Merge branch 'next' of git://git.kernel.org/pub/scm/linux/kernel/git/rzhang/linux
[deliverable/linux.git] / mm / filemap.c
1 /*
2 * linux/mm/filemap.c
3 *
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
6
7 /*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
11 */
12 #include <linux/export.h>
13 #include <linux/compiler.h>
14 #include <linux/fs.h>
15 #include <linux/uaccess.h>
16 #include <linux/aio.h>
17 #include <linux/capability.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/gfp.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/cpuset.h>
33 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
34 #include <linux/memcontrol.h>
35 #include <linux/cleancache.h>
36 #include <linux/rmap.h>
37 #include "internal.h"
38
39 #define CREATE_TRACE_POINTS
40 #include <trace/events/filemap.h>
41
42 /*
43 * FIXME: remove all knowledge of the buffer layer from the core VM
44 */
45 #include <linux/buffer_head.h> /* for try_to_free_buffers */
46
47 #include <asm/mman.h>
48
49 /*
50 * Shared mappings implemented 30.11.1994. It's not fully working yet,
51 * though.
52 *
53 * Shared mappings now work. 15.8.1995 Bruno.
54 *
55 * finished 'unifying' the page and buffer cache and SMP-threaded the
56 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
57 *
58 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
59 */
60
61 /*
62 * Lock ordering:
63 *
64 * ->i_mmap_mutex (truncate_pagecache)
65 * ->private_lock (__free_pte->__set_page_dirty_buffers)
66 * ->swap_lock (exclusive_swap_page, others)
67 * ->mapping->tree_lock
68 *
69 * ->i_mutex
70 * ->i_mmap_mutex (truncate->unmap_mapping_range)
71 *
72 * ->mmap_sem
73 * ->i_mmap_mutex
74 * ->page_table_lock or pte_lock (various, mainly in memory.c)
75 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
76 *
77 * ->mmap_sem
78 * ->lock_page (access_process_vm)
79 *
80 * ->i_mutex (generic_file_buffered_write)
81 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
82 *
83 * bdi->wb.list_lock
84 * sb_lock (fs/fs-writeback.c)
85 * ->mapping->tree_lock (__sync_single_inode)
86 *
87 * ->i_mmap_mutex
88 * ->anon_vma.lock (vma_adjust)
89 *
90 * ->anon_vma.lock
91 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
92 *
93 * ->page_table_lock or pte_lock
94 * ->swap_lock (try_to_unmap_one)
95 * ->private_lock (try_to_unmap_one)
96 * ->tree_lock (try_to_unmap_one)
97 * ->zone.lru_lock (follow_page->mark_page_accessed)
98 * ->zone.lru_lock (check_pte_range->isolate_lru_page)
99 * ->private_lock (page_remove_rmap->set_page_dirty)
100 * ->tree_lock (page_remove_rmap->set_page_dirty)
101 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
102 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
103 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
104 * ->inode->i_lock (zap_pte_range->set_page_dirty)
105 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
106 *
107 * ->i_mmap_mutex
108 * ->tasklist_lock (memory_failure, collect_procs_ao)
109 */
110
111 static void page_cache_tree_delete(struct address_space *mapping,
112 struct page *page, void *shadow)
113 {
114 struct radix_tree_node *node;
115 unsigned long index;
116 unsigned int offset;
117 unsigned int tag;
118 void **slot;
119
120 VM_BUG_ON(!PageLocked(page));
121
122 __radix_tree_lookup(&mapping->page_tree, page->index, &node, &slot);
123
124 if (shadow) {
125 mapping->nrshadows++;
126 /*
127 * Make sure the nrshadows update is committed before
128 * the nrpages update so that final truncate racing
129 * with reclaim does not see both counters 0 at the
130 * same time and miss a shadow entry.
131 */
132 smp_wmb();
133 }
134 mapping->nrpages--;
135
136 if (!node) {
137 /* Clear direct pointer tags in root node */
138 mapping->page_tree.gfp_mask &= __GFP_BITS_MASK;
139 radix_tree_replace_slot(slot, shadow);
140 return;
141 }
142
143 /* Clear tree tags for the removed page */
144 index = page->index;
145 offset = index & RADIX_TREE_MAP_MASK;
146 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
147 if (test_bit(offset, node->tags[tag]))
148 radix_tree_tag_clear(&mapping->page_tree, index, tag);
149 }
150
151 /* Delete page, swap shadow entry */
152 radix_tree_replace_slot(slot, shadow);
153 workingset_node_pages_dec(node);
154 if (shadow)
155 workingset_node_shadows_inc(node);
156 else
157 if (__radix_tree_delete_node(&mapping->page_tree, node))
158 return;
159
160 /*
161 * Track node that only contains shadow entries.
162 *
163 * Avoid acquiring the list_lru lock if already tracked. The
164 * list_empty() test is safe as node->private_list is
165 * protected by mapping->tree_lock.
166 */
167 if (!workingset_node_pages(node) &&
168 list_empty(&node->private_list)) {
169 node->private_data = mapping;
170 list_lru_add(&workingset_shadow_nodes, &node->private_list);
171 }
172 }
173
174 /*
175 * Delete a page from the page cache and free it. Caller has to make
176 * sure the page is locked and that nobody else uses it - or that usage
177 * is safe. The caller must hold the mapping's tree_lock.
178 */
179 void __delete_from_page_cache(struct page *page, void *shadow)
180 {
181 struct address_space *mapping = page->mapping;
182
183 trace_mm_filemap_delete_from_page_cache(page);
184 /*
185 * if we're uptodate, flush out into the cleancache, otherwise
186 * invalidate any existing cleancache entries. We can't leave
187 * stale data around in the cleancache once our page is gone
188 */
189 if (PageUptodate(page) && PageMappedToDisk(page))
190 cleancache_put_page(page);
191 else
192 cleancache_invalidate_page(mapping, page);
193
194 page_cache_tree_delete(mapping, page, shadow);
195
196 page->mapping = NULL;
197 /* Leave page->index set: truncation lookup relies upon it */
198
199 __dec_zone_page_state(page, NR_FILE_PAGES);
200 if (PageSwapBacked(page))
201 __dec_zone_page_state(page, NR_SHMEM);
202 BUG_ON(page_mapped(page));
203
204 /*
205 * Some filesystems seem to re-dirty the page even after
206 * the VM has canceled the dirty bit (eg ext3 journaling).
207 *
208 * Fix it up by doing a final dirty accounting check after
209 * having removed the page entirely.
210 */
211 if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
212 dec_zone_page_state(page, NR_FILE_DIRTY);
213 dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
214 }
215 }
216
217 /**
218 * delete_from_page_cache - delete page from page cache
219 * @page: the page which the kernel is trying to remove from page cache
220 *
221 * This must be called only on pages that have been verified to be in the page
222 * cache and locked. It will never put the page into the free list, the caller
223 * has a reference on the page.
224 */
225 void delete_from_page_cache(struct page *page)
226 {
227 struct address_space *mapping = page->mapping;
228 void (*freepage)(struct page *);
229
230 BUG_ON(!PageLocked(page));
231
232 freepage = mapping->a_ops->freepage;
233 spin_lock_irq(&mapping->tree_lock);
234 __delete_from_page_cache(page, NULL);
235 spin_unlock_irq(&mapping->tree_lock);
236 mem_cgroup_uncharge_cache_page(page);
237
238 if (freepage)
239 freepage(page);
240 page_cache_release(page);
241 }
242 EXPORT_SYMBOL(delete_from_page_cache);
243
244 static int sleep_on_page(void *word)
245 {
246 io_schedule();
247 return 0;
248 }
249
250 static int sleep_on_page_killable(void *word)
251 {
252 sleep_on_page(word);
253 return fatal_signal_pending(current) ? -EINTR : 0;
254 }
255
256 static int filemap_check_errors(struct address_space *mapping)
257 {
258 int ret = 0;
259 /* Check for outstanding write errors */
260 if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
261 ret = -ENOSPC;
262 if (test_and_clear_bit(AS_EIO, &mapping->flags))
263 ret = -EIO;
264 return ret;
265 }
266
267 /**
268 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
269 * @mapping: address space structure to write
270 * @start: offset in bytes where the range starts
271 * @end: offset in bytes where the range ends (inclusive)
272 * @sync_mode: enable synchronous operation
273 *
274 * Start writeback against all of a mapping's dirty pages that lie
275 * within the byte offsets <start, end> inclusive.
276 *
277 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
278 * opposed to a regular memory cleansing writeback. The difference between
279 * these two operations is that if a dirty page/buffer is encountered, it must
280 * be waited upon, and not just skipped over.
281 */
282 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
283 loff_t end, int sync_mode)
284 {
285 int ret;
286 struct writeback_control wbc = {
287 .sync_mode = sync_mode,
288 .nr_to_write = LONG_MAX,
289 .range_start = start,
290 .range_end = end,
291 };
292
293 if (!mapping_cap_writeback_dirty(mapping))
294 return 0;
295
296 ret = do_writepages(mapping, &wbc);
297 return ret;
298 }
299
300 static inline int __filemap_fdatawrite(struct address_space *mapping,
301 int sync_mode)
302 {
303 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
304 }
305
306 int filemap_fdatawrite(struct address_space *mapping)
307 {
308 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
309 }
310 EXPORT_SYMBOL(filemap_fdatawrite);
311
312 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
313 loff_t end)
314 {
315 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
316 }
317 EXPORT_SYMBOL(filemap_fdatawrite_range);
318
319 /**
320 * filemap_flush - mostly a non-blocking flush
321 * @mapping: target address_space
322 *
323 * This is a mostly non-blocking flush. Not suitable for data-integrity
324 * purposes - I/O may not be started against all dirty pages.
325 */
326 int filemap_flush(struct address_space *mapping)
327 {
328 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
329 }
330 EXPORT_SYMBOL(filemap_flush);
331
332 /**
333 * filemap_fdatawait_range - wait for writeback to complete
334 * @mapping: address space structure to wait for
335 * @start_byte: offset in bytes where the range starts
336 * @end_byte: offset in bytes where the range ends (inclusive)
337 *
338 * Walk the list of under-writeback pages of the given address space
339 * in the given range and wait for all of them.
340 */
341 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
342 loff_t end_byte)
343 {
344 pgoff_t index = start_byte >> PAGE_CACHE_SHIFT;
345 pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
346 struct pagevec pvec;
347 int nr_pages;
348 int ret2, ret = 0;
349
350 if (end_byte < start_byte)
351 goto out;
352
353 pagevec_init(&pvec, 0);
354 while ((index <= end) &&
355 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
356 PAGECACHE_TAG_WRITEBACK,
357 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
358 unsigned i;
359
360 for (i = 0; i < nr_pages; i++) {
361 struct page *page = pvec.pages[i];
362
363 /* until radix tree lookup accepts end_index */
364 if (page->index > end)
365 continue;
366
367 wait_on_page_writeback(page);
368 if (TestClearPageError(page))
369 ret = -EIO;
370 }
371 pagevec_release(&pvec);
372 cond_resched();
373 }
374 out:
375 ret2 = filemap_check_errors(mapping);
376 if (!ret)
377 ret = ret2;
378
379 return ret;
380 }
381 EXPORT_SYMBOL(filemap_fdatawait_range);
382
383 /**
384 * filemap_fdatawait - wait for all under-writeback pages to complete
385 * @mapping: address space structure to wait for
386 *
387 * Walk the list of under-writeback pages of the given address space
388 * and wait for all of them.
