mm: catch memory commitment underflow
[deliverable/linux.git] / mm / filemap.c
1 /*
2 * linux/mm/filemap.c
3 *
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
6
7 /*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
11 */
12 #include <linux/export.h>
13 #include <linux/compiler.h>
14 #include <linux/fs.h>
15 #include <linux/uaccess.h>
16 #include <linux/aio.h>
17 #include <linux/capability.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/gfp.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/cpuset.h>
33 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
34 #include <linux/memcontrol.h>
35 #include <linux/cleancache.h>
36 #include <linux/rmap.h>
37 #include "internal.h"
38
39 #define CREATE_TRACE_POINTS
40 #include <trace/events/filemap.h>
41
42 /*
43 * FIXME: remove all knowledge of the buffer layer from the core VM
44 */
45 #include <linux/buffer_head.h> /* for try_to_free_buffers */
46
47 #include <asm/mman.h>
48
49 /*
50 * Shared mappings implemented 30.11.1994. It's not fully working yet,
51 * though.
52 *
53 * Shared mappings now work. 15.8.1995 Bruno.
54 *
55 * finished 'unifying' the page and buffer cache and SMP-threaded the
56 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
57 *
58 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
59 */
60
61 /*
62 * Lock ordering:
63 *
64 * ->i_mmap_mutex (truncate_pagecache)
65 * ->private_lock (__free_pte->__set_page_dirty_buffers)
66 * ->swap_lock (exclusive_swap_page, others)
67 * ->mapping->tree_lock
68 *
69 * ->i_mutex
70 * ->i_mmap_mutex (truncate->unmap_mapping_range)
71 *
72 * ->mmap_sem
73 * ->i_mmap_mutex
74 * ->page_table_lock or pte_lock (various, mainly in memory.c)
75 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
76 *
77 * ->mmap_sem
78 * ->lock_page (access_process_vm)
79 *
80 * ->i_mutex (generic_perform_write)
81 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
82 *
83 * bdi->wb.list_lock
84 * sb_lock (fs/fs-writeback.c)
85 * ->mapping->tree_lock (__sync_single_inode)
86 *
87 * ->i_mmap_mutex
88 * ->anon_vma.lock (vma_adjust)
89 *
90 * ->anon_vma.lock
91 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
92 *
93 * ->page_table_lock or pte_lock
94 * ->swap_lock (try_to_unmap_one)
95 * ->private_lock (try_to_unmap_one)
96 * ->tree_lock (try_to_unmap_one)
97 * ->zone.lru_lock (follow_page->mark_page_accessed)
98 * ->zone.lru_lock (check_pte_range->isolate_lru_page)
99 * ->private_lock (page_remove_rmap->set_page_dirty)
100 * ->tree_lock (page_remove_rmap->set_page_dirty)
101 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
102 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
103 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
104 * ->inode->i_lock (zap_pte_range->set_page_dirty)
105 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
106 *
107 * ->i_mmap_mutex
108 * ->tasklist_lock (memory_failure, collect_procs_ao)
109 */
110
111 static void page_cache_tree_delete(struct address_space *mapping,
112 struct page *page, void *shadow)
113 {
114 struct radix_tree_node *node;
115 unsigned long index;
116 unsigned int offset;
117 unsigned int tag;
118 void **slot;
119
120 VM_BUG_ON(!PageLocked(page));
121
122 __radix_tree_lookup(&mapping->page_tree, page->index, &node, &slot);
123
124 if (shadow) {
125 mapping->nrshadows++;
126 /*
127 * Make sure the nrshadows update is committed before
128 * the nrpages update so that final truncate racing
129 * with reclaim does not see both counters 0 at the
130 * same time and miss a shadow entry.
131 */
132 smp_wmb();
133 }
134 mapping->nrpages--;
135
136 if (!node) {
137 /* Clear direct pointer tags in root node */
138 mapping->page_tree.gfp_mask &= __GFP_BITS_MASK;
139 radix_tree_replace_slot(slot, shadow);
140 return;
141 }
142
143 /* Clear tree tags for the removed page */
144 index = page->index;
145 offset = index & RADIX_TREE_MAP_MASK;
146 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
147 if (test_bit(offset, node->tags[tag]))
148 radix_tree_tag_clear(&mapping->page_tree, index, tag);
149 }
150
151 /* Delete page, swap shadow entry */
152 radix_tree_replace_slot(slot, shadow);
153 workingset_node_pages_dec(node);
154 if (shadow)
155 workingset_node_shadows_inc(node);
156 else
157 if (__radix_tree_delete_node(&mapping->page_tree, node))
158 return;
159
160 /*
161 * Track node that only contains shadow entries.
162 *
163 * Avoid acquiring the list_lru lock if already tracked. The
164 * list_empty() test is safe as node->private_list is
165 * protected by mapping->tree_lock.
166 */
167 if (!workingset_node_pages(node) &&
168 list_empty(&node->private_list)) {
169 node->private_data = mapping;
170 list_lru_add(&workingset_shadow_nodes, &node->private_list);
171 }
172 }
173
174 /*
175 * Delete a page from the page cache and free it. Caller has to make
176 * sure the page is locked and that nobody else uses it - or that usage
177 * is safe. The caller must hold the mapping's tree_lock.
178 */
179 void __delete_from_page_cache(struct page *page, void *shadow)
180 {
181 struct address_space *mapping = page->mapping;
182
183 trace_mm_filemap_delete_from_page_cache(page);
184 /*
185 * if we're uptodate, flush out into the cleancache, otherwise
186 * invalidate any existing cleancache entries. We can't leave
187 * stale data around in the cleancache once our page is gone
188 */
189 if (PageUptodate(page) && PageMappedToDisk(page))
190 cleancache_put_page(page);
191 else
192 cleancache_invalidate_page(mapping, page);
193
194 page_cache_tree_delete(mapping, page, shadow);
195
196 page->mapping = NULL;
197 /* Leave page->index set: truncation lookup relies upon it */
198
199 __dec_zone_page_state(page, NR_FILE_PAGES);
200 if (PageSwapBacked(page))
201 __dec_zone_page_state(page, NR_SHMEM);
202 BUG_ON(page_mapped(page));
203
204 /*
205 * Some filesystems seem to re-dirty the page even after
206 * the VM has canceled the dirty bit (eg ext3 journaling).
207 *
208 * Fix it up by doing a final dirty accounting check after
209 * having removed the page entirely.
210 */
211 if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
212 dec_zone_page_state(page, NR_FILE_DIRTY);
213 dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
214 }
215 }
216
217 /**
218 * delete_from_page_cache - delete page from page cache
219 * @page: the page which the kernel is trying to remove from page cache
220 *
221 * This must be called only on pages that have been verified to be in the page
222 * cache and locked. It will never put the page into the free list, the caller
223 * has a reference on the page.
