Merge git://git.kernel.org/pub/scm/linux/kernel/git/cmetcalf/linux-tile
[deliverable/linux.git] / mm / compaction.c
1 /*
2 * linux/mm/compaction.c
3 *
4 * Memory compaction for the reduction of external fragmentation. Note that
5 * this heavily depends upon page migration to do all the real heavy
6 * lifting
7 *
8 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
9 */
10 #include <linux/swap.h>
11 #include <linux/migrate.h>
12 #include <linux/compaction.h>
13 #include <linux/mm_inline.h>
14 #include <linux/backing-dev.h>
15 #include <linux/sysctl.h>
16 #include <linux/sysfs.h>
17 #include <linux/balloon_compaction.h>
18 #include <linux/page-isolation.h>
19 #include "internal.h"
20
21 #ifdef CONFIG_COMPACTION
22 static inline void count_compact_event(enum vm_event_item item)
23 {
24 count_vm_event(item);
25 }
26
27 static inline void count_compact_events(enum vm_event_item item, long delta)
28 {
29 count_vm_events(item, delta);
30 }
31 #else
32 #define count_compact_event(item) do { } while (0)
33 #define count_compact_events(item, delta) do { } while (0)
34 #endif
35
36 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
37
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/compaction.h>
40
41 static unsigned long release_freepages(struct list_head *freelist)
42 {
43 struct page *page, *next;
44 unsigned long count = 0;
45
46 list_for_each_entry_safe(page, next, freelist, lru) {
47 list_del(&page->lru);
48 __free_page(page);
49 count++;
50 }
51
52 return count;
53 }
54
55 static void map_pages(struct list_head *list)
56 {
57 struct page *page;
58
59 list_for_each_entry(page, list, lru) {
60 arch_alloc_page(page, 0);
61 kernel_map_pages(page, 1, 1);
62 }
63 }
64
65 static inline bool migrate_async_suitable(int migratetype)
66 {
67 return is_migrate_cma(migratetype) || migratetype == MIGRATE_MOVABLE;
68 }
69
70 #ifdef CONFIG_COMPACTION
71 /* Returns true if the pageblock should be scanned for pages to isolate. */
72 static inline bool isolation_suitable(struct compact_control *cc,
73 struct page *page)
74 {
75 if (cc->ignore_skip_hint)
76 return true;
77
78 return !get_pageblock_skip(page);
79 }
80
81 /*
82 * This function is called to clear all cached information on pageblocks that
83 * should be skipped for page isolation when the migrate and free page scanner
84 * meet.
85 */
86 static void __reset_isolation_suitable(struct zone *zone)
87 {
88 unsigned long start_pfn = zone->zone_start_pfn;
89 unsigned long end_pfn = zone_end_pfn(zone);
90 unsigned long pfn;
91
92 zone->compact_cached_migrate_pfn = start_pfn;
93 zone->compact_cached_free_pfn = end_pfn;
94 zone->compact_blockskip_flush = false;
95
96 /* Walk the zone and mark every pageblock as suitable for isolation */
97 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
98 struct page *page;
99
100 cond_resched();
101
102 if (!pfn_valid(pfn))
103 continue;
104
105 page = pfn_to_page(pfn);
106 if (zone != page_zone(page))
107 continue;
108
109 clear_pageblock_skip(page);
110 }
111 }
112
113 void reset_isolation_suitable(pg_data_t *pgdat)
114 {
115 int zoneid;
116
117 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
118 struct zone *zone = &pgdat->node_zones[zoneid];
119 if (!populated_zone(zone))
120 continue;
121
122 /* Only flush if a full compaction finished recently */
123 if (zone->compact_blockskip_flush)
124 __reset_isolation_suitable(zone);
125 }
126 }
127
128 /*
129 * If no pages were isolated then mark this pageblock to be skipped in the
130 * future. The information is later cleared by __reset_isolation_suitable().
131 */
132 static void update_pageblock_skip(struct compact_control *cc,
133 struct page *page, unsigned long nr_isolated,
134 bool migrate_scanner)
135 {
136 struct zone *zone = cc->zone;
137
138 if (cc->ignore_skip_hint)
139 return;
140
141 if (!page)
142 return;
143
144 if (!nr_isolated) {
145 unsigned long pfn = page_to_pfn(page);
146 set_pageblock_skip(page);
147
148 /* Update where compaction should restart */
149 if (migrate_scanner) {
150 if (!cc->finished_update_migrate &&
151 pfn > zone->compact_cached_migrate_pfn)
152 zone->compact_cached_migrate_pfn = pfn;
153 } else {
154 if (!cc->finished_update_free &&
155 pfn < zone->compact_cached_free_pfn)
156 zone->compact_cached_free_pfn = pfn;
157 }
158 }
159 }
160 #else
161 static inline bool isolation_suitable(struct compact_control *cc,
162 struct page *page)
163 {
164 return true;
165 }
166
167 static void update_pageblock_skip(struct compact_control *cc,
168 struct page *page, unsigned long nr_isolated,
169 bool migrate_scanner)
170 {
171 }
172 #endif /* CONFIG_COMPACTION */
173
174 static inline bool should_release_lock(spinlock_t *lock)
175 {
176 return need_resched() || spin_is_contended(lock);
177 }
178
179 /*
180 * Compaction requires the taking of some coarse locks that are potentially
181 * very heavily contended. Check if the process needs to be scheduled or
182 * if the lock is contended. For async compaction, back out in the event
183 * if contention is severe. For sync compaction, schedule.
