fuse: fuse_flush() should wait on writeback
[deliverable/linux.git] / mm / compaction.c
1 /*
2 * linux/mm/compaction.c
3 *
4 * Memory compaction for the reduction of external fragmentation. Note that
5 * this heavily depends upon page migration to do all the real heavy
6 * lifting
7 *
8 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
9 */
10 #include <linux/swap.h>
11 #include <linux/migrate.h>
12 #include <linux/compaction.h>
13 #include <linux/mm_inline.h>
14 #include <linux/backing-dev.h>
15 #include <linux/sysctl.h>
16 #include <linux/sysfs.h>
17 #include <linux/balloon_compaction.h>
18 #include <linux/page-isolation.h>
19 #include "internal.h"
20
21 #ifdef CONFIG_COMPACTION
22 static inline void count_compact_event(enum vm_event_item item)
23 {
24 count_vm_event(item);
25 }
26
27 static inline void count_compact_events(enum vm_event_item item, long delta)
28 {
29 count_vm_events(item, delta);
30 }
31 #else
32 #define count_compact_event(item) do { } while (0)
33 #define count_compact_events(item, delta) do { } while (0)
34 #endif
35
36 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
37
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/compaction.h>
40
41 static unsigned long release_freepages(struct list_head *freelist)
42 {
43 struct page *page, *next;
44 unsigned long count = 0;
45
46 list_for_each_entry_safe(page, next, freelist, lru) {
47 list_del(&page->lru);
48 __free_page(page);
49 count++;
50 }
51
52 return count;
53 }
54
55 static void map_pages(struct list_head *list)
56 {
57 struct page *page;
58
59 list_for_each_entry(page, list, lru) {
60 arch_alloc_page(page, 0);
61 kernel_map_pages(page, 1, 1);
62 }
63 }
64
65 static inline bool migrate_async_suitable(int migratetype)
66 {
67 return is_migrate_cma(migratetype) || migratetype == MIGRATE_MOVABLE;
68 }
69
70 #ifdef CONFIG_COMPACTION
71 /* Returns true if the pageblock should be scanned for pages to isolate. */
72 static inline bool isolation_suitable(struct compact_control *cc,
73 struct page *page)
74 {
75 if (cc->ignore_skip_hint)
76 return true;
77
78 return !get_pageblock_skip(page);
79 }
80
81 /*
82 * This function is called to clear all cached information on pageblocks that
83 * should be skipped for page isolation when the migrate and free page scanner
84 * meet.
85 */
86 static void __reset_isolation_suitable(struct zone *zone)
87 {
88 unsigned long start_pfn = zone->zone_start_pfn;
89 unsigned long end_pfn = zone_end_pfn(zone);
90 unsigned long pfn;
91
92 zone->compact_cached_migrate_pfn = start_pfn;
93 zone->compact_cached_free_pfn = end_pfn;
94 zone->compact_blockskip_flush = false;
95
96 /* Walk the zone and mark every pageblock as suitable for isolation */
97 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
98 struct page *page;
99
100 cond_resched();
101
102 if (!pfn_valid(pfn))
103 continue;
104
105 page = pfn_to_page(pfn);
106 if (zone != page_zone(page))
107 continue;
108
109 clear_pageblock_skip(page);
110 }
111 }
112
113 void reset_isolation_suitable(pg_data_t *pgdat)
114 {
115 int zoneid;
116
117 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
118 struct zone *zone = &pgdat->node_zones[zoneid];
119 if (!populated_zone(zone))
120 continue;
121
122 /* Only flush if a full compaction finished recently */
123 if (zone->compact_blockskip_flush)
124 __reset_isolation_suitable(zone);
125 }
126 }
127
128 /*
129 * If no pages were isolated then mark this pageblock to be skipped in the
130 * future. The information is later cleared by __reset_isolation_suitable().
131 */
132 static void update_pageblock_skip(struct compact_control *cc,
133 struct page *page, unsigned long nr_isolated,
134 bool migrate_scanner)
135 {
136 struct zone *zone = cc->zone;
137
138 if (cc->ignore_skip_hint)
139 return;
140
141 if (!page)
142 return;
143
144 if (!nr_isolated) {
145 unsigned long pfn = page_to_pfn(page);
146 set_pageblock_skip(page);
147
148 /* Update where compaction should restart */
149 if (migrate_scanner) {
150 if (!cc->finished_update_migrate &&
151 pfn > zone->compact_cached_migrate_pfn)
152 zone->compact_cached_migrate_pfn = pfn;
153 } else {
154 if (!cc->finished_update_free &&
155 pfn < zone->compact_cached_free_pfn)
156 zone->compact_cached_free_pfn = pfn;
157 }
158 }
159 }
160 #else
161 static inline bool isolation_suitable(struct compact_control *cc,
162 struct page *page)
163 {
164 return true;
165 }
166
167 static void update_pageblock_skip(struct compact_control *cc,
168 struct page *page, unsigned long nr_isolated,
169 bool migrate_scanner)
170 {
171 }
172 #endif /* CONFIG_COMPACTION */
173
174 static inline bool should_release_lock(spinlock_t *lock)
175 {
176 return need_resched() || spin_is_contended(lock);
177 }
178
179 /*
180 * Compaction requires the taking of some coarse locks that are potentially
181 * very heavily contended. Check if the process needs to be scheduled or
182 * if the lock is contended. For async compaction, back out in the event
183 * if contention is severe. For sync compaction, schedule.
