[SCSI] Merge tag 'fcoe-02-19-13' into for-linus
[deliverable/linux.git] / mm / compaction.c
1 /*
2 * linux/mm/compaction.c
3 *
4 * Memory compaction for the reduction of external fragmentation. Note that
5 * this heavily depends upon page migration to do all the real heavy
6 * lifting
7 *
8 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
9 */
10 #include <linux/swap.h>
11 #include <linux/migrate.h>
12 #include <linux/compaction.h>
13 #include <linux/mm_inline.h>
14 #include <linux/backing-dev.h>
15 #include <linux/sysctl.h>
16 #include <linux/sysfs.h>
17 #include <linux/balloon_compaction.h>
18 #include "internal.h"
19
20 #ifdef CONFIG_COMPACTION
21 static inline void count_compact_event(enum vm_event_item item)
22 {
23 count_vm_event(item);
24 }
25
26 static inline void count_compact_events(enum vm_event_item item, long delta)
27 {
28 count_vm_events(item, delta);
29 }
30 #else
31 #define count_compact_event(item) do { } while (0)
32 #define count_compact_events(item, delta) do { } while (0)
33 #endif
34
35 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
36
37 #define CREATE_TRACE_POINTS
38 #include <trace/events/compaction.h>
39
40 static unsigned long release_freepages(struct list_head *freelist)
41 {
42 struct page *page, *next;
43 unsigned long count = 0;
44
45 list_for_each_entry_safe(page, next, freelist, lru) {
46 list_del(&page->lru);
47 __free_page(page);
48 count++;
49 }
50
51 return count;
52 }
53
54 static void map_pages(struct list_head *list)
55 {
56 struct page *page;
57
58 list_for_each_entry(page, list, lru) {
59 arch_alloc_page(page, 0);
60 kernel_map_pages(page, 1, 1);
61 }
62 }
63
64 static inline bool migrate_async_suitable(int migratetype)
65 {
66 return is_migrate_cma(migratetype) || migratetype == MIGRATE_MOVABLE;
67 }
68
69 #ifdef CONFIG_COMPACTION
70 /* Returns true if the pageblock should be scanned for pages to isolate. */
71 static inline bool isolation_suitable(struct compact_control *cc,
72 struct page *page)
73 {
74 if (cc->ignore_skip_hint)
75 return true;
76
77 return !get_pageblock_skip(page);
78 }
79
80 /*
81 * This function is called to clear all cached information on pageblocks that
82 * should be skipped for page isolation when the migrate and free page scanner
83 * meet.
84 */
85 static void __reset_isolation_suitable(struct zone *zone)
86 {
87 unsigned long start_pfn = zone->zone_start_pfn;
88 unsigned long end_pfn = zone->zone_start_pfn + zone->spanned_pages;
89 unsigned long pfn;
90
91 zone->compact_cached_migrate_pfn = start_pfn;
92 zone->compact_cached_free_pfn = end_pfn;
93 zone->compact_blockskip_flush = false;
94
95 /* Walk the zone and mark every pageblock as suitable for isolation */
96 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
97 struct page *page;
98
99 cond_resched();
100
101 if (!pfn_valid(pfn))
102 continue;
103
104 page = pfn_to_page(pfn);
105 if (zone != page_zone(page))
106 continue;
107
108 clear_pageblock_skip(page);
109 }
110 }
111
112 void reset_isolation_suitable(pg_data_t *pgdat)
113 {
114 int zoneid;
115
116 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
117 struct zone *zone = &pgdat->node_zones[zoneid];
118 if (!populated_zone(zone))
119 continue;
120
121 /* Only flush if a full compaction finished recently */
122 if (zone->compact_blockskip_flush)
123 __reset_isolation_suitable(zone);
124 }
125 }
126
127 /*
128 * If no pages were isolated then mark this pageblock to be skipped in the
129 * future. The information is later cleared by __reset_isolation_suitable().
130 */
131 static void update_pageblock_skip(struct compact_control *cc,
132 struct page *page, unsigned long nr_isolated,
133 bool migrate_scanner)
134 {
135 struct zone *zone = cc->zone;
136 if (!page)
137 return;
138
139 if (!nr_isolated) {
140 unsigned long pfn = page_to_pfn(page);
141 set_pageblock_skip(page);
142
143 /* Update where compaction should restart */
144 if (migrate_scanner) {
145 if (!cc->finished_update_migrate &&
146 pfn > zone->compact_cached_migrate_pfn)
147 zone->compact_cached_migrate_pfn = pfn;
148 } else {
149 if (!cc->finished_update_free &&
150 pfn < zone->compact_cached_free_pfn)
151 zone->compact_cached_free_pfn = pfn;
152 }
153 }
154 }
155 #else
156 static inline bool isolation_suitable(struct compact_control *cc,
157 struct page *page)
158 {
159 return true;
160 }
161
162 static void update_pageblock_skip(struct compact_control *cc,
163 struct page *page, unsigned long nr_isolated,
164 bool migrate_scanner)
165 {
166 }
167 #endif /* CONFIG_COMPACTION */
168
169 static inline bool should_release_lock(spinlock_t *lock)
170 {
171 return need_resched() || spin_is_contended(lock);
172 }
173
174 /*
175 * Compaction requires the taking of some coarse locks that are potentially
176 * very heavily contended. Check if the process needs to be scheduled or
177 * if the lock is contended. For async compaction, back out in the event
178 * if contention is severe. For sync compaction, schedule.