184 *
185 * Returns true if the lock is held.
186 * Returns false if the lock is released and compaction should abort
187 */
188 static bool compact_checklock_irqsave(spinlock_t *lock, unsigned long *flags,
189 bool locked, struct compact_control *cc)
190 {
191 if (should_release_lock(lock)) {
192 if (locked) {
193 spin_unlock_irqrestore(lock, *flags);
194 locked = false;
195 }
196
197 /* async aborts if taking too long or contended */
198 if (!cc->sync) {
199 cc->contended = true;
200 return false;
201 }
202
203 cond_resched();
204 }
205
206 if (!locked)
207 spin_lock_irqsave(lock, *flags);
208 return true;
209 }
210
211 static inline bool compact_trylock_irqsave(spinlock_t *lock,
212 unsigned long *flags, struct compact_control *cc)
213 {
214 return compact_checklock_irqsave(lock, flags, false, cc);
215 }
216
217 /* Returns true if the page is within a block suitable for migration to */
218 static bool suitable_migration_target(struct page *page)
219 {
220 int migratetype = get_pageblock_migratetype(page);
221
222 /* Don't interfere with memory hot-remove or the min_free_kbytes blocks */
223 if (migratetype == MIGRATE_RESERVE)
224 return false;
225
226 if (is_migrate_isolate(migratetype))
227 return false;
228
229 /* If the page is a large free page, then allow migration */
230 if (PageBuddy(page) && page_order(page) >= pageblock_order)
231 return true;
232
233 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
234 if (migrate_async_suitable(migratetype))
235 return true;
236
237 /* Otherwise skip the block */
238 return false;
239 }
240
241 /*
242 * Isolate free pages onto a private freelist. If @strict is true, will abort
243 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
244 * (even though it may still end up isolating some pages).
245 */
246 static unsigned long isolate_freepages_block(struct compact_control *cc,
247 unsigned long blockpfn,
248 unsigned long end_pfn,
249 struct list_head *freelist,
250 bool strict)
251 {
252 int nr_scanned = 0, total_isolated = 0;
253 struct page *cursor, *valid_page = NULL;
254 unsigned long flags;
255 bool locked = false;
256
257 cursor = pfn_to_page(blockpfn);
258
259 /* Isolate free pages. */
260 for (; blockpfn < end_pfn; blockpfn++, cursor++) {
261 int isolated, i;
262 struct page *page = cursor;
263
264 nr_scanned++;
265 if (!pfn_valid_within(blockpfn))
266 goto isolate_fail;
267
268 if (!valid_page)
269 valid_page = page;
270 if (!PageBuddy(page))
271 goto isolate_fail;
272
273 /*
274 * The zone lock must be held to isolate freepages.
275 * Unfortunately this is a very coarse lock and can be
276 * heavily contended if there are parallel allocations
277 * or parallel compactions. For async compaction do not
278 * spin on the lock and we acquire the lock as late as
279 * possible.
280 */
281 locked = compact_checklock_irqsave(&cc->zone->lock, &flags,
282 locked, cc);
283 if (!locked)
284 break;
285
286 /* Recheck this is a suitable migration target under lock */
287 if (!strict && !suitable_migration_target(page))
288 break;
289
290 /* Recheck this is a buddy page under lock */
291 if (!PageBuddy(page))
292 goto isolate_fail;
293
294 /* Found a free page, break it into order-0 pages */
295 isolated = split_free_page(page);
296 total_isolated += isolated;
297 for (i = 0; i < isolated; i++) {
298 list_add(&page->lru, freelist);
299 page++;
300 }
301
302 /* If a page was split, advance to the end of it */
303 if (isolated) {
304 blockpfn += isolated - 1;
305 cursor += isolated - 1;
306 continue;
307 }
308
309 isolate_fail:
310 if (strict)
311 break;
312 else
313 continue;
314
315 }
316
317 trace_mm_compaction_isolate_freepages(nr_scanned, total_isolated);
318
319 /*
320 * If strict isolation is requested by CMA then check that all the
321 * pages requested were isolated. If there were any failures, 0 is
322 * returned and CMA will fail.
323 */
324 if (strict && blockpfn < end_pfn)
325 total_isolated = 0;
326
327 if (locked)
328 spin_unlock_irqrestore(&cc->zone->lock, flags);
329
330 /* Update the pageblock-skip if the whole pageblock was scanned */
331 if (blockpfn == end_pfn)
332 update_pageblock_skip(cc, valid_page, total_isolated, false);
333
334 count_compact_events(COMPACTFREE_SCANNED, nr_scanned);
335 if (total_isolated)
336 count_compact_events(COMPACTISOLATED, total_isolated);
337 return total_isolated;
338 }
339
340 /**
341 * isolate_freepages_range() - isolate free pages.
342 * @start_pfn: The first PFN to start isolating.
343 * @end_pfn: The one-past-last PFN.
344 *
345 * Non-free pages, invalid PFNs, or zone boundaries within the
346 * [start_pfn, end_pfn) range are considered errors, cause function to
347 * undo its actions and return zero.