389 */
390 int filemap_fdatawait(struct address_space *mapping)
391 {
392 loff_t i_size = i_size_read(mapping->host);
393
394 if (i_size == 0)
395 return 0;
396
397 return filemap_fdatawait_range(mapping, 0, i_size - 1);
398 }
399 EXPORT_SYMBOL(filemap_fdatawait);
400
401 int filemap_write_and_wait(struct address_space *mapping)
402 {
403 int err = 0;
404
405 if (mapping->nrpages) {
406 err = filemap_fdatawrite(mapping);
407 /*
408 * Even if the above returned error, the pages may be
409 * written partially (e.g. -ENOSPC), so we wait for it.
410 * But the -EIO is special case, it may indicate the worst
411 * thing (e.g. bug) happened, so we avoid waiting for it.
412 */
413 if (err != -EIO) {
414 int err2 = filemap_fdatawait(mapping);
415 if (!err)
416 err = err2;
417 }
418 } else {
419 err = filemap_check_errors(mapping);
420 }
421 return err;
422 }
423 EXPORT_SYMBOL(filemap_write_and_wait);
424
425 /**
426 * filemap_write_and_wait_range - write out & wait on a file range
427 * @mapping: the address_space for the pages
428 * @lstart: offset in bytes where the range starts
429 * @lend: offset in bytes where the range ends (inclusive)
430 *
431 * Write out and wait upon file offsets lstart->lend, inclusive.
432 *
433 * Note that `lend' is inclusive (describes the last byte to be written) so
434 * that this function can be used to write to the very end-of-file (end = -1).
435 */
436 int filemap_write_and_wait_range(struct address_space *mapping,
437 loff_t lstart, loff_t lend)
438 {
439 int err = 0;
440
441 if (mapping->nrpages) {
442 err = __filemap_fdatawrite_range(mapping, lstart, lend,
443 WB_SYNC_ALL);
444 /* See comment of filemap_write_and_wait() */
445 if (err != -EIO) {
446 int err2 = filemap_fdatawait_range(mapping,
447 lstart, lend);
448 if (!err)
449 err = err2;
450 }
451 } else {
452 err = filemap_check_errors(mapping);
453 }
454 return err;
455 }
456 EXPORT_SYMBOL(filemap_write_and_wait_range);
457
458 /**
459 * replace_page_cache_page - replace a pagecache page with a new one
460 * @old: page to be replaced
461 * @new: page to replace with
462 * @gfp_mask: allocation mode
463 *
464 * This function replaces a page in the pagecache with a new one. On
465 * success it acquires the pagecache reference for the new page and
466 * drops it for the old page. Both the old and new pages must be
467 * locked. This function does not add the new page to the LRU, the
468 * caller must do that.
469 *
470 * The remove + add is atomic. The only way this function can fail is
471 * memory allocation failure.
472 */
473 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
474 {
475 int error;
476
477 VM_BUG_ON_PAGE(!PageLocked(old), old);
478 VM_BUG_ON_PAGE(!PageLocked(new), new);
479 VM_BUG_ON_PAGE(new->mapping, new);
480
481 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
482 if (!error) {
483 struct address_space *mapping = old->mapping;
484 void (*freepage)(struct page *);
485
486 pgoff_t offset = old->index;
487 freepage = mapping->a_ops->freepage;
488
489 page_cache_get(new);
490 new->mapping = mapping;
491 new->index = offset;
492
493 spin_lock_irq(&mapping->tree_lock);
494 __delete_from_page_cache(old, NULL);
495 error = radix_tree_insert(&mapping->page_tree, offset, new);
496 BUG_ON(error);
497 mapping->nrpages++;
498 __inc_zone_page_state(new, NR_FILE_PAGES);
499 if (PageSwapBacked(new))
500 __inc_zone_page_state(new, NR_SHMEM);
501 spin_unlock_irq(&mapping->tree_lock);
502 /* mem_cgroup codes must not be called under tree_lock */
503 mem_cgroup_replace_page_cache(old, new);
504 radix_tree_preload_end();
505 if (freepage)
506 freepage(old);
507 page_cache_release(old);
508 }
509
510 return error;
511 }
512 EXPORT_SYMBOL_GPL(replace_page_cache_page);
513
514 static int page_cache_tree_insert(struct address_space *mapping,
515 struct page *page, void **shadowp)
516 {
517 struct radix_tree_node *node;
518 void **slot;
519 int error;
520
521 error = __radix_tree_create(&mapping->page_tree, page->index,
522 &node, &slot);
523 if (error)
524 return error;
525 if (*slot) {
526 void *p;
527
528 p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
529 if (!radix_tree_exceptional_entry(p))
530 return -EEXIST;
531 if (shadowp)
532 *shadowp = p;
533 mapping->nrshadows--;
534 if (node)
535 workingset_node_shadows_dec(node);
536 }
537 radix_tree_replace_slot(slot, page);
538 mapping->nrpages++;
539 if (node) {
540 workingset_node_pages_inc(node);
541 /*
542 * Don't track node that contains actual pages.
543 *
544 * Avoid acquiring the list_lru lock if already
545 * untracked. The list_empty() test is safe as
546 * node->private_list is protected by
547 * mapping->tree_lock.
548 */
549 if (!list_empty(&node->private_list))
550 list_lru_del(&workingset_shadow_nodes,
551 &node->private_list);
552 }
553 return 0;
554 }
555
556 static int __add_to_page_cache_locked(struct page *page,
557 struct address_space *mapping,
558 pgoff_t offset, gfp_t gfp_mask,
559 void **shadowp)
560 {
561 int error;
562
563 VM_BUG_ON_PAGE(!PageLocked(page), page);
564 VM_BUG_ON_PAGE(PageSwapBacked(page), page);
565
566 error = mem_cgroup_charge_file(page, current->mm,
567 gfp_mask & GFP_RECLAIM_MASK);
568 if (error)
569 return error;
570
571 error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
572 if (error) {
573 mem_cgroup_uncharge_cache_page(page);
574 return error;
575 }
576
577 page_cache_get(page);
578 page->mapping = mapping;
579 page->index = offset;
580
581 spin_lock_irq(&mapping->tree_lock);
582 error = page_cache_tree_insert(mapping, page, shadowp);
583 radix_tree_preload_end();
584 if (unlikely(error))
585 goto err_insert;
586 __inc_zone_page_state(page, NR_FILE_PAGES);
587 spin_unlock_irq(&mapping->tree_lock);
588 trace_mm_filemap_add_to_page_cache(page);
589 return 0;
590 err_insert:
591 page->mapping = NULL;
592 /* Leave page->index set: truncation relies upon it */
593 spin_unlock_irq(&mapping->tree_lock);
594 mem_cgroup_uncharge_cache_page(page);
595 page_cache_release(page);
596 return error;
597 }
598
599 /**
600 * add_to_page_cache_locked - add a locked page to the pagecache
601 * @page: page to add
602 * @mapping: the page's address_space
603 * @offset: page index
604 * @gfp_mask: page allocation mode
605 *
606 * This function is used to add a page to the pagecache. It must be locked.
607 * This function does not add the page to the LRU. The caller must do that.
608 */
609 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
610 pgoff_t offset, gfp_t gfp_mask)
611 {
612 return __add_to_page_cache_locked(page, mapping, offset,
613 gfp_mask, NULL);
614 }
615 EXPORT_SYMBOL(add_to_page_cache_locked);
616
617 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
618 pgoff_t offset, gfp_t gfp_mask)
619 {
620 void *shadow = NULL;
621 int ret;
622
623 __set_page_locked(page);
624 ret = __add_to_page_cache_locked(page, mapping, offset,
625 gfp_mask, &shadow);
626 if (unlikely(ret))
627 __clear_page_locked(page);
628 else {
629 /*
630 * The page might have been evicted from cache only
631 * recently, in which case it should be activated like
632 * any other repeatedly accessed page.
633 */
634 if (shadow && workingset_refault(shadow)) {
635 SetPageActive(page);
636 workingset_activation(page);
637 } else
638 ClearPageActive(page);
639 lru_cache_add(page);
640 }
641 return ret;
642 }
643 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
644
645 #ifdef CONFIG_NUMA
646 struct page *__page_cache_alloc(gfp_t gfp)
647 {
648 int n;
649 struct page *page;
650
651 if (cpuset_do_page_mem_spread()) {
652 unsigned int cpuset_mems_cookie;
653 do {
654 cpuset_mems_cookie = read_mems_allowed_begin();
655 n = cpuset_mem_spread_node();
656 page = alloc_pages_exact_node(n, gfp, 0);
657 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
658
659 return page;
660 }
661 return alloc_pages(gfp, 0);
662 }
663 EXPORT_SYMBOL(__page_cache_alloc);
664 #endif
665
666 /*
667 * In order to wait for pages to become available there must be
668 * waitqueues associated with pages. By using a hash table of
669 * waitqueues where the bucket discipline is to maintain all
670 * waiters on the same queue and wake all when any of the pages
671 * become available, and for the woken contexts to check to be
672 * sure the appropriate page became available, this saves space
673 * at a cost of "thundering herd" phenomena during rare hash
674 * collisions.
675 */
676 static wait_queue_head_t *page_waitqueue(struct page *page)
677 {
678 const struct zone *zone = page_zone(page);
679
680 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
681 }
682
683 static inline void wake_up_page(struct page *page, int bit)
684 {
685 __wake_up_bit(page_waitqueue(page), &page->flags, bit);
686 }
687
688 void wait_on_page_bit(struct page *page, int bit_nr)
689 {
690 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
691
692 if (test_bit(bit_nr, &page->flags))
693 __wait_on_bit(page_waitqueue(page), &wait, sleep_on_page,
694 TASK_UNINTERRUPTIBLE);
695 }
696 EXPORT_SYMBOL(wait_on_page_bit);
697
698 int wait_on_page_bit_killable(struct page *page, int bit_nr)
699 {
700 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
701
702 if (!test_bit(bit_nr, &page->flags))
703 return 0;
704
705 return __wait_on_bit(page_waitqueue(page), &wait,
706 sleep_on_page_killable, TASK_KILLABLE);
707 }
708
709 /**
710 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
711 * @page: Page defining the wait queue of interest
712 * @waiter: Waiter to add to the queue
713 *
714 * Add an arbitrary @waiter to the wait queue for the nominated @page.
715 */
716 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
717 {
718 wait_queue_head_t *q = page_waitqueue(page);
719 unsigned long flags;
720
721 spin_lock_irqsave(&q->lock, flags);
722 __add_wait_queue(q, waiter);
723 spin_unlock_irqrestore(&q->lock, flags);
724 }
725 EXPORT_SYMBOL_GPL(add_page_wait_queue);
726
727 /**
728 * unlock_page - unlock a locked page
729 * @page: the page
730 *
731 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
732 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
733 * mechananism between PageLocked pages and PageWriteback pages is shared.
734 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
735 *
736 * The mb is necessary to enforce ordering between the clear_bit and the read
737 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
738 */
739 void unlock_page(struct page *page)
740 {
741 VM_BUG_ON_PAGE(!PageLocked(page), page);
742 clear_bit_unlock(PG_locked, &page->flags);
743 smp_mb__after_clear_bit();
744 wake_up_page(page, PG_locked);
745 }
746 EXPORT_SYMBOL(unlock_page);
747
748 /**
749 * end_page_writeback - end writeback against a page
750 * @page: the page
751 */
752 void end_page_writeback(struct page *page)
753 {
754 if (TestClearPageReclaim(page))
755 rotate_reclaimable_page(page);
756
757 if (!test_clear_page_writeback(page))
758 BUG();
759
760 smp_mb__after_clear_bit();
761 wake_up_page(page, PG_writeback);
762 }
763 EXPORT_SYMBOL(end_page_writeback);
764
765 /**
766 * __lock_page - get a lock on the page, assuming we need to sleep to get it
767 * @page: the page to lock
768 */
769 void __lock_page(struct page *page)
770 {
771 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
772
773 __wait_on_bit_lock(page_waitqueue(page), &wait, sleep_on_page,
774 TASK_UNINTERRUPTIBLE);
775 }
776 EXPORT_SYMBOL(__lock_page);
777
778 int __lock_page_killable(struct page *page)
779 {
780 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
781
782 return __wait_on_bit_lock(page_waitqueue(page), &wait,
783 sleep_on_page_killable, TASK_KILLABLE);
784 }
785 EXPORT_SYMBOL_GPL(__lock_page_killable);
786
787 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
788 unsigned int flags)
789 {
790 if (flags & FAULT_FLAG_ALLOW_RETRY) {
791 /*
792 * CAUTION! In this case, mmap_sem is not released
793 * even though return 0.
