block: remove per-queue plugging
[deliverable/linux.git] / mm / filemap.c
1 /*
2 * linux/mm/filemap.c
3 *
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
6
7 /*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
11 */
12 #include <linux/module.h>
13 #include <linux/compiler.h>
14 #include <linux/fs.h>
15 #include <linux/uaccess.h>
16 #include <linux/aio.h>
17 #include <linux/capability.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/gfp.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/syscalls.h>
33 #include <linux/cpuset.h>
34 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
35 #include <linux/memcontrol.h>
36 #include <linux/mm_inline.h> /* for page_is_file_cache() */
37 #include "internal.h"
38
39 /*
40 * FIXME: remove all knowledge of the buffer layer from the core VM
41 */
42 #include <linux/buffer_head.h> /* for try_to_free_buffers */
43
44 #include <asm/mman.h>
45
46 /*
47 * Shared mappings implemented 30.11.1994. It's not fully working yet,
48 * though.
49 *
50 * Shared mappings now work. 15.8.1995 Bruno.
51 *
52 * finished 'unifying' the page and buffer cache and SMP-threaded the
53 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
54 *
55 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
56 */
57
58 /*
59 * Lock ordering:
60 *
61 * ->i_mmap_lock (truncate_pagecache)
62 * ->private_lock (__free_pte->__set_page_dirty_buffers)
63 * ->swap_lock (exclusive_swap_page, others)
64 * ->mapping->tree_lock
65 *
66 * ->i_mutex
67 * ->i_mmap_lock (truncate->unmap_mapping_range)
68 *
69 * ->mmap_sem
70 * ->i_mmap_lock
71 * ->page_table_lock or pte_lock (various, mainly in memory.c)
72 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
73 *
74 * ->mmap_sem
75 * ->lock_page (access_process_vm)
76 *
77 * ->i_mutex (generic_file_buffered_write)
78 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
79 *
80 * ->i_mutex
81 * ->i_alloc_sem (various)
82 *
83 * ->inode_lock
84 * ->sb_lock (fs/fs-writeback.c)
85 * ->mapping->tree_lock (__sync_single_inode)
86 *
87 * ->i_mmap_lock
88 * ->anon_vma.lock (vma_adjust)
89 *
90 * ->anon_vma.lock
91 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
92 *
93 * ->page_table_lock or pte_lock
94 * ->swap_lock (try_to_unmap_one)
95 * ->private_lock (try_to_unmap_one)
96 * ->tree_lock (try_to_unmap_one)
97 * ->zone.lru_lock (follow_page->mark_page_accessed)
98 * ->zone.lru_lock (check_pte_range->isolate_lru_page)
99 * ->private_lock (page_remove_rmap->set_page_dirty)
100 * ->tree_lock (page_remove_rmap->set_page_dirty)
101 * ->inode_lock (page_remove_rmap->set_page_dirty)
102 * ->inode_lock (zap_pte_range->set_page_dirty)
103 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
104 *
105 * (code doesn't rely on that order, so you could switch it around)
106 * ->tasklist_lock (memory_failure, collect_procs_ao)
107 * ->i_mmap_lock
108 */
109
110 /*
111 * Remove a page from the page cache and free it. Caller has to make
112 * sure the page is locked and that nobody else uses it - or that usage
113 * is safe. The caller must hold the mapping's tree_lock.
114 */
115 void __remove_from_page_cache(struct page *page)
116 {
117 struct address_space *mapping = page->mapping;
118
119 radix_tree_delete(&mapping->page_tree, page->index);
120 page->mapping = NULL;
121 mapping->nrpages--;
122 __dec_zone_page_state(page, NR_FILE_PAGES);
123 if (PageSwapBacked(page))
124 __dec_zone_page_state(page, NR_SHMEM);
125 BUG_ON(page_mapped(page));
126
127 /*
128 * Some filesystems seem to re-dirty the page even after
129 * the VM has canceled the dirty bit (eg ext3 journaling).
130 *
131 * Fix it up by doing a final dirty accounting check after
132 * having removed the page entirely.
133 */
134 if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
135 dec_zone_page_state(page, NR_FILE_DIRTY);
136 dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
137 }
138 }
139
140 void remove_from_page_cache(struct page *page)
141 {
142 struct address_space *mapping = page->mapping;
143 void (*freepage)(struct page *);
144
145 BUG_ON(!PageLocked(page));
146
147 freepage = mapping->a_ops->freepage;
148 spin_lock_irq(&mapping->tree_lock);
149 __remove_from_page_cache(page);
150 spin_unlock_irq(&mapping->tree_lock);
151 mem_cgroup_uncharge_cache_page(page);
152
153 if (freepage)
154 freepage(page);
155 }
156 EXPORT_SYMBOL(remove_from_page_cache);
157
158 static int sleep_on_page(void *word)
159 {
160 io_schedule();
161 return 0;
162 }
163
164 static int sleep_on_page_killable(void *word)
165 {
166 sleep_on_page(word);
167 return fatal_signal_pending(current) ? -EINTR : 0;
168 }
169
170 /**
171 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
172 * @mapping: address space structure to write
173 * @start: offset in bytes where the range starts
174 * @end: offset in bytes where the range ends (inclusive)
175 * @sync_mode: enable synchronous operation
176 *
177 * Start writeback against all of a mapping's dirty pages that lie
178 * within the byte offsets <start, end> inclusive.
179 *
180 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
181 * opposed to a regular memory cleansing writeback. The difference between
182 * these two operations is that if a dirty page/buffer is encountered, it must
183 * be waited upon, and not just skipped over.
184 */
185 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
186 loff_t end, int sync_mode)
187 {
188 int ret;
189 struct writeback_control wbc = {
190 .sync_mode = sync_mode,
191 .nr_to_write = LONG_MAX,
192 .range_start = start,
193 .range_end = end,
194 };
195
196 if (!mapping_cap_writeback_dirty(mapping))
197 return 0;
198
199 ret = do_writepages(mapping, &wbc);
200 return ret;
201 }
202
203 static inline int __filemap_fdatawrite(struct address_space *mapping,
204 int sync_mode)
205 {
206 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
207 }
208
209 int filemap_fdatawrite(struct address_space *mapping)
210 {
211 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
212 }
213 EXPORT_SYMBOL(filemap_fdatawrite);
214
215 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
216 loff_t end)
217 {
218 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
219 }
220 EXPORT_SYMBOL(filemap_fdatawrite_range);
221
222 /**
223 * filemap_flush - mostly a non-blocking flush
224 * @mapping: target address_space
225 *
226 * This is a mostly non-blocking flush. Not suitable for data-integrity
227 * purposes - I/O may not be started against all dirty pages.
228 */
229 int filemap_flush(struct address_space *mapping)
230 {
231 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
232 }
233 EXPORT_SYMBOL(filemap_flush);
234
235 /**
236 * filemap_fdatawait_range - wait for writeback to complete
237 * @mapping: address space structure to wait for
238 * @start_byte: offset in bytes where the range starts
239 * @end_byte: offset in bytes where the range ends (inclusive)
240 *
241 * Walk the list of under-writeback pages of the given address space
242 * in the given range and wait for all of them.
243 */
244 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
245 loff_t end_byte)
246 {
247 pgoff_t index = start_byte >> PAGE_CACHE_SHIFT;
248 pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
249 struct pagevec pvec;
250 int nr_pages;
251 int ret = 0;
252
253 if (end_byte < start_byte)
254 return 0;
255
256 pagevec_init(&pvec, 0);
257 while ((index <= end) &&
258 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
259 PAGECACHE_TAG_WRITEBACK,
260 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
261 unsigned i;
262
263 for (i = 0; i < nr_pages; i++) {
264 struct page *page = pvec.pages[i];
265
266 /* until radix tree lookup accepts end_index */
267 if (page->index > end)
268 continue;
269
270 wait_on_page_writeback(page);
271 if (TestClearPageError(page))
272 ret = -EIO;
273 }
274 pagevec_release(&pvec);
275 cond_resched();
276 }
277
278 /* Check for outstanding write errors */
279 if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
280 ret = -ENOSPC;
281 if (test_and_clear_bit(AS_EIO, &mapping->flags))
282 ret = -EIO;
283
284 return ret;
285 }
286 EXPORT_SYMBOL(filemap_fdatawait_range);
287
288 /**
289 * filemap_fdatawait - wait for all under-writeback pages to complete
290 * @mapping: address space structure to wait for
291 *
292 * Walk the list of under-writeback pages of the given address space
293 * and wait for all of them.
294 */
295 int filemap_fdatawait(struct address_space *mapping)
296 {
297 loff_t i_size = i_size_read(mapping->host);
298
299 if (i_size == 0)
300 return 0;
301
302 return filemap_fdatawait_range(mapping, 0, i_size - 1);
303 }
304 EXPORT_SYMBOL(filemap_fdatawait);
305
306 int filemap_write_and_wait(struct address_space *mapping)
307 {
308 int err = 0;
309
310 if (mapping->nrpages) {
311 err = filemap_fdatawrite(mapping);
312 /*
313 * Even if the above returned error, the pages may be
314 * written partially (e.g. -ENOSPC), so we wait for it.
315 * But the -EIO is special case, it may indicate the worst
316 * thing (e.g. bug) happened, so we avoid waiting for it.
317 */
318 if (err != -EIO) {
319 int err2 = filemap_fdatawait(mapping);
320 if (!err)
321 err = err2;
322 }
323 }
324 return err;
325 }
326 EXPORT_SYMBOL(filemap_write_and_wait);
327
328 /**
329 * filemap_write_and_wait_range - write out & wait on a file range
330 * @mapping: the address_space for the pages
331 * @lstart: offset in bytes where the range starts
332 * @lend: offset in bytes where the range ends (inclusive)
333 *
334 * Write out and wait upon file offsets lstart->lend, inclusive.