348 *
349 * Otherwise, function returns one-past-the-last PFN of isolated page
350 * (which may be greater then end_pfn if end fell in a middle of
351 * a free page).
352 */
353 unsigned long
354 isolate_freepages_range(struct compact_control *cc,
355 unsigned long start_pfn, unsigned long end_pfn)
356 {
357 unsigned long isolated, pfn, block_end_pfn;
358 LIST_HEAD(freelist);
359
360 for (pfn = start_pfn; pfn < end_pfn; pfn += isolated) {
361 if (!pfn_valid(pfn) || cc->zone != page_zone(pfn_to_page(pfn)))
362 break;
363
364 /*
365 * On subsequent iterations ALIGN() is actually not needed,
366 * but we keep it that we not to complicate the code.
367 */
368 block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
369 block_end_pfn = min(block_end_pfn, end_pfn);
370
371 isolated = isolate_freepages_block(cc, pfn, block_end_pfn,
372 &freelist, true);
373
374 /*
375 * In strict mode, isolate_freepages_block() returns 0 if
376 * there are any holes in the block (ie. invalid PFNs or
377 * non-free pages).
378 */
379 if (!isolated)
380 break;
381
382 /*
383 * If we managed to isolate pages, it is always (1 << n) *
384 * pageblock_nr_pages for some non-negative n. (Max order
385 * page may span two pageblocks).
386 */
387 }
388
389 /* split_free_page does not map the pages */
390 map_pages(&freelist);
391
392 if (pfn < end_pfn) {
393 /* Loop terminated early, cleanup. */
394 release_freepages(&freelist);
395 return 0;
396 }
397
398 /* We don't use freelists for anything. */
399 return pfn;
400 }
401
402 /* Update the number of anon and file isolated pages in the zone */
403 static void acct_isolated(struct zone *zone, bool locked, struct compact_control *cc)
404 {
405 struct page *page;
406 unsigned int count[2] = { 0, };
407
408 list_for_each_entry(page, &cc->migratepages, lru)
409 count[!!page_is_file_cache(page)]++;
410
411 /* If locked we can use the interrupt unsafe versions */
412 if (locked) {
413 __mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
414 __mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
415 } else {
416 mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
417 mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
418 }
419 }
420
421 /* Similar to reclaim, but different enough that they don't share logic */
422 static bool too_many_isolated(struct zone *zone)
423 {
424 unsigned long active, inactive, isolated;
425
426 inactive = zone_page_state(zone, NR_INACTIVE_FILE) +
427 zone_page_state(zone, NR_INACTIVE_ANON);
428 active = zone_page_state(zone, NR_ACTIVE_FILE) +
429 zone_page_state(zone, NR_ACTIVE_ANON);
430 isolated = zone_page_state(zone, NR_ISOLATED_FILE) +
431 zone_page_state(zone, NR_ISOLATED_ANON);
432
433 return isolated > (inactive + active) / 2;
434 }
435
436 /**
437 * isolate_migratepages_range() - isolate all migrate-able pages in range.
438 * @zone: Zone pages are in.
439 * @cc: Compaction control structure.
440 * @low_pfn: The first PFN of the range.
441 * @end_pfn: The one-past-the-last PFN of the range.
442 * @unevictable: true if it allows to isolate unevictable pages
443 *
444 * Isolate all pages that can be migrated from the range specified by
445 * [low_pfn, end_pfn). Returns zero if there is a fatal signal
446 * pending), otherwise PFN of the first page that was not scanned
447 * (which may be both less, equal to or more then end_pfn).
448 *
449 * Assumes that cc->migratepages is empty and cc->nr_migratepages is
450 * zero.
451 *
452 * Apart from cc->migratepages and cc->nr_migratetypes this function
453 * does not modify any cc's fields, in particular it does not modify
454 * (or read for that matter) cc->migrate_pfn.
455 */
456 unsigned long
457 isolate_migratepages_range(struct zone *zone, struct compact_control *cc,
458 unsigned long low_pfn, unsigned long end_pfn, bool unevictable)
459 {
460 unsigned long last_pageblock_nr = 0, pageblock_nr;
461 unsigned long nr_scanned = 0, nr_isolated = 0;
462 struct list_head *migratelist = &cc->migratepages;
463 isolate_mode_t mode = 0;
464 struct lruvec *lruvec;
465 unsigned long flags;
466 bool locked = false;
467 struct page *page = NULL, *valid_page = NULL;
468 bool skipped_async_unsuitable = false;
469
470 /*
471 * Ensure that there are not too many pages isolated from the LRU
472 * list by either parallel reclaimers or compaction. If there are,
473 * delay for some time until fewer pages are isolated
474 */
475 while (unlikely(too_many_isolated(zone))) {
476 /* async migration should just abort */
477 if (!cc->sync)
478 return 0;
479
480 congestion_wait(BLK_RW_ASYNC, HZ/10);
481
482 if (fatal_signal_pending(current))
483 return 0;
484 }
485
486 /* Time to isolate some pages for migration */
487 cond_resched();
488 for (; low_pfn < end_pfn; low_pfn++) {
489 /* give a chance to irqs before checking need_resched() */
490 if (locked && !((low_pfn+1) % SWAP_CLUSTER_MAX)) {
491 if (should_release_lock(&zone->lru_lock)) {
492 spin_unlock_irqrestore(&zone->lru_lock, flags);
493 locked = false;
494 }
495 }
496
497 /*
498 * migrate_pfn does not necessarily start aligned to a
499 * pageblock. Ensure that pfn_valid is called when moving
500 * into a new MAX_ORDER_NR_PAGES range in case of large
501 * memory holes within the zone
502 */
503 if ((low_pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
504 if (!pfn_valid(low_pfn)) {
505 low_pfn += MAX_ORDER_NR_PAGES - 1;
506 continue;
507 }
508 }
509
510 if (!pfn_valid_within(low_pfn))
511 continue;
512 nr_scanned++;
513
514 /*
515 * Get the page and ensure the page is within the same zone.
