mm, compaction: pass gfp mask to compact_control
[deliverable/linux.git] / mm / compaction.c
1 /*
2 * linux/mm/compaction.c
3 *
4 * Memory compaction for the reduction of external fragmentation. Note that
5 * this heavily depends upon page migration to do all the real heavy
6 * lifting
7 *
8 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
9 */
10 #include <linux/swap.h>
11 #include <linux/migrate.h>
12 #include <linux/compaction.h>
13 #include <linux/mm_inline.h>
14 #include <linux/backing-dev.h>
15 #include <linux/sysctl.h>
16 #include <linux/sysfs.h>
17 #include <linux/balloon_compaction.h>
18 #include <linux/page-isolation.h>
19 #include "internal.h"
20
21 #ifdef CONFIG_COMPACTION
22 static inline void count_compact_event(enum vm_event_item item)
23 {
24 count_vm_event(item);
25 }
26
27 static inline void count_compact_events(enum vm_event_item item, long delta)
28 {
29 count_vm_events(item, delta);
30 }
31 #else
32 #define count_compact_event(item) do { } while (0)
33 #define count_compact_events(item, delta) do { } while (0)
34 #endif
35
36 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
37
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/compaction.h>
40
41 static unsigned long release_freepages(struct list_head *freelist)
42 {
43 struct page *page, *next;
44 unsigned long count = 0;
45
46 list_for_each_entry_safe(page, next, freelist, lru) {
47 list_del(&page->lru);
48 __free_page(page);
49 count++;
50 }
51
52 return count;
53 }
54
55 static void map_pages(struct list_head *list)
56 {
57 struct page *page;
58
59 list_for_each_entry(page, list, lru) {
60 arch_alloc_page(page, 0);
61 kernel_map_pages(page, 1, 1);
62 }
63 }
64
65 static inline bool migrate_async_suitable(int migratetype)
66 {
67 return is_migrate_cma(migratetype) || migratetype == MIGRATE_MOVABLE;
68 }
69
70 /*
71 * Check that the whole (or subset of) a pageblock given by the interval of
72 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
73 * with the migration of free compaction scanner. The scanners then need to
74 * use only pfn_valid_within() check for arches that allow holes within
75 * pageblocks.
76 *
77 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
78 *
79 * It's possible on some configurations to have a setup like node0 node1 node0
80 * i.e. it's possible that all pages within a zones range of pages do not
81 * belong to a single zone. We assume that a border between node0 and node1
82 * can occur within a single pageblock, but not a node0 node1 node0
83 * interleaving within a single pageblock. It is therefore sufficient to check
84 * the first and last page of a pageblock and avoid checking each individual
85 * page in a pageblock.
86 */
87 static struct page *pageblock_pfn_to_page(unsigned long start_pfn,
88 unsigned long end_pfn, struct zone *zone)
89 {
90 struct page *start_page;
91 struct page *end_page;
92
93 /* end_pfn is one past the range we are checking */
94 end_pfn--;
95
96 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
97 return NULL;
98
99 start_page = pfn_to_page(start_pfn);
100
101 if (page_zone(start_page) != zone)
102 return NULL;
103
104 end_page = pfn_to_page(end_pfn);
105
106 /* This gives a shorter code than deriving page_zone(end_page) */
107 if (page_zone_id(start_page) != page_zone_id(end_page))
108 return NULL;
109
110 return start_page;
111 }
112
113 #ifdef CONFIG_COMPACTION
114 /* Returns true if the pageblock should be scanned for pages to isolate. */
115 static inline bool isolation_suitable(struct compact_control *cc,
116 struct page *page)
117 {
118 if (cc->ignore_skip_hint)
119 return true;
120
121 return !get_pageblock_skip(page);
122 }
123
124 /*
125 * This function is called to clear all cached information on pageblocks that
126 * should be skipped for page isolation when the migrate and free page scanner
127 * meet.
128 */
129 static void __reset_isolation_suitable(struct zone *zone)
130 {
131 unsigned long start_pfn = zone->zone_start_pfn;
132 unsigned long end_pfn = zone_end_pfn(zone);
133 unsigned long pfn;
134
135 zone->compact_cached_migrate_pfn[0] = start_pfn;
136 zone->compact_cached_migrate_pfn[1] = start_pfn;
137 zone->compact_cached_free_pfn = end_pfn;
138 zone->compact_blockskip_flush = false;
139
140 /* Walk the zone and mark every pageblock as suitable for isolation */
141 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
142 struct page *page;
143
144 cond_resched();
145
146 if (!pfn_valid(pfn))
147 continue;
148
149 page = pfn_to_page(pfn);
150 if (zone != page_zone(page))
151 continue;
152
153 clear_pageblock_skip(page);
154 }
155 }
156
157 void reset_isolation_suitable(pg_data_t *pgdat)
158 {
159 int zoneid;
160
161 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
162 struct zone *zone = &pgdat->node_zones[zoneid];
163 if (!populated_zone(zone))
164 continue;
165
166 /* Only flush if a full compaction finished recently */
167 if (zone->compact_blockskip_flush)
168 __reset_isolation_suitable(zone);
169 }
170 }
171
172 /*
173 * If no pages were isolated then mark this pageblock to be skipped in the
174 * future. The information is later cleared by __reset_isolation_suitable().
175 */
176 static void update_pageblock_skip(struct compact_control *cc,
177 struct page *page, unsigned long nr_isolated,
178 bool migrate_scanner)
179 {
180 struct zone *zone = cc->zone;
181 unsigned long pfn;
182
183 if (cc->ignore_skip_hint)
184 return;
185
186 if (!page)
187 return;
188
189 if (nr_isolated)
190 return;
191
192 set_pageblock_skip(page);
193
194 pfn = page_to_pfn(page);
195
196 /* Update where async and sync compaction should restart */
197 if (migrate_scanner) {
198 if (cc->finished_update_migrate)
199 return;
200 if (pfn > zone->compact_cached_migrate_pfn[0])
201 zone->compact_cached_migrate_pfn[0] = pfn;
202 if (cc->mode != MIGRATE_ASYNC &&
203 pfn > zone->compact_cached_migrate_pfn[1])
204 zone->compact_cached_migrate_pfn[1] = pfn;
205 } else {
206 if (cc->finished_update_free)
207 return;
208 if (pfn < zone->compact_cached_free_pfn)
209 zone->compact_cached_free_pfn = pfn;
210 }
211 }
212 #else
213 static inline bool isolation_suitable(struct compact_control *cc,
214 struct page *page)
215 {
216 return true;
217 }
218
219 static void update_pageblock_skip(struct compact_control *cc,
220 struct page *page, unsigned long nr_isolated,
221 bool migrate_scanner)
222 {
223 }
224 #endif /* CONFIG_COMPACTION */
225
226 /*
227 * Compaction requires the taking of some coarse locks that are potentially
228 * very heavily contended. For async compaction, back out if the lock cannot
229 * be taken immediately. For sync compaction, spin on the lock if needed.