179 *
180 * Returns true if the lock is held.
181 * Returns false if the lock is released and compaction should abort
182 */
183 static bool compact_checklock_irqsave(spinlock_t *lock, unsigned long *flags,
184 bool locked, struct compact_control *cc)
185 {
186 if (should_release_lock(lock)) {
187 if (locked) {
188 spin_unlock_irqrestore(lock, *flags);
189 locked = false;
190 }
191
192 /* async aborts if taking too long or contended */
193 if (!cc->sync) {
194 cc->contended = true;
195 return false;
196 }
197
198 cond_resched();
199 }
200
201 if (!locked)
202 spin_lock_irqsave(lock, *flags);
203 return true;
204 }
205
206 static inline bool compact_trylock_irqsave(spinlock_t *lock,
207 unsigned long *flags, struct compact_control *cc)
208 {
209 return compact_checklock_irqsave(lock, flags, false, cc);
210 }
211
212 /* Returns true if the page is within a block suitable for migration to */
213 static bool suitable_migration_target(struct page *page)
214 {
215 int migratetype = get_pageblock_migratetype(page);
216
217 /* Don't interfere with memory hot-remove or the min_free_kbytes blocks */
218 if (migratetype == MIGRATE_ISOLATE || migratetype == MIGRATE_RESERVE)
219 return false;
220
221 /* If the page is a large free page, then allow migration */
222 if (PageBuddy(page) && page_order(page) >= pageblock_order)
223 return true;
224
225 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
226 if (migrate_async_suitable(migratetype))
227 return true;
228
229 /* Otherwise skip the block */
230 return false;
231 }
232
233 /*
234 * Isolate free pages onto a private freelist. Caller must hold zone->lock.
235 * If @strict is true, will abort returning 0 on any invalid PFNs or non-free
236 * pages inside of the pageblock (even though it may still end up isolating
237 * some pages).
238 */
239 static unsigned long isolate_freepages_block(struct compact_control *cc,
240 unsigned long blockpfn,
241 unsigned long end_pfn,
242 struct list_head *freelist,
243 bool strict)
244 {
245 int nr_scanned = 0, total_isolated = 0;
246 struct page *cursor, *valid_page = NULL;
247 unsigned long nr_strict_required = end_pfn - blockpfn;
248 unsigned long flags;
249 bool locked = false;
250
251 cursor = pfn_to_page(blockpfn);
252
253 /* Isolate free pages. */
254 for (; blockpfn < end_pfn; blockpfn++, cursor++) {
255 int isolated, i;
256 struct page *page = cursor;
257
258 nr_scanned++;
259 if (!pfn_valid_within(blockpfn))
260 continue;
261 if (!valid_page)
262 valid_page = page;
263 if (!PageBuddy(page))
264 continue;
265
266 /*
267 * The zone lock must be held to isolate freepages.
268 * Unfortunately this is a very coarse lock and can be
269 * heavily contended if there are parallel allocations
270 * or parallel compactions. For async compaction do not
271 * spin on the lock and we acquire the lock as late as
272 * possible.
273 */
274 locked = compact_checklock_irqsave(&cc->zone->lock, &flags,
275 locked, cc);
276 if (!locked)
277 break;
278
279 /* Recheck this is a suitable migration target under lock */
280 if (!strict && !suitable_migration_target(page))
281 break;
282
283 /* Recheck this is a buddy page under lock */
284 if (!PageBuddy(page))
285 continue;
286
287 /* Found a free page, break it into order-0 pages */
288 isolated = split_free_page(page);
289 if (!isolated && strict)
290 break;
291 total_isolated += isolated;
292 for (i = 0; i < isolated; i++) {
293 list_add(&page->lru, freelist);
294 page++;
295 }
296
297 /* If a page was split, advance to the end of it */
298 if (isolated) {
299 blockpfn += isolated - 1;
300 cursor += isolated - 1;
301 }
302 }
303
304 trace_mm_compaction_isolate_freepages(nr_scanned, total_isolated);
305
306 /*
307 * If strict isolation is requested by CMA then check that all the
308 * pages requested were isolated. If there were any failures, 0 is
309 * returned and CMA will fail.
310 */
311 if (strict && nr_strict_required > total_isolated)
312 total_isolated = 0;
313
314 if (locked)
315 spin_unlock_irqrestore(&cc->zone->lock, flags);
316
317 /* Update the pageblock-skip if the whole pageblock was scanned */
318 if (blockpfn == end_pfn)
319 update_pageblock_skip(cc, valid_page, total_isolated, false);
320
321 count_compact_events(COMPACTFREE_SCANNED, nr_scanned);
322 if (total_isolated)
323 count_compact_events(COMPACTISOLATED, total_isolated);
324 return total_isolated;
325 }
326
327 /**
328 * isolate_freepages_range() - isolate free pages.