516 * See the comment in isolate_freepages about overlapping
517 * nodes. It is deliberate that the new zone lock is not taken
518 * as memory compaction should not move pages between nodes.
519 */
520 page = pfn_to_page(low_pfn);
521 if (page_zone(page) != zone)
522 continue;
523
524 if (!valid_page)
525 valid_page = page;
526
527 /* If isolation recently failed, do not retry */
528 pageblock_nr = low_pfn >> pageblock_order;
529 if (!isolation_suitable(cc, page))
530 goto next_pageblock;
531
532 /*
533 * Skip if free. page_order cannot be used without zone->lock
534 * as nothing prevents parallel allocations or buddy merging.
535 */
536 if (PageBuddy(page))
537 continue;
538
539 /*
540 * For async migration, also only scan in MOVABLE blocks. Async
541 * migration is optimistic to see if the minimum amount of work
542 * satisfies the allocation
543 */
544 if (!cc->sync && last_pageblock_nr != pageblock_nr &&
545 !migrate_async_suitable(get_pageblock_migratetype(page))) {
546 cc->finished_update_migrate = true;
547 skipped_async_unsuitable = true;
548 goto next_pageblock;
549 }
550
551 /*
552 * Check may be lockless but that's ok as we recheck later.
553 * It's possible to migrate LRU pages and balloon pages
554 * Skip any other type of page
555 */
556 if (!PageLRU(page)) {
557 if (unlikely(balloon_page_movable(page))) {
558 if (locked && balloon_page_isolate(page)) {
559 /* Successfully isolated */
560 cc->finished_update_migrate = true;
561 list_add(&page->lru, migratelist);
562 cc->nr_migratepages++;
563 nr_isolated++;
564 goto check_compact_cluster;
565 }
566 }
567 continue;
568 }
569
570 /*
571 * PageLRU is set. lru_lock normally excludes isolation
572 * splitting and collapsing (collapsing has already happened
573 * if PageLRU is set) but the lock is not necessarily taken
574 * here and it is wasteful to take it just to check transhuge.
575 * Check TransHuge without lock and skip the whole pageblock if
576 * it's either a transhuge or hugetlbfs page, as calling
577 * compound_order() without preventing THP from splitting the
578 * page underneath us may return surprising results.
579 */
580 if (PageTransHuge(page)) {
581 if (!locked)
582 goto next_pageblock;
583 low_pfn += (1 << compound_order(page)) - 1;
584 continue;
585 }
586
587 /*
588 * Migration will fail if an anonymous page is pinned in memory,
589 * so avoid taking lru_lock and isolating it unnecessarily in an
590 * admittedly racy check.
591 */
592 if (!page_mapping(page) &&
593 page_count(page) > page_mapcount(page))
594 continue;
595
596 /* Check if it is ok to still hold the lock */
597 locked = compact_checklock_irqsave(&zone->lru_lock, &flags,
598 locked, cc);
599 if (!locked || fatal_signal_pending(current))
600 break;
601
602 /* Recheck PageLRU and PageTransHuge under lock */
603 if (!PageLRU(page))
604 continue;
605 if (PageTransHuge(page)) {
606 low_pfn += (1 << compound_order(page)) - 1;
607 continue;
608 }
609
610 if (!cc->sync)
611 mode |= ISOLATE_ASYNC_MIGRATE;
612
613 if (unevictable)
614 mode |= ISOLATE_UNEVICTABLE;
615
616 lruvec = mem_cgroup_page_lruvec(page, zone);
617
618 /* Try isolate the page */
619 if (__isolate_lru_page(page, mode) != 0)
620 continue;
621
622 VM_BUG_ON_PAGE(PageTransCompound(page), page);
623
624 /* Successfully isolated */
625 cc->finished_update_migrate = true;
626 del_page_from_lru_list(page, lruvec, page_lru(page));
627 list_add(&page->lru, migratelist);
628 cc->nr_migratepages++;
629 nr_isolated++;
630
631 check_compact_cluster:
632 /* Avoid isolating too much */
633 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
634 ++low_pfn;
635 break;
636 }
637
638 continue;
639
640 next_pageblock:
641 low_pfn = ALIGN(low_pfn + 1, pageblock_nr_pages) - 1;
642 last_pageblock_nr = pageblock_nr;
643 }
644
645 acct_isolated(zone, locked, cc);
646
647 if (locked)
648 spin_unlock_irqrestore(&zone->lru_lock, flags);
649
650 /*
651 * Update the pageblock-skip information and cached scanner pfn,
652 * if the whole pageblock was scanned without isolating any page.