335 *
336 * Note that `lend' is inclusive (describes the last byte to be written) so
337 * that this function can be used to write to the very end-of-file (end = -1).
338 */
339 int filemap_write_and_wait_range(struct address_space *mapping,
340 loff_t lstart, loff_t lend)
341 {
342 int err = 0;
343
344 if (mapping->nrpages) {
345 err = __filemap_fdatawrite_range(mapping, lstart, lend,
346 WB_SYNC_ALL);
347 /* See comment of filemap_write_and_wait() */
348 if (err != -EIO) {
349 int err2 = filemap_fdatawait_range(mapping,
350 lstart, lend);
351 if (!err)
352 err = err2;
353 }
354 }
355 return err;
356 }
357 EXPORT_SYMBOL(filemap_write_and_wait_range);
358
359 /**
360 * add_to_page_cache_locked - add a locked page to the pagecache
361 * @page: page to add
362 * @mapping: the page's address_space
363 * @offset: page index
364 * @gfp_mask: page allocation mode
365 *
366 * This function is used to add a page to the pagecache. It must be locked.
367 * This function does not add the page to the LRU. The caller must do that.
368 */
369 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
370 pgoff_t offset, gfp_t gfp_mask)
371 {
372 int error;
373
374 VM_BUG_ON(!PageLocked(page));
375
376 error = mem_cgroup_cache_charge(page, current->mm,
377 gfp_mask & GFP_RECLAIM_MASK);
378 if (error)
379 goto out;
380
381 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
382 if (error == 0) {
383 page_cache_get(page);
384 page->mapping = mapping;
385 page->index = offset;
386
387 spin_lock_irq(&mapping->tree_lock);
388 error = radix_tree_insert(&mapping->page_tree, offset, page);
389 if (likely(!error)) {
390 mapping->nrpages++;
391 __inc_zone_page_state(page, NR_FILE_PAGES);
392 if (PageSwapBacked(page))
393 __inc_zone_page_state(page, NR_SHMEM);
394 spin_unlock_irq(&mapping->tree_lock);
395 } else {
396 page->mapping = NULL;
397 spin_unlock_irq(&mapping->tree_lock);
398 mem_cgroup_uncharge_cache_page(page);
399 page_cache_release(page);
400 }
401 radix_tree_preload_end();
402 } else
403 mem_cgroup_uncharge_cache_page(page);
404 out:
405 return error;
406 }
407 EXPORT_SYMBOL(add_to_page_cache_locked);
408
409 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
410 pgoff_t offset, gfp_t gfp_mask)
411 {
412 int ret;
413
414 /*
415 * Splice_read and readahead add shmem/tmpfs pages into the page cache
416 * before shmem_readpage has a chance to mark them as SwapBacked: they
417 * need to go on the anon lru below, and mem_cgroup_cache_charge
418 * (called in add_to_page_cache) needs to know where they're going too.
419 */
420 if (mapping_cap_swap_backed(mapping))
421 SetPageSwapBacked(page);
422
423 ret = add_to_page_cache(page, mapping, offset, gfp_mask);
424 if (ret == 0) {
425 if (page_is_file_cache(page))
426 lru_cache_add_file(page);
427 else
428 lru_cache_add_anon(page);
429 }
430 return ret;
431 }
432 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
433
434 #ifdef CONFIG_NUMA
435 struct page *__page_cache_alloc(gfp_t gfp)
436 {
437 int n;
438 struct page *page;
439
440 if (cpuset_do_page_mem_spread()) {
441 get_mems_allowed();
442 n = cpuset_mem_spread_node();
443 page = alloc_pages_exact_node(n, gfp, 0);
444 put_mems_allowed();
445 return page;
446 }
447 return alloc_pages(gfp, 0);
448 }
449 EXPORT_SYMBOL(__page_cache_alloc);
450 #endif
451
452 /*
453 * In order to wait for pages to become available there must be
454 * waitqueues associated with pages. By using a hash table of
455 * waitqueues where the bucket discipline is to maintain all
456 * waiters on the same queue and wake all when any of the pages
457 * become available, and for the woken contexts to check to be
458 * sure the appropriate page became available, this saves space
459 * at a cost of "thundering herd" phenomena during rare hash
460 * collisions.
461 */
462 static wait_queue_head_t *page_waitqueue(struct page *page)
463 {
464 const struct zone *zone = page_zone(page);
465
466 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
467 }
468
469 static inline void wake_up_page(struct page *page, int bit)
470 {
471 __wake_up_bit(page_waitqueue(page), &page->flags, bit);
472 }
473
474 void wait_on_page_bit(struct page *page, int bit_nr)
475 {
476 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
477
478 if (test_bit(bit_nr, &page->flags))
479 __wait_on_bit(page_waitqueue(page), &wait, sleep_on_page,
480 TASK_UNINTERRUPTIBLE);
481 }
482 EXPORT_SYMBOL(wait_on_page_bit);
483
484 /**
485 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
486 * @page: Page defining the wait queue of interest
487 * @waiter: Waiter to add to the queue
488 *
489 * Add an arbitrary @waiter to the wait queue for the nominated @page.
490 */
491 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
492 {
493 wait_queue_head_t *q = page_waitqueue(page);
494 unsigned long flags;
495
496 spin_lock_irqsave(&q->lock, flags);
497 __add_wait_queue(q, waiter);
498 spin_unlock_irqrestore(&q->lock, flags);
499 }
500 EXPORT_SYMBOL_GPL(add_page_wait_queue);
501
502 /**
503 * unlock_page - unlock a locked page
504 * @page: the page
505 *
506 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
507 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
508 * mechananism between PageLocked pages and PageWriteback pages is shared.
509 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
510 *
511 * The mb is necessary to enforce ordering between the clear_bit and the read
512 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
513 */
514 void unlock_page(struct page *page)
515 {
516 VM_BUG_ON(!PageLocked(page));
517 clear_bit_unlock(PG_locked, &page->flags);
518 smp_mb__after_clear_bit();
519 wake_up_page(page, PG_locked);
520 }
521 EXPORT_SYMBOL(unlock_page);
522
523 /**
524 * end_page_writeback - end writeback against a page
525 * @page: the page
526 */
527 void end_page_writeback(struct page *page)
528 {
529 if (TestClearPageReclaim(page))
530 rotate_reclaimable_page(page);
531
532 if (!test_clear_page_writeback(page))
533 BUG();
534
535 smp_mb__after_clear_bit();
536 wake_up_page(page, PG_writeback);
537 }
538 EXPORT_SYMBOL(end_page_writeback);
539
540 /**
541 * __lock_page - get a lock on the page, assuming we need to sleep to get it
542 * @page: the page to lock
543 */
544 void __lock_page(struct page *page)
545 {
546 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
547
548 __wait_on_bit_lock(page_waitqueue(page), &wait, sleep_on_page,
549 TASK_UNINTERRUPTIBLE);
550 }
551 EXPORT_SYMBOL(__lock_page);
552
553 int __lock_page_killable(struct page *page)
554 {
555 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
556
557 return __wait_on_bit_lock(page_waitqueue(page), &wait,
558 sleep_on_page_killable, TASK_KILLABLE);
559 }
560 EXPORT_SYMBOL_GPL(__lock_page_killable);
561
562 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
563 unsigned int flags)
564 {
565 if (!(flags & FAULT_FLAG_ALLOW_RETRY)) {
566 __lock_page(page);
567 return 1;
568 } else {
569 up_read(&mm->mmap_sem);
570 wait_on_page_locked(page);
571 return 0;
572 }
573 }
574
575 /**
576 * find_get_page - find and get a page reference
577 * @mapping: the address_space to search
578 * @offset: the page index
579 *
580 * Is there a pagecache struct page at the given (mapping, offset) tuple?
581 * If yes, increment its refcount and return it; if no, return NULL.
582 */
583 struct page *find_get_page(struct address_space *mapping, pgoff_t offset)
584 {
585 void **pagep;
586 struct page *page;
587
588 rcu_read_lock();
589 repeat:
590 page = NULL;
591 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
592 if (pagep) {
593 page = radix_tree_deref_slot(pagep);
594 if (unlikely(!page))
595 goto out;
596 if (radix_tree_deref_retry(page))
597 goto repeat;
598
599 if (!page_cache_get_speculative(page))
600 goto repeat;
601
602 /*
603 * Has the page moved?
604 * This is part of the lockless pagecache protocol. See
605 * include/linux/pagemap.h for details.
606 */
607 if (unlikely(page != *pagep)) {
608 page_cache_release(page);
609 goto repeat;
610 }
611 }
612 out:
613 rcu_read_unlock();
614
615 return page;
616 }
617 EXPORT_SYMBOL(find_get_page);
618
619 /**
620 * find_lock_page - locate, pin and lock a pagecache page
621 * @mapping: the address_space to search
622 * @offset: the page index
623 *
624 * Locates the desired pagecache page, locks it, increments its reference
625 * count and returns its address.
626 *
627 * Returns zero if the page was not present. find_lock_page() may sleep.
628 */
629 struct page *find_lock_page(struct address_space *mapping, pgoff_t offset)
630 {
631 struct page *page;
632
633 repeat:
634 page = find_get_page(mapping, offset);
635 if (page) {
636 lock_page(page);
637 /* Has the page been truncated? */
638 if (unlikely(page->mapping != mapping)) {
639 unlock_page(page);
640 page_cache_release(page);
641 goto repeat;
642 }
643 VM_BUG_ON(page->index != offset);
644 }
645 return page;
646 }
647 EXPORT_SYMBOL(find_lock_page);
648
649 /**
650 * find_or_create_page - locate or add a pagecache page
651 * @mapping: the page's address_space
652 * @index: the page's index into the mapping
653 * @gfp_mask: page allocation mode
654 *
655 * Locates a page in the pagecache. If the page is not present, a new page
656 * is allocated using @gfp_mask and is added to the pagecache and to the VM's
657 * LRU list. The returned page is locked and has its reference count
658 * incremented.
