Merge tag 'modules-next-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git...
[deliverable/linux.git] / mm / compaction.c
1 /*
2 * linux/mm/compaction.c
3 *
4 * Memory compaction for the reduction of external fragmentation. Note that
5 * this heavily depends upon page migration to do all the real heavy
6 * lifting
7 *
8 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
9 */
10 #include <linux/swap.h>
11 #include <linux/migrate.h>
12 #include <linux/compaction.h>
13 #include <linux/mm_inline.h>
14 #include <linux/backing-dev.h>
15 #include <linux/sysctl.h>
16 #include <linux/sysfs.h>
17 #include <linux/balloon_compaction.h>
18 #include <linux/page-isolation.h>
19 #include "internal.h"
20
21 #ifdef CONFIG_COMPACTION
22 static inline void count_compact_event(enum vm_event_item item)
23 {
24 count_vm_event(item);
25 }
26
27 static inline void count_compact_events(enum vm_event_item item, long delta)
28 {
29 count_vm_events(item, delta);
30 }
31 #else
32 #define count_compact_event(item) do { } while (0)
33 #define count_compact_events(item, delta) do { } while (0)
34 #endif
35
36 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
37 #ifdef CONFIG_TRACEPOINTS
38 static const char *const compaction_status_string[] = {
39 "deferred",
40 "skipped",
41 "continue",
42 "partial",
43 "complete",
44 "no_suitable_page",
45 "not_suitable_zone",
46 };
47 #endif
48
49 #define CREATE_TRACE_POINTS
50 #include <trace/events/compaction.h>
51
52 static unsigned long release_freepages(struct list_head *freelist)
53 {
54 struct page *page, *next;
55 unsigned long high_pfn = 0;
56
57 list_for_each_entry_safe(page, next, freelist, lru) {
58 unsigned long pfn = page_to_pfn(page);
59 list_del(&page->lru);
60 __free_page(page);
61 if (pfn > high_pfn)
62 high_pfn = pfn;
63 }
64
65 return high_pfn;
66 }
67
68 static void map_pages(struct list_head *list)
69 {
70 struct page *page;
71
72 list_for_each_entry(page, list, lru) {
73 arch_alloc_page(page, 0);
74 kernel_map_pages(page, 1, 1);
75 }
76 }
77
78 static inline bool migrate_async_suitable(int migratetype)
79 {
80 return is_migrate_cma(migratetype) || migratetype == MIGRATE_MOVABLE;
81 }
82
83 /*
84 * Check that the whole (or subset of) a pageblock given by the interval of
85 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
86 * with the migration of free compaction scanner. The scanners then need to
87 * use only pfn_valid_within() check for arches that allow holes within
88 * pageblocks.
89 *
90 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
91 *
92 * It's possible on some configurations to have a setup like node0 node1 node0
93 * i.e. it's possible that all pages within a zones range of pages do not
94 * belong to a single zone. We assume that a border between node0 and node1
95 * can occur within a single pageblock, but not a node0 node1 node0
96 * interleaving within a single pageblock. It is therefore sufficient to check
97 * the first and last page of a pageblock and avoid checking each individual
98 * page in a pageblock.
99 */
100 static struct page *pageblock_pfn_to_page(unsigned long start_pfn,
101 unsigned long end_pfn, struct zone *zone)
102 {
103 struct page *start_page;
104 struct page *end_page;
105
106 /* end_pfn is one past the range we are checking */
107 end_pfn--;
108
109 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
110 return NULL;
111
112 start_page = pfn_to_page(start_pfn);
113
114 if (page_zone(start_page) != zone)
115 return NULL;
116
117 end_page = pfn_to_page(end_pfn);
118
119 /* This gives a shorter code than deriving page_zone(end_page) */
120 if (page_zone_id(start_page) != page_zone_id(end_page))
121 return NULL;
122
123 return start_page;
124 }
125
126 #ifdef CONFIG_COMPACTION
127
128 /* Do not skip compaction more than 64 times */
129 #define COMPACT_MAX_DEFER_SHIFT 6
130
131 /*
132 * Compaction is deferred when compaction fails to result in a page
133 * allocation success. 1 << compact_defer_limit compactions are skipped up
134 * to a limit of 1 << COMPACT_MAX_DEFER_SHIFT
135 */
136 void defer_compaction(struct zone *zone, int order)
137 {
138 zone->compact_considered = 0;
139 zone->compact_defer_shift++;
140
141 if (order < zone->compact_order_failed)
142 zone->compact_order_failed = order;
143
144 if (zone->compact_defer_shift > COMPACT_MAX_DEFER_SHIFT)
145 zone->compact_defer_shift = COMPACT_MAX_DEFER_SHIFT;
146
147 trace_mm_compaction_defer_compaction(zone, order);
148 }
149
150 /* Returns true if compaction should be skipped this time */
151 bool compaction_deferred(struct zone *zone, int order)
152 {
153 unsigned long defer_limit = 1UL << zone->compact_defer_shift;
154
155 if (order < zone->compact_order_failed)
156 return false;
157
158 /* Avoid possible overflow */
159 if (++zone->compact_considered > defer_limit)
160 zone->compact_considered = defer_limit;
161
162 if (zone->compact_considered >= defer_limit)
163 return false;
164
165 trace_mm_compaction_deferred(zone, order);
166
167 return true;
168 }
169
170 /*
171 * Update defer tracking counters after successful compaction of given order,
172 * which means an allocation either succeeded (alloc_success == true) or is
173 * expected to succeed.
174 */
175 void compaction_defer_reset(struct zone *zone, int order,
176 bool alloc_success)
177 {
178 if (alloc_success) {
179 zone->compact_considered = 0;
180 zone->compact_defer_shift = 0;
181 }
182 if (order >= zone->compact_order_failed)
183 zone->compact_order_failed = order + 1;
184
185 trace_mm_compaction_defer_reset(zone, order);
186 }
187
188 /* Returns true if restarting compaction after many failures */
189 bool compaction_restarting(struct zone *zone, int order)
190 {
191 if (order < zone->compact_order_failed)
192 return false;
193
194 return zone->compact_defer_shift == COMPACT_MAX_DEFER_SHIFT &&
195 zone->compact_considered >= 1UL << zone->compact_defer_shift;
196 }
197
198 /* Returns true if the pageblock should be scanned for pages to isolate. */
199 static inline bool isolation_suitable(struct compact_control *cc,
200 struct page *page)
201 {
202 if (cc->ignore_skip_hint)
203 return true;
204
205 return !get_pageblock_skip(page);
206 }
207
208 /*
209 * This function is called to clear all cached information on pageblocks that
210 * should be skipped for page isolation when the migrate and free page scanner
211 * meet.
