mm: cma: add trace events for CMA allocations and freeings
[deliverable/linux.git] / mm / compaction.c
1 /*
2 * linux/mm/compaction.c
3 *
4 * Memory compaction for the reduction of external fragmentation. Note that
5 * this heavily depends upon page migration to do all the real heavy
6 * lifting
7 *
8 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
9 */
10 #include <linux/swap.h>
11 #include <linux/migrate.h>
12 #include <linux/compaction.h>
13 #include <linux/mm_inline.h>
14 #include <linux/backing-dev.h>
15 #include <linux/sysctl.h>
16 #include <linux/sysfs.h>
17 #include <linux/balloon_compaction.h>
18 #include <linux/page-isolation.h>
19 #include <linux/kasan.h>
20 #include "internal.h"
21
22 #ifdef CONFIG_COMPACTION
23 static inline void count_compact_event(enum vm_event_item item)
24 {
25 count_vm_event(item);
26 }
27
28 static inline void count_compact_events(enum vm_event_item item, long delta)
29 {
30 count_vm_events(item, delta);
31 }
32 #else
33 #define count_compact_event(item) do { } while (0)
34 #define count_compact_events(item, delta) do { } while (0)
35 #endif
36
37 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
38 #ifdef CONFIG_TRACEPOINTS
39 static const char *const compaction_status_string[] = {
40 "deferred",
41 "skipped",
42 "continue",
43 "partial",
44 "complete",
45 "no_suitable_page",
46 "not_suitable_zone",
47 };
48 #endif
49
50 #define CREATE_TRACE_POINTS
51 #include <trace/events/compaction.h>
52
53 static unsigned long release_freepages(struct list_head *freelist)
54 {
55 struct page *page, *next;
56 unsigned long high_pfn = 0;
57
58 list_for_each_entry_safe(page, next, freelist, lru) {
59 unsigned long pfn = page_to_pfn(page);
60 list_del(&page->lru);
61 __free_page(page);
62 if (pfn > high_pfn)
63 high_pfn = pfn;
64 }
65
66 return high_pfn;
67 }
68
69 static void map_pages(struct list_head *list)
70 {
71 struct page *page;
72
73 list_for_each_entry(page, list, lru) {
74 arch_alloc_page(page, 0);
75 kernel_map_pages(page, 1, 1);
76 kasan_alloc_pages(page, 0);
77 }
78 }
79
80 static inline bool migrate_async_suitable(int migratetype)
81 {
82 return is_migrate_cma(migratetype) || migratetype == MIGRATE_MOVABLE;
83 }
84
85 /*
86 * Check that the whole (or subset of) a pageblock given by the interval of
87 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
88 * with the migration of free compaction scanner. The scanners then need to
89 * use only pfn_valid_within() check for arches that allow holes within
90 * pageblocks.
91 *
92 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
93 *
94 * It's possible on some configurations to have a setup like node0 node1 node0
95 * i.e. it's possible that all pages within a zones range of pages do not
96 * belong to a single zone. We assume that a border between node0 and node1
97 * can occur within a single pageblock, but not a node0 node1 node0
98 * interleaving within a single pageblock. It is therefore sufficient to check
99 * the first and last page of a pageblock and avoid checking each individual
100 * page in a pageblock.
101 */
102 static struct page *pageblock_pfn_to_page(unsigned long start_pfn,
103 unsigned long end_pfn, struct zone *zone)
104 {
105 struct page *start_page;
106 struct page *end_page;
107
108 /* end_pfn is one past the range we are checking */
109 end_pfn--;
110
111 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
112 return NULL;
113
114 start_page = pfn_to_page(start_pfn);
115
116 if (page_zone(start_page) != zone)
117 return NULL;
118
119 end_page = pfn_to_page(end_pfn);
120
121 /* This gives a shorter code than deriving page_zone(end_page) */
122 if (page_zone_id(start_page) != page_zone_id(end_page))
123 return NULL;
124
125 return start_page;
126 }
127
128 #ifdef CONFIG_COMPACTION
129
130 /* Do not skip compaction more than 64 times */
131 #define COMPACT_MAX_DEFER_SHIFT 6
132
133 /*
134 * Compaction is deferred when compaction fails to result in a page
135 * allocation success. 1 << compact_defer_limit compactions are skipped up
136 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
137 */
138 void defer_compaction(struct zone *zone, int order)
139 {
140 zone->compact_considered = 0;
141 zone->compact_defer_shift++;
142
143 if (order < zone->compact_order_failed)
144 zone->compact_order_failed = order;
145
146 if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
147 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
148
149 trace_mm_compaction_defer_compaction(zone, order);
150 }
151
152 /* Returns true if compaction should be skipped this time */
153 bool compaction_deferred(struct zone *zone, int order)
154 {
155 unsigned long defer_limit = 1UL << zone->compact_defer_shift;
156
157 if (order < zone->compact_order_failed)
158 return false;
159
160 /* Avoid possible overflow */
161 if (++zone->compact_considered > defer_limit)
162 zone->compact_considered = defer_limit;
163
164 if (zone->compact_considered >= defer_limit)
165 return false;
166
167 trace_mm_compaction_deferred(zone, order);
168
169 return true;
170 }
171
172 /*
173 * Update defer tracking counters after successful compaction of given order,
174 * which means an allocation either succeeded (alloc_success == true) or is
175 * expected to succeed.
176 */
177 void compaction_defer_reset(struct zone *zone, int order,
178 bool alloc_success)
179 {
180 if (alloc_success) {
181 zone->compact_considered = 0;
182 zone->compact_defer_shift = 0;
183 }
184 if (order >= zone->compact_order_failed)
185 zone->compact_order_failed = order + 1;
186
187 trace_mm_compaction_defer_reset(zone, order);
188 }
189
190 /* Returns true if restarting compaction after many failures */
191 bool compaction_restarting(struct zone *zone, int order)
192 {
193 if (order < zone->compact_order_failed)
194 return false;
195
196 return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
197 zone->compact_considered >= 1UL << zone->compact_defer_shift;
198 }
199
200 /* Returns true if the pageblock should be scanned for pages to isolate. */
201 static inline bool isolation_suitable(struct compact_control *cc,
202 struct page *page)
203 {
204 if (cc->ignore_skip_hint)
205 return true;
206
207 return !get_pageblock_skip(page);
208 }
209
210 /*
211 * This function is called to clear all cached information on pageblocks that
212 * should be skipped for page isolation when the migrate and free page scanner
213 * meet.
214 */
215 static void __reset_isolation_suitable(struct zone *zone)
216 {
217 unsigned long start_pfn = zone->zone_start_pfn;
218 unsigned long end_pfn = zone_end_pfn(zone);
219 unsigned long pfn;
220
221 zone->compact_cached_migrate_pfn[0] = start_pfn;
222 zone->compact_cached_migrate_pfn[1] = start_pfn;
223 zone->compact_cached_free_pfn = end_pfn;
224 zone->compact_blockskip_flush = false;
225
226 /* Walk the zone and mark every pageblock as suitable for isolation */
227 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
228 struct page *page;
229
230 cond_resched();
231
232 if (!pfn_valid(pfn))
233 continue;
234
235 page = pfn_to_page(pfn);
236 if (zone != page_zone(page))
237 continue;
238
239 clear_pageblock_skip(page);
240 }
241 }
242
243 void reset_isolation_suitable(pg_data_t *pgdat)
244 {
245 int zoneid;
246
247 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
248 struct zone *zone = &pgdat->node_zones[zoneid];
249 if (!populated_zone(zone))
250 continue;
251
252 /* Only flush if a full compaction finished recently */
253 if (zone->compact_blockskip_flush)
254 __reset_isolation_suitable(zone);
255 }
256 }
257
258 /*
259 * If no pages were isolated then mark this pageblock to be skipped in the
260 * future. The information is later cleared by __reset_isolation_suitable().