184 *
185 * Returns true if the lock is held.
186 * Returns false if the lock is released and compaction should abort
187 */
188 static bool compact_checklock_irqsave(spinlock_t *lock, unsigned long *flags,
189 bool locked, struct compact_control *cc)
190 {
191 if (should_release_lock(lock)) {
192 if (locked) {
193 spin_unlock_irqrestore(lock, *flags);
194 locked = false;
195 }
196
197 /* async aborts if taking too long or contended */
198 if (!cc->sync) {
199 cc->contended = true;
200 return false;
201 }
202
203 cond_resched();
204 }
205
206 if (!locked)
207 spin_lock_irqsave(lock, *flags);
208 return true;
209 }
210
211 static inline bool compact_trylock_irqsave(spinlock_t *lock,
212 unsigned long *flags, struct compact_control *cc)
213 {
214 return compact_checklock_irqsave(lock, flags, false, cc);
215 }
216
217 /* Returns true if the page is within a block suitable for migration to */
218 static bool suitable_migration_target(struct page *page)
219 {
220 int migratetype = get_pageblock_migratetype(page);
221
222 /* Don't interfere with memory hot-remove or the min_free_kbytes blocks */
223 if (migratetype == MIGRATE_RESERVE)
224 return false;
225
226 if (is_migrate_isolate(migratetype))
227 return false;
228
229 /* If the page is a large free page, then allow migration */
230 if (PageBuddy(page) && page_order(page) >= pageblock_order)
231 return true;
232
233 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
234 if (migrate_async_suitable(migratetype))
235 return true;
236
237 /* Otherwise skip the block */
238 return false;
239 }
240
241 /*
242 * Isolate free pages onto a private freelist. If @strict is true, will abort
243 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
244 * (even though it may still end up isolating some pages).
245 */
246 static unsigned long isolate_freepages_block(struct compact_control *cc,
247 unsigned long blockpfn,
248 unsigned long end_pfn,
249 struct list_head *freelist,
250 bool strict)
251 {
252 int nr_scanned = 0, total_isolated = 0;
253 struct page *cursor, *valid_page = NULL;
254 unsigned long flags;
255 bool locked = false;
256
257 cursor = pfn_to_page(blockpfn);
258
259 /* Isolate free pages. */
260 for (; blockpfn < end_pfn; blockpfn++, cursor++) {
261 int isolated, i;
262 struct page *page = cursor;
263
264 nr_scanned++;
265 if (!pfn_valid_within(blockpfn))
266 goto isolate_fail;
267
268 if (!valid_page)
269 valid_page = page;
270 if (!PageBuddy(page))
271 goto isolate_fail;
272
273 /*
274 * The zone lock must be held to isolate freepages.
275 * Unfortunately this is a very coarse lock and can be
276 * heavily contended if there are parallel allocations
277 * or parallel compactions. For async compaction do not
278 * spin on the lock and we acquire the lock as late as
279 * possible.
280 */
281 locked = compact_checklock_irqsave(&cc->zone->lock, &flags,
282 locked, cc);
283 if (!locked)
284 break;
285
286 /* Recheck this is a suitable migration target under lock */
287 if (!strict && !suitable_migration_target(page))
288 break;
289
290 /* Recheck this is a buddy page under lock */
291 if (!PageBuddy(page))
292 goto isolate_fail;
293
294 /* Found a free page, break it into order-0 pages */
295 isolated = split_free_page(page);
296 total_isolated += isolated;
297 for (i = 0; i < isolated; i++) {
298 list_add(&page->lru, freelist);
299 page++;
300 }
301
302 /* If a page was split, advance to the end of it */
303 if (isolated) {
304 blockpfn += isolated - 1;
305 cursor += isolated - 1;
306 continue;
307 }
308
309 isolate_fail:
310 if (strict)
311 break;
312 else
313 continue;
314
315 }
316
317 trace_mm_compaction_isolate_freepages(nr_scanned, total_isolated);
318
319 /*
320 * If strict isolation is requested by CMA then check that all the
321 * pages requested were isolated. If there were any failures, 0 is
322 * returned and CMA will fail.
323 */
324 if (strict && blockpfn < end_pfn)
325 total_isolated = 0;
326
327 if (locked)
328 spin_unlock_irqrestore(&cc->zone->lock, flags);
329
330 /* Update the pageblock-skip if the whole pageblock was scanned */
331 if (blockpfn == end_pfn)
332 update_pageblock_skip(cc, valid_page, total_isolated, false);
333
334 count_compact_events(COMPACTFREE_SCANNED, nr_scanned);
335 if (total_isolated)
336 count_compact_events(COMPACTISOLATED, total_isolated);
337 return total_isolated;
338 }
339
340 /**
341 * isolate_freepages_range() - isolate free pages.
342 * @start_pfn: The first PFN to start isolating.
343 * @end_pfn: The one-past-last PFN.
344 *
345 * Non-free pages, invalid PFNs, or zone boundaries within the
346 * [start_pfn, end_pfn) range are considered errors, cause function to
347 * undo its actions and return zero.
