mm, compaction: do not recheck suitable_migration_target under lock
[deliverable/linux.git] / mm / compaction.c
1 /*
2 * linux/mm/compaction.c
3 *
4 * Memory compaction for the reduction of external fragmentation. Note that
5 * this heavily depends upon page migration to do all the real heavy
6 * lifting
7 *
8 * Copyright IBM Corp. 2007-2010 Mel Gorman <mel@csn.ul.ie>
9 */
10 #include <linux/swap.h>
11 #include <linux/migrate.h>
12 #include <linux/compaction.h>
13 #include <linux/mm_inline.h>
14 #include <linux/backing-dev.h>
15 #include <linux/sysctl.h>
16 #include <linux/sysfs.h>
17 #include <linux/balloon_compaction.h>
18 #include <linux/page-isolation.h>
19 #include "internal.h"
20
21 #ifdef CONFIG_COMPACTION
22 static inline void count_compact_event(enum vm_event_item item)
23 {
24 count_vm_event(item);
25 }
26
27 static inline void count_compact_events(enum vm_event_item item, long delta)
28 {
29 count_vm_events(item, delta);
30 }
31 #else
32 #define count_compact_event(item) do { } while (0)
33 #define count_compact_events(item, delta) do { } while (0)
34 #endif
35
36 #if defined CONFIG_COMPACTION || defined CONFIG_CMA
37
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/compaction.h>
40
41 static unsigned long release_freepages(struct list_head *freelist)
42 {
43 struct page *page, *next;
44 unsigned long count = 0;
45
46 list_for_each_entry_safe(page, next, freelist, lru) {
47 list_del(&page->lru);
48 __free_page(page);
49 count++;
50 }
51
52 return count;
53 }
54
55 static void map_pages(struct list_head *list)
56 {
57 struct page *page;
58
59 list_for_each_entry(page, list, lru) {
60 arch_alloc_page(page, 0);
61 kernel_map_pages(page, 1, 1);
62 }
63 }
64
65 static inline bool migrate_async_suitable(int migratetype)
66 {
67 return is_migrate_cma(migratetype) || migratetype == MIGRATE_MOVABLE;
68 }
69
70 #ifdef CONFIG_COMPACTION
71 /* Returns true if the pageblock should be scanned for pages to isolate. */
72 static inline bool isolation_suitable(struct compact_control *cc,
73 struct page *page)
74 {
75 if (cc->ignore_skip_hint)
76 return true;
77
78 return !get_pageblock_skip(page);
79 }
80
81 /*
82 * This function is called to clear all cached information on pageblocks that
83 * should be skipped for page isolation when the migrate and free page scanner
84 * meet.
85 */
86 static void __reset_isolation_suitable(struct zone *zone)
87 {
88 unsigned long start_pfn = zone->zone_start_pfn;
89 unsigned long end_pfn = zone_end_pfn(zone);
90 unsigned long pfn;
91
92 zone->compact_cached_migrate_pfn[0] = start_pfn;
93 zone->compact_cached_migrate_pfn[1] = start_pfn;
94 zone->compact_cached_free_pfn = end_pfn;
95 zone->compact_blockskip_flush = false;
96
97 /* Walk the zone and mark every pageblock as suitable for isolation */
98 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
99 struct page *page;
100
101 cond_resched();
102
103 if (!pfn_valid(pfn))
104 continue;
105
106 page = pfn_to_page(pfn);
107 if (zone != page_zone(page))
108 continue;
109
110 clear_pageblock_skip(page);
111 }
112 }
113
114 void reset_isolation_suitable(pg_data_t *pgdat)
115 {
116 int zoneid;
117
118 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
119 struct zone *zone = &pgdat->node_zones[zoneid];
120 if (!populated_zone(zone))
121 continue;
122
123 /* Only flush if a full compaction finished recently */
124 if (zone->compact_blockskip_flush)
125 __reset_isolation_suitable(zone);
126 }
127 }
128
129 /*
130 * If no pages were isolated then mark this pageblock to be skipped in the
131 * future. The information is later cleared by __reset_isolation_suitable().
132 */
133 static void update_pageblock_skip(struct compact_control *cc,
134 struct page *page, unsigned long nr_isolated,
135 bool set_unsuitable, bool migrate_scanner)
136 {
137 struct zone *zone = cc->zone;
138 unsigned long pfn;
139
140 if (cc->ignore_skip_hint)
141 return;
142
143 if (!page)
144 return;
145
146 if (nr_isolated)
147 return;
148
149 /*
150 * Only skip pageblocks when all forms of compaction will be known to
151 * fail in the near future.
152 */
153 if (set_unsuitable)
154 set_pageblock_skip(page);
155
156 pfn = page_to_pfn(page);
157
158 /* Update where async and sync compaction should restart */
159 if (migrate_scanner) {
160 if (cc->finished_update_migrate)
161 return;
162 if (pfn > zone->compact_cached_migrate_pfn[0])
163 zone->compact_cached_migrate_pfn[0] = pfn;
164 if (cc->mode != MIGRATE_ASYNC &&
165 pfn > zone->compact_cached_migrate_pfn[1])
166 zone->compact_cached_migrate_pfn[1] = pfn;
167 } else {
168 if (cc->finished_update_free)
169 return;
170 if (pfn < zone->compact_cached_free_pfn)
171 zone->compact_cached_free_pfn = pfn;
172 }
173 }
174 #else
175 static inline bool isolation_suitable(struct compact_control *cc,
176 struct page *page)
177 {
178 return true;
179 }
180
181 static void update_pageblock_skip(struct compact_control *cc,
182 struct page *page, unsigned long nr_isolated,
183 bool set_unsuitable, bool migrate_scanner)
184 {
185 }
186 #endif /* CONFIG_COMPACTION */
187
188 static inline bool should_release_lock(spinlock_t *lock)
189 {
190 return need_resched() || spin_is_contended(lock);
191 }
192
193 /*
194 * Compaction requires the taking of some coarse locks that are potentially
195 * very heavily contended. Check if the process needs to be scheduled or
196 * if the lock is contended. For async compaction, back out in the event
197 * if contention is severe. For sync compaction, schedule.
