bootmem: reorder code to match new bootmem structure
[deliverable/linux.git] / mm / bootmem.c
1 /*
2 * linux/mm/bootmem.c
3 *
4 * Copyright (C) 1999 Ingo Molnar
5 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
6 *
7 * simple boot-time physical memory area allocator and
8 * free memory collector. It's used to deal with reserved
9 * system memory and memory holes as well.
10 */
11 #include <linux/init.h>
12 #include <linux/pfn.h>
13 #include <linux/bootmem.h>
14 #include <linux/module.h>
15
16 #include <asm/bug.h>
17 #include <asm/io.h>
18 #include <asm/processor.h>
19
20 #include "internal.h"
21
22 /*
23 * Access to this subsystem has to be serialized externally. (this is
24 * true for the boot process anyway)
25 */
26 unsigned long max_low_pfn;
27 unsigned long min_low_pfn;
28 unsigned long max_pfn;
29
30 static LIST_HEAD(bdata_list);
31 #ifdef CONFIG_CRASH_DUMP
32 /*
33 * If we have booted due to a crash, max_pfn will be a very low value. We need
34 * to know the amount of memory that the previous kernel used.
35 */
36 unsigned long saved_max_pfn;
37 #endif
38
39 bootmem_data_t bootmem_node_data[MAX_NUMNODES] __initdata;
40
41 /*
42 * Given an initialised bdata, it returns the size of the boot bitmap
43 */
44 static unsigned long __init get_mapsize(bootmem_data_t *bdata)
45 {
46 unsigned long mapsize;
47 unsigned long start = PFN_DOWN(bdata->node_boot_start);
48 unsigned long end = bdata->node_low_pfn;
49
50 mapsize = ((end - start) + 7) / 8;
51 return ALIGN(mapsize, sizeof(long));
52 }
53
54 /* return the number of _pages_ that will be allocated for the boot bitmap */
55 unsigned long __init bootmem_bootmap_pages(unsigned long pages)
56 {
57 unsigned long mapsize;
58
59 mapsize = (pages+7)/8;
60 mapsize = (mapsize + ~PAGE_MASK) & PAGE_MASK;
61 mapsize >>= PAGE_SHIFT;
62
63 return mapsize;
64 }
65
66 /*
67 * link bdata in order
68 */
69 static void __init link_bootmem(bootmem_data_t *bdata)
70 {
71 bootmem_data_t *ent;
72
73 if (list_empty(&bdata_list)) {
74 list_add(&bdata->list, &bdata_list);
75 return;
76 }
77 /* insert in order */
78 list_for_each_entry(ent, &bdata_list, list) {
79 if (bdata->node_boot_start < ent->node_boot_start) {
80 list_add_tail(&bdata->list, &ent->list);
81 return;
82 }
83 }
84 list_add_tail(&bdata->list, &bdata_list);
85 }
86
87 /*
88 * Called once to set up the allocator itself.
89 */
90 static unsigned long __init init_bootmem_core(bootmem_data_t *bdata,
91 unsigned long mapstart, unsigned long start, unsigned long end)
92 {
93 unsigned long mapsize;
94
95 mminit_validate_memmodel_limits(&start, &end);
96 bdata->node_bootmem_map = phys_to_virt(PFN_PHYS(mapstart));
97 bdata->node_boot_start = PFN_PHYS(start);
98 bdata->node_low_pfn = end;
99 link_bootmem(bdata);
100
101 /*
102 * Initially all pages are reserved - setup_arch() has to
103 * register free RAM areas explicitly.
104 */
105 mapsize = get_mapsize(bdata);
106 memset(bdata->node_bootmem_map, 0xff, mapsize);
107
108 return mapsize;
109 }
110
111 unsigned long __init init_bootmem_node(pg_data_t *pgdat, unsigned long freepfn,
112 unsigned long startpfn, unsigned long endpfn)
113 {
114 return init_bootmem_core(pgdat->bdata, freepfn, startpfn, endpfn);
115 }
116
117 unsigned long __init init_bootmem(unsigned long start, unsigned long pages)
118 {
119 max_low_pfn = pages;
120 min_low_pfn = start;
121 return init_bootmem_core(NODE_DATA(0)->bdata, start, 0, pages);
122 }
123
124 static unsigned long __init free_all_bootmem_core(bootmem_data_t *bdata)
125 {
126 struct page *page;
127 unsigned long pfn;
128 unsigned long i, count;
129 unsigned long idx;
130 unsigned long *map;
131 int gofast = 0;
132
133 BUG_ON(!bdata->node_bootmem_map);
134
135 count = 0;
136 /* first extant page of the node */
137 pfn = PFN_DOWN(bdata->node_boot_start);
138 idx = bdata->node_low_pfn - pfn;
139 map = bdata->node_bootmem_map;
140 /*
141 * Check if we are aligned to BITS_PER_LONG pages. If so, we might
142 * be able to free page orders of that size at once.