659 *
660 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
661 * allocation!
662 *
663 * find_or_create_page() returns the desired page's address, or zero on
664 * memory exhaustion.
665 */
666 struct page *find_or_create_page(struct address_space *mapping,
667 pgoff_t index, gfp_t gfp_mask)
668 {
669 struct page *page;
670 int err;
671 repeat:
672 page = find_lock_page(mapping, index);
673 if (!page) {
674 page = __page_cache_alloc(gfp_mask);
675 if (!page)
676 return NULL;
677 /*
678 * We want a regular kernel memory (not highmem or DMA etc)
679 * allocation for the radix tree nodes, but we need to honour
680 * the context-specific requirements the caller has asked for.
681 * GFP_RECLAIM_MASK collects those requirements.
682 */
683 err = add_to_page_cache_lru(page, mapping, index,
684 (gfp_mask & GFP_RECLAIM_MASK));
685 if (unlikely(err)) {
686 page_cache_release(page);
687 page = NULL;
688 if (err == -EEXIST)
689 goto repeat;
690 }
691 }
692 return page;
693 }
694 EXPORT_SYMBOL(find_or_create_page);
695
696 /**
697 * find_get_pages - gang pagecache lookup
698 * @mapping: The address_space to search
699 * @start: The starting page index
700 * @nr_pages: The maximum number of pages
701 * @pages: Where the resulting pages are placed
702 *
703 * find_get_pages() will search for and return a group of up to
704 * @nr_pages pages in the mapping. The pages are placed at @pages.
705 * find_get_pages() takes a reference against the returned pages.
706 *
707 * The search returns a group of mapping-contiguous pages with ascending
708 * indexes. There may be holes in the indices due to not-present pages.
709 *
710 * find_get_pages() returns the number of pages which were found.
711 */
712 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
713 unsigned int nr_pages, struct page **pages)
714 {
715 unsigned int i;
716 unsigned int ret;
717 unsigned int nr_found;
718
719 rcu_read_lock();
720 restart:
721 nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
722 (void ***)pages, start, nr_pages);
723 ret = 0;
724 for (i = 0; i < nr_found; i++) {
725 struct page *page;
726 repeat:
727 page = radix_tree_deref_slot((void **)pages[i]);
728 if (unlikely(!page))
729 continue;
730 if (radix_tree_deref_retry(page)) {
731 if (ret)
732 start = pages[ret-1]->index;
733 goto restart;
734 }
735
736 if (!page_cache_get_speculative(page))
737 goto repeat;
738
739 /* Has the page moved? */
740 if (unlikely(page != *((void **)pages[i]))) {
741 page_cache_release(page);
742 goto repeat;
743 }
744
745 pages[ret] = page;
746 ret++;
747 }
748 rcu_read_unlock();
749 return ret;
750 }
751
752 /**
753 * find_get_pages_contig - gang contiguous pagecache lookup
754 * @mapping: The address_space to search
755 * @index: The starting page index
756 * @nr_pages: The maximum number of pages
757 * @pages: Where the resulting pages are placed
758 *
759 * find_get_pages_contig() works exactly like find_get_pages(), except
760 * that the returned number of pages are guaranteed to be contiguous.
761 *
762 * find_get_pages_contig() returns the number of pages which were found.
763 */
764 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
765 unsigned int nr_pages, struct page **pages)
766 {
767 unsigned int i;
768 unsigned int ret;
769 unsigned int nr_found;
770
771 rcu_read_lock();
772 restart:
773 nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
774 (void ***)pages, index, nr_pages);
775 ret = 0;
776 for (i = 0; i < nr_found; i++) {
777 struct page *page;
778 repeat:
779 page = radix_tree_deref_slot((void **)pages[i]);
780 if (unlikely(!page))
781 continue;
782 if (radix_tree_deref_retry(page))
783 goto restart;
784
785 if (!page_cache_get_speculative(page))
786 goto repeat;
787
788 /* Has the page moved? */
789 if (unlikely(page != *((void **)pages[i]))) {
790 page_cache_release(page);
791 goto repeat;
792 }
793
794 /*
795 * must check mapping and index after taking the ref.
796 * otherwise we can get both false positives and false
797 * negatives, which is just confusing to the caller.
798 */
799 if (page->mapping == NULL || page->index != index) {
800 page_cache_release(page);
801 break;
802 }
803
804 pages[ret] = page;
805 ret++;
806 index++;
807 }
808 rcu_read_unlock();
809 return ret;
810 }
811 EXPORT_SYMBOL(find_get_pages_contig);
812
813 /**
814 * find_get_pages_tag - find and return pages that match @tag
815 * @mapping: the address_space to search
816 * @index: the starting page index
817 * @tag: the tag index
818 * @nr_pages: the maximum number of pages
819 * @pages: where the resulting pages are placed
820 *
821 * Like find_get_pages, except we only return pages which are tagged with
822 * @tag. We update @index to index the next page for the traversal.
823 */
824 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
825 int tag, unsigned int nr_pages, struct page **pages)
826 {
827 unsigned int i;
828 unsigned int ret;
829 unsigned int nr_found;
830
831 rcu_read_lock();
832 restart:
833 nr_found = radix_tree_gang_lookup_tag_slot(&mapping->page_tree,
834 (void ***)pages, *index, nr_pages, tag);
835 ret = 0;
836 for (i = 0; i < nr_found; i++) {
837 struct page *page;
838 repeat:
839 page = radix_tree_deref_slot((void **)pages[i]);
840 if (unlikely(!page))
841 continue;
842 if (radix_tree_deref_retry(page))
843 goto restart;
844
845 if (!page_cache_get_speculative(page))
846 goto repeat;
847
848 /* Has the page moved? */
849 if (unlikely(page != *((void **)pages[i]))) {
850 page_cache_release(page);
851 goto repeat;
852 }
853
854 pages[ret] = page;
855 ret++;
856 }
857 rcu_read_unlock();
858
859 if (ret)
860 *index = pages[ret - 1]->index + 1;
861
862 return ret;
863 }
864 EXPORT_SYMBOL(find_get_pages_tag);
865
866 /**
867 * grab_cache_page_nowait - returns locked page at given index in given cache
868 * @mapping: target address_space
869 * @index: the page index
870 *
871 * Same as grab_cache_page(), but do not wait if the page is unavailable.
872 * This is intended for speculative data generators, where the data can
873 * be regenerated if the page couldn't be grabbed. This routine should
874 * be safe to call while holding the lock for another page.
875 *
876 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
877 * and deadlock against the caller's locked page.
878 */
879 struct page *
880 grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
881 {
882 struct page *page = find_get_page(mapping, index);
883
884 if (page) {
885 if (trylock_page(page))
886 return page;
887 page_cache_release(page);
888 return NULL;
889 }
890 page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
891 if (page && add_to_page_cache_lru(page, mapping, index, GFP_NOFS)) {
892 page_cache_release(page);
893 page = NULL;
894 }
895 return page;
896 }
897 EXPORT_SYMBOL(grab_cache_page_nowait);
898
899 /*
900 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
901 * a _large_ part of the i/o request. Imagine the worst scenario:
902 *
903 * ---R__________________________________________B__________
904 * ^ reading here ^ bad block(assume 4k)
905 *
906 * read(R) => miss => readahead(R...B) => media error => frustrating retries
907 * => failing the whole request => read(R) => read(R+1) =>
908 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
909 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
910 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
911 *
912 * It is going insane. Fix it by quickly scaling down the readahead size.
913 */
914 static void shrink_readahead_size_eio(struct file *filp,
915 struct file_ra_state *ra)
916 {
917 ra->ra_pages /= 4;
918 }
919
920 /**
921 * do_generic_file_read - generic file read routine
922 * @filp: the file to read
923 * @ppos: current file position
924 * @desc: read_descriptor
925 * @actor: read method
926 *
927 * This is a generic file read routine, and uses the
928 * mapping->a_ops->readpage() function for the actual low-level stuff.
929 *
930 * This is really ugly. But the goto's actually try to clarify some
931 * of the logic when it comes to error handling etc.
932 */
933 static void do_generic_file_read(struct file *filp, loff_t *ppos,
934 read_descriptor_t *desc, read_actor_t actor)
935 {
936 struct address_space *mapping = filp->f_mapping;
937 struct inode *inode = mapping->host;
938 struct file_ra_state *ra = &filp->f_ra;
939 pgoff_t index;
940 pgoff_t last_index;
941 pgoff_t prev_index;
942 unsigned long offset; /* offset into pagecache page */
943 unsigned int prev_offset;
944 int error;
945
946 index = *ppos >> PAGE_CACHE_SHIFT;
947 prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
948 prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
949 last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
950 offset = *ppos & ~PAGE_CACHE_MASK;
951
952 for (;;) {
953 struct page *page;
954 pgoff_t end_index;
955 loff_t isize;
956 unsigned long nr, ret;
957
958 cond_resched();
959 find_page:
960 page = find_get_page(mapping, index);
961 if (!page) {
962 page_cache_sync_readahead(mapping,
963 ra, filp,
964 index, last_index - index);
965 page = find_get_page(mapping, index);
966 if (unlikely(page == NULL))
967 goto no_cached_page;
968 }
969 if (PageReadahead(page)) {
970 page_cache_async_readahead(mapping,
971 ra, filp, page,
972 index, last_index - index);
973 }
974 if (!PageUptodate(page)) {
975 if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
976 !mapping->a_ops->is_partially_uptodate)
977 goto page_not_up_to_date;
978 if (!trylock_page(page))
979 goto page_not_up_to_date;
980 /* Did it get truncated before we got the lock? */
981 if (!page->mapping)
982 goto page_not_up_to_date_locked;
983 if (!mapping->a_ops->is_partially_uptodate(page,
984 desc, offset))
985 goto page_not_up_to_date_locked;
986 unlock_page(page);
987 }
988 page_ok:
989 /*
990 * i_size must be checked after we know the page is Uptodate.