348 *
349 * Otherwise, function returns one-past-the-last PFN of isolated page
350 * (which may be greater then end_pfn if end fell in a middle of
351 * a free page).
352 */
353 unsigned long
354 isolate_freepages_range(struct compact_control *cc,
355 unsigned long start_pfn, unsigned long end_pfn)
356 {
357 unsigned long isolated, pfn, block_end_pfn;
358 LIST_HEAD(freelist);
359
360 for (pfn = start_pfn; pfn < end_pfn; pfn += isolated) {
361 if (!pfn_valid(pfn) || cc->zone != page_zone(pfn_to_page(pfn)))
362 break;
363
364 /*
365 * On subsequent iterations ALIGN() is actually not needed,
366 * but we keep it that we not to complicate the code.
367 */
368 block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
369 block_end_pfn = min(block_end_pfn, end_pfn);
370
371 isolated = isolate_freepages_block(cc, pfn, block_end_pfn,
372 &freelist, true);
373
374 /*
375 * In strict mode, isolate_freepages_block() returns 0 if
376 * there are any holes in the block (ie. invalid PFNs or
377 * non-free pages).
378 */
379 if (!isolated)
380 break;
381
382 /*
383 * If we managed to isolate pages, it is always (1 << n) *
384 * pageblock_nr_pages for some non-negative n. (Max order
385 * page may span two pageblocks).
386 */
387 }
388
389 /* split_free_page does not map the pages */
390 map_pages(&freelist);
391
392 if (pfn < end_pfn) {
393 /* Loop terminated early, cleanup. */
394 release_freepages(&freelist);
395 return 0;
396 }
397
398 /* We don't use freelists for anything. */
399 return pfn;
400 }
401
402 /* Update the number of anon and file isolated pages in the zone */
403 static void acct_isolated(struct zone *zone, bool locked, struct compact_control *cc)
404 {
405 struct page *page;
406 unsigned int count[2] = { 0, };
407
408 list_for_each_entry(page, &cc->migratepages, lru)
409 count[!!page_is_file_cache(page)]++;
410
411 /* If locked we can use the interrupt unsafe versions */
412 if (locked) {
413 __mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
414 __mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
415 } else {
416 mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
417 mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
418 }
419 }
420
421 /* Similar to reclaim, but different enough that they don't share logic */
422 static bool too_many_isolated(struct zone *zone)
423 {
424 unsigned long active, inactive, isolated;
425
426 inactive = zone_page_state(zone, NR_INACTIVE_FILE) +
427 zone_page_state(zone, NR_INACTIVE_ANON);
428 active = zone_page_state(zone, NR_ACTIVE_FILE) +
429 zone_page_state(zone, NR_ACTIVE_ANON);
430 isolated = zone_page_state(zone, NR_ISOLATED_FILE) +
431 zone_page_state(zone, NR_ISOLATED_ANON);
432
433 return isolated > (inactive + active) / 2;
434 }
435
436 /**
437 * isolate_migratepages_range() - isolate all migrate-able pages in range.
438 * @zone: Zone pages are in.
439 * @cc: Compaction control structure.
440 * @low_pfn: The first PFN of the range.
441 * @end_pfn: The one-past-the-last PFN of the range.
442 * @unevictable: true if it allows to isolate unevictable pages
443 *
444 * Isolate all pages that can be migrated from the range specified by
445 * [low_pfn, end_pfn). Returns zero if there is a fatal signal
446 * pending), otherwise PFN of the first page that was not scanned
447 * (which may be both less, equal to or more then end_pfn).
448 *
449 * Assumes that cc->migratepages is empty and cc->nr_migratepages is
450 * zero.
451 *
452 * Apart from cc->migratepages and cc->nr_migratetypes this function
453 * does not modify any cc's fields, in particular it does not modify
454 * (or read for that matter) cc->migrate_pfn.
455 */
456 unsigned long
457 isolate_migratepages_range(struct zone *zone, struct compact_control *cc,
458 unsigned long low_pfn, unsigned long end_pfn, bool unevictable)
459 {
460 unsigned long last_pageblock_nr = 0, pageblock_nr;
461 unsigned long nr_scanned = 0, nr_isolated = 0;
462 struct list_head *migratelist = &cc->migratepages;
463 isolate_mode_t mode = 0;
464 struct lruvec *lruvec;
465 unsigned long flags;
466 bool locked = false;
467 struct page *page = NULL, *valid_page = NULL;
468 bool skipped_async_unsuitable = false;
469
470 /*
471 * Ensure that there are not too many pages isolated from the LRU
472 * list by either parallel reclaimers or compaction. If there are,
473 * delay for some time until fewer pages are isolated
474 */
475 while (unlikely(too_many_isolated(zone))) {
476 /* async migration should just abort */
477 if (!cc->sync)
478 return 0;
479
480 congestion_wait(BLK_RW_ASYNC, HZ/10);
481
482 if (fatal_signal_pending(current))
483 return 0;
484 }
485
486 /* Time to isolate some pages for migration */
487 cond_resched();
488 for (; low_pfn < end_pfn; low_pfn++) {
489 /* give a chance to irqs before checking need_resched() */
490 if (locked && !((low_pfn+1) % SWAP_CLUSTER_MAX)) {
491 if (should_release_lock(&zone->lru_lock)) {
492 spin_unlock_irqrestore(&zone->lru_lock, flags);
493 locked = false;
494 }
495 }
496
497 /*
498 * migrate_pfn does not necessarily start aligned to a
499 * pageblock. Ensure that pfn_valid is called when moving
500 * into a new MAX_ORDER_NR_PAGES range in case of large
501 * memory holes within the zone
502 */
503 if ((low_pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
504 if (!pfn_valid(low_pfn)) {
505 low_pfn += MAX_ORDER_NR_PAGES - 1;
506 continue;
507 }
508 }
509
510 if (!pfn_valid_within(low_pfn))
511 continue;
512 nr_scanned++;
513
514 /*
515 * Get the page and ensure the page is within the same zone.