212 */
213 static void __reset_isolation_suitable(struct zone *zone)
214 {
215 unsigned long start_pfn = zone->zone_start_pfn;
216 unsigned long end_pfn = zone_end_pfn(zone);
217 unsigned long pfn;
218
219 zone->compact_cached_migrate_pfn[0] = start_pfn;
220 zone->compact_cached_migrate_pfn[1] = start_pfn;
221 zone->compact_cached_free_pfn = end_pfn;
222 zone->compact_blockskip_flush = false;
223
224 /* Walk the zone and mark every pageblock as suitable for isolation */
225 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
226 struct page *page;
227
228 cond_resched();
229
230 if (!pfn_valid(pfn))
231 continue;
232
233 page = pfn_to_page(pfn);
234 if (zone != page_zone(page))
235 continue;
236
237 clear_pageblock_skip(page);
238 }
239 }
240
241 void reset_isolation_suitable(pg_data_t *pgdat)
242 {
243 int zoneid;
244
245 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
246 struct zone *zone = &pgdat->node_zones[zoneid];
247 if (!populated_zone(zone))
248 continue;
249
250 /* Only flush if a full compaction finished recently */
251 if (zone->compact_blockskip_flush)
252 __reset_isolation_suitable(zone);
253 }
254 }
255
256 /*
257 * If no pages were isolated then mark this pageblock to be skipped in the
258 * future. The information is later cleared by __reset_isolation_suitable().
259 */
260 static void update_pageblock_skip(struct compact_control *cc,
261 struct page *page, unsigned long nr_isolated,
262 bool migrate_scanner)
263 {
264 struct zone *zone = cc->zone;
265 unsigned long pfn;
266
267 if (cc->ignore_skip_hint)
268 return;
269
270 if (!page)
271 return;
272
273 if (nr_isolated)
274 return;
275
276 set_pageblock_skip(page);
277
278 pfn = page_to_pfn(page);
279
280 /* Update where async and sync compaction should restart */
281 if (migrate_scanner) {
282 if (pfn > zone->compact_cached_migrate_pfn[0])
283 zone->compact_cached_migrate_pfn[0] = pfn;
284 if (cc->mode != MIGRATE_ASYNC &&
285 pfn > zone->compact_cached_migrate_pfn[1])
286 zone->compact_cached_migrate_pfn[1] = pfn;
287 } else {
288 if (pfn < zone->compact_cached_free_pfn)
289 zone->compact_cached_free_pfn = pfn;
290 }
291 }
292 #else
293 static inline bool isolation_suitable(struct compact_control *cc,
294 struct page *page)
295 {
296 return true;
297 }
298
299 static void update_pageblock_skip(struct compact_control *cc,
300 struct page *page, unsigned long nr_isolated,
301 bool migrate_scanner)
302 {
303 }
304 #endif /* CONFIG_COMPACTION */
305
306 /*
307 * Compaction requires the taking of some coarse locks that are potentially
308 * very heavily contended. For async compaction, back out if the lock cannot
309 * be taken immediately. For sync compaction, spin on the lock if needed.
310 *
311 * Returns true if the lock is held
312 * Returns false if the lock is not held and compaction should abort
313 */
314 static bool compact_trylock_irqsave(spinlock_t *lock, unsigned long *flags,
315 struct compact_control *cc)
316 {
317 if (cc->mode == MIGRATE_ASYNC) {
318 if (!spin_trylock_irqsave(lock, *flags)) {
319 cc->contended = COMPACT_CONTENDED_LOCK;
320 return false;
321 }
322 } else {
323 spin_lock_irqsave(lock, *flags);
324 }
325
326 return true;
327 }
328
329 /*
330 * Compaction requires the taking of some coarse locks that are potentially
331 * very heavily contended. The lock should be periodically unlocked to avoid
332 * having disabled IRQs for a long time, even when there is nobody waiting on
333 * the lock. It might also be that allowing the IRQs will result in
334 * need_resched() becoming true. If scheduling is needed, async compaction
335 * aborts. Sync compaction schedules.
336 * Either compaction type will also abort if a fatal signal is pending.
337 * In either case if the lock was locked, it is dropped and not regained.
338 *
339 * Returns true if compaction should abort due to fatal signal pending, or
340 * async compaction due to need_resched()
341 * Returns false when compaction can continue (sync compaction might have
342 * scheduled)
343 */
344 static bool compact_unlock_should_abort(spinlock_t *lock,
345 unsigned long flags, bool *locked, struct compact_control *cc)
346 {
347 if (*locked) {
348 spin_unlock_irqrestore(lock, flags);
349 *locked = false;
350 }
351
352 if (fatal_signal_pending(current)) {
353 cc->contended = COMPACT_CONTENDED_SCHED;
354 return true;
355 }
356
357 if (need_resched()) {
358 if (cc->mode == MIGRATE_ASYNC) {
359 cc->contended = COMPACT_CONTENDED_SCHED;
360 return true;
361 }
362 cond_resched();
363 }
364
365 return false;
366 }
367
368 /*
369 * Aside from avoiding lock contention, compaction also periodically checks
370 * need_resched() and either schedules in sync compaction or aborts async
371 * compaction. This is similar to what compact_unlock_should_abort() does, but
372 * is used where no lock is concerned.
373 *
374 * Returns false when no scheduling was needed, or sync compaction scheduled.
375 * Returns true when async compaction should abort.
376 */
377 static inline bool compact_should_abort(struct compact_control *cc)
378 {
379 /* async compaction aborts if contended */
380 if (need_resched()) {
381 if (cc->mode == MIGRATE_ASYNC) {
382 cc->contended = COMPACT_CONTENDED_SCHED;
383 return true;
384 }
385
386 cond_resched();
387 }
388
389 return false;
390 }
391
392 /* Returns true if the page is within a block suitable for migration to */
393 static bool suitable_migration_target(struct page *page)
394 {
395 /* If the page is a large free page, then disallow migration */
396 if (PageBuddy(page)) {
397 /*
398 * We are checking page_order without zone->lock taken. But
399 * the only small danger is that we skip a potentially suitable
400 * pageblock, so it's not worth to check order for valid range.
401 */
402 if (page_order_unsafe(page) >= pageblock_order)
403 return false;
404 }
405
406 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
407 if (migrate_async_suitable(get_pageblock_migratetype(page)))
408 return true;
409
410 /* Otherwise skip the block */
411 return false;
412 }
413
414 /*
415 * Isolate free pages onto a private freelist. If @strict is true, will abort
416 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
417 * (even though it may still end up isolating some pages).
418 */
419 static unsigned long isolate_freepages_block(struct compact_control *cc,
420 unsigned long *start_pfn,
421 unsigned long end_pfn,
422 struct list_head *freelist,
423 bool strict)
424 {
425 int nr_scanned = 0, total_isolated = 0;
426 struct page *cursor, *valid_page = NULL;
427 unsigned long flags = 0;
428 bool locked = false;
429 unsigned long blockpfn = *start_pfn;
430
431 cursor = pfn_to_page(blockpfn);
432
433 /* Isolate free pages. */
434 for (; blockpfn < end_pfn; blockpfn++, cursor++) {
435 int isolated, i;
436 struct page *page = cursor;
437
438 /*
439 * Periodically drop the lock (if held) regardless of its
440 * contention, to give chance to IRQs. Abort if fatal signal
441 * pending or async compaction detects need_resched()
442 */
443 if (!(blockpfn % SWAP_CLUSTER_MAX)
444 && compact_unlock_should_abort(&cc->zone->lock, flags,
445 &locked, cc))
446 break;
447
448 nr_scanned++;
449 if (!pfn_valid_within(blockpfn))
450 goto isolate_fail;
451
452 if (!valid_page)
453 valid_page = page;
454 if (!PageBuddy(page))
455 goto isolate_fail;
456
457 /*
458 * If we already hold the lock, we can skip some rechecking.
