mm: compaction: allow compaction to isolate dirty pages
[deliverable/linux.git] / mm / compaction.c
1 /*
2 * linux/mm/compaction.c
3 *
4 * Memory compaction for the reduction of external fragmentation. Note that
5 * this heavily depends upon page migration to do all the real heavy
6 * lifting
7 *
8 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
9 */
10 #include <linux/swap.h>
11 #include <linux/migrate.h>
12 #include <linux/compaction.h>
13 #include <linux/mm_inline.h>
14 #include <linux/backing-dev.h>
15 #include <linux/sysctl.h>
16 #include <linux/sysfs.h>
17 #include "internal.h"
18
19 #define CREATE_TRACE_POINTS
20 #include <trace/events/compaction.h>
21
22 /*
23 * compact_control is used to track pages being migrated and the free pages
24 * they are being migrated to during memory compaction. The free_pfn starts
25 * at the end of a zone and migrate_pfn begins at the start. Movable pages
26 * are moved to the end of a zone during a compaction run and the run
27 * completes when free_pfn <= migrate_pfn
28 */
29 struct compact_control {
30 struct list_head freepages; /* List of free pages to migrate to */
31 struct list_head migratepages; /* List of pages being migrated */
32 unsigned long nr_freepages; /* Number of isolated free pages */
33 unsigned long nr_migratepages; /* Number of pages to migrate */
34 unsigned long free_pfn; /* isolate_freepages search base */
35 unsigned long migrate_pfn; /* isolate_migratepages search base */
36 bool sync; /* Synchronous migration */
37
38 unsigned int order; /* order a direct compactor needs */
39 int migratetype; /* MOVABLE, RECLAIMABLE etc */
40 struct zone *zone;
41 };
42
43 static unsigned long release_freepages(struct list_head *freelist)
44 {
45 struct page *page, *next;
46 unsigned long count = 0;
47
48 list_for_each_entry_safe(page, next, freelist, lru) {
49 list_del(&page->lru);
50 __free_page(page);
51 count++;
52 }
53
54 return count;
55 }
56
57 /* Isolate free pages onto a private freelist. Must hold zone->lock */
58 static unsigned long isolate_freepages_block(struct zone *zone,
59 unsigned long blockpfn,
60 struct list_head *freelist)
61 {
62 unsigned long zone_end_pfn, end_pfn;
63 int nr_scanned = 0, total_isolated = 0;
64 struct page *cursor;
65
66 /* Get the last PFN we should scan for free pages at */
67 zone_end_pfn = zone->zone_start_pfn + zone->spanned_pages;
68 end_pfn = min(blockpfn + pageblock_nr_pages, zone_end_pfn);
69
70 /* Find the first usable PFN in the block to initialse page cursor */
71 for (; blockpfn < end_pfn; blockpfn++) {
72 if (pfn_valid_within(blockpfn))
73 break;
74 }
75 cursor = pfn_to_page(blockpfn);
76
77 /* Isolate free pages. This assumes the block is valid */
78 for (; blockpfn < end_pfn; blockpfn++, cursor++) {
79 int isolated, i;
80 struct page *page = cursor;
81
82 if (!pfn_valid_within(blockpfn))
83 continue;
84 nr_scanned++;
85
86 if (!PageBuddy(page))
87 continue;
88
89 /* Found a free page, break it into order-0 pages */
90 isolated = split_free_page(page);
91 total_isolated += isolated;
92 for (i = 0; i < isolated; i++) {
93 list_add(&page->lru, freelist);
94 page++;
95 }
96
97 /* If a page was split, advance to the end of it */
98 if (isolated) {
99 blockpfn += isolated - 1;
100 cursor += isolated - 1;
101 }
102 }
103
104 trace_mm_compaction_isolate_freepages(nr_scanned, total_isolated);
105 return total_isolated;
106 }
107
108 /* Returns true if the page is within a block suitable for migration to */
109 static bool suitable_migration_target(struct page *page)
110 {
111
112 int migratetype = get_pageblock_migratetype(page);
113
114 /* Don't interfere with memory hot-remove or the min_free_kbytes blocks */
115 if (migratetype == MIGRATE_ISOLATE || migratetype == MIGRATE_RESERVE)
116 return false;
117
118 /* If the page is a large free page, then allow migration */
119 if (PageBuddy(page) && page_order(page) >= pageblock_order)
120 return true;
121
122 /* If the block is MIGRATE_MOVABLE, allow migration */
123 if (migratetype == MIGRATE_MOVABLE)
124 return true;
125
126 /* Otherwise skip the block */
127 return false;
128 }
129
130 /*
131 * Based on information in the current compact_control, find blocks
132 * suitable for isolating free pages from and then isolate them.