516 * See the comment in isolate_freepages about overlapping
517 * nodes. It is deliberate that the new zone lock is not taken
518 * as memory compaction should not move pages between nodes.
519 */
520 page = pfn_to_page(low_pfn);
521 if (page_zone(page) != zone)
522 continue;
523
524 if (!valid_page)
525 valid_page = page;
526
527 /* If isolation recently failed, do not retry */
528 pageblock_nr = low_pfn >> pageblock_order;
529 if (!isolation_suitable(cc, page))
530 goto next_pageblock;
531
532 /*
533 * Skip if free. page_order cannot be used without zone->lock
534 * as nothing prevents parallel allocations or buddy merging.
535 */
536 if (PageBuddy(page))
537 continue;
538
539 /*
540 * For async migration, also only scan in MOVABLE blocks. Async
541 * migration is optimistic to see if the minimum amount of work
542 * satisfies the allocation
543 */
544 if (!cc->sync && last_pageblock_nr != pageblock_nr &&
545 !migrate_async_suitable(get_pageblock_migratetype(page))) {
546 cc->finished_update_migrate = true;
547 skipped_async_unsuitable = true;
548 goto next_pageblock;
549 }
550
551 /*
552 * Check may be lockless but that's ok as we recheck later.
553 * It's possible to migrate LRU pages and balloon pages
554 * Skip any other type of page
555 */
556 if (!PageLRU(page)) {
557 if (unlikely(balloon_page_movable(page))) {
558 if (locked && balloon_page_isolate(page)) {
559 /* Successfully isolated */
560 cc->finished_update_migrate = true;
561 list_add(&page->lru, migratelist);
562 cc->nr_migratepages++;
563 nr_isolated++;
564 goto check_compact_cluster;
565 }
566 }
567 continue;
568 }
569
570 /*
571 * PageLRU is set. lru_lock normally excludes isolation
572 * splitting and collapsing (collapsing has already happened
573 * if PageLRU is set) but the lock is not necessarily taken
574 * here and it is wasteful to take it just to check transhuge.
575 * Check TransHuge without lock and skip the whole pageblock if
576 * it's either a transhuge or hugetlbfs page, as calling
577 * compound_order() without preventing THP from splitting the
578 * page underneath us may return surprising results.
579 */
580 if (PageTransHuge(page)) {
581 if (!locked)
582 goto next_pageblock;
583 low_pfn += (1 << compound_order(page)) - 1;
584 continue;
585 }
586
587 /* Check if it is ok to still hold the lock */
588 locked = compact_checklock_irqsave(&zone->lru_lock, &flags,
589 locked, cc);
590 if (!locked || fatal_signal_pending(current))
591 break;
592
593 /* Recheck PageLRU and PageTransHuge under lock */
594 if (!PageLRU(page))
595 continue;
596 if (PageTransHuge(page)) {
597 low_pfn += (1 << compound_order(page)) - 1;
598 continue;
599 }
600
601 if (!cc->sync)
602 mode |= ISOLATE_ASYNC_MIGRATE;
603
604 if (unevictable)
605 mode |= ISOLATE_UNEVICTABLE;
606
607 lruvec = mem_cgroup_page_lruvec(page, zone);
608
609 /* Try isolate the page */
610 if (__isolate_lru_page(page, mode) != 0)
611 continue;
612
613 VM_BUG_ON_PAGE(PageTransCompound(page), page);
614
615 /* Successfully isolated */
616 cc->finished_update_migrate = true;
617 del_page_from_lru_list(page, lruvec, page_lru(page));
618 list_add(&page->lru, migratelist);
619 cc->nr_migratepages++;
620 nr_isolated++;
621
622 check_compact_cluster:
623 /* Avoid isolating too much */
624 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
625 ++low_pfn;
626 break;
627 }
628
629 continue;
630
631 next_pageblock:
632 low_pfn = ALIGN(low_pfn + 1, pageblock_nr_pages) - 1;
633 last_pageblock_nr = pageblock_nr;
634 }
635
636 acct_isolated(zone, locked, cc);
637
638 if (locked)
639 spin_unlock_irqrestore(&zone->lru_lock, flags);
640
641 /*
642 * Update the pageblock-skip information and cached scanner pfn,
643 * if the whole pageblock was scanned without isolating any page.
644 * This is not done when pageblock was skipped due to being unsuitable
645 * for async compaction, so that eventual sync compaction can try.