143 */
144 if (!(pfn & (BITS_PER_LONG-1)))
145 gofast = 1;
146
147 for (i = 0; i < idx; ) {
148 unsigned long v = ~map[i / BITS_PER_LONG];
149
150 if (gofast && v == ~0UL) {
151 int order;
152
153 page = pfn_to_page(pfn);
154 count += BITS_PER_LONG;
155 order = ffs(BITS_PER_LONG) - 1;
156 __free_pages_bootmem(page, order);
157 i += BITS_PER_LONG;
158 page += BITS_PER_LONG;
159 } else if (v) {
160 unsigned long m;
161
162 page = pfn_to_page(pfn);
163 for (m = 1; m && i < idx; m<<=1, page++, i++) {
164 if (v & m) {
165 count++;
166 __free_pages_bootmem(page, 0);
167 }
168 }
169 } else {
170 i += BITS_PER_LONG;
171 }
172 pfn += BITS_PER_LONG;
173 }
174
175 /*
176 * Now free the allocator bitmap itself, it's not
177 * needed anymore:
178 */
179 page = virt_to_page(bdata->node_bootmem_map);
180 idx = (get_mapsize(bdata) + PAGE_SIZE-1) >> PAGE_SHIFT;
181 for (i = 0; i < idx; i++, page++)
182 __free_pages_bootmem(page, 0);
183 count += i;
184 bdata->node_bootmem_map = NULL;
185
186 return count;
187 }
188
189 unsigned long __init free_all_bootmem_node(pg_data_t *pgdat)
190 {
191 register_page_bootmem_info_node(pgdat);
192 return free_all_bootmem_core(pgdat->bdata);
193 }
194
195 unsigned long __init free_all_bootmem(void)
196 {
197 return free_all_bootmem_core(NODE_DATA(0)->bdata);
198 }
199
200 static void __init free_bootmem_core(bootmem_data_t *bdata, unsigned long addr,
201 unsigned long size)
202 {
203 unsigned long sidx, eidx;
204 unsigned long i;
205
206 BUG_ON(!size);
207
208 /* out range */
209 if (addr + size < bdata->node_boot_start ||
210 PFN_DOWN(addr) > bdata->node_low_pfn)
211 return;
212 /*
213 * round down end of usable mem, partially free pages are
214 * considered reserved.
215 */
216
217 if (addr >= bdata->node_boot_start && addr < bdata->last_success)
218 bdata->last_success = addr;
219
220 /*
221 * Round up to index to the range.
222 */
223 if (PFN_UP(addr) > PFN_DOWN(bdata->node_boot_start))
224 sidx = PFN_UP(addr) - PFN_DOWN(bdata->node_boot_start);
225 else
226 sidx = 0;
227
228 eidx = PFN_DOWN(addr + size - bdata->node_boot_start);
229 if (eidx > bdata->node_low_pfn - PFN_DOWN(bdata->node_boot_start))
230 eidx = bdata->node_low_pfn - PFN_DOWN(bdata->node_boot_start);
231
232 for (i = sidx; i < eidx; i++) {
233 if (unlikely(!test_and_clear_bit(i, bdata->node_bootmem_map)))
234 BUG();
235 }
236 }
237
238 void __init free_bootmem_node(pg_data_t *pgdat, unsigned long physaddr,
239 unsigned long size)
240 {
241 free_bootmem_core(pgdat->bdata, physaddr, size);
242 }
243
244 void __init free_bootmem(unsigned long addr, unsigned long size)
245 {
246 bootmem_data_t *bdata;
247 list_for_each_entry(bdata, &bdata_list, list)
248 free_bootmem_core(bdata, addr, size);
249 }
250
251 /*
252 * Marks a particular physical memory range as unallocatable. Usable RAM
253 * might be used for boot-time allocations - or it might get added
254 * to the free page pool later on.