329 * @start_pfn: The first PFN to start isolating.
330 * @end_pfn: The one-past-last PFN.
331 *
332 * Non-free pages, invalid PFNs, or zone boundaries within the
333 * [start_pfn, end_pfn) range are considered errors, cause function to
334 * undo its actions and return zero.
335 *
336 * Otherwise, function returns one-past-the-last PFN of isolated page
337 * (which may be greater then end_pfn if end fell in a middle of
338 * a free page).
339 */
340 unsigned long
341 isolate_freepages_range(struct compact_control *cc,
342 unsigned long start_pfn, unsigned long end_pfn)
343 {
344 unsigned long isolated, pfn, block_end_pfn;
345 LIST_HEAD(freelist);
346
347 for (pfn = start_pfn; pfn < end_pfn; pfn += isolated) {
348 if (!pfn_valid(pfn) || cc->zone != page_zone(pfn_to_page(pfn)))
349 break;
350
351 /*
352 * On subsequent iterations ALIGN() is actually not needed,
353 * but we keep it that we not to complicate the code.
354 */
355 block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
356 block_end_pfn = min(block_end_pfn, end_pfn);
357
358 isolated = isolate_freepages_block(cc, pfn, block_end_pfn,
359 &freelist, true);
360
361 /*
362 * In strict mode, isolate_freepages_block() returns 0 if
363 * there are any holes in the block (ie. invalid PFNs or
364 * non-free pages).
365 */
366 if (!isolated)
367 break;
368
369 /*
370 * If we managed to isolate pages, it is always (1 << n) *
371 * pageblock_nr_pages for some non-negative n. (Max order
372 * page may span two pageblocks).
373 */
374 }
375
376 /* split_free_page does not map the pages */
377 map_pages(&freelist);
378
379 if (pfn < end_pfn) {
380 /* Loop terminated early, cleanup. */
381 release_freepages(&freelist);
382 return 0;
383 }
384
385 /* We don't use freelists for anything. */
386 return pfn;
387 }
388
389 /* Update the number of anon and file isolated pages in the zone */
390 static void acct_isolated(struct zone *zone, bool locked, struct compact_control *cc)
391 {
392 struct page *page;
393 unsigned int count[2] = { 0, };
394
395 list_for_each_entry(page, &cc->migratepages, lru)
396 count[!!page_is_file_cache(page)]++;
397
398 /* If locked we can use the interrupt unsafe versions */
399 if (locked) {
400 __mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
401 __mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
402 } else {
403 mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
404 mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
405 }
406 }
407
408 /* Similar to reclaim, but different enough that they don't share logic */
409 static bool too_many_isolated(struct zone *zone)
410 {
411 unsigned long active, inactive, isolated;
412
413 inactive = zone_page_state(zone, NR_INACTIVE_FILE) +
414 zone_page_state(zone, NR_INACTIVE_ANON);
415 active = zone_page_state(zone, NR_ACTIVE_FILE) +
416 zone_page_state(zone, NR_ACTIVE_ANON);
417 isolated = zone_page_state(zone, NR_ISOLATED_FILE) +
418 zone_page_state(zone, NR_ISOLATED_ANON);
419
420 return isolated > (inactive + active) / 2;
421 }
422
423 /**
424 * isolate_migratepages_range() - isolate all migrate-able pages in range.
425 * @zone: Zone pages are in.
426 * @cc: Compaction control structure.
427 * @low_pfn: The first PFN of the range.
428 * @end_pfn: The one-past-the-last PFN of the range.
429 * @unevictable: true if it allows to isolate unevictable pages
430 *
431 * Isolate all pages that can be migrated from the range specified by
432 * [low_pfn, end_pfn). Returns zero if there is a fatal signal
433 * pending), otherwise PFN of the first page that was not scanned
434 * (which may be both less, equal to or more then end_pfn).
435 *
436 * Assumes that cc->migratepages is empty and cc->nr_migratepages is
437 * zero.
438 *
439 * Apart from cc->migratepages and cc->nr_migratetypes this function
440 * does not modify any cc's fields, in particular it does not modify
441 * (or read for that matter) cc->migrate_pfn.