198 *
199 * Returns true if the lock is held.
200 * Returns false if the lock is released and compaction should abort
201 */
202 static bool compact_checklock_irqsave(spinlock_t *lock, unsigned long *flags,
203 bool locked, struct compact_control *cc)
204 {
205 if (should_release_lock(lock)) {
206 if (locked) {
207 spin_unlock_irqrestore(lock, *flags);
208 locked = false;
209 }
210
211 /* async aborts if taking too long or contended */
212 if (cc->mode == MIGRATE_ASYNC) {
213 cc->contended = true;
214 return false;
215 }
216
217 cond_resched();
218 }
219
220 if (!locked)
221 spin_lock_irqsave(lock, *flags);
222 return true;
223 }
224
225 /*
226 * Aside from avoiding lock contention, compaction also periodically checks
227 * need_resched() and either schedules in sync compaction or aborts async
228 * compaction. This is similar to what compact_checklock_irqsave() does, but
229 * is used where no lock is concerned.
230 *
231 * Returns false when no scheduling was needed, or sync compaction scheduled.
232 * Returns true when async compaction should abort.
233 */
234 static inline bool compact_should_abort(struct compact_control *cc)
235 {
236 /* async compaction aborts if contended */
237 if (need_resched()) {
238 if (cc->mode == MIGRATE_ASYNC) {
239 cc->contended = true;
240 return true;
241 }
242
243 cond_resched();
244 }
245
246 return false;
247 }
248
249 /* Returns true if the page is within a block suitable for migration to */
250 static bool suitable_migration_target(struct page *page)
251 {
252 /* If the page is a large free page, then disallow migration */
253 if (PageBuddy(page) && page_order(page) >= pageblock_order)
254 return false;
255
256 /* If the block is MIGRATE_MOVABLE or MIGRATE_CMA, allow migration */
257 if (migrate_async_suitable(get_pageblock_migratetype(page)))
258 return true;
259
260 /* Otherwise skip the block */
261 return false;
262 }
263
264 /*
265 * Isolate free pages onto a private freelist. If @strict is true, will abort
266 * returning 0 on any invalid PFNs or non-free pages inside of the pageblock
267 * (even though it may still end up isolating some pages).
268 */
269 static unsigned long isolate_freepages_block(struct compact_control *cc,
270 unsigned long blockpfn,
271 unsigned long end_pfn,
272 struct list_head *freelist,
273 bool strict)
274 {
275 int nr_scanned = 0, total_isolated = 0;
276 struct page *cursor, *valid_page = NULL;
277 unsigned long flags;
278 bool locked = false;
279
280 cursor = pfn_to_page(blockpfn);
281
282 /* Isolate free pages. */
283 for (; blockpfn < end_pfn; blockpfn++, cursor++) {
284 int isolated, i;
285 struct page *page = cursor;
286
287 nr_scanned++;
288 if (!pfn_valid_within(blockpfn))
289 goto isolate_fail;
290
291 if (!valid_page)
292 valid_page = page;
293 if (!PageBuddy(page))
294 goto isolate_fail;
295
296 /*
297 * The zone lock must be held to isolate freepages.
298 * Unfortunately this is a very coarse lock and can be
299 * heavily contended if there are parallel allocations
300 * or parallel compactions. For async compaction do not
301 * spin on the lock and we acquire the lock as late as
302 * possible.
303 */
304 locked = compact_checklock_irqsave(&cc->zone->lock, &flags,
305 locked, cc);
306 if (!locked)
307 break;
308
309 /* Recheck this is a buddy page under lock */
310 if (!PageBuddy(page))
311 goto isolate_fail;
312
313 /* Found a free page, break it into order-0 pages */
314 isolated = split_free_page(page);
315 total_isolated += isolated;
316 for (i = 0; i < isolated; i++) {
317 list_add(&page->lru, freelist);
318 page++;
319 }
320
321 /* If a page was split, advance to the end of it */
322 if (isolated) {
323 blockpfn += isolated - 1;
324 cursor += isolated - 1;
325 continue;
326 }
327
328 isolate_fail:
329 if (strict)
330 break;
331 else
332 continue;
333
334 }
335
336 trace_mm_compaction_isolate_freepages(nr_scanned, total_isolated);
337
338 /*
339 * If strict isolation is requested by CMA then check that all the
340 * pages requested were isolated. If there were any failures, 0 is
341 * returned and CMA will fail.
342 */
343 if (strict && blockpfn < end_pfn)
344 total_isolated = 0;
345
346 if (locked)
347 spin_unlock_irqrestore(&cc->zone->lock, flags);
348
349 /* Update the pageblock-skip if the whole pageblock was scanned */
350 if (blockpfn == end_pfn)
351 update_pageblock_skip(cc, valid_page, total_isolated, true,
352 false);
353
354 count_compact_events(COMPACTFREE_SCANNED, nr_scanned);
355 if (total_isolated)
356 count_compact_events(COMPACTISOLATED, total_isolated);
357 return total_isolated;
358 }
359
360 /**
361 * isolate_freepages_range() - isolate free pages.
362 * @start_pfn: The first PFN to start isolating.