794 */
795 if (flags & FAULT_FLAG_RETRY_NOWAIT)
796 return 0;
797
798 up_read(&mm->mmap_sem);
799 if (flags & FAULT_FLAG_KILLABLE)
800 wait_on_page_locked_killable(page);
801 else
802 wait_on_page_locked(page);
803 return 0;
804 } else {
805 if (flags & FAULT_FLAG_KILLABLE) {
806 int ret;
807
808 ret = __lock_page_killable(page);
809 if (ret) {
810 up_read(&mm->mmap_sem);
811 return 0;
812 }
813 } else
814 __lock_page(page);
815 return 1;
816 }
817 }
818
819 /**
820 * page_cache_next_hole - find the next hole (not-present entry)
821 * @mapping: mapping
822 * @index: index
823 * @max_scan: maximum range to search
824 *
825 * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
826 * lowest indexed hole.
827 *
828 * Returns: the index of the hole if found, otherwise returns an index
829 * outside of the set specified (in which case 'return - index >=
830 * max_scan' will be true). In rare cases of index wrap-around, 0 will
831 * be returned.
832 *
833 * page_cache_next_hole may be called under rcu_read_lock. However,
834 * like radix_tree_gang_lookup, this will not atomically search a
835 * snapshot of the tree at a single point in time. For example, if a
836 * hole is created at index 5, then subsequently a hole is created at
837 * index 10, page_cache_next_hole covering both indexes may return 10
838 * if called under rcu_read_lock.
839 */
840 pgoff_t page_cache_next_hole(struct address_space *mapping,
841 pgoff_t index, unsigned long max_scan)
842 {
843 unsigned long i;
844
845 for (i = 0; i < max_scan; i++) {
846 struct page *page;
847
848 page = radix_tree_lookup(&mapping->page_tree, index);
849 if (!page || radix_tree_exceptional_entry(page))
850 break;
851 index++;
852 if (index == 0)
853 break;
854 }
855
856 return index;
857 }
858 EXPORT_SYMBOL(page_cache_next_hole);
859
860 /**
861 * page_cache_prev_hole - find the prev hole (not-present entry)
862 * @mapping: mapping
863 * @index: index
864 * @max_scan: maximum range to search
865 *
866 * Search backwards in the range [max(index-max_scan+1, 0), index] for
867 * the first hole.
868 *
869 * Returns: the index of the hole if found, otherwise returns an index
870 * outside of the set specified (in which case 'index - return >=
871 * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
872 * will be returned.
873 *
874 * page_cache_prev_hole may be called under rcu_read_lock. However,
875 * like radix_tree_gang_lookup, this will not atomically search a
876 * snapshot of the tree at a single point in time. For example, if a
877 * hole is created at index 10, then subsequently a hole is created at
878 * index 5, page_cache_prev_hole covering both indexes may return 5 if
879 * called under rcu_read_lock.
880 */
881 pgoff_t page_cache_prev_hole(struct address_space *mapping,
882 pgoff_t index, unsigned long max_scan)
883 {
884 unsigned long i;
885
886 for (i = 0; i < max_scan; i++) {
887 struct page *page;
888
889 page = radix_tree_lookup(&mapping->page_tree, index);
890 if (!page || radix_tree_exceptional_entry(page))
891 break;
892 index--;
893 if (index == ULONG_MAX)
894 break;
895 }
896
897 return index;
898 }
899 EXPORT_SYMBOL(page_cache_prev_hole);
900
901 /**
902 * find_get_entry - find and get a page cache entry
903 * @mapping: the address_space to search
904 * @offset: the page cache index
905 *
906 * Looks up the page cache slot at @mapping & @offset. If there is a
907 * page cache page, it is returned with an increased refcount.
908 *
909 * If the slot holds a shadow entry of a previously evicted page, it
910 * is returned.
911 *
912 * Otherwise, %NULL is returned.
913 */
914 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
915 {
916 void **pagep;
917 struct page *page;
918
919 rcu_read_lock();
920 repeat:
921 page = NULL;
922 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
923 if (pagep) {
924 page = radix_tree_deref_slot(pagep);
925 if (unlikely(!page))
926 goto out;
927 if (radix_tree_exception(page)) {
928 if (radix_tree_deref_retry(page))
929 goto repeat;
930 /*
931 * Otherwise, shmem/tmpfs must be storing a swap entry
932 * here as an exceptional entry: so return it without
933 * attempting to raise page count.
934 */
935 goto out;
936 }
937 if (!page_cache_get_speculative(page))
938 goto repeat;
939
940 /*
941 * Has the page moved?
942 * This is part of the lockless pagecache protocol. See
943 * include/linux/pagemap.h for details.
944 */
945 if (unlikely(page != *pagep)) {
946 page_cache_release(page);
947 goto repeat;
948 }
949 }
950 out:
951 rcu_read_unlock();
952
953 return page;
954 }
955 EXPORT_SYMBOL(find_get_entry);
956
957 /**
958 * find_get_page - find and get a page reference
959 * @mapping: the address_space to search
960 * @offset: the page index
961 *
962 * Looks up the page cache slot at @mapping & @offset. If there is a
963 * page cache page, it is returned with an increased refcount.
964 *
965 * Otherwise, %NULL is returned.
966 */
967 struct page *find_get_page(struct address_space *mapping, pgoff_t offset)
968 {
969 struct page *page = find_get_entry(mapping, offset);
970
971 if (radix_tree_exceptional_entry(page))
972 page = NULL;
973 return page;
974 }
975 EXPORT_SYMBOL(find_get_page);
976
977 /**
978 * find_lock_entry - locate, pin and lock a page cache entry
979 * @mapping: the address_space to search
980 * @offset: the page cache index
981 *
982 * Looks up the page cache slot at @mapping & @offset. If there is a
983 * page cache page, it is returned locked and with an increased
984 * refcount.
985 *
986 * If the slot holds a shadow entry of a previously evicted page, it
987 * is returned.
988 *
989 * Otherwise, %NULL is returned.
990 *
991 * find_lock_entry() may sleep.
992 */
993 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
994 {
995 struct page *page;
996
997 repeat:
998 page = find_get_entry(mapping, offset);
999 if (page && !radix_tree_exception(page)) {
1000 lock_page(page);
1001 /* Has the page been truncated? */
1002 if (unlikely(page->mapping != mapping)) {
1003 unlock_page(page);
1004 page_cache_release(page);
1005 goto repeat;
1006 }
1007 VM_BUG_ON_PAGE(page->index != offset, page);
1008 }
1009 return page;
1010 }
1011 EXPORT_SYMBOL(find_lock_entry);
1012
1013 /**
1014 * find_lock_page - locate, pin and lock a pagecache page
1015 * @mapping: the address_space to search
1016 * @offset: the page index
1017 *
1018 * Looks up the page cache slot at @mapping & @offset. If there is a
1019 * page cache page, it is returned locked and with an increased
1020 * refcount.
1021 *
1022 * Otherwise, %NULL is returned.
1023 *
1024 * find_lock_page() may sleep.
1025 */
1026 struct page *find_lock_page(struct address_space *mapping, pgoff_t offset)
1027 {
1028 struct page *page = find_lock_entry(mapping, offset);
1029
1030 if (radix_tree_exceptional_entry(page))
1031 page = NULL;
1032 return page;
1033 }
1034 EXPORT_SYMBOL(find_lock_page);
1035
1036 /**
1037 * find_or_create_page - locate or add a pagecache page
1038 * @mapping: the page's address_space
1039 * @index: the page's index into the mapping
1040 * @gfp_mask: page allocation mode
1041 *
1042 * Looks up the page cache slot at @mapping & @offset. If there is a
1043 * page cache page, it is returned locked and with an increased
1044 * refcount.
1045 *
1046 * If the page is not present, a new page is allocated using @gfp_mask
1047 * and added to the page cache and the VM's LRU list. The page is
1048 * returned locked and with an increased refcount.
1049 *
1050 * On memory exhaustion, %NULL is returned.
1051 *
1052 * find_or_create_page() may sleep, even if @gfp_flags specifies an
1053 * atomic allocation!
1054 */
1055 struct page *find_or_create_page(struct address_space *mapping,
1056 pgoff_t index, gfp_t gfp_mask)
1057 {
1058 struct page *page;
1059 int err;
1060 repeat:
1061 page = find_lock_page(mapping, index);
1062 if (!page) {
1063 page = __page_cache_alloc(gfp_mask);
1064 if (!page)
1065 return NULL;
1066 /*
1067 * We want a regular kernel memory (not highmem or DMA etc)
1068 * allocation for the radix tree nodes, but we need to honour
1069 * the context-specific requirements the caller has asked for.
1070 * GFP_RECLAIM_MASK collects those requirements.
1071 */
1072 err = add_to_page_cache_lru(page, mapping, index,
1073 (gfp_mask & GFP_RECLAIM_MASK));
1074 if (unlikely(err)) {
1075 page_cache_release(page);
1076 page = NULL;
1077 if (err == -EEXIST)
1078 goto repeat;
1079 }
1080 }
1081 return page;
1082 }
1083 EXPORT_SYMBOL(find_or_create_page);
1084
1085 /**
1086 * find_get_entries - gang pagecache lookup
1087 * @mapping: The address_space to search
1088 * @start: The starting page cache index
1089 * @nr_entries: The maximum number of entries
1090 * @entries: Where the resulting entries are placed
1091 * @indices: The cache indices corresponding to the entries in @entries
1092 *
1093 * find_get_entries() will search for and return a group of up to
1094 * @nr_entries entries in the mapping. The entries are placed at
1095 * @entries. find_get_entries() takes a reference against any actual
1096 * pages it returns.
1097 *
1098 * The search returns a group of mapping-contiguous page cache entries
1099 * with ascending indexes. There may be holes in the indices due to
1100 * not-present pages.
1101 *
1102 * Any shadow entries of evicted pages are included in the returned
1103 * array.
1104 *
1105 * find_get_entries() returns the number of pages and shadow entries
1106 * which were found.
1107 */
1108 unsigned find_get_entries(struct address_space *mapping,
1109 pgoff_t start, unsigned int nr_entries,
1110 struct page **entries, pgoff_t *indices)
1111 {
1112 void **slot;
1113 unsigned int ret = 0;
1114 struct radix_tree_iter iter;
1115
1116 if (!nr_entries)
1117 return 0;
1118
1119 rcu_read_lock();
1120 restart:
1121 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1122 struct page *page;
1123 repeat:
1124 page = radix_tree_deref_slot(slot);
1125 if (unlikely(!page))
1126 continue;
1127 if (radix_tree_exception(page)) {
1128 if (radix_tree_deref_retry(page))
1129 goto restart;
1130 /*
1131 * Otherwise, we must be storing a swap entry
1132 * here as an exceptional entry: so return it
1133 * without attempting to raise page count.
