mm, compaction: encapsulate resetting cached scanner positions
[deliverable/linux.git] / mm / compaction.c
1 /*
2 * linux/mm/compaction.c
3 *
4 * Memory compaction for the reduction of external fragmentation. Note that
5 * this heavily depends upon page migration to do all the real heavy
6 * lifting
7 *
8 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
9 */
10 #include <linux/swap.h>
11 #include <linux/migrate.h>
12 #include <linux/compaction.h>
13 #include <linux/mm_inline.h>
14 #include <linux/backing-dev.h>
15 #include <linux/sysctl.h>
16 #include <linux/sysfs.h>
17 #include <linux/balloon_compaction.h>
18 #include <linux/page-isolation.h>
19 #include <linux/kasan.h>
20 #include "internal.h"
21
22 #ifdef CONFIG_COMPACTION
23 static inline void count_compact_event(enum vm_event_item item)
24 {
25 count_vm_event(item);
26 }
27
28 static inline void count_compact_events(enum vm_event_item item, long delta)
29 {
30 count_vm_events(item, delta);
31 }
32 #else
33 #define count_compact_event(item) do { } while (0)
34 #define count_compact_events(item, delta) do { } while (0)
35 #endif
36
37 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
38 #ifdef CONFIG_TRACEPOINTS
39 static const char *const compaction_status_string[] = {
40 "deferred",
41 "skipped",
42 "continue",
43 "partial",
44 "complete",
45 "no_suitable_page",
46 "not_suitable_zone",
47 };
48 #endif
49
50 #define CREATE_TRACE_POINTS
51 #include <trace/events/compaction.h>
52
53 static unsigned long release_freepages(struct list_head *freelist)
54 {
55 struct page *page, *next;
56 unsigned long high_pfn = 0;
57
58 list_for_each_entry_safe(page, next, freelist, lru) {
59 unsigned long pfn = page_to_pfn(page);
60 list_del(&page->lru);
61 __free_page(page);
62 if (pfn > high_pfn)
63 high_pfn = pfn;
64 }
65
66 return high_pfn;
67 }
68
69 static void map_pages(struct list_head *list)
70 {
71 struct page *page;
72
73 list_for_each_entry(page, list, lru) {
74 arch_alloc_page(page, 0);
75 kernel_map_pages(page, 1, 1);
76 kasan_alloc_pages(page, 0);
77 }
78 }
79
80 static inline bool migrate_async_suitable(int migratetype)
81 {
82 return is_migrate_cma(migratetype) || migratetype == MIGRATE_MOVABLE;
83 }
84
85 /*
86 * Check that the whole (or subset of) a pageblock given by the interval of
87 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
88 * with the migration of free compaction scanner. The scanners then need to
89 * use only pfn_valid_within() check for arches that allow holes within
90 * pageblocks.
91 *
92 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
93 *
94 * It's possible on some configurations to have a setup like node0 node1 node0
95 * i.e. it's possible that all pages within a zones range of pages do not
96 * belong to a single zone. We assume that a border between node0 and node1
97 * can occur within a single pageblock, but not a node0 node1 node0
98 * interleaving within a single pageblock. It is therefore sufficient to check
99 * the first and last page of a pageblock and avoid checking each individual
100 * page in a pageblock.
101 */
102 static struct page *pageblock_pfn_to_page(unsigned long start_pfn,
103 unsigned long end_pfn, struct zone *zone)
104 {
105 struct page *start_page;
106 struct page *end_page;
107
108 /* end_pfn is one past the range we are checking */
109 end_pfn--;
110
111 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
112 return NULL;
113
114 start_page = pfn_to_page(start_pfn);
115
116 if (page_zone(start_page) != zone)
117 return NULL;
118
119 end_page = pfn_to_page(end_pfn);
120
121 /* This gives a shorter code than deriving page_zone(end_page) */
122 if (page_zone_id(start_page) != page_zone_id(end_page))
123 return NULL;
124
125 return start_page;
126 }
127
128 #ifdef CONFIG_COMPACTION
129
130 /* Do not skip compaction more than 64 times */
131 #define COMPACT_MAX_DEFER_SHIFT 6
132
133 /*
134 * Compaction is deferred when compaction fails to result in a page
135 * allocation success. 1 << compact_defer_limit compactions are skipped up
136 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
137 */
138 void defer_compaction(struct zone *zone, int order)
139 {
140 zone->compact_considered = 0;
141 zone->compact_defer_shift++;
142
143 if (order < zone->compact_order_failed)
144 zone->compact_order_failed = order;
145
146 if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
147 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
148
149 trace_mm_compaction_defer_compaction(zone, order);
150 }
151
152 /* Returns true if compaction should be skipped this time */
153 bool compaction_deferred(struct zone *zone, int order)
154 {
155 unsigned long defer_limit = 1UL << zone->compact_defer_shift;
156
157 if (order < zone->compact_order_failed)
158 return false;
159
160 /* Avoid possible overflow */
161 if (++zone->compact_considered > defer_limit)
162 zone->compact_considered = defer_limit;
163
164 if (zone->compact_considered >= defer_limit)
165 return false;
166
167 trace_mm_compaction_deferred(zone, order);
168
169 return true;
170 }
171
172 /*
173 * Update defer tracking counters after successful compaction of given order,
174 * which means an allocation either succeeded (alloc_success == true) or is
175 * expected to succeed.
176 */
177 void compaction_defer_reset(struct zone *zone, int order,
178 bool alloc_success)
179 {
180 if (alloc_success) {
181 zone->compact_considered = 0;
182 zone->compact_defer_shift = 0;
183 }
184 if (order >= zone->compact_order_failed)
185 zone->compact_order_failed = order + 1;
186
187 trace_mm_compaction_defer_reset(zone, order);
188 }
189
190 /* Returns true if restarting compaction after many failures */
191 bool compaction_restarting(struct zone *zone, int order)
192 {
193 if (order < zone->compact_order_failed)
194 return false;
195
196 return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
197 zone->compact_considered >= 1UL << zone->compact_defer_shift;
198 }
199
200 /* Returns true if the pageblock should be scanned for pages to isolate. */
201 static inline bool isolation_suitable(struct compact_control *cc,
202 struct page *page)
203 {
204 if (cc->ignore_skip_hint)
205 return true;
206
207 return !get_pageblock_skip(page);
208 }
209
210 static void reset_cached_positions(struct zone *zone)
211 {
212 zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
213 zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
214 zone->compact_cached_free_pfn = zone_end_pfn(zone);
215 }
216
217 /*
218 * This function is called to clear all cached information on pageblocks that
219 * should be skipped for page isolation when the migrate and free page scanner
220 * meet.
