem_node_data,
338 sidx + bdata->node_min_pfn,
339 eidx + bdata->node_min_pfn,
340 flags);
341
342 for (idx = sidx; idx < eidx; idx++)
343 if (test_and_set_bit(idx, bdata->node_bootmem_map)) {
344 if (exclusive) {
345 __free(bdata, sidx, idx);
346 return -EBUSY;
347 }
348 bdebug("silent double reserve of PFN %lx\n",
349 idx + bdata->node_min_pfn);
350 }
351 return 0;
352 }
353
354 static int __init mark_bootmem_node(bootmem_data_t *bdata,
355 unsigned long start, unsigned long end,
356 int reserve, int flags)
357 {
358 unsigned long sidx, eidx;
359
360 bdebug("nid=%td start=%lx end=%lx reserve=%d flags=%x\n",
361 bdata - bootmem_node_data, start, end, reserve, flags);
362
363 BUG_ON(start < bdata->node_min_pfn);
364 BUG_ON(end > bdata->node_low_pfn);
365
366 sidx = start - bdata->node_min_pfn;
367 eidx = end - bdata->node_min_pfn;
368
369 if (reserve)
370 return __reserve(bdata, sidx, eidx, flags);
371 else
372 __free(bdata, sidx, eidx);
373 return 0;
374 }
375
376 static int __init mark_bootmem(unsigned long start, unsigned long end,
377 int reserve, int flags)
378 {
379 unsigned long pos;
380 bootmem_data_t *bdata;
381
382 pos = start;
383 list_for_each_entry(bdata, &bdata_list, list) {
384 int err;
385 unsigned long max;
386
387 if (pos < bdata->node_min_pfn ||
388 pos >= bdata->node_low_pfn) {
389 BUG_ON(pos != start);
390 continue;
391 }
392
393 max = min(bdata->node_low_pfn, end);
394
395 err = mark_bootmem_node(bdata, pos, max, reserve, flags);
396 if (reserve && err) {
397 mark_bootmem(start, pos, 0, 0);
398 return err;
399 }
400
401 if (max == end)
402 return 0;
403 pos = bdata->node_low_pfn;
404 }
405 BUG();
406 }
407 #endif
408
409 /**
410 * free_bootmem_node - mark a page range as usable
411 * @pgdat: node the range resides on
412 * @physaddr: starting address of the range
413 * @size: size of the range in bytes
414 *
415 * Partial pages will be considered reserved and left as they are.
416 *
417 * The range must reside completely on the specified node.
418 */
419 void __init free_bootmem_node(pg_data_t *pgdat, unsigned long physaddr,
420 unsigned long size)
421 {
422 #ifdef CONFIG_NO_BOOTMEM
423 free_early(physaddr, physaddr + size);
424 #else
425 unsigned long start, end;
426
427 kmemleak_free_part(__va(physaddr), size);
428
429 start = PFN_UP(physaddr);
430 end = PFN_DOWN(physaddr + size);
431
432 mark_bootmem_node(pgdat->bdata, start, end, 0, 0);
433 #endif
434 }
435
436 /**
437 * free_bootmem - mark a page range as usable
438 * @addr: starting address of the range
439 * @size: size of the range in bytes
440 *
441 * Partial pages will be considered reserved and left as they are.
442 *
443 * The range must be contiguous but may span node boundaries.
444 */
445 void __init free_bootmem(unsigned long addr, unsigned long size)
446 {
447 #ifdef CONFIG_NO_BOOTMEM
448 free_early(addr, addr + size);
449 #else
450 unsigned long start, end;
451
452 kmemleak_free_part(__va(addr), size);
453
454 start = PFN_UP(addr);
455 end = PFN_DOWN(addr + size);
456
457 mark_bootmem(start, end, 0, 0);
458 #endif
459 }
460
461 /**
462 * reserve_bootmem_node - mark a page range as reserved
463 * @pgdat: node the range resides on
464 * @physaddr: starting address of the range
465 * @size: size of the range in bytes
466 * @flags: reservation flags (see linux/bootmem.h)
467 *
468 * Partial pages will be reserved.
469 *
470 * The range must reside completely on the specified node.