224 */
225 void delete_from_page_cache(struct page *page)
226 {
227 struct address_space *mapping = page->mapping;
228 void (*freepage)(struct page *);
229
230 BUG_ON(!PageLocked(page));
231
232 freepage = mapping->a_ops->freepage;
233 spin_lock_irq(&mapping->tree_lock);
234 __delete_from_page_cache(page, NULL);
235 spin_unlock_irq(&mapping->tree_lock);
236 mem_cgroup_uncharge_cache_page(page);
237
238 if (freepage)
239 freepage(page);
240 page_cache_release(page);
241 }
242 EXPORT_SYMBOL(delete_from_page_cache);
243
244 static int filemap_check_errors(struct address_space *mapping)
245 {
246 int ret = 0;
247 /* Check for outstanding write errors */
248 if (test_bit(AS_ENOSPC, &mapping->flags) &&
249 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
250 ret = -ENOSPC;
251 if (test_bit(AS_EIO, &mapping->flags) &&
252 test_and_clear_bit(AS_EIO, &mapping->flags))
253 ret = -EIO;
254 return ret;
255 }
256
257 /**
258 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
259 * @mapping: address space structure to write
260 * @start: offset in bytes where the range starts
261 * @end: offset in bytes where the range ends (inclusive)
262 * @sync_mode: enable synchronous operation
263 *
264 * Start writeback against all of a mapping's dirty pages that lie
265 * within the byte offsets <start, end> inclusive.
266 *
267 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
268 * opposed to a regular memory cleansing writeback. The difference between
269 * these two operations is that if a dirty page/buffer is encountered, it must
270 * be waited upon, and not just skipped over.
271 */
272 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
273 loff_t end, int sync_mode)
274 {
275 int ret;
276 struct writeback_control wbc = {
277 .sync_mode = sync_mode,
278 .nr_to_write = LONG_MAX,
279 .range_start = start,
280 .range_end = end,
281 };
282
283 if (!mapping_cap_writeback_dirty(mapping))
284 return 0;
285
286 ret = do_writepages(mapping, &wbc);
287 return ret;
288 }
289
290 static inline int __filemap_fdatawrite(struct address_space *mapping,
291 int sync_mode)
292 {
293 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
294 }
295
296 int filemap_fdatawrite(struct address_space *mapping)
297 {
298 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
299 }
300 EXPORT_SYMBOL(filemap_fdatawrite);
301
302 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
303 loff_t end)
304 {
305 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
306 }
307 EXPORT_SYMBOL(filemap_fdatawrite_range);
308
309 /**
310 * filemap_flush - mostly a non-blocking flush
311 * @mapping: target address_space
312 *
313 * This is a mostly non-blocking flush. Not suitable for data-integrity
314 * purposes - I/O may not be started against all dirty pages.
315 */
316 int filemap_flush(struct address_space *mapping)
317 {
318 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
319 }
320 EXPORT_SYMBOL(filemap_flush);
321
322 /**
323 * filemap_fdatawait_range - wait for writeback to complete
324 * @mapping: address space structure to wait for
325 * @start_byte: offset in bytes where the range starts
326 * @end_byte: offset in bytes where the range ends (inclusive)
327 *
328 * Walk the list of under-writeback pages of the given address space
329 * in the given range and wait for all of them.
330 */
331 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
332 loff_t end_byte)
333 {
334 pgoff_t index = start_byte >> PAGE_CACHE_SHIFT;
335 pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
336 struct pagevec pvec;
337 int nr_pages;
338 int ret2, ret = 0;
339
340 if (end_byte < start_byte)
341 goto out;
342
343 pagevec_init(&pvec, 0);
344 while ((index <= end) &&
345 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
346 PAGECACHE_TAG_WRITEBACK,
347 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
348 unsigned i;
349
350 for (i = 0; i < nr_pages; i++) {
351 struct page *page = pvec.pages[i];
352
353 /* until radix tree lookup accepts end_index */
354 if (page->index > end)
355 continue;
356
357 wait_on_page_writeback(page);
358 if (TestClearPageError(page))
359 ret = -EIO;
360 }
361 pagevec_release(&pvec);
362 cond_resched();
363 }
364 out:
365 ret2 = filemap_check_errors(mapping);
366 if (!ret)
367 ret = ret2;
368
369 return ret;
370 }
371 EXPORT_SYMBOL(filemap_fdatawait_range);
372
373 /**
374 * filemap_fdatawait - wait for all under-writeback pages to complete
375 * @mapping: address space structure to wait for
376 *
377 * Walk the list of under-writeback pages of the given address space
378 * and wait for all of them.
379 */
380 int filemap_fdatawait(struct address_space *mapping)
381 {
382 loff_t i_size = i_size_read(mapping->host);
383
384 if (i_size == 0)
385 return 0;
386
387 return filemap_fdatawait_range(mapping, 0, i_size - 1);
388 }
389 EXPORT_SYMBOL(filemap_fdatawait);
390
391 int filemap_write_and_wait(struct address_space *mapping)
392 {
393 int err = 0;
394
395 if (mapping->nrpages) {
396 err = filemap_fdatawrite(mapping);
397 /*
398 * Even if the above returned error, the pages may be
399 * written partially (e.g. -ENOSPC), so we wait for it.
400 * But the -EIO is special case, it may indicate the worst
401 * thing (e.g. bug) happened, so we avoid waiting for it.
402 */
403 if (err != -EIO) {
404 int err2 = filemap_fdatawait(mapping);
405 if (!err)
406 err = err2;
407 }
408 } else {
409 err = filemap_check_errors(mapping);
410 }
411 return err;
412 }
413 EXPORT_SYMBOL(filemap_write_and_wait);
414
415 /**
416 * filemap_write_and_wait_range - write out & wait on a file range
417 * @mapping: the address_space for the pages
418 * @lstart: offset in bytes where the range starts
419 * @lend: offset in bytes where the range ends (inclusive)
420 *
421 * Write out and wait upon file offsets lstart->lend, inclusive.
422 *
423 * Note that `lend' is inclusive (describes the last byte to be written) so
424 * that this function can be used to write to the very end-of-file (end = -1).
425 */
426 int filemap_write_and_wait_range(struct address_space *mapping,
427 loff_t lstart, loff_t lend)
428 {
429 int err = 0;
430
431 if (mapping->nrpages) {
432 err = __filemap_fdatawrite_range(mapping, lstart, lend,
433 WB_SYNC_ALL);
434 /* See comment of filemap_write_and_wait() */
435 if (err != -EIO) {
436 int err2 = filemap_fdatawait_range(mapping,
437 lstart, lend);
438 if (!err)
439 err = err2;
440 }
441 } else {
442 err = filemap_check_errors(mapping);
443 }
444 return err;
445 }
446 EXPORT_SYMBOL(filemap_write_and_wait_range);
447
448 /**
449 * replace_page_cache_page - replace a pagecache page with a new one
450 * @old: page to be replaced
451 * @new: page to replace with
452 * @gfp_mask: allocation mode
453 *
454 * This function replaces a page in the pagecache with a new one. On
455 * success it acquires the pagecache reference for the new page and
456 * drops it for the old page. Both the old and new pages must be
457 * locked. This function does not add the new page to the LRU, the
458 * caller must do that.