459 * Note that if we hold the lock now, checked_pageblock was
460 * already set in some previous iteration (or strict is true),
461 * so it is correct to skip the suitable migration target
462 * recheck as well.
463 */
464 if (!locked) {
465 /*
466 * The zone lock must be held to isolate freepages.
467 * Unfortunately this is a very coarse lock and can be
468 * heavily contended if there are parallel allocations
469 * or parallel compactions. For async compaction do not
470 * spin on the lock and we acquire the lock as late as
471 * possible.
472 */
473 locked = compact_trylock_irqsave(&cc->zone->lock,
474 &flags, cc);
475 if (!locked)
476 break;
477
478 /* Recheck this is a buddy page under lock */
479 if (!PageBuddy(page))
480 goto isolate_fail;
481 }
482
483 /* Found a free page, break it into order-0 pages */
484 isolated = split_free_page(page);
485 total_isolated += isolated;
486 for (i = 0; i < isolated; i++) {
487 list_add(&page->lru, freelist);
488 page++;
489 }
490
491 /* If a page was split, advance to the end of it */
492 if (isolated) {
493 cc->nr_freepages += isolated;
494 if (!strict &&
495 cc->nr_migratepages <= cc->nr_freepages) {
496 blockpfn += isolated;
497 break;
498 }
499
500 blockpfn += isolated - 1;
501 cursor += isolated - 1;
502 continue;
503 }
504
505 isolate_fail:
506 if (strict)
507 break;
508 else
509 continue;
510
511 }
512
513 trace_mm_compaction_isolate_freepages(*start_pfn, blockpfn,
514 nr_scanned, total_isolated);
515
516 /* Record how far we have got within the block */
517 *start_pfn = blockpfn;
518
519 /*
520 * If strict isolation is requested by CMA then check that all the
521 * pages requested were isolated. If there were any failures, 0 is
522 * returned and CMA will fail.
523 */
524 if (strict && blockpfn < end_pfn)
525 total_isolated = 0;
526
527 if (locked)
528 spin_unlock_irqrestore(&cc->zone->lock, flags);
529
530 /* Update the pageblock-skip if the whole pageblock was scanned */
531 if (blockpfn == end_pfn)
532 update_pageblock_skip(cc, valid_page, total_isolated, false);
533
534 count_compact_events(COMPACTFREE_SCANNED, nr_scanned);
535 if (total_isolated)
536 count_compact_events(COMPACTISOLATED, total_isolated);
537 return total_isolated;
538 }
539
540 /**
541 * isolate_freepages_range() - isolate free pages.
542 * @start_pfn: The first PFN to start isolating.
543 * @end_pfn: The one-past-last PFN.
544 *
545 * Non-free pages, invalid PFNs, or zone boundaries within the
546 * [start_pfn, end_pfn) range are considered errors, cause function to
547 * undo its actions and return zero.
548 *
549 * Otherwise, function returns one-past-the-last PFN of isolated page
550 * (which may be greater then end_pfn if end fell in a middle of
551 * a free page).
552 */
553 unsigned long
554 isolate_freepages_range(struct compact_control *cc,
555 unsigned long start_pfn, unsigned long end_pfn)
556 {
557 unsigned long isolated, pfn, block_end_pfn;
558 LIST_HEAD(freelist);
559
560 pfn = start_pfn;
561 block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
562
563 for (; pfn < end_pfn; pfn += isolated,
564 block_end_pfn += pageblock_nr_pages) {
565 /* Protect pfn from changing by isolate_freepages_block */
566 unsigned long isolate_start_pfn = pfn;
567
568 block_end_pfn = min(block_end_pfn, end_pfn);
569
570 /*
571 * pfn could pass the block_end_pfn if isolated freepage
572 * is more than pageblock order. In this case, we adjust
573 * scanning range to right one.
574 */
575 if (pfn >= block_end_pfn) {
576 block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
577 block_end_pfn = min(block_end_pfn, end_pfn);
578 }
579
580 if (!pageblock_pfn_to_page(pfn, block_end_pfn, cc->zone))
581 break;
582
583 isolated = isolate_freepages_block(cc, &isolate_start_pfn,
584 block_end_pfn, &freelist, true);
585
586 /*
587 * In strict mode, isolate_freepages_block() returns 0 if
588 * there are any holes in the block (ie. invalid PFNs or
589 * non-free pages).
590 */
591 if (!isolated)
592 break;
593
594 /*
595 * If we managed to isolate pages, it is always (1 << n) *
596 * pageblock_nr_pages for some non-negative n. (Max order
597 * page may span two pageblocks).
598 */
599 }
600
601 /* split_free_page does not map the pages */
602 map_pages(&freelist);
603
604 if (pfn < end_pfn) {
605 /* Loop terminated early, cleanup. */
606 release_freepages(&freelist);
607 return 0;
608 }
609
610 /* We don't use freelists for anything. */
611 return pfn;
612 }
613
614 /* Update the number of anon and file isolated pages in the zone */
615 static void acct_isolated(struct zone *zone, struct compact_control *cc)
616 {
617 struct page *page;
618 unsigned int count[2] = { 0, };
619
620 if (list_empty(&cc->migratepages))
621 return;
622
623 list_for_each_entry(page, &cc->migratepages, lru)
624 count[!!page_is_file_cache(page)]++;
625
626 mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
627 mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
628 }
629
630 /* Similar to reclaim, but different enough that they don't share logic */
631 static bool too_many_isolated(struct zone *zone)
632 {
633 unsigned long active, inactive, isolated;
634
635 inactive = zone_page_state(zone, NR_INACTIVE_FILE) +
636 zone_page_state(zone, NR_INACTIVE_ANON);
637 active = zone_page_state(zone, NR_ACTIVE_FILE) +
638 zone_page_state(zone, NR_ACTIVE_ANON);
639 isolated = zone_page_state(zone, NR_ISOLATED_FILE) +
640 zone_page_state(zone, NR_ISOLATED_ANON);
641
642 return isolated > (inactive + active) / 2;
643 }
644
645 /**
646 * isolate_migratepages_block() - isolate all migrate-able pages within
647 * a single pageblock
648 * @cc: Compaction control structure.
649 * @low_pfn: The first PFN to isolate
650 * @end_pfn: The one-past-the-last PFN to isolate, within same pageblock
651 * @isolate_mode: Isolation mode to be used.
652 *
653 * Isolate all pages that can be migrated from the range specified by
654 * [low_pfn, end_pfn). The range is expected to be within same pageblock.
655 * Returns zero if there is a fatal signal pending, otherwise PFN of the
656 * first page that was not scanned (which may be both less, equal to or more
657 * than end_pfn).
658 *
659 * The pages are isolated on cc->migratepages list (not required to be empty),
660 * and cc->nr_migratepages is updated accordingly. The cc->migrate_pfn field
661 * is neither read nor updated.