471 */
472 int __init reserve_bootmem_node(pg_data_t *pgdat, unsigned long physaddr,
473 unsigned long size, int flags)
474 {
475 #ifdef CONFIG_NO_BOOTMEM
476 panic("no bootmem");
477 return 0;
478 #else
479 unsigned long start, end;
480
481 start = PFN_DOWN(physaddr);
482 end = PFN_UP(physaddr + size);
483
484 return mark_bootmem_node(pgdat->bdata, start, end, 1, flags);
485 #endif
486 }
487
488 /**
489 * reserve_bootmem - mark a page range as usable
490 * @addr: starting address of the range
491 * @size: size of the range in bytes
492 * @flags: reservation flags (see linux/bootmem.h)
493 *
494 * Partial pages will be reserved.
495 *
496 * The range must be contiguous but may span node boundaries.
497 */
498 int __init reserve_bootmem(unsigned long addr, unsigned long size,
499 int flags)
500 {
501 #ifdef CONFIG_NO_BOOTMEM
502 panic("no bootmem");
503 return 0;
504 #else
505 unsigned long start, end;
506
507 start = PFN_DOWN(addr);
508 end = PFN_UP(addr + size);
509
510 return mark_bootmem(start, end, 1, flags);
511 #endif
512 }
513
514 #ifndef CONFIG_NO_BOOTMEM
515 static unsigned long __init align_idx(struct bootmem_data *bdata,
516 unsigned long idx, unsigned long step)
517 {
518 unsigned long base = bdata->node_min_pfn;
519
520 /*
521 * Align the index with respect to the node start so that the
522 * combination of both satisfies the requested alignment.
523 */
524
525 return ALIGN(base + idx, step) - base;
526 }
527
528 static unsigned long __init align_off(struct bootmem_data *bdata,
529 unsigned long off, unsigned long align)
530 {
531 unsigned long base = PFN_PHYS(bdata->node_min_pfn);
532
533 /* Same as align_idx for byte offsets */
534
535 return ALIGN(base + off, align) - base;
536 }
537
538 static void * __init alloc_bootmem_core(struct bootmem_data *bdata,
539 unsigned long size, unsigned long align,
540 unsigned long goal, unsigned long limit)
541 {
542 unsigned long fallback = 0;
543 unsigned long min, max, start, sidx, midx, step;
544
545 bdebug("nid=%td size=%lx [%lu pages] align=%lx goal=%lx limit=%lx\n",
546 bdata - bootmem_node_data, size, PAGE_ALIGN(size) >> PAGE_SHIFT,
547 align, goal, limit);
548
549 BUG_ON(!size);
550 BUG_ON(align & (align - 1));
551 BUG_ON(limit && goal + size > limit);
552
553 if (!bdata->node_bootmem_map)
554 return NULL;
555
556 min = bdata->node_min_pfn;
557 max = bdata->node_low_pfn;
558
559 goal >>= PAGE_SHIFT;
560 limit >>= PAGE_SHIFT;
561
562 if (limit && max > limit)
563 max = limit;
564 if (max <= min)
565 return NULL;
566
567 step = max(align >> PAGE_SHIFT, 1UL);
568
569 if (goal && min < goal && goal < max)
570 start = ALIGN(goal, step);
571 else
572 start = ALIGN(min, step);
573
574 sidx = start - bdata->node_min_pfn;
575 midx = max - bdata->node_min_pfn;
576
577 if (bdata->hint_idx > sidx) {
578 /*
579 * Handle the valid case of sidx being zero and still
580 * catch the fallback below.