261 */
262 static void update_pageblock_skip(struct compact_control *cc,
263 struct page *page, unsigned long nr_isolated,
264 bool migrate_scanner)
265 {
266 struct zone *zone = cc->zone;
267 unsigned long pfn;
268
269 if (cc->ignore_skip_hint)
270 return;
271
272 if (!page)
273 return;
274
275 if (nr_isolated)
276 return;
277
278 set_pageblock_skip(page);
279
280 pfn = page_to_pfn(page);
281
282 /* Update where async and sync compaction should restart */
283 if (migrate_scanner) {
284 if (pfn > zone->compact_cached_migrate_pfn[0])
285 zone->compact_cached_migrate_pfn[0] = pfn;
286 if (cc->mode != MIGRATE_ASYNC &&
287 pfn > zone->compact_cached_migrate_pfn[1])
288 zone->compact_cached_migrate_pfn[1] = pfn;
289 } else {
290 if (pfn < zone->compact_cached_free_pfn)
291 zone->compact_cached_free_pfn = pfn;
292 }
293 }
294 #else
295 static inline bool isolation_suitable(struct compact_control *cc,
296 struct page *page)
297 {
298 return true;
299 }
300
301 static void update_pageblock_skip(struct compact_control *cc,
302 struct page *page, unsigned long nr_isolated,
303 bool migrate_scanner)
304 {
305 }
306 #endif /* CONFIG_COMPACTION */
307
308 /*
309 * Compaction requires the taking of some coarse locks that are potentially
310 * very heavily contended. For async compaction, back out if the lock cannot
311 * be taken immediately. For sync compaction, spin on the lock if needed.
312 *
313 * Returns true if the lock is held
314 * Returns false if the lock is not held and compaction should abort
315 */
316 static bool compact_trylock_irqsave(spinlock_t *lock, unsigned long *flags,
317 struct compact_control *cc)
318 {
319 if (cc->mode == MIGRATE_ASYNC) {
320 if (!spin_trylock_irqsave(lock, *flags)) {
321 cc->contended = COMPACT_CONTENDED_LOCK;
322 return false;
323 }
324 } else {
325 spin_lock_irqsave(lock, *flags);
326 }
327
328 return true;
329 }
330
331 /*
332 * Compaction requires the taking of some coarse locks that are potentially
333 * very heavily contended. The lock should be periodically unlocked to avoid
334 * having disabled IRQs for a long time, even when there is nobody waiting on
335 * the lock. It might also be that allowing the IRQs will result in
336 * need_resched() becoming true. If scheduling is needed, async compaction
337 * aborts. Sync compaction schedules.
338 * Either compaction type will also abort if a fatal signal is pending.
339 * In either case if the lock was locked, it is dropped and not regained.
340 *
341 * Returns true if compaction should abort due to fatal signal pending, or
342 * async compaction due to need_resched()
343 * Returns false when compaction can continue (sync compaction might have
344 * scheduled)
345 */
346 static bool compact_unlock_should_abort(spinlock_t *lock,
347 unsigned long flags, bool *locked, struct compact_control *cc)
348 {
349 if (*locked) {
350 spin_unlock_irqrestore(lock, flags);
351 *locked = false;
352 }
353
354 if (fatal_signal_pending(current)) {
355 cc->contended = COMPACT_CONTENDED_SCHED;
356 return true;
357 }
358
359 if (need_resched()) {
360 if (cc->mode == MIGRATE_ASYNC) {
361 cc->contended = COMPACT_CONTENDED_SCHED;
362 return true;
363 }
364 cond_resched();
365 }
366
367 return false;
368 }
369
370 /*
371 * Aside from avoiding lock contention, compaction also periodically checks
372 * need_resched() and either schedules in sync compaction or aborts async
373 * compaction. This is similar to what compact_unlock_should_abort() does, but
374 * is used where no lock is concerned.
375 *
376 * Returns false when no scheduling was needed, or sync compaction scheduled.
377 * Returns true when async compaction should abort.
378 */
379 static inline bool compact_should_abort(struct compact_control *cc)
380 {
381 /* async compaction aborts if contended */
382 if (need_resched()) {
383 if (cc->mode == MIGRATE_ASYNC) {
384 cc->contended = COMPACT_CONTENDED_SCHED;
385 return true;
386 }
387
388 cond_resched();
389 }
390
391 return false;
392 }
393
394 /* Returns true if the page is within a block suitable for migration to */
395 static bool suitable_migration_target(struct page *page)
396 {
397 /* If the page is a large free page, then disallow migration */
398 if (PageBuddy(page)) {
399 /*
400 * We are checking page_order without zone->lock taken. But
401 * the only small danger is that we skip a potentially suitable
402 * pageblock, so it's not worth to check order for valid range.
403 */
404 if (page_order_unsafe(page) >= pageblock_order)
405 return false;
406 }
407
408 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
409 if (migrate_async_suitable(get_pageblock_migratetype(page)))
410 return true;
411
412 /* Otherwise skip the block */
413 return false;
414 }
415
416 /*
417 * Isolate free pages onto a private freelist. If @strict is true, will abort
418 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
419 * (even though it may still end up isolating some pages).
420 */
421 static unsigned long isolate_freepages_block(struct compact_control *cc,
422 unsigned long *start_pfn,
423 unsigned long end_pfn,
424 struct list_head *freelist,
425 bool strict)
426 {
427 int nr_scanned = 0, total_isolated = 0;
428 struct page *cursor, *valid_page = NULL;
429 unsigned long flags = 0;
430 bool locked = false;
431 unsigned long blockpfn = *start_pfn;
432
433 cursor = pfn_to_page(blockpfn);
434
435 /* Isolate free pages. */
436 for (; blockpfn < end_pfn; blockpfn++, cursor++) {
437 int isolated, i;
438 struct page *page = cursor;
439
440 /*
441 * Periodically drop the lock (if held) regardless of its
442 * contention, to give chance to IRQs. Abort if fatal signal
443 * pending or async compaction detects need_resched()
444 */
445 if (!(blockpfn % SWAP_CLUSTER_MAX)
446 && compact_unlock_should_abort(&cc->zone->lock, flags,
447 &locked, cc))
448 break;
449
450 nr_scanned++;
451 if (!pfn_valid_within(blockpfn))
452 goto isolate_fail;
453
454 if (!valid_page)
455 valid_page = page;
456 if (!PageBuddy(page))
457 goto isolate_fail;
458
459 /*
460 * If we already hold the lock, we can skip some rechecking.