662 */
663 static unsigned long
664 isolate_migratepages_block(struct compact_control *cc, unsigned long low_pfn,
665 unsigned long end_pfn, isolate_mode_t isolate_mode)
666 {
667 struct zone *zone = cc->zone;
668 unsigned long nr_scanned = 0, nr_isolated = 0;
669 struct list_head *migratelist = &cc->migratepages;
670 struct lruvec *lruvec;
671 unsigned long flags = 0;
672 bool locked = false;
673 struct page *page = NULL, *valid_page = NULL;
674 unsigned long start_pfn = low_pfn;
675
676 /*
677 * Ensure that there are not too many pages isolated from the LRU
678 * list by either parallel reclaimers or compaction. If there are,
679 * delay for some time until fewer pages are isolated
680 */
681 while (unlikely(too_many_isolated(zone))) {
682 /* async migration should just abort */
683 if (cc->mode == MIGRATE_ASYNC)
684 return 0;
685
686 congestion_wait(BLK_RW_ASYNC, HZ/10);
687
688 if (fatal_signal_pending(current))
689 return 0;
690 }
691
692 if (compact_should_abort(cc))
693 return 0;
694
695 /* Time to isolate some pages for migration */
696 for (; low_pfn < end_pfn; low_pfn++) {
697 /*
698 * Periodically drop the lock (if held) regardless of its
699 * contention, to give chance to IRQs. Abort async compaction
700 * if contended.
701 */
702 if (!(low_pfn % SWAP_CLUSTER_MAX)
703 && compact_unlock_should_abort(&zone->lru_lock, flags,
704 &locked, cc))
705 break;
706
707 if (!pfn_valid_within(low_pfn))
708 continue;
709 nr_scanned++;
710
711 page = pfn_to_page(low_pfn);
712
713 if (!valid_page)
714 valid_page = page;
715
716 /*
717 * Skip if free. We read page order here without zone lock
718 * which is generally unsafe, but the race window is small and
719 * the worst thing that can happen is that we skip some
720 * potential isolation targets.
721 */
722 if (PageBuddy(page)) {
723 unsigned long freepage_order = page_order_unsafe(page);
724
725 /*
726 * Without lock, we cannot be sure that what we got is
727 * a valid page order. Consider only values in the
728 * valid order range to prevent low_pfn overflow.
729 */
730 if (freepage_order > 0 && freepage_order < MAX_ORDER)
731 low_pfn += (1UL << freepage_order) - 1;
732 continue;
733 }
734
735 /*
736 * Check may be lockless but that's ok as we recheck later.
737 * It's possible to migrate LRU pages and balloon pages
738 * Skip any other type of page
739 */
740 if (!PageLRU(page)) {
741 if (unlikely(balloon_page_movable(page))) {
742 if (balloon_page_isolate(page)) {
743 /* Successfully isolated */
744 goto isolate_success;
745 }
746 }
747 continue;
748 }
749
750 /*
751 * PageLRU is set. lru_lock normally excludes isolation
752 * splitting and collapsing (collapsing has already happened
753 * if PageLRU is set) but the lock is not necessarily taken
754 * here and it is wasteful to take it just to check transhuge.
755 * Check TransHuge without lock and skip the whole pageblock if
756 * it's either a transhuge or hugetlbfs page, as calling
757 * compound_order() without preventing THP from splitting the
758 * page underneath us may return surprising results.
759 */
760 if (PageTransHuge(page)) {
761 if (!locked)
762 low_pfn = ALIGN(low_pfn + 1,
763 pageblock_nr_pages) - 1;
764 else
765 low_pfn += (1 << compound_order(page)) - 1;
766
767 continue;
768 }
769
770 /*
771 * Migration will fail if an anonymous page is pinned in memory,
772 * so avoid taking lru_lock and isolating it unnecessarily in an
773 * admittedly racy check.
774 */
775 if (!page_mapping(page) &&
776 page_count(page) > page_mapcount(page))
777 continue;
778
779 /* If we already hold the lock, we can skip some rechecking */
780 if (!locked) {
781 locked = compact_trylock_irqsave(&zone->lru_lock,
782 &flags, cc);
783 if (!locked)
784 break;
785
786 /* Recheck PageLRU and PageTransHuge under lock */
787 if (!PageLRU(page))
788 continue;
789 if (PageTransHuge(page)) {
790 low_pfn += (1 << compound_order(page)) - 1;
791 continue;
792 }
793 }
794
795 lruvec = mem_cgroup_page_lruvec(page, zone);
796
797 /* Try isolate the page */
798 if (__isolate_lru_page(page, isolate_mode) != 0)
799 continue;
800
801 VM_BUG_ON_PAGE(PageTransCompound(page), page);
802
803 /* Successfully isolated */
804 del_page_from_lru_list(page, lruvec, page_lru(page));
805
806 isolate_success:
807 list_add(&page->lru, migratelist);
808 cc->nr_migratepages++;
809 nr_isolated++;
810
811 /* Avoid isolating too much */
812 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
813 ++low_pfn;
814 break;
815 }
816 }
817
818 /*
819 * The PageBuddy() check could have potentially brought us outside
820 * the range to be scanned.
821 */
822 if (unlikely(low_pfn > end_pfn))
823 low_pfn = end_pfn;
824
825 if (locked)
826 spin_unlock_irqrestore(&zone->lru_lock, flags);
827
828 /*
829 * Update the pageblock-skip information and cached scanner pfn,
830 * if the whole pageblock was scanned without isolating any page.
831 */
832 if (low_pfn == end_pfn)
833 update_pageblock_skip(cc, valid_page, nr_isolated, true);
834
835 trace_mm_compaction_isolate_migratepages(start_pfn, low_pfn,
836 nr_scanned, nr_isolated);
837
838 count_compact_events(COMPACTMIGRATE_SCANNED, nr_scanned);
839 if (nr_isolated)
840 count_compact_events(COMPACTISOLATED, nr_isolated);
841
842 return low_pfn;
843 }
844
845 /**
846 * isolate_migratepages_range() - isolate migrate-able pages in a PFN range
847 * @cc: Compaction control structure.
848 * @start_pfn: The first PFN to start isolating.
849 * @end_pfn: The one-past-last PFN.
850 *
851 * Returns zero if isolation fails fatally due to e.g. pending signal.
852 * Otherwise, function returns one-past-the-last PFN of isolated page
853 * (which may be greater than end_pfn if end fell in a middle of a THP page).
854 */
855 unsigned long
856 isolate_migratepages_range(struct compact_control *cc, unsigned long start_pfn,
857 unsigned long end_pfn)
858 {
859 unsigned long pfn, block_end_pfn;
860
861 /* Scan block by block. First and last block may be incomplete */
862 pfn = start_pfn;
863 block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
864
865 for (; pfn < end_pfn; pfn = block_end_pfn,
866 block_end_pfn += pageblock_nr_pages) {
867
868 block_end_pfn = min(block_end_pfn, end_pfn);
869
870 if (!pageblock_pfn_to_page(pfn, block_end_pfn, cc->zone))
871 continue;
872
873 pfn = isolate_migratepages_block(cc, pfn, block_end_pfn,
874 ISOLATE_UNEVICTABLE);
875
876 /*
877 * In case of fatal failure, release everything that might
878 * have been isolated in the previous iteration, and signal
879 * the failure back to caller.