653 * This is not done when pageblock was skipped due to being unsuitable
654 * for async compaction, so that eventual sync compaction can try.
655 */
656 if (low_pfn == end_pfn && !skipped_async_unsuitable)
657 update_pageblock_skip(cc, valid_page, nr_isolated, true);
658
659 trace_mm_compaction_isolate_migratepages(nr_scanned, nr_isolated);
660
661 count_compact_events(COMPACTMIGRATE_SCANNED, nr_scanned);
662 if (nr_isolated)
663 count_compact_events(COMPACTISOLATED, nr_isolated);
664
665 return low_pfn;
666 }
667
668 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
669 #ifdef CONFIG_COMPACTION
670 /*
671 * Based on information in the current compact_control, find blocks
672 * suitable for isolating free pages from and then isolate them.
673 */
674 static void isolate_freepages(struct zone *zone,
675 struct compact_control *cc)
676 {
677 struct page *page;
678 unsigned long high_pfn, low_pfn, pfn, z_end_pfn, end_pfn;
679 int nr_freepages = cc->nr_freepages;
680 struct list_head *freelist = &cc->freepages;
681
682 /*
683 * Initialise the free scanner. The starting point is where we last
684 * scanned from (or the end of the zone if starting). The low point
685 * is the end of the pageblock the migration scanner is using.
686 */
687 pfn = cc->free_pfn;
688 low_pfn = ALIGN(cc->migrate_pfn + 1, pageblock_nr_pages);
689
690 /*
691 * Take care that if the migration scanner is at the end of the zone
692 * that the free scanner does not accidentally move to the next zone
693 * in the next isolation cycle.
694 */
695 high_pfn = min(low_pfn, pfn);
696
697 z_end_pfn = zone_end_pfn(zone);
698
699 /*
700 * Isolate free pages until enough are available to migrate the
701 * pages on cc->migratepages. We stop searching if the migrate
702 * and free page scanners meet or enough free pages are isolated.
703 */
704 for (; pfn >= low_pfn && cc->nr_migratepages > nr_freepages;
705 pfn -= pageblock_nr_pages) {
706 unsigned long isolated;
707
708 /*
709 * This can iterate a massively long zone without finding any
710 * suitable migration targets, so periodically check if we need
711 * to schedule.
712 */
713 cond_resched();
714
715 if (!pfn_valid(pfn))
716 continue;
717
718 /*
719 * Check for overlapping nodes/zones. It's possible on some
720 * configurations to have a setup like
721 * node0 node1 node0
722 * i.e. it's possible that all pages within a zones range of
723 * pages do not belong to a single zone.
724 */
725 page = pfn_to_page(pfn);
726 if (page_zone(page) != zone)
727 continue;
728
729 /* Check the block is suitable for migration */
730 if (!suitable_migration_target(page))
731 continue;
732
733 /* If isolation recently failed, do not retry */
734 if (!isolation_suitable(cc, page))
735 continue;
736
737 /* Found a block suitable for isolating free pages from */
738 isolated = 0;
739
740 /*
741 * As pfn may not start aligned, pfn+pageblock_nr_page
742 * may cross a MAX_ORDER_NR_PAGES boundary and miss
743 * a pfn_valid check. Ensure isolate_freepages_block()
744 * only scans within a pageblock
745 */
746 end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
747 end_pfn = min(end_pfn, z_end_pfn);
748 isolated = isolate_freepages_block(cc, pfn, end_pfn,
749 freelist, false);
750 nr_freepages += isolated;
751
752 /*
753 * Record the highest PFN we isolated pages from. When next
754 * looking for free pages, the search will restart here as
755 * page migration may have returned some pages to the allocator
756 */
757 if (isolated) {
758 cc->finished_update_free = true;
759 high_pfn = max(high_pfn, pfn);
760 }
761 }
762
763 /* split_free_page does not map the pages */
764 map_pages(freelist);
765
766 /*
767 * If we crossed the migrate scanner, we want to keep it that way
768 * so that compact_finished() may detect this
769 */
770 if (pfn < low_pfn)
771 cc->free_pfn = max(pfn, zone->zone_start_pfn);
772 else
773 cc->free_pfn = high_pfn;
774 cc->nr_freepages = nr_freepages;
775 }
776
777 /*
778 * This is a migrate-callback that "allocates" freepages by taking pages
779 * from the isolated freelists in the block we are migrating to.
780 */
781 static struct page *compaction_alloc(struct page *migratepage,
782 unsigned long data,
783 int **result)
784 {
785 struct compact_control *cc = (struct compact_control *)data;
786 struct page *freepage;
787
788 /* Isolate free pages if necessary */
789 if (list_empty(&cc->freepages)) {
790 isolate_freepages(cc->zone, cc);
791
792 if (list_empty(&cc->freepages))
793 return NULL;
794 }
795
796 freepage = list_entry(cc->freepages.next, struct page, lru);
797 list_del(&freepage->lru);
798 cc->nr_freepages--;
799
800 return freepage;
801 }
802
803 /*
804 * We cannot control nr_migratepages and nr_freepages fully when migration is
805 * running as migrate_pages() has no knowledge of compact_control. When
806 * migration is complete, we count the number of pages on the lists by hand.