133 */
134 static void isolate_freepages(struct zone *zone,
135 struct compact_control *cc)
136 {
137 struct page *page;
138 unsigned long high_pfn, low_pfn, pfn;
139 unsigned long flags;
140 int nr_freepages = cc->nr_freepages;
141 struct list_head *freelist = &cc->freepages;
142
143 /*
144 * Initialise the free scanner. The starting point is where we last
145 * scanned from (or the end of the zone if starting). The low point
146 * is the end of the pageblock the migration scanner is using.
147 */
148 pfn = cc->free_pfn;
149 low_pfn = cc->migrate_pfn + pageblock_nr_pages;
150
151 /*
152 * Take care that if the migration scanner is at the end of the zone
153 * that the free scanner does not accidentally move to the next zone
154 * in the next isolation cycle.
155 */
156 high_pfn = min(low_pfn, pfn);
157
158 /*
159 * Isolate free pages until enough are available to migrate the
160 * pages on cc->migratepages. We stop searching if the migrate
161 * and free page scanners meet or enough free pages are isolated.
162 */
163 for (; pfn > low_pfn && cc->nr_migratepages > nr_freepages;
164 pfn -= pageblock_nr_pages) {
165 unsigned long isolated;
166
167 if (!pfn_valid(pfn))
168 continue;
169
170 /*
171 * Check for overlapping nodes/zones. It's possible on some
172 * configurations to have a setup like
173 * node0 node1 node0
174 * i.e. it's possible that all pages within a zones range of
175 * pages do not belong to a single zone.
176 */
177 page = pfn_to_page(pfn);
178 if (page_zone(page) != zone)
179 continue;
180
181 /* Check the block is suitable for migration */
182 if (!suitable_migration_target(page))
183 continue;
184
185 /*
186 * Found a block suitable for isolating free pages from. Now
187 * we disabled interrupts, double check things are ok and
188 * isolate the pages. This is to minimise the time IRQs
189 * are disabled
190 */
191 isolated = 0;
192 spin_lock_irqsave(&zone->lock, flags);
193 if (suitable_migration_target(page)) {
194 isolated = isolate_freepages_block(zone, pfn, freelist);
195 nr_freepages += isolated;
196 }
197 spin_unlock_irqrestore(&zone->lock, flags);
198
199 /*
200 * Record the highest PFN we isolated pages from. When next
201 * looking for free pages, the search will restart here as
202 * page migration may have returned some pages to the allocator
203 */
204 if (isolated)
205 high_pfn = max(high_pfn, pfn);
206 }
207
208 /* split_free_page does not map the pages */
209 list_for_each_entry(page, freelist, lru) {
210 arch_alloc_page(page, 0);
211 kernel_map_pages(page, 1, 1);
212 }
213
214 cc->free_pfn = high_pfn;
215 cc->nr_freepages = nr_freepages;
216 }
217
218 /* Update the number of anon and file isolated pages in the zone */
219 static void acct_isolated(struct zone *zone, struct compact_control *cc)
220 {
221 struct page *page;
222 unsigned int count[2] = { 0, };
223
224 list_for_each_entry(page, &cc->migratepages, lru)
225 count[!!page_is_file_cache(page)]++;
226
227 __mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
228 __mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
229 }
230
231 /* Similar to reclaim, but different enough that they don't share logic */
232 static bool too_many_isolated(struct zone *zone)
233 {
234 unsigned long active, inactive, isolated;
235
236 inactive = zone_page_state(zone, NR_INACTIVE_FILE) +
237 zone_page_state(zone, NR_INACTIVE_ANON);
238 active = zone_page_state(zone, NR_ACTIVE_FILE) +
239 zone_page_state(zone, NR_ACTIVE_ANON);
240 isolated = zone_page_state(zone, NR_ISOLATED_FILE) +
241 zone_page_state(zone, NR_ISOLATED_ANON);
242
243 return isolated > (inactive + active) / 2;
244 }
245
246 /* possible outcome of isolate_migratepages */
247 typedef enum {
248 ISOLATE_ABORT, /* Abort compaction now */
249 ISOLATE_NONE, /* No pages isolated, continue scanning */
250 ISOLATE_SUCCESS, /* Pages isolated, migrate */
251 } isolate_migrate_t;
252
253 /*
254 * Isolate all pages that can be migrated from the block pointed to by
255 * the migrate scanner within compact_control.