221 */
222 static void __reset_isolation_suitable(struct zone *zone)
223 {
224 unsigned long start_pfn = zone->zone_start_pfn;
225 unsigned long end_pfn = zone_end_pfn(zone);
226 unsigned long pfn;
227
228 zone->compact_blockskip_flush = false;
229
230 /* Walk the zone and mark every pageblock as suitable for isolation */
231 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
232 struct page *page;
233
234 cond_resched();
235
236 if (!pfn_valid(pfn))
237 continue;
238
239 page = pfn_to_page(pfn);
240 if (zone != page_zone(page))
241 continue;
242
243 clear_pageblock_skip(page);
244 }
245
246 reset_cached_positions(zone);
247 }
248
249 void reset_isolation_suitable(pg_data_t *pgdat)
250 {
251 int zoneid;
252
253 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
254 struct zone *zone = &pgdat->node_zones[zoneid];
255 if (!populated_zone(zone))
256 continue;
257
258 /* Only flush if a full compaction finished recently */
259 if (zone->compact_blockskip_flush)
260 __reset_isolation_suitable(zone);
261 }
262 }
263
264 /*
265 * If no pages were isolated then mark this pageblock to be skipped in the
266 * future. The information is later cleared by __reset_isolation_suitable().
267 */
268 static void update_pageblock_skip(struct compact_control *cc,
269 struct page *page, unsigned long nr_isolated,
270 bool migrate_scanner)
271 {
272 struct zone *zone = cc->zone;
273 unsigned long pfn;
274
275 if (cc->ignore_skip_hint)
276 return;
277
278 if (!page)
279 return;
280
281 if (nr_isolated)
282 return;
283
284 set_pageblock_skip(page);
285
286 pfn = page_to_pfn(page);
287
288 /* Update where async and sync compaction should restart */
289 if (migrate_scanner) {
290 if (pfn > zone->compact_cached_migrate_pfn[0])
291 zone->compact_cached_migrate_pfn[0] = pfn;
292 if (cc->mode != MIGRATE_ASYNC &&
293 pfn > zone->compact_cached_migrate_pfn[1])
294 zone->compact_cached_migrate_pfn[1] = pfn;
295 } else {
296 if (pfn < zone->compact_cached_free_pfn)
297 zone->compact_cached_free_pfn = pfn;
298 }
299 }
300 #else
301 static inline bool isolation_suitable(struct compact_control *cc,
302 struct page *page)
303 {
304 return true;
305 }
306
307 static void update_pageblock_skip(struct compact_control *cc,
308 struct page *page, unsigned long nr_isolated,
309 bool migrate_scanner)
310 {
311 }
312 #endif /* CONFIG_COMPACTION */
313
314 /*
315 * Compaction requires the taking of some coarse locks that are potentially
316 * very heavily contended. For async compaction, back out if the lock cannot
317 * be taken immediately. For sync compaction, spin on the lock if needed.
318 *
319 * Returns true if the lock is held
320 * Returns false if the lock is not held and compaction should abort
321 */
322 static bool compact_trylock_irqsave(spinlock_t *lock, unsigned long *flags,
323 struct compact_control *cc)
324 {
325 if (cc->mode == MIGRATE_ASYNC) {
326 if (!spin_trylock_irqsave(lock, *flags)) {
327 cc->contended = COMPACT_CONTENDED_LOCK;
328 return false;
329 }
330 } else {
331 spin_lock_irqsave(lock, *flags);
332 }
333
334 return true;
335 }
336
337 /*
338 * Compaction requires the taking of some coarse locks that are potentially
339 * very heavily contended. The lock should be periodically unlocked to avoid
340 * having disabled IRQs for a long time, even when there is nobody waiting on
341 * the lock. It might also be that allowing the IRQs will result in
342 * need_resched() becoming true. If scheduling is needed, async compaction
343 * aborts. Sync compaction schedules.
344 * Either compaction type will also abort if a fatal signal is pending.
345 * In either case if the lock was locked, it is dropped and not regained.
346 *
347 * Returns true if compaction should abort due to fatal signal pending, or
348 * async compaction due to need_resched()
349 * Returns false when compaction can continue (sync compaction might have
350 * scheduled)
351 */
352 static bool compact_unlock_should_abort(spinlock_t *lock,
353 unsigned long flags, bool *locked, struct compact_control *cc)
354 {
355 if (*locked) {
356 spin_unlock_irqrestore(lock, flags);
357 *locked = false;
358 }
359
360 if (fatal_signal_pending(current)) {
361 cc->contended = COMPACT_CONTENDED_SCHED;
362 return true;
363 }
364
365 if (need_resched()) {
366 if (cc->mode == MIGRATE_ASYNC) {
367 cc->contended = COMPACT_CONTENDED_SCHED;
368 return true;
369 }
370 cond_resched();
371 }
372
373 return false;
374 }
375
376 /*
377 * Aside from avoiding lock contention, compaction also periodically checks
378 * need_resched() and either schedules in sync compaction or aborts async
379 * compaction. This is similar to what compact_unlock_should_abort() does, but
380 * is used where no lock is concerned.
381 *
382 * Returns false when no scheduling was needed, or sync compaction scheduled.
383 * Returns true when async compaction should abort.
384 */
385 static inline bool compact_should_abort(struct compact_control *cc)
386 {
387 /* async compaction aborts if contended */
388 if (need_resched()) {
389 if (cc->mode == MIGRATE_ASYNC) {
390 cc->contended = COMPACT_CONTENDED_SCHED;
391 return true;
392 }
393
394 cond_resched();
395 }
396
397 return false;
398 }
399
400 /*
401 * Isolate free pages onto a private freelist. If @strict is true, will abort
402 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
403 * (even though it may still end up isolating some pages).
404 */
405 static unsigned long isolate_freepages_block(struct compact_control *cc,
406 unsigned long *start_pfn,
407 unsigned long end_pfn,
408 struct list_head *freelist,
409 bool strict)
410 {
411 int nr_scanned = 0, total_isolated = 0;
412 struct page *cursor, *valid_page = NULL;
413 unsigned long flags = 0;
414 bool locked = false;
415 unsigned long blockpfn = *start_pfn;
416
417 cursor = pfn_to_page(blockpfn);
418
419 /* Isolate free pages. */
420 for (; blockpfn < end_pfn; blockpfn++, cursor++) {
421 int isolated, i;
422 struct page *page = cursor;
423
424 /*
425 * Periodically drop the lock (if held) regardless of its
426 * contention, to give chance to IRQs. Abort if fatal signal
427 * pending or async compaction detects need_resched()
428 */
429 if (!(blockpfn % SWAP_CLUSTER_MAX)
430 && compact_unlock_should_abort(&cc->zone->lock, flags,
431 &locked, cc))
432 break;
433
434 nr_scanned++;
435 if (!pfn_valid_within(blockpfn))
436 goto isolate_fail;
437
438 if (!valid_page)
439 valid_page = page;
440 if (!PageBuddy(page))
441 goto isolate_fail;
442
443 /*
444 * If we already hold the lock, we can skip some rechecking.
445 * Note that if we hold the lock now, checked_pageblock was
446 * already set in some previous iteration (or strict is true),
447 * so it is correct to skip the suitable migration target
448 * recheck as well.
449 */
450 if (!locked) {
451 /*
452 * The zone lock must be held to isolate freepages.
453 * Unfortunately this is a very coarse lock and can be
454 * heavily contended if there are parallel allocations
455 * or parallel compactions. For async compaction do not
456 * spin on the lock and we acquire the lock as late as
457 * possible.