807 */
808 static void update_nr_listpages(struct compact_control *cc)
809 {
810 int nr_migratepages = 0;
811 int nr_freepages = 0;
812 struct page *page;
813
814 list_for_each_entry(page, &cc->migratepages, lru)
815 nr_migratepages++;
816 list_for_each_entry(page, &cc->freepages, lru)
817 nr_freepages++;
818
819 cc->nr_migratepages = nr_migratepages;
820 cc->nr_freepages = nr_freepages;
821 }
822
823 /* possible outcome of isolate_migratepages */
824 typedef enum {
825 ISOLATE_ABORT, /* Abort compaction now */
826 ISOLATE_NONE, /* No pages isolated, continue scanning */
827 ISOLATE_SUCCESS, /* Pages isolated, migrate */
828 } isolate_migrate_t;
829
830 /*
831 * Isolate all pages that can be migrated from the block pointed to by
832 * the migrate scanner within compact_control.
833 */
834 static isolate_migrate_t isolate_migratepages(struct zone *zone,
835 struct compact_control *cc)
836 {
837 unsigned long low_pfn, end_pfn;
838
839 /* Do not scan outside zone boundaries */
840 low_pfn = max(cc->migrate_pfn, zone->zone_start_pfn);
841
842 /* Only scan within a pageblock boundary */
843 end_pfn = ALIGN(low_pfn + 1, pageblock_nr_pages);
844
845 /* Do not cross the free scanner or scan within a memory hole */
846 if (end_pfn > cc->free_pfn || !pfn_valid(low_pfn)) {
847 cc->migrate_pfn = end_pfn;
848 return ISOLATE_NONE;
849 }
850
851 /* Perform the isolation */
852 low_pfn = isolate_migratepages_range(zone, cc, low_pfn, end_pfn, false);
853 if (!low_pfn || cc->contended)
854 return ISOLATE_ABORT;
855
856 cc->migrate_pfn = low_pfn;
857
858 return ISOLATE_SUCCESS;
859 }
860
861 static int compact_finished(struct zone *zone,
862 struct compact_control *cc)
863 {
864 unsigned int order;
865 unsigned long watermark;
866
867 if (fatal_signal_pending(current))
868 return COMPACT_PARTIAL;
869
870 /* Compaction run completes if the migrate and free scanner meet */
871 if (cc->free_pfn <= cc->migrate_pfn) {
872 /* Let the next compaction start anew. */
873 zone->compact_cached_migrate_pfn = zone->zone_start_pfn;
874 zone->compact_cached_free_pfn = zone_end_pfn(zone);
875
876 /*
877 * Mark that the PG_migrate_skip information should be cleared
878 * by kswapd when it goes to sleep. kswapd does not set the
879 * flag itself as the decision to be clear should be directly
880 * based on an allocation request.
881 */
882 if (!current_is_kswapd())
883 zone->compact_blockskip_flush = true;
884
885 return COMPACT_COMPLETE;
886 }
887
888 /*
889 * order == -1 is expected when compacting via
890 * /proc/sys/vm/compact_memory
891 */
892 if (cc->order == -1)
893 return COMPACT_CONTINUE;
894
895 /* Compaction run is not finished if the watermark is not met */
896 watermark = low_wmark_pages(zone);
897 watermark += (1 << cc->order);
898
899 if (!zone_watermark_ok(zone, cc->order, watermark, 0, 0))
900 return COMPACT_CONTINUE;
901
902 /* Direct compactor: Is a suitable page free? */
903 for (order = cc->order; order < MAX_ORDER; order++) {
904 struct free_area *area = &zone->free_area[order];
905
906 /* Job done if page is free of the right migratetype */
907 if (!list_empty(&area->free_list[cc->migratetype]))
908 return COMPACT_PARTIAL;
909
910 /* Job done if allocation would set block type */
911 if (cc->order >= pageblock_order && area->nr_free)
912 return COMPACT_PARTIAL;
913 }
914
915 return COMPACT_CONTINUE;
916 }
917
918 /*
919 * compaction_suitable: Is this suitable to run compaction on this zone now?
920 * Returns
921 * COMPACT_SKIPPED - If there are too few free pages for compaction
922 * COMPACT_PARTIAL - If the allocation would succeed without compaction
923 * COMPACT_CONTINUE - If compaction should run now
924 */
925 unsigned long compaction_suitable(struct zone *zone, int order)
926 {
927 int fragindex;
928 unsigned long watermark;
929
930 /*
931 * order == -1 is expected when compacting via
932 * /proc/sys/vm/compact_memory
933 */
934 if (order == -1)
935 return COMPACT_CONTINUE;
936
937 /*
938 * Watermarks for order-0 must be met for compaction. Note the 2UL.
939 * This is because during migration, copies of pages need to be
940 * allocated and for a short time, the footprint is higher
941 */
942 watermark = low_wmark_pages(zone) + (2UL << order);
943 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
944 return COMPACT_SKIPPED;
945
946 /*
947 * fragmentation index determines if allocation failures are due to
948 * low memory or external fragmentation
949 *
950 * index of -1000 implies allocations might succeed depending on
951 * watermarks
952 * index towards 0 implies failure is due to lack of memory
953 * index towards 1000 implies failure is due to fragmentation
954 *
955 * Only compact if a failure would be due to fragmentation.