256 */
257 static isolate_migrate_t isolate_migratepages(struct zone *zone,
258 struct compact_control *cc)
259 {
260 unsigned long low_pfn, end_pfn;
261 unsigned long last_pageblock_nr = 0, pageblock_nr;
262 unsigned long nr_scanned = 0, nr_isolated = 0;
263 struct list_head *migratelist = &cc->migratepages;
264 isolate_mode_t mode = ISOLATE_ACTIVE|ISOLATE_INACTIVE;
265
266 /* Do not scan outside zone boundaries */
267 low_pfn = max(cc->migrate_pfn, zone->zone_start_pfn);
268
269 /* Only scan within a pageblock boundary */
270 end_pfn = ALIGN(low_pfn + pageblock_nr_pages, pageblock_nr_pages);
271
272 /* Do not cross the free scanner or scan within a memory hole */
273 if (end_pfn > cc->free_pfn || !pfn_valid(low_pfn)) {
274 cc->migrate_pfn = end_pfn;
275 return ISOLATE_NONE;
276 }
277
278 /*
279 * Ensure that there are not too many pages isolated from the LRU
280 * list by either parallel reclaimers or compaction. If there are,
281 * delay for some time until fewer pages are isolated
282 */
283 while (unlikely(too_many_isolated(zone))) {
284 /* async migration should just abort */
285 if (!cc->sync)
286 return ISOLATE_ABORT;
287
288 congestion_wait(BLK_RW_ASYNC, HZ/10);
289
290 if (fatal_signal_pending(current))
291 return ISOLATE_ABORT;
292 }
293
294 /* Time to isolate some pages for migration */
295 cond_resched();
296 spin_lock_irq(&zone->lru_lock);
297 for (; low_pfn < end_pfn; low_pfn++) {
298 struct page *page;
299 bool locked = true;
300
301 /* give a chance to irqs before checking need_resched() */
302 if (!((low_pfn+1) % SWAP_CLUSTER_MAX)) {
303 spin_unlock_irq(&zone->lru_lock);
304 locked = false;
305 }
306 if (need_resched() || spin_is_contended(&zone->lru_lock)) {
307 if (locked)
308 spin_unlock_irq(&zone->lru_lock);
309 cond_resched();
310 spin_lock_irq(&zone->lru_lock);
311 if (fatal_signal_pending(current))
312 break;
313 } else if (!locked)
314 spin_lock_irq(&zone->lru_lock);
315
316 if (!pfn_valid_within(low_pfn))
317 continue;
318 nr_scanned++;
319
320 /* Get the page and skip if free */
321 page = pfn_to_page(low_pfn);
322 if (PageBuddy(page))
323 continue;
324
325 /*
326 * For async migration, also only scan in MOVABLE blocks. Async
327 * migration is optimistic to see if the minimum amount of work
328 * satisfies the allocation
329 */
330 pageblock_nr = low_pfn >> pageblock_order;
331 if (!cc->sync && last_pageblock_nr != pageblock_nr &&
332 get_pageblock_migratetype(page) != MIGRATE_MOVABLE) {
333 low_pfn += pageblock_nr_pages;
334 low_pfn = ALIGN(low_pfn, pageblock_nr_pages) - 1;
335 last_pageblock_nr = pageblock_nr;
336 continue;
337 }
338
339 if (!PageLRU(page))
340 continue;
341
342 /*
343 * PageLRU is set, and lru_lock excludes isolation,
344 * splitting and collapsing (collapsing has already
345 * happened if PageLRU is set).