459 *
460 * The remove + add is atomic. The only way this function can fail is
461 * memory allocation failure.
462 */
463 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
464 {
465 int error;
466
467 VM_BUG_ON_PAGE(!PageLocked(old), old);
468 VM_BUG_ON_PAGE(!PageLocked(new), new);
469 VM_BUG_ON_PAGE(new->mapping, new);
470
471 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
472 if (!error) {
473 struct address_space *mapping = old->mapping;
474 void (*freepage)(struct page *);
475
476 pgoff_t offset = old->index;
477 freepage = mapping->a_ops->freepage;
478
479 page_cache_get(new);
480 new->mapping = mapping;
481 new->index = offset;
482
483 spin_lock_irq(&mapping->tree_lock);
484 __delete_from_page_cache(old, NULL);
485 error = radix_tree_insert(&mapping->page_tree, offset, new);
486 BUG_ON(error);
487 mapping->nrpages++;
488 __inc_zone_page_state(new, NR_FILE_PAGES);
489 if (PageSwapBacked(new))
490 __inc_zone_page_state(new, NR_SHMEM);
491 spin_unlock_irq(&mapping->tree_lock);
492 /* mem_cgroup codes must not be called under tree_lock */
493 mem_cgroup_replace_page_cache(old, new);
494 radix_tree_preload_end();
495 if (freepage)
496 freepage(old);
497 page_cache_release(old);
498 }
499
500 return error;
501 }
502 EXPORT_SYMBOL_GPL(replace_page_cache_page);
503
504 static int page_cache_tree_insert(struct address_space *mapping,
505 struct page *page, void **shadowp)
506 {
507 struct radix_tree_node *node;
508 void **slot;
509 int error;
510
511 error = __radix_tree_create(&mapping->page_tree, page->index,
512 &node, &slot);
513 if (error)
514 return error;
515 if (*slot) {
516 void *p;
517
518 p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
519 if (!radix_tree_exceptional_entry(p))
520 return -EEXIST;
521 if (shadowp)
522 *shadowp = p;
523 mapping->nrshadows--;
524 if (node)
525 workingset_node_shadows_dec(node);
526 }
527 radix_tree_replace_slot(slot, page);
528 mapping->nrpages++;
529 if (node) {
530 workingset_node_pages_inc(node);
531 /*
532 * Don't track node that contains actual pages.
533 *
534 * Avoid acquiring the list_lru lock if already
535 * untracked. The list_empty() test is safe as
536 * node->private_list is protected by
537 * mapping->tree_lock.
538 */
539 if (!list_empty(&node->private_list))
540 list_lru_del(&workingset_shadow_nodes,
541 &node->private_list);
542 }
543 return 0;
544 }
545
546 static int __add_to_page_cache_locked(struct page *page,
547 struct address_space *mapping,
548 pgoff_t offset, gfp_t gfp_mask,
549 void **shadowp)
550 {
551 int error;
552
553 VM_BUG_ON_PAGE(!PageLocked(page), page);
554 VM_BUG_ON_PAGE(PageSwapBacked(page), page);
555
556 error = mem_cgroup_charge_file(page, current->mm,
557 gfp_mask & GFP_RECLAIM_MASK);
558 if (error)
559 return error;
560
561 error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
562 if (error) {
563 mem_cgroup_uncharge_cache_page(page);
564 return error;
565 }
566
567 page_cache_get(page);
568 page->mapping = mapping;
569 page->index = offset;
570
571 spin_lock_irq(&mapping->tree_lock);
572 error = page_cache_tree_insert(mapping, page, shadowp);
573 radix_tree_preload_end();
574 if (unlikely(error))
575 goto err_insert;
576 __inc_zone_page_state(page, NR_FILE_PAGES);
577 spin_unlock_irq(&mapping->tree_lock);
578 trace_mm_filemap_add_to_page_cache(page);
579 return 0;
580 err_insert:
581 page->mapping = NULL;
582 /* Leave page->index set: truncation relies upon it */
583 spin_unlock_irq(&mapping->tree_lock);
584 mem_cgroup_uncharge_cache_page(page);
585 page_cache_release(page);
586 return error;
587 }
588
589 /**
590 * add_to_page_cache_locked - add a locked page to the pagecache
591 * @page: page to add
592 * @mapping: the page's address_space
593 * @offset: page index
594 * @gfp_mask: page allocation mode
595 *
596 * This function is used to add a page to the pagecache. It must be locked.
597 * This function does not add the page to the LRU. The caller must do that.
598 */
599 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
600 pgoff_t offset, gfp_t gfp_mask)
601 {
602 return __add_to_page_cache_locked(page, mapping, offset,
603 gfp_mask, NULL);
604 }
605 EXPORT_SYMBOL(add_to_page_cache_locked);
606
607 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
608 pgoff_t offset, gfp_t gfp_mask)
609 {
610 void *shadow = NULL;
611 int ret;
612
613 __set_page_locked(page);
614 ret = __add_to_page_cache_locked(page, mapping, offset,
615 gfp_mask, &shadow);
616 if (unlikely(ret))
617 __clear_page_locked(page);
618 else {
619 /*
620 * The page might have been evicted from cache only
621 * recently, in which case it should be activated like
622 * any other repeatedly accessed page.
623 */
624 if (shadow && workingset_refault(shadow)) {
625 SetPageActive(page);
626 workingset_activation(page);
627 } else
628 ClearPageActive(page);
629 lru_cache_add(page);
630 }
631 return ret;
632 }
633 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
634
635 #ifdef CONFIG_NUMA
636 struct page *__page_cache_alloc(gfp_t gfp)
637 {
638 int n;
639 struct page *page;
640
641 if (cpuset_do_page_mem_spread()) {
642 unsigned int cpuset_mems_cookie;
643 do {
644 cpuset_mems_cookie = read_mems_allowed_begin();
645 n = cpuset_mem_spread_node();
646 page = alloc_pages_exact_node(n, gfp, 0);
647 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
648
649 return page;
650 }
651 return alloc_pages(gfp, 0);
652 }
653 EXPORT_SYMBOL(__page_cache_alloc);
654 #endif
655
656 /*
657 * In order to wait for pages to become available there must be
658 * waitqueues associated with pages. By using a hash table of
659 * waitqueues where the bucket discipline is to maintain all
660 * waiters on the same queue and wake all when any of the pages
661 * become available, and for the woken contexts to check to be
662 * sure the appropriate page became available, this saves space
663 * at a cost of "thundering herd" phenomena during rare hash
664 * collisions.