880 */
881 if (!pfn) {
882 putback_movable_pages(&cc->migratepages);
883 cc->nr_migratepages = 0;
884 break;
885 }
886
887 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX)
888 break;
889 }
890 acct_isolated(cc->zone, cc);
891
892 return pfn;
893 }
894
895 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
896 #ifdef CONFIG_COMPACTION
897 /*
898 * Based on information in the current compact_control, find blocks
899 * suitable for isolating free pages from and then isolate them.
900 */
901 static void isolate_freepages(struct compact_control *cc)
902 {
903 struct zone *zone = cc->zone;
904 struct page *page;
905 unsigned long block_start_pfn; /* start of current pageblock */
906 unsigned long isolate_start_pfn; /* exact pfn we start at */
907 unsigned long block_end_pfn; /* end of current pageblock */
908 unsigned long low_pfn; /* lowest pfn scanner is able to scan */
909 struct list_head *freelist = &cc->freepages;
910
911 /*
912 * Initialise the free scanner. The starting point is where we last
913 * successfully isolated from, zone-cached value, or the end of the
914 * zone when isolating for the first time. For looping we also need
915 * this pfn aligned down to the pageblock boundary, because we do
916 * block_start_pfn -= pageblock_nr_pages in the for loop.
917 * For ending point, take care when isolating in last pageblock of a
918 * a zone which ends in the middle of a pageblock.
919 * The low boundary is the end of the pageblock the migration scanner
920 * is using.
921 */
922 isolate_start_pfn = cc->free_pfn;
923 block_start_pfn = cc->free_pfn & ~(pageblock_nr_pages-1);
924 block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
925 zone_end_pfn(zone));
926 low_pfn = ALIGN(cc->migrate_pfn + 1, pageblock_nr_pages);
927
928 /*
929 * Isolate free pages until enough are available to migrate the
930 * pages on cc->migratepages. We stop searching if the migrate
931 * and free page scanners meet or enough free pages are isolated.
932 */
933 for (; block_start_pfn >= low_pfn &&
934 cc->nr_migratepages > cc->nr_freepages;
935 block_end_pfn = block_start_pfn,
936 block_start_pfn -= pageblock_nr_pages,
937 isolate_start_pfn = block_start_pfn) {
938
939 /*
940 * This can iterate a massively long zone without finding any
941 * suitable migration targets, so periodically check if we need
942 * to schedule, or even abort async compaction.
943 */
944 if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
945 && compact_should_abort(cc))
946 break;
947
948 page = pageblock_pfn_to_page(block_start_pfn, block_end_pfn,
949 zone);
950 if (!page)
951 continue;
952
953 /* Check the block is suitable for migration */
954 if (!suitable_migration_target(page))
955 continue;
956
957 /* If isolation recently failed, do not retry */
958 if (!isolation_suitable(cc, page))
959 continue;
960
961 /* Found a block suitable for isolating free pages from. */
962 isolate_freepages_block(cc, &isolate_start_pfn,
963 block_end_pfn, freelist, false);
964
965 /*
966 * Remember where the free scanner should restart next time,
967 * which is where isolate_freepages_block() left off.
968 * But if it scanned the whole pageblock, isolate_start_pfn
969 * now points at block_end_pfn, which is the start of the next
970 * pageblock.
971 * In that case we will however want to restart at the start
972 * of the previous pageblock.
973 */
974 cc->free_pfn = (isolate_start_pfn < block_end_pfn) ?
975 isolate_start_pfn :
976 block_start_pfn - pageblock_nr_pages;
977
978 /*
979 * isolate_freepages_block() might have aborted due to async
980 * compaction being contended
981 */
982 if (cc->contended)
983 break;
984 }
985
986 /* split_free_page does not map the pages */
987 map_pages(freelist);
988
989 /*
990 * If we crossed the migrate scanner, we want to keep it that way
991 * so that compact_finished() may detect this
992 */
993 if (block_start_pfn < low_pfn)
994 cc->free_pfn = cc->migrate_pfn;
995 }
996
997 /*
998 * This is a migrate-callback that "allocates" freepages by taking pages
999 * from the isolated freelists in the block we are migrating to.
1000 */
1001 static struct page *compaction_alloc(struct page *migratepage,
1002 unsigned long data,
1003 int **result)
1004 {
1005 struct compact_control *cc = (struct compact_control *)data;
1006 struct page *freepage;
1007
1008 /*
1009 * Isolate free pages if necessary, and if we are not aborting due to
1010 * contention.
1011 */
1012 if (list_empty(&cc->freepages)) {
1013 if (!cc->contended)
1014 isolate_freepages(cc);
1015
1016 if (list_empty(&cc->freepages))
1017 return NULL;
1018 }
1019
1020 freepage = list_entry(cc->freepages.next, struct page, lru);
1021 list_del(&freepage->lru);
1022 cc->nr_freepages--;
1023
1024 return freepage;
1025 }
1026
1027 /*
1028 * This is a migrate-callback that "frees" freepages back to the isolated
1029 * freelist. All pages on the freelist are from the same zone, so there is no
1030 * special handling needed for NUMA.
1031 */
1032 static void compaction_free(struct page *page, unsigned long data)
1033 {
1034 struct compact_control *cc = (struct compact_control *)data;
1035
1036 list_add(&page->lru, &cc->freepages);
1037 cc->nr_freepages++;
1038 }
1039
1040 /* possible outcome of isolate_migratepages */
1041 typedef enum {
1042 ISOLATE_ABORT, /* Abort compaction now */
1043 ISOLATE_NONE, /* No pages isolated, continue scanning */
1044 ISOLATE_SUCCESS, /* Pages isolated, migrate */
1045 } isolate_migrate_t;
1046
1047 /*
1048 * Isolate all pages that can be migrated from the first suitable block,
1049 * starting at the block pointed to by the migrate scanner pfn within
1050 * compact_control.
1051 */
1052 static isolate_migrate_t isolate_migratepages(struct zone *zone,
1053 struct compact_control *cc)
1054 {
1055 unsigned long low_pfn, end_pfn;
1056 struct page *page;
1057 const isolate_mode_t isolate_mode =
1058 (cc->mode == MIGRATE_ASYNC ? ISOLATE_ASYNC_MIGRATE : 0);
1059
1060 /*
1061 * Start at where we last stopped, or beginning of the zone as
1062 * initialized by compact_zone()
1063 */
1064 low_pfn = cc->migrate_pfn;
1065
1066 /* Only scan within a pageblock boundary */
1067 end_pfn = ALIGN(low_pfn + 1, pageblock_nr_pages);
1068
1069 /*
1070 * Iterate over whole pageblocks until we find the first suitable.
1071 * Do not cross the free scanner.
1072 */
1073 for (; end_pfn <= cc->free_pfn;
1074 low_pfn = end_pfn, end_pfn += pageblock_nr_pages) {
1075
1076 /*
1077 * This can potentially iterate a massively long zone with
1078 * many pageblocks unsuitable, so periodically check if we
1079 * need to schedule, or even abort async compaction.
1080 */
1081 if (!(low_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
1082 && compact_should_abort(cc))
1083 break;
1084
1085 page = pageblock_pfn_to_page(low_pfn, end_pfn, zone);
1086 if (!page)
1087 continue;
1088
1089 /* If isolation recently failed, do not retry */
1090 if (!isolation_suitable(cc, page))
1091 continue;
1092
1093 /*
1094 * For async compaction, also only scan in MOVABLE blocks.
