readahead: code cleanup
[deliverable/linux.git] / mm / filemap.c
1 /*
2 * linux/mm/filemap.c
3 *
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
6
7 /*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
11 */
12 #include <linux/module.h>
13 #include <linux/slab.h>
14 #include <linux/compiler.h>
15 #include <linux/fs.h>
16 #include <linux/uaccess.h>
17 #include <linux/aio.h>
18 #include <linux/capability.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/pagevec.h>
29 #include <linux/blkdev.h>
30 #include <linux/security.h>
31 #include <linux/syscalls.h>
32 #include <linux/cpuset.h>
33 #include "filemap.h"
34 #include "internal.h"
35
36 /*
37 * FIXME: remove all knowledge of the buffer layer from the core VM
38 */
39 #include <linux/buffer_head.h> /* for generic_osync_inode */
40
41 #include <asm/mman.h>
42
43 static ssize_t
44 generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
45 loff_t offset, unsigned long nr_segs);
46
47 /*
48 * Shared mappings implemented 30.11.1994. It's not fully working yet,
49 * though.
50 *
51 * Shared mappings now work. 15.8.1995 Bruno.
52 *
53 * finished 'unifying' the page and buffer cache and SMP-threaded the
54 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
55 *
56 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
57 */
58
59 /*
60 * Lock ordering:
61 *
62 * ->i_mmap_lock (vmtruncate)
63 * ->private_lock (__free_pte->__set_page_dirty_buffers)
64 * ->swap_lock (exclusive_swap_page, others)
65 * ->mapping->tree_lock
66 *
67 * ->i_mutex
68 * ->i_mmap_lock (truncate->unmap_mapping_range)
69 *
70 * ->mmap_sem
71 * ->i_mmap_lock
72 * ->page_table_lock or pte_lock (various, mainly in memory.c)
73 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
74 *
75 * ->mmap_sem
76 * ->lock_page (access_process_vm)
77 *
78 * ->i_mutex (generic_file_buffered_write)
79 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
80 *
81 * ->i_mutex
82 * ->i_alloc_sem (various)
83 *
84 * ->inode_lock
85 * ->sb_lock (fs/fs-writeback.c)
86 * ->mapping->tree_lock (__sync_single_inode)
87 *
88 * ->i_mmap_lock
89 * ->anon_vma.lock (vma_adjust)
90 *
91 * ->anon_vma.lock
92 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
93 *
94 * ->page_table_lock or pte_lock
95 * ->swap_lock (try_to_unmap_one)
96 * ->private_lock (try_to_unmap_one)
97 * ->tree_lock (try_to_unmap_one)
98 * ->zone.lru_lock (follow_page->mark_page_accessed)
99 * ->zone.lru_lock (check_pte_range->isolate_lru_page)
100 * ->private_lock (page_remove_rmap->set_page_dirty)
101 * ->tree_lock (page_remove_rmap->set_page_dirty)
102 * ->inode_lock (page_remove_rmap->set_page_dirty)
103 * ->inode_lock (zap_pte_range->set_page_dirty)
104 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
105 *
106 * ->task->proc_lock
107 * ->dcache_lock (proc_pid_lookup)
108 */
109
110 /*
111 * Remove a page from the page cache and free it. Caller has to make
112 * sure the page is locked and that nobody else uses it - or that usage
113 * is safe. The caller must hold a write_lock on the mapping's tree_lock.
114 */
115 void __remove_from_page_cache(struct page *page)
116 {
117 struct address_space *mapping = page->mapping;
118
119 radix_tree_delete(&mapping->page_tree, page->index);
120 page->mapping = NULL;
121 mapping->nrpages--;
122 __dec_zone_page_state(page, NR_FILE_PAGES);
123 }
124
125 void remove_from_page_cache(struct page *page)
126 {
127 struct address_space *mapping = page->mapping;
128
129 BUG_ON(!PageLocked(page));
130
131 write_lock_irq(&mapping->tree_lock);
132 __remove_from_page_cache(page);
133 write_unlock_irq(&mapping->tree_lock);
134 }
135
136 static int sync_page(void *word)
137 {
138 struct address_space *mapping;
139 struct page *page;
140
141 page = container_of((unsigned long *)word, struct page, flags);
142
143 /*
144 * page_mapping() is being called without PG_locked held.
145 * Some knowledge of the state and use of the page is used to
146 * reduce the requirements down to a memory barrier.
147 * The danger here is of a stale page_mapping() return value
148 * indicating a struct address_space different from the one it's
149 * associated with when it is associated with one.
150 * After smp_mb(), it's either the correct page_mapping() for
151 * the page, or an old page_mapping() and the page's own
152 * page_mapping() has gone NULL.
153 * The ->sync_page() address_space operation must tolerate
154 * page_mapping() going NULL. By an amazing coincidence,
155 * this comes about because none of the users of the page
156 * in the ->sync_page() methods make essential use of the
157 * page_mapping(), merely passing the page down to the backing
158 * device's unplug functions when it's non-NULL, which in turn
159 * ignore it for all cases but swap, where only page_private(page) is
160 * of interest. When page_mapping() does go NULL, the entire
161 * call stack gracefully ignores the page and returns.
162 * -- wli
163 */
164 smp_mb();
165 mapping = page_mapping(page);
166 if (mapping && mapping->a_ops && mapping->a_ops->sync_page)
167 mapping->a_ops->sync_page(page);
168 io_schedule();
169 return 0;
170 }
171
172 /**
173 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
174 * @mapping: address space structure to write
175 * @start: offset in bytes where the range starts
176 * @end: offset in bytes where the range ends (inclusive)
177 * @sync_mode: enable synchronous operation
178 *
179 * Start writeback against all of a mapping's dirty pages that lie
180 * within the byte offsets <start, end> inclusive.
181 *
182 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
183 * opposed to a regular memory cleansing writeback. The difference between
184 * these two operations is that if a dirty page/buffer is encountered, it must
185 * be waited upon, and not just skipped over.
186 */
187 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
188 loff_t end, int sync_mode)
189 {
190 int ret;
191 struct writeback_control wbc = {
192 .sync_mode = sync_mode,
193 .nr_to_write = mapping->nrpages * 2,
194 .range_start = start,
195 .range_end = end,
196 };
197
198 if (!mapping_cap_writeback_dirty(mapping))
199 return 0;
200
201 ret = do_writepages(mapping, &wbc);
202 return ret;
203 }
204
205 static inline int __filemap_fdatawrite(struct address_space *mapping,
206 int sync_mode)
207 {
208 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
209 }
210
211 int filemap_fdatawrite(struct address_space *mapping)
212 {
213 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
214 }
215 EXPORT_SYMBOL(filemap_fdatawrite);
216
217 static int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
218 loff_t end)
219 {
220 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
221 }
222
223 /**
224 * filemap_flush - mostly a non-blocking flush
225 * @mapping: target address_space
226 *
227 * This is a mostly non-blocking flush. Not suitable for data-integrity
228 * purposes - I/O may not be started against all dirty pages.
229 */
230 int filemap_flush(struct address_space *mapping)
231 {
232 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
233 }
234 EXPORT_SYMBOL(filemap_flush);
235
236 /**
237 * wait_on_page_writeback_range - wait for writeback to complete
238 * @mapping: target address_space
239 * @start: beginning page index
240 * @end: ending page index
241 *
242 * Wait for writeback to complete against pages indexed by start->end
243 * inclusive
244 */
245 int wait_on_page_writeback_range(struct address_space *mapping,
246 pgoff_t start, pgoff_t end)
247 {
248 struct pagevec pvec;
249 int nr_pages;
250 int ret = 0;
251 pgoff_t index;
252
253 if (end < start)
254 return 0;
255
256 pagevec_init(&pvec, 0);
257 index = start;
258 while ((index <= end) &&
259 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
260 PAGECACHE_TAG_WRITEBACK,
261 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
262 unsigned i;
263
264 for (i = 0; i < nr_pages; i++) {
265 struct page *page = pvec.pages[i];
266
267 /* until radix tree lookup accepts end_index */
268 if (page->index > end)
269 continue;
270
271 wait_on_page_writeback(page);
272 if (PageError(page))
273 ret = -EIO;
274 }
275 pagevec_release(&pvec);
276 cond_resched();
277 }
278
279 /* Check for outstanding write errors */
280 if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
281 ret = -ENOSPC;
282 if (test_and_clear_bit(AS_EIO, &mapping->flags))
283 ret = -EIO;
284
285 return ret;
286 }
287
288 /**
289 * sync_page_range - write and wait on all pages in the passed range
290 * @inode: target inode
291 * @mapping: target address_space
292 * @pos: beginning offset in pages to write
293 * @count: number of bytes to write
294 *
295 * Write and wait upon all the pages in the passed range. This is a "data
296 * integrity" operation. It waits upon in-flight writeout before starting and
297 * waiting upon new writeout. If there was an IO error, return it.
298 *
299 * We need to re-take i_mutex during the generic_osync_inode list walk because
300 * it is otherwise livelockable.
301 */
302 int sync_page_range(struct inode *inode, struct address_space *mapping,
303 loff_t pos, loff_t count)
304 {
305 pgoff_t start = pos >> PAGE_CACHE_SHIFT;
306 pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
307 int ret;
308
309 if (!mapping_cap_writeback_dirty(mapping) || !count)
310 return 0;
311 ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
312 if (ret == 0) {
313 mutex_lock(&inode->i_mutex);
314 ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
315 mutex_unlock(&inode->i_mutex);
316 }
317 if (ret == 0)
318 ret = wait_on_page_writeback_range(mapping, start, end);
319 return ret;
320 }
321 EXPORT_SYMBOL(sync_page_range);
322
323 /**
324 * sync_page_range_nolock
325 * @inode: target inode
326 * @mapping: target address_space
327 * @pos: beginning offset in pages to write
328 * @count: number of bytes to write
329 *
330 * Note: Holding i_mutex across sync_page_range_nolock() is not a good idea
331 * as it forces O_SYNC writers to different parts of the same file
332 * to be serialised right until io completion.