991 *
992 * Checking i_size after the check allows us to calculate
993 * the correct value for "nr", which means the zero-filled
994 * part of the page is not copied back to userspace (unless
995 * another truncate extends the file - this is desired though).
996 */
997
998 isize = i_size_read(inode);
999 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1000 if (unlikely(!isize || index > end_index)) {
1001 page_cache_release(page);
1002 goto out;
1003 }
1004
1005 /* nr is the maximum number of bytes to copy from this page */
1006 nr = PAGE_CACHE_SIZE;
1007 if (index == end_index) {
1008 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1009 if (nr <= offset) {
1010 page_cache_release(page);
1011 goto out;
1012 }
1013 }
1014 nr = nr - offset;
1015
1016 /* If users can be writing to this page using arbitrary
1017 * virtual addresses, take care about potential aliasing
1018 * before reading the page on the kernel side.
1019 */
1020 if (mapping_writably_mapped(mapping))
1021 flush_dcache_page(page);
1022
1023 /*
1024 * When a sequential read accesses a page several times,
1025 * only mark it as accessed the first time.
1026 */
1027 if (prev_index != index || offset != prev_offset)
1028 mark_page_accessed(page);
1029 prev_index = index;
1030
1031 /*
1032 * Ok, we have the page, and it's up-to-date, so
1033 * now we can copy it to user space...
1034 *
1035 * The actor routine returns how many bytes were actually used..
1036 * NOTE! This may not be the same as how much of a user buffer
1037 * we filled up (we may be padding etc), so we can only update
1038 * "pos" here (the actor routine has to update the user buffer
1039 * pointers and the remaining count).
1040 */
1041 ret = actor(desc, page, offset, nr);
1042 offset += ret;
1043 index += offset >> PAGE_CACHE_SHIFT;
1044 offset &= ~PAGE_CACHE_MASK;
1045 prev_offset = offset;
1046
1047 page_cache_release(page);
1048 if (ret == nr && desc->count)
1049 continue;
1050 goto out;
1051
1052 page_not_up_to_date:
1053 /* Get exclusive access to the page ... */
1054 error = lock_page_killable(page);
1055 if (unlikely(error))
1056 goto readpage_error;
1057
1058 page_not_up_to_date_locked:
1059 /* Did it get truncated before we got the lock? */
1060 if (!page->mapping) {
1061 unlock_page(page);
1062 page_cache_release(page);
1063 continue;
1064 }
1065
1066 /* Did somebody else fill it already? */
1067 if (PageUptodate(page)) {
1068 unlock_page(page);
1069 goto page_ok;
1070 }
1071
1072 readpage:
1073 /*
1074 * A previous I/O error may have been due to temporary
1075 * failures, eg. multipath errors.
1076 * PG_error will be set again if readpage fails.
1077 */
1078 ClearPageError(page);
1079 /* Start the actual read. The read will unlock the page. */
1080 error = mapping->a_ops->readpage(filp, page);
1081
1082 if (unlikely(error)) {
1083 if (error == AOP_TRUNCATED_PAGE) {
1084 page_cache_release(page);
1085 goto find_page;
1086 }
1087 goto readpage_error;
1088 }
1089
1090 if (!PageUptodate(page)) {
1091 error = lock_page_killable(page);
1092 if (unlikely(error))
1093 goto readpage_error;
1094 if (!PageUptodate(page)) {
1095 if (page->mapping == NULL) {
1096 /*
1097 * invalidate_mapping_pages got it
1098 */
1099 unlock_page(page);
1100 page_cache_release(page);
1101 goto find_page;
1102 }
1103 unlock_page(page);
1104 shrink_readahead_size_eio(filp, ra);
1105 error = -EIO;
1106 goto readpage_error;
1107 }
1108 unlock_page(page);
1109 }
1110
1111 goto page_ok;
1112
1113 readpage_error:
1114 /* UHHUH! A synchronous read error occurred. Report it */
1115 desc->error = error;
1116 page_cache_release(page);
1117 goto out;
1118
1119 no_cached_page:
1120 /*
1121 * Ok, it wasn't cached, so we need to create a new
1122 * page..
1123 */
1124 page = page_cache_alloc_cold(mapping);
1125 if (!page) {
1126 desc->error = -ENOMEM;
1127 goto out;
1128 }
1129 error = add_to_page_cache_lru(page, mapping,
1130 index, GFP_KERNEL);
1131 if (error) {
1132 page_cache_release(page);
1133 if (error == -EEXIST)
1134 goto find_page;
1135 desc->error = error;
1136 goto out;
1137 }
1138 goto readpage;
1139 }
1140
1141 out:
1142 ra->prev_pos = prev_index;
1143 ra->prev_pos <<= PAGE_CACHE_SHIFT;
1144 ra->prev_pos |= prev_offset;
1145
1146 *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1147 file_accessed(filp);
1148 }
1149
1150 int file_read_actor(read_descriptor_t *desc, struct page *page,
1151 unsigned long offset, unsigned long size)
1152 {
1153 char *kaddr;
1154 unsigned long left, count = desc->count;
1155
1156 if (size > count)
1157 size = count;
1158
1159 /*
1160 * Faults on the destination of a read are common, so do it before
1161 * taking the kmap.
1162 */
1163 if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1164 kaddr = kmap_atomic(page, KM_USER0);
1165 left = __copy_to_user_inatomic(desc->arg.buf,
1166 kaddr + offset, size);
1167 kunmap_atomic(kaddr, KM_USER0);
1168 if (left == 0)
1169 goto success;
1170 }
1171
1172 /* Do it the slow way */
1173 kaddr = kmap(page);
1174 left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1175 kunmap(page);
1176
1177 if (left) {
1178 size -= left;
1179 desc->error = -EFAULT;
1180 }
1181 success:
1182 desc->count = count - size;
1183 desc->written += size;
1184 desc->arg.buf += size;
1185 return size;
1186 }
1187
1188 /*
1189 * Performs necessary checks before doing a write
1190 * @iov: io vector request
1191 * @nr_segs: number of segments in the iovec
1192 * @count: number of bytes to write
1193 * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1194 *
1195 * Adjust number of segments and amount of bytes to write (nr_segs should be
1196 * properly initialized first). Returns appropriate error code that caller
1197 * should return or zero in case that write should be allowed.
1198 */
1199 int generic_segment_checks(const struct iovec *iov,
1200 unsigned long *nr_segs, size_t *count, int access_flags)
1201 {
1202 unsigned long seg;
1203 size_t cnt = 0;
1204 for (seg = 0; seg < *nr_segs; seg++) {
1205 const struct iovec *iv = &iov[seg];
1206
1207 /*
1208 * If any segment has a negative length, or the cumulative
1209 * length ever wraps negative then return -EINVAL.
1210 */
1211 cnt += iv->iov_len;
1212 if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1213 return -EINVAL;
1214 if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1215 continue;
1216 if (seg == 0)
1217 return -EFAULT;
1218 *nr_segs = seg;
1219 cnt -= iv->iov_len; /* This segment is no good */
1220 break;
1221 }
1222 *count = cnt;
1223 return 0;
1224 }
1225 EXPORT_SYMBOL(generic_segment_checks);
1226
1227 /**
1228 * generic_file_aio_read - generic filesystem read routine
1229 * @iocb: kernel I/O control block
1230 * @iov: io vector request
1231 * @nr_segs: number of segments in the iovec
1232 * @pos: current file position
1233 *
1234 * This is the "read()" routine for all filesystems
1235 * that can use the page cache directly.
1236 */
1237 ssize_t
1238 generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1239 unsigned long nr_segs, loff_t pos)
1240 {
1241 struct file *filp = iocb->ki_filp;
1242 ssize_t retval;
1243 unsigned long seg = 0;
1244 size_t count;
1245 loff_t *ppos = &iocb->ki_pos;
1246
1247 count = 0;
1248 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1249 if (retval)
1250 return retval;
1251
1252 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1253 if (filp->f_flags & O_DIRECT) {
1254 loff_t size;
1255 struct address_space *mapping;
1256 struct inode *inode;
1257
1258 mapping = filp->f_mapping;
1259 inode = mapping->host;
1260 if (!count)
1261 goto out; /* skip atime */
1262 size = i_size_read(inode);
1263 if (pos < size) {
1264 retval = filemap_write_and_wait_range(mapping, pos,
1265 pos + iov_length(iov, nr_segs) - 1);
1266 if (!retval) {
1267 retval = mapping->a_ops->direct_IO(READ, iocb,
1268 iov, pos, nr_segs);
1269 }
1270 if (retval > 0) {
1271 *ppos = pos + retval;
1272 count -= retval;
1273 }
1274
1275 /*
1276 * Btrfs can have a short DIO read if we encounter
1277 * compressed extents, so if there was an error, or if
1278 * we've already read everything we wanted to, or if
1279 * there was a short read because we hit EOF, go ahead
1280 * and return. Otherwise fallthrough to buffered io for
1281 * the rest of the read.