646 */
647 if (low_pfn == end_pfn && !skipped_async_unsuitable)
648 update_pageblock_skip(cc, valid_page, nr_isolated, true);
649
650 trace_mm_compaction_isolate_migratepages(nr_scanned, nr_isolated);
651
652 count_compact_events(COMPACTMIGRATE_SCANNED, nr_scanned);
653 if (nr_isolated)
654 count_compact_events(COMPACTISOLATED, nr_isolated);
655
656 return low_pfn;
657 }
658
659 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
660 #ifdef CONFIG_COMPACTION
661 /*
662 * Based on information in the current compact_control, find blocks
663 * suitable for isolating free pages from and then isolate them.
664 */
665 static void isolate_freepages(struct zone *zone,
666 struct compact_control *cc)
667 {
668 struct page *page;
669 unsigned long high_pfn, low_pfn, pfn, z_end_pfn, end_pfn;
670 int nr_freepages = cc->nr_freepages;
671 struct list_head *freelist = &cc->freepages;
672
673 /*
674 * Initialise the free scanner. The starting point is where we last
675 * scanned from (or the end of the zone if starting). The low point
676 * is the end of the pageblock the migration scanner is using.
677 */
678 pfn = cc->free_pfn;
679 low_pfn = ALIGN(cc->migrate_pfn + 1, pageblock_nr_pages);
680
681 /*
682 * Take care that if the migration scanner is at the end of the zone
683 * that the free scanner does not accidentally move to the next zone
684 * in the next isolation cycle.
685 */
686 high_pfn = min(low_pfn, pfn);
687
688 z_end_pfn = zone_end_pfn(zone);
689
690 /*
691 * Isolate free pages until enough are available to migrate the
692 * pages on cc->migratepages. We stop searching if the migrate
693 * and free page scanners meet or enough free pages are isolated.
694 */
695 for (; pfn >= low_pfn && cc->nr_migratepages > nr_freepages;
696 pfn -= pageblock_nr_pages) {
697 unsigned long isolated;
698
699 /*
700 * This can iterate a massively long zone without finding any
701 * suitable migration targets, so periodically check if we need
702 * to schedule.
703 */
704 cond_resched();
705
706 if (!pfn_valid(pfn))
707 continue;
708
709 /*
710 * Check for overlapping nodes/zones. It's possible on some
711 * configurations to have a setup like
712 * node0 node1 node0
713 * i.e. it's possible that all pages within a zones range of
714 * pages do not belong to a single zone.
715 */
716 page = pfn_to_page(pfn);
717 if (page_zone(page) != zone)
718 continue;
719
720 /* Check the block is suitable for migration */
721 if (!suitable_migration_target(page))
722 continue;
723
724 /* If isolation recently failed, do not retry */
725 if (!isolation_suitable(cc, page))
726 continue;
727
728 /* Found a block suitable for isolating free pages from */
729 isolated = 0;
730
731 /*
732 * As pfn may not start aligned, pfn+pageblock_nr_page
733 * may cross a MAX_ORDER_NR_PAGES boundary and miss
734 * a pfn_valid check. Ensure isolate_freepages_block()
735 * only scans within a pageblock
736 */
737 end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
738 end_pfn = min(end_pfn, z_end_pfn);
739 isolated = isolate_freepages_block(cc, pfn, end_pfn,
740 freelist, false);
741 nr_freepages += isolated;
742
743 /*
744 * Record the highest PFN we isolated pages from. When next
745 * looking for free pages, the search will restart here as
746 * page migration may have returned some pages to the allocator
747 */
748 if (isolated) {
749 cc->finished_update_free = true;
750 high_pfn = max(high_pfn, pfn);
751 }
752 }
753
754 /* split_free_page does not map the pages */
755 map_pages(freelist);
756
757 /*
758 * If we crossed the migrate scanner, we want to keep it that way
759 * so that compact_finished() may detect this
760 */
761 if (pfn < low_pfn)
762 cc->free_pfn = max(pfn, zone->zone_start_pfn);
763 else
764 cc->free_pfn = high_pfn;
765 cc->nr_freepages = nr_freepages;
766 }
767
768 /*
769 * This is a migrate-callback that "allocates" freepages by taking pages
770 * from the isolated freelists in the block we are migrating to.
771 */
772 static struct page *compaction_alloc(struct page *migratepage,
773 unsigned long data,
774 int **result)
775 {
776 struct compact_control *cc = (struct compact_control *)data;
777 struct page *freepage;
778
779 /* Isolate free pages if necessary */
780 if (list_empty(&cc->freepages)) {
781 isolate_freepages(cc->zone, cc);
782
783 if (list_empty(&cc->freepages))
784 return NULL;
785 }
786
787 freepage = list_entry(cc->freepages.next, struct page, lru);
788 list_del(&freepage->lru);
789 cc->nr_freepages--;
790
791 return freepage;
792 }
793
794 /*
795 * We cannot control nr_migratepages and nr_freepages fully when migration is
796 * running as migrate_pages() has no knowledge of compact_control. When
797 * migration is complete, we count the number of pages on the lists by hand.