1134 */
1135 goto export;
1136 }
1137 if (!page_cache_get_speculative(page))
1138 goto repeat;
1139
1140 /* Has the page moved? */
1141 if (unlikely(page != *slot)) {
1142 page_cache_release(page);
1143 goto repeat;
1144 }
1145 export:
1146 indices[ret] = iter.index;
1147 entries[ret] = page;
1148 if (++ret == nr_entries)
1149 break;
1150 }
1151 rcu_read_unlock();
1152 return ret;
1153 }
1154
1155 /**
1156 * find_get_pages - gang pagecache lookup
1157 * @mapping: The address_space to search
1158 * @start: The starting page index
1159 * @nr_pages: The maximum number of pages
1160 * @pages: Where the resulting pages are placed
1161 *
1162 * find_get_pages() will search for and return a group of up to
1163 * @nr_pages pages in the mapping. The pages are placed at @pages.
1164 * find_get_pages() takes a reference against the returned pages.
1165 *
1166 * The search returns a group of mapping-contiguous pages with ascending
1167 * indexes. There may be holes in the indices due to not-present pages.
1168 *
1169 * find_get_pages() returns the number of pages which were found.
1170 */
1171 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
1172 unsigned int nr_pages, struct page **pages)
1173 {
1174 struct radix_tree_iter iter;
1175 void **slot;
1176 unsigned ret = 0;
1177
1178 if (unlikely(!nr_pages))
1179 return 0;
1180
1181 rcu_read_lock();
1182 restart:
1183 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1184 struct page *page;
1185 repeat:
1186 page = radix_tree_deref_slot(slot);
1187 if (unlikely(!page))
1188 continue;
1189
1190 if (radix_tree_exception(page)) {
1191 if (radix_tree_deref_retry(page)) {
1192 /*
1193 * Transient condition which can only trigger
1194 * when entry at index 0 moves out of or back
1195 * to root: none yet gotten, safe to restart.
1196 */
1197 WARN_ON(iter.index);
1198 goto restart;
1199 }
1200 /*
1201 * Otherwise, shmem/tmpfs must be storing a swap entry
1202 * here as an exceptional entry: so skip over it -
1203 * we only reach this from invalidate_mapping_pages().
1204 */
1205 continue;
1206 }
1207
1208 if (!page_cache_get_speculative(page))
1209 goto repeat;
1210
1211 /* Has the page moved? */
1212 if (unlikely(page != *slot)) {
1213 page_cache_release(page);
1214 goto repeat;
1215 }
1216
1217 pages[ret] = page;
1218 if (++ret == nr_pages)
1219 break;
1220 }
1221
1222 rcu_read_unlock();
1223 return ret;
1224 }
1225
1226 /**
1227 * find_get_pages_contig - gang contiguous pagecache lookup
1228 * @mapping: The address_space to search
1229 * @index: The starting page index
1230 * @nr_pages: The maximum number of pages
1231 * @pages: Where the resulting pages are placed
1232 *
1233 * find_get_pages_contig() works exactly like find_get_pages(), except
1234 * that the returned number of pages are guaranteed to be contiguous.
1235 *
1236 * find_get_pages_contig() returns the number of pages which were found.
1237 */
1238 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1239 unsigned int nr_pages, struct page **pages)
1240 {
1241 struct radix_tree_iter iter;
1242 void **slot;
1243 unsigned int ret = 0;
1244
1245 if (unlikely(!nr_pages))
1246 return 0;
1247
1248 rcu_read_lock();
1249 restart:
1250 radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
1251 struct page *page;
1252 repeat:
1253 page = radix_tree_deref_slot(slot);
1254 /* The hole, there no reason to continue */
1255 if (unlikely(!page))
1256 break;
1257
1258 if (radix_tree_exception(page)) {
1259 if (radix_tree_deref_retry(page)) {
1260 /*
1261 * Transient condition which can only trigger
1262 * when entry at index 0 moves out of or back
1263 * to root: none yet gotten, safe to restart.
1264 */
1265 goto restart;
1266 }
1267 /*
1268 * Otherwise, shmem/tmpfs must be storing a swap entry
1269 * here as an exceptional entry: so stop looking for
1270 * contiguous pages.
1271 */
1272 break;
1273 }
1274
1275 if (!page_cache_get_speculative(page))
1276 goto repeat;
1277
1278 /* Has the page moved? */
1279 if (unlikely(page != *slot)) {
1280 page_cache_release(page);
1281 goto repeat;
1282 }
1283
1284 /*
1285 * must check mapping and index after taking the ref.
1286 * otherwise we can get both false positives and false
1287 * negatives, which is just confusing to the caller.
1288 */
1289 if (page->mapping == NULL || page->index != iter.index) {
1290 page_cache_release(page);
1291 break;
1292 }
1293
1294 pages[ret] = page;
1295 if (++ret == nr_pages)
1296 break;
1297 }
1298 rcu_read_unlock();
1299 return ret;
1300 }
1301 EXPORT_SYMBOL(find_get_pages_contig);
1302
1303 /**
1304 * find_get_pages_tag - find and return pages that match @tag
1305 * @mapping: the address_space to search
1306 * @index: the starting page index
1307 * @tag: the tag index
1308 * @nr_pages: the maximum number of pages
1309 * @pages: where the resulting pages are placed
1310 *
1311 * Like find_get_pages, except we only return pages which are tagged with
1312 * @tag. We update @index to index the next page for the traversal.
1313 */
1314 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1315 int tag, unsigned int nr_pages, struct page **pages)
1316 {
1317 struct radix_tree_iter iter;
1318 void **slot;
1319 unsigned ret = 0;
1320
1321 if (unlikely(!nr_pages))
1322 return 0;
1323
1324 rcu_read_lock();
1325 restart:
1326 radix_tree_for_each_tagged(slot, &mapping->page_tree,
1327 &iter, *index, tag) {
1328 struct page *page;
1329 repeat:
1330 page = radix_tree_deref_slot(slot);
1331 if (unlikely(!page))
1332 continue;
1333
1334 if (radix_tree_exception(page)) {
1335 if (radix_tree_deref_retry(page)) {
1336 /*
1337 * Transient condition which can only trigger
1338 * when entry at index 0 moves out of or back
1339 * to root: none yet gotten, safe to restart.
1340 */
1341 goto restart;
1342 }
1343 /*
1344 * This function is never used on a shmem/tmpfs
1345 * mapping, so a swap entry won't be found here.
1346 */
1347 BUG();
1348 }
1349
1350 if (!page_cache_get_speculative(page))
1351 goto repeat;
1352
1353 /* Has the page moved? */
1354 if (unlikely(page != *slot)) {
1355 page_cache_release(page);
1356 goto repeat;
1357 }
1358
1359 pages[ret] = page;
1360 if (++ret == nr_pages)
1361 break;
1362 }
1363
1364 rcu_read_unlock();
1365
1366 if (ret)
1367 *index = pages[ret - 1]->index + 1;
1368
1369 return ret;
1370 }
1371 EXPORT_SYMBOL(find_get_pages_tag);
1372
1373 /**
1374 * grab_cache_page_nowait - returns locked page at given index in given cache
1375 * @mapping: target address_space
1376 * @index: the page index
1377 *
1378 * Same as grab_cache_page(), but do not wait if the page is unavailable.
1379 * This is intended for speculative data generators, where the data can
1380 * be regenerated if the page couldn't be grabbed. This routine should
1381 * be safe to call while holding the lock for another page.
1382 *
1383 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
1384 * and deadlock against the caller's locked page.
1385 */
1386 struct page *
1387 grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
1388 {
1389 struct page *page = find_get_page(mapping, index);
1390
1391 if (page) {
1392 if (trylock_page(page))
1393 return page;
1394 page_cache_release(page);
1395 return NULL;
1396 }
1397 page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
1398 if (page && add_to_page_cache_lru(page, mapping, index, GFP_NOFS)) {
1399 page_cache_release(page);
1400 page = NULL;
1401 }
1402 return page;
1403 }
1404 EXPORT_SYMBOL(grab_cache_page_nowait);
1405
1406 /*
1407 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1408 * a _large_ part of the i/o request. Imagine the worst scenario:
1409 *
1410 * ---R__________________________________________B__________
1411 * ^ reading here ^ bad block(assume 4k)
1412 *
1413 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1414 * => failing the whole request => read(R) => read(R+1) =>
1415 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1416 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1417 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1418 *
1419 * It is going insane. Fix it by quickly scaling down the readahead size.
1420 */
1421 static void shrink_readahead_size_eio(struct file *filp,
1422 struct file_ra_state *ra)
1423 {
1424 ra->ra_pages /= 4;
1425 }
1426
1427 /**
1428 * do_generic_file_read - generic file read routine
1429 * @filp: the file to read
1430 * @ppos: current file position
1431 * @desc: read_descriptor
1432 *
1433 * This is a generic file read routine, and uses the
1434 * mapping->a_ops->readpage() function for the actual low-level stuff.
1435 *
1436 * This is really ugly. But the goto's actually try to clarify some
1437 * of the logic when it comes to error handling etc.
1438 */
1439 static void do_generic_file_read(struct file *filp, loff_t *ppos,
1440 read_descriptor_t *desc)
1441 {
1442 struct address_space *mapping = filp->f_mapping;
1443 struct inode *inode = mapping->host;
1444 struct file_ra_state *ra = &filp->f_ra;
1445 pgoff_t index;
1446 pgoff_t last_index;
1447 pgoff_t prev_index;
1448 unsigned long offset; /* offset into pagecache page */
1449 unsigned int prev_offset;
1450 int error;
1451
1452 index = *ppos >> PAGE_CACHE_SHIFT;
1453 prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
1454 prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
1455 last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1456 offset = *ppos & ~PAGE_CACHE_MASK;
1457
1458 for (;;) {
1459 struct page *page;
1460 pgoff_t end_index;
1461 loff_t isize;
1462 unsigned long nr, ret;
1463
1464 cond_resched();
1465 find_page:
1466 page = find_get_page(mapping, index);
1467 if (!page) {
1468 page_cache_sync_readahead(mapping,
1469 ra, filp,
1470 index, last_index - index);
1471 page = find_get_page(mapping, index);
1472 if (unlikely(page == NULL))
1473 goto no_cached_page;
1474 }
1475 if (PageReadahead(page)) {
1476 page_cache_async_readahead(mapping,
1477 ra, filp, page,
1478 index, last_index - index);
1479 }
1480 if (!PageUptodate(page)) {
1481 if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1482 !mapping->a_ops->is_partially_uptodate)
1483 goto page_not_up_to_date;
1484 if (!trylock_page(page))
1485 goto page_not_up_to_date;
1486 /* Did it get truncated before we got the lock? */
1487 if (!page->mapping)
1488 goto page_not_up_to_date_locked;
1489 if (!mapping->a_ops->is_partially_uptodate(page,
1490 desc, offset))
1491 goto page_not_up_to_date_locked;
1492 unlock_page(page);
1493 }
1494 page_ok:
1495 /*
1496 * i_size must be checked after we know the page is Uptodate.
1497 *
1498 * Checking i_size after the check allows us to calculate
1499 * the correct value for "nr", which means the zero-filled
1500 * part of the page is not copied back to userspace (unless
1501 * another truncate extends the file - this is desired though).
1502 */
1503
1504 isize = i_size_read(inode);
1505 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1506 if (unlikely(!isize || index > end_index)) {
1507 page_cache_release(page);
1508 goto out;
1509 }
1510
1511 /* nr is the maximum number of bytes to copy from this page */
1512 nr = PAGE_CACHE_SIZE;
1513 if (index == end_index) {
1514 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1515 if (nr <= offset) {
1516 page_cache_release(page);
1517 goto out;
1518 }
1519 }
1520 nr = nr - offset;
1521
1522 /* If users can be writing to this page using arbitrary
1523 * virtual addresses, take care about potential aliasing
1524 * before reading the page on the kernel side.