1282 */
1283 if (retval < 0 || !count || *ppos >= size) {
1284 file_accessed(filp);
1285 goto out;
1286 }
1287 }
1288 }
1289
1290 count = retval;
1291 for (seg = 0; seg < nr_segs; seg++) {
1292 read_descriptor_t desc;
1293 loff_t offset = 0;
1294
1295 /*
1296 * If we did a short DIO read we need to skip the section of the
1297 * iov that we've already read data into.
1298 */
1299 if (count) {
1300 if (count > iov[seg].iov_len) {
1301 count -= iov[seg].iov_len;
1302 continue;
1303 }
1304 offset = count;
1305 count = 0;
1306 }
1307
1308 desc.written = 0;
1309 desc.arg.buf = iov[seg].iov_base + offset;
1310 desc.count = iov[seg].iov_len - offset;
1311 if (desc.count == 0)
1312 continue;
1313 desc.error = 0;
1314 do_generic_file_read(filp, ppos, &desc, file_read_actor);
1315 retval += desc.written;
1316 if (desc.error) {
1317 retval = retval ?: desc.error;
1318 break;
1319 }
1320 if (desc.count > 0)
1321 break;
1322 }
1323 out:
1324 return retval;
1325 }
1326 EXPORT_SYMBOL(generic_file_aio_read);
1327
1328 static ssize_t
1329 do_readahead(struct address_space *mapping, struct file *filp,
1330 pgoff_t index, unsigned long nr)
1331 {
1332 if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1333 return -EINVAL;
1334
1335 force_page_cache_readahead(mapping, filp, index, nr);
1336 return 0;
1337 }
1338
1339 SYSCALL_DEFINE(readahead)(int fd, loff_t offset, size_t count)
1340 {
1341 ssize_t ret;
1342 struct file *file;
1343
1344 ret = -EBADF;
1345 file = fget(fd);
1346 if (file) {
1347 if (file->f_mode & FMODE_READ) {
1348 struct address_space *mapping = file->f_mapping;
1349 pgoff_t start = offset >> PAGE_CACHE_SHIFT;
1350 pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1351 unsigned long len = end - start + 1;
1352 ret = do_readahead(mapping, file, start, len);
1353 }
1354 fput(file);
1355 }
1356 return ret;
1357 }
1358 #ifdef CONFIG_HAVE_SYSCALL_WRAPPERS
1359 asmlinkage long SyS_readahead(long fd, loff_t offset, long count)
1360 {
1361 return SYSC_readahead((int) fd, offset, (size_t) count);
1362 }
1363 SYSCALL_ALIAS(sys_readahead, SyS_readahead);
1364 #endif
1365
1366 #ifdef CONFIG_MMU
1367 /**
1368 * page_cache_read - adds requested page to the page cache if not already there
1369 * @file: file to read
1370 * @offset: page index
1371 *
1372 * This adds the requested page to the page cache if it isn't already there,
1373 * and schedules an I/O to read in its contents from disk.
1374 */
1375 static int page_cache_read(struct file *file, pgoff_t offset)
1376 {
1377 struct address_space *mapping = file->f_mapping;
1378 struct page *page;
1379 int ret;
1380
1381 do {
1382 page = page_cache_alloc_cold(mapping);
1383 if (!page)
1384 return -ENOMEM;
1385
1386 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1387 if (ret == 0)
1388 ret = mapping->a_ops->readpage(file, page);
1389 else if (ret == -EEXIST)
1390 ret = 0; /* losing race to add is OK */
1391
1392 page_cache_release(page);
1393
1394 } while (ret == AOP_TRUNCATED_PAGE);
1395
1396 return ret;
1397 }
1398
1399 #define MMAP_LOTSAMISS (100)
1400
1401 /*
1402 * Synchronous readahead happens when we don't even find
1403 * a page in the page cache at all.
1404 */
1405 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1406 struct file_ra_state *ra,
1407 struct file *file,
1408 pgoff_t offset)
1409 {
1410 unsigned long ra_pages;
1411 struct address_space *mapping = file->f_mapping;
1412
1413 /* If we don't want any read-ahead, don't bother */
1414 if (VM_RandomReadHint(vma))
1415 return;
1416
1417 if (VM_SequentialReadHint(vma) ||
1418 offset - 1 == (ra->prev_pos >> PAGE_CACHE_SHIFT)) {
1419 page_cache_sync_readahead(mapping, ra, file, offset,
1420 ra->ra_pages);
1421 return;
1422 }
1423
1424 if (ra->mmap_miss < INT_MAX)
1425 ra->mmap_miss++;
1426
1427 /*
1428 * Do we miss much more than hit in this file? If so,
1429 * stop bothering with read-ahead. It will only hurt.
1430 */
1431 if (ra->mmap_miss > MMAP_LOTSAMISS)
1432 return;
1433
1434 /*
1435 * mmap read-around
1436 */
1437 ra_pages = max_sane_readahead(ra->ra_pages);
1438 if (ra_pages) {
1439 ra->start = max_t(long, 0, offset - ra_pages/2);
1440 ra->size = ra_pages;
1441 ra->async_size = 0;
1442 ra_submit(ra, mapping, file);
1443 }
1444 }
1445
1446 /*
1447 * Asynchronous readahead happens when we find the page and PG_readahead,
1448 * so we want to possibly extend the readahead further..
1449 */
1450 static void do_async_mmap_readahead(struct vm_area_struct *vma,
1451 struct file_ra_state *ra,
1452 struct file *file,
1453 struct page *page,
1454 pgoff_t offset)
1455 {
1456 struct address_space *mapping = file->f_mapping;
1457
1458 /* If we don't want any read-ahead, don't bother */
1459 if (VM_RandomReadHint(vma))
1460 return;
1461 if (ra->mmap_miss > 0)
1462 ra->mmap_miss--;
1463 if (PageReadahead(page))
1464 page_cache_async_readahead(mapping, ra, file,
1465 page, offset, ra->ra_pages);
1466 }
1467
1468 /**
1469 * filemap_fault - read in file data for page fault handling
1470 * @vma: vma in which the fault was taken
1471 * @vmf: struct vm_fault containing details of the fault
1472 *
1473 * filemap_fault() is invoked via the vma operations vector for a
1474 * mapped memory region to read in file data during a page fault.
1475 *
1476 * The goto's are kind of ugly, but this streamlines the normal case of having
1477 * it in the page cache, and handles the special cases reasonably without
1478 * having a lot of duplicated code.
1479 */
1480 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1481 {
1482 int error;
1483 struct file *file = vma->vm_file;
1484 struct address_space *mapping = file->f_mapping;
1485 struct file_ra_state *ra = &file->f_ra;
1486 struct inode *inode = mapping->host;
1487 pgoff_t offset = vmf->pgoff;
1488 struct page *page;
1489 pgoff_t size;
1490 int ret = 0;
1491
1492 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1493 if (offset >= size)
1494 return VM_FAULT_SIGBUS;
1495
1496 /*
1497 * Do we have something in the page cache already?
1498 */
1499 page = find_get_page(mapping, offset);
1500 if (likely(page)) {
1501 /*
1502 * We found the page, so try async readahead before
1503 * waiting for the lock.
1504 */
1505 do_async_mmap_readahead(vma, ra, file, page, offset);
1506 } else {
1507 /* No page in the page cache at all */
1508 do_sync_mmap_readahead(vma, ra, file, offset);
1509 count_vm_event(PGMAJFAULT);
1510 ret = VM_FAULT_MAJOR;
1511 retry_find:
1512 page = find_get_page(mapping, offset);
1513 if (!page)
1514 goto no_cached_page;
1515 }
1516
1517 if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
1518 page_cache_release(page);
1519 return ret | VM_FAULT_RETRY;
1520 }
1521
1522 /* Did it get truncated? */
1523 if (unlikely(page->mapping != mapping)) {
1524 unlock_page(page);
1525 put_page(page);
1526 goto retry_find;
1527 }
1528 VM_BUG_ON(page->index != offset);
1529
1530 /*
1531 * We have a locked page in the page cache, now we need to check
1532 * that it's up-to-date. If not, it is going to be due to an error.
1533 */
1534 if (unlikely(!PageUptodate(page)))
1535 goto page_not_uptodate;
1536
1537 /*
1538 * Found the page and have a reference on it.
1539 * We must recheck i_size under page lock.
1540 */
1541 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1542 if (unlikely(offset >= size)) {
1543 unlock_page(page);
1544 page_cache_release(page);
1545 return VM_FAULT_SIGBUS;
1546 }
1547
1548 ra->prev_pos = (loff_t)offset << PAGE_CACHE_SHIFT;
1549 vmf->page = page;
1550 return ret | VM_FAULT_LOCKED;
1551
1552 no_cached_page:
1553 /*
1554 * We're only likely to ever get here if MADV_RANDOM is in
1555 * effect.
1556 */
1557 error = page_cache_read(file, offset);
1558
1559 /*
1560 * The page we want has now been added to the page cache.
1561 * In the unlikely event that someone removed it in the
1562 * meantime, we'll just come back here and read it again.
1563 */
1564 if (error >= 0)
1565 goto retry_find;
1566
1567 /*
1568 * An error return from page_cache_read can result if the
1569 * system is low on memory, or a problem occurs while trying
1570 * to schedule I/O.
1571 */
1572 if (error == -ENOMEM)
1573 return VM_FAULT_OOM;
1574 return VM_FAULT_SIGBUS;
1575
1576 page_not_uptodate:
1577 /*
1578 * Umm, take care of errors if the page isn't up-to-date.
1579 * Try to re-read it _once_. We do this synchronously,
1580 * because there really aren't any performance issues here
1581 * and we need to check for errors.