458 */
459 locked = compact_trylock_irqsave(&cc->zone->lock,
460 &flags, cc);
461 if (!locked)
462 break;
463
464 /* Recheck this is a buddy page under lock */
465 if (!PageBuddy(page))
466 goto isolate_fail;
467 }
468
469 /* Found a free page, break it into order-0 pages */
470 isolated = split_free_page(page);
471 total_isolated += isolated;
472 for (i = 0; i < isolated; i++) {
473 list_add(&page->lru, freelist);
474 page++;
475 }
476
477 /* If a page was split, advance to the end of it */
478 if (isolated) {
479 cc->nr_freepages += isolated;
480 if (!strict &&
481 cc->nr_migratepages <= cc->nr_freepages) {
482 blockpfn += isolated;
483 break;
484 }
485
486 blockpfn += isolated - 1;
487 cursor += isolated - 1;
488 continue;
489 }
490
491 isolate_fail:
492 if (strict)
493 break;
494 else
495 continue;
496
497 }
498
499 trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
500 nr_scanned, total_isolated);
501
502 /* Record how far we have got within the block */
503 *start_pfn = blockpfn;
504
505 /*
506 * If strict isolation is requested by CMA then check that all the
507 * pages requested were isolated. If there were any failures, 0 is
508 * returned and CMA will fail.
509 */
510 if (strict && blockpfn < end_pfn)
511 total_isolated = 0;
512
513 if (locked)
514 spin_unlock_irqrestore(&cc->zone->lock, flags);
515
516 /* Update the pageblock-skip if the whole pageblock was scanned */
517 if (blockpfn == end_pfn)
518 update_pageblock_skip(cc, valid_page, total_isolated, false);
519
520 count_compact_events(COMPACTFREE_SCANNED, nr_scanned);
521 if (total_isolated)
522 count_compact_events(COMPACTISOLATED, total_isolated);
523 return total_isolated;
524 }
525
526 /**
527 * isolate_freepages_range() - isolate free pages.
528 * @start_pfn: The first PFN to start isolating.
529 * @end_pfn: The one-past-last PFN.
530 *
531 * Non-free pages, invalid PFNs, or zone boundaries within the
532 * [start_pfn, end_pfn) range are considered errors, cause function to
533 * undo its actions and return zero.
534 *
535 * Otherwise, function returns one-past-the-last PFN of isolated page
536 * (which may be greater then end_pfn if end fell in a middle of
537 * a free page).
538 */
539 unsigned long
540 isolate_freepages_range(struct compact_control *cc,
541 unsigned long start_pfn, unsigned long end_pfn)
542 {
543 unsigned long isolated, pfn, block_end_pfn;
544 LIST_HEAD(freelist);
545
546 pfn = start_pfn;
547 block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
548
549 for (; pfn < end_pfn; pfn += isolated,
550 block_end_pfn += pageblock_nr_pages) {
551 /* Protect pfn from changing by isolate_freepages_block */
552 unsigned long isolate_start_pfn = pfn;
553
554 block_end_pfn = min(block_end_pfn, end_pfn);
555
556 /*
557 * pfn could pass the block_end_pfn if isolated freepage
558 * is more than pageblock order. In this case, we adjust
559 * scanning range to right one.
560 */
561 if (pfn >= block_end_pfn) {
562 block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
563 block_end_pfn = min(block_end_pfn, end_pfn);
564 }
565
566 if (!pageblock_pfn_to_page(pfn, block_end_pfn, cc->zone))
567 break;
568
569 isolated = isolate_freepages_block(cc, &isolate_start_pfn,
570 block_end_pfn, &freelist, true);
571
572 /*
573 * In strict mode, isolate_freepages_block() returns 0 if
574 * there are any holes in the block (ie. invalid PFNs or
575 * non-free pages).
576 */
577 if (!isolated)
578 break;
579
580 /*
581 * If we managed to isolate pages, it is always (1 << n) *
582 * pageblock_nr_pages for some non-negative n. (Max order
583 * page may span two pageblocks).
584 */
585 }
586
587 /* split_free_page does not map the pages */
588 map_pages(&freelist);
589
590 if (pfn < end_pfn) {
591 /* Loop terminated early, cleanup. */
592 release_freepages(&freelist);
593 return 0;
594 }
595
596 /* We don't use freelists for anything. */
597 return pfn;
598 }
599
600 /* Update the number of anon and file isolated pages in the zone */
601 static void acct_isolated(struct zone *zone, struct compact_control *cc)
602 {
603 struct page *page;
604 unsigned int count[2] = { 0, };
605
606 if (list_empty(&cc->migratepages))
607 return;
608
609 list_for_each_entry(page, &cc->migratepages, lru)
610 count[!!page_is_file_cache(page)]++;
611
612 mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
613 mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
614 }
615
616 /* Similar to reclaim, but different enough that they don't share logic */
617 static bool too_many_isolated(struct zone *zone)
618 {
619 unsigned long active, inactive, isolated;
620
621 inactive = zone_page_state(zone, NR_INACTIVE_FILE) +
622 zone_page_state(zone, NR_INACTIVE_ANON);
623 active = zone_page_state(zone, NR_ACTIVE_FILE) +
624 zone_page_state(zone, NR_ACTIVE_ANON);
625 isolated = zone_page_state(zone, NR_ISOLATED_FILE) +
626 zone_page_state(zone, NR_ISOLATED_ANON);
627
628 return isolated > (inactive + active) / 2;
629 }
630
631 /**
632 * isolate_migratepages_block() - isolate all migrate-able pages within
633 * a single pageblock
634 * @cc: Compaction control structure.
635 * @low_pfn: The first PFN to isolate
636 * @end_pfn: The one-past-the-last PFN to isolate, within same pageblock
637 * @isolate_mode: Isolation mode to be used.
638 *
639 * Isolate all pages that can be migrated from the range specified by
640 * [low_pfn, end_pfn). The range is expected to be within same pageblock.
641 * Returns zero if there is a fatal signal pending, otherwise PFN of the
642 * first page that was not scanned (which may be both less, equal to or more
643 * than end_pfn).
644 *
645 * The pages are isolated on cc->migratepages list (not required to be empty),
646 * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
647 * is neither read nor updated.
648 */
649 static unsigned long
650 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
651 unsigned long end_pfn, isolate_mode_t isolate_mode)
652 {
653 struct zone *zone = cc->zone;
654 unsigned long nr_scanned = 0, nr_isolated = 0;
655 struct list_head *migratelist = &cc->migratepages;
656 struct lruvec *lruvec;
657 unsigned long flags = 0;
658 bool locked = false;
659 struct page *page = NULL, *valid_page = NULL;
660 unsigned long start_pfn = low_pfn;
661
662 /*
663 * Ensure that there are not too many pages isolated from the LRU
664 * list by either parallel reclaimers or compaction. If there are,
665 * delay for some time until fewer pages are isolated
666 */
667 while (unlikely(too_many_isolated(zone))) {
668 /* async migration should just abort */
669 if (cc->mode == MIGRATE_ASYNC)
670 return 0;
671
672 congestion_wait(BLK_RW_ASYNC, HZ/10);
673
674 if (fatal_signal_pending(current))
675 return 0;
676 }
677
678 if (compact_should_abort(cc))
679 return 0;
680
681 /* Time to isolate some pages for migration */
682 for (; low_pfn < end_pfn; low_pfn++) {
683 /*
684 * Periodically drop the lock (if held) regardless of its
685 * contention, to give chance to IRQs. Abort async compaction
686 * if contended.