363 * @end_pfn: The one-past-last PFN.
364 *
365 * Non-free pages, invalid PFNs, or zone boundaries within the
366 * [start_pfn, end_pfn) range are considered errors, cause function to
367 * undo its actions and return zero.
368 *
369 * Otherwise, function returns one-past-the-last PFN of isolated page
370 * (which may be greater then end_pfn if end fell in a middle of
371 * a free page).
372 */
373 unsigned long
374 isolate_freepages_range(struct compact_control *cc,
375 unsigned long start_pfn, unsigned long end_pfn)
376 {
377 unsigned long isolated, pfn, block_end_pfn;
378 LIST_HEAD(freelist);
379
380 for (pfn = start_pfn; pfn < end_pfn; pfn += isolated) {
381 if (!pfn_valid(pfn) || cc->zone != page_zone(pfn_to_page(pfn)))
382 break;
383
384 /*
385 * On subsequent iterations ALIGN() is actually not needed,
386 * but we keep it that we not to complicate the code.
387 */
388 block_end_pfn = ALIGN(pfn + 1, pageblock_nr_pages);
389 block_end_pfn = min(block_end_pfn, end_pfn);
390
391 isolated = isolate_freepages_block(cc, pfn, block_end_pfn,
392 &freelist, true);
393
394 /*
395 * In strict mode, isolate_freepages_block() returns 0 if
396 * there are any holes in the block (ie. invalid PFNs or
397 * non-free pages).
398 */
399 if (!isolated)
400 break;
401
402 /*
403 * If we managed to isolate pages, it is always (1 << n) *
404 * pageblock_nr_pages for some non-negative n. (Max order
405 * page may span two pageblocks).
406 */
407 }
408
409 /* split_free_page does not map the pages */
410 map_pages(&freelist);
411
412 if (pfn < end_pfn) {
413 /* Loop terminated early, cleanup. */
414 release_freepages(&freelist);
415 return 0;
416 }
417
418 /* We don't use freelists for anything. */
419 return pfn;
420 }
421
422 /* Update the number of anon and file isolated pages in the zone */
423 static void acct_isolated(struct zone *zone, bool locked, struct compact_control *cc)
424 {
425 struct page *page;
426 unsigned int count[2] = { 0, };
427
428 list_for_each_entry(page, &cc->migratepages, lru)
429 count[!!page_is_file_cache(page)]++;
430
431 /* If locked we can use the interrupt unsafe versions */
432 if (locked) {
433 __mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
434 __mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
435 } else {
436 mod_zone_page_state(zone, NR_ISOLATED_ANON, count[0]);
437 mod_zone_page_state(zone, NR_ISOLATED_FILE, count[1]);
438 }
439 }
440
441 /* Similar to reclaim, but different enough that they don't share logic */
442 static bool too_many_isolated(struct zone *zone)
443 {
444 unsigned long active, inactive, isolated;
445
446 inactive = zone_page_state(zone, NR_INACTIVE_FILE) +
447 zone_page_state(zone, NR_INACTIVE_ANON);
448 active = zone_page_state(zone, NR_ACTIVE_FILE) +
449 zone_page_state(zone, NR_ACTIVE_ANON);
450 isolated = zone_page_state(zone, NR_ISOLATED_FILE) +
451 zone_page_state(zone, NR_ISOLATED_ANON);
452
453 return isolated > (inactive + active) / 2;
454 }
455
456 /**
457 * isolate_migratepages_range() - isolate all migrate-able pages in range.
458 * @zone: Zone pages are in.
459 * @cc: Compaction control structure.
460 * @low_pfn: The first PFN of the range.
461 * @end_pfn: The one-past-the-last PFN of the range.
462 * @unevictable: true if it allows to isolate unevictable pages
463 *
464 * Isolate all pages that can be migrated from the range specified by
465 * [low_pfn, end_pfn). Returns zero if there is a fatal signal
466 * pending), otherwise PFN of the first page that was not scanned
467 * (which may be both less, equal to or more then end_pfn).
468 *
469 * Assumes that cc->migratepages is empty and cc->nr_migratepages is
470 * zero.
471 *
472 * Apart from cc->migratepages and cc->nr_migratetypes this function
473 * does not modify any cc's fields, in particular it does not modify
474 * (or read for that matter) cc->migrate_pfn.
475 */
476 unsigned long
477 isolate_migratepages_range(struct zone *zone, struct compact_control *cc,
478 unsigned long low_pfn, unsigned long end_pfn, bool unevictable)
479 {
480 unsigned long last_pageblock_nr = 0, pageblock_nr;
481 unsigned long nr_scanned = 0, nr_isolated = 0;
482 struct list_head *migratelist = &cc->migratepages;
483 struct lruvec *lruvec;
484 unsigned long flags;
485 bool locked = false;
486 struct page *page = NULL, *valid_page = NULL;
487 bool set_unsuitable = true;
488 const isolate_mode_t mode = (cc->mode == MIGRATE_ASYNC ?