798 */
799 static void update_nr_listpages(struct compact_control *cc)
800 {
801 int nr_migratepages = 0;
802 int nr_freepages = 0;
803 struct page *page;
804
805 list_for_each_entry(page, &cc->migratepages, lru)
806 nr_migratepages++;
807 list_for_each_entry(page, &cc->freepages, lru)
808 nr_freepages++;
809
810 cc->nr_migratepages = nr_migratepages;
811 cc->nr_freepages = nr_freepages;
812 }
813
814 /* possible outcome of isolate_migratepages */
815 typedef enum {
816 ISOLATE_ABORT, /* Abort compaction now */
817 ISOLATE_NONE, /* No pages isolated, continue scanning */
818 ISOLATE_SUCCESS, /* Pages isolated, migrate */
819 } isolate_migrate_t;
820
821 /*
822 * Isolate all pages that can be migrated from the block pointed to by
823 * the migrate scanner within compact_control.
824 */
825 static isolate_migrate_t isolate_migratepages(struct zone *zone,
826 struct compact_control *cc)
827 {
828 unsigned long low_pfn, end_pfn;
829
830 /* Do not scan outside zone boundaries */
831 low_pfn = max(cc->migrate_pfn, zone->zone_start_pfn);
832
833 /* Only scan within a pageblock boundary */
834 end_pfn = ALIGN(low_pfn + 1, pageblock_nr_pages);
835
836 /* Do not cross the free scanner or scan within a memory hole */
837 if (end_pfn > cc->free_pfn || !pfn_valid(low_pfn)) {
838 cc->migrate_pfn = end_pfn;
839 return ISOLATE_NONE;
840 }
841
842 /* Perform the isolation */
843 low_pfn = isolate_migratepages_range(zone, cc, low_pfn, end_pfn, false);
844 if (!low_pfn || cc->contended)
845 return ISOLATE_ABORT;
846
847 cc->migrate_pfn = low_pfn;
848
849 return ISOLATE_SUCCESS;
850 }
851
852 static int compact_finished(struct zone *zone,
853 struct compact_control *cc)
854 {
855 unsigned int order;
856 unsigned long watermark;
857
858 if (fatal_signal_pending(current))
859 return COMPACT_PARTIAL;
860
861 /* Compaction run completes if the migrate and free scanner meet */
862 if (cc->free_pfn <= cc->migrate_pfn) {
863 /* Let the next compaction start anew. */
864 zone->compact_cached_migrate_pfn = zone->zone_start_pfn;
865 zone->compact_cached_free_pfn = zone_end_pfn(zone);
866
867 /*
868 * Mark that the PG_migrate_skip information should be cleared
869 * by kswapd when it goes to sleep. kswapd does not set the
870 * flag itself as the decision to be clear should be directly
871 * based on an allocation request.
872 */
873 if (!current_is_kswapd())
874 zone->compact_blockskip_flush = true;
875
876 return COMPACT_COMPLETE;
877 }
878
879 /*
880 * order == -1 is expected when compacting via
881 * /proc/sys/vm/compact_memory
882 */
883 if (cc->order == -1)
884 return COMPACT_CONTINUE;
885
886 /* Compaction run is not finished if the watermark is not met */
887 watermark = low_wmark_pages(zone);
888 watermark += (1 << cc->order);
889
890 if (!zone_watermark_ok(zone, cc->order, watermark, 0, 0))
891 return COMPACT_CONTINUE;
892
893 /* Direct compactor: Is a suitable page free? */
894 for (order = cc->order; order < MAX_ORDER; order++) {
895 struct free_area *area = &zone->free_area[order];
896
897 /* Job done if page is free of the right migratetype */
898 if (!list_empty(&area->free_list[cc->migratetype]))
899 return COMPACT_PARTIAL;
900
901 /* Job done if allocation would set block type */
902 if (cc->order >= pageblock_order && area->nr_free)
903 return COMPACT_PARTIAL;
904 }
905
906 return COMPACT_CONTINUE;
907 }
908
909 /*
910 * compaction_suitable: Is this suitable to run compaction on this zone now?
911 * Returns
912 * COMPACT_SKIPPED - If there are too few free pages for compaction
913 * COMPACT_PARTIAL - If the allocation would succeed without compaction
914 * COMPACT_CONTINUE - If compaction should run now
915 */
916 unsigned long compaction_suitable(struct zone *zone, int order)
917 {
918 int fragindex;
919 unsigned long watermark;
920
921 /*
922 * order == -1 is expected when compacting via
923 * /proc/sys/vm/compact_memory
924 */
925 if (order == -1)
926 return COMPACT_CONTINUE;
927
928 /*
929 * Watermarks for order-0 must be met for compaction. Note the 2UL.
930 * This is because during migration, copies of pages need to be
931 * allocated and for a short time, the footprint is higher
932 */
933 watermark = low_wmark_pages(zone) + (2UL << order);
934 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
935 return COMPACT_SKIPPED;
936
937 /*
938 * fragmentation index determines if allocation failures are due to
939 * low memory or external fragmentation
940 *
941 * index of -1000 implies allocations might succeed depending on
942 * watermarks
943 * index towards 0 implies failure is due to lack of memory
944 * index towards 1000 implies failure is due to fragmentation
945 *
946 * Only compact if a failure would be due to fragmentation.
