mm: compaction: clear PG_migrate_skip based on compaction and reclaim activity
[deliverable/linux.git] / mm / compaction.c
1 /*
2 * linux/mm/compaction.c
3 *
4 * Memory compaction for the reduction of external fragmentation. Note that
5 * this heavily depends upon page migration to do all the real heavy
6 * lifting
7 *
8 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
9 */
10 #include <linux/swap.h>
11 #include <linux/migrate.h>
12 #include <linux/compaction.h>
13 #include <linux/mm_inline.h>
14 #include <linux/backing-dev.h>
15 #include <linux/sysctl.h>
16 #include <linux/sysfs.h>
17 #include "internal.h"
18
19 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
20
21 #define CREATE_TRACE_POINTS
22 #include <trace/events/compaction.h>
23
24 static unsigned long release_freepages(struct list_head *freelist)
25 {
26 struct page *page, *next;
27 unsigned long count = 0;
28
29 list_for_each_entry_safe(page, next, freelist, lru) {
30 list_del(&page->lru);
31 __free_page(page);
32 count++;
33 }
34
35 return count;
36 }
37
38 static void map_pages(struct list_head *list)
39 {
40 struct page *page;
41
42 list_for_each_entry(page, list, lru) {
43 arch_alloc_page(page, 0);
44 kernel_map_pages(page, 1, 1);
45 }
46 }
47
48 static inline bool migrate_async_suitable(int migratetype)
49 {
50 return is_migrate_cma(migratetype) || migratetype == MIGRATE_MOVABLE;
51 }
52
53 #ifdef CONFIG_COMPACTION
54 /* Returns true if the pageblock should be scanned for pages to isolate. */
55 static inline bool isolation_suitable(struct compact_control *cc,
56 struct page *page)
57 {
58 if (cc->ignore_skip_hint)
59 return true;
60
61 return !get_pageblock_skip(page);
62 }
63
64 /*
65 * This function is called to clear all cached information on pageblocks that
66 * should be skipped for page isolation when the migrate and free page scanner
67 * meet.
68 */
69 static void __reset_isolation_suitable(struct zone *zone)
70 {
71 unsigned long start_pfn = zone->zone_start_pfn;
72 unsigned long end_pfn = zone->zone_start_pfn + zone->spanned_pages;
73 unsigned long pfn;
74
75 zone->compact_cached_migrate_pfn = start_pfn;
76 zone->compact_cached_free_pfn = end_pfn;
77 zone->compact_blockskip_flush = false;
78
79 /* Walk the zone and mark every pageblock as suitable for isolation */
80 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
81 struct page *page;
82
83 cond_resched();
84
85 if (!pfn_valid(pfn))
86 continue;
87
88 page = pfn_to_page(pfn);
89 if (zone != page_zone(page))
90 continue;
91
92 clear_pageblock_skip(page);
93 }
94 }
95
96 void reset_isolation_suitable(pg_data_t *pgdat)
97 {
98 int zoneid;
99
100 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
101 struct zone *zone = &pgdat->node_zones[zoneid];
102 if (!populated_zone(zone))
103 continue;
104
105 /* Only flush if a full compaction finished recently */
106 if (zone->compact_blockskip_flush)
107 __reset_isolation_suitable(zone);
108 }
109 }
110
111 /*
112 * If no pages were isolated then mark this pageblock to be skipped in the
113 * future. The information is later cleared by __reset_isolation_suitable().
114 */
115 static void update_pageblock_skip(struct compact_control *cc,
116 struct page *page, unsigned long nr_isolated,
117 bool migrate_scanner)
118 {
119 struct zone *zone = cc->zone;
120 if (!page)
121 return;
122
123 if (!nr_isolated) {
124 unsigned long pfn = page_to_pfn(page);
125 set_pageblock_skip(page);
126
127 /* Update where compaction should restart */
128 if (migrate_scanner) {
129 if (!cc->finished_update_migrate &&
130 pfn > zone->compact_cached_migrate_pfn)
131 zone->compact_cached_migrate_pfn = pfn;
132 } else {
133 if (!cc->finished_update_free &&
134 pfn < zone->compact_cached_free_pfn)
135 zone->compact_cached_free_pfn = pfn;
136 }
137 }
138 }
139 #else
140 static inline bool isolation_suitable(struct compact_control *cc,
141 struct page *page)
142 {
143 return true;
144 }
145
146 static void update_pageblock_skip(struct compact_control *cc,
147 struct page *page, unsigned long nr_isolated,
148 bool migrate_scanner)
149 {
150 }
151 #endif /* CONFIG_COMPACTION */
152
153 static inline bool should_release_lock(spinlock_t *lock)
154 {
155 return need_resched() || spin_is_contended(lock);
156 }
157
158 /*
159 * Compaction requires the taking of some coarse locks that are potentially
160 * very heavily contended. Check if the process needs to be scheduled or
161 * if the lock is contended. For async compaction, back out in the event
162 * if contention is severe. For sync compaction, schedule.
163 *
164 * Returns true if the lock is held.