1582 */
1583 ClearPageError(page);
1584 error = mapping->a_ops->readpage(file, page);
1585 if (!error) {
1586 wait_on_page_locked(page);
1587 if (!PageUptodate(page))
1588 error = -EIO;
1589 }
1590 page_cache_release(page);
1591
1592 if (!error || error == AOP_TRUNCATED_PAGE)
1593 goto retry_find;
1594
1595 /* Things didn't work out. Return zero to tell the mm layer so. */
1596 shrink_readahead_size_eio(file, ra);
1597 return VM_FAULT_SIGBUS;
1598 }
1599 EXPORT_SYMBOL(filemap_fault);
1600
1601 const struct vm_operations_struct generic_file_vm_ops = {
1602 .fault = filemap_fault,
1603 };
1604
1605 /* This is used for a general mmap of a disk file */
1606
1607 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1608 {
1609 struct address_space *mapping = file->f_mapping;
1610
1611 if (!mapping->a_ops->readpage)
1612 return -ENOEXEC;
1613 file_accessed(file);
1614 vma->vm_ops = &generic_file_vm_ops;
1615 vma->vm_flags |= VM_CAN_NONLINEAR;
1616 return 0;
1617 }
1618
1619 /*
1620 * This is for filesystems which do not implement ->writepage.
1621 */
1622 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1623 {
1624 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1625 return -EINVAL;
1626 return generic_file_mmap(file, vma);
1627 }
1628 #else
1629 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1630 {
1631 return -ENOSYS;
1632 }
1633 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1634 {
1635 return -ENOSYS;
1636 }
1637 #endif /* CONFIG_MMU */
1638
1639 EXPORT_SYMBOL(generic_file_mmap);
1640 EXPORT_SYMBOL(generic_file_readonly_mmap);
1641
1642 static struct page *__read_cache_page(struct address_space *mapping,
1643 pgoff_t index,
1644 int (*filler)(void *,struct page*),
1645 void *data,
1646 gfp_t gfp)
1647 {
1648 struct page *page;
1649 int err;
1650 repeat:
1651 page = find_get_page(mapping, index);
1652 if (!page) {
1653 page = __page_cache_alloc(gfp | __GFP_COLD);
1654 if (!page)
1655 return ERR_PTR(-ENOMEM);
1656 err = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL);
1657 if (unlikely(err)) {
1658 page_cache_release(page);
1659 if (err == -EEXIST)
1660 goto repeat;
1661 /* Presumably ENOMEM for radix tree node */
1662 return ERR_PTR(err);
1663 }
1664 err = filler(data, page);
1665 if (err < 0) {
1666 page_cache_release(page);
1667 page = ERR_PTR(err);
1668 }
1669 }
1670 return page;
1671 }
1672
1673 static struct page *do_read_cache_page(struct address_space *mapping,
1674 pgoff_t index,
1675 int (*filler)(void *,struct page*),
1676 void *data,
1677 gfp_t gfp)
1678
1679 {
1680 struct page *page;
1681 int err;
1682
1683 retry:
1684 page = __read_cache_page(mapping, index, filler, data, gfp);
1685 if (IS_ERR(page))
1686 return page;
1687 if (PageUptodate(page))
1688 goto out;
1689
1690 lock_page(page);
1691 if (!page->mapping) {
1692 unlock_page(page);
1693 page_cache_release(page);
1694 goto retry;
1695 }
1696 if (PageUptodate(page)) {
1697 unlock_page(page);
1698 goto out;
1699 }
1700 err = filler(data, page);
1701 if (err < 0) {
1702 page_cache_release(page);
1703 return ERR_PTR(err);
1704 }
1705 out:
1706 mark_page_accessed(page);
1707 return page;
1708 }
1709
1710 /**
1711 * read_cache_page_async - read into page cache, fill it if needed
1712 * @mapping: the page's address_space
1713 * @index: the page index
1714 * @filler: function to perform the read
1715 * @data: destination for read data
1716 *
1717 * Same as read_cache_page, but don't wait for page to become unlocked
1718 * after submitting it to the filler.
1719 *
1720 * Read into the page cache. If a page already exists, and PageUptodate() is
1721 * not set, try to fill the page but don't wait for it to become unlocked.
1722 *
1723 * If the page does not get brought uptodate, return -EIO.
1724 */
1725 struct page *read_cache_page_async(struct address_space *mapping,
1726 pgoff_t index,
1727 int (*filler)(void *,struct page*),
1728 void *data)
1729 {
1730 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
1731 }
1732 EXPORT_SYMBOL(read_cache_page_async);
1733
1734 static struct page *wait_on_page_read(struct page *page)
1735 {
1736 if (!IS_ERR(page)) {
1737 wait_on_page_locked(page);
1738 if (!PageUptodate(page)) {
1739 page_cache_release(page);
1740 page = ERR_PTR(-EIO);
1741 }
1742 }
1743 return page;
1744 }
1745
1746 /**
1747 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
1748 * @mapping: the page's address_space
1749 * @index: the page index
1750 * @gfp: the page allocator flags to use if allocating
1751 *
1752 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
1753 * any new page allocations done using the specified allocation flags. Note
1754 * that the Radix tree operations will still use GFP_KERNEL, so you can't
1755 * expect to do this atomically or anything like that - but you can pass in
1756 * other page requirements.
1757 *
1758 * If the page does not get brought uptodate, return -EIO.
1759 */
1760 struct page *read_cache_page_gfp(struct address_space *mapping,
1761 pgoff_t index,
1762 gfp_t gfp)
1763 {
1764 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
1765
1766 return wait_on_page_read(do_read_cache_page(mapping, index, filler, NULL, gfp));
1767 }
1768 EXPORT_SYMBOL(read_cache_page_gfp);
1769
1770 /**
1771 * read_cache_page - read into page cache, fill it if needed
1772 * @mapping: the page's address_space
1773 * @index: the page index
1774 * @filler: function to perform the read
1775 * @data: destination for read data
1776 *
1777 * Read into the page cache. If a page already exists, and PageUptodate() is
1778 * not set, try to fill the page then wait for it to become unlocked.
1779 *
1780 * If the page does not get brought uptodate, return -EIO.
1781 */
1782 struct page *read_cache_page(struct address_space *mapping,
1783 pgoff_t index,
1784 int (*filler)(void *,struct page*),
1785 void *data)
1786 {
1787 return wait_on_page_read(read_cache_page_async(mapping, index, filler, data));
1788 }
1789 EXPORT_SYMBOL(read_cache_page);
1790
1791 /*
1792 * The logic we want is
1793 *
1794 * if suid or (sgid and xgrp)
1795 * remove privs
1796 */
1797 int should_remove_suid(struct dentry *dentry)
1798 {
1799 mode_t mode = dentry->d_inode->i_mode;
1800 int kill = 0;
1801
1802 /* suid always must be killed */
1803 if (unlikely(mode & S_ISUID))
1804 kill = ATTR_KILL_SUID;
1805
1806 /*
1807 * sgid without any exec bits is just a mandatory locking mark; leave
1808 * it alone. If some exec bits are set, it's a real sgid; kill it.
1809 */
1810 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1811 kill |= ATTR_KILL_SGID;
1812
1813 if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1814 return kill;
1815
1816 return 0;
1817 }
1818 EXPORT_SYMBOL(should_remove_suid);
1819
1820 static int __remove_suid(struct dentry *dentry, int kill)
1821 {
1822 struct iattr newattrs;
1823
1824 newattrs.ia_valid = ATTR_FORCE | kill;
1825 return notify_change(dentry, &newattrs);
1826 }
1827
1828 int file_remove_suid(struct file *file)
1829 {
1830 struct dentry *dentry = file->f_path.dentry;
1831 int killsuid = should_remove_suid(dentry);
1832 int killpriv = security_inode_need_killpriv(dentry);
1833 int error = 0;
1834
1835 if (killpriv < 0)
1836 return killpriv;
1837 if (killpriv)
1838 error = security_inode_killpriv(dentry);
1839 if (!error && killsuid)
1840 error = __remove_suid(dentry, killsuid);
1841
1842 return error;
1843 }
1844 EXPORT_SYMBOL(file_remove_suid);
1845
1846 static size_t __iovec_copy_from_user_inatomic(char *vaddr,
1847 const struct iovec *iov, size_t base, size_t bytes)
1848 {
1849 size_t copied = 0, left = 0;
1850
1851 while (bytes) {
1852 char __user *buf = iov->iov_base + base;
1853 int copy = min(bytes, iov->iov_len - base);
1854
1855 base = 0;
1856 left = __copy_from_user_inatomic(vaddr, buf, copy);
1857 copied += copy;
1858 bytes -= copy;
1859 vaddr += copy;
1860 iov++;
1861
1862 if (unlikely(left))
1863 break;
1864 }
1865 return copied - left;
1866 }
1867
1868 /*
1869 * Copy as much as we can into the page and return the number of bytes which
1870 * were successfully copied. If a fault is encountered then return the number of
1871 * bytes which were copied.
1872 */
1873 size_t iov_iter_copy_from_user_atomic(struct page *page,
1874 struct iov_iter *i, unsigned long offset, size_t bytes)
1875 {
1876 char *kaddr;
1877 size_t copied;
1878
1879 BUG_ON(!in_atomic());
1880 kaddr = kmap_atomic(page, KM_USER0);
1881 if (likely(i->nr_segs == 1)) {
1882 int left;
1883 char __user *buf = i->iov->iov_base + i->iov_offset;
1884 left = __copy_from_user_inatomic(kaddr + offset, buf, bytes);
1885 copied = bytes - left;
1886 } else {
1887 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1888 i->iov, i->iov_offset, bytes);
1889 }
1890 kunmap_atomic(kaddr, KM_USER0);
1891
1892 return copied;
1893 }
1894 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
1895
1896 /*
1897 * This has the same sideeffects and return value as
1898 * iov_iter_copy_from_user_atomic().