461 * Note that if we hold the lock now, checked_pageblock was
462 * already set in some previous iteration (or strict is true),
463 * so it is correct to skip the suitable migration target
464 * recheck as well.
465 */
466 if (!locked) {
467 /*
468 * The zone lock must be held to isolate freepages.
469 * Unfortunately this is a very coarse lock and can be
470 * heavily contended if there are parallel allocations
471 * or parallel compactions. For async compaction do not
472 * spin on the lock and we acquire the lock as late as
473 * possible.
474 */
475 locked = compact_trylock_irqsave(&cc->zone->lock,
476 &flags, cc);
477 if (!locked)
478 break;
479
480 /* Recheck this is a buddy page under lock */
481 if (!PageBuddy(page))
482 goto isolate_fail;
483 }
484
485 /* Found a free page, break it into order-0 pages */
486 isolated = split_free_page(page);
487 total_isolated += isolated;
488 for (i = 0; i < isolated; i++) {
489 list_add(&page->lru, freelist);
490 page++;
491 }
492
493 /* If a page was split, advance to the end of it */
494 if (isolated) {
495 cc->nr_freepages += isolated;
496 if (!strict &&
497 cc->nr_migratepages <= cc->nr_freepages) {
498 blockpfn += isolated;
499 break;
500 }
501
502 blockpfn += isolated - 1;
503 cursor += isolated - 1;
504 continue;
505 }
506
507 isolate_fail:
508 if (strict)
509 break;
510 else
511 continue;
512
513 }
514
515 trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
516 nr_scanned, total_isolated);
517
518 /* Record how far we have got within the block */
519 *start_pfn = blockpfn;
520
521 /*
522 * If strict isolation is requested by CMA then check that all the
523 * pages requested were isolated. If there were any failures, 0 is
524 * returned and CMA will fail.
525 */
526 if (strict && blockpfn < end_pfn)
527 total_isolated = 0;
528
529 if (locked)
530 spin_unlock_irqrestore(&cc->zone->lock, flags);
531
532 /* Update the pageblock-skip if the whole pageblock was scanned */
533 if (blockpfn == end_pfn)
534 update_pageblock_skip(cc, valid_page, total_isolated, false);
535
536 count_compact_events(COMPACTFREE_SCANNED, nr_scanned);
537 if (total_isolated)
538 count_compact_events(COMPACTISOLATED, total_isolated);
539 return total_isolated;
540 }
541
542 /**
543 * isolate_freepages_range() - isolate free pages.
544 * @start_pfn: The first PFN to start isolating.
545 * @end_pfn: The one-past-last PFN.
546 *
547 * Non-free pages, invalid PFNs, or zone boundaries within the
548 * [start_pfn, end_pfn) range are considered errors, cause function to
549 * undo its actions and return zero.
550 *
551 * Otherwise, function returns one-past-the-last PFN of isolated page
552 * (which may be greater then end_pfn if end fell in a middle of
553 * a free page).
554 */
555 unsigned long
556 isolate_freepages_range(struct compact_control *cc,
557 unsigned long start_pfn, unsigned long end_pfn)
558 {
559 unsigned long isolated, pfn, block_end_pfn;
560 LIST_HEAD(freelist);
561
562 pfn = start_pfn;
563 block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
564
565 for (; pfn < end_pfn; pfn += isolated,
566 block_end_pfn += pageblock_nr_pages) {
567 /* Protect pfn from changing by isolate_freepages_block */
568 unsigned long isolate_start_pfn = pfn;
569
570 block_end_pfn = min(block_end_pfn, end_pfn);
571
572 /*
573 * pfn could pass the block_end_pfn if isolated freepage
574 * is more than pageblock order. In this case, we adjust
575 * scanning range to right one.
576 */
577 if (pfn >= block_end_pfn) {
578 block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
579 block_end_pfn = min(block_end_pfn, end_pfn);
580 }
581
582 if (!pageblock_pfn_to_page(pfn, block_end_pfn, cc->zone))
583 break;
584
585 isolated = isolate_freepages_block(cc, &isolate_start_pfn,
586 block_end_pfn, &freelist, true);
587
588 /*
589 * In strict mode, isolate_freepages_block() returns 0 if
590 * there are any holes in the block (ie. invalid PFNs or
591 * non-free pages).
592 */
593 if (!isolated)
594 break;
595
596 /*
597 * If we managed to isolate pages, it is always (1 << n) *
598 * pageblock_nr_pages for some non-negative n. (Max order
599 * page may span two pageblocks).
600 */
601 }
602
603 /* split_free_page does not map the pages */
604 map_pages(&freelist);
605
606 if (pfn < end_pfn) {
607 /* Loop terminated early, cleanup. */
608 release_freepages(&freelist);
609 return 0;
610 }
611
612 /* We don't use freelists for anything. */
613 return pfn;
614 }
615
616 /* Update the number of anon and file isolated pages in the zone */
617 static void acct_isolated(struct zone *zone, struct compact_control *cc)
618 {
619 struct page *page;
620 unsigned int count[2] = { 0, };
621
622 if (list_empty(&cc->migratepages))
623 return;
624
625 list_for_each_entry(page, &cc->migratepages, lru)
626 count[!!page_is_file_cache(page)]++;
627
628 mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
629 mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
630 }
631
632 /* Similar to reclaim, but different enough that they don't share logic */
633 static bool too_many_isolated(struct zone *zone)
634 {
635 unsigned long active, inactive, isolated;
636
637 inactive = zone_page_state(zone, NR_INACTIVE_FILE) +
638 zone_page_state(zone, NR_INACTIVE_ANON);
639 active = zone_page_state(zone, NR_ACTIVE_FILE) +
640 zone_page_state(zone, NR_ACTIVE_ANON);
641 isolated = zone_page_state(zone, NR_ISOLATED_FILE) +
642 zone_page_state(zone, NR_ISOLATED_ANON);
643
644 return isolated > (inactive + active) / 2;
645 }
646
647 /**
648 * isolate_migratepages_block() - isolate all migrate-able pages within
649 * a single pageblock
650 * @cc: Compaction control structure.
651 * @low_pfn: The first PFN to isolate
652 * @end_pfn: The one-past-the-last PFN to isolate, within same pageblock
653 * @isolate_mode: Isolation mode to be used.
654 *
655 * Isolate all pages that can be migrated from the range specified by
656 * [low_pfn, end_pfn). The range is expected to be within same pageblock.
657 * Returns zero if there is a fatal signal pending, otherwise PFN of the
658 * first page that was not scanned (which may be both less, equal to or more
659 * than end_pfn).
660 *
661 * The pages are isolated on cc->migratepages list (not required to be empty),
662 * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
663 * is neither read nor updated.