333 */
334 int sync_page_range_nolock(struct inode *inode, struct address_space *mapping,
335 loff_t pos, loff_t count)
336 {
337 pgoff_t start = pos >> PAGE_CACHE_SHIFT;
338 pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
339 int ret;
340
341 if (!mapping_cap_writeback_dirty(mapping) || !count)
342 return 0;
343 ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
344 if (ret == 0)
345 ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
346 if (ret == 0)
347 ret = wait_on_page_writeback_range(mapping, start, end);
348 return ret;
349 }
350 EXPORT_SYMBOL(sync_page_range_nolock);
351
352 /**
353 * filemap_fdatawait - wait for all under-writeback pages to complete
354 * @mapping: address space structure to wait for
355 *
356 * Walk the list of under-writeback pages of the given address space
357 * and wait for all of them.
358 */
359 int filemap_fdatawait(struct address_space *mapping)
360 {
361 loff_t i_size = i_size_read(mapping->host);
362
363 if (i_size == 0)
364 return 0;
365
366 return wait_on_page_writeback_range(mapping, 0,
367 (i_size - 1) >> PAGE_CACHE_SHIFT);
368 }
369 EXPORT_SYMBOL(filemap_fdatawait);
370
371 int filemap_write_and_wait(struct address_space *mapping)
372 {
373 int err = 0;
374
375 if (mapping->nrpages) {
376 err = filemap_fdatawrite(mapping);
377 /*
378 * Even if the above returned error, the pages may be
379 * written partially (e.g. -ENOSPC), so we wait for it.
380 * But the -EIO is special case, it may indicate the worst
381 * thing (e.g. bug) happened, so we avoid waiting for it.
382 */
383 if (err != -EIO) {
384 int err2 = filemap_fdatawait(mapping);
385 if (!err)
386 err = err2;
387 }
388 }
389 return err;
390 }
391 EXPORT_SYMBOL(filemap_write_and_wait);
392
393 /**
394 * filemap_write_and_wait_range - write out & wait on a file range
395 * @mapping: the address_space for the pages
396 * @lstart: offset in bytes where the range starts
397 * @lend: offset in bytes where the range ends (inclusive)
398 *
399 * Write out and wait upon file offsets lstart->lend, inclusive.
400 *
401 * Note that `lend' is inclusive (describes the last byte to be written) so
402 * that this function can be used to write to the very end-of-file (end = -1).
403 */
404 int filemap_write_and_wait_range(struct address_space *mapping,
405 loff_t lstart, loff_t lend)
406 {
407 int err = 0;
408
409 if (mapping->nrpages) {
410 err = __filemap_fdatawrite_range(mapping, lstart, lend,
411 WB_SYNC_ALL);
412 /* See comment of filemap_write_and_wait() */
413 if (err != -EIO) {
414 int err2 = wait_on_page_writeback_range(mapping,
415 lstart >> PAGE_CACHE_SHIFT,
416 lend >> PAGE_CACHE_SHIFT);
417 if (!err)
418 err = err2;
419 }
420 }
421 return err;
422 }
423
424 /**
425 * add_to_page_cache - add newly allocated pagecache pages
426 * @page: page to add
427 * @mapping: the page's address_space
428 * @offset: page index
429 * @gfp_mask: page allocation mode
430 *
431 * This function is used to add newly allocated pagecache pages;
432 * the page is new, so we can just run SetPageLocked() against it.
433 * The other page state flags were set by rmqueue().
434 *
435 * This function does not add the page to the LRU. The caller must do that.
436 */
437 int add_to_page_cache(struct page *page, struct address_space *mapping,
438 pgoff_t offset, gfp_t gfp_mask)
439 {
440 int error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
441
442 if (error == 0) {
443 write_lock_irq(&mapping->tree_lock);
444 error = radix_tree_insert(&mapping->page_tree, offset, page);
445 if (!error) {
446 page_cache_get(page);
447 SetPageLocked(page);
448 page->mapping = mapping;
449 page->index = offset;
450 mapping->nrpages++;
451 __inc_zone_page_state(page, NR_FILE_PAGES);
452 }
453 write_unlock_irq(&mapping->tree_lock);
454 radix_tree_preload_end();
455 }
456 return error;
457 }
458 EXPORT_SYMBOL(add_to_page_cache);
459
460 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
461 pgoff_t offset, gfp_t gfp_mask)
462 {
463 int ret = add_to_page_cache(page, mapping, offset, gfp_mask);
464 if (ret == 0)
465 lru_cache_add(page);
466 return ret;
467 }
468
469 #ifdef CONFIG_NUMA
470 struct page *__page_cache_alloc(gfp_t gfp)
471 {
472 if (cpuset_do_page_mem_spread()) {
473 int n = cpuset_mem_spread_node();
474 return alloc_pages_node(n, gfp, 0);
475 }
476 return alloc_pages(gfp, 0);
477 }
478 EXPORT_SYMBOL(__page_cache_alloc);
479 #endif
480
481 static int __sleep_on_page_lock(void *word)
482 {
483 io_schedule();
484 return 0;
485 }
486
487 /*
488 * In order to wait for pages to become available there must be
489 * waitqueues associated with pages. By using a hash table of
490 * waitqueues where the bucket discipline is to maintain all
491 * waiters on the same queue and wake all when any of the pages
492 * become available, and for the woken contexts to check to be
493 * sure the appropriate page became available, this saves space
494 * at a cost of "thundering herd" phenomena during rare hash
495 * collisions.
496 */
497 static wait_queue_head_t *page_waitqueue(struct page *page)
498 {
499 const struct zone *zone = page_zone(page);
500
501 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
502 }
503
504 static inline void wake_up_page(struct page *page, int bit)
505 {
506 __wake_up_bit(page_waitqueue(page), &page->flags, bit);
507 }
508
509 void fastcall wait_on_page_bit(struct page *page, int bit_nr)
510 {
511 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
512
513 if (test_bit(bit_nr, &page->flags))
514 __wait_on_bit(page_waitqueue(page), &wait, sync_page,
515 TASK_UNINTERRUPTIBLE);
516 }
517 EXPORT_SYMBOL(wait_on_page_bit);
518
519 /**
520 * unlock_page - unlock a locked page
521 * @page: the page
522 *
523 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
524 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
525 * mechananism between PageLocked pages and PageWriteback pages is shared.
526 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
527 *
528 * The first mb is necessary to safely close the critical section opened by the
529 * TestSetPageLocked(), the second mb is necessary to enforce ordering between
530 * the clear_bit and the read of the waitqueue (to avoid SMP races with a
531 * parallel wait_on_page_locked()).
532 */
533 void fastcall unlock_page(struct page *page)
534 {
535 smp_mb__before_clear_bit();
536 if (!TestClearPageLocked(page))
537 BUG();
538 smp_mb__after_clear_bit();
539 wake_up_page(page, PG_locked);
540 }
541 EXPORT_SYMBOL(unlock_page);
542
543 /**
544 * end_page_writeback - end writeback against a page
545 * @page: the page
546 */
547 void end_page_writeback(struct page *page)
548 {
549 if (!TestClearPageReclaim(page) || rotate_reclaimable_page(page)) {
550 if (!test_clear_page_writeback(page))
551 BUG();
552 }
553 smp_mb__after_clear_bit();
554 wake_up_page(page, PG_writeback);
555 }
556 EXPORT_SYMBOL(end_page_writeback);
557
558 /**
559 * __lock_page - get a lock on the page, assuming we need to sleep to get it
560 * @page: the page to lock
561 *
562 * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary. If some
563 * random driver's requestfn sets TASK_RUNNING, we could busywait. However
564 * chances are that on the second loop, the block layer's plug list is empty,
565 * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
566 */
567 void fastcall __lock_page(struct page *page)
568 {
569 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
570
571 __wait_on_bit_lock(page_waitqueue(page), &wait, sync_page,
572 TASK_UNINTERRUPTIBLE);
573 }
574 EXPORT_SYMBOL(__lock_page);
575
576 /*
577 * Variant of lock_page that does not require the caller to hold a reference
578 * on the page's mapping.
579 */
580 void fastcall __lock_page_nosync(struct page *page)
581 {
582 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
583 __wait_on_bit_lock(page_waitqueue(page), &wait, __sleep_on_page_lock,
584 TASK_UNINTERRUPTIBLE);
585 }
586
587 /**
588 * find_get_page - find and get a page reference
589 * @mapping: the address_space to search
590 * @offset: the page index
591 *
592 * Is there a pagecache struct page at the given (mapping, offset) tuple?
593 * If yes, increment its refcount and return it; if no, return NULL.
594 */
595 struct page * find_get_page(struct address_space *mapping, unsigned long offset)
596 {
597 struct page *page;
598
599 read_lock_irq(&mapping->tree_lock);
600 page = radix_tree_lookup(&mapping->page_tree, offset);
601 if (page)
602 page_cache_get(page);
603 read_unlock_irq(&mapping->tree_lock);
604 return page;
605 }
606 EXPORT_SYMBOL(find_get_page);
607
608 /**
609 * find_lock_page - locate, pin and lock a pagecache page
610 * @mapping: the address_space to search
611 * @offset: the page index
612 *
613 * Locates the desired pagecache page, locks it, increments its reference
614 * count and returns its address.
615 *
616 * Returns zero if the page was not present. find_lock_page() may sleep.