346 */
347 if (PageTransHuge(page)) {
348 low_pfn += (1 << compound_order(page)) - 1;
349 continue;
350 }
351
352 /* Try isolate the page */
353 if (__isolate_lru_page(page, mode, 0) != 0)
354 continue;
355
356 VM_BUG_ON(PageTransCompound(page));
357
358 /* Successfully isolated */
359 del_page_from_lru_list(zone, page, page_lru(page));
360 list_add(&page->lru, migratelist);
361 cc->nr_migratepages++;
362 nr_isolated++;
363
364 /* Avoid isolating too much */
365 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
366 ++low_pfn;
367 break;
368 }
369 }
370
371 acct_isolated(zone, cc);
372
373 spin_unlock_irq(&zone->lru_lock);
374 cc->migrate_pfn = low_pfn;
375
376 trace_mm_compaction_isolate_migratepages(nr_scanned, nr_isolated);
377
378 return ISOLATE_SUCCESS;
379 }
380
381 /*
382 * This is a migrate-callback that "allocates" freepages by taking pages
383 * from the isolated freelists in the block we are migrating to.
384 */
385 static struct page *compaction_alloc(struct page *migratepage,
386 unsigned long data,
387 int **result)
388 {
389 struct compact_control *cc = (struct compact_control *)data;
390 struct page *freepage;
391
392 /* Isolate free pages if necessary */
393 if (list_empty(&cc->freepages)) {
394 isolate_freepages(cc->zone, cc);
395
396 if (list_empty(&cc->freepages))
397 return NULL;
398 }
399
400 freepage = list_entry(cc->freepages.next, struct page, lru);
401 list_del(&freepage->lru);
402 cc->nr_freepages--;
403
404 return freepage;
405 }
406
407 /*
408 * We cannot control nr_migratepages and nr_freepages fully when migration is
409 * running as migrate_pages() has no knowledge of compact_control. When
410 * migration is complete, we count the number of pages on the lists by hand.
411 */
412 static void update_nr_listpages(struct compact_control *cc)
413 {
414 int nr_migratepages = 0;
415 int nr_freepages = 0;
416 struct page *page;
417
418 list_for_each_entry(page, &cc->migratepages, lru)
419 nr_migratepages++;
420 list_for_each_entry(page, &cc->freepages, lru)
421 nr_freepages++;
422
423 cc->nr_migratepages = nr_migratepages;
424 cc->nr_freepages = nr_freepages;
425 }
426
427 static int compact_finished(struct zone *zone,
428 struct compact_control *cc)
429 {
430 unsigned int order;
431 unsigned long watermark;
432
433 if (fatal_signal_pending(current))
434 return COMPACT_PARTIAL;
435
436 /* Compaction run completes if the migrate and free scanner meet */
437 if (cc->free_pfn <= cc->migrate_pfn)
438 return COMPACT_COMPLETE;
439
440 /*
441 * order == -1 is expected when compacting via
442 * /proc/sys/vm/compact_memory
443 */
444 if (cc->order == -1)
445 return COMPACT_CONTINUE;
446
447 /* Compaction run is not finished if the watermark is not met */
448 watermark = low_wmark_pages(zone);
449 watermark += (1 << cc->order);
450
451 if (!zone_watermark_ok(zone, cc->order, watermark, 0, 0))
452 return COMPACT_CONTINUE;
453
454 /* Direct compactor: Is a suitable page free? */
455 for (order = cc->order; order < MAX_ORDER; order++) {
456 /* Job done if page is free of the right migratetype */
457 if (!list_empty(&zone->free_area[order].free_list[cc->migratetype]))
458 return COMPACT_PARTIAL;
459
460 /* Job done if allocation would set block type */
461 if (order >= pageblock_order && zone->free_area[order].nr_free)
462 return COMPACT_PARTIAL;
463 }
464
465 return COMPACT_CONTINUE;
466 }
467
468 /*
469 * compaction_suitable: Is this suitable to run compaction on this zone now?