665 */
666 static wait_queue_head_t *page_waitqueue(struct page *page)
667 {
668 const struct zone *zone = page_zone(page);
669
670 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
671 }
672
673 static inline void wake_up_page(struct page *page, int bit)
674 {
675 __wake_up_bit(page_waitqueue(page), &page->flags, bit);
676 }
677
678 void wait_on_page_bit(struct page *page, int bit_nr)
679 {
680 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
681
682 if (test_bit(bit_nr, &page->flags))
683 __wait_on_bit(page_waitqueue(page), &wait, bit_wait_io,
684 TASK_UNINTERRUPTIBLE);
685 }
686 EXPORT_SYMBOL(wait_on_page_bit);
687
688 int wait_on_page_bit_killable(struct page *page, int bit_nr)
689 {
690 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
691
692 if (!test_bit(bit_nr, &page->flags))
693 return 0;
694
695 return __wait_on_bit(page_waitqueue(page), &wait,
696 bit_wait_io, TASK_KILLABLE);
697 }
698
699 /**
700 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
701 * @page: Page defining the wait queue of interest
702 * @waiter: Waiter to add to the queue
703 *
704 * Add an arbitrary @waiter to the wait queue for the nominated @page.
705 */
706 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
707 {
708 wait_queue_head_t *q = page_waitqueue(page);
709 unsigned long flags;
710
711 spin_lock_irqsave(&q->lock, flags);
712 __add_wait_queue(q, waiter);
713 spin_unlock_irqrestore(&q->lock, flags);
714 }
715 EXPORT_SYMBOL_GPL(add_page_wait_queue);
716
717 /**
718 * unlock_page - unlock a locked page
719 * @page: the page
720 *
721 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
722 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
723 * mechananism between PageLocked pages and PageWriteback pages is shared.
724 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
725 *
726 * The mb is necessary to enforce ordering between the clear_bit and the read
727 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
728 */
729 void unlock_page(struct page *page)
730 {
731 VM_BUG_ON_PAGE(!PageLocked(page), page);
732 clear_bit_unlock(PG_locked, &page->flags);
733 smp_mb__after_atomic();
734 wake_up_page(page, PG_locked);
735 }
736 EXPORT_SYMBOL(unlock_page);
737
738 /**
739 * end_page_writeback - end writeback against a page
740 * @page: the page
741 */
742 void end_page_writeback(struct page *page)
743 {
744 /*
745 * TestClearPageReclaim could be used here but it is an atomic
746 * operation and overkill in this particular case. Failing to
747 * shuffle a page marked for immediate reclaim is too mild to
748 * justify taking an atomic operation penalty at the end of
749 * ever page writeback.
750 */
751 if (PageReclaim(page)) {
752 ClearPageReclaim(page);
753 rotate_reclaimable_page(page);
754 }
755
756 if (!test_clear_page_writeback(page))
757 BUG();
758
759 smp_mb__after_atomic();
760 wake_up_page(page, PG_writeback);
761 }
762 EXPORT_SYMBOL(end_page_writeback);
763
764 /*
765 * After completing I/O on a page, call this routine to update the page
766 * flags appropriately
767 */
768 void page_endio(struct page *page, int rw, int err)
769 {
770 if (rw == READ) {
771 if (!err) {
772 SetPageUptodate(page);
773 } else {
774 ClearPageUptodate(page);
775 SetPageError(page);
776 }
777 unlock_page(page);
778 } else { /* rw == WRITE */
779 if (err) {
780 SetPageError(page);
781 if (page->mapping)
782 mapping_set_error(page->mapping, err);
783 }
784 end_page_writeback(page);
785 }
786 }
787 EXPORT_SYMBOL_GPL(page_endio);
788
789 /**
790 * __lock_page - get a lock on the page, assuming we need to sleep to get it
791 * @page: the page to lock
792 */
793 void __lock_page(struct page *page)
794 {
795 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
796
797 __wait_on_bit_lock(page_waitqueue(page), &wait, bit_wait_io,
798 TASK_UNINTERRUPTIBLE);
799 }
800 EXPORT_SYMBOL(__lock_page);
801
802 int __lock_page_killable(struct page *page)
803 {
804 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
805
806 return __wait_on_bit_lock(page_waitqueue(page), &wait,
807 bit_wait_io, TASK_KILLABLE);
808 }
809 EXPORT_SYMBOL_GPL(__lock_page_killable);
810
811 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
812 unsigned int flags)
813 {
814 if (flags & FAULT_FLAG_ALLOW_RETRY) {
815 /*
816 * CAUTION! In this case, mmap_sem is not released
817 * even though return 0.
818 */
819 if (flags & FAULT_FLAG_RETRY_NOWAIT)
820 return 0;
821
822 up_read(&mm->mmap_sem);
823 if (flags & FAULT_FLAG_KILLABLE)
824 wait_on_page_locked_killable(page);
825 else
826 wait_on_page_locked(page);
827 return 0;
828 } else {
829 if (flags & FAULT_FLAG_KILLABLE) {
830 int ret;
831
832 ret = __lock_page_killable(page);
833 if (ret) {
834 up_read(&mm->mmap_sem);
835 return 0;
836 }
837 } else
838 __lock_page(page);
839 return 1;
840 }
841 }
842
843 /**
844 * page_cache_next_hole - find the next hole (not-present entry)
845 * @mapping: mapping
846 * @index: index
847 * @max_scan: maximum range to search
848 *
849 * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
850 * lowest indexed hole.
851 *
852 * Returns: the index of the hole if found, otherwise returns an index
853 * outside of the set specified (in which case 'return - index >=
854 * max_scan' will be true). In rare cases of index wrap-around, 0 will
855 * be returned.
856 *
857 * page_cache_next_hole may be called under rcu_read_lock. However,
858 * like radix_tree_gang_lookup, this will not atomically search a
859 * snapshot of the tree at a single point in time. For example, if a
860 * hole is created at index 5, then subsequently a hole is created at
861 * index 10, page_cache_next_hole covering both indexes may return 10
862 * if called under rcu_read_lock.
863 */
864 pgoff_t page_cache_next_hole(struct address_space *mapping,
865 pgoff_t index, unsigned long max_scan)
866 {
867 unsigned long i;
868
869 for (i = 0; i < max_scan; i++) {
870 struct page *page;
871
872 page = radix_tree_lookup(&mapping->page_tree, index);
873 if (!page || radix_tree_exceptional_entry(page))
874 break;
875 index++;
876 if (index == 0)
877 break;
878 }
879
880 return index;
881 }
882 EXPORT_SYMBOL(page_cache_next_hole);
883
884 /**
885 * page_cache_prev_hole - find the prev hole (not-present entry)
886 * @mapping: mapping
887 * @index: index
888 * @max_scan: maximum range to search
889 *
890 * Search backwards in the range [max(index-max_scan+1, 0), index] for
891 * the first hole.