687 */
688 if (!(low_pfn % SWAP_CLUSTER_MAX)
689 && compact_unlock_should_abort(&zone->lru_lock, flags,
690 &locked, cc))
691 break;
692
693 if (!pfn_valid_within(low_pfn))
694 continue;
695 nr_scanned++;
696
697 page = pfn_to_page(low_pfn);
698
699 if (!valid_page)
700 valid_page = page;
701
702 /*
703 * Skip if free. We read page order here without zone lock
704 * which is generally unsafe, but the race window is small and
705 * the worst thing that can happen is that we skip some
706 * potential isolation targets.
707 */
708 if (PageBuddy(page)) {
709 unsigned long freepage_order = page_order_unsafe(page);
710
711 /*
712 * Without lock, we cannot be sure that what we got is
713 * a valid page order. Consider only values in the
714 * valid order range to prevent low_pfn overflow.
715 */
716 if (freepage_order > 0 && freepage_order < MAX_ORDER)
717 low_pfn += (1UL << freepage_order) - 1;
718 continue;
719 }
720
721 /*
722 * Check may be lockless but that's ok as we recheck later.
723 * It's possible to migrate LRU pages and balloon pages
724 * Skip any other type of page
725 */
726 if (!PageLRU(page)) {
727 if (unlikely(balloon_page_movable(page))) {
728 if (balloon_page_isolate(page)) {
729 /* Successfully isolated */
730 goto isolate_success;
731 }
732 }
733 continue;
734 }
735
736 /*
737 * PageLRU is set. lru_lock normally excludes isolation
738 * splitting and collapsing (collapsing has already happened
739 * if PageLRU is set) but the lock is not necessarily taken
740 * here and it is wasteful to take it just to check transhuge.
741 * Check TransHuge without lock and skip the whole pageblock if
742 * it's either a transhuge or hugetlbfs page, as calling
743 * compound_order() without preventing THP from splitting the
744 * page underneath us may return surprising results.
745 */
746 if (PageTransHuge(page)) {
747 if (!locked)
748 low_pfn = ALIGN(low_pfn + 1,
749 pageblock_nr_pages) - 1;
750 else
751 low_pfn += (1 << compound_order(page)) - 1;
752
753 continue;
754 }
755
756 /*
757 * Migration will fail if an anonymous page is pinned in memory,
758 * so avoid taking lru_lock and isolating it unnecessarily in an
759 * admittedly racy check.
760 */
761 if (!page_mapping(page) &&
762 page_count(page) > page_mapcount(page))
763 continue;
764
765 /* If we already hold the lock, we can skip some rechecking */
766 if (!locked) {
767 locked = compact_trylock_irqsave(&zone->lru_lock,
768 &flags, cc);
769 if (!locked)
770 break;
771
772 /* Recheck PageLRU and PageTransHuge under lock */
773 if (!PageLRU(page))
774 continue;
775 if (PageTransHuge(page)) {
776 low_pfn += (1 << compound_order(page)) - 1;
777 continue;
778 }
779 }
780
781 lruvec = mem_cgroup_page_lruvec(page, zone);
782
783 /* Try isolate the page */
784 if (__isolate_lru_page(page, isolate_mode) != 0)
785 continue;
786
787 VM_BUG_ON_PAGE(PageTransCompound(page), page);
788
789 /* Successfully isolated */
790 del_page_from_lru_list(page, lruvec, page_lru(page));
791
792 isolate_success:
793 list_add(&page->lru, migratelist);
794 cc->nr_migratepages++;
795 nr_isolated++;
796
797 /* Avoid isolating too much */
798 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
799 ++low_pfn;
800 break;
801 }
802 }
803
804 /*
805 * The PageBuddy() check could have potentially brought us outside
806 * the range to be scanned.
807 */
808 if (unlikely(low_pfn > end_pfn))
809 low_pfn = end_pfn;
810
811 if (locked)
812 spin_unlock_irqrestore(&zone->lru_lock, flags);
813
814 /*
815 * Update the pageblock-skip information and cached scanner pfn,
816 * if the whole pageblock was scanned without isolating any page.
817 */
818 if (low_pfn == end_pfn)
819 update_pageblock_skip(cc, valid_page, nr_isolated, true);
820
821 trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
822 nr_scanned, nr_isolated);
823
824 count_compact_events(COMPACTMIGRATE_SCANNED, nr_scanned);
825 if (nr_isolated)
826 count_compact_events(COMPACTISOLATED, nr_isolated);
827
828 return low_pfn;
829 }
830
831 /**
832 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
833 * @cc: Compaction control structure.
834 * @start_pfn: The first PFN to start isolating.
835 * @end_pfn: The one-past-last PFN.
836 *
837 * Returns zero if isolation fails fatally due to e.g. pending signal.
838 * Otherwise, function returns one-past-the-last PFN of isolated page
839 * (which may be greater than end_pfn if end fell in a middle of a THP page).
840 */
841 unsigned long
842 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
843 unsigned long end_pfn)
844 {
845 unsigned long pfn, block_end_pfn;
846
847 /* Scan block by block. First and last block may be incomplete */
848 pfn = start_pfn;
849 block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
850
851 for (; pfn < end_pfn; pfn = block_end_pfn,
852 block_end_pfn += pageblock_nr_pages) {
853
854 block_end_pfn = min(block_end_pfn, end_pfn);
855
856 if (!pageblock_pfn_to_page(pfn, block_end_pfn, cc->zone))
857 continue;
858
859 pfn = isolate_migratepages_block(cc, pfn, block_end_pfn,
860 ISOLATE_UNEVICTABLE);
861
862 /*
863 * In case of fatal failure, release everything that might
864 * have been isolated in the previous iteration, and signal
865 * the failure back to caller.
866 */
867 if (!pfn) {
868 putback_movable_pages(&cc->migratepages);
869 cc->nr_migratepages = 0;
870 break;
871 }
872
873 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX)
874 break;
875 }
876 acct_isolated(cc->zone, cc);
877
878 return pfn;
879 }
880
881 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
882 #ifdef CONFIG_COMPACTION
883
884 /* Returns true if the page is within a block suitable for migration to */
885 static bool suitable_migration_target(struct page *page)
886 {
887 /* If the page is a large free page, then disallow migration */
888 if (PageBuddy(page)) {
889 /*
890 * We are checking page_order without zone->lock taken. But
891 * the only small danger is that we skip a potentially suitable
892 * pageblock, so it's not worth to check order for valid range.
893 */
894 if (page_order_unsafe(page) >= pageblock_order)
895 return false;
896 }
897
898 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
899 if (migrate_async_suitable(get_pageblock_migratetype(page)))
900 return true;
901
902 /* Otherwise skip the block */
903 return false;
904 }
905
906 /*
907 * Test whether the free scanner has reached the same or lower pageblock than
908 * the migration scanner, and compaction should thus terminate.
909 */
910 static inline bool compact_scanners_met(struct compact_control *cc)
911 {
912 return (cc->free_pfn >> pageblock_order)
913 <= (cc->migrate_pfn >> pageblock_order);
914 }
915
916 /*
917 * Based on information in the current compact_control, find blocks
918 * suitable for isolating free pages from and then isolate them.