470 * Returns
471 * COMPACT_SKIPPED - If there are too few free pages for compaction
472 * COMPACT_PARTIAL - If the allocation would succeed without compaction
473 * COMPACT_CONTINUE - If compaction should run now
474 */
475 unsigned long compaction_suitable(struct zone *zone, int order)
476 {
477 int fragindex;
478 unsigned long watermark;
479
480 /*
481 * order == -1 is expected when compacting via
482 * /proc/sys/vm/compact_memory
483 */
484 if (order == -1)
485 return COMPACT_CONTINUE;
486
487 /*
488 * Watermarks for order-0 must be met for compaction. Note the 2UL.
489 * This is because during migration, copies of pages need to be
490 * allocated and for a short time, the footprint is higher
491 */
492 watermark = low_wmark_pages(zone) + (2UL << order);
493 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
494 return COMPACT_SKIPPED;
495
496 /*
497 * fragmentation index determines if allocation failures are due to
498 * low memory or external fragmentation
499 *
500 * index of -1000 implies allocations might succeed depending on
501 * watermarks
502 * index towards 0 implies failure is due to lack of memory
503 * index towards 1000 implies failure is due to fragmentation
504 *
505 * Only compact if a failure would be due to fragmentation.
506 */
507 fragindex = fragmentation_index(zone, order);
508 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
509 return COMPACT_SKIPPED;
510
511 if (fragindex == -1000 && zone_watermark_ok(zone, order, watermark,
512 0, 0))
513 return COMPACT_PARTIAL;
514
515 return COMPACT_CONTINUE;
516 }
517
518 static int compact_zone(struct zone *zone, struct compact_control *cc)
519 {
520 int ret;
521
522 ret = compaction_suitable(zone, cc->order);
523 switch (ret) {
524 case COMPACT_PARTIAL:
525 case COMPACT_SKIPPED:
526 /* Compaction is likely to fail */
527 return ret;
528 case COMPACT_CONTINUE:
529 /* Fall through to compaction */
530 ;
531 }
532
533 /* Setup to move all movable pages to the end of the zone */
534 cc->migrate_pfn = zone->zone_start_pfn;
535 cc->free_pfn = cc->migrate_pfn + zone->spanned_pages;
536 cc->free_pfn &= ~(pageblock_nr_pages-1);
537
538 migrate_prep_local();
539
540 while ((ret = compact_finished(zone, cc)) == COMPACT_CONTINUE) {
541 unsigned long nr_migrate, nr_remaining;
542 int err;
543
544 switch (isolate_migratepages(zone, cc)) {
545 case ISOLATE_ABORT:
546 ret = COMPACT_PARTIAL;
547 goto out;
548 case ISOLATE_NONE:
549 continue;
550 case ISOLATE_SUCCESS:
551 ;
552 }
553
554 nr_migrate = cc->nr_migratepages;
555 err = migrate_pages(&cc->migratepages, compaction_alloc,
556 (unsigned long)cc, false,
557 cc->sync);
558 update_nr_listpages(cc);
559 nr_remaining = cc->nr_migratepages;
560
561 count_vm_event(COMPACTBLOCKS);
562 count_vm_events(COMPACTPAGES, nr_migrate - nr_remaining);
563 if (nr_remaining)
564 count_vm_events(COMPACTPAGEFAILED, nr_remaining);
565 trace_mm_compaction_migratepages(nr_migrate - nr_remaining,
566 nr_remaining);
567
568 /* Release LRU pages not migrated */
569 if (err) {
570 putback_lru_pages(&cc->migratepages);
571 cc->nr_migratepages = 0;
572 }
573
574 }
575
576 out:
577 /* Release free pages and check accounting */
578 cc->nr_freepages -= release_freepages(&cc->freepages);
579 VM_BUG_ON(cc->nr_freepages != 0);
580
581 return ret;
582 }
583
584 static unsigned long compact_zone_order(struct zone *zone,
585 int order, gfp_t gfp_mask,
586 bool sync)
587 {
588 struct compact_control cc = {
589 .nr_freepages = 0,
590 .nr_migratepages = 0,
591 .order = order,
592 .migratetype = allocflags_to_migratetype(gfp_mask),
593 .zone = zone,
594 .sync = sync,
595 };
596 INIT_LIST_HEAD(&cc.freepages);
597 INIT_LIST_HEAD(&cc.migratepages);
598
599 return compact_zone(zone, &cc);
600 }
601
602 int sysctl_extfrag_threshold = 500;
603
604 /**
605 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
606 * @zonelist: The zonelist used for the current allocation
607 * @order: The order of the current allocation
608 * @gfp_mask: The GFP mask of the current allocation
609 * @nodemask: The allowed nodes to allocate from
610 * @sync: Whether migration is synchronous or not
611 *
612 * This is the main entry point for direct page compaction.