1095 * Async compaction is optimistic to see if the minimum amount
1096 * of work satisfies the allocation.
1097 */
1098 if (cc->mode == MIGRATE_ASYNC &&
1099 !migrate_async_suitable(get_pageblock_migratetype(page)))
1100 continue;
1101
1102 /* Perform the isolation */
1103 low_pfn = isolate_migratepages_block(cc, low_pfn, end_pfn,
1104 isolate_mode);
1105
1106 if (!low_pfn || cc->contended) {
1107 acct_isolated(zone, cc);
1108 return ISOLATE_ABORT;
1109 }
1110
1111 /*
1112 * Either we isolated something and proceed with migration. Or
1113 * we failed and compact_zone should decide if we should
1114 * continue or not.
1115 */
1116 break;
1117 }
1118
1119 acct_isolated(zone, cc);
1120 /*
1121 * Record where migration scanner will be restarted. If we end up in
1122 * the same pageblock as the free scanner, make the scanners fully
1123 * meet so that compact_finished() terminates compaction.
1124 */
1125 cc->migrate_pfn = (end_pfn <= cc->free_pfn) ? low_pfn : cc->free_pfn;
1126
1127 return cc->nr_migratepages ? ISOLATE_SUCCESS : ISOLATE_NONE;
1128 }
1129
1130 static int __compact_finished(struct zone *zone, struct compact_control *cc,
1131 const int migratetype)
1132 {
1133 unsigned int order;
1134 unsigned long watermark;
1135
1136 if (cc->contended || fatal_signal_pending(current))
1137 return COMPACT_PARTIAL;
1138
1139 /* Compaction run completes if the migrate and free scanner meet */
1140 if (cc->free_pfn <= cc->migrate_pfn) {
1141 /* Let the next compaction start anew. */
1142 zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
1143 zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
1144 zone->compact_cached_free_pfn = zone_end_pfn(zone);
1145
1146 /*
1147 * Mark that the PG_migrate_skip information should be cleared
1148 * by kswapd when it goes to sleep. kswapd does not set the
1149 * flag itself as the decision to be clear should be directly
1150 * based on an allocation request.
1151 */
1152 if (!current_is_kswapd())
1153 zone->compact_blockskip_flush = true;
1154
1155 return COMPACT_COMPLETE;
1156 }
1157
1158 /*
1159 * order == -1 is expected when compacting via
1160 * /proc/sys/vm/compact_memory
1161 */
1162 if (cc->order == -1)
1163 return COMPACT_CONTINUE;
1164
1165 /* Compaction run is not finished if the watermark is not met */
1166 watermark = low_wmark_pages(zone);
1167
1168 if (!zone_watermark_ok(zone, cc->order, watermark, cc->classzone_idx,
1169 cc->alloc_flags))
1170 return COMPACT_CONTINUE;
1171
1172 /* Direct compactor: Is a suitable page free? */
1173 for (order = cc->order; order < MAX_ORDER; order++) {
1174 struct free_area *area = &zone->free_area[order];
1175
1176 /* Job done if page is free of the right migratetype */
1177 if (!list_empty(&area->free_list[migratetype]))
1178 return COMPACT_PARTIAL;
1179
1180 /* Job done if allocation would set block type */
1181 if (order >= pageblock_order && area->nr_free)
1182 return COMPACT_PARTIAL;
1183 }
1184
1185 return COMPACT_NO_SUITABLE_PAGE;
1186 }
1187
1188 static int compact_finished(struct zone *zone, struct compact_control *cc,
1189 const int migratetype)
1190 {
1191 int ret;
1192
1193 ret = __compact_finished(zone, cc, migratetype);
1194 trace_mm_compaction_finished(zone, cc->order, ret);
1195 if (ret == COMPACT_NO_SUITABLE_PAGE)
1196 ret = COMPACT_CONTINUE;
1197
1198 return ret;
1199 }
1200
1201 /*
1202 * compaction_suitable: Is this suitable to run compaction on this zone now?
1203 * Returns
1204 * COMPACT_SKIPPED - If there are too few free pages for compaction
1205 * COMPACT_PARTIAL - If the allocation would succeed without compaction
1206 * COMPACT_CONTINUE - If compaction should run now
1207 */
1208 static unsigned long __compaction_suitable(struct zone *zone, int order,
1209 int alloc_flags, int classzone_idx)
1210 {
1211 int fragindex;
1212 unsigned long watermark;
1213
1214 /*
1215 * order == -1 is expected when compacting via
1216 * /proc/sys/vm/compact_memory
1217 */
1218 if (order == -1)
1219 return COMPACT_CONTINUE;
1220
1221 watermark = low_wmark_pages(zone);
1222 /*
1223 * If watermarks for high-order allocation are already met, there
1224 * should be no need for compaction at all.
1225 */
1226 if (zone_watermark_ok(zone, order, watermark, classzone_idx,
1227 alloc_flags))
1228 return COMPACT_PARTIAL;
1229
1230 /*
1231 * Watermarks for order-0 must be met for compaction. Note the 2UL.
1232 * This is because during migration, copies of pages need to be
1233 * allocated and for a short time, the footprint is higher
1234 */
1235 watermark += (2UL << order);
1236 if (!zone_watermark_ok(zone, 0, watermark, classzone_idx, alloc_flags))
1237 return COMPACT_SKIPPED;
1238
1239 /*
1240 * fragmentation index determines if allocation failures are due to
1241 * low memory or external fragmentation
1242 *
1243 * index of -1000 would imply allocations might succeed depending on
1244 * watermarks, but we already failed the high-order watermark check
1245 * index towards 0 implies failure is due to lack of memory
1246 * index towards 1000 implies failure is due to fragmentation
1247 *
1248 * Only compact if a failure would be due to fragmentation.
1249 */
1250 fragindex = fragmentation_index(zone, order);
1251 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
1252 return COMPACT_NOT_SUITABLE_ZONE;
1253
1254 return COMPACT_CONTINUE;
1255 }
1256
1257 unsigned long compaction_suitable(struct zone *zone, int order,
1258 int alloc_flags, int classzone_idx)
1259 {
1260 unsigned long ret;
1261
1262 ret = __compaction_suitable(zone, order, alloc_flags, classzone_idx);
1263 trace_mm_compaction_suitable(zone, order, ret);
1264 if (ret == COMPACT_NOT_SUITABLE_ZONE)
1265 ret = COMPACT_SKIPPED;
1266
1267 return ret;
1268 }
1269
1270 static int compact_zone(struct zone *zone, struct compact_control *cc)
1271 {
1272 int ret;
1273 unsigned long start_pfn = zone->zone_start_pfn;
1274 unsigned long end_pfn = zone_end_pfn(zone);
1275 const int migratetype = gfpflags_to_migratetype(cc->gfp_mask);
1276 const bool sync = cc->mode != MIGRATE_ASYNC;
1277 unsigned long last_migrated_pfn = 0;
1278
1279 ret = compaction_suitable(zone, cc->order, cc->alloc_flags,
1280 cc->classzone_idx);
1281 switch (ret) {
1282 case COMPACT_PARTIAL:
1283 case COMPACT_SKIPPED:
1284 /* Compaction is likely to fail */
1285 return ret;
1286 case COMPACT_CONTINUE:
1287 /* Fall through to compaction */
1288 ;
1289 }
1290
1291 /*
1292 * Clear pageblock skip if there were failures recently and compaction
1293 * is about to be retried after being deferred. kswapd does not do
1294 * this reset as it'll reset the cached information when going to sleep.