165 * Returns false if the lock is released and compaction should abort
166 */
167 static bool compact_checklock_irqsave(spinlock_t *lock, unsigned long *flags,
168 bool locked, struct compact_control *cc)
169 {
170 if (should_release_lock(lock)) {
171 if (locked) {
172 spin_unlock_irqrestore(lock, *flags);
173 locked = false;
174 }
175
176 /* async aborts if taking too long or contended */
177 if (!cc->sync) {
178 cc->contended = true;
179 return false;
180 }
181
182 cond_resched();
183 }
184
185 if (!locked)
186 spin_lock_irqsave(lock, *flags);
187 return true;
188 }
189
190 static inline bool compact_trylock_irqsave(spinlock_t *lock,
191 unsigned long *flags, struct compact_control *cc)
192 {
193 return compact_checklock_irqsave(lock, flags, false, cc);
194 }
195
196 /* Returns true if the page is within a block suitable for migration to */
197 static bool suitable_migration_target(struct page *page)
198 {
199 int migratetype = get_pageblock_migratetype(page);
200
201 /* Don't interfere with memory hot-remove or the min_free_kbytes blocks */
202 if (migratetype == MIGRATE_ISOLATE || migratetype == MIGRATE_RESERVE)
203 return false;
204
205 /* If the page is a large free page, then allow migration */
206 if (PageBuddy(page) && page_order(page) >= pageblock_order)
207 return true;
208
209 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
210 if (migrate_async_suitable(migratetype))
211 return true;
212
213 /* Otherwise skip the block */
214 return false;
215 }
216
217 static void compact_capture_page(struct compact_control *cc)
218 {
219 unsigned long flags;
220 int mtype, mtype_low, mtype_high;
221
222 if (!cc->page || *cc->page)
223 return;
224
225 /*
226 * For MIGRATE_MOVABLE allocations we capture a suitable page ASAP
227 * regardless of the migratetype of the freelist is is captured from.
228 * This is fine because the order for a high-order MIGRATE_MOVABLE
229 * allocation is typically at least a pageblock size and overall
230 * fragmentation is not impaired. Other allocation types must
231 * capture pages from their own migratelist because otherwise they
232 * could pollute other pageblocks like MIGRATE_MOVABLE with
233 * difficult to move pages and making fragmentation worse overall.
234 */
235 if (cc->migratetype == MIGRATE_MOVABLE) {
236 mtype_low = 0;
237 mtype_high = MIGRATE_PCPTYPES;
238 } else {
239 mtype_low = cc->migratetype;
240 mtype_high = cc->migratetype + 1;
241 }
242
243 /* Speculatively examine the free lists without zone lock */
244 for (mtype = mtype_low; mtype < mtype_high; mtype++) {
245 int order;
246 for (order = cc->order; order < MAX_ORDER; order++) {
247 struct page *page;
248 struct free_area *area;
249 area = &(cc->zone->free_area[order]);
250 if (list_empty(&area->free_list[mtype]))
251 continue;
252
253 /* Take the lock and attempt capture of the page */
254 if (!compact_trylock_irqsave(&cc->zone->lock, &flags, cc))
255 return;
256 if (!list_empty(&area->free_list[mtype])) {
257 page = list_entry(area->free_list[mtype].next,
258 struct page, lru);
259 if (capture_free_page(page, cc->order, mtype)) {
260 spin_unlock_irqrestore(&cc->zone->lock,
261 flags);
262 *cc->page = page;
263 return;
264 }
265 }
266 spin_unlock_irqrestore(&cc->zone->lock, flags);
267 }
268 }
269 }
270
271 /*
272 * Isolate free pages onto a private freelist. Caller must hold zone->lock.
273 * If @strict is true, will abort returning 0 on any invalid PFNs or non-free
274 * pages inside of the pageblock (even though it may still end up isolating
275 * some pages).
276 */
277 static unsigned long isolate_freepages_block(struct compact_control *cc,
278 unsigned long blockpfn,
279 unsigned long end_pfn,
280 struct list_head *freelist,
281 bool strict)
282 {
283 int nr_scanned = 0, total_isolated = 0;
284 struct page *cursor, *valid_page = NULL;
285 unsigned long nr_strict_required = end_pfn - blockpfn;
286 unsigned long flags;
287 bool locked = false;
288
289 cursor = pfn_to_page(blockpfn);
290
291 /* Isolate free pages. */
292 for (; blockpfn < end_pfn; blockpfn++, cursor++) {
293 int isolated, i;
294 struct page *page = cursor;
295
296 nr_scanned++;
297 if (!pfn_valid_within(blockpfn))
298 continue;
299 if (!valid_page)
300 valid_page = page;
301 if (!PageBuddy(page))
302 continue;
303
304 /*
305 * The zone lock must be held to isolate freepages.
306 * Unfortunately this is a very coarse lock and can be
307 * heavily contended if there are parallel allocations
308 * or parallel compactions. For async compaction do not
309 * spin on the lock and we acquire the lock as late as
310 * possible.