664 */
665 static unsigned long
666 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
667 unsigned long end_pfn, isolate_mode_t isolate_mode)
668 {
669 struct zone *zone = cc->zone;
670 unsigned long nr_scanned = 0, nr_isolated = 0;
671 struct list_head *migratelist = &cc->migratepages;
672 struct lruvec *lruvec;
673 unsigned long flags = 0;
674 bool locked = false;
675 struct page *page = NULL, *valid_page = NULL;
676 unsigned long start_pfn = low_pfn;
677
678 /*
679 * Ensure that there are not too many pages isolated from the LRU
680 * list by either parallel reclaimers or compaction. If there are,
681 * delay for some time until fewer pages are isolated
682 */
683 while (unlikely(too_many_isolated(zone))) {
684 /* async migration should just abort */
685 if (cc->mode == MIGRATE_ASYNC)
686 return 0;
687
688 congestion_wait(BLK_RW_ASYNC, HZ/10);
689
690 if (fatal_signal_pending(current))
691 return 0;
692 }
693
694 if (compact_should_abort(cc))
695 return 0;
696
697 /* Time to isolate some pages for migration */
698 for (; low_pfn < end_pfn; low_pfn++) {
699 /*
700 * Periodically drop the lock (if held) regardless of its
701 * contention, to give chance to IRQs. Abort async compaction
702 * if contended.
703 */
704 if (!(low_pfn % SWAP_CLUSTER_MAX)
705 && compact_unlock_should_abort(&zone->lru_lock, flags,
706 &locked, cc))
707 break;
708
709 if (!pfn_valid_within(low_pfn))
710 continue;
711 nr_scanned++;
712
713 page = pfn_to_page(low_pfn);
714
715 if (!valid_page)
716 valid_page = page;
717
718 /*
719 * Skip if free. We read page order here without zone lock
720 * which is generally unsafe, but the race window is small and
721 * the worst thing that can happen is that we skip some
722 * potential isolation targets.
723 */
724 if (PageBuddy(page)) {
725 unsigned long freepage_order = page_order_unsafe(page);
726
727 /*
728 * Without lock, we cannot be sure that what we got is
729 * a valid page order. Consider only values in the
730 * valid order range to prevent low_pfn overflow.
731 */
732 if (freepage_order > 0 && freepage_order < MAX_ORDER)
733 low_pfn += (1UL << freepage_order) - 1;
734 continue;
735 }
736
737 /*
738 * Check may be lockless but that's ok as we recheck later.
739 * It's possible to migrate LRU pages and balloon pages
740 * Skip any other type of page
741 */
742 if (!PageLRU(page)) {
743 if (unlikely(balloon_page_movable(page))) {
744 if (balloon_page_isolate(page)) {
745 /* Successfully isolated */
746 goto isolate_success;
747 }
748 }
749 continue;
750 }
751
752 /*
753 * PageLRU is set. lru_lock normally excludes isolation
754 * splitting and collapsing (collapsing has already happened
755 * if PageLRU is set) but the lock is not necessarily taken
756 * here and it is wasteful to take it just to check transhuge.
757 * Check TransHuge without lock and skip the whole pageblock if
758 * it's either a transhuge or hugetlbfs page, as calling
759 * compound_order() without preventing THP from splitting the
760 * page underneath us may return surprising results.
761 */
762 if (PageTransHuge(page)) {
763 if (!locked)
764 low_pfn = ALIGN(low_pfn + 1,
765 pageblock_nr_pages) - 1;
766 else
767 low_pfn += (1 << compound_order(page)) - 1;
768
769 continue;
770 }
771
772 /*
773 * Migration will fail if an anonymous page is pinned in memory,
774 * so avoid taking lru_lock and isolating it unnecessarily in an
775 * admittedly racy check.
776 */
777 if (!page_mapping(page) &&
778 page_count(page) > page_mapcount(page))
779 continue;
780
781 /* If we already hold the lock, we can skip some rechecking */
782 if (!locked) {
783 locked = compact_trylock_irqsave(&zone->lru_lock,
784 &flags, cc);
785 if (!locked)
786 break;
787
788 /* Recheck PageLRU and PageTransHuge under lock */
789 if (!PageLRU(page))
790 continue;
791 if (PageTransHuge(page)) {
792 low_pfn += (1 << compound_order(page)) - 1;
793 continue;
794 }
795 }
796
797 lruvec = mem_cgroup_page_lruvec(page, zone);
798
799 /* Try isolate the page */
800 if (__isolate_lru_page(page, isolate_mode) != 0)
801 continue;
802
803 VM_BUG_ON_PAGE(PageTransCompound(page), page);
804
805 /* Successfully isolated */
806 del_page_from_lru_list(page, lruvec, page_lru(page));
807
808 isolate_success:
809 list_add(&page->lru, migratelist);
810 cc->nr_migratepages++;
811 nr_isolated++;
812
813 /* Avoid isolating too much */
814 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
815 ++low_pfn;
816 break;
817 }
818 }
819
820 /*
821 * The PageBuddy() check could have potentially brought us outside
822 * the range to be scanned.
823 */
824 if (unlikely(low_pfn > end_pfn))
825 low_pfn = end_pfn;
826
827 if (locked)
828 spin_unlock_irqrestore(&zone->lru_lock, flags);
829
830 /*
831 * Update the pageblock-skip information and cached scanner pfn,
832 * if the whole pageblock was scanned without isolating any page.
833 */
834 if (low_pfn == end_pfn)
835 update_pageblock_skip(cc, valid_page, nr_isolated, true);
836
837 trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
838 nr_scanned, nr_isolated);
839
840 count_compact_events(COMPACTMIGRATE_SCANNED, nr_scanned);
841 if (nr_isolated)
842 count_compact_events(COMPACTISOLATED, nr_isolated);
843
844 return low_pfn;
845 }
846
847 /**
848 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
849 * @cc: Compaction control structure.
850 * @start_pfn: The first PFN to start isolating.
851 * @end_pfn: The one-past-last PFN.
852 *
853 * Returns zero if isolation fails fatally due to e.g. pending signal.
854 * Otherwise, function returns one-past-the-last PFN of isolated page
855 * (which may be greater than end_pfn if end fell in a middle of a THP page).
856 */
857 unsigned long
858 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
859 unsigned long end_pfn)
860 {
861 unsigned long pfn, block_end_pfn;
862
863 /* Scan block by block. First and last block may be incomplete */
864 pfn = start_pfn;
865 block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
866
867 for (; pfn < end_pfn; pfn = block_end_pfn,
868 block_end_pfn += pageblock_nr_pages) {
869
870 block_end_pfn = min(block_end_pfn, end_pfn);
871
872 if (!pageblock_pfn_to_page(pfn, block_end_pfn, cc->zone))
873 continue;
874
875 pfn = isolate_migratepages_block(cc, pfn, block_end_pfn,
876 ISOLATE_UNEVICTABLE);
877
878 /*
879 * In case of fatal failure, release everything that might
880 * have been isolated in the previous iteration, and signal
881 * the failure back to caller.
882 */
883 if (!pfn) {
884 putback_movable_pages(&cc->migratepages);
885 cc->nr_migratepages = 0;
886 break;
887 }
888
889 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX)
890 break;
891 }
892 acct_isolated(cc->zone, cc);
893
894 return pfn;
895 }
896
897 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
898 #ifdef CONFIG_COMPACTION
899 /*
900 * Based on information in the current compact_control, find blocks
901 * suitable for isolating free pages from and then isolate them.