230 *
231 * Returns true if the lock is held
232 * Returns false if the lock is not held and compaction should abort
233 */
234 static bool compact_trylock_irqsave(spinlock_t *lock, unsigned long *flags,
235 struct compact_control *cc)
236 {
237 if (cc->mode == MIGRATE_ASYNC) {
238 if (!spin_trylock_irqsave(lock, *flags)) {
239 cc->contended = COMPACT_CONTENDED_LOCK;
240 return false;
241 }
242 } else {
243 spin_lock_irqsave(lock, *flags);
244 }
245
246 return true;
247 }
248
249 /*
250 * Compaction requires the taking of some coarse locks that are potentially
251 * very heavily contended. The lock should be periodically unlocked to avoid
252 * having disabled IRQs for a long time, even when there is nobody waiting on
253 * the lock. It might also be that allowing the IRQs will result in
254 * need_resched() becoming true. If scheduling is needed, async compaction
255 * aborts. Sync compaction schedules.
256 * Either compaction type will also abort if a fatal signal is pending.
257 * In either case if the lock was locked, it is dropped and not regained.
258 *
259 * Returns true if compaction should abort due to fatal signal pending, or
260 * async compaction due to need_resched()
261 * Returns false when compaction can continue (sync compaction might have
262 * scheduled)
263 */
264 static bool compact_unlock_should_abort(spinlock_t *lock,
265 unsigned long flags, bool *locked, struct compact_control *cc)
266 {
267 if (*locked) {
268 spin_unlock_irqrestore(lock, flags);
269 *locked = false;
270 }
271
272 if (fatal_signal_pending(current)) {
273 cc->contended = COMPACT_CONTENDED_SCHED;
274 return true;
275 }
276
277 if (need_resched()) {
278 if (cc->mode == MIGRATE_ASYNC) {
279 cc->contended = COMPACT_CONTENDED_SCHED;
280 return true;
281 }
282 cond_resched();
283 }
284
285 return false;
286 }
287
288 /*
289 * Aside from avoiding lock contention, compaction also periodically checks
290 * need_resched() and either schedules in sync compaction or aborts async
291 * compaction. This is similar to what compact_unlock_should_abort() does, but
292 * is used where no lock is concerned.
293 *
294 * Returns false when no scheduling was needed, or sync compaction scheduled.
295 * Returns true when async compaction should abort.
296 */
297 static inline bool compact_should_abort(struct compact_control *cc)
298 {
299 /* async compaction aborts if contended */
300 if (need_resched()) {
301 if (cc->mode == MIGRATE_ASYNC) {
302 cc->contended = COMPACT_CONTENDED_SCHED;
303 return true;
304 }
305
306 cond_resched();
307 }
308
309 return false;
310 }
311
312 /* Returns true if the page is within a block suitable for migration to */
313 static bool suitable_migration_target(struct page *page)
314 {
315 /* If the page is a large free page, then disallow migration */
316 if (PageBuddy(page)) {
317 /*
318 * We are checking page_order without zone->lock taken. But
319 * the only small danger is that we skip a potentially suitable
320 * pageblock, so it's not worth to check order for valid range.
321 */
322 if (page_order_unsafe(page) >= pageblock_order)
323 return false;
324 }
325
326 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
327 if (migrate_async_suitable(get_pageblock_migratetype(page)))
328 return true;
329
330 /* Otherwise skip the block */
331 return false;
332 }
333
334 /*
335 * Isolate free pages onto a private freelist. If @strict is true, will abort
336 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
337 * (even though it may still end up isolating some pages).
338 */
339 static unsigned long isolate_freepages_block(struct compact_control *cc,
340 unsigned long *start_pfn,
341 unsigned long end_pfn,
342 struct list_head *freelist,
343 bool strict)
344 {
345 int nr_scanned = 0, total_isolated = 0;
346 struct page *cursor, *valid_page = NULL;
347 unsigned long flags;
348 bool locked = false;
349 unsigned long blockpfn = *start_pfn;
350
351 cursor = pfn_to_page(blockpfn);
352
353 /* Isolate free pages. */
354 for (; blockpfn < end_pfn; blockpfn++, cursor++) {
355 int isolated, i;
356 struct page *page = cursor;
357
358 /*
359 * Periodically drop the lock (if held) regardless of its
360 * contention, to give chance to IRQs. Abort if fatal signal
361 * pending or async compaction detects need_resched()
362 */
363 if (!(blockpfn % SWAP_CLUSTER_MAX)
364 && compact_unlock_should_abort(&cc->zone->lock, flags,
365 &locked, cc))
366 break;
367
368 nr_scanned++;
369 if (!pfn_valid_within(blockpfn))
370 goto isolate_fail;
371
372 if (!valid_page)
373 valid_page = page;
374 if (!PageBuddy(page))
375 goto isolate_fail;
376
377 /*
378 * If we already hold the lock, we can skip some rechecking.
379 * Note that if we hold the lock now, checked_pageblock was
380 * already set in some previous iteration (or strict is true),
381 * so it is correct to skip the suitable migration target
382 * recheck as well.
383 */
384 if (!locked) {
385 /*
386 * The zone lock must be held to isolate freepages.
387 * Unfortunately this is a very coarse lock and can be
388 * heavily contended if there are parallel allocations
389 * or parallel compactions. For async compaction do not
390 * spin on the lock and we acquire the lock as late as
391 * possible.