442 */
443 unsigned long
444 isolate_migratepages_range(struct zone *zone, struct compact_control *cc,
445 unsigned long low_pfn, unsigned long end_pfn, bool unevictable)
446 {
447 unsigned long last_pageblock_nr = 0, pageblock_nr;
448 unsigned long nr_scanned = 0, nr_isolated = 0;
449 struct list_head *migratelist = &cc->migratepages;
450 isolate_mode_t mode = 0;
451 struct lruvec *lruvec;
452 unsigned long flags;
453 bool locked = false;
454 struct page *page = NULL, *valid_page = NULL;
455
456 /*
457 * Ensure that there are not too many pages isolated from the LRU
458 * list by either parallel reclaimers or compaction. If there are,
459 * delay for some time until fewer pages are isolated
460 */
461 while (unlikely(too_many_isolated(zone))) {
462 /* async migration should just abort */
463 if (!cc->sync)
464 return 0;
465
466 congestion_wait(BLK_RW_ASYNC, HZ/10);
467
468 if (fatal_signal_pending(current))
469 return 0;
470 }
471
472 /* Time to isolate some pages for migration */
473 cond_resched();
474 for (; low_pfn < end_pfn; low_pfn++) {
475 /* give a chance to irqs before checking need_resched() */
476 if (locked && !((low_pfn+1) % SWAP_CLUSTER_MAX)) {
477 if (should_release_lock(&zone->lru_lock)) {
478 spin_unlock_irqrestore(&zone->lru_lock, flags);
479 locked = false;
480 }
481 }
482
483 /*
484 * migrate_pfn does not necessarily start aligned to a
485 * pageblock. Ensure that pfn_valid is called when moving
486 * into a new MAX_ORDER_NR_PAGES range in case of large
487 * memory holes within the zone
488 */
489 if ((low_pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
490 if (!pfn_valid(low_pfn)) {
491 low_pfn += MAX_ORDER_NR_PAGES - 1;
492 continue;
493 }
494 }
495
496 if (!pfn_valid_within(low_pfn))
497 continue;
498 nr_scanned++;
499
500 /*
501 * Get the page and ensure the page is within the same zone.
502 * See the comment in isolate_freepages about overlapping
503 * nodes. It is deliberate that the new zone lock is not taken
504 * as memory compaction should not move pages between nodes.
505 */
506 page = pfn_to_page(low_pfn);
507 if (page_zone(page) != zone)
508 continue;
509
510 if (!valid_page)
511 valid_page = page;
512
513 /* If isolation recently failed, do not retry */
514 pageblock_nr = low_pfn >> pageblock_order;
515 if (!isolation_suitable(cc, page))
516 goto next_pageblock;
517
518 /* Skip if free */
519 if (PageBuddy(page))
520 continue;
521
522 /*
523 * For async migration, also only scan in MOVABLE blocks. Async
524 * migration is optimistic to see if the minimum amount of work
525 * satisfies the allocation
526 */
527 if (!cc->sync && last_pageblock_nr != pageblock_nr &&
528 !migrate_async_suitable(get_pageblock_migratetype(page))) {
529 cc->finished_update_migrate = true;
530 goto next_pageblock;
531 }
532
533 /*
534 * Check may be lockless but that's ok as we recheck later.
535 * It's possible to migrate LRU pages and balloon pages
536 * Skip any other type of page
537 */
538 if (!PageLRU(page)) {
539 if (unlikely(balloon_page_movable(page))) {
540 if (locked && balloon_page_isolate(page)) {
541 /* Successfully isolated */
542 cc->finished_update_migrate = true;
543 list_add(&page->lru, migratelist);
544 cc->nr_migratepages++;
545 nr_isolated++;
546 goto check_compact_cluster;
547 }
548 }
549 continue;
550 }
551
552 /*
553 * PageLRU is set. lru_lock normally excludes isolation
554 * splitting and collapsing (collapsing has already happened
555 * if PageLRU is set) but the lock is not necessarily taken
556 * here and it is wasteful to take it just to check transhuge.
557 * Check TransHuge without lock and skip the whole pageblock if
558 * it's either a transhuge or hugetlbfs page, as calling
559 * compound_order() without preventing THP from splitting the
560 * page underneath us may return surprising results.
561 */
562 if (PageTransHuge(page)) {
563 if (!locked)
564 goto next_pageblock;
565 low_pfn += (1 << compound_order(page)) - 1;
566 continue;
567 }
568
569 /* Check if it is ok to still hold the lock */
570 locked = compact_checklock_irqsave(&zone->lru_lock, &flags,
571 locked, cc);
572 if (!locked || fatal_signal_pending(current))
573 break;
574
575 /* Recheck PageLRU and PageTransHuge under lock */
576 if (!PageLRU(page))
577 continue;
578 if (PageTransHuge(page)) {
579 low_pfn += (1 << compound_order(page)) - 1;
580 continue;
581 }
582
583 if (!cc->sync)
584 mode |= ISOLATE_ASYNC_MIGRATE;
585
586 if (unevictable)
587 mode |= ISOLATE_UNEVICTABLE;
588
589 lruvec = mem_cgroup_page_lruvec(page, zone);
590
591 /* Try isolate the page */
592 if (__isolate_lru_page(page, mode) != 0)
593 continue;
594
595 VM_BUG_ON(PageTransCompound(page));
596
597 /* Successfully isolated */
598 cc->finished_update_migrate = true;
599 del_page_from_lru_list(page, lruvec, page_lru(page));
600 list_add(&page->lru, migratelist);
601 cc->nr_migratepages++;
602 nr_isolated++;
603
604 check_compact_cluster:
605 /* Avoid isolating too much */
606 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
607 ++low_pfn;
608 break;
609 }
610
611 continue;
612
613 next_pageblock:
614 low_pfn += pageblock_nr_pages;
615 low_pfn = ALIGN(low_pfn, pageblock_nr_pages) - 1;
616 last_pageblock_nr = pageblock_nr;
617 }
618
619 acct_isolated(zone, locked, cc);
620
621 if (locked)
622 spin_unlock_irqrestore(&zone->lru_lock, flags);
623
624 /* Update the pageblock-skip if the whole pageblock was scanned */
625 if (low_pfn == end_pfn)
626 update_pageblock_skip(cc, valid_page, nr_isolated, true);
627
628 trace_mm_compaction_isolate_migratepages(nr_scanned, nr_isolated);
629
630 count_compact_events(COMPACTMIGRATE_SCANNED, nr_scanned);
631 if (nr_isolated)
632 count_compact_events(COMPACTISOLATED, nr_isolated);
633
634 return low_pfn;
635 }
636
637 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
638 #ifdef CONFIG_COMPACTION
639 /*
640 * Based on information in the current compact_control, find blocks
641 * suitable for isolating free pages from and then isolate them.