489 ISOLATE_ASYNC_MIGRATE : 0) |
490 (unevictable ? ISOLATE_UNEVICTABLE : 0);
491
492 /*
493 * Ensure that there are not too many pages isolated from the LRU
494 * list by either parallel reclaimers or compaction. If there are,
495 * delay for some time until fewer pages are isolated
496 */
497 while (unlikely(too_many_isolated(zone))) {
498 /* async migration should just abort */
499 if (cc->mode == MIGRATE_ASYNC)
500 return 0;
501
502 congestion_wait(BLK_RW_ASYNC, HZ/10);
503
504 if (fatal_signal_pending(current))
505 return 0;
506 }
507
508 if (compact_should_abort(cc))
509 return 0;
510
511 /* Time to isolate some pages for migration */
512 for (; low_pfn < end_pfn; low_pfn++) {
513 /* give a chance to irqs before checking need_resched() */
514 if (locked && !(low_pfn % SWAP_CLUSTER_MAX)) {
515 if (should_release_lock(&zone->lru_lock)) {
516 spin_unlock_irqrestore(&zone->lru_lock, flags);
517 locked = false;
518 }
519 }
520
521 /*
522 * migrate_pfn does not necessarily start aligned to a
523 * pageblock. Ensure that pfn_valid is called when moving
524 * into a new MAX_ORDER_NR_PAGES range in case of large
525 * memory holes within the zone
526 */
527 if ((low_pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
528 if (!pfn_valid(low_pfn)) {
529 low_pfn += MAX_ORDER_NR_PAGES - 1;
530 continue;
531 }
532 }
533
534 if (!pfn_valid_within(low_pfn))
535 continue;
536 nr_scanned++;
537
538 /*
539 * Get the page and ensure the page is within the same zone.
540 * See the comment in isolate_freepages about overlapping
541 * nodes. It is deliberate that the new zone lock is not taken
542 * as memory compaction should not move pages between nodes.
543 */
544 page = pfn_to_page(low_pfn);
545 if (page_zone(page) != zone)
546 continue;
547
548 if (!valid_page)
549 valid_page = page;
550
551 /* If isolation recently failed, do not retry */
552 pageblock_nr = low_pfn >> pageblock_order;
553 if (last_pageblock_nr != pageblock_nr) {
554 int mt;
555
556 last_pageblock_nr = pageblock_nr;
557 if (!isolation_suitable(cc, page))
558 goto next_pageblock;
559
560 /*
561 * For async migration, also only scan in MOVABLE
562 * blocks. Async migration is optimistic to see if
563 * the minimum amount of work satisfies the allocation
564 */
565 mt = get_pageblock_migratetype(page);
566 if (cc->mode == MIGRATE_ASYNC &&
567 !migrate_async_suitable(mt)) {
568 set_unsuitable = false;
569 goto next_pageblock;
570 }
571 }
572
573 /*
574 * Skip if free. page_order cannot be used without zone->lock
575 * as nothing prevents parallel allocations or buddy merging.
576 */
577 if (PageBuddy(page))
578 continue;
579
580 /*
581 * Check may be lockless but that's ok as we recheck later.
582 * It's possible to migrate LRU pages and balloon pages
583 * Skip any other type of page
584 */
585 if (!PageLRU(page)) {
586 if (unlikely(balloon_page_movable(page))) {
587 if (locked && balloon_page_isolate(page)) {
588 /* Successfully isolated */
589 goto isolate_success;
590 }
591 }
592 continue;
593 }
594
595 /*
596 * PageLRU is set. lru_lock normally excludes isolation
597 * splitting and collapsing (collapsing has already happened
598 * if PageLRU is set) but the lock is not necessarily taken
599 * here and it is wasteful to take it just to check transhuge.
600 * Check TransHuge without lock and skip the whole pageblock if
601 * it's either a transhuge or hugetlbfs page, as calling
602 * compound_order() without preventing THP from splitting the
603 * page underneath us may return surprising results.
604 */
605 if (PageTransHuge(page)) {
606 if (!locked)
607 goto next_pageblock;
608 low_pfn += (1 << compound_order(page)) - 1;
609 continue;
610 }
611
612 /*
613 * Migration will fail if an anonymous page is pinned in memory,
614 * so avoid taking lru_lock and isolating it unnecessarily in an
615 * admittedly racy check.
616 */
617 if (!page_mapping(page) &&
618 page_count(page) > page_mapcount(page))
619 continue;
620
621 /* Check if it is ok to still hold the lock */
622 locked = compact_checklock_irqsave(&zone->lru_lock, &flags,
623 locked, cc);
624 if (!locked || fatal_signal_pending(current))
625 break;
626
627 /* Recheck PageLRU and PageTransHuge under lock */
628 if (!PageLRU(page))
629 continue;
630 if (PageTransHuge(page)) {
631 low_pfn += (1 << compound_order(page)) - 1;
632 continue;
633 }
634
635 lruvec = mem_cgroup_page_lruvec(page, zone);
636
637 /* Try isolate the page */
638 if (__isolate_lru_page(page, mode) != 0)
639 continue;
640
641 VM_BUG_ON_PAGE(PageTransCompound(page), page);
642
643 /* Successfully isolated */
644 del_page_from_lru_list(page, lruvec, page_lru(page));
645
646 isolate_success:
647 cc->finished_update_migrate = true;
648 list_add(&page->lru, migratelist);
649 cc->nr_migratepages++;
650 nr_isolated++;
651
652 /* Avoid isolating too much */
653 if (cc->nr_migratepages == COMPACT_CLUSTER_MAX) {
654 ++low_pfn;
655 break;
656 }
657
658 continue;
659
660 next_pageblock:
661 low_pfn = ALIGN(low_pfn + 1, pageblock_nr_pages) - 1;
662 }
663
664 acct_isolated(zone, locked, cc);
665
666 if (locked)
667 spin_unlock_irqrestore(&zone->lru_lock, flags);
668
669 /*
670 * Update the pageblock-skip information and cached scanner pfn,
671 * if the whole pageblock was scanned without isolating any page.