392 */
393 locked = compact_trylock_irqsave(&cc->zone->lock,
394 &flags, cc);
395 if (!locked)
396 break;
397
398 /* Recheck this is a buddy page under lock */
399 if (!PageBuddy(page))
400 goto isolate_fail;
401 }
402
403 /* Found a free page, break it into order-0 pages */
404 isolated = split_free_page(page);
405 total_isolated += isolated;
406 for (i = 0; i < isolated; i++) {
407 list_add(&page->lru, freelist);
408 page++;
409 }
410
411 /* If a page was split, advance to the end of it */
412 if (isolated) {
413 blockpfn += isolated - 1;
414 cursor += isolated - 1;
415 continue;
416 }
417
418 isolate_fail:
419 if (strict)
420 break;
421 else
422 continue;
423
424 }
425
426 /* Record how far we have got within the block */
427 *start_pfn = blockpfn;
428
429 trace_mm_compaction_isolate_freepages(nr_scanned, total_isolated);
430
431 /*
432 * If strict isolation is requested by CMA then check that all the
433 * pages requested were isolated. If there were any failures, 0 is
434 * returned and CMA will fail.
435 */
436 if (strict && blockpfn < end_pfn)
437 total_isolated = 0;
438
439 if (locked)
440 spin_unlock_irqrestore(&cc->zone->lock, flags);
441
442 /* Update the pageblock-skip if the whole pageblock was scanned */
443 if (blockpfn == end_pfn)
444 update_pageblock_skip(cc, valid_page, total_isolated, false);
445
446 count_compact_events(COMPACTFREE_SCANNED, nr_scanned);
447 if (total_isolated)
448 count_compact_events(COMPACTISOLATED, total_isolated);
449 return total_isolated;
450 }
451
452 /**
453 * isolate_freepages_range() - isolate free pages.
454 * @start_pfn: The first PFN to start isolating.
455 * @end_pfn: The one-past-last PFN.
456 *
457 * Non-free pages, invalid PFNs, or zone boundaries within the
458 * [start_pfn, end_pfn) range are considered errors, cause function to
459 * undo its actions and return zero.
460 *
461 * Otherwise, function returns one-past-the-last PFN of isolated page
462 * (which may be greater then end_pfn if end fell in a middle of
463 * a free page).
464 */
465 unsigned long
466 isolate_freepages_range(struct compact_control *cc,
467 unsigned long start_pfn, unsigned long end_pfn)
468 {
469 unsigned long isolated, pfn, block_end_pfn;
470 LIST_HEAD(freelist);
471
472 pfn = start_pfn;
473 block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
474
475 for (; pfn < end_pfn; pfn += isolated,
476 block_end_pfn += pageblock_nr_pages) {
477 /* Protect pfn from changing by isolate_freepages_block */
478 unsigned long isolate_start_pfn = pfn;
479
480 block_end_pfn = min(block_end_pfn, end_pfn);
481
482 if (!pageblock_pfn_to_page(pfn, block_end_pfn, cc->zone))
483 break;
484
485 isolated = isolate_freepages_block(cc, &isolate_start_pfn,
486 block_end_pfn, &freelist, true);
487
488 /*
489 * In strict mode, isolate_freepages_block() returns 0 if
490 * there are any holes in the block (ie. invalid PFNs or
491 * non-free pages).
492 */
493 if (!isolated)
494 break;
495
496 /*
497 * If we managed to isolate pages, it is always (1 << n) *
498 * pageblock_nr_pages for some non-negative n. (Max order
499 * page may span two pageblocks).
500 */
501 }
502
503 /* split_free_page does not map the pages */
504 map_pages(&freelist);
505
506 if (pfn < end_pfn) {
507 /* Loop terminated early, cleanup. */
508 release_freepages(&freelist);
509 return 0;
510 }
511
512 /* We don't use freelists for anything. */
513 return pfn;
514 }
515
516 /* Update the number of anon and file isolated pages in the zone */
517 static void acct_isolated(struct zone *zone, struct compact_control *cc)
518 {
519 struct page *page;
520 unsigned int count[2] = { 0, };
521
522 if (list_empty(&cc->migratepages))
523 return;
524
525 list_for_each_entry(page, &cc->migratepages, lru)
526 count[!!page_is_file_cache(page)]++;
527
528 mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
529 mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
530 }
531
532 /* Similar to reclaim, but different enough that they don't share logic */
533 static bool too_many_isolated(struct zone *zone)
534 {
535 unsigned long active, inactive, isolated;
536
537 inactive = zone_page_state(zone, NR_INACTIVE_FILE) +
538 zone_page_state(zone, NR_INACTIVE_ANON);
539 active = zone_page_state(zone, NR_ACTIVE_FILE) +
540 zone_page_state(zone, NR_ACTIVE_ANON);
541 isolated = zone_page_state(zone, NR_ISOLATED_FILE) +
542 zone_page_state(zone, NR_ISOLATED_ANON);
543
544 return isolated > (inactive + active) / 2;
545 }
546
547 /**
548 * isolate_migratepages_block() - isolate all migrate-able pages within
549 * a single pageblock
550 * @cc: Compaction control structure.
551 * @low_pfn: The first PFN to isolate
552 * @end_pfn: The one-past-the-last PFN to isolate, within same pageblock
553 * @isolate_mode: Isolation mode to be used.
554 *
555 * Isolate all pages that can be migrated from the range specified by
556 * [low_pfn, end_pfn). The range is expected to be within same pageblock.
557 * Returns zero if there is a fatal signal pending, otherwise PFN of the
558 * first page that was not scanned (which may be both less, equal to or more
559 * than end_pfn).
560 *
561 * The pages are isolated on cc->migratepages list (not required to be empty),
562 * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
563 * is neither read nor updated.
564 */
565 static unsigned long
566 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
567 unsigned long end_pfn, isolate_mode_t isolate_mode)
568 {
569 struct zone *zone = cc->zone;
570 unsigned long nr_scanned = 0, nr_isolated = 0;
571 struct list_head *migratelist = &cc->migratepages;
572 struct lruvec *lruvec;
573 unsigned long flags;
574 bool locked = false;
575 struct page *page = NULL, *valid_page = NULL;
576
577 /*
578 * Ensure that there are not too many pages isolated from the LRU
579 * list by either parallel reclaimers or compaction. If there are,
580 * delay for some time until fewer pages are isolated
581 */
582 while (unlikely(too_many_isolated(zone))) {
583 /* async migration should just abort */
584 if (cc->mode == MIGRATE_ASYNC)
585 return 0;
586
587 congestion_wait(BLK_RW_ASYNC, HZ/10);
588
589 if (fatal_signal_pending(current))
590 return 0;
591 }
592
593 if (compact_should_abort(cc))
594 return 0;
595
596 /* Time to isolate some pages for migration */
597 for (; low_pfn < end_pfn; low_pfn++) {
598 /*
599 * Periodically drop the lock (if held) regardless of its
600 * contention, to give chance to IRQs. Abort async compaction
601 * if contended.