902 */
903 static void isolate_freepages(struct compact_control *cc)
904 {
905 struct zone *zone = cc->zone;
906 struct page *page;
907 unsigned long block_start_pfn; /* start of current pageblock */
908 unsigned long isolate_start_pfn; /* exact pfn we start at */
909 unsigned long block_end_pfn; /* end of current pageblock */
910 unsigned long low_pfn; /* lowest pfn scanner is able to scan */
911 struct list_head *freelist = &cc->freepages;
912
913 /*
914 * Initialise the free scanner. The starting point is where we last
915 * successfully isolated from, zone-cached value, or the end of the
916 * zone when isolating for the first time. For looping we also need
917 * this pfn aligned down to the pageblock boundary, because we do
918 * block_start_pfn -= pageblock_nr_pages in the for loop.
919 * For ending point, take care when isolating in last pageblock of a
920 * a zone which ends in the middle of a pageblock.
921 * The low boundary is the end of the pageblock the migration scanner
922 * is using.
923 */
924 isolate_start_pfn = cc->free_pfn;
925 block_start_pfn = cc->free_pfn & ~(pageblock_nr_pages-1);
926 block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
927 zone_end_pfn(zone));
928 low_pfn = ALIGN(cc->migrate_pfn + 1, pageblock_nr_pages);
929
930 /*
931 * Isolate free pages until enough are available to migrate the
932 * pages on cc->migratepages. We stop searching if the migrate
933 * and free page scanners meet or enough free pages are isolated.
934 */
935 for (; block_start_pfn >= low_pfn &&
936 cc->nr_migratepages > cc->nr_freepages;
937 block_end_pfn = block_start_pfn,
938 block_start_pfn -= pageblock_nr_pages,
939 isolate_start_pfn = block_start_pfn) {
940
941 /*
942 * This can iterate a massively long zone without finding any
943 * suitable migration targets, so periodically check if we need
944 * to schedule, or even abort async compaction.
945 */
946 if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
947 && compact_should_abort(cc))
948 break;
949
950 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
951 zone);
952 if (!page)
953 continue;
954
955 /* Check the block is suitable for migration */
956 if (!suitable_migration_target(page))
957 continue;
958
959 /* If isolation recently failed, do not retry */
960 if (!isolation_suitable(cc, page))
961 continue;
962
963 /* Found a block suitable for isolating free pages from. */
964 isolate_freepages_block(cc, &isolate_start_pfn,
965 block_end_pfn, freelist, false);
966
967 /*
968 * Remember where the free scanner should restart next time,
969 * which is where isolate_freepages_block() left off.
970 * But if it scanned the whole pageblock, isolate_start_pfn
971 * now points at block_end_pfn, which is the start of the next
972 * pageblock.
973 * In that case we will however want to restart at the start
974 * of the previous pageblock.
975 */
976 cc->free_pfn = (isolate_start_pfn < block_end_pfn) ?
977 isolate_start_pfn :
978 block_start_pfn - pageblock_nr_pages;
979
980 /*
981 * isolate_freepages_block() might have aborted due to async
982 * compaction being contended
983 */
984 if (cc->contended)
985 break;
986 }
987
988 /* split_free_page does not map the pages */
989 map_pages(freelist);
990
991 /*
992 * If we crossed the migrate scanner, we want to keep it that way
993 * so that compact_finished() may detect this
994 */
995 if (block_start_pfn < low_pfn)
996 cc->free_pfn = cc->migrate_pfn;
997 }
998
999 /*
1000 * This is a migrate-callback that "allocates" freepages by taking pages
1001 * from the isolated freelists in the block we are migrating to.
1002 */
1003 static struct page *compaction_alloc(struct page *migratepage,
1004 unsigned long data,
1005 int **result)
1006 {
1007 struct compact_control *cc = (struct compact_control *)data;
1008 struct page *freepage;
1009
1010 /*
1011 * Isolate free pages if necessary, and if we are not aborting due to
1012 * contention.
1013 */
1014 if (list_empty(&cc->freepages)) {
1015 if (!cc->contended)
1016 isolate_freepages(cc);
1017
1018 if (list_empty(&cc->freepages))
1019 return NULL;
1020 }
1021
1022 freepage = list_entry(cc->freepages.next, struct page, lru);
1023 list_del(&freepage->lru);
1024 cc->nr_freepages--;
1025
1026 return freepage;
1027 }
1028
1029 /*
1030 * This is a migrate-callback that "frees" freepages back to the isolated
1031 * freelist. All pages on the freelist are from the same zone, so there is no
1032 * special handling needed for NUMA.
1033 */
1034 static void compaction_free(struct page *page, unsigned long data)
1035 {
1036 struct compact_control *cc = (struct compact_control *)data;
1037
1038 list_add(&page->lru, &cc->freepages);
1039 cc->nr_freepages++;
1040 }
1041
1042 /* possible outcome of isolate_migratepages */
1043 typedef enum {
1044 ISOLATE_ABORT, /* Abort compaction now */
1045 ISOLATE_NONE, /* No pages isolated, continue scanning */
1046 ISOLATE_SUCCESS, /* Pages isolated, migrate */
1047 } isolate_migrate_t;
1048
1049 /*
1050 * Allow userspace to control policy on scanning the unevictable LRU for
1051 * compactable pages.
1052 */
1053 int sysctl_compact_unevictable_allowed __read_mostly = 1;
1054
1055 /*
1056 * Isolate all pages that can be migrated from the first suitable block,
1057 * starting at the block pointed to by the migrate scanner pfn within
1058 * compact_control.
1059 */
1060 static isolate_migrate_t isolate_migratepages(struct zone *zone,
1061 struct compact_control *cc)
1062 {
1063 unsigned long low_pfn, end_pfn;
1064 struct page *page;
1065 const isolate_mode_t isolate_mode =
1066 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1067 (cc->mode == MIGRATE_ASYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1068
1069 /*
1070 * Start at where we last stopped, or beginning of the zone as
1071 * initialized by compact_zone()
1072 */
1073 low_pfn = cc->migrate_pfn;
1074
1075 /* Only scan within a pageblock boundary */
1076 end_pfn = ALIGN(low_pfn + 1, pageblock_nr_pages);
1077
1078 /*
1079 * Iterate over whole pageblocks until we find the first suitable.
1080 * Do not cross the free scanner.
1081 */
1082 for (; end_pfn <= cc->free_pfn;
1083 low_pfn = end_pfn, end_pfn += pageblock_nr_pages) {
1084
1085 /*
1086 * This can potentially iterate a massively long zone with
1087 * many pageblocks unsuitable, so periodically check if we
1088 * need to schedule, or even abort async compaction.
1089 */
1090 if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
1091 && compact_should_abort(cc))
1092 break;
1093
1094 page = pageblock_pfn_to_page(low_pfn, end_pfn, zone);
1095 if (!page)
1096 continue;
1097
1098 /* If isolation recently failed, do not retry */
1099 if (!isolation_suitable(cc, page))
1100 continue;
1101
1102 /*
1103 * For async compaction, also only scan in MOVABLE blocks.
1104 * Async compaction is optimistic to see if the minimum amount
1105 * of work satisfies the allocation.