672 */
673 if (low_pfn == end_pfn)
674 update_pageblock_skip(cc, valid_page, nr_isolated,
675 set_unsuitable, true);
676
677 trace_mm_compaction_isolate_migratepages(nr_scanned, nr_isolated);
678
679 count_compact_events(COMPACTMIGRATE_SCANNED, nr_scanned);
680 if (nr_isolated)
681 count_compact_events(COMPACTISOLATED, nr_isolated);
682
683 return low_pfn;
684 }
685
686 #endif /* CONFIG_COMPACTION || CONFIG_CMA */
687 #ifdef CONFIG_COMPACTION
688 /*
689 * Based on information in the current compact_control, find blocks
690 * suitable for isolating free pages from and then isolate them.
691 */
692 static void isolate_freepages(struct zone *zone,
693 struct compact_control *cc)
694 {
695 struct page *page;
696 unsigned long block_start_pfn; /* start of current pageblock */
697 unsigned long block_end_pfn; /* end of current pageblock */
698 unsigned long low_pfn; /* lowest pfn scanner is able to scan */
699 int nr_freepages = cc->nr_freepages;
700 struct list_head *freelist = &cc->freepages;
701
702 /*
703 * Initialise the free scanner. The starting point is where we last
704 * successfully isolated from, zone-cached value, or the end of the
705 * zone when isolating for the first time. We need this aligned to
706 * the pageblock boundary, because we do
707 * block_start_pfn -= pageblock_nr_pages in the for loop.
708 * For ending point, take care when isolating in last pageblock of a
709 * a zone which ends in the middle of a pageblock.
710 * The low boundary is the end of the pageblock the migration scanner
711 * is using.
712 */
713 block_start_pfn = cc->free_pfn & ~(pageblock_nr_pages-1);
714 block_end_pfn = min(block_start_pfn + pageblock_nr_pages,
715 zone_end_pfn(zone));
716 low_pfn = ALIGN(cc->migrate_pfn + 1, pageblock_nr_pages);
717
718 /*
719 * Isolate free pages until enough are available to migrate the
720 * pages on cc->migratepages. We stop searching if the migrate
721 * and free page scanners meet or enough free pages are isolated.
722 */
723 for (; block_start_pfn >= low_pfn && cc->nr_migratepages > nr_freepages;
724 block_end_pfn = block_start_pfn,
725 block_start_pfn -= pageblock_nr_pages) {
726 unsigned long isolated;
727
728 /*
729 * This can iterate a massively long zone without finding any
730 * suitable migration targets, so periodically check if we need
731 * to schedule, or even abort async compaction.
732 */
733 if (!(block_start_pfn % (SWAP_CLUSTER_MAX * pageblock_nr_pages))
734 && compact_should_abort(cc))
735 break;
736
737 if (!pfn_valid(block_start_pfn))
738 continue;
739
740 /*
741 * Check for overlapping nodes/zones. It's possible on some
742 * configurations to have a setup like
743 * node0 node1 node0
744 * i.e. it's possible that all pages within a zones range of
745 * pages do not belong to a single zone.
746 */
747 page = pfn_to_page(block_start_pfn);
748 if (page_zone(page) != zone)
749 continue;
750
751 /* Check the block is suitable for migration */
752 if (!suitable_migration_target(page))
753 continue;
754
755 /* If isolation recently failed, do not retry */
756 if (!isolation_suitable(cc, page))
757 continue;
758
759 /* Found a block suitable for isolating free pages from */
760 cc->free_pfn = block_start_pfn;
761 isolated = isolate_freepages_block(cc, block_start_pfn,
762 block_end_pfn, freelist, false);
763 nr_freepages += isolated;
764
765 /*
766 * Set a flag that we successfully isolated in this pageblock.
767 * In the next loop iteration, zone->compact_cached_free_pfn
768 * will not be updated and thus it will effectively contain the
769 * highest pageblock we isolated pages from.
770 */
771 if (isolated)
772 cc->finished_update_free = true;
773
774 /*
775 * isolate_freepages_block() might have aborted due to async
776 * compaction being contended
777 */
778 if (cc->contended)
779 break;
780 }
781
782 /* split_free_page does not map the pages */
783 map_pages(freelist);
784
785 /*
786 * If we crossed the migrate scanner, we want to keep it that way
787 * so that compact_finished() may detect this
788 */
789 if (block_start_pfn < low_pfn)
790 cc->free_pfn = cc->migrate_pfn;
791
792 cc->nr_freepages = nr_freepages;
793 }
794
795 /*
796 * This is a migrate-callback that "allocates" freepages by taking pages
797 * from the isolated freelists in the block we are migrating to.
798 */
799 static struct page *compaction_alloc(struct page *migratepage,
800 unsigned long data,
801 int **result)
802 {
803 struct compact_control *cc = (struct compact_control *)data;
804 struct page *freepage;
805
806 /*
807 * Isolate free pages if necessary, and if we are not aborting due to
808 * contention.
809 */
810 if (list_empty(&cc->freepages)) {
811 if (!cc->contended)
812 isolate_freepages(cc->zone, cc);
813
814 if (list_empty(&cc->freepages))
815 return NULL;
816 }
817
818 freepage = list_entry(cc->freepages.next, struct page, lru);
819 list_del(&freepage->lru);
820 cc->nr_freepages--;
821
822 return freepage;
823 }
824
825 /*
826 * This is a migrate-callback that "frees" freepages back to the isolated
827 * freelist. All pages on the freelist are from the same zone, so there is no
828 * special handling needed for NUMA.