311 */
312 locked = compact_checklock_irqsave(&cc->zone->lock, &flags,
313 locked, cc);
314 if (!locked)
315 break;
316
317 /* Recheck this is a suitable migration target under lock */
318 if (!strict && !suitable_migration_target(page))
319 break;
320
321 /* Recheck this is a buddy page under lock */
322 if (!PageBuddy(page))
323 continue;
324
325 /* Found a free page, break it into order-0 pages */
326 isolated = split_free_page(page);
327 if (!isolated && strict)
328 break;
329 total_isolated += isolated;
330 for (i = 0; i < isolated; i++) {
331 list_add(&page->lru, freelist);
332 page++;
333 }
334
335 /* If a page was split, advance to the end of it */
336 if (isolated) {
337 blockpfn += isolated - 1;
338 cursor += isolated - 1;
339 }
340 }
341
342 trace_mm_compaction_isolate_freepages(nr_scanned, total_isolated);
343
344 /*
345 * If strict isolation is requested by CMA then check that all the
346 * pages requested were isolated. If there were any failures, 0 is
347 * returned and CMA will fail.
348 */
349 if (strict && nr_strict_required != total_isolated)
350 total_isolated = 0;
351
352 if (locked)
353 spin_unlock_irqrestore(&cc->zone->lock, flags);
354
355 /* Update the pageblock-skip if the whole pageblock was scanned */
356 if (blockpfn == end_pfn)
357 update_pageblock_skip(cc, valid_page, total_isolated, false);
358
359 return total_isolated;
360 }
361
362 /**
363 * isolate_freepages_range() - isolate free pages.
364 * @start_pfn: The first PFN to start isolating.
365 * @end_pfn: The one-past-last PFN.
366 *
367 * Non-free pages, invalid PFNs, or zone boundaries within the
368 * [start_pfn, end_pfn) range are considered errors, cause function to
369 * undo its actions and return zero.
370 *
371 * Otherwise, function returns one-past-the-last PFN of isolated page
372 * (which may be greater then end_pfn if end fell in a middle of
373 * a free page).
374 */
375 unsigned long
376 isolate_freepages_range(struct compact_control *cc,
377 unsigned long start_pfn, unsigned long end_pfn)
378 {
379 unsigned long isolated, pfn, block_end_pfn;
380 LIST_HEAD(freelist);
381
382 for (pfn = start_pfn; pfn < end_pfn; pfn += isolated) {
383 if (!pfn_valid(pfn) || cc->zone != page_zone(pfn_to_page(pfn)))
384 break;
385
386 /*
387 * On subsequent iterations ALIGN() is actually not needed,
388 * but we keep it that we not to complicate the code.
389 */
390 block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
391 block_end_pfn = min(block_end_pfn, end_pfn);
392
393 isolated = isolate_freepages_block(cc, pfn, block_end_pfn,
394 &freelist, true);
395
396 /*
397 * In strict mode, isolate_freepages_block() returns 0 if
398 * there are any holes in the block (ie. invalid PFNs or
399 * non-free pages).
400 */
401 if (!isolated)
402 break;
403
404 /*
405 * If we managed to isolate pages, it is always (1 << n) *
406 * pageblock_nr_pages for some non-negative n. (Max order
407 * page may span two pageblocks).
408 */
409 }
410
411 /* split_free_page does not map the pages */
412 map_pages(&freelist);
413
414 if (pfn < end_pfn) {
415 /* Loop terminated early, cleanup. */
416 release_freepages(&freelist);
417 return 0;
418 }
419
420 /* We don't use freelists for anything. */
421 return pfn;
422 }
423
424 /* Update the number of anon and file isolated pages in the zone */
425 static void acct_isolated(struct zone *zone, bool locked, struct compact_control *cc)
426 {
427 struct page *page;
428 unsigned int count[2] = { 0, };
429
430 list_for_each_entry(page, &cc->migratepages, lru)
431 count[!!page_is_file_cache(page)]++;
432
433 /* If locked we can use the interrupt unsafe versions */
434 if (locked) {
435 __mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
436 __mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
437 } else {
438 mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
439 mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
440 }
441 }
442
443 /* Similar to reclaim, but different enough that they don't share logic */
444 static bool too_many_isolated(struct zone *zone)
445 {
446 unsigned long active, inactive, isolated;
447
448 inactive = zone_page_state(zone, NR_INACTIVE_FILE) +
449 zone_page_state(zone, NR_INACTIVE_ANON);
450 active = zone_page_state(zone, NR_ACTIVE_FILE) +
451 zone_page_state(zone, NR_ACTIVE_ANON);
452 isolated = zone_page_state(zone, NR_ISOLATED_FILE) +
453 zone_page_state(zone, NR_ISOLATED_ANON);
454
455 return isolated > (inactive + active) / 2;
456 }
457
458 /**
459 * isolate_migratepages_range() - isolate all migrate-able pages in range.
460 * @zone: Zone pages are in.
461 * @cc: Compaction control structure.
462 * @low_pfn: The first PFN of the range.
463 * @end_pfn: The one-past-the-last PFN of the range.
464 *
465 * Isolate all pages that can be migrated from the range specified by
466 * [low_pfn, end_pfn). Returns zero if there is a fatal signal
467 * pending), otherwise PFN of the first page that was not scanned
468 * (which may be both less, equal to or more then end_pfn).
469 *
470 * Assumes that cc->migratepages is empty and cc->nr_migratepages is
471 * zero.