947 */
948 fragindex = fragmentation_index(zone, order);
949 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
950 return COMPACT_SKIPPED;
951
952 if (fragindex == -1000 && zone_watermark_ok(zone, order, watermark,
953 0, 0))
954 return COMPACT_PARTIAL;
955
956 return COMPACT_CONTINUE;
957 }
958
959 static int compact_zone(struct zone *zone, struct compact_control *cc)
960 {
961 int ret;
962 unsigned long start_pfn = zone->zone_start_pfn;
963 unsigned long end_pfn = zone_end_pfn(zone);
964
965 ret = compaction_suitable(zone, cc->order);
966 switch (ret) {
967 case COMPACT_PARTIAL:
968 case COMPACT_SKIPPED:
969 /* Compaction is likely to fail */
970 return ret;
971 case COMPACT_CONTINUE:
972 /* Fall through to compaction */
973 ;
974 }
975
976 /*
977 * Clear pageblock skip if there were failures recently and compaction
978 * is about to be retried after being deferred. kswapd does not do
979 * this reset as it'll reset the cached information when going to sleep.
980 */
981 if (compaction_restarting(zone, cc->order) && !current_is_kswapd())
982 __reset_isolation_suitable(zone);
983
984 /*
985 * Setup to move all movable pages to the end of the zone. Used cached
986 * information on where the scanners should start but check that it
987 * is initialised by ensuring the values are within zone boundaries.
988 */
989 cc->migrate_pfn = zone->compact_cached_migrate_pfn;
990 cc->free_pfn = zone->compact_cached_free_pfn;
991 if (cc->free_pfn < start_pfn || cc->free_pfn > end_pfn) {
992 cc->free_pfn = end_pfn & ~(pageblock_nr_pages-1);
993 zone->compact_cached_free_pfn = cc->free_pfn;
994 }
995 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn > end_pfn) {
996 cc->migrate_pfn = start_pfn;
997 zone->compact_cached_migrate_pfn = cc->migrate_pfn;
998 }
999
1000 trace_mm_compaction_begin(start_pfn, cc->migrate_pfn, cc->free_pfn, end_pfn);
1001
1002 migrate_prep_local();
1003
1004 while ((ret = compact_finished(zone, cc)) == COMPACT_CONTINUE) {
1005 unsigned long nr_migrate, nr_remaining;
1006 int err;
1007
1008 switch (isolate_migratepages(zone, cc)) {
1009 case ISOLATE_ABORT:
1010 ret = COMPACT_PARTIAL;
1011 putback_movable_pages(&cc->migratepages);
1012 cc->nr_migratepages = 0;
1013 goto out;
1014 case ISOLATE_NONE:
1015 continue;
1016 case ISOLATE_SUCCESS:
1017 ;
1018 }
1019
1020 nr_migrate = cc->nr_migratepages;
1021 err = migrate_pages(&cc->migratepages, compaction_alloc,
1022 (unsigned long)cc,
1023 cc->sync ? MIGRATE_SYNC_LIGHT : MIGRATE_ASYNC,
1024 MR_COMPACTION);
1025 update_nr_listpages(cc);
1026 nr_remaining = cc->nr_migratepages;
1027
1028 trace_mm_compaction_migratepages(nr_migrate - nr_remaining,
1029 nr_remaining);
1030
1031 /* Release isolated pages not migrated */
1032 if (err) {
1033 putback_movable_pages(&cc->migratepages);
1034 cc->nr_migratepages = 0;
1035 /*
1036 * migrate_pages() may return -ENOMEM when scanners meet
1037 * and we want compact_finished() to detect it
1038 */
1039 if (err == -ENOMEM && cc->free_pfn > cc->migrate_pfn) {
1040 ret = COMPACT_PARTIAL;
1041 goto out;
1042 }
1043 }
1044 }
1045
1046 out:
1047 /* Release free pages and check accounting */
1048 cc->nr_freepages -= release_freepages(&cc->freepages);
1049 VM_BUG_ON(cc->nr_freepages != 0);
1050
1051 trace_mm_compaction_end(ret);
1052
1053 return ret;
1054 }
1055
1056 static unsigned long compact_zone_order(struct zone *zone,
1057 int order, gfp_t gfp_mask,
1058 bool sync, bool *contended)
1059 {
1060 unsigned long ret;
1061 struct compact_control cc = {
1062 .nr_freepages = 0,
1063 .nr_migratepages = 0,
1064 .order = order,
1065 .migratetype = allocflags_to_migratetype(gfp_mask),
1066 .zone = zone,
1067 .sync = sync,
1068 };
1069 INIT_LIST_HEAD(&cc.freepages);
1070 INIT_LIST_HEAD(&cc.migratepages);
1071
1072 ret = compact_zone(zone, &cc);
1073
1074 VM_BUG_ON(!list_empty(&cc.freepages));
1075 VM_BUG_ON(!list_empty(&cc.migratepages));
1076
1077 *contended = cc.contended;
1078 return ret;
1079 }
1080
1081 int sysctl_extfrag_threshold = 500;
1082
1083 /**
1084 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
1085 * @zonelist: The zonelist used for the current allocation
1086 * @order: The order of the current allocation
1087 * @gfp_mask: The GFP mask of the current allocation
1088 * @nodemask: The allowed nodes to allocate from
1089 * @sync: Whether migration is synchronous or not
1090 * @contended: Return value that is true if compaction was aborted due to lock contention
1091 * @page: Optionally capture a free page of the requested order during compaction
1092 *
1093 * This is the main entry point for direct page compaction.