1899 * The difference is that it attempts to resolve faults.
1900 * Page must not be locked.
1901 */
1902 size_t iov_iter_copy_from_user(struct page *page,
1903 struct iov_iter *i, unsigned long offset, size_t bytes)
1904 {
1905 char *kaddr;
1906 size_t copied;
1907
1908 kaddr = kmap(page);
1909 if (likely(i->nr_segs == 1)) {
1910 int left;
1911 char __user *buf = i->iov->iov_base + i->iov_offset;
1912 left = __copy_from_user(kaddr + offset, buf, bytes);
1913 copied = bytes - left;
1914 } else {
1915 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1916 i->iov, i->iov_offset, bytes);
1917 }
1918 kunmap(page);
1919 return copied;
1920 }
1921 EXPORT_SYMBOL(iov_iter_copy_from_user);
1922
1923 void iov_iter_advance(struct iov_iter *i, size_t bytes)
1924 {
1925 BUG_ON(i->count < bytes);
1926
1927 if (likely(i->nr_segs == 1)) {
1928 i->iov_offset += bytes;
1929 i->count -= bytes;
1930 } else {
1931 const struct iovec *iov = i->iov;
1932 size_t base = i->iov_offset;
1933
1934 /*
1935 * The !iov->iov_len check ensures we skip over unlikely
1936 * zero-length segments (without overruning the iovec).
1937 */
1938 while (bytes || unlikely(i->count && !iov->iov_len)) {
1939 int copy;
1940
1941 copy = min(bytes, iov->iov_len - base);
1942 BUG_ON(!i->count || i->count < copy);
1943 i->count -= copy;
1944 bytes -= copy;
1945 base += copy;
1946 if (iov->iov_len == base) {
1947 iov++;
1948 base = 0;
1949 }
1950 }
1951 i->iov = iov;
1952 i->iov_offset = base;
1953 }
1954 }
1955 EXPORT_SYMBOL(iov_iter_advance);
1956
1957 /*
1958 * Fault in the first iovec of the given iov_iter, to a maximum length
1959 * of bytes. Returns 0 on success, or non-zero if the memory could not be
1960 * accessed (ie. because it is an invalid address).
1961 *
1962 * writev-intensive code may want this to prefault several iovecs -- that
1963 * would be possible (callers must not rely on the fact that _only_ the
1964 * first iovec will be faulted with the current implementation).
1965 */
1966 int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
1967 {
1968 char __user *buf = i->iov->iov_base + i->iov_offset;
1969 bytes = min(bytes, i->iov->iov_len - i->iov_offset);
1970 return fault_in_pages_readable(buf, bytes);
1971 }
1972 EXPORT_SYMBOL(iov_iter_fault_in_readable);
1973
1974 /*
1975 * Return the count of just the current iov_iter segment.
1976 */
1977 size_t iov_iter_single_seg_count(struct iov_iter *i)
1978 {
1979 const struct iovec *iov = i->iov;
1980 if (i->nr_segs == 1)
1981 return i->count;
1982 else
1983 return min(i->count, iov->iov_len - i->iov_offset);
1984 }
1985 EXPORT_SYMBOL(iov_iter_single_seg_count);
1986
1987 /*
1988 * Performs necessary checks before doing a write
1989 *
1990 * Can adjust writing position or amount of bytes to write.
1991 * Returns appropriate error code that caller should return or
1992 * zero in case that write should be allowed.
1993 */
1994 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
1995 {
1996 struct inode *inode = file->f_mapping->host;
1997 unsigned long limit = rlimit(RLIMIT_FSIZE);
1998
1999 if (unlikely(*pos < 0))
2000 return -EINVAL;
2001
2002 if (!isblk) {
2003 /* FIXME: this is for backwards compatibility with 2.4 */
2004 if (file->f_flags & O_APPEND)
2005 *pos = i_size_read(inode);
2006
2007 if (limit != RLIM_INFINITY) {
2008 if (*pos >= limit) {
2009 send_sig(SIGXFSZ, current, 0);
2010 return -EFBIG;
2011 }
2012 if (*count > limit - (typeof(limit))*pos) {
2013 *count = limit - (typeof(limit))*pos;
2014 }
2015 }
2016 }
2017
2018 /*
2019 * LFS rule
2020 */
2021 if (unlikely(*pos + *count > MAX_NON_LFS &&
2022 !(file->f_flags & O_LARGEFILE))) {
2023 if (*pos >= MAX_NON_LFS) {
2024 return -EFBIG;
2025 }
2026 if (*count > MAX_NON_LFS - (unsigned long)*pos) {
2027 *count = MAX_NON_LFS - (unsigned long)*pos;
2028 }
2029 }
2030
2031 /*
2032 * Are we about to exceed the fs block limit ?
2033 *
2034 * If we have written data it becomes a short write. If we have
2035 * exceeded without writing data we send a signal and return EFBIG.
2036 * Linus frestrict idea will clean these up nicely..
2037 */
2038 if (likely(!isblk)) {
2039 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
2040 if (*count || *pos > inode->i_sb->s_maxbytes) {
2041 return -EFBIG;
2042 }
2043 /* zero-length writes at ->s_maxbytes are OK */
2044 }
2045
2046 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
2047 *count = inode->i_sb->s_maxbytes - *pos;
2048 } else {
2049 #ifdef CONFIG_BLOCK
2050 loff_t isize;
2051 if (bdev_read_only(I_BDEV(inode)))
2052 return -EPERM;
2053 isize = i_size_read(inode);
2054 if (*pos >= isize) {
2055 if (*count || *pos > isize)
2056 return -ENOSPC;
2057 }
2058
2059 if (*pos + *count > isize)
2060 *count = isize - *pos;
2061 #else
2062 return -EPERM;
2063 #endif
2064 }
2065 return 0;
2066 }
2067 EXPORT_SYMBOL(generic_write_checks);
2068
2069 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2070 loff_t pos, unsigned len, unsigned flags,
2071 struct page **pagep, void **fsdata)
2072 {
2073 const struct address_space_operations *aops = mapping->a_ops;
2074
2075 return aops->write_begin(file, mapping, pos, len, flags,
2076 pagep, fsdata);
2077 }
2078 EXPORT_SYMBOL(pagecache_write_begin);
2079
2080 int pagecache_write_end(struct file *file, struct address_space *mapping,
2081 loff_t pos, unsigned len, unsigned copied,
2082 struct page *page, void *fsdata)
2083 {
2084 const struct address_space_operations *aops = mapping->a_ops;
2085
2086 mark_page_accessed(page);
2087 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2088 }
2089 EXPORT_SYMBOL(pagecache_write_end);
2090
2091 ssize_t
2092 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
2093 unsigned long *nr_segs, loff_t pos, loff_t *ppos,
2094 size_t count, size_t ocount)
2095 {
2096 struct file *file = iocb->ki_filp;
2097 struct address_space *mapping = file->f_mapping;
2098 struct inode *inode = mapping->host;
2099 ssize_t written;
2100 size_t write_len;
2101 pgoff_t end;
2102
2103 if (count != ocount)
2104 *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
2105
2106 write_len = iov_length(iov, *nr_segs);
2107 end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
2108
2109 written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2110 if (written)
2111 goto out;
2112
2113 /*
2114 * After a write we want buffered reads to be sure to go to disk to get
2115 * the new data. We invalidate clean cached page from the region we're
2116 * about to write. We do this *before* the write so that we can return
2117 * without clobbering -EIOCBQUEUED from ->direct_IO().
2118 */
2119 if (mapping->nrpages) {
2120 written = invalidate_inode_pages2_range(mapping,
2121 pos >> PAGE_CACHE_SHIFT, end);
2122 /*
2123 * If a page can not be invalidated, return 0 to fall back
2124 * to buffered write.
2125 */
2126 if (written) {
2127 if (written == -EBUSY)
2128 return 0;
2129 goto out;
2130 }
2131 }
2132
2133 written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs);
2134
2135 /*
2136 * Finally, try again to invalidate clean pages which might have been
2137 * cached by non-direct readahead, or faulted in by get_user_pages()
2138 * if the source of the write was an mmap'ed region of the file
2139 * we're writing. Either one is a pretty crazy thing to do,
2140 * so we don't support it 100%. If this invalidation
2141 * fails, tough, the write still worked...
2142 */
2143 if (mapping->nrpages) {
2144 invalidate_inode_pages2_range(mapping,
2145 pos >> PAGE_CACHE_SHIFT, end);
2146 }
2147
2148 if (written > 0) {
2149 pos += written;
2150 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2151 i_size_write(inode, pos);
2152 mark_inode_dirty(inode);
2153 }
2154 *ppos = pos;
2155 }
2156 out:
2157 return written;
2158 }
2159 EXPORT_SYMBOL(generic_file_direct_write);
2160
2161 /*
2162 * Find or create a page at the given pagecache position. Return the locked
2163 * page. This function is specifically for buffered writes.