829 */
830 static void compaction_free(struct page *page, unsigned long data)
831 {
832 struct compact_control *cc = (struct compact_control *)data;
833
834 list_add(&page->lru, &cc->freepages);
835 cc->nr_freepages++;
836 }
837
838 /* possible outcome of isolate_migratepages */
839 typedef enum {
840 ISOLATE_ABORT, /* Abort compaction now */
841 ISOLATE_NONE, /* No pages isolated, continue scanning */
842 ISOLATE_SUCCESS, /* Pages isolated, migrate */
843 } isolate_migrate_t;
844
845 /*
846 * Isolate all pages that can be migrated from the block pointed to by
847 * the migrate scanner within compact_control.
848 */
849 static isolate_migrate_t isolate_migratepages(struct zone *zone,
850 struct compact_control *cc)
851 {
852 unsigned long low_pfn, end_pfn;
853
854 /* Do not scan outside zone boundaries */
855 low_pfn = max(cc->migrate_pfn, zone->zone_start_pfn);
856
857 /* Only scan within a pageblock boundary */
858 end_pfn = ALIGN(low_pfn + 1, pageblock_nr_pages);
859
860 /* Do not cross the free scanner or scan within a memory hole */
861 if (end_pfn > cc->free_pfn || !pfn_valid(low_pfn)) {
862 cc->migrate_pfn = end_pfn;
863 return ISOLATE_NONE;
864 }
865
866 /* Perform the isolation */
867 low_pfn = isolate_migratepages_range(zone, cc, low_pfn, end_pfn, false);
868 if (!low_pfn || cc->contended)
869 return ISOLATE_ABORT;
870
871 cc->migrate_pfn = low_pfn;
872
873 return ISOLATE_SUCCESS;
874 }
875
876 static int compact_finished(struct zone *zone,
877 struct compact_control *cc)
878 {
879 unsigned int order;
880 unsigned long watermark;
881
882 if (cc->contended || fatal_signal_pending(current))
883 return COMPACT_PARTIAL;
884
885 /* Compaction run completes if the migrate and free scanner meet */
886 if (cc->free_pfn <= cc->migrate_pfn) {
887 /* Let the next compaction start anew. */
888 zone->compact_cached_migrate_pfn[0] = zone->zone_start_pfn;
889 zone->compact_cached_migrate_pfn[1] = zone->zone_start_pfn;
890 zone->compact_cached_free_pfn = zone_end_pfn(zone);
891
892 /*
893 * Mark that the PG_migrate_skip information should be cleared
894 * by kswapd when it goes to sleep. kswapd does not set the
895 * flag itself as the decision to be clear should be directly
896 * based on an allocation request.
897 */
898 if (!current_is_kswapd())
899 zone->compact_blockskip_flush = true;
900
901 return COMPACT_COMPLETE;
902 }
903
904 /*
905 * order == -1 is expected when compacting via
906 * /proc/sys/vm/compact_memory
907 */
908 if (cc->order == -1)
909 return COMPACT_CONTINUE;
910
911 /* Compaction run is not finished if the watermark is not met */
912 watermark = low_wmark_pages(zone);
913 watermark += (1 << cc->order);
914
915 if (!zone_watermark_ok(zone, cc->order, watermark, 0, 0))
916 return COMPACT_CONTINUE;
917
918 /* Direct compactor: Is a suitable page free? */
919 for (order = cc->order; order < MAX_ORDER; order++) {
920 struct free_area *area = &zone->free_area[order];
921
922 /* Job done if page is free of the right migratetype */
923 if (!list_empty(&area->free_list[cc->migratetype]))
924 return COMPACT_PARTIAL;
925
926 /* Job done if allocation would set block type */
927 if (cc->order >= pageblock_order && area->nr_free)
928 return COMPACT_PARTIAL;
929 }
930
931 return COMPACT_CONTINUE;
932 }
933
934 /*
935 * compaction_suitable: Is this suitable to run compaction on this zone now?
936 * Returns
937 * COMPACT_SKIPPED - If there are too few free pages for compaction
938 * COMPACT_PARTIAL - If the allocation would succeed without compaction
939 * COMPACT_CONTINUE - If compaction should run now
940 */
941 unsigned long compaction_suitable(struct zone *zone, int order)
942 {
943 int fragindex;
944 unsigned long watermark;
945
946 /*
947 * order == -1 is expected when compacting via
948 * /proc/sys/vm/compact_memory
949 */
950 if (order == -1)
951 return COMPACT_CONTINUE;
952
953 /*
954 * Watermarks for order-0 must be met for compaction. Note the 2UL.
955 * This is because during migration, copies of pages need to be
956 * allocated and for a short time, the footprint is higher
957 */
958 watermark = low_wmark_pages(zone) + (2UL << order);
959 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
960 return COMPACT_SKIPPED;
961
962 /*
963 * fragmentation index determines if allocation failures are due to
964 * low memory or external fragmentation
965 *
966 * index of -1000 implies allocations might succeed depending on
967 * watermarks
968 * index towards 0 implies failure is due to lack of memory
969 * index towards 1000 implies failure is due to fragmentation
970 *
971 * Only compact if a failure would be due to fragmentation.
972 */
973 fragindex = fragmentation_index(zone, order);
974 if (fragindex >= 0 && fragindex <= sysctl_extfrag_threshold)
975 return COMPACT_SKIPPED;
976
977 if (fragindex == -1000 && zone_watermark_ok(zone, order, watermark,
978 0, 0))
979 return COMPACT_PARTIAL;
980
981 return COMPACT_CONTINUE;
982 }
983
984 static int compact_zone(struct zone *zone, struct compact_control *cc)
985 {
986 int ret;
987 unsigned long start_pfn = zone->zone_start_pfn;
988 unsigned long end_pfn = zone_end_pfn(zone);
989 const bool sync = cc->mode != MIGRATE_ASYNC;
990
991 ret = compaction_suitable(zone, cc->order);
992 switch (ret) {
993 case COMPACT_PARTIAL:
994 case COMPACT_SKIPPED:
995 /* Compaction is likely to fail */
996 return ret;
997 case COMPACT_CONTINUE:
998 /* Fall through to compaction */
999 ;
1000 }
1001
1002 /*
1003 * Clear pageblock skip if there were failures recently and compaction
1004 * is about to be retried after being deferred. kswapd does not do
1005 * this reset as it'll reset the cached information when going to sleep.