892 *
893 * Returns: the index of the hole if found, otherwise returns an index
894 * outside of the set specified (in which case 'index - return >=
895 * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
896 * will be returned.
897 *
898 * page_cache_prev_hole may be called under rcu_read_lock. However,
899 * like radix_tree_gang_lookup, this will not atomically search a
900 * snapshot of the tree at a single point in time. For example, if a
901 * hole is created at index 10, then subsequently a hole is created at
902 * index 5, page_cache_prev_hole covering both indexes may return 5 if
903 * called under rcu_read_lock.
904 */
905 pgoff_t page_cache_prev_hole(struct address_space *mapping,
906 pgoff_t index, unsigned long max_scan)
907 {
908 unsigned long i;
909
910 for (i = 0; i < max_scan; i++) {
911 struct page *page;
912
913 page = radix_tree_lookup(&mapping->page_tree, index);
914 if (!page || radix_tree_exceptional_entry(page))
915 break;
916 index--;
917 if (index == ULONG_MAX)
918 break;
919 }
920
921 return index;
922 }
923 EXPORT_SYMBOL(page_cache_prev_hole);
924
925 /**
926 * find_get_entry - find and get a page cache entry
927 * @mapping: the address_space to search
928 * @offset: the page cache index
929 *
930 * Looks up the page cache slot at @mapping & @offset. If there is a
931 * page cache page, it is returned with an increased refcount.
932 *
933 * If the slot holds a shadow entry of a previously evicted page, or a
934 * swap entry from shmem/tmpfs, it is returned.
935 *
936 * Otherwise, %NULL is returned.
937 */
938 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
939 {
940 void **pagep;
941 struct page *page;
942
943 rcu_read_lock();
944 repeat:
945 page = NULL;
946 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
947 if (pagep) {
948 page = radix_tree_deref_slot(pagep);
949 if (unlikely(!page))
950 goto out;
951 if (radix_tree_exception(page)) {
952 if (radix_tree_deref_retry(page))
953 goto repeat;
954 /*
955 * A shadow entry of a recently evicted page,
956 * or a swap entry from shmem/tmpfs. Return
957 * it without attempting to raise page count.
958 */
959 goto out;
960 }
961 if (!page_cache_get_speculative(page))
962 goto repeat;
963
964 /*
965 * Has the page moved?
966 * This is part of the lockless pagecache protocol. See
967 * include/linux/pagemap.h for details.
968 */
969 if (unlikely(page != *pagep)) {
970 page_cache_release(page);
971 goto repeat;
972 }
973 }
974 out:
975 rcu_read_unlock();
976
977 return page;
978 }
979 EXPORT_SYMBOL(find_get_entry);
980
981 /**
982 * find_lock_entry - locate, pin and lock a page cache entry
983 * @mapping: the address_space to search
984 * @offset: the page cache index
985 *
986 * Looks up the page cache slot at @mapping & @offset. If there is a
987 * page cache page, it is returned locked and with an increased
988 * refcount.
989 *
990 * If the slot holds a shadow entry of a previously evicted page, or a
991 * swap entry from shmem/tmpfs, it is returned.
992 *
993 * Otherwise, %NULL is returned.
994 *
995 * find_lock_entry() may sleep.
996 */
997 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
998 {
999 struct page *page;
1000
1001 repeat:
1002 page = find_get_entry(mapping, offset);
1003 if (page && !radix_tree_exception(page)) {
1004 lock_page(page);
1005 /* Has the page been truncated? */
1006 if (unlikely(page->mapping != mapping)) {
1007 unlock_page(page);
1008 page_cache_release(page);
1009 goto repeat;
1010 }
1011 VM_BUG_ON_PAGE(page->index != offset, page);
1012 }
1013 return page;
1014 }
1015 EXPORT_SYMBOL(find_lock_entry);
1016
1017 /**
1018 * pagecache_get_page - find and get a page reference
1019 * @mapping: the address_space to search
1020 * @offset: the page index
1021 * @fgp_flags: PCG flags
1022 * @cache_gfp_mask: gfp mask to use for the page cache data page allocation
1023 * @radix_gfp_mask: gfp mask to use for radix tree node allocation
1024 *
1025 * Looks up the page cache slot at @mapping & @offset.
1026 *
1027 * PCG flags modify how the page is returned.
1028 *
1029 * FGP_ACCESSED: the page will be marked accessed
1030 * FGP_LOCK: Page is return locked
1031 * FGP_CREAT: If page is not present then a new page is allocated using
1032 * @cache_gfp_mask and added to the page cache and the VM's LRU
1033 * list. If radix tree nodes are allocated during page cache
1034 * insertion then @radix_gfp_mask is used. The page is returned
1035 * locked and with an increased refcount. Otherwise, %NULL is
1036 * returned.
1037 *
1038 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1039 * if the GFP flags specified for FGP_CREAT are atomic.
1040 *
1041 * If there is a page cache page, it is returned with an increased refcount.
1042 */
1043 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1044 int fgp_flags, gfp_t cache_gfp_mask, gfp_t radix_gfp_mask)
1045 {
1046 struct page *page;
1047
1048 repeat:
1049 page = find_get_entry(mapping, offset);
1050 if (radix_tree_exceptional_entry(page))
1051 page = NULL;
1052 if (!page)
1053 goto no_page;
1054
1055 if (fgp_flags & FGP_LOCK) {
1056 if (fgp_flags & FGP_NOWAIT) {
1057 if (!trylock_page(page)) {
1058 page_cache_release(page);
1059 return NULL;
1060 }
1061 } else {
1062 lock_page(page);
1063 }
1064
1065 /* Has the page been truncated? */
1066 if (unlikely(page->mapping != mapping)) {
1067 unlock_page(page);
1068 page_cache_release(page);
1069 goto repeat;
1070 }
1071 VM_BUG_ON_PAGE(page->index != offset, page);
1072 }
1073
1074 if (page && (fgp_flags & FGP_ACCESSED))
1075 mark_page_accessed(page);
1076
1077 no_page:
1078 if (!page && (fgp_flags & FGP_CREAT)) {
1079 int err;
1080 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1081 cache_gfp_mask |= __GFP_WRITE;
1082 if (fgp_flags & FGP_NOFS) {
1083 cache_gfp_mask &= ~__GFP_FS;
1084 radix_gfp_mask &= ~__GFP_FS;
1085 }
1086
1087 page = __page_cache_alloc(cache_gfp_mask);
1088 if (!page)
1089 return NULL;
1090
1091 if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1092 fgp_flags |= FGP_LOCK;
1093
1094 /* Init accessed so avoit atomic mark_page_accessed later */
1095 if (fgp_flags & FGP_ACCESSED)
1096 init_page_accessed(page);
1097
1098 err = add_to_page_cache_lru(page, mapping, offset, radix_gfp_mask);
1099 if (unlikely(err)) {
1100 page_cache_release(page);
1101 page = NULL;
1102 if (err == -EEXIST)
1103 goto repeat;
1104 }
1105 }
1106
1107 return page;
1108 }
1109 EXPORT_SYMBOL(pagecache_get_page);
1110
1111 /**
1112 * find_get_entries - gang pagecache lookup
1113 * @mapping: The address_space to search
1114 * @start: The starting page cache index
1115 * @nr_entries: The maximum number of entries
1116 * @entries: Where the resulting entries are placed
1117 * @indices: The cache indices corresponding to the entries in @entries
1118 *
1119 * find_get_entries() will search for and return a group of up to
1120 * @nr_entries entries in the mapping. The entries are placed at
1121 * @entries. find_get_entries() takes a reference against any actual
1122 * pages it returns.