642 */
643 static void isolate_freepages(struct zone *zone,
644 struct compact_control *cc)
645 {
646 struct page *page;
647 unsigned long high_pfn, low_pfn, pfn, zone_end_pfn, end_pfn;
648 int nr_freepages = cc->nr_freepages;
649 struct list_head *freelist = &cc->freepages;
650
651 /*
652 * Initialise the free scanner. The starting point is where we last
653 * scanned from (or the end of the zone if starting). The low point
654 * is the end of the pageblock the migration scanner is using.
655 */
656 pfn = cc->free_pfn;
657 low_pfn = cc->migrate_pfn + pageblock_nr_pages;
658
659 /*
660 * Take care that if the migration scanner is at the end of the zone
661 * that the free scanner does not accidentally move to the next zone
662 * in the next isolation cycle.
663 */
664 high_pfn = min(low_pfn, pfn);
665
666 zone_end_pfn = zone->zone_start_pfn + zone->spanned_pages;
667
668 /*
669 * Isolate free pages until enough are available to migrate the
670 * pages on cc->migratepages. We stop searching if the migrate
671 * and free page scanners meet or enough free pages are isolated.
672 */
673 for (; pfn > low_pfn && cc->nr_migratepages > nr_freepages;
674 pfn -= pageblock_nr_pages) {
675 unsigned long isolated;
676
677 if (!pfn_valid(pfn))
678 continue;
679
680 /*
681 * Check for overlapping nodes/zones. It's possible on some
682 * configurations to have a setup like
683 * node0 node1 node0
684 * i.e. it's possible that all pages within a zones range of
685 * pages do not belong to a single zone.
686 */
687 page = pfn_to_page(pfn);
688 if (page_zone(page) != zone)
689 continue;
690
691 /* Check the block is suitable for migration */
692 if (!suitable_migration_target(page))
693 continue;
694
695 /* If isolation recently failed, do not retry */
696 if (!isolation_suitable(cc, page))
697 continue;
698
699 /* Found a block suitable for isolating free pages from */
700 isolated = 0;
701
702 /*
703 * As pfn may not start aligned, pfn+pageblock_nr_page
704 * may cross a MAX_ORDER_NR_PAGES boundary and miss
705 * a pfn_valid check. Ensure isolate_freepages_block()
706 * only scans within a pageblock
707 */
708 end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
709 end_pfn = min(end_pfn, zone_end_pfn);
710 isolated = isolate_freepages_block(cc, pfn, end_pfn,
711 freelist, false);
712 nr_freepages += isolated;
713
714 /*
715 * Record the highest PFN we isolated pages from. When next
716 * looking for free pages, the search will restart here as
717 * page migration may have returned some pages to the allocator
718 */
719 if (isolated) {
720 cc->finished_update_free = true;
721 high_pfn = max(high_pfn, pfn);
722 }
723 }
724
725 /* split_free_page does not map the pages */
726 map_pages(freelist);
727
728 cc->free_pfn = high_pfn;
729 cc->nr_freepages = nr_freepages;
730 }
731
732 /*
733 * This is a migrate-callback that "allocates" freepages by taking pages
734 * from the isolated freelists in the block we are migrating to.
735 */
736 static struct page *compaction_alloc(struct page *migratepage,
737 unsigned long data,
738 int **result)
739 {
740 struct compact_control *cc = (struct compact_control *)data;
741 struct page *freepage;
742
743 /* Isolate free pages if necessary */
744 if (list_empty(&cc->freepages)) {
745 isolate_freepages(cc->zone, cc);
746
747 if (list_empty(&cc->freepages))
748 return NULL;
749 }
750
751 freepage = list_entry(cc->freepages.next, struct page, lru);
752 list_del(&freepage->lru);
753 cc->nr_freepages--;
754
755 return freepage;
756 }
757
758 /*
759 * We cannot control nr_migratepages and nr_freepages fully when migration is
760 * running as migrate_pages() has no knowledge of compact_control. When
761 * migration is complete, we count the number of pages on the lists by hand.