581 */
582 fallback = sidx + 1;
583 sidx = align_idx(bdata, bdata->hint_idx, step);
584 }
585
586 while (1) {
587 int merge;
588 void *region;
589 unsigned long eidx, i, start_off, end_off;
590 find_block:
591 sidx = find_next_zero_bit(bdata->node_bootmem_map, midx, sidx);
592 sidx = align_idx(bdata, sidx, step);
593 eidx = sidx + PFN_UP(size);
594
595 if (sidx >= midx || eidx > midx)
596 break;
597
598 for (i = sidx; i < eidx; i++)
599 if (test_bit(i, bdata->node_bootmem_map)) {
600 sidx = align_idx(bdata, i, step);
601 if (sidx == i)
602 sidx += step;
603 goto find_block;
604 }
605
606 if (bdata->last_end_off & (PAGE_SIZE - 1) &&
607 PFN_DOWN(bdata->last_end_off) + 1 == sidx)
608 start_off = align_off(bdata, bdata->last_end_off, align);
609 else
610 start_off = PFN_PHYS(sidx);
611
612 merge = PFN_DOWN(start_off) < sidx;
613 end_off = start_off + size;
614
615 bdata->last_end_off = end_off;
616 bdata->hint_idx = PFN_UP(end_off);
617
618 /*
619 * Reserve the area now:
620 */
621 if (__reserve(bdata, PFN_DOWN(start_off) + merge,
622 PFN_UP(end_off), BOOTMEM_EXCLUSIVE))
623 BUG();
624
625 region = phys_to_virt(PFN_PHYS(bdata->node_min_pfn) +
626 start_off);
627 memset(region, 0, size);
628 /*
629 * The min_count is set to 0 so that bootmem allocated blocks
630 * are never reported as leaks.
631 */
632 kmemleak_alloc(region, size, 0, 0);
633 return region;
634 }
635
636 if (fallback) {
637 sidx = align_idx(bdata, fallback - 1, step);
638 fallback = 0;
639 goto find_block;
640 }
641
642 return NULL;
643 }
644
645 static void * __init alloc_arch_preferred_bootmem(bootmem_data_t *bdata,
646 unsigned long size, unsigned long align,
647 unsigned long goal, unsigned long limit)
648 {
649 if (WARN_ON_ONCE(slab_is_available()))
650 return kzalloc(size, GFP_NOWAIT);
651
652 #ifdef CONFIG_HAVE_ARCH_BOOTMEM
653 {
654 bootmem_data_t *p_bdata;
655
656 p_bdata = bootmem_arch_preferred_node(bdata, size, align,
657 goal, limit);
658 if (p_bdata)
659 return alloc_bootmem_core(p_bdata, size, align,
660 goal, limit);
661 }
662 #endif
663 return NULL;
664 }
665 #endif
666
667 static void * __init ___alloc_bootmem_nopanic(unsigned long size,
668 unsigned long align,
669 unsigned long goal,
670 unsigned long limit)
671 {
672 #ifdef CONFIG_NO_BOOTMEM
673 void *ptr;
674
675 if (WARN_ON_ONCE(slab_is_available()))
676 return kzalloc(size, GFP_NOWAIT);
677
678 restart:
679
680 ptr = __alloc_memory_core_early(MAX_NUMNODES, size, align, goal, limit);
681
682 if (ptr)
683 return ptr;
684
685 if (goal != 0) {
686 goal = 0;
687 goto restart;
688 }
689
690 return NULL;
691 #else
692 bootmem_data_t *bdata;
693 void *region;
694
695 restart:
696 region = alloc_arch_preferred_bootmem(NULL, size, align, goal, limit);
697 if (region)
698 return region;
699
700 list_for_each_entry(bdata, &bdata_list, list) {
701 if (goal && bdata->node_low_pfn <= PFN_DOWN(goal))
702 continue;
703 if (limit && bdata->node_min_pfn >= PFN_DOWN(limit))
704 break;
705
706 region = alloc_bootmem_core(bdata, size, align, goal, limit);
707 if (region)
708 return region;
709 }
710
711 if (goal) {
712 goal = 0;
713 goto restart;
714 }
715
716 return NULL;
717 #endif
718 }
719
720 /**
721 * __alloc_bootmem_nopanic - allocate boot memory without panicking
722 * @size: size of the request in bytes
723 * @align: alignment of the region
724 * @goal: preferred starting address of the region
725 *
726 * The goal is dropped if it can not be satisfied and the allocation will
727 * fall back to memory below @goal.
728 *
729 * Allocation may happen on any node in the system.
730 *
731 * Returns NULL on failure.
732 */
733 void * __init __alloc_bootmem_nopanic(unsigned long size, unsigned long align,
734 unsigned long goal)
735 {
736 unsigned long limit = 0;
737
738 #ifdef CONFIG_NO_BOOTMEM
739 limit = -1UL;
740 #endif
741
742 return ___alloc_bootmem_nopanic(size, align, goal, limit);
743 }
744
745 static void * __init ___alloc_bootmem(unsigned long size, unsigned long align,
746 unsigned long goal, unsigned long limit)
747 {
748 void *mem = ___alloc_bootmem_nopanic(size, align, goal, limit);
749
750 if (mem)
751 return mem;
752 /*
753 * Whoops, we cannot satisfy the allocation request.