1525 */
1526 if (mapping_writably_mapped(mapping))
1527 flush_dcache_page(page);
1528
1529 /*
1530 * When a sequential read accesses a page several times,
1531 * only mark it as accessed the first time.
1532 */
1533 if (prev_index != index || offset != prev_offset)
1534 mark_page_accessed(page);
1535 prev_index = index;
1536
1537 /*
1538 * Ok, we have the page, and it's up-to-date, so
1539 * now we can copy it to user space...
1540 *
1541 * The file_read_actor routine returns how many bytes were
1542 * actually used..
1543 * NOTE! This may not be the same as how much of a user buffer
1544 * we filled up (we may be padding etc), so we can only update
1545 * "pos" here (the actor routine has to update the user buffer
1546 * pointers and the remaining count).
1547 */
1548 ret = file_read_actor(desc, page, offset, nr);
1549 offset += ret;
1550 index += offset >> PAGE_CACHE_SHIFT;
1551 offset &= ~PAGE_CACHE_MASK;
1552 prev_offset = offset;
1553
1554 page_cache_release(page);
1555 if (ret == nr && desc->count)
1556 continue;
1557 goto out;
1558
1559 page_not_up_to_date:
1560 /* Get exclusive access to the page ... */
1561 error = lock_page_killable(page);
1562 if (unlikely(error))
1563 goto readpage_error;
1564
1565 page_not_up_to_date_locked:
1566 /* Did it get truncated before we got the lock? */
1567 if (!page->mapping) {
1568 unlock_page(page);
1569 page_cache_release(page);
1570 continue;
1571 }
1572
1573 /* Did somebody else fill it already? */
1574 if (PageUptodate(page)) {
1575 unlock_page(page);
1576 goto page_ok;
1577 }
1578
1579 readpage:
1580 /*
1581 * A previous I/O error may have been due to temporary
1582 * failures, eg. multipath errors.
1583 * PG_error will be set again if readpage fails.
1584 */
1585 ClearPageError(page);
1586 /* Start the actual read. The read will unlock the page. */
1587 error = mapping->a_ops->readpage(filp, page);
1588
1589 if (unlikely(error)) {
1590 if (error == AOP_TRUNCATED_PAGE) {
1591 page_cache_release(page);
1592 goto find_page;
1593 }
1594 goto readpage_error;
1595 }
1596
1597 if (!PageUptodate(page)) {
1598 error = lock_page_killable(page);
1599 if (unlikely(error))
1600 goto readpage_error;
1601 if (!PageUptodate(page)) {
1602 if (page->mapping == NULL) {
1603 /*
1604 * invalidate_mapping_pages got it
1605 */
1606 unlock_page(page);
1607 page_cache_release(page);
1608 goto find_page;
1609 }
1610 unlock_page(page);
1611 shrink_readahead_size_eio(filp, ra);
1612 error = -EIO;
1613 goto readpage_error;
1614 }
1615 unlock_page(page);
1616 }
1617
1618 goto page_ok;
1619
1620 readpage_error:
1621 /* UHHUH! A synchronous read error occurred. Report it */
1622 desc->error = error;
1623 page_cache_release(page);
1624 goto out;
1625
1626 no_cached_page:
1627 /*
1628 * Ok, it wasn't cached, so we need to create a new
1629 * page..
1630 */
1631 page = page_cache_alloc_cold(mapping);
1632 if (!page) {
1633 desc->error = -ENOMEM;
1634 goto out;
1635 }
1636 error = add_to_page_cache_lru(page, mapping,
1637 index, GFP_KERNEL);
1638 if (error) {
1639 page_cache_release(page);
1640 if (error == -EEXIST)
1641 goto find_page;
1642 desc->error = error;
1643 goto out;
1644 }
1645 goto readpage;
1646 }
1647
1648 out:
1649 ra->prev_pos = prev_index;
1650 ra->prev_pos <<= PAGE_CACHE_SHIFT;
1651 ra->prev_pos |= prev_offset;
1652
1653 *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1654 file_accessed(filp);
1655 }
1656
1657 int file_read_actor(read_descriptor_t *desc, struct page *page,
1658 unsigned long offset, unsigned long size)
1659 {
1660 char *kaddr;
1661 unsigned long left, count = desc->count;
1662
1663 if (size > count)
1664 size = count;
1665
1666 /*
1667 * Faults on the destination of a read are common, so do it before
1668 * taking the kmap.
1669 */
1670 if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1671 kaddr = kmap_atomic(page);
1672 left = __copy_to_user_inatomic(desc->arg.buf,
1673 kaddr + offset, size);
1674 kunmap_atomic(kaddr);
1675 if (left == 0)
1676 goto success;
1677 }
1678
1679 /* Do it the slow way */
1680 kaddr = kmap(page);
1681 left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1682 kunmap(page);
1683
1684 if (left) {
1685 size -= left;
1686 desc->error = -EFAULT;
1687 }
1688 success:
1689 desc->count = count - size;
1690 desc->written += size;
1691 desc->arg.buf += size;
1692 return size;
1693 }
1694
1695 /*
1696 * Performs necessary checks before doing a write
1697 * @iov: io vector request
1698 * @nr_segs: number of segments in the iovec
1699 * @count: number of bytes to write
1700 * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1701 *
1702 * Adjust number of segments and amount of bytes to write (nr_segs should be
1703 * properly initialized first). Returns appropriate error code that caller
1704 * should return or zero in case that write should be allowed.
1705 */
1706 int generic_segment_checks(const struct iovec *iov,
1707 unsigned long *nr_segs, size_t *count, int access_flags)
1708 {
1709 unsigned long seg;
1710 size_t cnt = 0;
1711 for (seg = 0; seg < *nr_segs; seg++) {
1712 const struct iovec *iv = &iov[seg];
1713
1714 /*
1715 * If any segment has a negative length, or the cumulative
1716 * length ever wraps negative then return -EINVAL.
1717 */
1718 cnt += iv->iov_len;
1719 if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1720 return -EINVAL;
1721 if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1722 continue;
1723 if (seg == 0)
1724 return -EFAULT;
1725 *nr_segs = seg;
1726 cnt -= iv->iov_len; /* This segment is no good */
1727 break;
1728 }
1729 *count = cnt;
1730 return 0;
1731 }
1732 EXPORT_SYMBOL(generic_segment_checks);
1733
1734 /**
1735 * generic_file_aio_read - generic filesystem read routine
1736 * @iocb: kernel I/O control block
1737 * @iov: io vector request
1738 * @nr_segs: number of segments in the iovec
1739 * @pos: current file position
1740 *
1741 * This is the "read()" routine for all filesystems
1742 * that can use the page cache directly.
1743 */
1744 ssize_t
1745 generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1746 unsigned long nr_segs, loff_t pos)
1747 {
1748 struct file *filp = iocb->ki_filp;
1749 ssize_t retval;
1750 unsigned long seg = 0;
1751 size_t count;
1752 loff_t *ppos = &iocb->ki_pos;
1753
1754 count = 0;
1755 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1756 if (retval)
1757 return retval;
1758
1759 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1760 if (filp->f_flags & O_DIRECT) {
1761 loff_t size;
1762 struct address_space *mapping;
1763 struct inode *inode;
1764
1765 mapping = filp->f_mapping;
1766 inode = mapping->host;
1767 if (!count)
1768 goto out; /* skip atime */
1769 size = i_size_read(inode);
1770 retval = filemap_write_and_wait_range(mapping, pos,
1771 pos + iov_length(iov, nr_segs) - 1);
1772 if (!retval) {
1773 retval = mapping->a_ops->direct_IO(READ, iocb,
1774 iov, pos, nr_segs);
1775 }
1776 if (retval > 0) {
1777 *ppos = pos + retval;
1778 count -= retval;
1779 }
1780
1781 /*
1782 * Btrfs can have a short DIO read if we encounter
1783 * compressed extents, so if there was an error, or if
1784 * we've already read everything we wanted to, or if
1785 * there was a short read because we hit EOF, go ahead
1786 * and return. Otherwise fallthrough to buffered io for
1787 * the rest of the read.
1788 */
1789 if (retval < 0 || !count || *ppos >= size) {
1790 file_accessed(filp);
1791 goto out;
1792 }
1793 }
1794
1795 count = retval;
1796 for (seg = 0; seg < nr_segs; seg++) {
1797 read_descriptor_t desc;
1798 loff_t offset = 0;
1799
1800 /*
1801 * If we did a short DIO read we need to skip the section of the
1802 * iov that we've already read data into.
1803 */
1804 if (count) {
1805 if (count > iov[seg].iov_len) {
1806 count -= iov[seg].iov_len;
1807 continue;
1808 }
1809 offset = count;
1810 count = 0;
1811 }
1812
1813 desc.written = 0;
1814 desc.arg.buf = iov[seg].iov_base + offset;
1815 desc.count = iov[seg].iov_len - offset;
1816 if (desc.count == 0)
1817 continue;
1818 desc.error = 0;
1819 do_generic_file_read(filp, ppos, &desc);
1820 retval += desc.written;
1821 if (desc.error) {
1822 retval = retval ?: desc.error;
1823 break;
1824 }
1825 if (desc.count > 0)
1826 break;
1827 }
1828 out:
1829 return retval;
1830 }
1831 EXPORT_SYMBOL(generic_file_aio_read);
1832
1833 #ifdef CONFIG_MMU
1834 /**
1835 * page_cache_read - adds requested page to the page cache if not already there
1836 * @file: file to read
1837 * @offset: page index
1838 *
1839 * This adds the requested page to the page cache if it isn't already there,
1840 * and schedules an I/O to read in its contents from disk.
1841 */
1842 static int page_cache_read(struct file *file, pgoff_t offset)
1843 {
1844 struct address_space *mapping = file->f_mapping;
1845 struct page *page;
1846 int ret;
1847
1848 do {
1849 page = page_cache_alloc_cold(mapping);
1850 if (!page)
1851 return -ENOMEM;
1852
1853 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1854 if (ret == 0)
1855 ret = mapping->a_ops->readpage(file, page);
1856 else if (ret == -EEXIST)
1857 ret = 0; /* losing race to add is OK */
1858
1859 page_cache_release(page);
1860
1861 } while (ret == AOP_TRUNCATED_PAGE);
1862
1863 return ret;
1864 }
1865
1866 #define MMAP_LOTSAMISS (100)
1867
1868 /*
1869 * Synchronous readahead happens when we don't even find
1870 * a page in the page cache at all.
1871 */
1872 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1873 struct file_ra_state *ra,
1874 struct file *file,
1875 pgoff_t offset)
1876 {
1877 unsigned long ra_pages;
1878 struct address_space *mapping = file->f_mapping;
1879
1880 /* If we don't want any read-ahead, don't bother */
1881 if (vma->vm_flags & VM_RAND_READ)
1882 return;
1883 if (!ra->ra_pages)
1884 return;
1885
1886 if (vma->vm_flags & VM_SEQ_READ) {
1887 page_cache_sync_readahead(mapping, ra, file, offset,
1888 ra->ra_pages);
1889 return;
1890 }
1891
1892 /* Avoid banging the cache line if not needed */
1893 if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
1894 ra->mmap_miss++;
1895
1896 /*
1897 * Do we miss much more than hit in this file? If so,
1898 * stop bothering with read-ahead. It will only hurt.