602 */
603 if (!(low_pfn % SWAP_CLUSTER_MAX)
604 && compact_unlock_should_abort(&zone->lru_lock, flags,
605 &locked, cc))
606 break;
607
608 if (!pfn_valid_within(low_pfn))
609 continue;
610 nr_scanned++;
611
612 page = pfn_to_page(low_pfn);
613
614 if (!valid_page)
615 valid_page = page;
616
617 /*
618 * Skip if free. We read page order here without zone lock
619 * which is generally unsafe, but the race window is small and
620 * the worst thing that can happen is that we skip some
621 * potential isolation targets.
622 */
623 if (PageBuddy(page)) {
624 unsigned long freepage_order = page_order_unsafe(page);
625
626 /*
627 * Without lock, we cannot be sure that what we got is
628 * a valid page order. Consider only values in the
629 * valid order range to prevent low_pfn overflow.
630 */
631 if (freepage_order > 0 && freepage_order < MAX_ORDER)
632 low_pfn += (1UL << freepage_order) - 1;
633 continue;
634 }
635
636 /*
637 * Check may be lockless but that's ok as we recheck later.
638 * It's possible to migrate LRU pages and balloon pages
639 * Skip any other type of page
640 */
641 if (!PageLRU(page)) {
642 if (unlikely(balloon_page_movable(page))) {
643 if (locked && balloon_page_isolate(page)) {
644 /* Successfully isolated */
645 goto isolate_success;
646 }
647 }
648 continue;
649 }
650
651 /*
652 * PageLRU is set. lru_lock normally excludes isolation
653 * splitting and collapsing (collapsing has already happened
654 * if PageLRU is set) but the lock is not necessarily taken
655 * here and it is wasteful to take it just to check transhuge.
656 * Check TransHuge without lock and skip the whole pageblock if
657 * it's either a transhuge or hugetlbfs page, as calling
658 * compound_order() without preventing THP from splitting the
659 * page underneath us may return surprising results.
660 */
661 if (PageTransHuge(page)) {
662 if (!locked)
663 low_pfn = ALIGN(low_pfn + 1,
664 pageblock_nr_pages) - 1;
665 else
666 low_pfn += (1 << compound_order(page)) - 1;
667
668 continue;
669 }
670
671 /*
672 * Migration will fail if an anonymous page is pinned in memory,
673 * so avoid taking lru_lock and isolating it unnecessarily in an
674 * admittedly racy check.
675 */
676 if (!page_mapping(page) &&
677 page_count(page) > page_mapcount(page))
678 continue;
679
680 /* If we already hold the lock, we can skip some rechecking */
681 if (!locked) {
682 locked = compact_trylock_irqsave(&zone->lru_lock,
683 &flags, cc);
684 if (!locked)
685 break;
686
687 /* Recheck PageLRU and PageTransHuge under lock */
688 if (!PageLRU(page))
689 continue;
690 if (PageTransHuge(page)) {
691 low_pfn += (1 << compound_order(page)) - 1;
692 continue;
693 }
694 }
695
696 lruvec = mem_cgroup_page_lruvec(page, zone);
697
698 /* Try isolate the page */
699 if (__isolate_lru_page(page, isolate_mode) != 0)
700 continue;
701
702 VM_BUG_ON_PAGE(PageTransCompound(page), page);
703
704 /* Successfully isolated */
705 del_page_from_lru_list(page, lruvec, page_lru(page));
706
707 isolate_success:
708 cc->finished_update_migrate = true;
709 list_add(&page->lru, migratelist);
710 cc->nr_migratepages++;
711 nr_isolated++;
712
713 /* Avoid isolating too much */
714 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
715 ++low_pfn;
716 break;
717 }
718 }
719
720 /*
721 * The PageBuddy() check could have potentially brought us outside
722 * the range to be scanned.
723 */
724 if (unlikely(low_pfn > end_pfn))
725 low_pfn = end_pfn;
726
727 if (locked)
728 spin_unlock_irqrestore(&zone->lru_lock, flags);
729
730 /*
731 * Update the pageblock-skip information and cached scanner pfn,
732 * if the whole pageblock was scanned without isolating any page.
733 */
734 if (low_pfn == end_pfn)
735 update_pageblock_skip(cc, valid_page, nr_isolated, true);
736
737 trace_mm_compaction_isolate_migratepages(nr_scanned, nr_isolated);
738
739 count_compact_events(COMPACTMIGRATE_SCANNED, nr_scanned);
740 if (nr_isolated)
741 count_compact_events(COMPACTISOLATED, nr_isolated);
742
743 return low_pfn;
744 }
745
746 /**
747 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
748 * @cc: Compaction control structure.
749 * @start_pfn: The first PFN to start isolating.
750 * @end_pfn: The one-past-last PFN.
751 *
752 * Returns zero if isolation fails fatally due to e.g. pending signal.
753 * Otherwise, function returns one-past-the-last PFN of isolated page
754 * (which may be greater than end_pfn if end fell in a middle of a THP page).
755 */
756 unsigned long
757 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
758 unsigned long end_pfn)
759 {
760 unsigned long pfn, block_end_pfn;
761
762 /* Scan block by block. First and last block may be incomplete */
763 pfn = start_pfn;
764 block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
765
766 for (; pfn < end_pfn; pfn = block_end_pfn,
767 block_end_pfn += pageblock_nr_pages) {
768
769 block_end_pfn = min(block_end_pfn, end_pfn);
770
771 if (!pageblock_pfn_to_page(pfn, block_end_pfn, cc->zone))
772 continue;
773
774 pfn = isolate_migratepages_block(cc, pfn, block_end_pfn,
775 ISOLATE_UNEVICTABLE);
776
777 /*
778 * In case of fatal failure, release everything that might
779 * have been isolated in the previous iteration, and signal
780 * the failure back to caller.