472 *
473 * Apart from cc->migratepages and cc->nr_migratetypes this function
474 * does not modify any cc's fields, in particular it does not modify
475 * (or read for that matter) cc->migrate_pfn.
476 */
477 unsigned long
478 isolate_migratepages_range(struct zone *zone, struct compact_control *cc,
479 unsigned long low_pfn, unsigned long end_pfn)
480 {
481 unsigned long last_pageblock_nr = 0, pageblock_nr;
482 unsigned long nr_scanned = 0, nr_isolated = 0;
483 struct list_head *migratelist = &cc->migratepages;
484 isolate_mode_t mode = 0;
485 struct lruvec *lruvec;
486 unsigned long flags;
487 bool locked = false;
488 struct page *page = NULL, *valid_page = NULL;
489
490 /*
491 * Ensure that there are not too many pages isolated from the LRU
492 * list by either parallel reclaimers or compaction. If there are,
493 * delay for some time until fewer pages are isolated
494 */
495 while (unlikely(too_many_isolated(zone))) {
496 /* async migration should just abort */
497 if (!cc->sync)
498 return 0;
499
500 congestion_wait(BLK_RW_ASYNC, HZ/10);
501
502 if (fatal_signal_pending(current))
503 return 0;
504 }
505
506 /* Time to isolate some pages for migration */
507 cond_resched();
508 for (; low_pfn < end_pfn; low_pfn++) {
509 /* give a chance to irqs before checking need_resched() */
510 if (locked && !((low_pfn+1) % SWAP_CLUSTER_MAX)) {
511 if (should_release_lock(&zone->lru_lock)) {
512 spin_unlock_irqrestore(&zone->lru_lock, flags);
513 locked = false;
514 }
515 }
516
517 /*
518 * migrate_pfn does not necessarily start aligned to a
519 * pageblock. Ensure that pfn_valid is called when moving
520 * into a new MAX_ORDER_NR_PAGES range in case of large
521 * memory holes within the zone
522 */
523 if ((low_pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
524 if (!pfn_valid(low_pfn)) {
525 low_pfn += MAX_ORDER_NR_PAGES - 1;
526 continue;
527 }
528 }
529
530 if (!pfn_valid_within(low_pfn))
531 continue;
532 nr_scanned++;
533
534 /*
535 * Get the page and ensure the page is within the same zone.
536 * See the comment in isolate_freepages about overlapping
537 * nodes. It is deliberate that the new zone lock is not taken
538 * as memory compaction should not move pages between nodes.
539 */
540 page = pfn_to_page(low_pfn);
541 if (page_zone(page) != zone)
542 continue;
543
544 if (!valid_page)
545 valid_page = page;
546
547 /* If isolation recently failed, do not retry */
548 pageblock_nr = low_pfn >> pageblock_order;
549 if (!isolation_suitable(cc, page))
550 goto next_pageblock;
551
552 /* Skip if free */
553 if (PageBuddy(page))
554 continue;
555
556 /*
557 * For async migration, also only scan in MOVABLE blocks. Async
558 * migration is optimistic to see if the minimum amount of work
559 * satisfies the allocation
560 */
561 if (!cc->sync && last_pageblock_nr != pageblock_nr &&
562 !migrate_async_suitable(get_pageblock_migratetype(page))) {
563 cc->finished_update_migrate = true;
564 goto next_pageblock;
565 }
566
567 /* Check may be lockless but that's ok as we recheck later */
568 if (!PageLRU(page))
569 continue;
570
571 /*
572 * PageLRU is set. lru_lock normally excludes isolation
573 * splitting and collapsing (collapsing has already happened
574 * if PageLRU is set) but the lock is not necessarily taken
575 * here and it is wasteful to take it just to check transhuge.
576 * Check TransHuge without lock and skip the whole pageblock if
577 * it's either a transhuge or hugetlbfs page, as calling
578 * compound_order() without preventing THP from splitting the
579 * page underneath us may return surprising results.
580 */
581 if (PageTransHuge(page)) {
582 if (!locked)
583 goto next_pageblock;
584 low_pfn += (1 << compound_order(page)) - 1;
585 continue;
586 }
587
588 /* Check if it is ok to still hold the lock */
589 locked = compact_checklock_irqsave(&zone->lru_lock, &flags,
590 locked, cc);
591 if (!locked || fatal_signal_pending(current))
592 break;
593
594 /* Recheck PageLRU and PageTransHuge under lock */
595 if (!PageLRU(page))
596 continue;
597 if (PageTransHuge(page)) {
598 low_pfn += (1 << compound_order(page)) - 1;
599 continue;
600 }
601
602 if (!cc->sync)
603 mode |= ISOLATE_ASYNC_MIGRATE;
604
605 lruvec = mem_cgroup_page_lruvec(page, zone);
606
607 /* Try isolate the page */
608 if (__isolate_lru_page(page, mode) != 0)
609 continue;
610
611 VM_BUG_ON(PageTransCompound(page));
612
613 /* Successfully isolated */
614 cc->finished_update_migrate = true;
615 del_page_from_lru_list(page, lruvec, page_lru(page));
616 list_add(&page->lru, migratelist);
617 cc->nr_migratepages++;
618 nr_isolated++;
619
620 /* Avoid isolating too much */
621 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
622 ++low_pfn;
623 break;
624 }
625
626 continue;
627
628 next_pageblock:
629 low_pfn += pageblock_nr_pages;
630 low_pfn = ALIGN(low_pfn, pageblock_nr_pages) - 1;
631 last_pageblock_nr = pageblock_nr;
632 }
633
634 acct_isolated(zone, locked, cc);
635
636 if (locked)
637 spin_unlock_irqrestore(&zone->lru_lock, flags);
638
639 /* Update the pageblock-skip if the whole pageblock was scanned */
640 if (low_pfn == end_pfn)
641 update_pageblock_skip(cc, valid_page, nr_isolated, true);
642
643 trace_mm_compaction_isolate_migratepages(nr_scanned, nr_isolated);
644
645 return low_pfn;
646 }
647
648 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
649 #ifdef CONFIG_COMPACTION
650 /*
651 * Based on information in the current compact_control, find blocks
652 * suitable for isolating free pages from and then isolate them.