1899 */
1900 if (ra->mmap_miss > MMAP_LOTSAMISS)
1901 return;
1902
1903 /*
1904 * mmap read-around
1905 */
1906 ra_pages = max_sane_readahead(ra->ra_pages);
1907 ra->start = max_t(long, 0, offset - ra_pages / 2);
1908 ra->size = ra_pages;
1909 ra->async_size = ra_pages / 4;
1910 ra_submit(ra, mapping, file);
1911 }
1912
1913 /*
1914 * Asynchronous readahead happens when we find the page and PG_readahead,
1915 * so we want to possibly extend the readahead further..
1916 */
1917 static void do_async_mmap_readahead(struct vm_area_struct *vma,
1918 struct file_ra_state *ra,
1919 struct file *file,
1920 struct page *page,
1921 pgoff_t offset)
1922 {
1923 struct address_space *mapping = file->f_mapping;
1924
1925 /* If we don't want any read-ahead, don't bother */
1926 if (vma->vm_flags & VM_RAND_READ)
1927 return;
1928 if (ra->mmap_miss > 0)
1929 ra->mmap_miss--;
1930 if (PageReadahead(page))
1931 page_cache_async_readahead(mapping, ra, file,
1932 page, offset, ra->ra_pages);
1933 }
1934
1935 /**
1936 * filemap_fault - read in file data for page fault handling
1937 * @vma: vma in which the fault was taken
1938 * @vmf: struct vm_fault containing details of the fault
1939 *
1940 * filemap_fault() is invoked via the vma operations vector for a
1941 * mapped memory region to read in file data during a page fault.
1942 *
1943 * The goto's are kind of ugly, but this streamlines the normal case of having
1944 * it in the page cache, and handles the special cases reasonably without
1945 * having a lot of duplicated code.
1946 */
1947 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1948 {
1949 int error;
1950 struct file *file = vma->vm_file;
1951 struct address_space *mapping = file->f_mapping;
1952 struct file_ra_state *ra = &file->f_ra;
1953 struct inode *inode = mapping->host;
1954 pgoff_t offset = vmf->pgoff;
1955 struct page *page;
1956 loff_t size;
1957 int ret = 0;
1958
1959 size = round_up(i_size_read(inode), PAGE_CACHE_SIZE);
1960 if (offset >= size >> PAGE_CACHE_SHIFT)
1961 return VM_FAULT_SIGBUS;
1962
1963 /*
1964 * Do we have something in the page cache already?
1965 */
1966 page = find_get_page(mapping, offset);
1967 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
1968 /*
1969 * We found the page, so try async readahead before
1970 * waiting for the lock.
1971 */
1972 do_async_mmap_readahead(vma, ra, file, page, offset);
1973 } else if (!page) {
1974 /* No page in the page cache at all */
1975 do_sync_mmap_readahead(vma, ra, file, offset);
1976 count_vm_event(PGMAJFAULT);
1977 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1978 ret = VM_FAULT_MAJOR;
1979 retry_find:
1980 page = find_get_page(mapping, offset);
1981 if (!page)
1982 goto no_cached_page;
1983 }
1984
1985 if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
1986 page_cache_release(page);
1987 return ret | VM_FAULT_RETRY;
1988 }
1989
1990 /* Did it get truncated? */
1991 if (unlikely(page->mapping != mapping)) {
1992 unlock_page(page);
1993 put_page(page);
1994 goto retry_find;
1995 }
1996 VM_BUG_ON_PAGE(page->index != offset, page);
1997
1998 /*
1999 * We have a locked page in the page cache, now we need to check
2000 * that it's up-to-date. If not, it is going to be due to an error.
2001 */
2002 if (unlikely(!PageUptodate(page)))
2003 goto page_not_uptodate;
2004
2005 /*
2006 * Found the page and have a reference on it.
2007 * We must recheck i_size under page lock.
2008 */
2009 size = round_up(i_size_read(inode), PAGE_CACHE_SIZE);
2010 if (unlikely(offset >= size >> PAGE_CACHE_SHIFT)) {
2011 unlock_page(page);
2012 page_cache_release(page);
2013 return VM_FAULT_SIGBUS;
2014 }
2015
2016 vmf->page = page;
2017 return ret | VM_FAULT_LOCKED;
2018
2019 no_cached_page:
2020 /*
2021 * We're only likely to ever get here if MADV_RANDOM is in
2022 * effect.
2023 */
2024 error = page_cache_read(file, offset);
2025
2026 /*
2027 * The page we want has now been added to the page cache.
2028 * In the unlikely event that someone removed it in the
2029 * meantime, we'll just come back here and read it again.
2030 */
2031 if (error >= 0)
2032 goto retry_find;
2033
2034 /*
2035 * An error return from page_cache_read can result if the
2036 * system is low on memory, or a problem occurs while trying
2037 * to schedule I/O.
2038 */
2039 if (error == -ENOMEM)
2040 return VM_FAULT_OOM;
2041 return VM_FAULT_SIGBUS;
2042
2043 page_not_uptodate:
2044 /*
2045 * Umm, take care of errors if the page isn't up-to-date.
2046 * Try to re-read it _once_. We do this synchronously,
2047 * because there really aren't any performance issues here
2048 * and we need to check for errors.
2049 */
2050 ClearPageError(page);
2051 error = mapping->a_ops->readpage(file, page);
2052 if (!error) {
2053 wait_on_page_locked(page);
2054 if (!PageUptodate(page))
2055 error = -EIO;
2056 }
2057 page_cache_release(page);
2058
2059 if (!error || error == AOP_TRUNCATED_PAGE)
2060 goto retry_find;
2061
2062 /* Things didn't work out. Return zero to tell the mm layer so. */
2063 shrink_readahead_size_eio(file, ra);
2064 return VM_FAULT_SIGBUS;
2065 }
2066 EXPORT_SYMBOL(filemap_fault);
2067
2068 void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf)
2069 {
2070 struct radix_tree_iter iter;
2071 void **slot;
2072 struct file *file = vma->vm_file;
2073 struct address_space *mapping = file->f_mapping;
2074 loff_t size;
2075 struct page *page;
2076 unsigned long address = (unsigned long) vmf->virtual_address;
2077 unsigned long addr;
2078 pte_t *pte;
2079
2080 rcu_read_lock();
2081 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, vmf->pgoff) {
2082 if (iter.index > vmf->max_pgoff)
2083 break;
2084 repeat:
2085 page = radix_tree_deref_slot(slot);
2086 if (unlikely(!page))
2087 goto next;
2088 if (radix_tree_exception(page)) {
2089 if (radix_tree_deref_retry(page))
2090 break;
2091 else
2092 goto next;
2093 }
2094
2095 if (!page_cache_get_speculative(page))
2096 goto repeat;
2097
2098 /* Has the page moved? */
2099 if (unlikely(page != *slot)) {
2100 page_cache_release(page);
2101 goto repeat;
2102 }
2103
2104 if (!PageUptodate(page) ||
2105 PageReadahead(page) ||
2106 PageHWPoison(page))
2107 goto skip;
2108 if (!trylock_page(page))
2109 goto skip;
2110
2111 if (page->mapping != mapping || !PageUptodate(page))
2112 goto unlock;
2113
2114 size = round_up(i_size_read(mapping->host), PAGE_CACHE_SIZE);
2115 if (page->index >= size >> PAGE_CACHE_SHIFT)
2116 goto unlock;
2117
2118 pte = vmf->pte + page->index - vmf->pgoff;
2119 if (!pte_none(*pte))
2120 goto unlock;
2121
2122 if (file->f_ra.mmap_miss > 0)
2123 file->f_ra.mmap_miss--;
2124 addr = address + (page->index - vmf->pgoff) * PAGE_SIZE;
2125 do_set_pte(vma, addr, page, pte, false, false);
2126 unlock_page(page);
2127 goto next;
2128 unlock:
2129 unlock_page(page);
2130 skip:
2131 page_cache_release(page);
2132 next:
2133 if (iter.index == vmf->max_pgoff)
2134 break;
2135 }
2136 rcu_read_unlock();
2137 }
2138 EXPORT_SYMBOL(filemap_map_pages);
2139
2140 int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2141 {
2142 struct page *page = vmf->page;
2143 struct inode *inode = file_inode(vma->vm_file);
2144 int ret = VM_FAULT_LOCKED;
2145
2146 sb_start_pagefault(inode->i_sb);
2147 file_update_time(vma->vm_file);
2148 lock_page(page);
2149 if (page->mapping != inode->i_mapping) {
2150 unlock_page(page);
2151 ret = VM_FAULT_NOPAGE;
2152 goto out;
2153 }
2154 /*
2155 * We mark the page dirty already here so that when freeze is in
2156 * progress, we are guaranteed that writeback during freezing will
2157 * see the dirty page and writeprotect it again.
2158 */
2159 set_page_dirty(page);
2160 wait_for_stable_page(page);
2161 out:
2162 sb_end_pagefault(inode->i_sb);
2163 return ret;
2164 }
2165 EXPORT_SYMBOL(filemap_page_mkwrite);
2166
2167 const struct vm_operations_struct generic_file_vm_ops = {
2168 .fault = filemap_fault,
2169 .map_pages = filemap_map_pages,
2170 .page_mkwrite = filemap_page_mkwrite,
2171 .remap_pages = generic_file_remap_pages,
2172 };
2173
2174 /* This is used for a general mmap of a disk file */
2175
2176 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2177 {
2178 struct address_space *mapping = file->f_mapping;
2179
2180 if (!mapping->a_ops->readpage)
2181 return -ENOEXEC;
2182 file_accessed(file);
2183 vma->vm_ops = &generic_file_vm_ops;
2184 return 0;
2185 }
2186
2187 /*
2188 * This is for filesystems which do not implement ->writepage.
2189 */
2190 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2191 {
2192 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2193 return -EINVAL;
2194 return generic_file_mmap(file, vma);
2195 }
2196 #else
2197 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2198 {
2199 return -ENOSYS;
2200 }
2201 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2202 {
2203 return -ENOSYS;
2204 }
2205 #endif /* CONFIG_MMU */
2206
2207 EXPORT_SYMBOL(generic_file_mmap);
2208 EXPORT_SYMBOL(generic_file_readonly_mmap);
2209
2210 static struct page *wait_on_page_read(struct page *page)
2211 {
2212 if (!IS_ERR(page)) {
2213 wait_on_page_locked(page);
2214 if (!PageUptodate(page)) {
2215 page_cache_release(page);
2216 page = ERR_PTR(-EIO);
2217 }
2218 }
2219 return page;
2220 }
2221
2222 static struct page *__read_cache_page(struct address_space *mapping,
2223 pgoff_t index,
2224 int (*filler)(void *, struct page *),
2225 void *data,
2226 gfp_t gfp)
2227 {
2228 struct page *page;
2229 int err;
2230 repeat:
2231 page = find_get_page(mapping, index);
2232 if (!page) {
2233 page = __page_cache_alloc(gfp | __GFP_COLD);
2234 if (!page)
2235 return ERR_PTR(-ENOMEM);
2236 err = add_to_page_cache_lru(page, mapping, index, gfp);
2237 if (unlikely(err)) {
2238 page_cache_release(page);
2239 if (err == -EEXIST)
2240 goto repeat;
2241 /* Presumably ENOMEM for radix tree node */
2242 return ERR_PTR(err);
2243 }
2244 err = filler(data, page);
2245 if (err < 0) {
2246 page_cache_release(page);
2247 page = ERR_PTR(err);
2248 } else {
2249 page = wait_on_page_read(page);
2250 }
2251 }
2252 return page;
2253 }
2254
2255 static struct page *do_read_cache_page(struct address_space *mapping,
2256 pgoff_t index,
2257 int (*filler)(void *, struct page *),
2258 void *data,
2259 gfp_t gfp)
2260
2261 {
2262 struct page *page;
2263 int err;
2264
2265 retry:
2266 page = __read_cache_page(mapping, index, filler, data, gfp);
2267 if (IS_ERR(page))
2268 return page;
2269 if (PageUptodate(page))
2270 goto out;
2271
2272 lock_page(page);
2273 if (!page->mapping) {
2274 unlock_page(page);
2275 page_cache_release(page);
2276 goto retry;
2277 }
2278 if (PageUptodate(page)) {
2279 unlock_page(page);
2280 goto out;
2281 }
2282 err = filler(data, page);
2283 if (err < 0) {
2284 page_cache_release(page);
2285 return ERR_PTR(err);
2286 } else {
2287 page = wait_on_page_read(page);
2288 if (IS_ERR(page))
2289 return page;
2290 }
2291 out:
2292 mark_page_accessed(page);
2293 return page;
2294 }
2295
2296 /**
2297 * read_cache_page - read into page cache, fill it if needed
2298 * @mapping: the page's address_space
2299 * @index: the page index
2300 * @filler: function to perform the read
2301 * @data: first arg to filler(data, page) function, often left as NULL
2302 *
2303 * Read into the page cache. If a page already exists, and PageUptodate() is
2304 * not set, try to fill the page and wait for it to become unlocked.