255 */
256 static int __init can_reserve_bootmem_core(bootmem_data_t *bdata,
257 unsigned long addr, unsigned long size, int flags)
258 {
259 unsigned long sidx, eidx;
260 unsigned long i;
261
262 BUG_ON(!size);
263
264 /* out of range, don't hold other */
265 if (addr + size < bdata->node_boot_start ||
266 PFN_DOWN(addr) > bdata->node_low_pfn)
267 return 0;
268
269 /*
270 * Round up to index to the range.
271 */
272 if (addr > bdata->node_boot_start)
273 sidx= PFN_DOWN(addr - bdata->node_boot_start);
274 else
275 sidx = 0;
276
277 eidx = PFN_UP(addr + size - bdata->node_boot_start);
278 if (eidx > bdata->node_low_pfn - PFN_DOWN(bdata->node_boot_start))
279 eidx = bdata->node_low_pfn - PFN_DOWN(bdata->node_boot_start);
280
281 for (i = sidx; i < eidx; i++) {
282 if (test_bit(i, bdata->node_bootmem_map)) {
283 if (flags & BOOTMEM_EXCLUSIVE)
284 return -EBUSY;
285 }
286 }
287
288 return 0;
289
290 }
291
292 static void __init reserve_bootmem_core(bootmem_data_t *bdata,
293 unsigned long addr, unsigned long size, int flags)
294 {
295 unsigned long sidx, eidx;
296 unsigned long i;
297
298 BUG_ON(!size);
299
300 /* out of range */
301 if (addr + size < bdata->node_boot_start ||
302 PFN_DOWN(addr) > bdata->node_low_pfn)
303 return;
304
305 /*
306 * Round up to index to the range.
307 */
308 if (addr > bdata->node_boot_start)
309 sidx= PFN_DOWN(addr - bdata->node_boot_start);
310 else
311 sidx = 0;
312
313 eidx = PFN_UP(addr + size - bdata->node_boot_start);
314 if (eidx > bdata->node_low_pfn - PFN_DOWN(bdata->node_boot_start))
315 eidx = bdata->node_low_pfn - PFN_DOWN(bdata->node_boot_start);
316
317 for (i = sidx; i < eidx; i++) {
318 if (test_and_set_bit(i, bdata->node_bootmem_map)) {
319 #ifdef CONFIG_DEBUG_BOOTMEM
320 printk("hm, page %08lx reserved twice.\n", i*PAGE_SIZE);
321 #endif
322 }
323 }
324 }
325
326 int __init reserve_bootmem_node(pg_data_t *pgdat, unsigned long physaddr,
327 unsigned long size, int flags)
328 {
329 int ret;
330
331 ret = can_reserve_bootmem_core(pgdat->bdata, physaddr, size, flags);
332 if (ret < 0)
333 return -ENOMEM;
334 reserve_bootmem_core(pgdat->bdata, physaddr, size, flags);
335 return 0;
336 }
337
338 #ifndef CONFIG_HAVE_ARCH_BOOTMEM_NODE
339 int __init reserve_bootmem(unsigned long addr, unsigned long size,
340 int flags)
341 {
342 bootmem_data_t *bdata;
343 int ret;
344
345 list_for_each_entry(bdata, &bdata_list, list) {
346 ret = can_reserve_bootmem_core(bdata, addr, size, flags);
347 if (ret < 0)
348 return ret;
349 }
350 list_for_each_entry(bdata, &bdata_list, list)
351 reserve_bootmem_core(bdata, addr, size, flags);
352
353 return 0;
354 }
355 #endif /* !CONFIG_HAVE_ARCH_BOOTMEM_NODE */
356
357 /*
358 * We 'merge' subsequent allocations to save space. We might 'lose'
359 * some fraction of a page if allocations cannot be satisfied due to
360 * size constraints on boxes where there is physical RAM space
361 * fragmentation - in these cases (mostly large memory boxes) this
362 * is not a problem.
363 *
364 * On low memory boxes we get it right in 100% of the cases.
365 *
366 * alignment has to be a power of 2 value.
367 *
368 * NOTE: This function is _not_ reentrant.