613 */
614 unsigned long try_to_compact_pages(struct zonelist *zonelist,
615 int order, gfp_t gfp_mask, nodemask_t *nodemask,
616 bool sync)
617 {
618 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
619 int may_enter_fs = gfp_mask & __GFP_FS;
620 int may_perform_io = gfp_mask & __GFP_IO;
621 struct zoneref *z;
622 struct zone *zone;
623 int rc = COMPACT_SKIPPED;
624
625 /*
626 * Check whether it is worth even starting compaction. The order check is
627 * made because an assumption is made that the page allocator can satisfy
628 * the "cheaper" orders without taking special steps
629 */
630 if (!order || !may_enter_fs || !may_perform_io)
631 return rc;
632
633 count_vm_event(COMPACTSTALL);
634
635 /* Compact each zone in the list */
636 for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx,
637 nodemask) {
638 int status;
639
640 status = compact_zone_order(zone, order, gfp_mask, sync);
641 rc = max(status, rc);
642
643 /* If a normal allocation would succeed, stop compacting */
644 if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0, 0))
645 break;
646 }
647
648 return rc;
649 }
650
651
652 /* Compact all zones within a node */
653 static int compact_node(int nid)
654 {
655 int zoneid;
656 pg_data_t *pgdat;
657 struct zone *zone;
658
659 if (nid < 0 || nid >= nr_node_ids || !node_online(nid))
660 return -EINVAL;
661 pgdat = NODE_DATA(nid);
662
663 /* Flush pending updates to the LRU lists */
664 lru_add_drain_all();
665
666 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
667 struct compact_control cc = {
668 .nr_freepages = 0,
669 .nr_migratepages = 0,
670 .order = -1,
671 };
672
673 zone = &pgdat->node_zones[zoneid];
674 if (!populated_zone(zone))
675 continue;
676
677 cc.zone = zone;
678 INIT_LIST_HEAD(&cc.freepages);
679 INIT_LIST_HEAD(&cc.migratepages);
680
681 compact_zone(zone, &cc);
682
683 VM_BUG_ON(!list_empty(&cc.freepages));
684 VM_BUG_ON(!list_empty(&cc.migratepages));
685 }
686
687 return 0;
688 }
689
690 /* Compact all nodes in the system */
691 static int compact_nodes(void)
692 {
693 int nid;
694
695 for_each_online_node(nid)
696 compact_node(nid);
697
698 return COMPACT_COMPLETE;
699 }
700
701 /* The written value is actually unused, all memory is compacted */
702 int sysctl_compact_memory;
703
704 /* This is the entry point for compacting all nodes via /proc/sys/vm */
705 int sysctl_compaction_handler(struct ctl_table *table, int write,
706 void __user *buffer, size_t *length, loff_t *ppos)
707 {
708 if (write)
709 return compact_nodes();
710
711 return 0;
712 }
713
714 int sysctl_extfrag_handler(struct ctl_table *table, int write,
715 void __user *buffer, size_t *length, loff_t *ppos)
716 {
717 proc_dointvec_minmax(table, write, buffer, length, ppos);
718
719 return 0;
720 }
721
722 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
723 ssize_t sysfs_compact_node(struct device *dev,
724 struct device_attribute *attr,
725 const char *buf, size_t count)
726 {
727 compact_node(dev->id);
728
729 return count;
730 }
731 static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
732
733 int compaction_register_node(struct node *node)
734 {
735 return device_create_file(&node->dev, &dev_attr_compact);
736 }
737
738 void compaction_unregister_node(struct node *node)
739 {
740 return device_remove_file(&node->dev, &dev_attr_compact);
741 }
742 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
This page took 0.076808 seconds and 5 git commands to generate.