2164 */
2165 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2166 pgoff_t index, unsigned flags)
2167 {
2168 int status;
2169 struct page *page;
2170 gfp_t gfp_notmask = 0;
2171 if (flags & AOP_FLAG_NOFS)
2172 gfp_notmask = __GFP_FS;
2173 repeat:
2174 page = find_lock_page(mapping, index);
2175 if (page)
2176 return page;
2177
2178 page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~gfp_notmask);
2179 if (!page)
2180 return NULL;
2181 status = add_to_page_cache_lru(page, mapping, index,
2182 GFP_KERNEL & ~gfp_notmask);
2183 if (unlikely(status)) {
2184 page_cache_release(page);
2185 if (status == -EEXIST)
2186 goto repeat;
2187 return NULL;
2188 }
2189 return page;
2190 }
2191 EXPORT_SYMBOL(grab_cache_page_write_begin);
2192
2193 static ssize_t generic_perform_write(struct file *file,
2194 struct iov_iter *i, loff_t pos)
2195 {
2196 struct address_space *mapping = file->f_mapping;
2197 const struct address_space_operations *a_ops = mapping->a_ops;
2198 long status = 0;
2199 ssize_t written = 0;
2200 unsigned int flags = 0;
2201
2202 /*
2203 * Copies from kernel address space cannot fail (NFSD is a big user).
2204 */
2205 if (segment_eq(get_fs(), KERNEL_DS))
2206 flags |= AOP_FLAG_UNINTERRUPTIBLE;
2207
2208 do {
2209 struct page *page;
2210 unsigned long offset; /* Offset into pagecache page */
2211 unsigned long bytes; /* Bytes to write to page */
2212 size_t copied; /* Bytes copied from user */
2213 void *fsdata;
2214
2215 offset = (pos & (PAGE_CACHE_SIZE - 1));
2216 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2217 iov_iter_count(i));
2218
2219 again:
2220
2221 /*
2222 * Bring in the user page that we will copy from _first_.
2223 * Otherwise there's a nasty deadlock on copying from the
2224 * same page as we're writing to, without it being marked
2225 * up-to-date.
2226 *
2227 * Not only is this an optimisation, but it is also required
2228 * to check that the address is actually valid, when atomic
2229 * usercopies are used, below.
2230 */
2231 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2232 status = -EFAULT;
2233 break;
2234 }
2235
2236 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2237 &page, &fsdata);
2238 if (unlikely(status))
2239 break;
2240
2241 if (mapping_writably_mapped(mapping))
2242 flush_dcache_page(page);
2243
2244 pagefault_disable();
2245 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2246 pagefault_enable();
2247 flush_dcache_page(page);
2248
2249 mark_page_accessed(page);
2250 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2251 page, fsdata);
2252 if (unlikely(status < 0))
2253 break;
2254 copied = status;
2255
2256 cond_resched();
2257
2258 iov_iter_advance(i, copied);
2259 if (unlikely(copied == 0)) {
2260 /*
2261 * If we were unable to copy any data at all, we must
2262 * fall back to a single segment length write.
2263 *
2264 * If we didn't fallback here, we could livelock
2265 * because not all segments in the iov can be copied at
2266 * once without a pagefault.
2267 */
2268 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2269 iov_iter_single_seg_count(i));
2270 goto again;
2271 }
2272 pos += copied;
2273 written += copied;
2274
2275 balance_dirty_pages_ratelimited(mapping);
2276
2277 } while (iov_iter_count(i));
2278
2279 return written ? written : status;
2280 }
2281
2282 ssize_t
2283 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2284 unsigned long nr_segs, loff_t pos, loff_t *ppos,
2285 size_t count, ssize_t written)
2286 {
2287 struct file *file = iocb->ki_filp;
2288 ssize_t status;
2289 struct iov_iter i;
2290
2291 iov_iter_init(&i, iov, nr_segs, count, written);
2292 status = generic_perform_write(file, &i, pos);
2293
2294 if (likely(status >= 0)) {
2295 written += status;
2296 *ppos = pos + status;
2297 }
2298
2299 return written ? written : status;
2300 }
2301 EXPORT_SYMBOL(generic_file_buffered_write);
2302
2303 /**
2304 * __generic_file_aio_write - write data to a file
2305 * @iocb: IO state structure (file, offset, etc.)
2306 * @iov: vector with data to write
2307 * @nr_segs: number of segments in the vector
2308 * @ppos: position where to write
2309 *
2310 * This function does all the work needed for actually writing data to a
2311 * file. It does all basic checks, removes SUID from the file, updates
2312 * modification times and calls proper subroutines depending on whether we
2313 * do direct IO or a standard buffered write.
2314 *
2315 * It expects i_mutex to be grabbed unless we work on a block device or similar
2316 * object which does not need locking at all.
2317 *
2318 * This function does *not* take care of syncing data in case of O_SYNC write.
2319 * A caller has to handle it. This is mainly due to the fact that we want to
2320 * avoid syncing under i_mutex.
2321 */
2322 ssize_t __generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2323 unsigned long nr_segs, loff_t *ppos)
2324 {
2325 struct file *file = iocb->ki_filp;
2326 struct address_space * mapping = file->f_mapping;
2327 size_t ocount; /* original count */
2328 size_t count; /* after file limit checks */
2329 struct inode *inode = mapping->host;
2330 loff_t pos;
2331 ssize_t written;
2332 ssize_t err;
2333
2334 ocount = 0;
2335 err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2336 if (err)
2337 return err;
2338
2339 count = ocount;
2340 pos = *ppos;
2341
2342 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2343
2344 /* We can write back this queue in page reclaim */
2345 current->backing_dev_info = mapping->backing_dev_info;
2346 written = 0;
2347
2348 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2349 if (err)
2350 goto out;
2351
2352 if (count == 0)
2353 goto out;
2354
2355 err = file_remove_suid(file);
2356 if (err)
2357 goto out;
2358
2359 file_update_time(file);
2360
2361 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2362 if (unlikely(file->f_flags & O_DIRECT)) {
2363 loff_t endbyte;
2364 ssize_t written_buffered;
2365
2366 written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2367 ppos, count, ocount);
2368 if (written < 0 || written == count)
2369 goto out;
2370 /*
2371 * direct-io write to a hole: fall through to buffered I/O
2372 * for completing the rest of the request.
2373 */
2374 pos += written;
2375 count -= written;
2376 written_buffered = generic_file_buffered_write(iocb, iov,
2377 nr_segs, pos, ppos, count,
2378 written);
2379 /*
2380 * If generic_file_buffered_write() retuned a synchronous error
2381 * then we want to return the number of bytes which were
2382 * direct-written, or the error code if that was zero. Note
2383 * that this differs from normal direct-io semantics, which
2384 * will return -EFOO even if some bytes were written.
2385 */
2386 if (written_buffered < 0) {
2387 err = written_buffered;
2388 goto out;
2389 }
2390
2391 /*
2392 * We need to ensure that the page cache pages are written to
2393 * disk and invalidated to preserve the expected O_DIRECT
2394 * semantics.
2395 */
2396 endbyte = pos + written_buffered - written - 1;
2397 err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
2398 if (err == 0) {
2399 written = written_buffered;
2400 invalidate_mapping_pages(mapping,
2401 pos >> PAGE_CACHE_SHIFT,
2402 endbyte >> PAGE_CACHE_SHIFT);
2403 } else {
2404 /*
2405 * We don't know how much we wrote, so just return
2406 * the number of bytes which were direct-written
2407 */
2408 }
2409 } else {
2410 written = generic_file_buffered_write(iocb, iov, nr_segs,
2411 pos, ppos, count, written);
2412 }
2413 out:
2414 current->backing_dev_info = NULL;
2415 return written ? written : err;
2416 }
2417 EXPORT_SYMBOL(__generic_file_aio_write);
2418
2419 /**
2420 * generic_file_aio_write - write data to a file
2421 * @iocb: IO state structure
2422 * @iov: vector with data to write
2423 * @nr_segs: number of segments in the vector
2424 * @pos: position in file where to write
2425 *
2426 * This is a wrapper around __generic_file_aio_write() to be used by most
2427 * filesystems. It takes care of syncing the file in case of O_SYNC file
2428 * and acquires i_mutex as needed.
2429 */
2430 ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2431 unsigned long nr_segs, loff_t pos)
2432 {
2433 struct file *file = iocb->ki_filp;
2434 struct inode *inode = file->f_mapping->host;
2435 ssize_t ret;
2436
2437 BUG_ON(iocb->ki_pos != pos);
2438
2439 mutex_lock(&inode->i_mutex);
2440 ret = __generic_file_aio_write(iocb, iov, nr_segs, &iocb->ki_pos);
2441 mutex_unlock(&inode->i_mutex);
2442
2443 if (ret > 0 || ret == -EIOCBQUEUED) {
2444 ssize_t err;
2445
2446 err = generic_write_sync(file, pos, ret);
2447 if (err < 0 && ret > 0)
2448 ret = err;
2449 }
2450 return ret;
2451 }
2452 EXPORT_SYMBOL(generic_file_aio_write);
2453
2454 /**
2455 * try_to_release_page() - release old fs-specific metadata on a page
2456 *
2457 * @page: the page which the kernel is trying to free
2458 * @gfp_mask: memory allocation flags (and I/O mode)
2459 *
2460 * The address_space is to try to release any data against the page
2461 * (presumably at page->private). If the release was successful, return `1'.
2462 * Otherwise return zero.
2463 *
2464 * This may also be called if PG_fscache is set on a page, indicating that the
2465 * page is known to the local caching routines.
2466 *
2467 * The @gfp_mask argument specifies whether I/O may be performed to release
2468 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
2469 *
2470 */
2471 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2472 {
2473 struct address_space * const mapping = page->mapping;
2474
2475 BUG_ON(!PageLocked(page));
2476 if (PageWriteback(page))
2477 return 0;
2478
2479 if (mapping && mapping->a_ops->releasepage)
2480 return mapping->a_ops->releasepage(page, gfp_mask);
2481 return try_to_free_buffers(page);
2482 }
2483
2484 EXPORT_SYMBOL(try_to_release_page);
This page took 0.081327 seconds and 5 git commands to generate.