369 */
370 static void * __init
371 alloc_bootmem_core(struct bootmem_data *bdata, unsigned long size,
372 unsigned long align, unsigned long goal, unsigned long limit)
373 {
374 unsigned long areasize, preferred;
375 unsigned long i, start = 0, incr, eidx, end_pfn;
376 void *ret;
377 unsigned long node_boot_start;
378 void *node_bootmem_map;
379
380 if (!size) {
381 printk("alloc_bootmem_core(): zero-sized request\n");
382 BUG();
383 }
384 BUG_ON(align & (align-1));
385
386 /* on nodes without memory - bootmem_map is NULL */
387 if (!bdata->node_bootmem_map)
388 return NULL;
389
390 /* bdata->node_boot_start is supposed to be (12+6)bits alignment on x86_64 ? */
391 node_boot_start = bdata->node_boot_start;
392 node_bootmem_map = bdata->node_bootmem_map;
393 if (align) {
394 node_boot_start = ALIGN(bdata->node_boot_start, align);
395 if (node_boot_start > bdata->node_boot_start)
396 node_bootmem_map = (unsigned long *)bdata->node_bootmem_map +
397 PFN_DOWN(node_boot_start - bdata->node_boot_start)/BITS_PER_LONG;
398 }
399
400 if (limit && node_boot_start >= limit)
401 return NULL;
402
403 end_pfn = bdata->node_low_pfn;
404 limit = PFN_DOWN(limit);
405 if (limit && end_pfn > limit)
406 end_pfn = limit;
407
408 eidx = end_pfn - PFN_DOWN(node_boot_start);
409
410 /*
411 * We try to allocate bootmem pages above 'goal'
412 * first, then we try to allocate lower pages.
413 */
414 preferred = 0;
415 if (goal && PFN_DOWN(goal) < end_pfn) {
416 if (goal > node_boot_start)
417 preferred = goal - node_boot_start;
418
419 if (bdata->last_success > node_boot_start &&
420 bdata->last_success - node_boot_start >= preferred)
421 if (!limit || (limit && limit > bdata->last_success))
422 preferred = bdata->last_success - node_boot_start;
423 }
424
425 preferred = PFN_DOWN(ALIGN(preferred, align));
426 areasize = (size + PAGE_SIZE-1) / PAGE_SIZE;
427 incr = align >> PAGE_SHIFT ? : 1;
428
429 restart_scan:
430 for (i = preferred; i < eidx;) {
431 unsigned long j;
432
433 i = find_next_zero_bit(node_bootmem_map, eidx, i);
434 i = ALIGN(i, incr);
435 if (i >= eidx)
436 break;
437 if (test_bit(i, node_bootmem_map)) {
438 i += incr;
439 continue;
440 }
441 for (j = i + 1; j < i + areasize; ++j) {
442 if (j >= eidx)
443 goto fail_block;
444 if (test_bit(j, node_bootmem_map))
445 goto fail_block;
446 }
447 start = i;
448 goto found;
449 fail_block:
450 i = ALIGN(j, incr);
451 if (i == j)
452 i += incr;
453 }
454
455 if (preferred > 0) {
456 preferred = 0;
457 goto restart_scan;
458 }
459 return NULL;
460
461 found:
462 bdata->last_success = PFN_PHYS(start) + node_boot_start;
463 BUG_ON(start >= eidx);
464
465 /*
466 * Is the next page of the previous allocation-end the start
467 * of this allocation's buffer? If yes then we can 'merge'
468 * the previous partial page with this allocation.
469 */
470 if (align < PAGE_SIZE &&
471 bdata->last_offset && bdata->last_pos+1 == start) {
472 unsigned long offset, remaining_size;
473 offset = ALIGN(bdata->last_offset, align);
474 BUG_ON(offset > PAGE_SIZE);
475 remaining_size = PAGE_SIZE - offset;
476 if (size < remaining_size) {
477 areasize = 0;
478 /* last_pos unchanged */
479 bdata->last_offset = offset + size;
480 ret = phys_to_virt(bdata->last_pos * PAGE_SIZE +
481 offset + node_boot_start);
482 } else {
483 remaining_size = size - remaining_size;
484 areasize = (remaining_size + PAGE_SIZE-1) / PAGE_SIZE;
485 ret = phys_to_virt(bdata->last_pos * PAGE_SIZE +
486 offset + node_boot_start);
487 bdata->last_pos = start + areasize - 1;
488 bdata->last_offset = remaining_size;
489 }
490 bdata->last_offset &= ~PAGE_MASK;
491 } else {
492 bdata->last_pos = start + areasize - 1;
493 bdata->last_offset = size & ~PAGE_MASK;
494 ret = phys_to_virt(start * PAGE_SIZE + node_boot_start);
495 }
496
497 /*
498 * Reserve the area now:
499 */
500 for (i = start; i < start + areasize; i++)
501 if (unlikely(test_and_set_bit(i, node_bootmem_map)))
502 BUG();
503 memset(ret, 0, size);
504 return ret;
505 }
506
507 void * __init __alloc_bootmem_nopanic(unsigned long size, unsigned long align,
508 unsigned long goal)
509 {
510 bootmem_data_t *bdata;
511 void *ptr;
512
513 list_for_each_entry(bdata, &bdata_list, list) {
514 ptr = alloc_bootmem_core(bdata, size, align, goal, 0);
515 if (ptr)
516 return ptr;
517 }
518 return NULL;
519 }
520
521 void * __init __alloc_bootmem(unsigned long size, unsigned long align,
522 unsigned long goal)
523 {
524 void *mem = __alloc_bootmem_nopanic(size,align,goal);
525
526 if (mem)
527 return mem;
528 /*
529 * Whoops, we cannot satisfy the allocation request.