956 */
957 fragindex = fragmentation_index(zone, order);
958 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
959 return COMPACT_SKIPPED;
960
961 if (fragindex == -1000 && zone_watermark_ok(zone, order, watermark,
962 0, 0))
963 return COMPACT_PARTIAL;
964
965 return COMPACT_CONTINUE;
966 }
967
968 static int compact_zone(struct zone *zone, struct compact_control *cc)
969 {
970 int ret;
971 unsigned long start_pfn = zone->zone_start_pfn;
972 unsigned long end_pfn = zone_end_pfn(zone);
973
974 ret = compaction_suitable(zone, cc->order);
975 switch (ret) {
976 case COMPACT_PARTIAL:
977 case COMPACT_SKIPPED:
978 /* Compaction is likely to fail */
979 return ret;
980 case COMPACT_CONTINUE:
981 /* Fall through to compaction */
982 ;
983 }
984
985 /*
986 * Clear pageblock skip if there were failures recently and compaction
987 * is about to be retried after being deferred. kswapd does not do
988 * this reset as it'll reset the cached information when going to sleep.
989 */
990 if (compaction_restarting(zone, cc->order) && !current_is_kswapd())
991 __reset_isolation_suitable(zone);
992
993 /*
994 * Setup to move all movable pages to the end of the zone. Used cached
995 * information on where the scanners should start but check that it
996 * is initialised by ensuring the values are within zone boundaries.
997 */
998 cc->migrate_pfn = zone->compact_cached_migrate_pfn;
999 cc->free_pfn = zone->compact_cached_free_pfn;
1000 if (cc->free_pfn < start_pfn || cc->free_pfn > end_pfn) {
1001 cc->free_pfn = end_pfn & ~(pageblock_nr_pages-1);
1002 zone->compact_cached_free_pfn = cc->free_pfn;
1003 }
1004 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn > end_pfn) {
1005 cc->migrate_pfn = start_pfn;
1006 zone->compact_cached_migrate_pfn = cc->migrate_pfn;
1007 }
1008
1009 trace_mm_compaction_begin(start_pfn, cc->migrate_pfn, cc->free_pfn, end_pfn);
1010
1011 migrate_prep_local();
1012
1013 while ((ret = compact_finished(zone, cc)) == COMPACT_CONTINUE) {
1014 unsigned long nr_migrate, nr_remaining;
1015 int err;
1016
1017 switch (isolate_migratepages(zone, cc)) {
1018 case ISOLATE_ABORT:
1019 ret = COMPACT_PARTIAL;
1020 putback_movable_pages(&cc->migratepages);
1021 cc->nr_migratepages = 0;
1022 goto out;
1023 case ISOLATE_NONE:
1024 continue;
1025 case ISOLATE_SUCCESS:
1026 ;
1027 }
1028
1029 nr_migrate = cc->nr_migratepages;
1030 err = migrate_pages(&cc->migratepages, compaction_alloc,
1031 (unsigned long)cc,
1032 cc->sync ? MIGRATE_SYNC_LIGHT : MIGRATE_ASYNC,
1033 MR_COMPACTION);
1034 update_nr_listpages(cc);
1035 nr_remaining = cc->nr_migratepages;
1036
1037 trace_mm_compaction_migratepages(nr_migrate - nr_remaining,
1038 nr_remaining);
1039
1040 /* Release isolated pages not migrated */
1041 if (err) {
1042 putback_movable_pages(&cc->migratepages);
1043 cc->nr_migratepages = 0;
1044 /*
1045 * migrate_pages() may return -ENOMEM when scanners meet
1046 * and we want compact_finished() to detect it
1047 */
1048 if (err == -ENOMEM && cc->free_pfn > cc->migrate_pfn) {
1049 ret = COMPACT_PARTIAL;
1050 goto out;
1051 }
1052 }
1053 }
1054
1055 out:
1056 /* Release free pages and check accounting */
1057 cc->nr_freepages -= release_freepages(&cc->freepages);
1058 VM_BUG_ON(cc->nr_freepages != 0);
1059
1060 trace_mm_compaction_end(ret);
1061
1062 return ret;
1063 }
1064
1065 static unsigned long compact_zone_order(struct zone *zone,
1066 int order, gfp_t gfp_mask,
1067 bool sync, bool *contended)
1068 {
1069 unsigned long ret;
1070 struct compact_control cc = {
1071 .nr_freepages = 0,
1072 .nr_migratepages = 0,
1073 .order = order,
1074 .migratetype = allocflags_to_migratetype(gfp_mask),
1075 .zone = zone,
1076 .sync = sync,
1077 };
1078 INIT_LIST_HEAD(&cc.freepages);
1079 INIT_LIST_HEAD(&cc.migratepages);
1080
1081 ret = compact_zone(zone, &cc);
1082
1083 VM_BUG_ON(!list_empty(&cc.freepages));
1084 VM_BUG_ON(!list_empty(&cc.migratepages));
1085
1086 *contended = cc.contended;
1087 return ret;
1088 }
1089
1090 int sysctl_extfrag_threshold = 500;
1091
1092 /**
1093 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
1094 * @zonelist: The zonelist used for the current allocation
1095 * @order: The order of the current allocation
1096 * @gfp_mask: The GFP mask of the current allocation
1097 * @nodemask: The allowed nodes to allocate from
1098 * @sync: Whether migration is synchronous or not
1099 * @contended: Return value that is true if compaction was aborted due to lock contention
1100 * @page: Optionally capture a free page of the requested order during compaction
1101 *
1102 * This is the main entry point for direct page compaction.