2305 *
2306 * If the page does not get brought uptodate, return -EIO.
2307 */
2308 struct page *read_cache_page(struct address_space *mapping,
2309 pgoff_t index,
2310 int (*filler)(void *, struct page *),
2311 void *data)
2312 {
2313 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2314 }
2315 EXPORT_SYMBOL(read_cache_page);
2316
2317 /**
2318 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2319 * @mapping: the page's address_space
2320 * @index: the page index
2321 * @gfp: the page allocator flags to use if allocating
2322 *
2323 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2324 * any new page allocations done using the specified allocation flags.
2325 *
2326 * If the page does not get brought uptodate, return -EIO.
2327 */
2328 struct page *read_cache_page_gfp(struct address_space *mapping,
2329 pgoff_t index,
2330 gfp_t gfp)
2331 {
2332 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2333
2334 return do_read_cache_page(mapping, index, filler, NULL, gfp);
2335 }
2336 EXPORT_SYMBOL(read_cache_page_gfp);
2337
2338 static size_t __iovec_copy_from_user_inatomic(char *vaddr,
2339 const struct iovec *iov, size_t base, size_t bytes)
2340 {
2341 size_t copied = 0, left = 0;
2342
2343 while (bytes) {
2344 char __user *buf = iov->iov_base + base;
2345 int copy = min(bytes, iov->iov_len - base);
2346
2347 base = 0;
2348 left = __copy_from_user_inatomic(vaddr, buf, copy);
2349 copied += copy;
2350 bytes -= copy;
2351 vaddr += copy;
2352 iov++;
2353
2354 if (unlikely(left))
2355 break;
2356 }
2357 return copied - left;
2358 }
2359
2360 /*
2361 * Copy as much as we can into the page and return the number of bytes which
2362 * were successfully copied. If a fault is encountered then return the number of
2363 * bytes which were copied.
2364 */
2365 size_t iov_iter_copy_from_user_atomic(struct page *page,
2366 struct iov_iter *i, unsigned long offset, size_t bytes)
2367 {
2368 char *kaddr;
2369 size_t copied;
2370
2371 BUG_ON(!in_atomic());
2372 kaddr = kmap_atomic(page);
2373 if (likely(i->nr_segs == 1)) {
2374 int left;
2375 char __user *buf = i->iov->iov_base + i->iov_offset;
2376 left = __copy_from_user_inatomic(kaddr + offset, buf, bytes);
2377 copied = bytes - left;
2378 } else {
2379 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
2380 i->iov, i->iov_offset, bytes);
2381 }
2382 kunmap_atomic(kaddr);
2383
2384 return copied;
2385 }
2386 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
2387
2388 /*
2389 * This has the same sideeffects and return value as
2390 * iov_iter_copy_from_user_atomic().
2391 * The difference is that it attempts to resolve faults.
2392 * Page must not be locked.
2393 */
2394 size_t iov_iter_copy_from_user(struct page *page,
2395 struct iov_iter *i, unsigned long offset, size_t bytes)
2396 {
2397 char *kaddr;
2398 size_t copied;
2399
2400 kaddr = kmap(page);
2401 if (likely(i->nr_segs == 1)) {
2402 int left;
2403 char __user *buf = i->iov->iov_base + i->iov_offset;
2404 left = __copy_from_user(kaddr + offset, buf, bytes);
2405 copied = bytes - left;
2406 } else {
2407 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
2408 i->iov, i->iov_offset, bytes);
2409 }
2410 kunmap(page);
2411 return copied;
2412 }
2413 EXPORT_SYMBOL(iov_iter_copy_from_user);
2414
2415 void iov_iter_advance(struct iov_iter *i, size_t bytes)
2416 {
2417 BUG_ON(i->count < bytes);
2418
2419 if (likely(i->nr_segs == 1)) {
2420 i->iov_offset += bytes;
2421 i->count -= bytes;
2422 } else {
2423 const struct iovec *iov = i->iov;
2424 size_t base = i->iov_offset;
2425 unsigned long nr_segs = i->nr_segs;
2426
2427 /*
2428 * The !iov->iov_len check ensures we skip over unlikely
2429 * zero-length segments (without overruning the iovec).
2430 */
2431 while (bytes || unlikely(i->count && !iov->iov_len)) {
2432 int copy;
2433
2434 copy = min(bytes, iov->iov_len - base);
2435 BUG_ON(!i->count || i->count < copy);
2436 i->count -= copy;
2437 bytes -= copy;
2438 base += copy;
2439 if (iov->iov_len == base) {
2440 iov++;
2441 nr_segs--;
2442 base = 0;
2443 }
2444 }
2445 i->iov = iov;
2446 i->iov_offset = base;
2447 i->nr_segs = nr_segs;
2448 }
2449 }
2450 EXPORT_SYMBOL(iov_iter_advance);
2451
2452 /*
2453 * Fault in the first iovec of the given iov_iter, to a maximum length
2454 * of bytes. Returns 0 on success, or non-zero if the memory could not be
2455 * accessed (ie. because it is an invalid address).
2456 *
2457 * writev-intensive code may want this to prefault several iovecs -- that
2458 * would be possible (callers must not rely on the fact that _only_ the
2459 * first iovec will be faulted with the current implementation).
2460 */
2461 int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
2462 {
2463 char __user *buf = i->iov->iov_base + i->iov_offset;
2464 bytes = min(bytes, i->iov->iov_len - i->iov_offset);
2465 return fault_in_pages_readable(buf, bytes);
2466 }
2467 EXPORT_SYMBOL(iov_iter_fault_in_readable);
2468
2469 /*
2470 * Return the count of just the current iov_iter segment.
2471 */
2472 size_t iov_iter_single_seg_count(const struct iov_iter *i)
2473 {
2474 const struct iovec *iov = i->iov;
2475 if (i->nr_segs == 1)
2476 return i->count;
2477 else
2478 return min(i->count, iov->iov_len - i->iov_offset);
2479 }
2480 EXPORT_SYMBOL(iov_iter_single_seg_count);
2481
2482 /*
2483 * Performs necessary checks before doing a write
2484 *
2485 * Can adjust writing position or amount of bytes to write.
2486 * Returns appropriate error code that caller should return or
2487 * zero in case that write should be allowed.
2488 */
2489 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
2490 {
2491 struct inode *inode = file->f_mapping->host;
2492 unsigned long limit = rlimit(RLIMIT_FSIZE);
2493
2494 if (unlikely(*pos < 0))
2495 return -EINVAL;
2496
2497 if (!isblk) {
2498 /* FIXME: this is for backwards compatibility with 2.4 */
2499 if (file->f_flags & O_APPEND)
2500 *pos = i_size_read(inode);
2501
2502 if (limit != RLIM_INFINITY) {
2503 if (*pos >= limit) {
2504 send_sig(SIGXFSZ, current, 0);
2505 return -EFBIG;
2506 }
2507 if (*count > limit - (typeof(limit))*pos) {
2508 *count = limit - (typeof(limit))*pos;
2509 }
2510 }
2511 }
2512
2513 /*
2514 * LFS rule
2515 */
2516 if (unlikely(*pos + *count > MAX_NON_LFS &&
2517 !(file->f_flags & O_LARGEFILE))) {
2518 if (*pos >= MAX_NON_LFS) {
2519 return -EFBIG;
2520 }
2521 if (*count > MAX_NON_LFS - (unsigned long)*pos) {
2522 *count = MAX_NON_LFS - (unsigned long)*pos;
2523 }
2524 }
2525
2526 /*
2527 * Are we about to exceed the fs block limit ?
2528 *
2529 * If we have written data it becomes a short write. If we have
2530 * exceeded without writing data we send a signal and return EFBIG.
2531 * Linus frestrict idea will clean these up nicely..
2532 */
2533 if (likely(!isblk)) {
2534 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
2535 if (*count || *pos > inode->i_sb->s_maxbytes) {
2536 return -EFBIG;
2537 }
2538 /* zero-length writes at ->s_maxbytes are OK */
2539 }
2540
2541 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
2542 *count = inode->i_sb->s_maxbytes - *pos;
2543 } else {
2544 #ifdef CONFIG_BLOCK
2545 loff_t isize;
2546 if (bdev_read_only(I_BDEV(inode)))
2547 return -EPERM;
2548 isize = i_size_read(inode);
2549 if (*pos >= isize) {
2550 if (*count || *pos > isize)
2551 return -ENOSPC;
2552 }
2553
2554 if (*pos + *count > isize)
2555 *count = isize - *pos;
2556 #else
2557 return -EPERM;
2558 #endif
2559 }
2560 return 0;
2561 }
2562 EXPORT_SYMBOL(generic_write_checks);
2563
2564 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2565 loff_t pos, unsigned len, unsigned flags,
2566 struct page **pagep, void **fsdata)
2567 {
2568 const struct address_space_operations *aops = mapping->a_ops;
2569
2570 return aops->write_begin(file, mapping, pos, len, flags,
2571 pagep, fsdata);
2572 }
2573 EXPORT_SYMBOL(pagecache_write_begin);
2574
2575 int pagecache_write_end(struct file *file, struct address_space *mapping,
2576 loff_t pos, unsigned len, unsigned copied,
2577 struct page *page, void *fsdata)
2578 {
2579 const struct address_space_operations *aops = mapping->a_ops;
2580
2581 mark_page_accessed(page);
2582 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2583 }
2584 EXPORT_SYMBOL(pagecache_write_end);
2585
2586 ssize_t
2587 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
2588 unsigned long *nr_segs, loff_t pos, loff_t *ppos,
2589 size_t count, size_t ocount)
2590 {
2591 struct file *file = iocb->ki_filp;
2592 struct address_space *mapping = file->f_mapping;
2593 struct inode *inode = mapping->host;
2594 ssize_t written;
2595 size_t write_len;
2596 pgoff_t end;
2597
2598 if (count != ocount)
2599 *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
2600
2601 write_len = iov_length(iov, *nr_segs);
2602 end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
2603
2604 written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2605 if (written)
2606 goto out;
2607
2608 /*
2609 * After a write we want buffered reads to be sure to go to disk to get
2610 * the new data. We invalidate clean cached page from the region we're
2611 * about to write. We do this *before* the write so that we can return
2612 * without clobbering -EIOCBQUEUED from ->direct_IO().
2613 */
2614 if (mapping->nrpages) {
2615 written = invalidate_inode_pages2_range(mapping,
2616 pos >> PAGE_CACHE_SHIFT, end);
2617 /*
2618 * If a page can not be invalidated, return 0 to fall back
2619 * to buffered write.