617 */
618 struct page *find_lock_page(struct address_space *mapping,
619 unsigned long offset)
620 {
621 struct page *page;
622
623 read_lock_irq(&mapping->tree_lock);
624 repeat:
625 page = radix_tree_lookup(&mapping->page_tree, offset);
626 if (page) {
627 page_cache_get(page);
628 if (TestSetPageLocked(page)) {
629 read_unlock_irq(&mapping->tree_lock);
630 __lock_page(page);
631 read_lock_irq(&mapping->tree_lock);
632
633 /* Has the page been truncated while we slept? */
634 if (unlikely(page->mapping != mapping ||
635 page->index != offset)) {
636 unlock_page(page);
637 page_cache_release(page);
638 goto repeat;
639 }
640 }
641 }
642 read_unlock_irq(&mapping->tree_lock);
643 return page;
644 }
645 EXPORT_SYMBOL(find_lock_page);
646
647 /**
648 * find_or_create_page - locate or add a pagecache page
649 * @mapping: the page's address_space
650 * @index: the page's index into the mapping
651 * @gfp_mask: page allocation mode
652 *
653 * Locates a page in the pagecache. If the page is not present, a new page
654 * is allocated using @gfp_mask and is added to the pagecache and to the VM's
655 * LRU list. The returned page is locked and has its reference count
656 * incremented.
657 *
658 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
659 * allocation!
660 *
661 * find_or_create_page() returns the desired page's address, or zero on
662 * memory exhaustion.
663 */
664 struct page *find_or_create_page(struct address_space *mapping,
665 unsigned long index, gfp_t gfp_mask)
666 {
667 struct page *page, *cached_page = NULL;
668 int err;
669 repeat:
670 page = find_lock_page(mapping, index);
671 if (!page) {
672 if (!cached_page) {
673 cached_page = alloc_page(gfp_mask);
674 if (!cached_page)
675 return NULL;
676 }
677 err = add_to_page_cache_lru(cached_page, mapping,
678 index, gfp_mask);
679 if (!err) {
680 page = cached_page;
681 cached_page = NULL;
682 } else if (err == -EEXIST)
683 goto repeat;
684 }
685 if (cached_page)
686 page_cache_release(cached_page);
687 return page;
688 }
689 EXPORT_SYMBOL(find_or_create_page);
690
691 /**
692 * find_get_pages - gang pagecache lookup
693 * @mapping: The address_space to search
694 * @start: The starting page index
695 * @nr_pages: The maximum number of pages
696 * @pages: Where the resulting pages are placed
697 *
698 * find_get_pages() will search for and return a group of up to
699 * @nr_pages pages in the mapping. The pages are placed at @pages.
700 * find_get_pages() takes a reference against the returned pages.
701 *
702 * The search returns a group of mapping-contiguous pages with ascending
703 * indexes. There may be holes in the indices due to not-present pages.
704 *
705 * find_get_pages() returns the number of pages which were found.
706 */
707 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
708 unsigned int nr_pages, struct page **pages)
709 {
710 unsigned int i;
711 unsigned int ret;
712
713 read_lock_irq(&mapping->tree_lock);
714 ret = radix_tree_gang_lookup(&mapping->page_tree,
715 (void **)pages, start, nr_pages);
716 for (i = 0; i < ret; i++)
717 page_cache_get(pages[i]);
718 read_unlock_irq(&mapping->tree_lock);
719 return ret;
720 }
721
722 /**
723 * find_get_pages_contig - gang contiguous pagecache lookup
724 * @mapping: The address_space to search
725 * @index: The starting page index
726 * @nr_pages: The maximum number of pages
727 * @pages: Where the resulting pages are placed
728 *
729 * find_get_pages_contig() works exactly like find_get_pages(), except
730 * that the returned number of pages are guaranteed to be contiguous.
731 *
732 * find_get_pages_contig() returns the number of pages which were found.
733 */
734 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
735 unsigned int nr_pages, struct page **pages)
736 {
737 unsigned int i;
738 unsigned int ret;
739
740 read_lock_irq(&mapping->tree_lock);
741 ret = radix_tree_gang_lookup(&mapping->page_tree,
742 (void **)pages, index, nr_pages);
743 for (i = 0; i < ret; i++) {
744 if (pages[i]->mapping == NULL || pages[i]->index != index)
745 break;
746
747 page_cache_get(pages[i]);
748 index++;
749 }
750 read_unlock_irq(&mapping->tree_lock);
751 return i;
752 }
753
754 /**
755 * find_get_pages_tag - find and return pages that match @tag
756 * @mapping: the address_space to search
757 * @index: the starting page index
758 * @tag: the tag index
759 * @nr_pages: the maximum number of pages
760 * @pages: where the resulting pages are placed
761 *
762 * Like find_get_pages, except we only return pages which are tagged with
763 * @tag. We update @index to index the next page for the traversal.
764 */
765 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
766 int tag, unsigned int nr_pages, struct page **pages)
767 {
768 unsigned int i;
769 unsigned int ret;
770
771 read_lock_irq(&mapping->tree_lock);
772 ret = radix_tree_gang_lookup_tag(&mapping->page_tree,
773 (void **)pages, *index, nr_pages, tag);
774 for (i = 0; i < ret; i++)
775 page_cache_get(pages[i]);
776 if (ret)
777 *index = pages[ret - 1]->index + 1;
778 read_unlock_irq(&mapping->tree_lock);
779 return ret;
780 }
781
782 /**
783 * grab_cache_page_nowait - returns locked page at given index in given cache
784 * @mapping: target address_space
785 * @index: the page index
786 *
787 * Same as grab_cache_page(), but do not wait if the page is unavailable.
788 * This is intended for speculative data generators, where the data can
789 * be regenerated if the page couldn't be grabbed. This routine should
790 * be safe to call while holding the lock for another page.
791 *
792 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
793 * and deadlock against the caller's locked page.
794 */
795 struct page *
796 grab_cache_page_nowait(struct address_space *mapping, unsigned long index)
797 {
798 struct page *page = find_get_page(mapping, index);
799
800 if (page) {
801 if (!TestSetPageLocked(page))
802 return page;
803 page_cache_release(page);
804 return NULL;
805 }
806 page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
807 if (page && add_to_page_cache_lru(page, mapping, index, GFP_KERNEL)) {
808 page_cache_release(page);
809 page = NULL;
810 }
811 return page;
812 }
813 EXPORT_SYMBOL(grab_cache_page_nowait);
814
815 /*
816 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
817 * a _large_ part of the i/o request. Imagine the worst scenario:
818 *
819 * ---R__________________________________________B__________
820 * ^ reading here ^ bad block(assume 4k)
821 *
822 * read(R) => miss => readahead(R...B) => media error => frustrating retries
823 * => failing the whole request => read(R) => read(R+1) =>
824 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
825 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
826 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
827 *
828 * It is going insane. Fix it by quickly scaling down the readahead size.
829 */
830 static void shrink_readahead_size_eio(struct file *filp,
831 struct file_ra_state *ra)
832 {
833 if (!ra->ra_pages)
834 return;
835
836 ra->ra_pages /= 4;
837 }
838
839 /**
840 * do_generic_mapping_read - generic file read routine
841 * @mapping: address_space to be read
842 * @_ra: file's readahead state
843 * @filp: the file to read
844 * @ppos: current file position
845 * @desc: read_descriptor
846 * @actor: read method
847 *
848 * This is a generic file read routine, and uses the
849 * mapping->a_ops->readpage() function for the actual low-level stuff.
850 *
851 * This is really ugly. But the goto's actually try to clarify some
852 * of the logic when it comes to error handling etc.
853 *
854 * Note the struct file* is only passed for the use of readpage.
855 * It may be NULL.
856 */
857 void do_generic_mapping_read(struct address_space *mapping,
858 struct file_ra_state *_ra,
859 struct file *filp,
860 loff_t *ppos,
861 read_descriptor_t *desc,
862 read_actor_t actor)
863 {
864 struct inode *inode = mapping->host;
865 unsigned long index;
866 unsigned long end_index;
867 unsigned long offset;
868 unsigned long last_index;
869 unsigned long next_index;
870 unsigned long prev_index;
871 unsigned int prev_offset;
872 loff_t isize;
873 struct page *cached_page;
874 int error;
875 struct file_ra_state ra = *_ra;
876
877 cached_page = NULL;
878 index = *ppos >> PAGE_CACHE_SHIFT;
879 next_index = index;
880 prev_index = ra.prev_index;
881 prev_offset = ra.prev_offset;
882 last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
883 offset = *ppos & ~PAGE_CACHE_MASK;
884
885 isize = i_size_read(inode);
886 if (!isize)
887 goto out;
888
889 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
890 for (;;) {
891 struct page *page;
892 unsigned long nr, ret;
893
894 /* nr is the maximum number of bytes to copy from this page */
895 nr = PAGE_CACHE_SIZE;
896 if (index >= end_index) {
897 if (index > end_index)
898 goto out;
899 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
900 if (nr <= offset) {
901 goto out;
902 }
903 }
904 nr = nr - offset;
905
906 cond_resched();
907 if (index == next_index)
908 next_index = page_cache_readahead(mapping, &ra, filp,
909 index, last_index - index);
910
911 find_page:
912 page = find_get_page(mapping, index);
913 if (unlikely(page == NULL)) {
914 handle_ra_miss(mapping, &ra, index);
915 goto no_cached_page;
916 }
917 if (!PageUptodate(page))
918 goto page_not_up_to_date;
919 page_ok:
920
921 /* If users can be writing to this page using arbitrary
922 * virtual addresses, take care about potential aliasing
923 * before reading the page on the kernel side.
924 */
925 if (mapping_writably_mapped(mapping))
926 flush_dcache_page(page);
927
928 /*
929 * When a sequential read accesses a page several times,
930 * only mark it as accessed the first time.
931 */
932 if (prev_index != index || offset != prev_offset)
933 mark_page_accessed(page);
934 prev_index = index;
935
936 /*
937 * Ok, we have the page, and it's up-to-date, so
938 * now we can copy it to user space...