1123 *
1124 * The search returns a group of mapping-contiguous page cache entries
1125 * with ascending indexes. There may be holes in the indices due to
1126 * not-present pages.
1127 *
1128 * Any shadow entries of evicted pages, or swap entries from
1129 * shmem/tmpfs, are included in the returned array.
1130 *
1131 * find_get_entries() returns the number of pages and shadow entries
1132 * which were found.
1133 */
1134 unsigned find_get_entries(struct address_space *mapping,
1135 pgoff_t start, unsigned int nr_entries,
1136 struct page **entries, pgoff_t *indices)
1137 {
1138 void **slot;
1139 unsigned int ret = 0;
1140 struct radix_tree_iter iter;
1141
1142 if (!nr_entries)
1143 return 0;
1144
1145 rcu_read_lock();
1146 restart:
1147 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1148 struct page *page;
1149 repeat:
1150 page = radix_tree_deref_slot(slot);
1151 if (unlikely(!page))
1152 continue;
1153 if (radix_tree_exception(page)) {
1154 if (radix_tree_deref_retry(page))
1155 goto restart;
1156 /*
1157 * A shadow entry of a recently evicted page,
1158 * or a swap entry from shmem/tmpfs. Return
1159 * it without attempting to raise page count.
1160 */
1161 goto export;
1162 }
1163 if (!page_cache_get_speculative(page))
1164 goto repeat;
1165
1166 /* Has the page moved? */
1167 if (unlikely(page != *slot)) {
1168 page_cache_release(page);
1169 goto repeat;
1170 }
1171 export:
1172 indices[ret] = iter.index;
1173 entries[ret] = page;
1174 if (++ret == nr_entries)
1175 break;
1176 }
1177 rcu_read_unlock();
1178 return ret;
1179 }
1180
1181 /**
1182 * find_get_pages - gang pagecache lookup
1183 * @mapping: The address_space to search
1184 * @start: The starting page index
1185 * @nr_pages: The maximum number of pages
1186 * @pages: Where the resulting pages are placed
1187 *
1188 * find_get_pages() will search for and return a group of up to
1189 * @nr_pages pages in the mapping. The pages are placed at @pages.
1190 * find_get_pages() takes a reference against the returned pages.
1191 *
1192 * The search returns a group of mapping-contiguous pages with ascending
1193 * indexes. There may be holes in the indices due to not-present pages.
1194 *
1195 * find_get_pages() returns the number of pages which were found.
1196 */
1197 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
1198 unsigned int nr_pages, struct page **pages)
1199 {
1200 struct radix_tree_iter iter;
1201 void **slot;
1202 unsigned ret = 0;
1203
1204 if (unlikely(!nr_pages))
1205 return 0;
1206
1207 rcu_read_lock();
1208 restart:
1209 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1210 struct page *page;
1211 repeat:
1212 page = radix_tree_deref_slot(slot);
1213 if (unlikely(!page))
1214 continue;
1215
1216 if (radix_tree_exception(page)) {
1217 if (radix_tree_deref_retry(page)) {
1218 /*
1219 * Transient condition which can only trigger
1220 * when entry at index 0 moves out of or back
1221 * to root: none yet gotten, safe to restart.
1222 */
1223 WARN_ON(iter.index);
1224 goto restart;
1225 }
1226 /*
1227 * A shadow entry of a recently evicted page,
1228 * or a swap entry from shmem/tmpfs. Skip
1229 * over it.
1230 */
1231 continue;
1232 }
1233
1234 if (!page_cache_get_speculative(page))
1235 goto repeat;
1236
1237 /* Has the page moved? */
1238 if (unlikely(page != *slot)) {
1239 page_cache_release(page);
1240 goto repeat;
1241 }
1242
1243 pages[ret] = page;
1244 if (++ret == nr_pages)
1245 break;
1246 }
1247
1248 rcu_read_unlock();
1249 return ret;
1250 }
1251
1252 /**
1253 * find_get_pages_contig - gang contiguous pagecache lookup
1254 * @mapping: The address_space to search
1255 * @index: The starting page index
1256 * @nr_pages: The maximum number of pages
1257 * @pages: Where the resulting pages are placed
1258 *
1259 * find_get_pages_contig() works exactly like find_get_pages(), except
1260 * that the returned number of pages are guaranteed to be contiguous.
1261 *
1262 * find_get_pages_contig() returns the number of pages which were found.
1263 */
1264 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1265 unsigned int nr_pages, struct page **pages)
1266 {
1267 struct radix_tree_iter iter;
1268 void **slot;
1269 unsigned int ret = 0;
1270
1271 if (unlikely(!nr_pages))
1272 return 0;
1273
1274 rcu_read_lock();
1275 restart:
1276 radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
1277 struct page *page;
1278 repeat:
1279 page = radix_tree_deref_slot(slot);
1280 /* The hole, there no reason to continue */
1281 if (unlikely(!page))
1282 break;
1283
1284 if (radix_tree_exception(page)) {
1285 if (radix_tree_deref_retry(page)) {
1286 /*
1287 * Transient condition which can only trigger
1288 * when entry at index 0 moves out of or back
1289 * to root: none yet gotten, safe to restart.
1290 */
1291 goto restart;
1292 }
1293 /*
1294 * A shadow entry of a recently evicted page,
1295 * or a swap entry from shmem/tmpfs. Stop
1296 * looking for contiguous pages.
1297 */
1298 break;
1299 }
1300
1301 if (!page_cache_get_speculative(page))
1302 goto repeat;
1303
1304 /* Has the page moved? */
1305 if (unlikely(page != *slot)) {
1306 page_cache_release(page);
1307 goto repeat;
1308 }
1309
1310 /*
1311 * must check mapping and index after taking the ref.