1295 */
1296 if (compaction_restarting(zone, cc->order) && !current_is_kswapd())
1297 __reset_isolation_suitable(zone);
1298
1299 /*
1300 * Setup to move all movable pages to the end of the zone. Used cached
1301 * information on where the scanners should start but check that it
1302 * is initialised by ensuring the values are within zone boundaries.
1303 */
1304 cc->migrate_pfn = zone->compact_cached_migrate_pfn[sync];
1305 cc->free_pfn = zone->compact_cached_free_pfn;
1306 if (cc->free_pfn < start_pfn || cc->free_pfn > end_pfn) {
1307 cc->free_pfn = end_pfn & ~(pageblock_nr_pages-1);
1308 zone->compact_cached_free_pfn = cc->free_pfn;
1309 }
1310 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn > end_pfn) {
1311 cc->migrate_pfn = start_pfn;
1312 zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
1313 zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
1314 }
1315
1316 trace_mm_compaction_begin(start_pfn, cc->migrate_pfn,
1317 cc->free_pfn, end_pfn, sync);
1318
1319 migrate_prep_local();
1320
1321 while ((ret = compact_finished(zone, cc, migratetype)) ==
1322 COMPACT_CONTINUE) {
1323 int err;
1324 unsigned long isolate_start_pfn = cc->migrate_pfn;
1325
1326 switch (isolate_migratepages(zone, cc)) {
1327 case ISOLATE_ABORT:
1328 ret = COMPACT_PARTIAL;
1329 putback_movable_pages(&cc->migratepages);
1330 cc->nr_migratepages = 0;
1331 goto out;
1332 case ISOLATE_NONE:
1333 /*
1334 * We haven't isolated and migrated anything, but
1335 * there might still be unflushed migrations from
1336 * previous cc->order aligned block.
1337 */
1338 goto check_drain;
1339 case ISOLATE_SUCCESS:
1340 ;
1341 }
1342
1343 err = migrate_pages(&cc->migratepages, compaction_alloc,
1344 compaction_free, (unsigned long)cc, cc->mode,
1345 MR_COMPACTION);
1346
1347 trace_mm_compaction_migratepages(cc->nr_migratepages, err,
1348 &cc->migratepages);
1349
1350 /* All pages were either migrated or will be released */
1351 cc->nr_migratepages = 0;
1352 if (err) {
1353 putback_movable_pages(&cc->migratepages);
1354 /*
1355 * migrate_pages() may return -ENOMEM when scanners meet
1356 * and we want compact_finished() to detect it
1357 */
1358 if (err == -ENOMEM && cc->free_pfn > cc->migrate_pfn) {
1359 ret = COMPACT_PARTIAL;
1360 goto out;
1361 }
1362 }
1363
1364 /*
1365 * Record where we could have freed pages by migration and not
1366 * yet flushed them to buddy allocator. We use the pfn that
1367 * isolate_migratepages() started from in this loop iteration
1368 * - this is the lowest page that could have been isolated and
1369 * then freed by migration.
1370 */
1371 if (!last_migrated_pfn)
1372 last_migrated_pfn = isolate_start_pfn;
1373
1374 check_drain:
1375 /*
1376 * Has the migration scanner moved away from the previous
1377 * cc->order aligned block where we migrated from? If yes,
1378 * flush the pages that were freed, so that they can merge and
1379 * compact_finished() can detect immediately if allocation
1380 * would succeed.
1381 */
1382 if (cc->order > 0 && last_migrated_pfn) {
1383 int cpu;
1384 unsigned long current_block_start =
1385 cc->migrate_pfn & ~((1UL << cc->order) - 1);
1386
1387 if (last_migrated_pfn < current_block_start) {
1388 cpu = get_cpu();
1389 lru_add_drain_cpu(cpu);
1390 drain_local_pages(zone);
1391 put_cpu();
1392 /* No more flushing until we migrate again */
1393 last_migrated_pfn = 0;
1394 }
1395 }
1396
1397 }
1398
1399 out:
1400 /*
1401 * Release free pages and update where the free scanner should restart,
1402 * so we don't leave any returned pages behind in the next attempt.
1403 */
1404 if (cc->nr_freepages > 0) {
1405 unsigned long free_pfn = release_freepages(&cc->freepages);
1406
1407 cc->nr_freepages = 0;
1408 VM_BUG_ON(free_pfn == 0);
1409 /* The cached pfn is always the first in a pageblock */
1410 free_pfn &= ~(pageblock_nr_pages-1);
1411 /*
1412 * Only go back, not forward. The cached pfn might have been
1413 * already reset to zone end in compact_finished()
1414 */
1415 if (free_pfn > zone->compact_cached_free_pfn)
1416 zone->compact_cached_free_pfn = free_pfn;
1417 }
1418
1419 trace_mm_compaction_end(start_pfn, cc->migrate_pfn,
1420 cc->free_pfn, end_pfn, sync, ret);
1421
1422 return ret;
1423 }
1424
1425 static unsigned long compact_zone_order(struct zone *zone, int order,
1426 gfp_t gfp_mask, enum migrate_mode mode, int *contended,
1427 int alloc_flags, int classzone_idx)
1428 {
1429 unsigned long ret;
1430 struct compact_control cc = {
1431 .nr_freepages = 0,
1432 .nr_migratepages = 0,
1433 .order = order,
1434 .gfp_mask = gfp_mask,
1435 .zone = zone,
1436 .mode = mode,
1437 .alloc_flags = alloc_flags,
1438 .classzone_idx = classzone_idx,
1439 };
1440 INIT_LIST_HEAD(&cc.freepages);
1441 INIT_LIST_HEAD(&cc.migratepages);
1442
1443 ret = compact_zone(zone, &cc);
1444
1445 VM_BUG_ON(!list_empty(&cc.freepages));
1446 VM_BUG_ON(!list_empty(&cc.migratepages));
1447
1448 *contended = cc.contended;
1449 return ret;
1450 }
1451
1452 int sysctl_extfrag_threshold = 500;
1453
1454 /**
1455 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
1456 * @gfp_mask: The GFP mask of the current allocation
1457 * @order: The order of the current allocation
1458 * @alloc_flags: The allocation flags of the current allocation
1459 * @ac: The context of current allocation
1460 * @mode: The migration mode for async, sync light, or sync migration
1461 * @contended: Return value that determines if compaction was aborted due to
1462 * need_resched() or lock contention
1463 *
1464 * This is the main entry point for direct page compaction.