1103 */
1104 unsigned long try_to_compact_pages(struct zonelist *zonelist,
1105 int order, gfp_t gfp_mask, nodemask_t *nodemask,
1106 bool sync, bool *contended)
1107 {
1108 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
1109 int may_enter_fs = gfp_mask & __GFP_FS;
1110 int may_perform_io = gfp_mask & __GFP_IO;
1111 struct zoneref *z;
1112 struct zone *zone;
1113 int rc = COMPACT_SKIPPED;
1114 int alloc_flags = 0;
1115
1116 /* Check if the GFP flags allow compaction */
1117 if (!order || !may_enter_fs || !may_perform_io)
1118 return rc;
1119
1120 count_compact_event(COMPACTSTALL);
1121
1122 #ifdef CONFIG_CMA
1123 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
1124 alloc_flags |= ALLOC_CMA;
1125 #endif
1126 /* Compact each zone in the list */
1127 for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx,
1128 nodemask) {
1129 int status;
1130
1131 status = compact_zone_order(zone, order, gfp_mask, sync,
1132 contended);
1133 rc = max(status, rc);
1134
1135 /* If a normal allocation would succeed, stop compacting */
1136 if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0,
1137 alloc_flags))
1138 break;
1139 }
1140
1141 return rc;
1142 }
1143
1144
1145 /* Compact all zones within a node */
1146 static void __compact_pgdat(pg_data_t *pgdat, struct compact_control *cc)
1147 {
1148 int zoneid;
1149 struct zone *zone;
1150
1151 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
1152
1153 zone = &pgdat->node_zones[zoneid];
1154 if (!populated_zone(zone))
1155 continue;
1156
1157 cc->nr_freepages = 0;
1158 cc->nr_migratepages = 0;
1159 cc->zone = zone;
1160 INIT_LIST_HEAD(&cc->freepages);
1161 INIT_LIST_HEAD(&cc->migratepages);
1162
1163 if (cc->order == -1 || !compaction_deferred(zone, cc->order))
1164 compact_zone(zone, cc);
1165
1166 if (cc->order > 0) {
1167 if (zone_watermark_ok(zone, cc->order,
1168 low_wmark_pages(zone), 0, 0))
1169 compaction_defer_reset(zone, cc->order, false);
1170 /* Currently async compaction is never deferred. */
1171 else if (cc->sync)
1172 defer_compaction(zone, cc->order);
1173 }
1174
1175 VM_BUG_ON(!list_empty(&cc->freepages));
1176 VM_BUG_ON(!list_empty(&cc->migratepages));
1177 }
1178 }
1179
1180 void compact_pgdat(pg_data_t *pgdat, int order)
1181 {
1182 struct compact_control cc = {
1183 .order = order,
1184 .sync = false,
1185 };
1186
1187 if (!order)
1188 return;
1189
1190 __compact_pgdat(pgdat, &cc);
1191 }
1192
1193 static void compact_node(int nid)
1194 {
1195 struct compact_control cc = {
1196 .order = -1,
1197 .sync = true,
1198 .ignore_skip_hint = true,
1199 };
1200
1201 __compact_pgdat(NODE_DATA(nid), &cc);
1202 }
1203
1204 /* Compact all nodes in the system */
1205 static void compact_nodes(void)
1206 {
1207 int nid;
1208
1209 /* Flush pending updates to the LRU lists */
1210 lru_add_drain_all();
1211
1212 for_each_online_node(nid)
1213 compact_node(nid);
1214 }
1215
1216 /* The written value is actually unused, all memory is compacted */
1217 int sysctl_compact_memory;
1218
1219 /* This is the entry point for compacting all nodes via /proc/sys/vm */
1220 int sysctl_compaction_handler(struct ctl_table *table, int write,
1221 void __user *buffer, size_t *length, loff_t *ppos)
1222 {
1223 if (write)
1224 compact_nodes();
1225
1226 return 0;
1227 }
1228
1229 int sysctl_extfrag_handler(struct ctl_table *table, int write,
1230 void __user *buffer, size_t *length, loff_t *ppos)
1231 {
1232 proc_dointvec_minmax(table, write, buffer, length, ppos);
1233
1234 return 0;
1235 }
1236
1237 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
1238 static ssize_t sysfs_compact_node(struct device *dev,
1239 struct device_attribute *attr,
1240 const char *buf, size_t count)
1241 {
1242 int nid = dev->id;
1243
1244 if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
1245 /* Flush pending updates to the LRU lists */
1246 lru_add_drain_all();
1247
1248 compact_node(nid);
1249 }
1250
1251 return count;
1252 }
1253 static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
1254
1255 int compaction_register_node(struct node *node)
1256 {
1257 return device_create_file(&node->dev, &dev_attr_compact);
1258 }
1259
1260 void compaction_unregister_node(struct node *node)
1261 {
1262 return device_remove_file(&node->dev, &dev_attr_compact);
1263 }
1264 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
1265
1266 #endif /* CONFIG_COMPACTION */
This page took 0.056413 seconds and 6 git commands to generate.