762 */
763 static void update_nr_listpages(struct compact_control *cc)
764 {
765 int nr_migratepages = 0;
766 int nr_freepages = 0;
767 struct page *page;
768
769 list_for_each_entry(page, &cc->migratepages, lru)
770 nr_migratepages++;
771 list_for_each_entry(page, &cc->freepages, lru)
772 nr_freepages++;
773
774 cc->nr_migratepages = nr_migratepages;
775 cc->nr_freepages = nr_freepages;
776 }
777
778 /* possible outcome of isolate_migratepages */
779 typedef enum {
780 ISOLATE_ABORT, /* Abort compaction now */
781 ISOLATE_NONE, /* No pages isolated, continue scanning */
782 ISOLATE_SUCCESS, /* Pages isolated, migrate */
783 } isolate_migrate_t;
784
785 /*
786 * Isolate all pages that can be migrated from the block pointed to by
787 * the migrate scanner within compact_control.
788 */
789 static isolate_migrate_t isolate_migratepages(struct zone *zone,
790 struct compact_control *cc)
791 {
792 unsigned long low_pfn, end_pfn;
793
794 /* Do not scan outside zone boundaries */
795 low_pfn = max(cc->migrate_pfn, zone->zone_start_pfn);
796
797 /* Only scan within a pageblock boundary */
798 end_pfn = ALIGN(low_pfn + pageblock_nr_pages, pageblock_nr_pages);
799
800 /* Do not cross the free scanner or scan within a memory hole */
801 if (end_pfn > cc->free_pfn || !pfn_valid(low_pfn)) {
802 cc->migrate_pfn = end_pfn;
803 return ISOLATE_NONE;
804 }
805
806 /* Perform the isolation */
807 low_pfn = isolate_migratepages_range(zone, cc, low_pfn, end_pfn, false);
808 if (!low_pfn || cc->contended)
809 return ISOLATE_ABORT;
810
811 cc->migrate_pfn = low_pfn;
812
813 return ISOLATE_SUCCESS;
814 }
815
816 static int compact_finished(struct zone *zone,
817 struct compact_control *cc)
818 {
819 unsigned int order;
820 unsigned long watermark;
821
822 if (fatal_signal_pending(current))
823 return COMPACT_PARTIAL;
824
825 /* Compaction run completes if the migrate and free scanner meet */
826 if (cc->free_pfn <= cc->migrate_pfn) {
827 /*
828 * Mark that the PG_migrate_skip information should be cleared
829 * by kswapd when it goes to sleep. kswapd does not set the
830 * flag itself as the decision to be clear should be directly
831 * based on an allocation request.
832 */
833 if (!current_is_kswapd())
834 zone->compact_blockskip_flush = true;
835
836 return COMPACT_COMPLETE;
837 }
838
839 /*
840 * order == -1 is expected when compacting via
841 * /proc/sys/vm/compact_memory
842 */
843 if (cc->order == -1)
844 return COMPACT_CONTINUE;
845
846 /* Compaction run is not finished if the watermark is not met */
847 watermark = low_wmark_pages(zone);
848 watermark += (1 << cc->order);
849
850 if (!zone_watermark_ok(zone, cc->order, watermark, 0, 0))
851 return COMPACT_CONTINUE;
852
853 /* Direct compactor: Is a suitable page free? */
854 for (order = cc->order; order < MAX_ORDER; order++) {
855 struct free_area *area = &zone->free_area[order];
856
857 /* Job done if page is free of the right migratetype */
858 if (!list_empty(&area->free_list[cc->migratetype]))
859 return COMPACT_PARTIAL;
860
861 /* Job done if allocation would set block type */
862 if (cc->order >= pageblock_order && area->nr_free)
863 return COMPACT_PARTIAL;
864 }
865
866 return COMPACT_CONTINUE;
867 }
868
869 /*
870 * compaction_suitable: Is this suitable to run compaction on this zone now?
871 * Returns
872 * COMPACT_SKIPPED - If there are too few free pages for compaction
873 * COMPACT_PARTIAL - If the allocation would succeed without compaction
874 * COMPACT_CONTINUE - If compaction should run now
875 */
876 unsigned long compaction_suitable(struct zone *zone, int order)
877 {
878 int fragindex;
879 unsigned long watermark;
880
881 /*
882 * order == -1 is expected when compacting via
883 * /proc/sys/vm/compact_memory
884 */
885 if (order == -1)
886 return COMPACT_CONTINUE;
887
888 /*
889 * Watermarks for order-0 must be met for compaction. Note the 2UL.
890 * This is because during migration, copies of pages need to be
891 * allocated and for a short time, the footprint is higher
892 */
893 watermark = low_wmark_pages(zone) + (2UL << order);
894 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
895 return COMPACT_SKIPPED;
896
897 /*
898 * fragmentation index determines if allocation failures are due to
899 * low memory or external fragmentation
900 *
901 * index of -1000 implies allocations might succeed depending on
902 * watermarks
903 * index towards 0 implies failure is due to lack of memory
904 * index towards 1000 implies failure is due to fragmentation
905 *
906 * Only compact if a failure would be due to fragmentation.