1006 */
1007 if (compaction_restarting(zone, cc->order) && !current_is_kswapd())
1008 __reset_isolation_suitable(zone);
1009
1010 /*
1011 * Setup to move all movable pages to the end of the zone. Used cached
1012 * information on where the scanners should start but check that it
1013 * is initialised by ensuring the values are within zone boundaries.
1014 */
1015 cc->migrate_pfn = zone->compact_cached_migrate_pfn[sync];
1016 cc->free_pfn = zone->compact_cached_free_pfn;
1017 if (cc->free_pfn < start_pfn || cc->free_pfn > end_pfn) {
1018 cc->free_pfn = end_pfn & ~(pageblock_nr_pages-1);
1019 zone->compact_cached_free_pfn = cc->free_pfn;
1020 }
1021 if (cc->migrate_pfn < start_pfn || cc->migrate_pfn > end_pfn) {
1022 cc->migrate_pfn = start_pfn;
1023 zone->compact_cached_migrate_pfn[0] = cc->migrate_pfn;
1024 zone->compact_cached_migrate_pfn[1] = cc->migrate_pfn;
1025 }
1026
1027 trace_mm_compaction_begin(start_pfn, cc->migrate_pfn, cc->free_pfn, end_pfn);
1028
1029 migrate_prep_local();
1030
1031 while ((ret = compact_finished(zone, cc)) == COMPACT_CONTINUE) {
1032 int err;
1033
1034 switch (isolate_migratepages(zone, cc)) {
1035 case ISOLATE_ABORT:
1036 ret = COMPACT_PARTIAL;
1037 putback_movable_pages(&cc->migratepages);
1038 cc->nr_migratepages = 0;
1039 goto out;
1040 case ISOLATE_NONE:
1041 continue;
1042 case ISOLATE_SUCCESS:
1043 ;
1044 }
1045
1046 if (!cc->nr_migratepages)
1047 continue;
1048
1049 err = migrate_pages(&cc->migratepages, compaction_alloc,
1050 compaction_free, (unsigned long)cc, cc->mode,
1051 MR_COMPACTION);
1052
1053 trace_mm_compaction_migratepages(cc->nr_migratepages, err,
1054 &cc->migratepages);
1055
1056 /* All pages were either migrated or will be released */
1057 cc->nr_migratepages = 0;
1058 if (err) {
1059 putback_movable_pages(&cc->migratepages);
1060 /*
1061 * migrate_pages() may return -ENOMEM when scanners meet
1062 * and we want compact_finished() to detect it
1063 */
1064 if (err == -ENOMEM && cc->free_pfn > cc->migrate_pfn) {
1065 ret = COMPACT_PARTIAL;
1066 goto out;
1067 }
1068 }
1069 }
1070
1071 out:
1072 /* Release free pages and check accounting */
1073 cc->nr_freepages -= release_freepages(&cc->freepages);
1074 VM_BUG_ON(cc->nr_freepages != 0);
1075
1076 trace_mm_compaction_end(ret);
1077
1078 return ret;
1079 }
1080
1081 static unsigned long compact_zone_order(struct zone *zone, int order,
1082 gfp_t gfp_mask, enum migrate_mode mode, bool *contended)
1083 {
1084 unsigned long ret;
1085 struct compact_control cc = {
1086 .nr_freepages = 0,
1087 .nr_migratepages = 0,
1088 .order = order,
1089 .migratetype = allocflags_to_migratetype(gfp_mask),
1090 .zone = zone,
1091 .mode = mode,
1092 };
1093 INIT_LIST_HEAD(&cc.freepages);
1094 INIT_LIST_HEAD(&cc.migratepages);
1095
1096 ret = compact_zone(zone, &cc);
1097
1098 VM_BUG_ON(!list_empty(&cc.freepages));
1099 VM_BUG_ON(!list_empty(&cc.migratepages));
1100
1101 *contended = cc.contended;
1102 return ret;
1103 }
1104
1105 int sysctl_extfrag_threshold = 500;
1106
1107 /**
1108 * try_to_compact_pages - Direct compact to satisfy a high-order allocation
1109 * @zonelist: The zonelist used for the current allocation
1110 * @order: The order of the current allocation
1111 * @gfp_mask: The GFP mask of the current allocation
1112 * @nodemask: The allowed nodes to allocate from
1113 * @mode: The migration mode for async, sync light, or sync migration
1114 * @contended: Return value that is true if compaction was aborted due to lock contention
1115 * @candidate_zone: Return the zone where we think allocation should succeed
1116 *
1117 * This is the main entry point for direct page compaction.