1106 */
1107 if (cc->mode == MIGRATE_ASYNC &&
1108 !migrate_async_suitable(get_pageblock_migratetype(page)))
1109 continue;
1110
1111 /* Perform the isolation */
1112 low_pfn = isolate_migratepages_block(cc, low_pfn, end_pfn,
1113 isolate_mode);
1114
1115 if (!low_pfn || cc->contended) {
1116 acct_isolated(zone, cc);
1117 return ISOLATE_ABORT;
1118 }
1119
1120 /*
1121 * Either we isolated something and proceed with migration. Or
1122 * we failed and compact_zone should decide if we should
1123 * continue or not.
1124 */
1125 break;
1126 }
1127
1128 acct_isolated(zone, cc);
1129 /*
1130 * Record where migration scanner will be restarted. If we end up in
1131 * the same pageblock as the free scanner, make the scanners fully
1132 * meet so that compact_finished() terminates compaction.
1133 */
1134 cc->migrate_pfn = (end_pfn <= cc->free_pfn) ? low_pfn : cc->free_pfn;
1135
1136 return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1137 }
1138
1139 static int __compact_finished(struct zone *zone, struct compact_control *cc,
1140 const int migratetype)
1141 {
1142 unsigned int order;
1143 unsigned long watermark;
1144
1145 if (cc->contended || fatal_signal_pending(current))
1146 return COMPACT_PARTIAL;
1147
1148 /* Compaction run completes if the migrate and free scanner meet */
1149 if (cc->free_pfn <= cc->migrate_pfn) {
1150 /* Let the next compaction start anew. */
1151 zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
1152 zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
1153 zone->compact_cached_free_pfn = zone_end_pfn(zone);
1154
1155 /*
1156 * Mark that the PG_migrate_skip information should be cleared
1157 * by kswapd when it goes to sleep. kswapd does not set the
1158 * flag itself as the decision to be clear should be directly
1159 * based on an allocation request.
1160 */
1161 if (!current_is_kswapd())
1162 zone->compact_blockskip_flush = true;
1163
1164 return COMPACT_COMPLETE;
1165 }
1166
1167 /*
1168 * order == -1 is expected when compacting via
1169 * /proc/sys/vm/compact_memory
1170 */
1171 if (cc->order == -1)
1172 return COMPACT_CONTINUE;
1173
1174 /* Compaction run is not finished if the watermark is not met */
1175 watermark = low_wmark_pages(zone);
1176
1177 if (!zone_watermark_ok(zone, cc->order, watermark, cc->classzone_idx,
1178 cc->alloc_flags))
1179 return COMPACT_CONTINUE;
1180
1181 /* Direct compactor: Is a suitable page free? */
1182 for (order = cc->order; order < MAX_ORDER; order++) {
1183 struct free_area *area = &zone->free_area[order];
1184 bool can_steal;
1185
1186 /* Job done if page is free of the right migratetype */
1187 if (!list_empty(&area->free_list[migratetype]))
1188 return COMPACT_PARTIAL;
1189
1190 #ifdef CONFIG_CMA
1191 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
1192 if (migratetype == MIGRATE_MOVABLE &&
1193 !list_empty(&area->free_list[MIGRATE_CMA]))
1194 return COMPACT_PARTIAL;
1195 #endif
1196 /*
1197 * Job done if allocation would steal freepages from
1198 * other migratetype buddy lists.
1199 */
1200 if (find_suitable_fallback(area, order, migratetype,
1201 true, &can_steal) != -1)
1202 return COMPACT_PARTIAL;
1203 }
1204
1205 return COMPACT_NO_SUITABLE_PAGE;
1206 }
1207
1208 static int compact_finished(struct zone *zone, struct compact_control *cc,
1209 const int migratetype)
1210 {
1211 int ret;
1212
1213 ret = __compact_finished(zone, cc, migratetype);
1214 trace_mm_compaction_finished(zone, cc->order, ret);
1215 if (ret == COMPACT_NO_SUITABLE_PAGE)
1216 ret = COMPACT_CONTINUE;
1217
1218 return ret;
1219 }
1220
1221 /*
1222 * compaction_suitable: Is this suitable to run compaction on this zone now?
1223 * Returns
1224 * COMPACT_SKIPPED - If there are too few free pages for compaction
1225 * COMPACT_PARTIAL - If the allocation would succeed without compaction
1226 * COMPACT_CONTINUE - If compaction should run now
1227 */
1228 static unsigned long __compaction_suitable(struct zone *zone, int order,
1229 int alloc_flags, int classzone_idx)
1230 {
1231 int fragindex;
1232 unsigned long watermark;
1233
1234 /*
1235 * order == -1 is expected when compacting via
1236 * /proc/sys/vm/compact_memory
1237 */
1238 if (order == -1)
1239 return COMPACT_CONTINUE;
1240
1241 watermark = low_wmark_pages(zone);
1242 /*
1243 * If watermarks for high-order allocation are already met, there
1244 * should be no need for compaction at all.
1245 */
1246 if (zone_watermark_ok(zone, order, watermark, classzone_idx,
1247 alloc_flags))
1248 return COMPACT_PARTIAL;
1249
1250 /*
1251 * Watermarks for order-0 must be met for compaction. Note the 2UL.
1252 * This is because during migration, copies of pages need to be
1253 * allocated and for a short time, the footprint is higher
1254 */
1255 watermark += (2UL << order);
1256 if (!zone_watermark_ok(zone, 0, watermark, classzone_idx, alloc_flags))
1257 return COMPACT_SKIPPED;
1258
1259 /*
1260 * fragmentation index determines if allocation failures are due to
1261 * low memory or external fragmentation
1262 *
1263 * index of -1000 would imply allocations might succeed depending on
1264 * watermarks, but we already failed the high-order watermark check
1265 * index towards 0 implies failure is due to lack of memory
1266 * index towards 1000 implies failure is due to fragmentation
1267 *
1268 * Only compact if a failure would be due to fragmentation.
1269 */
1270 fragindex = fragmentation_index(zone, order);
1271 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
1272 return COMPACT_NOT_SUITABLE_ZONE;
1273
1274 return COMPACT_CONTINUE;
1275 }
1276
1277 unsigned long compaction_suitable(struct zone *zone, int order,
1278 int alloc_flags, int classzone_idx)
1279 {
1280 unsigned long ret;
1281
1282 ret = __compaction_suitable(zone, order, alloc_flags, classzone_idx);
1283 trace_mm_compaction_suitable(zone, order, ret);
1284 if (ret == COMPACT_NOT_SUITABLE_ZONE)
1285 ret = COMPACT_SKIPPED;
1286
1287 return ret;
1288 }
1289
1290 static int compact_zone(struct zone *zone, struct compact_control *cc)
1291 {
1292 int ret;
1293 unsigned long start_pfn = zone->zone_start_pfn;
1294 unsigned long end_pfn = zone_end_pfn(zone);
1295 const int migratetype = gfpflags_to_migratetype(cc->gfp_mask);
1296 const bool sync = cc->mode != MIGRATE_ASYNC;
1297 unsigned long last_migrated_pfn = 0;
1298
1299 ret = compaction_suitable(zone, cc->order, cc->alloc_flags,
1300 cc->classzone_idx);
1301 switch (ret) {
1302 case COMPACT_PARTIAL:
1303 case COMPACT_SKIPPED:
1304 /* Compaction is likely to fail */
1305 return ret;
1306 case COMPACT_CONTINUE:
1307 /* Fall through to compaction */
1308 ;
1309 }
1310
1311 /*
1312 * Clear pageblock skip if there were failures recently and compaction
1313 * is about to be retried after being deferred. kswapd does not do
1314 * this reset as it'll reset the cached information when going to sleep.