939 *
940 * The actor routine returns how many bytes were actually used..
941 * NOTE! This may not be the same as how much of a user buffer
942 * we filled up (we may be padding etc), so we can only update
943 * "pos" here (the actor routine has to update the user buffer
944 * pointers and the remaining count).
945 */
946 ret = actor(desc, page, offset, nr);
947 offset += ret;
948 index += offset >> PAGE_CACHE_SHIFT;
949 offset &= ~PAGE_CACHE_MASK;
950 prev_offset = offset;
951 ra.prev_offset = offset;
952
953 page_cache_release(page);
954 if (ret == nr && desc->count)
955 continue;
956 goto out;
957
958 page_not_up_to_date:
959 /* Get exclusive access to the page ... */
960 lock_page(page);
961
962 /* Did it get truncated before we got the lock? */
963 if (!page->mapping) {
964 unlock_page(page);
965 page_cache_release(page);
966 continue;
967 }
968
969 /* Did somebody else fill it already? */
970 if (PageUptodate(page)) {
971 unlock_page(page);
972 goto page_ok;
973 }
974
975 readpage:
976 /* Start the actual read. The read will unlock the page. */
977 error = mapping->a_ops->readpage(filp, page);
978
979 if (unlikely(error)) {
980 if (error == AOP_TRUNCATED_PAGE) {
981 page_cache_release(page);
982 goto find_page;
983 }
984 goto readpage_error;
985 }
986
987 if (!PageUptodate(page)) {
988 lock_page(page);
989 if (!PageUptodate(page)) {
990 if (page->mapping == NULL) {
991 /*
992 * invalidate_inode_pages got it
993 */
994 unlock_page(page);
995 page_cache_release(page);
996 goto find_page;
997 }
998 unlock_page(page);
999 error = -EIO;
1000 shrink_readahead_size_eio(filp, &ra);
1001 goto readpage_error;
1002 }
1003 unlock_page(page);
1004 }
1005
1006 /*
1007 * i_size must be checked after we have done ->readpage.
1008 *
1009 * Checking i_size after the readpage allows us to calculate
1010 * the correct value for "nr", which means the zero-filled
1011 * part of the page is not copied back to userspace (unless
1012 * another truncate extends the file - this is desired though).
1013 */
1014 isize = i_size_read(inode);
1015 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1016 if (unlikely(!isize || index > end_index)) {
1017 page_cache_release(page);
1018 goto out;
1019 }
1020
1021 /* nr is the maximum number of bytes to copy from this page */
1022 nr = PAGE_CACHE_SIZE;
1023 if (index == end_index) {
1024 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1025 if (nr <= offset) {
1026 page_cache_release(page);
1027 goto out;
1028 }
1029 }
1030 nr = nr - offset;
1031 goto page_ok;
1032
1033 readpage_error:
1034 /* UHHUH! A synchronous read error occurred. Report it */
1035 desc->error = error;
1036 page_cache_release(page);
1037 goto out;
1038
1039 no_cached_page:
1040 /*
1041 * Ok, it wasn't cached, so we need to create a new
1042 * page..
1043 */
1044 if (!cached_page) {
1045 cached_page = page_cache_alloc_cold(mapping);
1046 if (!cached_page) {
1047 desc->error = -ENOMEM;
1048 goto out;
1049 }
1050 }
1051 error = add_to_page_cache_lru(cached_page, mapping,
1052 index, GFP_KERNEL);
1053 if (error) {
1054 if (error == -EEXIST)
1055 goto find_page;
1056 desc->error = error;
1057 goto out;
1058 }
1059 page = cached_page;
1060 cached_page = NULL;
1061 goto readpage;
1062 }
1063
1064 out:
1065 *_ra = ra;
1066
1067 *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1068 if (cached_page)
1069 page_cache_release(cached_page);
1070 if (filp)
1071 file_accessed(filp);
1072 }
1073 EXPORT_SYMBOL(do_generic_mapping_read);
1074
1075 int file_read_actor(read_descriptor_t *desc, struct page *page,
1076 unsigned long offset, unsigned long size)
1077 {
1078 char *kaddr;
1079 unsigned long left, count = desc->count;
1080
1081 if (size > count)
1082 size = count;
1083
1084 /*
1085 * Faults on the destination of a read are common, so do it before
1086 * taking the kmap.
1087 */
1088 if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1089 kaddr = kmap_atomic(page, KM_USER0);
1090 left = __copy_to_user_inatomic(desc->arg.buf,
1091 kaddr + offset, size);
1092 kunmap_atomic(kaddr, KM_USER0);
1093 if (left == 0)
1094 goto success;
1095 }
1096
1097 /* Do it the slow way */
1098 kaddr = kmap(page);
1099 left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1100 kunmap(page);
1101
1102 if (left) {
1103 size -= left;
1104 desc->error = -EFAULT;
1105 }
1106 success:
1107 desc->count = count - size;
1108 desc->written += size;
1109 desc->arg.buf += size;
1110 return size;
1111 }
1112
1113 /**
1114 * generic_file_aio_read - generic filesystem read routine
1115 * @iocb: kernel I/O control block
1116 * @iov: io vector request
1117 * @nr_segs: number of segments in the iovec
1118 * @pos: current file position
1119 *
1120 * This is the "read()" routine for all filesystems
1121 * that can use the page cache directly.
1122 */
1123 ssize_t
1124 generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1125 unsigned long nr_segs, loff_t pos)
1126 {
1127 struct file *filp = iocb->ki_filp;
1128 ssize_t retval;
1129 unsigned long seg;
1130 size_t count;
1131 loff_t *ppos = &iocb->ki_pos;
1132
1133 count = 0;
1134 for (seg = 0; seg < nr_segs; seg++) {
1135 const struct iovec *iv = &iov[seg];
1136
1137 /*
1138 * If any segment has a negative length, or the cumulative
1139 * length ever wraps negative then return -EINVAL.
1140 */
1141 count += iv->iov_len;
1142 if (unlikely((ssize_t)(count|iv->iov_len) < 0))
1143 return -EINVAL;
1144 if (access_ok(VERIFY_WRITE, iv->iov_base, iv->iov_len))
1145 continue;
1146 if (seg == 0)
1147 return -EFAULT;
1148 nr_segs = seg;
1149 count -= iv->iov_len; /* This segment is no good */
1150 break;
1151 }
1152
1153 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1154 if (filp->f_flags & O_DIRECT) {
1155 loff_t size;
1156 struct address_space *mapping;
1157 struct inode *inode;
1158
1159 mapping = filp->f_mapping;
1160 inode = mapping->host;
1161 retval = 0;
1162 if (!count)
1163 goto out; /* skip atime */
1164 size = i_size_read(inode);
1165 if (pos < size) {
1166 retval = generic_file_direct_IO(READ, iocb,
1167 iov, pos, nr_segs);
1168 if (retval > 0)
1169 *ppos = pos + retval;
1170 }
1171 if (likely(retval != 0)) {
1172 file_accessed(filp);
1173 goto out;
1174 }
1175 }
1176
1177 retval = 0;
1178 if (count) {
1179 for (seg = 0; seg < nr_segs; seg++) {
1180 read_descriptor_t desc;
1181
1182 desc.written = 0;
1183 desc.arg.buf = iov[seg].iov_base;
1184 desc.count = iov[seg].iov_len;
1185 if (desc.count == 0)
1186 continue;
1187 desc.error = 0;
1188 do_generic_file_read(filp,ppos,&desc,file_read_actor);
1189 retval += desc.written;
1190 if (desc.error) {
1191 retval = retval ?: desc.error;
1192 break;
1193 }
1194 }
1195 }
1196 out:
1197 return retval;
1198 }
1199 EXPORT_SYMBOL(generic_file_aio_read);
1200
1201 int file_send_actor(read_descriptor_t * desc, struct page *page, unsigned long offset, unsigned long size)
1202 {
1203 ssize_t written;
1204 unsigned long count = desc->count;
1205 struct file *file = desc->arg.data;
1206
1207 if (size > count)
1208 size = count;
1209
1210 written = file->f_op->sendpage(file, page, offset,
1211 size, &file->f_pos, size<count);
1212 if (written < 0) {
1213 desc->error = written;
1214 written = 0;
1215 }
1216 desc->count = count - written;
1217 desc->written += written;
1218 return written;
1219 }
1220
1221 ssize_t generic_file_sendfile(struct file *in_file, loff_t *ppos,
1222 size_t count, read_actor_t actor, void *target)
1223 {
1224 read_descriptor_t desc;
1225
1226 if (!count)
1227 return 0;
1228
1229 desc.written = 0;
1230 desc.count = count;
1231 desc.arg.data = target;
1232 desc.error = 0;
1233
1234 do_generic_file_read(in_file, ppos, &desc, actor);
1235 if (desc.written)
1236 return desc.written;
1237 return desc.error;
1238 }
1239 EXPORT_SYMBOL(generic_file_sendfile);
1240
1241 static ssize_t
1242 do_readahead(struct address_space *mapping, struct file *filp,
1243 unsigned long index, unsigned long nr)
1244 {
1245 if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1246 return -EINVAL;
1247
1248 force_page_cache_readahead(mapping, filp, index,
1249 max_sane_readahead(nr));
1250 return 0;
1251 }
1252
1253 asmlinkage ssize_t sys_readahead(int fd, loff_t offset, size_t count)
1254 {
1255 ssize_t ret;
1256 struct file *file;
1257
1258 ret = -EBADF;
1259 file = fget(fd);
1260 if (file) {
1261 if (file->f_mode & FMODE_READ) {
1262 struct address_space *mapping = file->f_mapping;
1263 unsigned long start = offset >> PAGE_CACHE_SHIFT;
1264 unsigned long end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1265 unsigned long len = end - start + 1;
1266 ret = do_readahead(mapping, file, start, len);
1267 }
1268 fput(file);
1269 }
1270 return ret;
1271 }
1272
1273 #ifdef CONFIG_MMU
1274 static int FASTCALL(page_cache_read(struct file * file, unsigned long offset));
1275 /**
1276 * page_cache_read - adds requested page to the page cache if not already there
1277 * @file: file to read
1278 * @offset: page index
1279 *
1280 * This adds the requested page to the page cache if it isn't already there,
1281 * and schedules an I/O to read in its contents from disk.