919 */
920 static void isolate_freepages(struct compact_control *cc)
921 {
922 struct zone *zone = cc->zone;
923 struct page *page;
924 unsigned long block_start_pfn; /* start of current pageblock */
925 unsigned long isolate_start_pfn; /* exact pfn we start at */
926 unsigned long block_end_pfn; /* end of current pageblock */
927 unsigned long low_pfn; /* lowest pfn scanner is able to scan */
928 struct list_head *freelist = &cc->freepages;
929
930 /*
931 * Initialise the free scanner. The starting point is where we last
932 * successfully isolated from, zone-cached value, or the end of the
933 * zone when isolating for the first time. For looping we also need
934 * this pfn aligned down to the pageblock boundary, because we do
935 * block_start_pfn -= pageblock_nr_pages in the for loop.
936 * For ending point, take care when isolating in last pageblock of a
937 * a zone which ends in the middle of a pageblock.
938 * The low boundary is the end of the pageblock the migration scanner
939 * is using.
940 */
941 isolate_start_pfn = cc->free_pfn;
942 block_start_pfn = cc->free_pfn & ~(pageblock_nr_pages-1);
943 block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
944 zone_end_pfn(zone));
945 low_pfn = ALIGN(cc->migrate_pfn + 1, pageblock_nr_pages);
946
947 /*
948 * Isolate free pages until enough are available to migrate the
949 * pages on cc->migratepages. We stop searching if the migrate
950 * and free page scanners meet or enough free pages are isolated.
951 */
952 for (; block_start_pfn >= low_pfn;
953 block_end_pfn = block_start_pfn,
954 block_start_pfn -= pageblock_nr_pages,
955 isolate_start_pfn = block_start_pfn) {
956
957 /*
958 * This can iterate a massively long zone without finding any
959 * suitable migration targets, so periodically check if we need
960 * to schedule, or even abort async compaction.
961 */
962 if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
963 && compact_should_abort(cc))
964 break;
965
966 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
967 zone);
968 if (!page)
969 continue;
970
971 /* Check the block is suitable for migration */
972 if (!suitable_migration_target(page))
973 continue;
974
975 /* If isolation recently failed, do not retry */
976 if (!isolation_suitable(cc, page))
977 continue;
978
979 /* Found a block suitable for isolating free pages from. */
980 isolate_freepages_block(cc, &isolate_start_pfn,
981 block_end_pfn, freelist, false);
982
983 /*
984 * If we isolated enough freepages, or aborted due to async
985 * compaction being contended, terminate the loop.
986 * Remember where the free scanner should restart next time,
987 * which is where isolate_freepages_block() left off.
988 * But if it scanned the whole pageblock, isolate_start_pfn
989 * now points at block_end_pfn, which is the start of the next
990 * pageblock.
991 * In that case we will however want to restart at the start
992 * of the previous pageblock.
993 */
994 if ((cc->nr_freepages >= cc->nr_migratepages)
995 || cc->contended) {
996 if (isolate_start_pfn >= block_end_pfn)
997 isolate_start_pfn =
998 block_start_pfn - pageblock_nr_pages;
999 break;
1000 } else {
1001 /*
1002 * isolate_freepages_block() should not terminate
1003 * prematurely unless contended, or isolated enough
1004 */
1005 VM_BUG_ON(isolate_start_pfn < block_end_pfn);
1006 }
1007 }
1008
1009 /* split_free_page does not map the pages */
1010 map_pages(freelist);
1011
1012 /*
1013 * Record where the free scanner will restart next time. Either we
1014 * broke from the loop and set isolate_start_pfn based on the last
1015 * call to isolate_freepages_block(), or we met the migration scanner
1016 * and the loop terminated due to isolate_start_pfn < low_pfn
1017 */
1018 cc->free_pfn = isolate_start_pfn;
1019 }
1020
1021 /*
1022 * This is a migrate-callback that "allocates" freepages by taking pages
1023 * from the isolated freelists in the block we are migrating to.
1024 */
1025 static struct page *compaction_alloc(struct page *migratepage,
1026 unsigned long data,
1027 int **result)
1028 {
1029 struct compact_control *cc = (struct compact_control *)data;
1030 struct page *freepage;
1031
1032 /*
1033 * Isolate free pages if necessary, and if we are not aborting due to
1034 * contention.
1035 */
1036 if (list_empty(&cc->freepages)) {
1037 if (!cc->contended)
1038 isolate_freepages(cc);
1039
1040 if (list_empty(&cc->freepages))
1041 return NULL;
1042 }
1043
1044 freepage = list_entry(cc->freepages.next, struct page, lru);
1045 list_del(&freepage->lru);
1046 cc->nr_freepages--;
1047
1048 return freepage;
1049 }
1050
1051 /*
1052 * This is a migrate-callback that "frees" freepages back to the isolated
1053 * freelist. All pages on the freelist are from the same zone, so there is no
1054 * special handling needed for NUMA.
1055 */
1056 static void compaction_free(struct page *page, unsigned long data)
1057 {
1058 struct compact_control *cc = (struct compact_control *)data;
1059
1060 list_add(&page->lru, &cc->freepages);
1061 cc->nr_freepages++;
1062 }
1063
1064 /* possible outcome of isolate_migratepages */
1065 typedef enum {
1066 ISOLATE_ABORT, /* Abort compaction now */
1067 ISOLATE_NONE, /* No pages isolated, continue scanning */
1068 ISOLATE_SUCCESS, /* Pages isolated, migrate */
1069 } isolate_migrate_t;
1070
1071 /*
1072 * Allow userspace to control policy on scanning the unevictable LRU for
1073 * compactable pages.
1074 */
1075 int sysctl_compact_unevictable_allowed __read_mostly = 1;
1076
1077 /*
1078 * Isolate all pages that can be migrated from the first suitable block,
1079 * starting at the block pointed to by the migrate scanner pfn within
1080 * compact_control.
1081 */
1082 static isolate_migrate_t isolate_migratepages(struct zone *zone,
1083 struct compact_control *cc)
1084 {
1085 unsigned long low_pfn, end_pfn;
1086 struct page *page;
1087 const isolate_mode_t isolate_mode =
1088 (sysctl_compact_unevictable_allowed ? ISOLATE_UNEVICTABLE : 0) |
1089 (cc->mode == MIGRATE_ASYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1090
1091 /*
1092 * Start at where we last stopped, or beginning of the zone as
1093 * initialized by compact_zone()
1094 */
1095 low_pfn = cc->migrate_pfn;
1096
1097 /* Only scan within a pageblock boundary */
1098 end_pfn = ALIGN(low_pfn + 1, pageblock_nr_pages);
1099
1100 /*
1101 * Iterate over whole pageblocks until we find the first suitable.
1102 * Do not cross the free scanner.
1103 */
1104 for (; end_pfn <= cc->free_pfn;
1105 low_pfn = end_pfn, end_pfn += pageblock_nr_pages) {
1106
1107 /*
1108 * This can potentially iterate a massively long zone with
1109 * many pageblocks unsuitable, so periodically check if we
1110 * need to schedule, or even abort async compaction.
1111 */
1112 if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
1113 && compact_should_abort(cc))
1114 break;
1115
1116 page = pageblock_pfn_to_page(low_pfn, end_pfn, zone);
1117 if (!page)
1118 continue;
1119
1120 /* If isolation recently failed, do not retry */
1121 if (!isolation_suitable(cc, page))
1122 continue;
1123
1124 /*
1125 * For async compaction, also only scan in MOVABLE blocks.