2620 */
2621 if (written) {
2622 if (written == -EBUSY)
2623 return 0;
2624 goto out;
2625 }
2626 }
2627
2628 written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs);
2629
2630 /*
2631 * Finally, try again to invalidate clean pages which might have been
2632 * cached by non-direct readahead, or faulted in by get_user_pages()
2633 * if the source of the write was an mmap'ed region of the file
2634 * we're writing. Either one is a pretty crazy thing to do,
2635 * so we don't support it 100%. If this invalidation
2636 * fails, tough, the write still worked...
2637 */
2638 if (mapping->nrpages) {
2639 invalidate_inode_pages2_range(mapping,
2640 pos >> PAGE_CACHE_SHIFT, end);
2641 }
2642
2643 if (written > 0) {
2644 pos += written;
2645 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2646 i_size_write(inode, pos);
2647 mark_inode_dirty(inode);
2648 }
2649 *ppos = pos;
2650 }
2651 out:
2652 return written;
2653 }
2654 EXPORT_SYMBOL(generic_file_direct_write);
2655
2656 /*
2657 * Find or create a page at the given pagecache position. Return the locked
2658 * page. This function is specifically for buffered writes.
2659 */
2660 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2661 pgoff_t index, unsigned flags)
2662 {
2663 int status;
2664 gfp_t gfp_mask;
2665 struct page *page;
2666 gfp_t gfp_notmask = 0;
2667
2668 gfp_mask = mapping_gfp_mask(mapping);
2669 if (mapping_cap_account_dirty(mapping))
2670 gfp_mask |= __GFP_WRITE;
2671 if (flags & AOP_FLAG_NOFS)
2672 gfp_notmask = __GFP_FS;
2673 repeat:
2674 page = find_lock_page(mapping, index);
2675 if (page)
2676 goto found;
2677
2678 page = __page_cache_alloc(gfp_mask & ~gfp_notmask);
2679 if (!page)
2680 return NULL;
2681 status = add_to_page_cache_lru(page, mapping, index,
2682 GFP_KERNEL & ~gfp_notmask);
2683 if (unlikely(status)) {
2684 page_cache_release(page);
2685 if (status == -EEXIST)
2686 goto repeat;
2687 return NULL;
2688 }
2689 found:
2690 wait_for_stable_page(page);
2691 return page;
2692 }
2693 EXPORT_SYMBOL(grab_cache_page_write_begin);
2694
2695 static ssize_t generic_perform_write(struct file *file,
2696 struct iov_iter *i, loff_t pos)
2697 {
2698 struct address_space *mapping = file->f_mapping;
2699 const struct address_space_operations *a_ops = mapping->a_ops;
2700 long status = 0;
2701 ssize_t written = 0;
2702 unsigned int flags = 0;
2703
2704 /*
2705 * Copies from kernel address space cannot fail (NFSD is a big user).
2706 */
2707 if (segment_eq(get_fs(), KERNEL_DS))
2708 flags |= AOP_FLAG_UNINTERRUPTIBLE;
2709
2710 do {
2711 struct page *page;
2712 unsigned long offset; /* Offset into pagecache page */
2713 unsigned long bytes; /* Bytes to write to page */
2714 size_t copied; /* Bytes copied from user */
2715 void *fsdata;
2716
2717 offset = (pos & (PAGE_CACHE_SIZE - 1));
2718 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2719 iov_iter_count(i));
2720
2721 again:
2722 /*
2723 * Bring in the user page that we will copy from _first_.
2724 * Otherwise there's a nasty deadlock on copying from the
2725 * same page as we're writing to, without it being marked
2726 * up-to-date.
2727 *
2728 * Not only is this an optimisation, but it is also required
2729 * to check that the address is actually valid, when atomic
2730 * usercopies are used, below.
2731 */
2732 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2733 status = -EFAULT;
2734 break;
2735 }
2736
2737 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2738 &page, &fsdata);
2739 if (unlikely(status))
2740 break;
2741
2742 if (mapping_writably_mapped(mapping))
2743 flush_dcache_page(page);
2744
2745 pagefault_disable();
2746 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2747 pagefault_enable();
2748 flush_dcache_page(page);
2749
2750 mark_page_accessed(page);
2751 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2752 page, fsdata);
2753 if (unlikely(status < 0))
2754 break;
2755 copied = status;
2756
2757 cond_resched();
2758
2759 iov_iter_advance(i, copied);
2760 if (unlikely(copied == 0)) {
2761 /*
2762 * If we were unable to copy any data at all, we must
2763 * fall back to a single segment length write.
2764 *
2765 * If we didn't fallback here, we could livelock
2766 * because not all segments in the iov can be copied at
2767 * once without a pagefault.
2768 */
2769 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2770 iov_iter_single_seg_count(i));
2771 goto again;
2772 }
2773 pos += copied;
2774 written += copied;
2775
2776 balance_dirty_pages_ratelimited(mapping);
2777 if (fatal_signal_pending(current)) {
2778 status = -EINTR;
2779 break;
2780 }
2781 } while (iov_iter_count(i));
2782
2783 return written ? written : status;
2784 }
2785
2786 ssize_t
2787 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2788 unsigned long nr_segs, loff_t pos, loff_t *ppos,
2789 size_t count, ssize_t written)
2790 {
2791 struct file *file = iocb->ki_filp;
2792 ssize_t status;
2793 struct iov_iter i;
2794
2795 iov_iter_init(&i, iov, nr_segs, count, written);
2796 status = generic_perform_write(file, &i, pos);
2797
2798 if (likely(status >= 0)) {
2799 written += status;
2800 *ppos = pos + status;
2801 }
2802
2803 return written ? written : status;
2804 }
2805 EXPORT_SYMBOL(generic_file_buffered_write);
2806
2807 /**
2808 * __generic_file_aio_write - write data to a file
2809 * @iocb: IO state structure (file, offset, etc.)
2810 * @iov: vector with data to write
2811 * @nr_segs: number of segments in the vector
2812 * @ppos: position where to write
2813 *
2814 * This function does all the work needed for actually writing data to a
2815 * file. It does all basic checks, removes SUID from the file, updates
2816 * modification times and calls proper subroutines depending on whether we
2817 * do direct IO or a standard buffered write.
2818 *
2819 * It expects i_mutex to be grabbed unless we work on a block device or similar
2820 * object which does not need locking at all.
2821 *
2822 * This function does *not* take care of syncing data in case of O_SYNC write.
2823 * A caller has to handle it. This is mainly due to the fact that we want to
2824 * avoid syncing under i_mutex.
2825 */
2826 ssize_t __generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2827 unsigned long nr_segs, loff_t *ppos)
2828 {
2829 struct file *file = iocb->ki_filp;
2830 struct address_space * mapping = file->f_mapping;
2831 size_t ocount; /* original count */
2832 size_t count; /* after file limit checks */
2833 struct inode *inode = mapping->host;
2834 loff_t pos;
2835 ssize_t written;
2836 ssize_t err;
2837
2838 ocount = 0;
2839 err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2840 if (err)
2841 return err;
2842
2843 count = ocount;
2844 pos = *ppos;
2845
2846 /* We can write back this queue in page reclaim */
2847 current->backing_dev_info = mapping->backing_dev_info;
2848 written = 0;
2849
2850 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2851 if (err)
2852 goto out;
2853
2854 if (count == 0)
2855 goto out;
2856
2857 err = file_remove_suid(file);
2858 if (err)
2859 goto out;
2860
2861 err = file_update_time(file);
2862 if (err)
2863 goto out;
2864
2865 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2866 if (unlikely(file->f_flags & O_DIRECT)) {
2867 loff_t endbyte;
2868 ssize_t written_buffered;
2869
2870 written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2871 ppos, count, ocount);
2872 if (written < 0 || written == count)
2873 goto out;
2874 /*
2875 * direct-io write to a hole: fall through to buffered I/O
2876 * for completing the rest of the request.
2877 */
2878 pos += written;
2879 count -= written;
2880 written_buffered = generic_file_buffered_write(iocb, iov,
2881 nr_segs, pos, ppos, count,
2882 written);
2883 /*
2884 * If generic_file_buffered_write() retuned a synchronous error
2885 * then we want to return the number of bytes which were
2886 * direct-written, or the error code if that was zero. Note
2887 * that this differs from normal direct-io semantics, which
2888 * will return -EFOO even if some bytes were written.
2889 */
2890 if (written_buffered < 0) {
2891 err = written_buffered;
2892 goto out;
2893 }
2894
2895 /*
2896 * We need to ensure that the page cache pages are written to
2897 * disk and invalidated to preserve the expected O_DIRECT
2898 * semantics.
2899 */
2900 endbyte = pos + written_buffered - written - 1;
2901 err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
2902 if (err == 0) {
2903 written = written_buffered;
2904 invalidate_mapping_pages(mapping,
2905 pos >> PAGE_CACHE_SHIFT,
2906 endbyte >> PAGE_CACHE_SHIFT);
2907 } else {
2908 /*
2909 * We don't know how much we wrote, so just return
2910 * the number of bytes which were direct-written
2911 */
2912 }
2913 } else {
2914 written = generic_file_buffered_write(iocb, iov, nr_segs,
2915 pos, ppos, count, written);
2916 }
2917 out:
2918 current->backing_dev_info = NULL;
2919 return written ? written : err;
2920 }
2921 EXPORT_SYMBOL(__generic_file_aio_write);
2922
2923 /**
2924 * generic_file_aio_write - write data to a file
2925 * @iocb: IO state structure
2926 * @iov: vector with data to write
2927 * @nr_segs: number of segments in the vector
2928 * @pos: position in file where to write
2929 *
2930 * This is a wrapper around __generic_file_aio_write() to be used by most
2931 * filesystems. It takes care of syncing the file in case of O_SYNC file
2932 * and acquires i_mutex as needed.
2933 */
2934 ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2935 unsigned long nr_segs, loff_t pos)
2936 {
2937 struct file *file = iocb->ki_filp;
2938 struct inode *inode = file->f_mapping->host;
2939 ssize_t ret;
2940
2941 BUG_ON(iocb->ki_pos != pos);
2942
2943 mutex_lock(&inode->i_mutex);
2944 ret = __generic_file_aio_write(iocb, iov, nr_segs, &iocb->ki_pos);
2945 mutex_unlock(&inode->i_mutex);
2946
2947 if (ret > 0) {
2948 ssize_t err;
2949
2950 err = generic_write_sync(file, iocb->ki_pos - ret, ret);
2951 if (err < 0)
2952 ret = err;
2953 }
2954 return ret;
2955 }
2956 EXPORT_SYMBOL(generic_file_aio_write);
2957
2958 /**
2959 * try_to_release_page() - release old fs-specific metadata on a page
2960 *
2961 * @page: the page which the kernel is trying to free
2962 * @gfp_mask: memory allocation flags (and I/O mode)
2963 *
2964 * The address_space is to try to release any data against the page
2965 * (presumably at page->private). If the release was successful, return `1'.
2966 * Otherwise return zero.
2967 *
2968 * This may also be called if PG_fscache is set on a page, indicating that the
2969 * page is known to the local caching routines.
2970 *
2971 * The @gfp_mask argument specifies whether I/O may be performed to release
2972 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
2973 *
2974 */
2975 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2976 {
2977 struct address_space * const mapping = page->mapping;
2978
2979 BUG_ON(!PageLocked(page));
2980 if (PageWriteback(page))
2981 return 0;
2982
2983 if (mapping && mapping->a_ops->releasepage)
2984 return mapping->a_ops->releasepage(page, gfp_mask);
2985 return try_to_free_buffers(page);
2986 }
2987
2988 EXPORT_SYMBOL(try_to_release_page);
This page took 0.109709 seconds and 5 git commands to generate.