781 */
782 if (!pfn) {
783 putback_movable_pages(&cc->migratepages);
784 cc->nr_migratepages = 0;
785 break;
786 }
787 }
788 acct_isolated(cc->zone, cc);
789
790 return pfn;
791 }
792
793 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
794 #ifdef CONFIG_COMPACTION
795 /*
796 * Based on information in the current compact_control, find blocks
797 * suitable for isolating free pages from and then isolate them.
798 */
799 static void isolate_freepages(struct compact_control *cc)
800 {
801 struct zone *zone = cc->zone;
802 struct page *page;
803 unsigned long block_start_pfn; /* start of current pageblock */
804 unsigned long isolate_start_pfn; /* exact pfn we start at */
805 unsigned long block_end_pfn; /* end of current pageblock */
806 unsigned long low_pfn; /* lowest pfn scanner is able to scan */
807 int nr_freepages = cc->nr_freepages;
808 struct list_head *freelist = &cc->freepages;
809
810 /*
811 * Initialise the free scanner. The starting point is where we last
812 * successfully isolated from, zone-cached value, or the end of the
813 * zone when isolating for the first time. For looping we also need
814 * this pfn aligned down to the pageblock boundary, because we do
815 * block_start_pfn -= pageblock_nr_pages in the for loop.
816 * For ending point, take care when isolating in last pageblock of a
817 * a zone which ends in the middle of a pageblock.
818 * The low boundary is the end of the pageblock the migration scanner
819 * is using.
820 */
821 isolate_start_pfn = cc->free_pfn;
822 block_start_pfn = cc->free_pfn & ~(pageblock_nr_pages-1);
823 block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
824 zone_end_pfn(zone));
825 low_pfn = ALIGN(cc->migrate_pfn + 1, pageblock_nr_pages);
826
827 /*
828 * Isolate free pages until enough are available to migrate the
829 * pages on cc->migratepages. We stop searching if the migrate
830 * and free page scanners meet or enough free pages are isolated.
831 */
832 for (; block_start_pfn >= low_pfn && cc->nr_migratepages > nr_freepages;
833 block_end_pfn = block_start_pfn,
834 block_start_pfn -= pageblock_nr_pages,
835 isolate_start_pfn = block_start_pfn) {
836 unsigned long isolated;
837
838 /*
839 * This can iterate a massively long zone without finding any
840 * suitable migration targets, so periodically check if we need
841 * to schedule, or even abort async compaction.
842 */
843 if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
844 && compact_should_abort(cc))
845 break;
846
847 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
848 zone);
849 if (!page)
850 continue;
851
852 /* Check the block is suitable for migration */
853 if (!suitable_migration_target(page))
854 continue;
855
856 /* If isolation recently failed, do not retry */
857 if (!isolation_suitable(cc, page))
858 continue;
859
860 /* Found a block suitable for isolating free pages from. */
861 isolated = isolate_freepages_block(cc, &isolate_start_pfn,
862 block_end_pfn, freelist, false);
863 nr_freepages += isolated;
864
865 /*
866 * Remember where the free scanner should restart next time,
867 * which is where isolate_freepages_block() left off.
868 * But if it scanned the whole pageblock, isolate_start_pfn
869 * now points at block_end_pfn, which is the start of the next
870 * pageblock.
871 * In that case we will however want to restart at the start
872 * of the previous pageblock.
873 */
874 cc->free_pfn = (isolate_start_pfn < block_end_pfn) ?
875 isolate_start_pfn :
876 block_start_pfn - pageblock_nr_pages;
877
878 /*
879 * Set a flag that we successfully isolated in this pageblock.
880 * In the next loop iteration, zone->compact_cached_free_pfn
881 * will not be updated and thus it will effectively contain the
882 * highest pageblock we isolated pages from.
883 */
884 if (isolated)
885 cc->finished_update_free = true;
886
887 /*
888 * isolate_freepages_block() might have aborted due to async
889 * compaction being contended
890 */
891 if (cc->contended)
892 break;
893 }
894
895 /* split_free_page does not map the pages */
896 map_pages(freelist);
897
898 /*
899 * If we crossed the migrate scanner, we want to keep it that way
900 * so that compact_finished() may detect this
901 */
902 if (block_start_pfn < low_pfn)
903 cc->free_pfn = cc->migrate_pfn;
904
905 cc->nr_freepages = nr_freepages;
906 }
907
908 /*
909 * This is a migrate-callback that "allocates" freepages by taking pages
910 * from the isolated freelists in the block we are migrating to.
911 */
912 static struct page *compaction_alloc(struct page *migratepage,
913 unsigned long data,
914 int **result)
915 {
916 struct compact_control *cc = (struct compact_control *)data;
917 struct page *freepage;
918
919 /*
920 * Isolate free pages if necessary, and if we are not aborting due to
921 * contention.
922 */
923 if (list_empty(&cc->freepages)) {
924 if (!cc->contended)
925 isolate_freepages(cc);
926
927 if (list_empty(&cc->freepages))
928 return NULL;
929 }
930
931 freepage = list_entry(cc->freepages.next, struct page, lru);
932 list_del(&freepage->lru);
933 cc->nr_freepages--;
934
935 return freepage;
936 }
937
938 /*
939 * This is a migrate-callback that "frees" freepages back to the isolated
940 * freelist. All pages on the freelist are from the same zone, so there is no
941 * special handling needed for NUMA.
942 */
943 static void compaction_free(struct page *page, unsigned long data)
944 {
945 struct compact_control *cc = (struct compact_control *)data;
946
947 list_add(&page->lru, &cc->freepages);
948 cc->nr_freepages++;
949 }
950
951 /* possible outcome of isolate_migratepages */
952 typedef enum {
953 ISOLATE_ABORT, /* Abort compaction now */
954 ISOLATE_NONE, /* No pages isolated, continue scanning */
955 ISOLATE_SUCCESS, /* Pages isolated, migrate */
956 } isolate_migrate_t;
957
958 /*
959 * Isolate all pages that can be migrated from the first suitable block,
960 * starting at the block pointed to by the migrate scanner pfn within
961 * compact_control.