1315 */
1316 if (compaction_restarting(zone, cc->order) && !current_is_kswapd())
1317 __reset_isolation_suitable(zone);
1318
1319 /*
1320 * Setup to move all movable pages to the end of the zone. Used cached
1321 * information on where the scanners should start but check that it
1322 * is initialised by ensuring the values are within zone boundaries.
1323 */
1324 cc->migrate_pfn = zone->compact_cached_migrate_pfn[sync];
1325 cc->free_pfn = zone->compact_cached_free_pfn;
1326 if (cc->free_pfn < start_pfn || cc->free_pfn > end_pfn) {
1327 cc->free_pfn = end_pfn & ~(pageblock_nr_pages-1);
1328 zone->compact_cached_free_pfn = cc->free_pfn;
1329 }
1330 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn > end_pfn) {
1331 cc->migrate_pfn = start_pfn;
1332 zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
1333 zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
1334 }
1335
1336 trace_mm_compaction_begin(start_pfn, cc->migrate_pfn,
1337 cc->free_pfn, end_pfn, sync);
1338
1339 migrate_prep_local();
1340
1341 while ((ret = compact_finished(zone, cc, migratetype)) ==
1342 COMPACT_CONTINUE) {
1343 int err;
1344 unsigned long isolate_start_pfn = cc->migrate_pfn;
1345
1346 switch (isolate_migratepages(zone, cc)) {
1347 case ISOLATE_ABORT:
1348 ret = COMPACT_PARTIAL;
1349 putback_movable_pages(&cc->migratepages);
1350 cc->nr_migratepages = 0;
1351 goto out;
1352 case ISOLATE_NONE:
1353 /*
1354 * We haven't isolated and migrated anything, but
1355 * there might still be unflushed migrations from
1356 * previous cc->order aligned block.
1357 */
1358 goto check_drain;
1359 case ISOLATE_SUCCESS:
1360 ;
1361 }
1362
1363 err = migrate_pages(&cc->migratepages, compaction_alloc,
1364 compaction_free, (unsigned long)cc, cc->mode,
1365 MR_COMPACTION);
1366
1367 trace_mm_compaction_migratepages(cc->nr_migratepages, err,
1368 &cc->migratepages);
1369
1370 /* All pages were either migrated or will be released */
1371 cc->nr_migratepages = 0;
1372 if (err) {
1373 putback_movable_pages(&cc->migratepages);
1374 /*
1375 * migrate_pages() may return -ENOMEM when scanners meet
1376 * and we want compact_finished() to detect it
1377 */
1378 if (err == -ENOMEM && cc->free_pfn > cc->migrate_pfn) {
1379 ret = COMPACT_PARTIAL;
1380 goto out;
1381 }
1382 }
1383
1384 /*
1385 * Record where we could have freed pages by migration and not
1386 * yet flushed them to buddy allocator. We use the pfn that
1387 * isolate_migratepages() started from in this loop iteration
1388 * - this is the lowest page that could have been isolated and
1389 * then freed by migration.
1390 */
1391 if (!last_migrated_pfn)
1392 last_migrated_pfn = isolate_start_pfn;
1393
1394 check_drain:
1395 /*
1396 * Has the migration scanner moved away from the previous
1397 * cc->order aligned block where we migrated from? If yes,
1398 * flush the pages that were freed, so that they can merge and
1399 * compact_finished() can detect immediately if allocation
1400 * would succeed.
1401 */
1402 if (cc->order > 0 && last_migrated_pfn) {
1403 int cpu;
1404 unsigned long current_block_start =
1405 cc->migrate_pfn & ~((1UL << cc->order) - 1);
1406
1407 if (last_migrated_pfn < current_block_start) {
1408 cpu = get_cpu();
1409 lru_add_drain_cpu(cpu);
1410 drain_local_pages(zone);
1411 put_cpu();
1412 /* No more flushing until we migrate again */
1413 last_migrated_pfn = 0;
1414 }
1415 }
1416
1417 }
1418
1419 out:
1420 /*
1421 * Release free pages and update where the free scanner should restart,
1422 * so we don't leave any returned pages behind in the next attempt.
1423 */
1424 if (cc->nr_freepages > 0) {
1425 unsigned long free_pfn = release_freepages(&cc->freepages);
1426
1427 cc->nr_freepages = 0;
1428 VM_BUG_ON(free_pfn == 0);
1429 /* The cached pfn is always the first in a pageblock */
1430 free_pfn &= ~(pageblock_nr_pages-1);
1431 /*
1432 * Only go back, not forward. The cached pfn might have been
1433 * already reset to zone end in compact_finished()
1434 */
1435 if (free_pfn > zone->compact_cached_free_pfn)
1436 zone->compact_cached_free_pfn = free_pfn;
1437 }
1438
1439 trace_mm_compaction_end(start_pfn, cc->migrate_pfn,
1440 cc->free_pfn, end_pfn, sync, ret);
1441
1442 return ret;
1443 }
1444
1445 static unsigned long compact_zone_order(struct zone *zone, int order,
1446 gfp_t gfp_mask, enum migrate_mode mode, int *contended,
1447 int alloc_flags, int classzone_idx)
1448 {
1449 unsigned long ret;
1450 struct compact_control cc = {
1451 .nr_freepages = 0,
1452 .nr_migratepages = 0,
1453 .order = order,
1454 .gfp_mask = gfp_mask,
1455 .zone = zone,
1456 .mode = mode,
1457 .alloc_flags = alloc_flags,
1458 .classzone_idx = classzone_idx,
1459 };
1460 INIT_LIST_HEAD(&cc.freepages);
1461 INIT_LIST_HEAD(&cc.migratepages);
1462
1463 ret = compact_zone(zone, &cc);
1464
1465 VM_BUG_ON(!list_empty(&cc.freepages));
1466 VM_BUG_ON(!list_empty(&cc.migratepages));
1467
1468 *contended = cc.contended;
1469 return ret;
1470 }
1471
1472 int sysctl_extfrag_threshold = 500;
1473
1474 /**
1475 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
1476 * @gfp_mask: The GFP mask of the current allocation
1477 * @order: The order of the current allocation
1478 * @alloc_flags: The allocation flags of the current allocation
1479 * @ac: The context of current allocation
1480 * @mode: The migration mode for async, sync light, or sync migration
1481 * @contended: Return value that determines if compaction was aborted due to
1482 * need_resched() or lock contention
1483 *
1484 * This is the main entry point for direct page compaction.