653 */
654 static void isolate_freepages(struct zone *zone,
655 struct compact_control *cc)
656 {
657 struct page *page;
658 unsigned long high_pfn, low_pfn, pfn, zone_end_pfn, end_pfn;
659 int nr_freepages = cc->nr_freepages;
660 struct list_head *freelist = &cc->freepages;
661
662 /*
663 * Initialise the free scanner. The starting point is where we last
664 * scanned from (or the end of the zone if starting). The low point
665 * is the end of the pageblock the migration scanner is using.
666 */
667 pfn = cc->free_pfn;
668 low_pfn = cc->migrate_pfn + pageblock_nr_pages;
669
670 /*
671 * Take care that if the migration scanner is at the end of the zone
672 * that the free scanner does not accidentally move to the next zone
673 * in the next isolation cycle.
674 */
675 high_pfn = min(low_pfn, pfn);
676
677 zone_end_pfn = zone->zone_start_pfn + zone->spanned_pages;
678
679 /*
680 * Isolate free pages until enough are available to migrate the
681 * pages on cc->migratepages. We stop searching if the migrate
682 * and free page scanners meet or enough free pages are isolated.
683 */
684 for (; pfn > low_pfn && cc->nr_migratepages > nr_freepages;
685 pfn -= pageblock_nr_pages) {
686 unsigned long isolated;
687
688 if (!pfn_valid(pfn))
689 continue;
690
691 /*
692 * Check for overlapping nodes/zones. It's possible on some
693 * configurations to have a setup like
694 * node0 node1 node0
695 * i.e. it's possible that all pages within a zones range of
696 * pages do not belong to a single zone.
697 */
698 page = pfn_to_page(pfn);
699 if (page_zone(page) != zone)
700 continue;
701
702 /* Check the block is suitable for migration */
703 if (!suitable_migration_target(page))
704 continue;
705
706 /* If isolation recently failed, do not retry */
707 if (!isolation_suitable(cc, page))
708 continue;
709
710 /* Found a block suitable for isolating free pages from */
711 isolated = 0;
712 end_pfn = min(pfn + pageblock_nr_pages, zone_end_pfn);
713 isolated = isolate_freepages_block(cc, pfn, end_pfn,
714 freelist, false);
715 nr_freepages += isolated;
716
717 /*
718 * Record the highest PFN we isolated pages from. When next
719 * looking for free pages, the search will restart here as
720 * page migration may have returned some pages to the allocator
721 */
722 if (isolated) {
723 cc->finished_update_free = true;
724 high_pfn = max(high_pfn, pfn);
725 }
726 }
727
728 /* split_free_page does not map the pages */
729 map_pages(freelist);
730
731 cc->free_pfn = high_pfn;
732 cc->nr_freepages = nr_freepages;
733 }
734
735 /*
736 * This is a migrate-callback that "allocates" freepages by taking pages
737 * from the isolated freelists in the block we are migrating to.
738 */
739 static struct page *compaction_alloc(struct page *migratepage,
740 unsigned long data,
741 int **result)
742 {
743 struct compact_control *cc = (struct compact_control *)data;
744 struct page *freepage;
745
746 /* Isolate free pages if necessary */
747 if (list_empty(&cc->freepages)) {
748 isolate_freepages(cc->zone, cc);
749
750 if (list_empty(&cc->freepages))
751 return NULL;
752 }
753
754 freepage = list_entry(cc->freepages.next, struct page, lru);
755 list_del(&freepage->lru);
756 cc->nr_freepages--;
757
758 return freepage;
759 }
760
761 /*
762 * We cannot control nr_migratepages and nr_freepages fully when migration is
763 * running as migrate_pages() has no knowledge of compact_control. When
764 * migration is complete, we count the number of pages on the lists by hand.