1126 * Async compaction is optimistic to see if the minimum amount
1127 * of work satisfies the allocation.
1128 */
1129 if (cc->mode == MIGRATE_ASYNC &&
1130 !migrate_async_suitable(get_pageblock_migratetype(page)))
1131 continue;
1132
1133 /* Perform the isolation */
1134 low_pfn = isolate_migratepages_block(cc, low_pfn, end_pfn,
1135 isolate_mode);
1136
1137 if (!low_pfn || cc->contended) {
1138 acct_isolated(zone, cc);
1139 return ISOLATE_ABORT;
1140 }
1141
1142 /*
1143 * Either we isolated something and proceed with migration. Or
1144 * we failed and compact_zone should decide if we should
1145 * continue or not.
1146 */
1147 break;
1148 }
1149
1150 acct_isolated(zone, cc);
1151 /* Record where migration scanner will be restarted. */
1152 cc->migrate_pfn = low_pfn;
1153
1154 return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1155 }
1156
1157 static int __compact_finished(struct zone *zone, struct compact_control *cc,
1158 const int migratetype)
1159 {
1160 unsigned int order;
1161 unsigned long watermark;
1162
1163 if (cc->contended || fatal_signal_pending(current))
1164 return COMPACT_PARTIAL;
1165
1166 /* Compaction run completes if the migrate and free scanner meet */
1167 if (compact_scanners_met(cc)) {
1168 /* Let the next compaction start anew. */
1169 reset_cached_positions(zone);
1170
1171 /*
1172 * Mark that the PG_migrate_skip information should be cleared
1173 * by kswapd when it goes to sleep. kswapd does not set the
1174 * flag itself as the decision to be clear should be directly
1175 * based on an allocation request.
1176 */
1177 if (!current_is_kswapd())
1178 zone->compact_blockskip_flush = true;
1179
1180 return COMPACT_COMPLETE;
1181 }
1182
1183 /*
1184 * order == -1 is expected when compacting via
1185 * /proc/sys/vm/compact_memory
1186 */
1187 if (cc->order == -1)
1188 return COMPACT_CONTINUE;
1189
1190 /* Compaction run is not finished if the watermark is not met */
1191 watermark = low_wmark_pages(zone);
1192
1193 if (!zone_watermark_ok(zone, cc->order, watermark, cc->classzone_idx,
1194 cc->alloc_flags))
1195 return COMPACT_CONTINUE;
1196
1197 /* Direct compactor: Is a suitable page free? */
1198 for (order = cc->order; order < MAX_ORDER; order++) {
1199 struct free_area *area = &zone->free_area[order];
1200 bool can_steal;
1201
1202 /* Job done if page is free of the right migratetype */
1203 if (!list_empty(&area->free_list[migratetype]))
1204 return COMPACT_PARTIAL;
1205
1206 #ifdef CONFIG_CMA
1207 /* MIGRATE_MOVABLE can fallback on MIGRATE_CMA */
1208 if (migratetype == MIGRATE_MOVABLE &&
1209 !list_empty(&area->free_list[MIGRATE_CMA]))
1210 return COMPACT_PARTIAL;
1211 #endif
1212 /*
1213 * Job done if allocation would steal freepages from
1214 * other migratetype buddy lists.
1215 */
1216 if (find_suitable_fallback(area, order, migratetype,
1217 true, &can_steal) != -1)
1218 return COMPACT_PARTIAL;
1219 }
1220
1221 return COMPACT_NO_SUITABLE_PAGE;
1222 }
1223
1224 static int compact_finished(struct zone *zone, struct compact_control *cc,
1225 const int migratetype)
1226 {
1227 int ret;
1228
1229 ret = __compact_finished(zone, cc, migratetype);
1230 trace_mm_compaction_finished(zone, cc->order, ret);
1231 if (ret == COMPACT_NO_SUITABLE_PAGE)
1232 ret = COMPACT_CONTINUE;
1233
1234 return ret;
1235 }
1236
1237 /*
1238 * compaction_suitable: Is this suitable to run compaction on this zone now?
1239 * Returns
1240 * COMPACT_SKIPPED - If there are too few free pages for compaction
1241 * COMPACT_PARTIAL - If the allocation would succeed without compaction
1242 * COMPACT_CONTINUE - If compaction should run now
1243 */
1244 static unsigned long __compaction_suitable(struct zone *zone, int order,
1245 int alloc_flags, int classzone_idx)
1246 {
1247 int fragindex;
1248 unsigned long watermark;
1249
1250 /*
1251 * order == -1 is expected when compacting via
1252 * /proc/sys/vm/compact_memory
1253 */
1254 if (order == -1)
1255 return COMPACT_CONTINUE;
1256
1257 watermark = low_wmark_pages(zone);
1258 /*
1259 * If watermarks for high-order allocation are already met, there
1260 * should be no need for compaction at all.
1261 */
1262 if (zone_watermark_ok(zone, order, watermark, classzone_idx,
1263 alloc_flags))
1264 return COMPACT_PARTIAL;
1265
1266 /*
1267 * Watermarks for order-0 must be met for compaction. Note the 2UL.
1268 * This is because during migration, copies of pages need to be
1269 * allocated and for a short time, the footprint is higher
1270 */
1271 watermark += (2UL << order);
1272 if (!zone_watermark_ok(zone, 0, watermark, classzone_idx, alloc_flags))
1273 return COMPACT_SKIPPED;
1274
1275 /*
1276 * fragmentation index determines if allocation failures are due to
1277 * low memory or external fragmentation
1278 *
1279 * index of -1000 would imply allocations might succeed depending on
1280 * watermarks, but we already failed the high-order watermark check
1281 * index towards 0 implies failure is due to lack of memory
1282 * index towards 1000 implies failure is due to fragmentation
1283 *
1284 * Only compact if a failure would be due to fragmentation.
1285 */
1286 fragindex = fragmentation_index(zone, order);
1287 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
1288 return COMPACT_NOT_SUITABLE_ZONE;
1289
1290 return COMPACT_CONTINUE;
1291 }
1292
1293 unsigned long compaction_suitable(struct zone *zone, int order,
1294 int alloc_flags, int classzone_idx)
1295 {
1296 unsigned long ret;
1297
1298 ret = __compaction_suitable(zone, order, alloc_flags, classzone_idx);
1299 trace_mm_compaction_suitable(zone, order, ret);
1300 if (ret == COMPACT_NOT_SUITABLE_ZONE)
1301 ret = COMPACT_SKIPPED;
1302
1303 return ret;
1304 }
1305
1306 static int compact_zone(struct zone *zone, struct compact_control *cc)
1307 {
1308 int ret;
1309 unsigned long start_pfn = zone->zone_start_pfn;
1310 unsigned long end_pfn = zone_end_pfn(zone);
1311 const int migratetype = gfpflags_to_migratetype(cc->gfp_mask);
1312 const bool sync = cc->mode != MIGRATE_ASYNC;
1313 unsigned long last_migrated_pfn = 0;
1314
1315 ret = compaction_suitable(zone, cc->order, cc->alloc_flags,
1316 cc->classzone_idx);
1317 switch (ret) {
1318 case COMPACT_PARTIAL:
1319 case COMPACT_SKIPPED:
1320 /* Compaction is likely to fail */
1321 return ret;
1322 case COMPACT_CONTINUE:
1323 /* Fall through to compaction */
1324 ;
1325 }
1326
1327 /*
1328 * Clear pageblock skip if there were failures recently and compaction
1329 * is about to be retried after being deferred. kswapd does not do
1330 * this reset as it'll reset the cached information when going to sleep.