1312 * otherwise we can get both false positives and false
1313 * negatives, which is just confusing to the caller.
1314 */
1315 if (page->mapping == NULL || page->index != iter.index) {
1316 page_cache_release(page);
1317 break;
1318 }
1319
1320 pages[ret] = page;
1321 if (++ret == nr_pages)
1322 break;
1323 }
1324 rcu_read_unlock();
1325 return ret;
1326 }
1327 EXPORT_SYMBOL(find_get_pages_contig);
1328
1329 /**
1330 * find_get_pages_tag - find and return pages that match @tag
1331 * @mapping: the address_space to search
1332 * @index: the starting page index
1333 * @tag: the tag index
1334 * @nr_pages: the maximum number of pages
1335 * @pages: where the resulting pages are placed
1336 *
1337 * Like find_get_pages, except we only return pages which are tagged with
1338 * @tag. We update @index to index the next page for the traversal.
1339 */
1340 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1341 int tag, unsigned int nr_pages, struct page **pages)
1342 {
1343 struct radix_tree_iter iter;
1344 void **slot;
1345 unsigned ret = 0;
1346
1347 if (unlikely(!nr_pages))
1348 return 0;
1349
1350 rcu_read_lock();
1351 restart:
1352 radix_tree_for_each_tagged(slot, &mapping->page_tree,
1353 &iter, *index, tag) {
1354 struct page *page;
1355 repeat:
1356 page = radix_tree_deref_slot(slot);
1357 if (unlikely(!page))
1358 continue;
1359
1360 if (radix_tree_exception(page)) {
1361 if (radix_tree_deref_retry(page)) {
1362 /*
1363 * Transient condition which can only trigger
1364 * when entry at index 0 moves out of or back
1365 * to root: none yet gotten, safe to restart.
1366 */
1367 goto restart;
1368 }
1369 /*
1370 * A shadow entry of a recently evicted page.
1371 *
1372 * Those entries should never be tagged, but
1373 * this tree walk is lockless and the tags are
1374 * looked up in bulk, one radix tree node at a
1375 * time, so there is a sizable window for page
1376 * reclaim to evict a page we saw tagged.
1377 *
1378 * Skip over it.
1379 */
1380 continue;
1381 }
1382
1383 if (!page_cache_get_speculative(page))
1384 goto repeat;
1385
1386 /* Has the page moved? */
1387 if (unlikely(page != *slot)) {
1388 page_cache_release(page);
1389 goto repeat;
1390 }
1391
1392 pages[ret] = page;
1393 if (++ret == nr_pages)
1394 break;
1395 }
1396
1397 rcu_read_unlock();
1398
1399 if (ret)
1400 *index = pages[ret - 1]->index + 1;
1401
1402 return ret;
1403 }
1404 EXPORT_SYMBOL(find_get_pages_tag);
1405
1406 /*
1407 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1408 * a _large_ part of the i/o request. Imagine the worst scenario:
1409 *
1410 * ---R__________________________________________B__________
1411 * ^ reading here ^ bad block(assume 4k)
1412 *
1413 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1414 * => failing the whole request => read(R) => read(R+1) =>
1415 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1416 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1417 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1418 *
1419 * It is going insane. Fix it by quickly scaling down the readahead size.
1420 */
1421 static void shrink_readahead_size_eio(struct file *filp,
1422 struct file_ra_state *ra)
1423 {
1424 ra->ra_pages /= 4;
1425 }
1426
1427 /**
1428 * do_generic_file_read - generic file read routine
1429 * @filp: the file to read
1430 * @ppos: current file position
1431 * @iter: data destination
1432 * @written: already copied
1433 *
1434 * This is a generic file read routine, and uses the
1435 * mapping->a_ops->readpage() function for the actual low-level stuff.
1436 *
1437 * This is really ugly. But the goto's actually try to clarify some
1438 * of the logic when it comes to error handling etc.
1439 */
1440 static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos,
1441 struct iov_iter *iter, ssize_t written)
1442 {
1443 struct address_space *mapping = filp->f_mapping;
1444 struct inode *inode = mapping->host;
1445 struct file_ra_state *ra = &filp->f_ra;
1446 pgoff_t index;
1447 pgoff_t last_index;
1448 pgoff_t prev_index;
1449 unsigned long offset; /* offset into pagecache page */
1450 unsigned int prev_offset;
1451 int error = 0;
1452
1453 index = *ppos >> PAGE_CACHE_SHIFT;
1454 prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
1455 prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
1456 last_index = (*ppos + iter->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1457 offset = *ppos & ~PAGE_CACHE_MASK;
1458
1459 for (;;) {
1460 struct page *page;
1461 pgoff_t end_index;
1462 loff_t isize;
1463 unsigned long nr, ret;
1464
1465 cond_resched();
1466 find_page:
1467 page = find_get_page(mapping, index);
1468 if (!page) {
1469 page_cache_sync_readahead(mapping,
1470 ra, filp,
1471 index, last_index - index);
1472 page = find_get_page(mapping, index);
1473 if (unlikely(page == NULL))
1474 goto no_cached_page;
1475 }
1476 if (PageReadahead(page)) {
1477 page_cache_async_readahead(mapping,
1478 ra, filp, page,
1479 index, last_index - index);
1480 }
1481 if (!PageUptodate(page)) {
1482 if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1483 !mapping->a_ops->is_partially_uptodate)
1484 goto page_not_up_to_date;
1485 if (!trylock_page(page))
1486 goto page_not_up_to_date;
1487 /* Did it get truncated before we got the lock? */
1488 if (!page->mapping)
1489 goto page_not_up_to_date_locked;
1490 if (!mapping->a_ops->is_partially_uptodate(page,
1491 offset, iter->count))
1492 goto page_not_up_to_date_locked;
1493 unlock_page(page);
1494 }
1495 page_ok:
1496 /*
1497 * i_size must be checked after we know the page is Uptodate.
1498 *
1499 * Checking i_size after the check allows us to calculate
1500 * the correct value for "nr", which means the zero-filled
1501 * part of the page is not copied back to userspace (unless
1502 * another truncate extends the file - this is desired though).
1503 */
1504
1505 isize = i_size_read(inode);
1506 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1507 if (unlikely(!isize || index > end_index)) {
1508 page_cache_release(page);
1509 goto out;
1510 }
1511
1512 /* nr is the maximum number of bytes to copy from this page */
1513 nr = PAGE_CACHE_SIZE;
1514 if (index == end_index) {
1515 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1516 if (nr <= offset) {
1517 page_cache_release(page);
1518 goto out;
1519 }
1520 }
1521 nr = nr - offset;
1522
1523 /* If users can be writing to this page using arbitrary
1524 * virtual addresses, take care about potential aliasing
1525 * before reading the page on the kernel side.