530 */
531 printk(KERN_ALERT "bootmem alloc of %lu bytes failed!\n", size);
532 panic("Out of memory");
533 return NULL;
534 }
535
536 void * __init __alloc_bootmem_node(pg_data_t *pgdat, unsigned long size,
537 unsigned long align, unsigned long goal)
538 {
539 void *ptr;
540
541 ptr = alloc_bootmem_core(pgdat->bdata, size, align, goal, 0);
542 if (ptr)
543 return ptr;
544
545 return __alloc_bootmem(size, align, goal);
546 }
547
548 #ifdef CONFIG_SPARSEMEM
549 void * __init alloc_bootmem_section(unsigned long size,
550 unsigned long section_nr)
551 {
552 void *ptr;
553 unsigned long limit, goal, start_nr, end_nr, pfn;
554 struct pglist_data *pgdat;
555
556 pfn = section_nr_to_pfn(section_nr);
557 goal = PFN_PHYS(pfn);
558 limit = PFN_PHYS(section_nr_to_pfn(section_nr + 1)) - 1;
559 pgdat = NODE_DATA(early_pfn_to_nid(pfn));
560 ptr = alloc_bootmem_core(pgdat->bdata, size, SMP_CACHE_BYTES, goal,
561 limit);
562
563 if (!ptr)
564 return NULL;
565
566 start_nr = pfn_to_section_nr(PFN_DOWN(__pa(ptr)));
567 end_nr = pfn_to_section_nr(PFN_DOWN(__pa(ptr) + size));
568 if (start_nr != section_nr || end_nr != section_nr) {
569 printk(KERN_WARNING "alloc_bootmem failed on section %ld.\n",
570 section_nr);
571 free_bootmem_core(pgdat->bdata, __pa(ptr), size);
572 ptr = NULL;
573 }
574
575 return ptr;
576 }
577 #endif
578
579 void * __init __alloc_bootmem_node_nopanic(pg_data_t *pgdat, unsigned long size,
580 unsigned long align, unsigned long goal)
581 {
582 void *ptr;
583
584 ptr = alloc_bootmem_core(pgdat->bdata, size, align, goal, 0);
585 if (ptr)
586 return ptr;
587
588 return __alloc_bootmem_nopanic(size, align, goal);
589 }
590
591 #ifndef ARCH_LOW_ADDRESS_LIMIT
592 #define ARCH_LOW_ADDRESS_LIMIT 0xffffffffUL
593 #endif
594
595 void * __init __alloc_bootmem_low(unsigned long size, unsigned long align,
596 unsigned long goal)
597 {
598 bootmem_data_t *bdata;
599 void *ptr;
600
601 list_for_each_entry(bdata, &bdata_list, list) {
602 ptr = alloc_bootmem_core(bdata, size, align, goal,
603 ARCH_LOW_ADDRESS_LIMIT);
604 if (ptr)
605 return ptr;
606 }
607
608 /*
609 * Whoops, we cannot satisfy the allocation request.
610 */
611 printk(KERN_ALERT "low bootmem alloc of %lu bytes failed!\n", size);
612 panic("Out of low memory");
613 return NULL;
614 }
615
616 void * __init __alloc_bootmem_low_node(pg_data_t *pgdat, unsigned long size,
617 unsigned long align, unsigned long goal)
618 {
619 return alloc_bootmem_core(pgdat->bdata, size, align, goal,
620 ARCH_LOW_ADDRESS_LIMIT);
621 }
This page took 0.054733 seconds and 6 git commands to generate.