1282 */
1283 static int fastcall page_cache_read(struct file * file, unsigned long offset)
1284 {
1285 struct address_space *mapping = file->f_mapping;
1286 struct page *page;
1287 int ret;
1288
1289 do {
1290 page = page_cache_alloc_cold(mapping);
1291 if (!page)
1292 return -ENOMEM;
1293
1294 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1295 if (ret == 0)
1296 ret = mapping->a_ops->readpage(file, page);
1297 else if (ret == -EEXIST)
1298 ret = 0; /* losing race to add is OK */
1299
1300 page_cache_release(page);
1301
1302 } while (ret == AOP_TRUNCATED_PAGE);
1303
1304 return ret;
1305 }
1306
1307 #define MMAP_LOTSAMISS (100)
1308
1309 /**
1310 * filemap_nopage - read in file data for page fault handling
1311 * @area: the applicable vm_area
1312 * @address: target address to read in
1313 * @type: returned with VM_FAULT_{MINOR,MAJOR} if not %NULL
1314 *
1315 * filemap_nopage() is invoked via the vma operations vector for a
1316 * mapped memory region to read in file data during a page fault.
1317 *
1318 * The goto's are kind of ugly, but this streamlines the normal case of having
1319 * it in the page cache, and handles the special cases reasonably without
1320 * having a lot of duplicated code.
1321 */
1322 struct page *filemap_nopage(struct vm_area_struct *area,
1323 unsigned long address, int *type)
1324 {
1325 int error;
1326 struct file *file = area->vm_file;
1327 struct address_space *mapping = file->f_mapping;
1328 struct file_ra_state *ra = &file->f_ra;
1329 struct inode *inode = mapping->host;
1330 struct page *page;
1331 unsigned long size, pgoff;
1332 int did_readaround = 0, majmin = VM_FAULT_MINOR;
1333
1334 pgoff = ((address-area->vm_start) >> PAGE_CACHE_SHIFT) + area->vm_pgoff;
1335
1336 retry_all:
1337 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1338 if (pgoff >= size)
1339 goto outside_data_content;
1340
1341 /* If we don't want any read-ahead, don't bother */
1342 if (VM_RandomReadHint(area))
1343 goto no_cached_page;
1344
1345 /*
1346 * The readahead code wants to be told about each and every page
1347 * so it can build and shrink its windows appropriately
1348 *
1349 * For sequential accesses, we use the generic readahead logic.
1350 */
1351 if (VM_SequentialReadHint(area))
1352 page_cache_readahead(mapping, ra, file, pgoff, 1);
1353
1354 /*
1355 * Do we have something in the page cache already?
1356 */
1357 retry_find:
1358 page = find_get_page(mapping, pgoff);
1359 if (!page) {
1360 unsigned long ra_pages;
1361
1362 if (VM_SequentialReadHint(area)) {
1363 handle_ra_miss(mapping, ra, pgoff);
1364 goto no_cached_page;
1365 }
1366 ra->mmap_miss++;
1367
1368 /*
1369 * Do we miss much more than hit in this file? If so,
1370 * stop bothering with read-ahead. It will only hurt.
1371 */
1372 if (ra->mmap_miss > ra->mmap_hit + MMAP_LOTSAMISS)
1373 goto no_cached_page;
1374
1375 /*
1376 * To keep the pgmajfault counter straight, we need to
1377 * check did_readaround, as this is an inner loop.
1378 */
1379 if (!did_readaround) {
1380 majmin = VM_FAULT_MAJOR;
1381 count_vm_event(PGMAJFAULT);
1382 }
1383 did_readaround = 1;
1384 ra_pages = max_sane_readahead(file->f_ra.ra_pages);
1385 if (ra_pages) {
1386 pgoff_t start = 0;
1387
1388 if (pgoff > ra_pages / 2)
1389 start = pgoff - ra_pages / 2;
1390 do_page_cache_readahead(mapping, file, start, ra_pages);
1391 }
1392 page = find_get_page(mapping, pgoff);
1393 if (!page)
1394 goto no_cached_page;
1395 }
1396
1397 if (!did_readaround)
1398 ra->mmap_hit++;
1399
1400 /*
1401 * Ok, found a page in the page cache, now we need to check
1402 * that it's up-to-date.
1403 */
1404 if (!PageUptodate(page))
1405 goto page_not_uptodate;
1406
1407 success:
1408 /*
1409 * Found the page and have a reference on it.
1410 */
1411 mark_page_accessed(page);
1412 if (type)
1413 *type = majmin;
1414 return page;
1415
1416 outside_data_content:
1417 /*
1418 * An external ptracer can access pages that normally aren't
1419 * accessible..
1420 */
1421 if (area->vm_mm == current->mm)
1422 return NOPAGE_SIGBUS;
1423 /* Fall through to the non-read-ahead case */
1424 no_cached_page:
1425 /*
1426 * We're only likely to ever get here if MADV_RANDOM is in
1427 * effect.
1428 */
1429 error = page_cache_read(file, pgoff);
1430
1431 /*
1432 * The page we want has now been added to the page cache.
1433 * In the unlikely event that someone removed it in the
1434 * meantime, we'll just come back here and read it again.
1435 */
1436 if (error >= 0)
1437 goto retry_find;
1438
1439 /*
1440 * An error return from page_cache_read can result if the
1441 * system is low on memory, or a problem occurs while trying
1442 * to schedule I/O.
1443 */
1444 if (error == -ENOMEM)
1445 return NOPAGE_OOM;
1446 return NOPAGE_SIGBUS;
1447
1448 page_not_uptodate:
1449 if (!did_readaround) {
1450 majmin = VM_FAULT_MAJOR;
1451 count_vm_event(PGMAJFAULT);
1452 }
1453
1454 /*
1455 * Umm, take care of errors if the page isn't up-to-date.
1456 * Try to re-read it _once_. We do this synchronously,
1457 * because there really aren't any performance issues here
1458 * and we need to check for errors.
1459 */
1460 lock_page(page);
1461
1462 /* Somebody truncated the page on us? */
1463 if (!page->mapping) {
1464 unlock_page(page);
1465 page_cache_release(page);
1466 goto retry_all;
1467 }
1468
1469 /* Somebody else successfully read it in? */
1470 if (PageUptodate(page)) {
1471 unlock_page(page);
1472 goto success;
1473 }
1474 ClearPageError(page);
1475 error = mapping->a_ops->readpage(file, page);
1476 if (!error) {
1477 wait_on_page_locked(page);
1478 if (PageUptodate(page))
1479 goto success;
1480 } else if (error == AOP_TRUNCATED_PAGE) {
1481 page_cache_release(page);
1482 goto retry_find;
1483 }
1484
1485 /*
1486 * Things didn't work out. Return zero to tell the
1487 * mm layer so, possibly freeing the page cache page first.
1488 */
1489 shrink_readahead_size_eio(file, ra);
1490 page_cache_release(page);
1491 return NOPAGE_SIGBUS;
1492 }
1493 EXPORT_SYMBOL(filemap_nopage);
1494
1495 static struct page * filemap_getpage(struct file *file, unsigned long pgoff,
1496 int nonblock)
1497 {
1498 struct address_space *mapping = file->f_mapping;
1499 struct page *page;
1500 int error;
1501
1502 /*
1503 * Do we have something in the page cache already?
1504 */
1505 retry_find:
1506 page = find_get_page(mapping, pgoff);
1507 if (!page) {
1508 if (nonblock)
1509 return NULL;
1510 goto no_cached_page;
1511 }
1512
1513 /*
1514 * Ok, found a page in the page cache, now we need to check
1515 * that it's up-to-date.
1516 */
1517 if (!PageUptodate(page)) {
1518 if (nonblock) {
1519 page_cache_release(page);
1520 return NULL;
1521 }
1522 goto page_not_uptodate;
1523 }
1524
1525 success:
1526 /*
1527 * Found the page and have a reference on it.
1528 */
1529 mark_page_accessed(page);
1530 return page;
1531
1532 no_cached_page:
1533 error = page_cache_read(file, pgoff);
1534
1535 /*
1536 * The page we want has now been added to the page cache.
1537 * In the unlikely event that someone removed it in the
1538 * meantime, we'll just come back here and read it again.
1539 */
1540 if (error >= 0)
1541 goto retry_find;
1542
1543 /*
1544 * An error return from page_cache_read can result if the
1545 * system is low on memory, or a problem occurs while trying
1546 * to schedule I/O.
1547 */
1548 return NULL;
1549
1550 page_not_uptodate:
1551 lock_page(page);
1552
1553 /* Did it get truncated while we waited for it? */
1554 if (!page->mapping) {
1555 unlock_page(page);
1556 goto err;
1557 }
1558
1559 /* Did somebody else get it up-to-date? */
1560 if (PageUptodate(page)) {
1561 unlock_page(page);
1562 goto success;
1563 }
1564
1565 error = mapping->a_ops->readpage(file, page);
1566 if (!error) {
1567 wait_on_page_locked(page);
1568 if (PageUptodate(page))
1569 goto success;
1570 } else if (error == AOP_TRUNCATED_PAGE) {
1571 page_cache_release(page);
1572 goto retry_find;
1573 }
1574
1575 /*
1576 * Umm, take care of errors if the page isn't up-to-date.