1331 */
1332 if (compaction_restarting(zone, cc->order) && !current_is_kswapd())
1333 __reset_isolation_suitable(zone);
1334
1335 /*
1336 * Setup to move all movable pages to the end of the zone. Used cached
1337 * information on where the scanners should start but check that it
1338 * is initialised by ensuring the values are within zone boundaries.
1339 */
1340 cc->migrate_pfn = zone->compact_cached_migrate_pfn[sync];
1341 cc->free_pfn = zone->compact_cached_free_pfn;
1342 if (cc->free_pfn < start_pfn || cc->free_pfn > end_pfn) {
1343 cc->free_pfn = end_pfn & ~(pageblock_nr_pages-1);
1344 zone->compact_cached_free_pfn = cc->free_pfn;
1345 }
1346 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn > end_pfn) {
1347 cc->migrate_pfn = start_pfn;
1348 zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
1349 zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
1350 }
1351
1352 trace_mm_compaction_begin(start_pfn, cc->migrate_pfn,
1353 cc->free_pfn, end_pfn, sync);
1354
1355 migrate_prep_local();
1356
1357 while ((ret = compact_finished(zone, cc, migratetype)) ==
1358 COMPACT_CONTINUE) {
1359 int err;
1360 unsigned long isolate_start_pfn = cc->migrate_pfn;
1361
1362 switch (isolate_migratepages(zone, cc)) {
1363 case ISOLATE_ABORT:
1364 ret = COMPACT_PARTIAL;
1365 putback_movable_pages(&cc->migratepages);
1366 cc->nr_migratepages = 0;
1367 goto out;
1368 case ISOLATE_NONE:
1369 /*
1370 * We haven't isolated and migrated anything, but
1371 * there might still be unflushed migrations from
1372 * previous cc->order aligned block.
1373 */
1374 goto check_drain;
1375 case ISOLATE_SUCCESS:
1376 ;
1377 }
1378
1379 err = migrate_pages(&cc->migratepages, compaction_alloc,
1380 compaction_free, (unsigned long)cc, cc->mode,
1381 MR_COMPACTION);
1382
1383 trace_mm_compaction_migratepages(cc->nr_migratepages, err,
1384 &cc->migratepages);
1385
1386 /* All pages were either migrated or will be released */
1387 cc->nr_migratepages = 0;
1388 if (err) {
1389 putback_movable_pages(&cc->migratepages);
1390 /*
1391 * migrate_pages() may return -ENOMEM when scanners meet
1392 * and we want compact_finished() to detect it
1393 */
1394 if (err == -ENOMEM && !compact_scanners_met(cc)) {
1395 ret = COMPACT_PARTIAL;
1396 goto out;
1397 }
1398 }
1399
1400 /*
1401 * Record where we could have freed pages by migration and not
1402 * yet flushed them to buddy allocator. We use the pfn that
1403 * isolate_migratepages() started from in this loop iteration
1404 * - this is the lowest page that could have been isolated and
1405 * then freed by migration.
1406 */
1407 if (!last_migrated_pfn)
1408 last_migrated_pfn = isolate_start_pfn;
1409
1410 check_drain:
1411 /*
1412 * Has the migration scanner moved away from the previous
1413 * cc->order aligned block where we migrated from? If yes,
1414 * flush the pages that were freed, so that they can merge and
1415 * compact_finished() can detect immediately if allocation
1416 * would succeed.
1417 */
1418 if (cc->order > 0 && last_migrated_pfn) {
1419 int cpu;
1420 unsigned long current_block_start =
1421 cc->migrate_pfn & ~((1UL << cc->order) - 1);
1422
1423 if (last_migrated_pfn < current_block_start) {
1424 cpu = get_cpu();
1425 lru_add_drain_cpu(cpu);
1426 drain_local_pages(zone);
1427 put_cpu();
1428 /* No more flushing until we migrate again */
1429 last_migrated_pfn = 0;
1430 }
1431 }
1432
1433 }
1434
1435 out:
1436 /*
1437 * Release free pages and update where the free scanner should restart,
1438 * so we don't leave any returned pages behind in the next attempt.
1439 */
1440 if (cc->nr_freepages > 0) {
1441 unsigned long free_pfn = release_freepages(&cc->freepages);
1442
1443 cc->nr_freepages = 0;
1444 VM_BUG_ON(free_pfn == 0);
1445 /* The cached pfn is always the first in a pageblock */
1446 free_pfn &= ~(pageblock_nr_pages-1);
1447 /*
1448 * Only go back, not forward. The cached pfn might have been
1449 * already reset to zone end in compact_finished()
1450 */
1451 if (free_pfn > zone->compact_cached_free_pfn)
1452 zone->compact_cached_free_pfn = free_pfn;
1453 }
1454
1455 trace_mm_compaction_end(start_pfn, cc->migrate_pfn,
1456 cc->free_pfn, end_pfn, sync, ret);
1457
1458 return ret;
1459 }
1460
1461 static unsigned long compact_zone_order(struct zone *zone, int order,
1462 gfp_t gfp_mask, enum migrate_mode mode, int *contended,
1463 int alloc_flags, int classzone_idx)
1464 {
1465 unsigned long ret;
1466 struct compact_control cc = {
1467 .nr_freepages = 0,
1468 .nr_migratepages = 0,
1469 .order = order,
1470 .gfp_mask = gfp_mask,
1471 .zone = zone,
1472 .mode = mode,
1473 .alloc_flags = alloc_flags,
1474 .classzone_idx = classzone_idx,
1475 };
1476 INIT_LIST_HEAD(&cc.freepages);
1477 INIT_LIST_HEAD(&cc.migratepages);
1478
1479 ret = compact_zone(zone, &cc);
1480
1481 VM_BUG_ON(!list_empty(&cc.freepages));
1482 VM_BUG_ON(!list_empty(&cc.migratepages));
1483
1484 *contended = cc.contended;
1485 return ret;
1486 }
1487
1488 int sysctl_extfrag_threshold = 500;
1489
1490 /**
1491 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
1492 * @gfp_mask: The GFP mask of the current allocation
1493 * @order: The order of the current allocation
1494 * @alloc_flags: The allocation flags of the current allocation
1495 * @ac: The context of current allocation
1496 * @mode: The migration mode for async, sync light, or sync migration
1497 * @contended: Return value that determines if compaction was aborted due to
1498 * need_resched() or lock contention
1499 *
1500 * This is the main entry point for direct page compaction.