962 */
963 static isolate_migrate_t isolate_migratepages(struct zone *zone,
964 struct compact_control *cc)
965 {
966 unsigned long low_pfn, end_pfn;
967 struct page *page;
968 const isolate_mode_t isolate_mode =
969 (cc->mode == MIGRATE_ASYNC ? ISOLATE_ASYNC_MIGRATE : 0);
970
971 /*
972 * Start at where we last stopped, or beginning of the zone as
973 * initialized by compact_zone()
974 */
975 low_pfn = cc->migrate_pfn;
976
977 /* Only scan within a pageblock boundary */
978 end_pfn = ALIGN(low_pfn + 1, pageblock_nr_pages);
979
980 /*
981 * Iterate over whole pageblocks until we find the first suitable.
982 * Do not cross the free scanner.
983 */
984 for (; end_pfn <= cc->free_pfn;
985 low_pfn = end_pfn, end_pfn += pageblock_nr_pages) {
986
987 /*
988 * This can potentially iterate a massively long zone with
989 * many pageblocks unsuitable, so periodically check if we
990 * need to schedule, or even abort async compaction.
991 */
992 if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
993 && compact_should_abort(cc))
994 break;
995
996 page = pageblock_pfn_to_page(low_pfn, end_pfn, zone);
997 if (!page)
998 continue;
999
1000 /* If isolation recently failed, do not retry */
1001 if (!isolation_suitable(cc, page))
1002 continue;
1003
1004 /*
1005 * For async compaction, also only scan in MOVABLE blocks.
1006 * Async compaction is optimistic to see if the minimum amount
1007 * of work satisfies the allocation.
1008 */
1009 if (cc->mode == MIGRATE_ASYNC &&
1010 !migrate_async_suitable(get_pageblock_migratetype(page)))
1011 continue;
1012
1013 /* Perform the isolation */
1014 low_pfn = isolate_migratepages_block(cc, low_pfn, end_pfn,
1015 isolate_mode);
1016
1017 if (!low_pfn || cc->contended)
1018 return ISOLATE_ABORT;
1019
1020 /*
1021 * Either we isolated something and proceed with migration. Or
1022 * we failed and compact_zone should decide if we should
1023 * continue or not.
1024 */
1025 break;
1026 }
1027
1028 acct_isolated(zone, cc);
1029 /* Record where migration scanner will be restarted */
1030 cc->migrate_pfn = low_pfn;
1031
1032 return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1033 }
1034
1035 static int compact_finished(struct zone *zone, struct compact_control *cc,
1036 const int migratetype)
1037 {
1038 unsigned int order;
1039 unsigned long watermark;
1040
1041 if (cc->contended || fatal_signal_pending(current))
1042 return COMPACT_PARTIAL;
1043
1044 /* Compaction run completes if the migrate and free scanner meet */
1045 if (cc->free_pfn <= cc->migrate_pfn) {
1046 /* Let the next compaction start anew. */
1047 zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
1048 zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
1049 zone->compact_cached_free_pfn = zone_end_pfn(zone);
1050
1051 /*
1052 * Mark that the PG_migrate_skip information should be cleared
1053 * by kswapd when it goes to sleep. kswapd does not set the
1054 * flag itself as the decision to be clear should be directly
1055 * based on an allocation request.
1056 */
1057 if (!current_is_kswapd())
1058 zone->compact_blockskip_flush = true;
1059
1060 return COMPACT_COMPLETE;
1061 }
1062
1063 /*
1064 * order == -1 is expected when compacting via
1065 * /proc/sys/vm/compact_memory
1066 */
1067 if (cc->order == -1)
1068 return COMPACT_CONTINUE;
1069
1070 /* Compaction run is not finished if the watermark is not met */
1071 watermark = low_wmark_pages(zone);
1072 watermark += (1 << cc->order);
1073
1074 if (!zone_watermark_ok(zone, cc->order, watermark, 0, 0))
1075 return COMPACT_CONTINUE;
1076
1077 /* Direct compactor: Is a suitable page free? */
1078 for (order = cc->order; order < MAX_ORDER; order++) {
1079 struct free_area *area = &zone->free_area[order];
1080
1081 /* Job done if page is free of the right migratetype */
1082 if (!list_empty(&area->free_list[migratetype]))
1083 return COMPACT_PARTIAL;
1084
1085 /* Job done if allocation would set block type */
1086 if (cc->order >= pageblock_order && area->nr_free)
1087 return COMPACT_PARTIAL;
1088 }
1089
1090 return COMPACT_CONTINUE;
1091 }
1092
1093 /*
1094 * compaction_suitable: Is this suitable to run compaction on this zone now?
1095 * Returns
1096 * COMPACT_SKIPPED - If there are too few free pages for compaction
1097 * COMPACT_PARTIAL - If the allocation would succeed without compaction
1098 * COMPACT_CONTINUE - If compaction should run now
1099 */
1100 unsigned long compaction_suitable(struct zone *zone, int order)
1101 {
1102 int fragindex;
1103 unsigned long watermark;
1104
1105 /*
1106 * order == -1 is expected when compacting via
1107 * /proc/sys/vm/compact_memory
1108 */
1109 if (order == -1)
1110 return COMPACT_CONTINUE;
1111
1112 /*
1113 * Watermarks for order-0 must be met for compaction. Note the 2UL.
1114 * This is because during migration, copies of pages need to be
1115 * allocated and for a short time, the footprint is higher
1116 */
1117 watermark = low_wmark_pages(zone) + (2UL << order);
1118 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
1119 return COMPACT_SKIPPED;
1120
1121 /*
1122 * fragmentation index determines if allocation failures are due to
1123 * low memory or external fragmentation
1124 *
1125 * index of -1000 implies allocations might succeed depending on
1126 * watermarks
1127 * index towards 0 implies failure is due to lack of memory
1128 * index towards 1000 implies failure is due to fragmentation
1129 *
1130 * Only compact if a failure would be due to fragmentation.