907 */
908 fragindex = fragmentation_index(zone, order);
909 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
910 return COMPACT_SKIPPED;
911
912 if (fragindex == -1000 && zone_watermark_ok(zone, order, watermark,
913 0, 0))
914 return COMPACT_PARTIAL;
915
916 return COMPACT_CONTINUE;
917 }
918
919 static int compact_zone(struct zone *zone, struct compact_control *cc)
920 {
921 int ret;
922 unsigned long start_pfn = zone->zone_start_pfn;
923 unsigned long end_pfn = zone->zone_start_pfn + zone->spanned_pages;
924
925 ret = compaction_suitable(zone, cc->order);
926 switch (ret) {
927 case COMPACT_PARTIAL:
928 case COMPACT_SKIPPED:
929 /* Compaction is likely to fail */
930 return ret;
931 case COMPACT_CONTINUE:
932 /* Fall through to compaction */
933 ;
934 }
935
936 /*
937 * Setup to move all movable pages to the end of the zone. Used cached
938 * information on where the scanners should start but check that it
939 * is initialised by ensuring the values are within zone boundaries.
940 */
941 cc->migrate_pfn = zone->compact_cached_migrate_pfn;
942 cc->free_pfn = zone->compact_cached_free_pfn;
943 if (cc->free_pfn < start_pfn || cc->free_pfn > end_pfn) {
944 cc->free_pfn = end_pfn & ~(pageblock_nr_pages-1);
945 zone->compact_cached_free_pfn = cc->free_pfn;
946 }
947 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn > end_pfn) {
948 cc->migrate_pfn = start_pfn;
949 zone->compact_cached_migrate_pfn = cc->migrate_pfn;
950 }
951
952 /*
953 * Clear pageblock skip if there were failures recently and compaction
954 * is about to be retried after being deferred. kswapd does not do
955 * this reset as it'll reset the cached information when going to sleep.
956 */
957 if (compaction_restarting(zone, cc->order) && !current_is_kswapd())
958 __reset_isolation_suitable(zone);
959
960 migrate_prep_local();
961
962 while ((ret = compact_finished(zone, cc)) == COMPACT_CONTINUE) {
963 unsigned long nr_migrate, nr_remaining;
964 int err;
965
966 switch (isolate_migratepages(zone, cc)) {
967 case ISOLATE_ABORT:
968 ret = COMPACT_PARTIAL;
969 putback_movable_pages(&cc->migratepages);
970 cc->nr_migratepages = 0;
971 goto out;
972 case ISOLATE_NONE:
973 continue;
974 case ISOLATE_SUCCESS:
975 ;
976 }
977
978 nr_migrate = cc->nr_migratepages;
979 err = migrate_pages(&cc->migratepages, compaction_alloc,
980 (unsigned long)cc, false,
981 cc->sync ? MIGRATE_SYNC_LIGHT : MIGRATE_ASYNC,
982 MR_COMPACTION);
983 update_nr_listpages(cc);
984 nr_remaining = cc->nr_migratepages;
985
986 trace_mm_compaction_migratepages(nr_migrate - nr_remaining,
987 nr_remaining);
988
989 /* Release isolated pages not migrated */
990 if (err) {
991 putback_movable_pages(&cc->migratepages);
992 cc->nr_migratepages = 0;
993 if (err == -ENOMEM) {
994 ret = COMPACT_PARTIAL;
995 goto out;
996 }
997 }
998 }
999
1000 out:
1001 /* Release free pages and check accounting */
1002 cc->nr_freepages -= release_freepages(&cc->freepages);
1003 VM_BUG_ON(cc->nr_freepages != 0);
1004
1005 return ret;
1006 }
1007
1008 static unsigned long compact_zone_order(struct zone *zone,
1009 int order, gfp_t gfp_mask,
1010 bool sync, bool *contended)
1011 {
1012 unsigned long ret;
1013 struct compact_control cc = {
1014 .nr_freepages = 0,
1015 .nr_migratepages = 0,
1016 .order = order,
1017 .migratetype = allocflags_to_migratetype(gfp_mask),
1018 .zone = zone,
1019 .sync = sync,
1020 };
1021 INIT_LIST_HEAD(&cc.freepages);
1022 INIT_LIST_HEAD(&cc.migratepages);
1023
1024 ret = compact_zone(zone, &cc);
1025
1026 VM_BUG_ON(!list_empty(&cc.freepages));
1027 VM_BUG_ON(!list_empty(&cc.migratepages));
1028
1029 *contended = cc.contended;
1030 return ret;
1031 }
1032
1033 int sysctl_extfrag_threshold = 500;
1034
1035 /**
1036 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
1037 * @zonelist: The zonelist used for the current allocation
1038 * @order: The order of the current allocation
1039 * @gfp_mask: The GFP mask of the current allocation
1040 * @nodemask: The allowed nodes to allocate from
1041 * @sync: Whether migration is synchronous or not
1042 * @contended: Return value that is true if compaction was aborted due to lock contention
1043 * @page: Optionally capture a free page of the requested order during compaction
1044 *
1045 * This is the main entry point for direct page compaction.