1501 */
1502 unsigned long try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
1503 int alloc_flags, const struct alloc_context *ac,
1504 enum migrate_mode mode, int *contended)
1505 {
1506 int may_enter_fs = gfp_mask & __GFP_FS;
1507 int may_perform_io = gfp_mask & __GFP_IO;
1508 struct zoneref *z;
1509 struct zone *zone;
1510 int rc = COMPACT_DEFERRED;
1511 int all_zones_contended = COMPACT_CONTENDED_LOCK; /* init for &= op */
1512
1513 *contended = COMPACT_CONTENDED_NONE;
1514
1515 /* Check if the GFP flags allow compaction */
1516 if (!order || !may_enter_fs || !may_perform_io)
1517 return COMPACT_SKIPPED;
1518
1519 trace_mm_compaction_try_to_compact_pages(order, gfp_mask, mode);
1520
1521 /* Compact each zone in the list */
1522 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
1523 ac->nodemask) {
1524 int status;
1525 int zone_contended;
1526
1527 if (compaction_deferred(zone, order))
1528 continue;
1529
1530 status = compact_zone_order(zone, order, gfp_mask, mode,
1531 &zone_contended, alloc_flags,
1532 ac->classzone_idx);
1533 rc = max(status, rc);
1534 /*
1535 * It takes at least one zone that wasn't lock contended
1536 * to clear all_zones_contended.
1537 */
1538 all_zones_contended &= zone_contended;
1539
1540 /* If a normal allocation would succeed, stop compacting */
1541 if (zone_watermark_ok(zone, order, low_wmark_pages(zone),
1542 ac->classzone_idx, alloc_flags)) {
1543 /*
1544 * We think the allocation will succeed in this zone,
1545 * but it is not certain, hence the false. The caller
1546 * will repeat this with true if allocation indeed
1547 * succeeds in this zone.
1548 */
1549 compaction_defer_reset(zone, order, false);
1550 /*
1551 * It is possible that async compaction aborted due to
1552 * need_resched() and the watermarks were ok thanks to
1553 * somebody else freeing memory. The allocation can
1554 * however still fail so we better signal the
1555 * need_resched() contention anyway (this will not
1556 * prevent the allocation attempt).
1557 */
1558 if (zone_contended == COMPACT_CONTENDED_SCHED)
1559 *contended = COMPACT_CONTENDED_SCHED;
1560
1561 goto break_loop;
1562 }
1563
1564 if (mode != MIGRATE_ASYNC && status == COMPACT_COMPLETE) {
1565 /*
1566 * We think that allocation won't succeed in this zone
1567 * so we defer compaction there. If it ends up
1568 * succeeding after all, it will be reset.
1569 */
1570 defer_compaction(zone, order);
1571 }
1572
1573 /*
1574 * We might have stopped compacting due to need_resched() in
1575 * async compaction, or due to a fatal signal detected. In that
1576 * case do not try further zones and signal need_resched()
1577 * contention.
1578 */
1579 if ((zone_contended == COMPACT_CONTENDED_SCHED)
1580 || fatal_signal_pending(current)) {
1581 *contended = COMPACT_CONTENDED_SCHED;
1582 goto break_loop;
1583 }
1584
1585 continue;
1586 break_loop:
1587 /*
1588 * We might not have tried all the zones, so be conservative
1589 * and assume they are not all lock contended.
1590 */
1591 all_zones_contended = 0;
1592 break;
1593 }
1594
1595 /*
1596 * If at least one zone wasn't deferred or skipped, we report if all
1597 * zones that were tried were lock contended.
1598 */
1599 if (rc > COMPACT_SKIPPED && all_zones_contended)
1600 *contended = COMPACT_CONTENDED_LOCK;
1601
1602 return rc;
1603 }
1604
1605
1606 /* Compact all zones within a node */
1607 static void __compact_pgdat(pg_data_t *pgdat, struct compact_control *cc)
1608 {
1609 int zoneid;
1610 struct zone *zone;
1611
1612 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
1613
1614 zone = &pgdat->node_zones[zoneid];
1615 if (!populated_zone(zone))
1616 continue;
1617
1618 cc->nr_freepages = 0;
1619 cc->nr_migratepages = 0;
1620 cc->zone = zone;
1621 INIT_LIST_HEAD(&cc->freepages);
1622 INIT_LIST_HEAD(&cc->migratepages);
1623
1624 /*
1625 * When called via /proc/sys/vm/compact_memory
1626 * this makes sure we compact the whole zone regardless of
1627 * cached scanner positions.
1628 */
1629 if (cc->order == -1)
1630 __reset_isolation_suitable(zone);
1631
1632 if (cc->order == -1 || !compaction_deferred(zone, cc->order))
1633 compact_zone(zone, cc);
1634
1635 if (cc->order > 0) {
1636 if (zone_watermark_ok(zone, cc->order,
1637 low_wmark_pages(zone), 0, 0))
1638 compaction_defer_reset(zone, cc->order, false);
1639 }
1640
1641 VM_BUG_ON(!list_empty(&cc->freepages));
1642 VM_BUG_ON(!list_empty(&cc->migratepages));
1643 }
1644 }
1645
1646 void compact_pgdat(pg_data_t *pgdat, int order)
1647 {
1648 struct compact_control cc = {
1649 .order = order,
1650 .mode = MIGRATE_ASYNC,
1651 };
1652
1653 if (!order)
1654 return;
1655
1656 __compact_pgdat(pgdat, &cc);
1657 }
1658
1659 static void compact_node(int nid)
1660 {
1661 struct compact_control cc = {
1662 .order = -1,
1663 .mode = MIGRATE_SYNC,
1664 .ignore_skip_hint = true,
1665 };
1666
1667 __compact_pgdat(NODE_DATA(nid), &cc);
1668 }
1669
1670 /* Compact all nodes in the system */
1671 static void compact_nodes(void)
1672 {
1673 int nid;
1674
1675 /* Flush pending updates to the LRU lists */
1676 lru_add_drain_all();
1677
1678 for_each_online_node(nid)
1679 compact_node(nid);
1680 }
1681
1682 /* The written value is actually unused, all memory is compacted */
1683 int sysctl_compact_memory;
1684
1685 /* This is the entry point for compacting all nodes via /proc/sys/vm */
1686 int sysctl_compaction_handler(struct ctl_table *table, int write,
1687 void __user *buffer, size_t *length, loff_t *ppos)
1688 {
1689 if (write)
1690 compact_nodes();
1691
1692 return 0;
1693 }
1694
1695 int sysctl_extfrag_handler(struct ctl_table *table, int write,
1696 void __user *buffer, size_t *length, loff_t *ppos)
1697 {
1698 proc_dointvec_minmax(table, write, buffer, length, ppos);
1699
1700 return 0;
1701 }
1702
1703 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
1704 static ssize_t sysfs_compact_node(struct device *dev,
1705 struct device_attribute *attr,
1706 const char *buf, size_t count)
1707 {
1708 int nid = dev->id;
1709
1710 if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
1711 /* Flush pending updates to the LRU lists */
1712 lru_add_drain_all();
1713
1714 compact_node(nid);
1715 }
1716
1717 return count;
1718 }
1719 static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
1720
1721 int compaction_register_node(struct node *node)
1722 {
1723 return device_create_file(&node->dev, &dev_attr_compact);
1724 }
1725
1726 void compaction_unregister_node(struct node *node)
1727 {
1728 return device_remove_file(&node->dev, &dev_attr_compact);
1729 }
1730 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
1731
1732 #endif /* CONFIG_COMPACTION */
This page took 0.064197 seconds and 6 git commands to generate.