1131 */
1132 fragindex = fragmentation_index(zone, order);
1133 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
1134 return COMPACT_SKIPPED;
1135
1136 if (fragindex == -1000 && zone_watermark_ok(zone, order, watermark,
1137 0, 0))
1138 return COMPACT_PARTIAL;
1139
1140 return COMPACT_CONTINUE;
1141 }
1142
1143 static int compact_zone(struct zone *zone, struct compact_control *cc)
1144 {
1145 int ret;
1146 unsigned long start_pfn = zone->zone_start_pfn;
1147 unsigned long end_pfn = zone_end_pfn(zone);
1148 const int migratetype = gfpflags_to_migratetype(cc->gfp_mask);
1149 const bool sync = cc->mode != MIGRATE_ASYNC;
1150
1151 ret = compaction_suitable(zone, cc->order);
1152 switch (ret) {
1153 case COMPACT_PARTIAL:
1154 case COMPACT_SKIPPED:
1155 /* Compaction is likely to fail */
1156 return ret;
1157 case COMPACT_CONTINUE:
1158 /* Fall through to compaction */
1159 ;
1160 }
1161
1162 /*
1163 * Clear pageblock skip if there were failures recently and compaction
1164 * is about to be retried after being deferred. kswapd does not do
1165 * this reset as it'll reset the cached information when going to sleep.
1166 */
1167 if (compaction_restarting(zone, cc->order) && !current_is_kswapd())
1168 __reset_isolation_suitable(zone);
1169
1170 /*
1171 * Setup to move all movable pages to the end of the zone. Used cached
1172 * information on where the scanners should start but check that it
1173 * is initialised by ensuring the values are within zone boundaries.
1174 */
1175 cc->migrate_pfn = zone->compact_cached_migrate_pfn[sync];
1176 cc->free_pfn = zone->compact_cached_free_pfn;
1177 if (cc->free_pfn < start_pfn || cc->free_pfn > end_pfn) {
1178 cc->free_pfn = end_pfn & ~(pageblock_nr_pages-1);
1179 zone->compact_cached_free_pfn = cc->free_pfn;
1180 }
1181 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn > end_pfn) {
1182 cc->migrate_pfn = start_pfn;
1183 zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
1184 zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
1185 }
1186
1187 trace_mm_compaction_begin(start_pfn, cc->migrate_pfn, cc->free_pfn, end_pfn);
1188
1189 migrate_prep_local();
1190
1191 while ((ret = compact_finished(zone, cc, migratetype)) ==
1192 COMPACT_CONTINUE) {
1193 int err;
1194
1195 switch (isolate_migratepages(zone, cc)) {
1196 case ISOLATE_ABORT:
1197 ret = COMPACT_PARTIAL;
1198 putback_movable_pages(&cc->migratepages);
1199 cc->nr_migratepages = 0;
1200 goto out;
1201 case ISOLATE_NONE:
1202 continue;
1203 case ISOLATE_SUCCESS:
1204 ;
1205 }
1206
1207 err = migrate_pages(&cc->migratepages, compaction_alloc,
1208 compaction_free, (unsigned long)cc, cc->mode,
1209 MR_COMPACTION);
1210
1211 trace_mm_compaction_migratepages(cc->nr_migratepages, err,
1212 &cc->migratepages);
1213
1214 /* All pages were either migrated or will be released */
1215 cc->nr_migratepages = 0;
1216 if (err) {
1217 putback_movable_pages(&cc->migratepages);
1218 /*
1219 * migrate_pages() may return -ENOMEM when scanners meet
1220 * and we want compact_finished() to detect it
1221 */
1222 if (err == -ENOMEM && cc->free_pfn > cc->migrate_pfn) {
1223 ret = COMPACT_PARTIAL;
1224 goto out;
1225 }
1226 }
1227 }
1228
1229 out:
1230 /* Release free pages and check accounting */
1231 cc->nr_freepages -= release_freepages(&cc->freepages);
1232 VM_BUG_ON(cc->nr_freepages != 0);
1233
1234 trace_mm_compaction_end(ret);
1235
1236 return ret;
1237 }
1238
1239 static unsigned long compact_zone_order(struct zone *zone, int order,
1240 gfp_t gfp_mask, enum migrate_mode mode, int *contended)
1241 {
1242 unsigned long ret;
1243 struct compact_control cc = {
1244 .nr_freepages = 0,
1245 .nr_migratepages = 0,
1246 .order = order,
1247 .gfp_mask = gfp_mask,
1248 .zone = zone,
1249 .mode = mode,
1250 };
1251 INIT_LIST_HEAD(&cc.freepages);
1252 INIT_LIST_HEAD(&cc.migratepages);
1253
1254 ret = compact_zone(zone, &cc);
1255
1256 VM_BUG_ON(!list_empty(&cc.freepages));
1257 VM_BUG_ON(!list_empty(&cc.migratepages));
1258
1259 *contended = cc.contended;
1260 return ret;
1261 }
1262
1263 int sysctl_extfrag_threshold = 500;
1264
1265 /**
1266 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
1267 * @zonelist: The zonelist used for the current allocation
1268 * @order: The order of the current allocation
1269 * @gfp_mask: The GFP mask of the current allocation
1270 * @nodemask: The allowed nodes to allocate from
1271 * @mode: The migration mode for async, sync light, or sync migration
1272 * @contended: Return value that determines if compaction was aborted due to
1273 * need_resched() or lock contention
1274 * @candidate_zone: Return the zone where we think allocation should succeed
1275 *
1276 * This is the main entry point for direct page compaction.
1277 */
1278 unsigned long try_to_compact_pages(struct zonelist *zonelist,
1279 int order, gfp_t gfp_mask, nodemask_t *nodemask,
1280 enum migrate_mode mode, int *contended,
1281 struct zone **candidate_zone)
1282 {
1283 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
1284 int may_enter_fs = gfp_mask & __GFP_FS;
1285 int may_perform_io = gfp_mask & __GFP_IO;
1286 struct zoneref *z;
1287 struct zone *zone;
1288 int rc = COMPACT_DEFERRED;
1289 int alloc_flags = 0;
1290 int all_zones_contended = COMPACT_CONTENDED_LOCK; /* init for &= op */
1291
1292 *contended = COMPACT_CONTENDED_NONE;
1293
1294 /* Check if the GFP flags allow compaction */
1295 if (!order || !may_enter_fs || !may_perform_io)
1296 return COMPACT_SKIPPED;
1297
1298 #ifdef CONFIG_CMA
1299 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
1300 alloc_flags |= ALLOC_CMA;
1301 #endif
1302 /* Compact each zone in the list */
1303 for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx,
1304 nodemask) {
1305 int status;
1306 int zone_contended;
1307
1308 if (compaction_deferred(zone, order))
1309 continue;
1310
1311 status = compact_zone_order(zone, order, gfp_mask, mode,
1312 &zone_contended);
1313 rc = max(status, rc);
1314 /*
1315 * It takes at least one zone that wasn't lock contended
1316 * to clear all_zones_contended.