754 */
755 printk(KERN_ALERT "bootmem alloc of %lu bytes failed!\n", size);
756 panic("Out of memory");
757 return NULL;
758 }
759
760 /**
761 * __alloc_bootmem - allocate boot memory
762 * @size: size of the request in bytes
763 * @align: alignment of the region
764 * @goal: preferred starting address of the region
765 *
766 * The goal is dropped if it can not be satisfied and the allocation will
767 * fall back to memory below @goal.
768 *
769 * Allocation may happen on any node in the system.
770 *
771 * The function panics if the request can not be satisfied.
772 */
773 void * __init __alloc_bootmem(unsigned long size, unsigned long align,
774 unsigned long goal)
775 {
776 unsigned long limit = 0;
777
778 #ifdef CONFIG_NO_BOOTMEM
779 limit = -1UL;
780 #endif
781
782 return ___alloc_bootmem(size, align, goal, limit);
783 }
784
785 #ifndef CONFIG_NO_BOOTMEM
786 static void * __init ___alloc_bootmem_node(bootmem_data_t *bdata,
787 unsigned long size, unsigned long align,
788 unsigned long goal, unsigned long limit)
789 {
790 void *ptr;
791
792 ptr = alloc_arch_preferred_bootmem(bdata, size, align, goal, limit);
793 if (ptr)
794 return ptr;
795
796 ptr = alloc_bootmem_core(bdata, size, align, goal, limit);
797 if (ptr)
798 return ptr;
799
800 return ___alloc_bootmem(size, align, goal, limit);
801 }
802 #endif
803
804 /**
805 * __alloc_bootmem_node - allocate boot memory from a specific node
806 * @pgdat: node to allocate from
807 * @size: size of the request in bytes
808 * @align: alignment of the region
809 * @goal: preferred starting address of the region
810 *
811 * The goal is dropped if it can not be satisfied and the allocation will
812 * fall back to memory below @goal.
813 *
814 * Allocation may fall back to any node in the system if the specified node
815 * can not hold the requested memory.
816 *
817 * The function panics if the request can not be satisfied.
818 */
819 void * __init __alloc_bootmem_node(pg_data_t *pgdat, unsigned long size,
820 unsigned long align, unsigned long goal)
821 {
822 if (WARN_ON_ONCE(slab_is_available()))
823 return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id);
824
825 #ifdef CONFIG_NO_BOOTMEM
826 return __alloc_memory_core_early(pgdat->node_id, size, align,
827 goal, -1ULL);
828 #else
829 return ___alloc_bootmem_node(pgdat->bdata, size, align, goal, 0);
830 #endif
831 }
832
833 void * __init __alloc_bootmem_node_high(pg_data_t *pgdat, unsigned long size,
834 unsigned long align, unsigned long goal)
835 {
836 #ifdef MAX_DMA32_PFN
837 unsigned long end_pfn;
838
839 if (WARN_ON_ONCE(slab_is_available()))
840 return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id);
841
842 /* update goal according ...MAX_DMA32_PFN */
843 end_pfn = pgdat->node_start_pfn + pgdat->node_spanned_pages;
844
845 if (end_pfn > MAX_DMA32_PFN + (128 >> (20 - PAGE_SHIFT)) &&
846 (goal >> PAGE_SHIFT) < MAX_DMA32_PFN) {
847 void *ptr;
848 unsigned long new_goal;
849
850 new_goal = MAX_DMA32_PFN << PAGE_SHIFT;
851 #ifdef CONFIG_NO_BOOTMEM
852 ptr = __alloc_memory_core_early(pgdat->node_id, size, align,
853 new_goal, -1ULL);
854 #else
855 ptr = alloc_bootmem_core(pgdat->bdata, size, align,
856 new_goal, 0);
857 #endif
858 if (ptr)
859 return ptr;
860 }
861 #endif
862
863 return __alloc_bootmem_node(pgdat, size, align, goal);
864
865 }
866
867 #ifdef CONFIG_SPARSEMEM
868 /**
869 * alloc_bootmem_section - allocate boot memory from a specific section
870 * @size: size of the request in bytes
871 * @section_nr: sparse map section to allocate from
872 *
873 * Return NULL on failure.