1485 */
1486 unsigned long try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
1487 int alloc_flags, const struct alloc_context *ac,
1488 enum migrate_mode mode, int *contended)
1489 {
1490 int may_enter_fs = gfp_mask & __GFP_FS;
1491 int may_perform_io = gfp_mask & __GFP_IO;
1492 struct zoneref *z;
1493 struct zone *zone;
1494 int rc = COMPACT_DEFERRED;
1495 int all_zones_contended = COMPACT_CONTENDED_LOCK; /* init for &= op */
1496
1497 *contended = COMPACT_CONTENDED_NONE;
1498
1499 /* Check if the GFP flags allow compaction */
1500 if (!order || !may_enter_fs || !may_perform_io)
1501 return COMPACT_SKIPPED;
1502
1503 trace_mm_compaction_try_to_compact_pages(order, gfp_mask, mode);
1504
1505 /* Compact each zone in the list */
1506 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
1507 ac->nodemask) {
1508 int status;
1509 int zone_contended;
1510
1511 if (compaction_deferred(zone, order))
1512 continue;
1513
1514 status = compact_zone_order(zone, order, gfp_mask, mode,
1515 &zone_contended, alloc_flags,
1516 ac->classzone_idx);
1517 rc = max(status, rc);
1518 /*
1519 * It takes at least one zone that wasn't lock contended
1520 * to clear all_zones_contended.
1521 */
1522 all_zones_contended &= zone_contended;
1523
1524 /* If a normal allocation would succeed, stop compacting */
1525 if (zone_watermark_ok(zone, order, low_wmark_pages(zone),
1526 ac->classzone_idx, alloc_flags)) {
1527 /*
1528 * We think the allocation will succeed in this zone,
1529 * but it is not certain, hence the false. The caller
1530 * will repeat this with true if allocation indeed
1531 * succeeds in this zone.
1532 */
1533 compaction_defer_reset(zone, order, false);
1534 /*
1535 * It is possible that async compaction aborted due to
1536 * need_resched() and the watermarks were ok thanks to
1537 * somebody else freeing memory. The allocation can
1538 * however still fail so we better signal the
1539 * need_resched() contention anyway (this will not
1540 * prevent the allocation attempt).
1541 */
1542 if (zone_contended == COMPACT_CONTENDED_SCHED)
1543 *contended = COMPACT_CONTENDED_SCHED;
1544
1545 goto break_loop;
1546 }
1547
1548 if (mode != MIGRATE_ASYNC && status == COMPACT_COMPLETE) {
1549 /*
1550 * We think that allocation won't succeed in this zone
1551 * so we defer compaction there. If it ends up
1552 * succeeding after all, it will be reset.
1553 */
1554 defer_compaction(zone, order);
1555 }
1556
1557 /*
1558 * We might have stopped compacting due to need_resched() in
1559 * async compaction, or due to a fatal signal detected. In that
1560 * case do not try further zones and signal need_resched()
1561 * contention.
1562 */
1563 if ((zone_contended == COMPACT_CONTENDED_SCHED)
1564 || fatal_signal_pending(current)) {
1565 *contended = COMPACT_CONTENDED_SCHED;
1566 goto break_loop;
1567 }
1568
1569 continue;
1570 break_loop:
1571 /*
1572 * We might not have tried all the zones, so be conservative
1573 * and assume they are not all lock contended.
1574 */
1575 all_zones_contended = 0;
1576 break;
1577 }
1578
1579 /*
1580 * If at least one zone wasn't deferred or skipped, we report if all
1581 * zones that were tried were lock contended.
1582 */
1583 if (rc > COMPACT_SKIPPED && all_zones_contended)
1584 *contended = COMPACT_CONTENDED_LOCK;
1585
1586 return rc;
1587 }
1588
1589
1590 /* Compact all zones within a node */
1591 static void __compact_pgdat(pg_data_t *pgdat, struct compact_control *cc)
1592 {
1593 int zoneid;
1594 struct zone *zone;
1595
1596 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
1597
1598 zone = &pgdat->node_zones[zoneid];
1599 if (!populated_zone(zone))
1600 continue;
1601
1602 cc->nr_freepages = 0;
1603 cc->nr_migratepages = 0;
1604 cc->zone = zone;
1605 INIT_LIST_HEAD(&cc->freepages);
1606 INIT_LIST_HEAD(&cc->migratepages);
1607
1608 /*
1609 * When called via /proc/sys/vm/compact_memory
1610 * this makes sure we compact the whole zone regardless of
1611 * cached scanner positions.
1612 */
1613 if (cc->order == -1)
1614 __reset_isolation_suitable(zone);
1615
1616 if (cc->order == -1 || !compaction_deferred(zone, cc->order))
1617 compact_zone(zone, cc);
1618
1619 if (cc->order > 0) {
1620 if (zone_watermark_ok(zone, cc->order,
1621 low_wmark_pages(zone), 0, 0))
1622 compaction_defer_reset(zone, cc->order, false);
1623 }
1624
1625 VM_BUG_ON(!list_empty(&cc->freepages));
1626 VM_BUG_ON(!list_empty(&cc->migratepages));
1627 }
1628 }
1629
1630 void compact_pgdat(pg_data_t *pgdat, int order)
1631 {
1632 struct compact_control cc = {
1633 .order = order,
1634 .mode = MIGRATE_ASYNC,
1635 };
1636
1637 if (!order)
1638 return;
1639
1640 __compact_pgdat(pgdat, &cc);
1641 }
1642
1643 static void compact_node(int nid)
1644 {
1645 struct compact_control cc = {
1646 .order = -1,
1647 .mode = MIGRATE_SYNC,
1648 .ignore_skip_hint = true,
1649 };
1650
1651 __compact_pgdat(NODE_DATA(nid), &cc);
1652 }
1653
1654 /* Compact all nodes in the system */
1655 static void compact_nodes(void)
1656 {
1657 int nid;
1658
1659 /* Flush pending updates to the LRU lists */
1660 lru_add_drain_all();
1661
1662 for_each_online_node(nid)
1663 compact_node(nid);
1664 }
1665
1666 /* The written value is actually unused, all memory is compacted */
1667 int sysctl_compact_memory;
1668
1669 /* This is the entry point for compacting all nodes via /proc/sys/vm */
1670 int sysctl_compaction_handler(struct ctl_table *table, int write,
1671 void __user *buffer, size_t *length, loff_t *ppos)
1672 {
1673 if (write)
1674 compact_nodes();
1675
1676 return 0;
1677 }
1678
1679 int sysctl_extfrag_handler(struct ctl_table *table, int write,
1680 void __user *buffer, size_t *length, loff_t *ppos)
1681 {
1682 proc_dointvec_minmax(table, write, buffer, length, ppos);
1683
1684 return 0;
1685 }
1686
1687 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
1688 static ssize_t sysfs_compact_node(struct device *dev,
1689 struct device_attribute *attr,
1690 const char *buf, size_t count)
1691 {
1692 int nid = dev->id;
1693
1694 if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
1695 /* Flush pending updates to the LRU lists */
1696 lru_add_drain_all();
1697
1698 compact_node(nid);
1699 }
1700
1701 return count;
1702 }
1703 static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
1704
1705 int compaction_register_node(struct node *node)
1706 {
1707 return device_create_file(&node->dev, &dev_attr_compact);
1708 }
1709
1710 void compaction_unregister_node(struct node *node)
1711 {
1712 return device_remove_file(&node->dev, &dev_attr_compact);
1713 }
1714 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
1715
1716 #endif /* CONFIG_COMPACTION */
This page took 0.084252 seconds and 5 git commands to generate.