765 */
766 static void update_nr_listpages(struct compact_control *cc)
767 {
768 int nr_migratepages = 0;
769 int nr_freepages = 0;
770 struct page *page;
771
772 list_for_each_entry(page, &cc->migratepages, lru)
773 nr_migratepages++;
774 list_for_each_entry(page, &cc->freepages, lru)
775 nr_freepages++;
776
777 cc->nr_migratepages = nr_migratepages;
778 cc->nr_freepages = nr_freepages;
779 }
780
781 /* possible outcome of isolate_migratepages */
782 typedef enum {
783 ISOLATE_ABORT, /* Abort compaction now */
784 ISOLATE_NONE, /* No pages isolated, continue scanning */
785 ISOLATE_SUCCESS, /* Pages isolated, migrate */
786 } isolate_migrate_t;
787
788 /*
789 * Isolate all pages that can be migrated from the block pointed to by
790 * the migrate scanner within compact_control.
791 */
792 static isolate_migrate_t isolate_migratepages(struct zone *zone,
793 struct compact_control *cc)
794 {
795 unsigned long low_pfn, end_pfn;
796
797 /* Do not scan outside zone boundaries */
798 low_pfn = max(cc->migrate_pfn, zone->zone_start_pfn);
799
800 /* Only scan within a pageblock boundary */
801 end_pfn = ALIGN(low_pfn + pageblock_nr_pages, pageblock_nr_pages);
802
803 /* Do not cross the free scanner or scan within a memory hole */
804 if (end_pfn > cc->free_pfn || !pfn_valid(low_pfn)) {
805 cc->migrate_pfn = end_pfn;
806 return ISOLATE_NONE;
807 }
808
809 /* Perform the isolation */
810 low_pfn = isolate_migratepages_range(zone, cc, low_pfn, end_pfn);
811 if (!low_pfn || cc->contended)
812 return ISOLATE_ABORT;
813
814 cc->migrate_pfn = low_pfn;
815
816 return ISOLATE_SUCCESS;
817 }
818
819 static int compact_finished(struct zone *zone,
820 struct compact_control *cc)
821 {
822 unsigned long watermark;
823
824 if (fatal_signal_pending(current))
825 return COMPACT_PARTIAL;
826
827 /* Compaction run completes if the migrate and free scanner meet */
828 if (cc->free_pfn <= cc->migrate_pfn) {
829 /*
830 * Mark that the PG_migrate_skip information should be cleared
831 * by kswapd when it goes to sleep. kswapd does not set the
832 * flag itself as the decision to be clear should be directly
833 * based on an allocation request.
834 */
835 if (!current_is_kswapd())
836 zone->compact_blockskip_flush = true;
837
838 return COMPACT_COMPLETE;
839 }
840
841 /*
842 * order == -1 is expected when compacting via
843 * /proc/sys/vm/compact_memory
844 */
845 if (cc->order == -1)
846 return COMPACT_CONTINUE;
847
848 /* Compaction run is not finished if the watermark is not met */
849 watermark = low_wmark_pages(zone);
850 watermark += (1 << cc->order);
851
852 if (!zone_watermark_ok(zone, cc->order, watermark, 0, 0))
853 return COMPACT_CONTINUE;
854
855 /* Direct compactor: Is a suitable page free? */
856 if (cc->page) {
857 /* Was a suitable page captured? */
858 if (*cc->page)
859 return COMPACT_PARTIAL;
860 } else {
861 unsigned int order;
862 for (order = cc->order; order < MAX_ORDER; order++) {
863 struct free_area *area = &zone->free_area[cc->order];
864 /* Job done if page is free of the right migratetype */
865 if (!list_empty(&area->free_list[cc->migratetype]))
866 return COMPACT_PARTIAL;
867
868 /* Job done if allocation would set block type */
869 if (cc->order >= pageblock_order && area->nr_free)
870 return COMPACT_PARTIAL;
871 }
872 }
873
874 return COMPACT_CONTINUE;
875 }
876
877 /*
878 * compaction_suitable: Is this suitable to run compaction on this zone now?
879 * Returns
880 * COMPACT_SKIPPED - If there are too few free pages for compaction
881 * COMPACT_PARTIAL - If the allocation would succeed without compaction
882 * COMPACT_CONTINUE - If compaction should run now
883 */
884 unsigned long compaction_suitable(struct zone *zone, int order)
885 {
886 int fragindex;
887 unsigned long watermark;
888
889 /*
890 * order == -1 is expected when compacting via
891 * /proc/sys/vm/compact_memory
892 */
893 if (order == -1)
894 return COMPACT_CONTINUE;
895
896 /*
897 * Watermarks for order-0 must be met for compaction. Note the 2UL.
898 * This is because during migration, copies of pages need to be
899 * allocated and for a short time, the footprint is higher
900 */
901 watermark = low_wmark_pages(zone) + (2UL << order);
902 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
903 return COMPACT_SKIPPED;
904
905 /*
906 * fragmentation index determines if allocation failures are due to
907 * low memory or external fragmentation
908 *
909 * index of -1000 implies allocations might succeed depending on
910 * watermarks
911 * index towards 0 implies failure is due to lack of memory
912 * index towards 1000 implies failure is due to fragmentation
913 *
914 * Only compact if a failure would be due to fragmentation.