1046 */
1047 unsigned long try_to_compact_pages(struct zonelist *zonelist,
1048 int order, gfp_t gfp_mask, nodemask_t *nodemask,
1049 bool sync, bool *contended)
1050 {
1051 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
1052 int may_enter_fs = gfp_mask & __GFP_FS;
1053 int may_perform_io = gfp_mask & __GFP_IO;
1054 struct zoneref *z;
1055 struct zone *zone;
1056 int rc = COMPACT_SKIPPED;
1057 int alloc_flags = 0;
1058
1059 /* Check if the GFP flags allow compaction */
1060 if (!order || !may_enter_fs || !may_perform_io)
1061 return rc;
1062
1063 count_compact_event(COMPACTSTALL);
1064
1065 #ifdef CONFIG_CMA
1066 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
1067 alloc_flags |= ALLOC_CMA;
1068 #endif
1069 /* Compact each zone in the list */
1070 for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx,
1071 nodemask) {
1072 int status;
1073
1074 status = compact_zone_order(zone, order, gfp_mask, sync,
1075 contended);
1076 rc = max(status, rc);
1077
1078 /* If a normal allocation would succeed, stop compacting */
1079 if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0,
1080 alloc_flags))
1081 break;
1082 }
1083
1084 return rc;
1085 }
1086
1087
1088 /* Compact all zones within a node */
1089 static int __compact_pgdat(pg_data_t *pgdat, struct compact_control *cc)
1090 {
1091 int zoneid;
1092 struct zone *zone;
1093
1094 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
1095
1096 zone = &pgdat->node_zones[zoneid];
1097 if (!populated_zone(zone))
1098 continue;
1099
1100 cc->nr_freepages = 0;
1101 cc->nr_migratepages = 0;
1102 cc->zone = zone;
1103 INIT_LIST_HEAD(&cc->freepages);
1104 INIT_LIST_HEAD(&cc->migratepages);
1105
1106 if (cc->order == -1 || !compaction_deferred(zone, cc->order))
1107 compact_zone(zone, cc);
1108
1109 if (cc->order > 0) {
1110 int ok = zone_watermark_ok(zone, cc->order,
1111 low_wmark_pages(zone), 0, 0);
1112 if (ok && cc->order >= zone->compact_order_failed)
1113 zone->compact_order_failed = cc->order + 1;
1114 /* Currently async compaction is never deferred. */
1115 else if (!ok && cc->sync)
1116 defer_compaction(zone, cc->order);
1117 }
1118
1119 VM_BUG_ON(!list_empty(&cc->freepages));
1120 VM_BUG_ON(!list_empty(&cc->migratepages));
1121 }
1122
1123 return 0;
1124 }
1125
1126 int compact_pgdat(pg_data_t *pgdat, int order)
1127 {
1128 struct compact_control cc = {
1129 .order = order,
1130 .sync = false,
1131 };
1132
1133 return __compact_pgdat(pgdat, &cc);
1134 }
1135
1136 static int compact_node(int nid)
1137 {
1138 struct compact_control cc = {
1139 .order = -1,
1140 .sync = true,
1141 };
1142
1143 return __compact_pgdat(NODE_DATA(nid), &cc);
1144 }
1145
1146 /* Compact all nodes in the system */
1147 static void compact_nodes(void)
1148 {
1149 int nid;
1150
1151 /* Flush pending updates to the LRU lists */
1152 lru_add_drain_all();
1153
1154 for_each_online_node(nid)
1155 compact_node(nid);
1156 }
1157
1158 /* The written value is actually unused, all memory is compacted */
1159 int sysctl_compact_memory;
1160
1161 /* This is the entry point for compacting all nodes via /proc/sys/vm */
1162 int sysctl_compaction_handler(struct ctl_table *table, int write,
1163 void __user *buffer, size_t *length, loff_t *ppos)
1164 {
1165 if (write)
1166 compact_nodes();
1167
1168 return 0;
1169 }
1170
1171 int sysctl_extfrag_handler(struct ctl_table *table, int write,
1172 void __user *buffer, size_t *length, loff_t *ppos)
1173 {
1174 proc_dointvec_minmax(table, write, buffer, length, ppos);
1175
1176 return 0;
1177 }
1178
1179 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
1180 ssize_t sysfs_compact_node(struct device *dev,
1181 struct device_attribute *attr,
1182 const char *buf, size_t count)
1183 {
1184 int nid = dev->id;
1185
1186 if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
1187 /* Flush pending updates to the LRU lists */
1188 lru_add_drain_all();
1189
1190 compact_node(nid);
1191 }
1192
1193 return count;
1194 }
1195 static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
1196
1197 int compaction_register_node(struct node *node)
1198 {
1199 return device_create_file(&node->dev, &dev_attr_compact);
1200 }
1201
1202 void compaction_unregister_node(struct node *node)
1203 {
1204 return device_remove_file(&node->dev, &dev_attr_compact);
1205 }
1206 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
1207
1208 #endif /* CONFIG_COMPACTION */
This page took 0.080559 seconds and 6 git commands to generate.