1317 */
1318 all_zones_contended &= zone_contended;
1319
1320 /* If a normal allocation would succeed, stop compacting */
1321 if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0,
1322 alloc_flags)) {
1323 *candidate_zone = zone;
1324 /*
1325 * We think the allocation will succeed in this zone,
1326 * but it is not certain, hence the false. The caller
1327 * will repeat this with true if allocation indeed
1328 * succeeds in this zone.
1329 */
1330 compaction_defer_reset(zone, order, false);
1331 /*
1332 * It is possible that async compaction aborted due to
1333 * need_resched() and the watermarks were ok thanks to
1334 * somebody else freeing memory. The allocation can
1335 * however still fail so we better signal the
1336 * need_resched() contention anyway (this will not
1337 * prevent the allocation attempt).
1338 */
1339 if (zone_contended == COMPACT_CONTENDED_SCHED)
1340 *contended = COMPACT_CONTENDED_SCHED;
1341
1342 goto break_loop;
1343 }
1344
1345 if (mode != MIGRATE_ASYNC) {
1346 /*
1347 * We think that allocation won't succeed in this zone
1348 * so we defer compaction there. If it ends up
1349 * succeeding after all, it will be reset.
1350 */
1351 defer_compaction(zone, order);
1352 }
1353
1354 /*
1355 * We might have stopped compacting due to need_resched() in
1356 * async compaction, or due to a fatal signal detected. In that
1357 * case do not try further zones and signal need_resched()
1358 * contention.
1359 */
1360 if ((zone_contended == COMPACT_CONTENDED_SCHED)
1361 || fatal_signal_pending(current)) {
1362 *contended = COMPACT_CONTENDED_SCHED;
1363 goto break_loop;
1364 }
1365
1366 continue;
1367 break_loop:
1368 /*
1369 * We might not have tried all the zones, so be conservative
1370 * and assume they are not all lock contended.
1371 */
1372 all_zones_contended = 0;
1373 break;
1374 }
1375
1376 /*
1377 * If at least one zone wasn't deferred or skipped, we report if all
1378 * zones that were tried were lock contended.
1379 */
1380 if (rc > COMPACT_SKIPPED && all_zones_contended)
1381 *contended = COMPACT_CONTENDED_LOCK;
1382
1383 return rc;
1384 }
1385
1386
1387 /* Compact all zones within a node */
1388 static void __compact_pgdat(pg_data_t *pgdat, struct compact_control *cc)
1389 {
1390 int zoneid;
1391 struct zone *zone;
1392
1393 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
1394
1395 zone = &pgdat->node_zones[zoneid];
1396 if (!populated_zone(zone))
1397 continue;
1398
1399 cc->nr_freepages = 0;
1400 cc->nr_migratepages = 0;
1401 cc->zone = zone;
1402 INIT_LIST_HEAD(&cc->freepages);
1403 INIT_LIST_HEAD(&cc->migratepages);
1404
1405 if (cc->order == -1 || !compaction_deferred(zone, cc->order))
1406 compact_zone(zone, cc);
1407
1408 if (cc->order > 0) {
1409 if (zone_watermark_ok(zone, cc->order,
1410 low_wmark_pages(zone), 0, 0))
1411 compaction_defer_reset(zone, cc->order, false);
1412 }
1413
1414 VM_BUG_ON(!list_empty(&cc->freepages));
1415 VM_BUG_ON(!list_empty(&cc->migratepages));
1416 }
1417 }
1418
1419 void compact_pgdat(pg_data_t *pgdat, int order)
1420 {
1421 struct compact_control cc = {
1422 .order = order,
1423 .mode = MIGRATE_ASYNC,
1424 };
1425
1426 if (!order)
1427 return;
1428
1429 __compact_pgdat(pgdat, &cc);
1430 }
1431
1432 static void compact_node(int nid)
1433 {
1434 struct compact_control cc = {
1435 .order = -1,
1436 .mode = MIGRATE_SYNC,
1437 .ignore_skip_hint = true,
1438 };
1439
1440 __compact_pgdat(NODE_DATA(nid), &cc);
1441 }
1442
1443 /* Compact all nodes in the system */
1444 static void compact_nodes(void)
1445 {
1446 int nid;
1447
1448 /* Flush pending updates to the LRU lists */
1449 lru_add_drain_all();
1450
1451 for_each_online_node(nid)
1452 compact_node(nid);
1453 }
1454
1455 /* The written value is actually unused, all memory is compacted */
1456 int sysctl_compact_memory;
1457
1458 /* This is the entry point for compacting all nodes via /proc/sys/vm */
1459 int sysctl_compaction_handler(struct ctl_table *table, int write,
1460 void __user *buffer, size_t *length, loff_t *ppos)
1461 {
1462 if (write)
1463 compact_nodes();
1464
1465 return 0;
1466 }
1467
1468 int sysctl_extfrag_handler(struct ctl_table *table, int write,
1469 void __user *buffer, size_t *length, loff_t *ppos)
1470 {
1471 proc_dointvec_minmax(table, write, buffer, length, ppos);
1472
1473 return 0;
1474 }
1475
1476 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
1477 static ssize_t sysfs_compact_node(struct device *dev,
1478 struct device_attribute *attr,
1479 const char *buf, size_t count)
1480 {
1481 int nid = dev->id;
1482
1483 if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
1484 /* Flush pending updates to the LRU lists */
1485 lru_add_drain_all();
1486
1487 compact_node(nid);
1488 }
1489
1490 return count;
1491 }
1492 static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
1493
1494 int compaction_register_node(struct node *node)
1495 {
1496 return device_create_file(&node->dev, &dev_attr_compact);
1497 }
1498
1499 void compaction_unregister_node(struct node *node)
1500 {
1501 return device_remove_file(&node->dev, &dev_attr_compact);
1502 }
1503 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
1504
1505 #endif /* CONFIG_COMPACTION */
This page took 0.061046 seconds and 5 git commands to generate.