874 */
875 void * __init alloc_bootmem_section(unsigned long size,
876 unsigned long section_nr)
877 {
878 #ifdef CONFIG_NO_BOOTMEM
879 unsigned long pfn, goal, limit;
880
881 pfn = section_nr_to_pfn(section_nr);
882 goal = pfn << PAGE_SHIFT;
883 limit = section_nr_to_pfn(section_nr + 1) << PAGE_SHIFT;
884
885 return __alloc_memory_core_early(early_pfn_to_nid(pfn), size,
886 SMP_CACHE_BYTES, goal, limit);
887 #else
888 bootmem_data_t *bdata;
889 unsigned long pfn, goal, limit;
890
891 pfn = section_nr_to_pfn(section_nr);
892 goal = pfn << PAGE_SHIFT;
893 limit = section_nr_to_pfn(section_nr + 1) << PAGE_SHIFT;
894 bdata = &bootmem_node_data[early_pfn_to_nid(pfn)];
895
896 return alloc_bootmem_core(bdata, size, SMP_CACHE_BYTES, goal, limit);
897 #endif
898 }
899 #endif
900
901 void * __init __alloc_bootmem_node_nopanic(pg_data_t *pgdat, unsigned long size,
902 unsigned long align, unsigned long goal)
903 {
904 void *ptr;
905
906 if (WARN_ON_ONCE(slab_is_available()))
907 return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id);
908
909 #ifdef CONFIG_NO_BOOTMEM
910 ptr = __alloc_memory_core_early(pgdat->node_id, size, align,
911 goal, -1ULL);
912 #else
913 ptr = alloc_arch_preferred_bootmem(pgdat->bdata, size, align, goal, 0);
914 if (ptr)
915 return ptr;
916
917 ptr = alloc_bootmem_core(pgdat->bdata, size, align, goal, 0);
918 #endif
919 if (ptr)
920 return ptr;
921
922 return __alloc_bootmem_nopanic(size, align, goal);
923 }
924
925 #ifndef ARCH_LOW_ADDRESS_LIMIT
926 #define ARCH_LOW_ADDRESS_LIMIT 0xffffffffUL
927 #endif
928
929 /**
930 * __alloc_bootmem_low - allocate low boot memory
931 * @size: size of the request in bytes
932 * @align: alignment of the region
933 * @goal: preferred starting address of the region
934 *
935 * The goal is dropped if it can not be satisfied and the allocation will
936 * fall back to memory below @goal.
937 *
938 * Allocation may happen on any node in the system.
939 *
940 * The function panics if the request can not be satisfied.
941 */
942 void * __init __alloc_bootmem_low(unsigned long size, unsigned long align,
943 unsigned long goal)
944 {
945 return ___alloc_bootmem(size, align, goal, ARCH_LOW_ADDRESS_LIMIT);
946 }
947
948 /**
949 * __alloc_bootmem_low_node - allocate low boot memory from a specific node
950 * @pgdat: node to allocate from
951 * @size: size of the request in bytes
952 * @align: alignment of the region
953 * @goal: preferred starting address of the region
954 *
955 * The goal is dropped if it can not be satisfied and the allocation will
956 * fall back to memory below @goal.
957 *
958 * Allocation may fall back to any node in the system if the specified node
959 * can not hold the requested memory.
960 *
961 * The function panics if the request can not be satisfied.
962 */
963 void * __init __alloc_bootmem_low_node(pg_data_t *pgdat, unsigned long size,
964 unsigned long align, unsigned long goal)
965 {
966 if (WARN_ON_ONCE(slab_is_available()))
967 return kzalloc_node(size, GFP_NOWAIT, pgdat->node_id);
968
969 #ifdef CONFIG_NO_BOOTMEM
970 return __alloc_memory_core_early(pgdat->node_id, size, align,
971 goal, ARCH_LOW_ADDRESS_LIMIT);
972 #else
973 return ___alloc_bootmem_node(pgdat->bdata, size, align,
974 goal, ARCH_LOW_ADDRESS_LIMIT);
975 #endif
976 }
This page took 0.080962 seconds and 5 git commands to generate.