915 */
916 fragindex = fragmentation_index(zone, order);
917 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
918 return COMPACT_SKIPPED;
919
920 if (fragindex == -1000 && zone_watermark_ok(zone, order, watermark,
921 0, 0))
922 return COMPACT_PARTIAL;
923
924 return COMPACT_CONTINUE;
925 }
926
927 static int compact_zone(struct zone *zone, struct compact_control *cc)
928 {
929 int ret;
930 unsigned long start_pfn = zone->zone_start_pfn;
931 unsigned long end_pfn = zone->zone_start_pfn + zone->spanned_pages;
932
933 ret = compaction_suitable(zone, cc->order);
934 switch (ret) {
935 case COMPACT_PARTIAL:
936 case COMPACT_SKIPPED:
937 /* Compaction is likely to fail */
938 return ret;
939 case COMPACT_CONTINUE:
940 /* Fall through to compaction */
941 ;
942 }
943
944 /*
945 * Setup to move all movable pages to the end of the zone. Used cached
946 * information on where the scanners should start but check that it
947 * is initialised by ensuring the values are within zone boundaries.
948 */
949 cc->migrate_pfn = zone->compact_cached_migrate_pfn;
950 cc->free_pfn = zone->compact_cached_free_pfn;
951 if (cc->free_pfn < start_pfn || cc->free_pfn > end_pfn) {
952 cc->free_pfn = end_pfn & ~(pageblock_nr_pages-1);
953 zone->compact_cached_free_pfn = cc->free_pfn;
954 }
955 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn > end_pfn) {
956 cc->migrate_pfn = start_pfn;
957 zone->compact_cached_migrate_pfn = cc->migrate_pfn;
958 }
959
960 /*
961 * Clear pageblock skip if there were failures recently and compaction
962 * is about to be retried after being deferred. kswapd does not do
963 * this reset as it'll reset the cached information when going to sleep.
964 */
965 if (compaction_restarting(zone, cc->order) && !current_is_kswapd())
966 __reset_isolation_suitable(zone);
967
968 migrate_prep_local();
969
970 while ((ret = compact_finished(zone, cc)) == COMPACT_CONTINUE) {
971 unsigned long nr_migrate, nr_remaining;
972 int err;
973
974 switch (isolate_migratepages(zone, cc)) {
975 case ISOLATE_ABORT:
976 ret = COMPACT_PARTIAL;
977 putback_lru_pages(&cc->migratepages);
978 cc->nr_migratepages = 0;
979 goto out;
980 case ISOLATE_NONE:
981 continue;
982 case ISOLATE_SUCCESS:
983 ;
984 }
985
986 nr_migrate = cc->nr_migratepages;
987 err = migrate_pages(&cc->migratepages, compaction_alloc,
988 (unsigned long)cc, false,
989 cc->sync ? MIGRATE_SYNC_LIGHT : MIGRATE_ASYNC);
990 update_nr_listpages(cc);
991 nr_remaining = cc->nr_migratepages;
992
993 count_vm_event(COMPACTBLOCKS);
994 count_vm_events(COMPACTPAGES, nr_migrate - nr_remaining);
995 if (nr_remaining)
996 count_vm_events(COMPACTPAGEFAILED, nr_remaining);
997 trace_mm_compaction_migratepages(nr_migrate - nr_remaining,
998 nr_remaining);
999
1000 /* Release LRU pages not migrated */
1001 if (err) {
1002 putback_lru_pages(&cc->migratepages);
1003 cc->nr_migratepages = 0;
1004 if (err == -ENOMEM) {
1005 ret = COMPACT_PARTIAL;
1006 goto out;
1007 }
1008 }
1009
1010 /* Capture a page now if it is a suitable size */
1011 compact_capture_page(cc);
1012 }
1013
1014 out:
1015 /* Release free pages and check accounting */
1016 cc->nr_freepages -= release_freepages(&cc->freepages);
1017 VM_BUG_ON(cc->nr_freepages != 0);
1018
1019 return ret;
1020 }
1021
1022 static unsigned long compact_zone_order(struct zone *zone,
1023 int order, gfp_t gfp_mask,
1024 bool sync, bool *contended,
1025 struct page **page)
1026 {
1027 unsigned long ret;
1028 struct compact_control cc = {
1029 .nr_freepages = 0,
1030 .nr_migratepages = 0,
1031 .order = order,
1032 .migratetype = allocflags_to_migratetype(gfp_mask),
1033 .zone = zone,
1034 .sync = sync,
1035 .page = page,
1036 };
1037 INIT_LIST_HEAD(&cc.freepages);
1038 INIT_LIST_HEAD(&cc.migratepages);
1039
1040 ret = compact_zone(zone, &cc);
1041
1042 VM_BUG_ON(!list_empty(&cc.freepages));
1043 VM_BUG_ON(!list_empty(&cc.migratepages));
1044
1045 *contended = cc.contended;
1046 return ret;
1047 }
1048
1049 int sysctl_extfrag_threshold = 500;
1050
1051 /**
1052 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
1053 * @zonelist: The zonelist used for the current allocation
1054 * @order: The order of the current allocation
1055 * @gfp_mask: The GFP mask of the current allocation
1056 * @nodemask: The allowed nodes to allocate from
1057 * @sync: Whether migration is synchronous or not
1058 * @contended: Return value that is true if compaction was aborted due to lock contention
1059 * @page: Optionally capture a free page of the requested order during compaction
1060 *
1061 * This is the main entry point for direct page compaction.