1118 */
1119 unsigned long try_to_compact_pages(struct zonelist *zonelist,
1120 int order, gfp_t gfp_mask, nodemask_t *nodemask,
1121 enum migrate_mode mode, bool *contended,
1122 struct zone **candidate_zone)
1123 {
1124 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
1125 int may_enter_fs = gfp_mask & __GFP_FS;
1126 int may_perform_io = gfp_mask & __GFP_IO;
1127 struct zoneref *z;
1128 struct zone *zone;
1129 int rc = COMPACT_DEFERRED;
1130 int alloc_flags = 0;
1131
1132 /* Check if the GFP flags allow compaction */
1133 if (!order || !may_enter_fs || !may_perform_io)
1134 return COMPACT_SKIPPED;
1135
1136 #ifdef CONFIG_CMA
1137 if (allocflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
1138 alloc_flags |= ALLOC_CMA;
1139 #endif
1140 /* Compact each zone in the list */
1141 for_each_zone_zonelist_nodemask(zone, z, zonelist, high_zoneidx,
1142 nodemask) {
1143 int status;
1144
1145 if (compaction_deferred(zone, order))
1146 continue;
1147
1148 status = compact_zone_order(zone, order, gfp_mask, mode,
1149 contended);
1150 rc = max(status, rc);
1151
1152 /* If a normal allocation would succeed, stop compacting */
1153 if (zone_watermark_ok(zone, order, low_wmark_pages(zone), 0,
1154 alloc_flags)) {
1155 *candidate_zone = zone;
1156 /*
1157 * We think the allocation will succeed in this zone,
1158 * but it is not certain, hence the false. The caller
1159 * will repeat this with true if allocation indeed
1160 * succeeds in this zone.
1161 */
1162 compaction_defer_reset(zone, order, false);
1163 break;
1164 } else if (mode != MIGRATE_ASYNC) {
1165 /*
1166 * We think that allocation won't succeed in this zone
1167 * so we defer compaction there. If it ends up
1168 * succeeding after all, it will be reset.
1169 */
1170 defer_compaction(zone, order);
1171 }
1172 }
1173
1174 return rc;
1175 }
1176
1177
1178 /* Compact all zones within a node */
1179 static void __compact_pgdat(pg_data_t *pgdat, struct compact_control *cc)
1180 {
1181 int zoneid;
1182 struct zone *zone;
1183
1184 for (zoneid = 0; zoneid < MAX_NR_ZONES; zoneid++) {
1185
1186 zone = &pgdat->node_zones[zoneid];
1187 if (!populated_zone(zone))
1188 continue;
1189
1190 cc->nr_freepages = 0;
1191 cc->nr_migratepages = 0;
1192 cc->zone = zone;
1193 INIT_LIST_HEAD(&cc->freepages);
1194 INIT_LIST_HEAD(&cc->migratepages);
1195
1196 if (cc->order == -1 || !compaction_deferred(zone, cc->order))
1197 compact_zone(zone, cc);
1198
1199 if (cc->order > 0) {
1200 if (zone_watermark_ok(zone, cc->order,
1201 low_wmark_pages(zone), 0, 0))
1202 compaction_defer_reset(zone, cc->order, false);
1203 }
1204
1205 VM_BUG_ON(!list_empty(&cc->freepages));
1206 VM_BUG_ON(!list_empty(&cc->migratepages));
1207 }
1208 }
1209
1210 void compact_pgdat(pg_data_t *pgdat, int order)
1211 {
1212 struct compact_control cc = {
1213 .order = order,
1214 .mode = MIGRATE_ASYNC,
1215 };
1216
1217 if (!order)
1218 return;
1219
1220 __compact_pgdat(pgdat, &cc);
1221 }
1222
1223 static void compact_node(int nid)
1224 {
1225 struct compact_control cc = {
1226 .order = -1,
1227 .mode = MIGRATE_SYNC,
1228 .ignore_skip_hint = true,
1229 };
1230
1231 __compact_pgdat(NODE_DATA(nid), &cc);
1232 }
1233
1234 /* Compact all nodes in the system */
1235 static void compact_nodes(void)
1236 {
1237 int nid;
1238
1239 /* Flush pending updates to the LRU lists */
1240 lru_add_drain_all();
1241
1242 for_each_online_node(nid)
1243 compact_node(nid);
1244 }
1245
1246 /* The written value is actually unused, all memory is compacted */
1247 int sysctl_compact_memory;
1248
1249 /* This is the entry point for compacting all nodes via /proc/sys/vm */
1250 int sysctl_compaction_handler(struct ctl_table *table, int write,
1251 void __user *buffer, size_t *length, loff_t *ppos)
1252 {
1253 if (write)
1254 compact_nodes();
1255
1256 return 0;
1257 }
1258
1259 int sysctl_extfrag_handler(struct ctl_table *table, int write,
1260 void __user *buffer, size_t *length, loff_t *ppos)
1261 {
1262 proc_dointvec_minmax(table, write, buffer, length, ppos);
1263
1264 return 0;
1265 }
1266
1267 #if defined(CONFIG_SYSFS) && defined(CONFIG_NUMA)
1268 static ssize_t sysfs_compact_node(struct device *dev,
1269 struct device_attribute *attr,
1270 const char *buf, size_t count)
1271 {
1272 int nid = dev->id;
1273
1274 if (nid >= 0 && nid < nr_node_ids && node_online(nid)) {
1275 /* Flush pending updates to the LRU lists */
1276 lru_add_drain_all();
1277
1278 compact_node(nid);
1279 }
1280
1281 return count;
1282 }
1283 static DEVICE_ATTR(compact, S_IWUSR, NULL, sysfs_compact_node);
1284
1285 int compaction_register_node(struct node *node)
1286 {
1287 return device_create_file(&node->dev, &dev_attr_compact);
1288 }
1289
1290 void compaction_unregister_node(struct node *node)
1291 {
1292 return device_remove_file(&node->dev, &dev_attr_compact);
1293 }
1294 #endif /* CONFIG_SYSFS && CONFIG_NUMA */
1295
1296 #endif /* CONFIG_COMPACTION */
This page took 0.055598 seconds and 6 git commands to generate.