1465 */
1466 unsigned long try_to_compact_pages(gfp_t gfp_mask, unsigned int order,
1467 int alloc_flags, const struct alloc_context *ac,
1468 enum migrate_mode mode, int *contended)
1469 {
1470 int may_enter_fs = gfp_mask & __GFP_FS;
1471 int may_perform_io = gfp_mask & __GFP_IO;
1472 struct zoneref *z;
1473 struct zone *zone;
1474 int rc = COMPACT_DEFERRED;
1475 int all_zones_contended = COMPACT_CONTENDED_LOCK; /* init for &= op */
1476
1477 *contended = COMPACT_CONTENDED_NONE;
1478
1479 /* Check if the GFP flags allow compaction */
1480 if (!order || !may_enter_fs || !may_perform_io)
1481 return COMPACT_SKIPPED;
1482
1483 trace_mm_compaction_try_to_compact_pages(order, gfp_mask, mode);
1484
1485 /* Compact each zone in the list */
1486 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
1487 ac->nodemask) {
1488 int status;
1489 int zone_contended;
1490
1491 if (compaction_deferred(zone, order))
1492 continue;
1493
1494 status = compact_zone_order(zone, order, gfp_mask, mode,
1495 &zone_contended, alloc_flags,
1496 ac->classzone_idx);
1497 rc = max(status, rc);
1498 /*
1499 * It takes at least one zone that wasn't lock contended
1500 * to clear all_zones_contended.
1501 */
1502 all_zones_contended &= zone_contended;
1503
1504 /* If a normal allocation would succeed, stop compacting */
1505 if (zone_watermark_ok(zone, order, low_wmark_pages(zone),
1506 ac->classzone_idx, alloc_flags)) {
1507 /*
1508 * We think the allocation will succeed in this zone,
1509 * but it is not certain, hence the false. The caller
1510 * will repeat this with true if allocation indeed
1511 * succeeds in this zone.
1512 */
1513 compaction_defer_reset(zone, order, false);
1514 /*
1515 * It is possible that async compaction aborted due to
1516 * need_resched() and the watermarks were ok thanks to
1517 * somebody else freeing memory. The allocation can
1518 * however still fail so we better signal the
1519 * need_resched() contention anyway (this will not
1520 * prevent the allocation attempt).
1521 */
1522 if (zone_contended == COMPACT_CONTENDED_SCHED)
1523 *contended = COMPACT_CONTENDED_SCHED;
1524
1525 goto break_loop;
1526 }
1527
1528 if (mode != MIGRATE_ASYNC && status == COMPACT_COMPLETE) {
1529 /*
1530 * We think that allocation won't succeed in this zone
1531 * so we defer compaction there. If it ends up
1532 * succeeding after all, it will be reset.
1533 */
1534 defer_compaction(zone, order);
1535 }
1536
1537 /*
1538 * We might have stopped compacting due to need_resched() in
1539 * async compaction, or due to a fatal signal detected. In that
1540 * case do not try further zones and signal need_resched()
1541 * contention.
1542 */
1543 if ((zone_contended == COMPACT_CONTENDED_SCHED)
1544 || fatal_signal_pending(current)) {
1545 *contended = COMPACT_CONTENDED_SCHED;
1546 goto break_loop;
1547 }
1548
1549 continue;
1550 break_loop:
1551 /*
1552 * We might not have tried all the zones, so be conservative
1553 * and assume they are not all lock contended.
1554 */
1555 all_zones_contended = 0;
1556 break;
1557 }
1558
1559 /*
1560 * If at least one zone wasn't deferred or skipped, we report if all
1561 * zones that were tried were lock contended.
1562 */
1563 if (rc > COMPACT_SKIPPED && all_zones_contended)
1564 *contended = COMPACT_CONTENDED_LOCK;
1565
1566 return rc;
1567 }
1568
1569
1570 /* Compact all zones within a node */
1571 static void __compact_pgdat(pg_data_t *pgdat, struct compact_control *cc)
1572 {
1573 int zoneid;
1574 struct zone *zone;
1575
1576 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
1577
1578 zone = &pgdat->node_zones[zoneid];
1579 if (!populated_zone(zone))
1580 continue;
1581
1582 cc->nr_freepages = 0;
1583 cc->nr_migratepages = 0;
1584 cc->zone = zone;
1585 INIT_LIST_HEAD(&cc->freepages);
1586 INIT_LIST_HEAD(&cc->migratepages);
1587
1588 if (cc->order == -1 || !compaction_deferred(zone, cc->order))
1589 compact_zone(zone, cc);
1590
1591 if (cc->order > 0) {
1592 if (zone_watermark_ok(zone, cc->order,
1593 low_wmark_pages(zone), 0, 0))
1594 compaction_defer_reset(zone, cc->order, false);
1595 }
1596
1597 VM_BUG_ON(!list_empty(&cc->freepages));
1598 VM_BUG_ON(!list_empty(&cc->migratepages));
1599 }
1600 }
1601
1602 void compact_pgdat(pg_data_t *pgdat, int order)
1603 {
1604 struct compact_control cc = {
1605 .order = order,
1606 .mode = MIGRATE_ASYNC,
1607 };
1608
1609 if (!order)
1610 return;
1611
1612 __compact_pgdat(pgdat, &cc);
1613 }
1614
1615 static void compact_node(int nid)
1616 {
1617 struct compact_control cc = {
1618 .order = -1,
1619 .mode = MIGRATE_SYNC,
1620 .ignore_skip_hint = true,
1621 };
1622
1623 __compact_pgdat(NODE_DATA(nid), &cc);
1624 }
1625
1626 /* Compact all nodes in the system */
1627 static void compact_nodes(void)
1628 {
1629 int nid;
1630
1631 /* Flush pending updates to the LRU lists */
1632 lru_add_drain_all();
1633
1634 for_each_online_node(nid)
1635 compact_node(nid);
1636 }
1637
1638 /* The written value is actually unused, all memory is compacted */
1639 int sysctl_compact_memory;
1640
1641 /* This is the entry point for compacting all nodes via /proc/sys/vm */
1642 int sysctl_compaction_handler(struct ctl_table *table, int write,
1643 void __user *buffer, size_t *length, loff_t *ppos)
1644 {
1645 if (write)
1646 compact_nodes();
1647
1648 return 0;
1649 }
1650
1651 int sysctl_extfrag_handler(struct ctl_table *table, int write,
1652 void __user *buffer, size_t *length, loff_t *ppos)
1653 {
1654 proc_dointvec_minmax(table, write, buffer, length, ppos);
1655
1656 return 0;
1657 }
1658
1659 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
1660 static ssize_t sysfs_compact_node(struct device *dev,
1661 struct device_attribute *attr,
1662 const char *buf, size_t count)
1663 {
1664 int nid = dev->id;
1665
1666 if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
1667 /* Flush pending updates to the LRU lists */
1668 lru_add_drain_all();
1669
1670 compact_node(nid);
1671 }
1672
1673 return count;
1674 }
1675 static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
1676
1677 int compaction_register_node(struct node *node)
1678 {
1679 return device_create_file(&node->dev, &dev_attr_compact);
1680 }
1681
1682 void compaction_unregister_node(struct node *node)
1683 {
1684 return device_remove_file(&node->dev, &dev_attr_compact);
1685 }
1686 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
1687
1688 #endif /* CONFIG_COMPACTION */
This page took 0.065598 seconds and 6 git commands to generate.