1062 */
1063 unsigned long try_to_compact_pages(struct zonelist *zonelist,
1064 int order, gfp_t gfp_mask, nodemask_t *nodemask,
1065 bool sync, bool *contended, struct page **page)
1066 {
1067 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
1068 int may_enter_fs = gfp_mask & __GFP_FS;
1069 int may_perform_io = gfp_mask & __GFP_IO;
1070 struct zoneref *z;
1071 struct zone *zone;
1072 int rc = COMPACT_SKIPPED;
1073 int alloc_flags = 0;
1074
1075 /* Check if the GFP flags allow compaction */
1076 if (!order || !may_enter_fs || !may_perform_io)
1077 return rc;
1078
1079 count_vm_event(COMPACTSTALL);
1080
1081 #ifdef CONFIG_CMA
1082 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
1083 alloc_flags |= ALLOC_CMA;
1084 #endif
1085 /* Compact each zone in the list */
1086 for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx,
1087 nodemask) {
1088 int status;
1089
1090 status = compact_zone_order(zone, order, gfp_mask, sync,
1091 contended, page);
1092 rc = max(status, rc);
1093
1094 /* If a normal allocation would succeed, stop compacting */
1095 if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0,
1096 alloc_flags))
1097 break;
1098 }
1099
1100 return rc;
1101 }
1102
1103
1104 /* Compact all zones within a node */
1105 static int __compact_pgdat(pg_data_t *pgdat, struct compact_control *cc)
1106 {
1107 int zoneid;
1108 struct zone *zone;
1109
1110 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
1111
1112 zone = &pgdat->node_zones[zoneid];
1113 if (!populated_zone(zone))
1114 continue;
1115
1116 cc->nr_freepages = 0;
1117 cc->nr_migratepages = 0;
1118 cc->zone = zone;
1119 INIT_LIST_HEAD(&cc->freepages);
1120 INIT_LIST_HEAD(&cc->migratepages);
1121
1122 if (cc->order == -1 || !compaction_deferred(zone, cc->order))
1123 compact_zone(zone, cc);
1124
1125 if (cc->order > 0) {
1126 int ok = zone_watermark_ok(zone, cc->order,
1127 low_wmark_pages(zone), 0, 0);
1128 if (ok && cc->order >= zone->compact_order_failed)
1129 zone->compact_order_failed = cc->order + 1;
1130 /* Currently async compaction is never deferred. */
1131 else if (!ok && cc->sync)
1132 defer_compaction(zone, cc->order);
1133 }
1134
1135 VM_BUG_ON(!list_empty(&cc->freepages));
1136 VM_BUG_ON(!list_empty(&cc->migratepages));
1137 }
1138
1139 return 0;
1140 }
1141
1142 int compact_pgdat(pg_data_t *pgdat, int order)
1143 {
1144 struct compact_control cc = {
1145 .order = order,
1146 .sync = false,
1147 .page = NULL,
1148 };
1149
1150 return __compact_pgdat(pgdat, &cc);
1151 }
1152
1153 static int compact_node(int nid)
1154 {
1155 struct compact_control cc = {
1156 .order = -1,
1157 .sync = true,
1158 .page = NULL,
1159 };
1160
1161 return __compact_pgdat(NODE_DATA(nid), &cc);
1162 }
1163
1164 /* Compact all nodes in the system */
1165 static int compact_nodes(void)
1166 {
1167 int nid;
1168
1169 /* Flush pending updates to the LRU lists */
1170 lru_add_drain_all();
1171
1172 for_each_online_node(nid)
1173 compact_node(nid);
1174
1175 return COMPACT_COMPLETE;
1176 }
1177
1178 /* The written value is actually unused, all memory is compacted */
1179 int sysctl_compact_memory;
1180
1181 /* This is the entry point for compacting all nodes via /proc/sys/vm */
1182 int sysctl_compaction_handler(struct ctl_table *table, int write,
1183 void __user *buffer, size_t *length, loff_t *ppos)
1184 {
1185 if (write)
1186 return compact_nodes();
1187
1188 return 0;
1189 }
1190
1191 int sysctl_extfrag_handler(struct ctl_table *table, int write,
1192 void __user *buffer, size_t *length, loff_t *ppos)
1193 {
1194 proc_dointvec_minmax(table, write, buffer, length, ppos);
1195
1196 return 0;
1197 }
1198
1199 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
1200 ssize_t sysfs_compact_node(struct device *dev,
1201 struct device_attribute *attr,
1202 const char *buf, size_t count)
1203 {
1204 int nid = dev->id;
1205
1206 if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
1207 /* Flush pending updates to the LRU lists */
1208 lru_add_drain_all();
1209
1210 compact_node(nid);
1211 }
1212
1213 return count;
1214 }
1215 static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
1216
1217 int compaction_register_node(struct node *node)
1218 {
1219 return device_create_file(&node->dev, &dev_attr_compact);
1220 }
1221
1222 void compaction_unregister_node(struct node *node)
1223 {
1224 return device_remove_file(&node->dev, &dev_attr_compact);
1225 }
1226 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
1227
1228 #endif /* CONFIG_COMPACTION */
This page took 0.168914 seconds and 6 git commands to generate.