1577 * Try to re-read it _once_. We do this synchronously,
1578 * because there really aren't any performance issues here
1579 * and we need to check for errors.
1580 */
1581 lock_page(page);
1582
1583 /* Somebody truncated the page on us? */
1584 if (!page->mapping) {
1585 unlock_page(page);
1586 goto err;
1587 }
1588 /* Somebody else successfully read it in? */
1589 if (PageUptodate(page)) {
1590 unlock_page(page);
1591 goto success;
1592 }
1593
1594 ClearPageError(page);
1595 error = mapping->a_ops->readpage(file, page);
1596 if (!error) {
1597 wait_on_page_locked(page);
1598 if (PageUptodate(page))
1599 goto success;
1600 } else if (error == AOP_TRUNCATED_PAGE) {
1601 page_cache_release(page);
1602 goto retry_find;
1603 }
1604
1605 /*
1606 * Things didn't work out. Return zero to tell the
1607 * mm layer so, possibly freeing the page cache page first.
1608 */
1609 err:
1610 page_cache_release(page);
1611
1612 return NULL;
1613 }
1614
1615 int filemap_populate(struct vm_area_struct *vma, unsigned long addr,
1616 unsigned long len, pgprot_t prot, unsigned long pgoff,
1617 int nonblock)
1618 {
1619 struct file *file = vma->vm_file;
1620 struct address_space *mapping = file->f_mapping;
1621 struct inode *inode = mapping->host;
1622 unsigned long size;
1623 struct mm_struct *mm = vma->vm_mm;
1624 struct page *page;
1625 int err;
1626
1627 if (!nonblock)
1628 force_page_cache_readahead(mapping, vma->vm_file,
1629 pgoff, len >> PAGE_CACHE_SHIFT);
1630
1631 repeat:
1632 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1633 if (pgoff + (len >> PAGE_CACHE_SHIFT) > size)
1634 return -EINVAL;
1635
1636 page = filemap_getpage(file, pgoff, nonblock);
1637
1638 /* XXX: This is wrong, a filesystem I/O error may have happened. Fix that as
1639 * done in shmem_populate calling shmem_getpage */
1640 if (!page && !nonblock)
1641 return -ENOMEM;
1642
1643 if (page) {
1644 err = install_page(mm, vma, addr, page, prot);
1645 if (err) {
1646 page_cache_release(page);
1647 return err;
1648 }
1649 } else if (vma->vm_flags & VM_NONLINEAR) {
1650 /* No page was found just because we can't read it in now (being
1651 * here implies nonblock != 0), but the page may exist, so set
1652 * the PTE to fault it in later. */
1653 err = install_file_pte(mm, vma, addr, pgoff, prot);
1654 if (err)
1655 return err;
1656 }
1657
1658 len -= PAGE_SIZE;
1659 addr += PAGE_SIZE;
1660 pgoff++;
1661 if (len)
1662 goto repeat;
1663
1664 return 0;
1665 }
1666 EXPORT_SYMBOL(filemap_populate);
1667
1668 struct vm_operations_struct generic_file_vm_ops = {
1669 .nopage = filemap_nopage,
1670 .populate = filemap_populate,
1671 };
1672
1673 /* This is used for a general mmap of a disk file */
1674
1675 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1676 {
1677 struct address_space *mapping = file->f_mapping;
1678
1679 if (!mapping->a_ops->readpage)
1680 return -ENOEXEC;
1681 file_accessed(file);
1682 vma->vm_ops = &generic_file_vm_ops;
1683 return 0;
1684 }
1685
1686 /*
1687 * This is for filesystems which do not implement ->writepage.
1688 */
1689 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1690 {
1691 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1692 return -EINVAL;
1693 return generic_file_mmap(file, vma);
1694 }
1695 #else
1696 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1697 {
1698 return -ENOSYS;
1699 }
1700 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1701 {
1702 return -ENOSYS;
1703 }
1704 #endif /* CONFIG_MMU */
1705
1706 EXPORT_SYMBOL(generic_file_mmap);
1707 EXPORT_SYMBOL(generic_file_readonly_mmap);
1708
1709 static struct page *__read_cache_page(struct address_space *mapping,
1710 unsigned long index,
1711 int (*filler)(void *,struct page*),
1712 void *data)
1713 {
1714 struct page *page, *cached_page = NULL;
1715 int err;
1716 repeat:
1717 page = find_get_page(mapping, index);
1718 if (!page) {
1719 if (!cached_page) {
1720 cached_page = page_cache_alloc_cold(mapping);
1721 if (!cached_page)
1722 return ERR_PTR(-ENOMEM);
1723 }
1724 err = add_to_page_cache_lru(cached_page, mapping,
1725 index, GFP_KERNEL);
1726 if (err == -EEXIST)
1727 goto repeat;
1728 if (err < 0) {
1729 /* Presumably ENOMEM for radix tree node */
1730 page_cache_release(cached_page);
1731 return ERR_PTR(err);
1732 }
1733 page = cached_page;
1734 cached_page = NULL;
1735 err = filler(data, page);
1736 if (err < 0) {
1737 page_cache_release(page);
1738 page = ERR_PTR(err);
1739 }
1740 }
1741 if (cached_page)
1742 page_cache_release(cached_page);
1743 return page;
1744 }
1745
1746 /*
1747 * Same as read_cache_page, but don't wait for page to become unlocked
1748 * after submitting it to the filler.
1749 */
1750 struct page *read_cache_page_async(struct address_space *mapping,
1751 unsigned long index,
1752 int (*filler)(void *,struct page*),
1753 void *data)
1754 {
1755 struct page *page;
1756 int err;
1757
1758 retry:
1759 page = __read_cache_page(mapping, index, filler, data);
1760 if (IS_ERR(page))
1761 goto out;
1762 mark_page_accessed(page);
1763 if (PageUptodate(page))
1764 goto out;
1765
1766 lock_page(page);
1767 if (!page->mapping) {
1768 unlock_page(page);
1769 page_cache_release(page);
1770 goto retry;
1771 }
1772 if (PageUptodate(page)) {
1773 unlock_page(page);
1774 goto out;
1775 }
1776 err = filler(data, page);
1777 if (err < 0) {
1778 page_cache_release(page);
1779 page = ERR_PTR(err);
1780 }
1781 out:
1782 mark_page_accessed(page);
1783 return page;
1784 }
1785 EXPORT_SYMBOL(read_cache_page_async);
1786
1787 /**
1788 * read_cache_page - read into page cache, fill it if needed
1789 * @mapping: the page's address_space
1790 * @index: the page index
1791 * @filler: function to perform the read
1792 * @data: destination for read data
1793 *
1794 * Read into the page cache. If a page already exists, and PageUptodate() is
1795 * not set, try to fill the page then wait for it to become unlocked.
1796 *
1797 * If the page does not get brought uptodate, return -EIO.
1798 */
1799 struct page *read_cache_page(struct address_space *mapping,
1800 unsigned long index,
1801 int (*filler)(void *,struct page*),
1802 void *data)
1803 {
1804 struct page *page;
1805
1806 page = read_cache_page_async(mapping, index, filler, data);
1807 if (IS_ERR(page))
1808 goto out;
1809 wait_on_page_locked(page);
1810 if (!PageUptodate(page)) {
1811 page_cache_release(page);
1812 page = ERR_PTR(-EIO);
1813 }
1814 out:
1815 return page;
1816 }
1817 EXPORT_SYMBOL(read_cache_page);
1818
1819 /*
1820 * If the page was newly created, increment its refcount and add it to the
1821 * caller's lru-buffering pagevec. This function is specifically for
1822 * generic_file_write().
1823 */
1824 static inline struct page *
1825 __grab_cache_page(struct address_space *mapping, unsigned long index,
1826 struct page **cached_page, struct pagevec *lru_pvec)
1827 {
1828 int err;
1829 struct page *page;
1830 repeat:
1831 page = find_lock_page(mapping, index);
1832 if (!page) {
1833 if (!*cached_page) {
1834 *cached_page = page_cache_alloc(mapping);
1835 if (!*cached_page)
1836 return NULL;
1837 }
1838 err = add_to_page_cache(*cached_page, mapping,
1839 index, GFP_KERNEL);
1840 if (err == -EEXIST)
1841 goto repeat;
1842 if (err == 0) {
1843 page = *cached_page;
1844 page_cache_get(page);
1845 if (!pagevec_add(lru_pvec, page))
1846 __pagevec_lru_add(lru_pvec);
1847 *cached_page = NULL;
1848 }
1849 }
1850 return page;
1851 }
1852
1853 /*
1854 * The logic we want is
1855 *
1856 * if suid or (sgid and xgrp)
1857 * remove privs
1858 */
1859 int should_remove_suid(struct dentry *dentry)
1860 {
1861 mode_t mode = dentry->d_inode->i_mode;
1862 int kill = 0;
1863
1864 /* suid always must be killed */
1865 if (unlikely(mode & S_ISUID))
1866 kill = ATTR_KILL_SUID;
1867
1868 /*
1869 * sgid without any exec bits is just a mandatory locking mark; leave
1870 * it alone. If some exec bits are set, it's a real sgid; kill it.