1094 */
1095 unsigned long try_to_compact_pages(struct zonelist *zonelist,
1096 int order, gfp_t gfp_mask, nodemask_t *nodemask,
1097 bool sync, bool *contended)
1098 {
1099 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
1100 int may_enter_fs = gfp_mask & __GFP_FS;
1101 int may_perform_io = gfp_mask & __GFP_IO;
1102 struct zoneref *z;
1103 struct zone *zone;
1104 int rc = COMPACT_SKIPPED;
1105 int alloc_flags = 0;
1106
1107 /* Check if the GFP flags allow compaction */
1108 if (!order || !may_enter_fs || !may_perform_io)
1109 return rc;
1110
1111 count_compact_event(COMPACTSTALL);
1112
1113 #ifdef CONFIG_CMA
1114 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
1115 alloc_flags |= ALLOC_CMA;
1116 #endif
1117 /* Compact each zone in the list */
1118 for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx,
1119 nodemask) {
1120 int status;
1121
1122 status = compact_zone_order(zone, order, gfp_mask, sync,
1123 contended);
1124 rc = max(status, rc);
1125
1126 /* If a normal allocation would succeed, stop compacting */
1127 if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0,
1128 alloc_flags))
1129 break;
1130 }
1131
1132 return rc;
1133 }
1134
1135
1136 /* Compact all zones within a node */
1137 static void __compact_pgdat(pg_data_t *pgdat, struct compact_control *cc)
1138 {
1139 int zoneid;
1140 struct zone *zone;
1141
1142 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
1143
1144 zone = &pgdat->node_zones[zoneid];
1145 if (!populated_zone(zone))
1146 continue;
1147
1148 cc->nr_freepages = 0;
1149 cc->nr_migratepages = 0;
1150 cc->zone = zone;
1151 INIT_LIST_HEAD(&cc->freepages);
1152 INIT_LIST_HEAD(&cc->migratepages);
1153
1154 if (cc->order == -1 || !compaction_deferred(zone, cc->order))
1155 compact_zone(zone, cc);
1156
1157 if (cc->order > 0) {
1158 if (zone_watermark_ok(zone, cc->order,
1159 low_wmark_pages(zone), 0, 0))
1160 compaction_defer_reset(zone, cc->order, false);
1161 /* Currently async compaction is never deferred. */
1162 else if (cc->sync)
1163 defer_compaction(zone, cc->order);
1164 }
1165
1166 VM_BUG_ON(!list_empty(&cc->freepages));
1167 VM_BUG_ON(!list_empty(&cc->migratepages));
1168 }
1169 }
1170
1171 void compact_pgdat(pg_data_t *pgdat, int order)
1172 {
1173 struct compact_control cc = {
1174 .order = order,
1175 .sync = false,
1176 };
1177
1178 if (!order)
1179 return;
1180
1181 __compact_pgdat(pgdat, &cc);
1182 }
1183
1184 static void compact_node(int nid)
1185 {
1186 struct compact_control cc = {
1187 .order = -1,
1188 .sync = true,
1189 };
1190
1191 __compact_pgdat(NODE_DATA(nid), &cc);
1192 }
1193
1194 /* Compact all nodes in the system */
1195 static void compact_nodes(void)
1196 {
1197 int nid;
1198
1199 /* Flush pending updates to the LRU lists */
1200 lru_add_drain_all();
1201
1202 for_each_online_node(nid)
1203 compact_node(nid);
1204 }
1205
1206 /* The written value is actually unused, all memory is compacted */
1207 int sysctl_compact_memory;
1208
1209 /* This is the entry point for compacting all nodes via /proc/sys/vm */
1210 int sysctl_compaction_handler(struct ctl_table *table, int write,
1211 void __user *buffer, size_t *length, loff_t *ppos)
1212 {
1213 if (write)
1214 compact_nodes();
1215
1216 return 0;
1217 }
1218
1219 int sysctl_extfrag_handler(struct ctl_table *table, int write,
1220 void __user *buffer, size_t *length, loff_t *ppos)
1221 {
1222 proc_dointvec_minmax(table, write, buffer, length, ppos);
1223
1224 return 0;
1225 }
1226
1227 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
1228 ssize_t sysfs_compact_node(struct device *dev,
1229 struct device_attribute *attr,
1230 const char *buf, size_t count)
1231 {
1232 int nid = dev->id;
1233
1234 if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
1235 /* Flush pending updates to the LRU lists */
1236 lru_add_drain_all();
1237
1238 compact_node(nid);
1239 }
1240
1241 return count;
1242 }
1243 static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
1244
1245 int compaction_register_node(struct node *node)
1246 {
1247 return device_create_file(&node->dev, &dev_attr_compact);
1248 }
1249
1250 void compaction_unregister_node(struct node *node)
1251 {
1252 return device_remove_file(&node->dev, &dev_attr_compact);
1253 }
1254 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
1255
1256 #endif /* CONFIG_COMPACTION */
This page took 0.055451 seconds and 5 git commands to generate.