1871 */
1872 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1873 kill |= ATTR_KILL_SGID;
1874
1875 if (unlikely(kill && !capable(CAP_FSETID)))
1876 return kill;
1877
1878 return 0;
1879 }
1880 EXPORT_SYMBOL(should_remove_suid);
1881
1882 int __remove_suid(struct dentry *dentry, int kill)
1883 {
1884 struct iattr newattrs;
1885
1886 newattrs.ia_valid = ATTR_FORCE | kill;
1887 return notify_change(dentry, &newattrs);
1888 }
1889
1890 int remove_suid(struct dentry *dentry)
1891 {
1892 int kill = should_remove_suid(dentry);
1893
1894 if (unlikely(kill))
1895 return __remove_suid(dentry, kill);
1896
1897 return 0;
1898 }
1899 EXPORT_SYMBOL(remove_suid);
1900
1901 size_t
1902 __filemap_copy_from_user_iovec_inatomic(char *vaddr,
1903 const struct iovec *iov, size_t base, size_t bytes)
1904 {
1905 size_t copied = 0, left = 0;
1906
1907 while (bytes) {
1908 char __user *buf = iov->iov_base + base;
1909 int copy = min(bytes, iov->iov_len - base);
1910
1911 base = 0;
1912 left = __copy_from_user_inatomic_nocache(vaddr, buf, copy);
1913 copied += copy;
1914 bytes -= copy;
1915 vaddr += copy;
1916 iov++;
1917
1918 if (unlikely(left))
1919 break;
1920 }
1921 return copied - left;
1922 }
1923
1924 /*
1925 * Performs necessary checks before doing a write
1926 *
1927 * Can adjust writing position or amount of bytes to write.
1928 * Returns appropriate error code that caller should return or
1929 * zero in case that write should be allowed.
1930 */
1931 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
1932 {
1933 struct inode *inode = file->f_mapping->host;
1934 unsigned long limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1935
1936 if (unlikely(*pos < 0))
1937 return -EINVAL;
1938
1939 if (!isblk) {
1940 /* FIXME: this is for backwards compatibility with 2.4 */
1941 if (file->f_flags & O_APPEND)
1942 *pos = i_size_read(inode);
1943
1944 if (limit != RLIM_INFINITY) {
1945 if (*pos >= limit) {
1946 send_sig(SIGXFSZ, current, 0);
1947 return -EFBIG;
1948 }
1949 if (*count > limit - (typeof(limit))*pos) {
1950 *count = limit - (typeof(limit))*pos;
1951 }
1952 }
1953 }
1954
1955 /*
1956 * LFS rule
1957 */
1958 if (unlikely(*pos + *count > MAX_NON_LFS &&
1959 !(file->f_flags & O_LARGEFILE))) {
1960 if (*pos >= MAX_NON_LFS) {
1961 send_sig(SIGXFSZ, current, 0);
1962 return -EFBIG;
1963 }
1964 if (*count > MAX_NON_LFS - (unsigned long)*pos) {
1965 *count = MAX_NON_LFS - (unsigned long)*pos;
1966 }
1967 }
1968
1969 /*
1970 * Are we about to exceed the fs block limit ?
1971 *
1972 * If we have written data it becomes a short write. If we have
1973 * exceeded without writing data we send a signal and return EFBIG.
1974 * Linus frestrict idea will clean these up nicely..
1975 */
1976 if (likely(!isblk)) {
1977 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
1978 if (*count || *pos > inode->i_sb->s_maxbytes) {
1979 send_sig(SIGXFSZ, current, 0);
1980 return -EFBIG;
1981 }
1982 /* zero-length writes at ->s_maxbytes are OK */
1983 }
1984
1985 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
1986 *count = inode->i_sb->s_maxbytes - *pos;
1987 } else {
1988 #ifdef CONFIG_BLOCK
1989 loff_t isize;
1990 if (bdev_read_only(I_BDEV(inode)))
1991 return -EPERM;
1992 isize = i_size_read(inode);
1993 if (*pos >= isize) {
1994 if (*count || *pos > isize)
1995 return -ENOSPC;
1996 }
1997
1998 if (*pos + *count > isize)
1999 *count = isize - *pos;
2000 #else
2001 return -EPERM;
2002 #endif
2003 }
2004 return 0;
2005 }
2006 EXPORT_SYMBOL(generic_write_checks);
2007
2008 ssize_t
2009 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
2010 unsigned long *nr_segs, loff_t pos, loff_t *ppos,
2011 size_t count, size_t ocount)
2012 {
2013 struct file *file = iocb->ki_filp;
2014 struct address_space *mapping = file->f_mapping;
2015 struct inode *inode = mapping->host;
2016 ssize_t written;
2017
2018 if (count != ocount)
2019 *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
2020
2021 written = generic_file_direct_IO(WRITE, iocb, iov, pos, *nr_segs);
2022 if (written > 0) {
2023 loff_t end = pos + written;
2024 if (end > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2025 i_size_write(inode, end);
2026 mark_inode_dirty(inode);
2027 }
2028 *ppos = end;
2029 }
2030
2031 /*
2032 * Sync the fs metadata but not the minor inode changes and
2033 * of course not the data as we did direct DMA for the IO.
2034 * i_mutex is held, which protects generic_osync_inode() from
2035 * livelocking. AIO O_DIRECT ops attempt to sync metadata here.
2036 */
2037 if ((written >= 0 || written == -EIOCBQUEUED) &&
2038 ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2039 int err = generic_osync_inode(inode, mapping, OSYNC_METADATA);
2040 if (err < 0)
2041 written = err;
2042 }
2043 return written;
2044 }
2045 EXPORT_SYMBOL(generic_file_direct_write);
2046
2047 ssize_t
2048 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2049 unsigned long nr_segs, loff_t pos, loff_t *ppos,
2050 size_t count, ssize_t written)
2051 {
2052 struct file *file = iocb->ki_filp;
2053 struct address_space * mapping = file->f_mapping;
2054 const struct address_space_operations *a_ops = mapping->a_ops;
2055 struct inode *inode = mapping->host;
2056 long status = 0;
2057 struct page *page;
2058 struct page *cached_page = NULL;
2059 size_t bytes;
2060 struct pagevec lru_pvec;
2061 const struct iovec *cur_iov = iov; /* current iovec */
2062 size_t iov_base = 0; /* offset in the current iovec */
2063 char __user *buf;
2064
2065 pagevec_init(&lru_pvec, 0);
2066
2067 /*
2068 * handle partial DIO write. Adjust cur_iov if needed.
2069 */
2070 if (likely(nr_segs == 1))
2071 buf = iov->iov_base + written;
2072 else {
2073 filemap_set_next_iovec(&cur_iov, &iov_base, written);
2074 buf = cur_iov->iov_base + iov_base;
2075 }
2076
2077 do {
2078 unsigned long index;
2079 unsigned long offset;
2080 size_t copied;
2081
2082 offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
2083 index = pos >> PAGE_CACHE_SHIFT;
2084 bytes = PAGE_CACHE_SIZE - offset;
2085
2086 /* Limit the size of the copy to the caller's write size */
2087 bytes = min(bytes, count);
2088
2089 /* We only need to worry about prefaulting when writes are from
2090 * user-space. NFSd uses vfs_writev with several non-aligned
2091 * segments in the vector, and limiting to one segment a time is
2092 * a noticeable performance for re-write
2093 */
2094 if (!segment_eq(get_fs(), KERNEL_DS)) {
2095 /*
2096 * Limit the size of the copy to that of the current
2097 * segment, because fault_in_pages_readable() doesn't
2098 * know how to walk segments.
2099 */
2100 bytes = min(bytes, cur_iov->iov_len - iov_base);
2101
2102 /*
2103 * Bring in the user page that we will copy from
2104 * _first_. Otherwise there's a nasty deadlock on
2105 * copying from the same page as we're writing to,
2106 * without it being marked up-to-date.
2107 */
2108 fault_in_pages_readable(buf, bytes);
2109 }
2110 page = __grab_cache_page(mapping,index,&cached_page,&lru_pvec);
2111 if (!page) {
2112 status = -ENOMEM;
2113 break;
2114 }
2115
2116 if (unlikely(bytes == 0)) {
2117 status = 0;
2118 copied = 0;
2119 goto zero_length_segment;
2120 }
2121
2122 status = a_ops->prepare_write(file, page, offset, offset+bytes);
2123 if (unlikely(status)) {
2124 loff_t isize = i_size_read(inode);
2125
2126 if (status != AOP_TRUNCATED_PAGE)
2127 unlock_page(page);
2128 page_cache_release(page);
2129 if (status == AOP_TRUNCATED_PAGE)
2130 continue;
2131 /*
2132 * prepare_write() may have instantiated a few blocks
2133 * outside i_size. Trim these off again.
2134 */
2135 if (pos + bytes > isize)
2136 vmtruncate(inode, isize);
2137 break;
2138 }
2139 if (likely(nr_segs == 1))
2140 copied = filemap_copy_from_user(page, offset,
2141 buf, bytes);
2142 else
2143 copied = filemap_copy_from_user_iovec(page, offset,
2144 cur_iov, iov_base, bytes);
2145 flush_dcache_page(page);
2146 status = a_ops->commit_write(file, page, offset, offset+bytes);
2147 if (status == AOP_TRUNCATED_PAGE) {
2148 page_cache_release(page);
2149 continue;
2150 }
2151 zero_length_segment:
2152 if (likely(copied >= 0)) {
2153 if (!status)
2154 status = copied;
2155
2156 if (status >= 0) {
2157 written += status;
2158 count -= status;
2159 pos += status;
2160 buf += status;
2161 if (unlikely(nr_segs > 1)) {
2162 filemap_set_next_iovec(&cur_iov,
2163 &iov_base, status);
2164 if (count)
2165 buf = cur_iov->iov_base +
2166 iov_base;
2167 } else {
2168 iov_base += status;
2169 }
2170 }
2171 }
2172 if (unlikely(copied != bytes))
2173 if (status >= 0)
2174 status = -EFAULT;
2175 unlock_page(page);
2176 mark_page_accessed(page);
2177 page_cache_release(page);
2178 if (status < 0)
2179 break;
2180 balance_dirty_pages_ratelimited(mapping);
2181 cond_resched();
2182 } while (count);
2183 *ppos = pos;
2184
2185 if (cached_page)
2186 page_cache_release(cached_page);
2187
2188 /*
2189 * For now, when the user asks for O_SYNC, we'll actually give O_DSYNC
2190 */
2191 if (likely(status >= 0)) {
2192 if (unlikely((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2193 if (!a_ops->writepage || !is_sync_kiocb(iocb))
2194 status = generic_osync_inode(inode, mapping,
2195 OSYNC_METADATA|OSYNC_DATA);
2196 }
2197 }
2198
2199 /*
2200 * If we get here for O_DIRECT writes then we must have fallen through
2201 * to buffered writes (block instantiation inside i_size). So we sync
2202 * the file data here, to try to honour O_DIRECT expectations.
2203 */
2204 if (unlikely(file->f_flags & O_DIRECT) && written)
2205 status = filemap_write_and_wait(mapping);
2206
2207 pagevec_lru_add(&lru_pvec);
2208 return written ? written : status;
2209 }
2210 EXPORT_SYMBOL(generic_file_buffered_write);
2211
2212 static ssize_t
2213 __generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov,
2214 unsigned long nr_segs, loff_t *ppos)
2215 {
2216 struct file *file = iocb->ki_filp;
2217 struct address_space * mapping = file->f_mapping;
2218 size_t ocount; /* original count */
2219 size_t count; /* after file limit checks */
2220 struct inode *inode = mapping->host;
2221 unsigned long seg;
2222 loff_t pos;
2223 ssize_t written;
2224 ssize_t err;
2225
2226 ocount = 0;
2227 for (seg = 0; seg < nr_segs; seg++) {
2228 const struct iovec *iv = &iov[seg];
2229
2230 /*
2231 * If any segment has a negative length, or the cumulative
2232 * length ever wraps negative then return -EINVAL.
2233 */
2234 ocount += iv->iov_len;
2235 if (unlikely((ssize_t)(ocount|iv->iov_len) < 0))
2236 return -EINVAL;
2237 if (access_ok(VERIFY_READ, iv->iov_base, iv->iov_len))
2238 continue;
2239 if (seg == 0)
2240 return -EFAULT;
2241 nr_segs = seg;
2242 ocount -= iv->iov_len; /* This segment is no good */
2243 break;
2244 }
2245
2246 count = ocount;
2247 pos = *ppos;
2248
2249 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2250
2251 /* We can write back this queue in page reclaim */
2252 current->backing_dev_info = mapping->backing_dev_info;
2253 written = 0;
2254
2255 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2256 if (err)
2257 goto out;
2258
2259 if (count == 0)
2260 goto out;
2261
2262 err = remove_suid(file->f_path.dentry);
2263 if (err)
2264 goto out;
2265
2266 file_update_time(file);
2267
2268 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2269 if (unlikely(file->f_flags & O_DIRECT)) {
2270 loff_t endbyte;
2271 ssize_t written_buffered;
2272
2273 written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2274 ppos, count, ocount);
2275 if (written < 0 || written == count)
2276 goto out;
2277 /*
2278 * direct-io write to a hole: fall through to buffered I/O
2279 * for completing the rest of the request.
2280 */
2281 pos += written;
2282 count -= written;
2283 written_buffered = generic_file_buffered_write(iocb, iov,
2284 nr_segs, pos, ppos, count,
2285 written);
2286 /*
2287 * If generic_file_buffered_write() retuned a synchronous error
2288 * then we want to return the number of bytes which were
2289 * direct-written, or the error code if that was zero. Note
2290 * that this differs from normal direct-io semantics, which
2291 * will return -EFOO even if some bytes were written.
2292 */
2293 if (written_buffered < 0) {
2294 err = written_buffered;
2295 goto out;
2296 }
2297
2298 /*
2299 * We need to ensure that the page cache pages are written to
2300 * disk and invalidated to preserve the expected O_DIRECT
2301 * semantics.
2302 */
2303 endbyte = pos + written_buffered - written - 1;
2304 err = do_sync_file_range(file, pos, endbyte,
2305 SYNC_FILE_RANGE_WAIT_BEFORE|
2306 SYNC_FILE_RANGE_WRITE|
2307 SYNC_FILE_RANGE_WAIT_AFTER);
2308 if (err == 0) {
2309 written = written_buffered;
2310 invalidate_mapping_pages(mapping,
2311 pos >> PAGE_CACHE_SHIFT,
2312 endbyte >> PAGE_CACHE_SHIFT);
2313 } else {
2314 /*
2315 * We don't know how much we wrote, so just return
2316 * the number of bytes which were direct-written
2317 */
2318 }
2319 } else {
2320 written = generic_file_buffered_write(iocb, iov, nr_segs,
2321 pos, ppos, count, written);
2322 }
2323 out:
2324 current->backing_dev_info = NULL;
2325 return written ? written : err;
2326 }
2327
2328 ssize_t generic_file_aio_write_nolock(struct kiocb *iocb,
2329 const struct iovec *iov, unsigned long nr_segs, loff_t pos)
2330 {
2331 struct file *file = iocb->ki_filp;
2332 struct address_space *mapping = file->f_mapping;
2333 struct inode *inode = mapping->host;
2334 ssize_t ret;
2335
2336 BUG_ON(iocb->ki_pos != pos);
2337
2338 ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
2339 &iocb->ki_pos);
2340
2341 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2342 ssize_t err;
2343
2344 err = sync_page_range_nolock(inode, mapping, pos, ret);
2345 if (err < 0)
2346 ret = err;
2347 }
2348 return ret;
2349 }
2350 EXPORT_SYMBOL(generic_file_aio_write_nolock);
2351
2352 ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2353 unsigned long nr_segs, loff_t pos)
2354 {
2355 struct file *file = iocb->ki_filp;
2356 struct address_space *mapping = file->f_mapping;
2357 struct inode *inode = mapping->host;
2358 ssize_t ret;
2359
2360 BUG_ON(iocb->ki_pos != pos);
2361
2362 mutex_lock(&inode->i_mutex);
2363 ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
2364 &iocb->ki_pos);
2365 mutex_unlock(&inode->i_mutex);
2366
2367 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2368 ssize_t err;
2369
2370 err = sync_page_range(inode, mapping, pos, ret);
2371 if (err < 0)
2372 ret = err;
2373 }
2374 return ret;
2375 }
2376 EXPORT_SYMBOL(generic_file_aio_write);
2377
2378 /*
2379 * Called under i_mutex for writes to S_ISREG files. Returns -EIO if something
2380 * went wrong during pagecache shootdown.
2381 */
2382 static ssize_t
2383 generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
2384 loff_t offset, unsigned long nr_segs)
2385 {
2386 struct file *file = iocb->ki_filp;
2387 struct address_space *mapping = file->f_mapping;
2388 ssize_t retval;
2389 size_t write_len;
2390 pgoff_t end = 0; /* silence gcc */
2391
2392 /*
2393 * If it's a write, unmap all mmappings of the file up-front. This
2394 * will cause any pte dirty bits to be propagated into the pageframes
2395 * for the subsequent filemap_write_and_wait().
2396 */
2397 if (rw == WRITE) {
2398 write_len = iov_length(iov, nr_segs);
2399 end = (offset + write_len - 1) >> PAGE_CACHE_SHIFT;
2400 if (mapping_mapped(mapping))
2401 unmap_mapping_range(mapping, offset, write_len, 0);
2402 }
2403
2404 retval = filemap_write_and_wait(mapping);
2405 if (retval)
2406 goto out;
2407
2408 /*
2409 * After a write we want buffered reads to be sure to go to disk to get
2410 * the new data. We invalidate clean cached page from the region we're
2411 * about to write. We do this *before* the write so that we can return
2412 * -EIO without clobbering -EIOCBQUEUED from ->direct_IO().
2413 */
2414 if (rw == WRITE && mapping->nrpages) {
2415 retval = invalidate_inode_pages2_range(mapping,
2416 offset >> PAGE_CACHE_SHIFT, end);
2417 if (retval)
2418 goto out;
2419 }
2420
2421 retval = mapping->a_ops->direct_IO(rw, iocb, iov, offset, nr_segs);
2422 if (retval)
2423 goto out;
2424
2425 /*
2426 * Finally, try again to invalidate clean pages which might have been
2427 * faulted in by get_user_pages() if the source of the write was an
2428 * mmap()ed region of the file we're writing. That's a pretty crazy
2429 * thing to do, so we don't support it 100%. If this invalidation
2430 * fails and we have -EIOCBQUEUED we ignore the failure.
2431 */
2432 if (rw == WRITE && mapping->nrpages) {
2433 int err = invalidate_inode_pages2_range(mapping,
2434 offset >> PAGE_CACHE_SHIFT, end);
2435 if (err && retval >= 0)
2436 retval = err;
2437 }
2438 out:
2439 return retval;
2440 }
2441
2442 /**
2443 * try_to_release_page() - release old fs-specific metadata on a page
2444 *
2445 * @page: the page which the kernel is trying to free
2446 * @gfp_mask: memory allocation flags (and I/O mode)
2447 *
2448 * The address_space is to try to release any data against the page
2449 * (presumably at page->private). If the release was successful, return `1'.
2450 * Otherwise return zero.
2451 *
2452 * The @gfp_mask argument specifies whether I/O may be performed to release
2453 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT).
2454 *
2455 * NOTE: @gfp_mask may go away, and this function may become non-blocking.
2456 */
2457 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2458 {
2459 struct address_space * const mapping = page->mapping;
2460
2461 BUG_ON(!PageLocked(page));
2462 if (PageWriteback(page))
2463 return 0;
2464
2465 if (mapping && mapping->a_ops->releasepage)
2466 return mapping->a_ops->releasepage(page, gfp_mask);
2467 return try_to_free_buffers(page);
2468 }
2469
2470 EXPORT_SYMBOL(try_to_release_page);
This page took 0.144417 seconds and 5 git commands to generate.