1526 */
1527 if (mapping_writably_mapped(mapping))
1528 flush_dcache_page(page);
1529
1530 /*
1531 * When a sequential read accesses a page several times,
1532 * only mark it as accessed the first time.
1533 */
1534 if (prev_index != index || offset != prev_offset)
1535 mark_page_accessed(page);
1536 prev_index = index;
1537
1538 /*
1539 * Ok, we have the page, and it's up-to-date, so
1540 * now we can copy it to user space...
1541 */
1542
1543 ret = copy_page_to_iter(page, offset, nr, iter);
1544 offset += ret;
1545 index += offset >> PAGE_CACHE_SHIFT;
1546 offset &= ~PAGE_CACHE_MASK;
1547 prev_offset = offset;
1548
1549 page_cache_release(page);
1550 written += ret;
1551 if (!iov_iter_count(iter))
1552 goto out;
1553 if (ret < nr) {
1554 error = -EFAULT;
1555 goto out;
1556 }
1557 continue;
1558
1559 page_not_up_to_date:
1560 /* Get exclusive access to the page ... */
1561 error = lock_page_killable(page);
1562 if (unlikely(error))
1563 goto readpage_error;
1564
1565 page_not_up_to_date_locked:
1566 /* Did it get truncated before we got the lock? */
1567 if (!page->mapping) {
1568 unlock_page(page);
1569 page_cache_release(page);
1570 continue;
1571 }
1572
1573 /* Did somebody else fill it already? */
1574 if (PageUptodate(page)) {
1575 unlock_page(page);
1576 goto page_ok;
1577 }
1578
1579 readpage:
1580 /*
1581 * A previous I/O error may have been due to temporary
1582 * failures, eg. multipath errors.
1583 * PG_error will be set again if readpage fails.
1584 */
1585 ClearPageError(page);
1586 /* Start the actual read. The read will unlock the page. */
1587 error = mapping->a_ops->readpage(filp, page);
1588
1589 if (unlikely(error)) {
1590 if (error == AOP_TRUNCATED_PAGE) {
1591 page_cache_release(page);
1592 error = 0;
1593 goto find_page;
1594 }
1595 goto readpage_error;
1596 }
1597
1598 if (!PageUptodate(page)) {
1599 error = lock_page_killable(page);
1600 if (unlikely(error))
1601 goto readpage_error;
1602 if (!PageUptodate(page)) {
1603 if (page->mapping == NULL) {
1604 /*
1605 * invalidate_mapping_pages got it
1606 */
1607 unlock_page(page);
1608 page_cache_release(page);
1609 goto find_page;
1610 }
1611 unlock_page(page);
1612 shrink_readahead_size_eio(filp, ra);
1613 error = -EIO;
1614 goto readpage_error;
1615 }
1616 unlock_page(page);
1617 }
1618
1619 goto page_ok;
1620
1621 readpage_error:
1622 /* UHHUH! A synchronous read error occurred. Report it */
1623 page_cache_release(page);
1624 goto out;
1625
1626 no_cached_page:
1627 /*
1628 * Ok, it wasn't cached, so we need to create a new
1629 * page..
1630 */
1631 page = page_cache_alloc_cold(mapping);
1632 if (!page) {
1633 error = -ENOMEM;
1634 goto out;
1635 }
1636 error = add_to_page_cache_lru(page, mapping,
1637 index, GFP_KERNEL);
1638 if (error) {
1639 page_cache_release(page);
1640 if (error == -EEXIST) {
1641 error = 0;
1642 goto find_page;
1643 }
1644 goto out;
1645 }
1646 goto readpage;
1647 }
1648
1649 out:
1650 ra->prev_pos = prev_index;
1651 ra->prev_pos <<= PAGE_CACHE_SHIFT;
1652 ra->prev_pos |= prev_offset;
1653
1654 *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1655 file_accessed(filp);
1656 return written ? written : error;
1657 }
1658
1659 /**
1660 * generic_file_read_iter - generic filesystem read routine
1661 * @iocb: kernel I/O control block
1662 * @iter: destination for the data read
1663 *
1664 * This is the "read_iter()" routine for all filesystems
1665 * that can use the page cache directly.
1666 */
1667 ssize_t
1668 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
1669 {
1670 struct file *file = iocb->ki_filp;
1671 ssize_t retval = 0;
1672 loff_t *ppos = &iocb->ki_pos;
1673 loff_t pos = *ppos;
1674
1675 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1676 if (file->f_flags & O_DIRECT) {
1677 struct address_space *mapping = file->f_mapping;
1678 struct inode *inode = mapping->host;
1679 size_t count = iov_iter_count(iter);
1680 loff_t size;
1681
1682 if (!count)
1683 goto out; /* skip atime */
1684 size = i_size_read(inode);
1685 retval = filemap_write_and_wait_range(mapping, pos,
1686 pos + count - 1);
1687 if (!retval) {
1688 struct iov_iter data = *iter;
1689 retval = mapping->a_ops->direct_IO(READ, iocb, &data, pos);
1690 }
1691
1692 if (retval > 0) {
1693 *ppos = pos + retval;
1694 iov_iter_advance(iter, retval);
1695 }
1696
1697 /*
1698 * Btrfs can have a short DIO read if we encounter
1699 * compressed extents, so if there was an error, or if
1700 * we've already read everything we wanted to, or if
1701 * there was a short read because we hit EOF, go ahead
1702 * and return. Otherwise fallthrough to buffered io for
1703 * the rest of the read.
1704 */
1705 if (retval < 0 || !iov_iter_count(iter) || *ppos >= size) {
1706 file_accessed(file);
1707 goto out;
1708 }
1709 }
1710
1711 retval = do_generic_file_read(file, ppos, iter, retval);
1712 out:
1713 return retval;
1714 }
1715 EXPORT_SYMBOL(generic_file_read_iter);
1716
1717 #ifdef CONFIG_MMU
1718 /**
1719 * page_cache_read - adds requested page to the page cache if not already there
1720 * @file: file to read
1721 * @offset: page index
1722 *
1723 * This adds the requested page to the page cache if it isn't already there,
1724 * and schedules an I/O to read in its contents from disk.
1725 */
1726 static int page_cache_read(struct file *file, pgoff_t offset)
1727 {
1728 struct address_space *mapping = file->f_mapping;
1729 struct page *page;
1730 int ret;
1731
1732 do {
1733 page = page_cache_alloc_cold(mapping);
1734 if (!page)
1735 return -ENOMEM;
1736
1737 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1738 if (ret == 0)
1739 ret = mapping->a_ops->readpage(file, page);
1740 else if (ret == -EEXIST)
1741 ret = 0; /* losing race to add is OK */
1742
1743 page_cache_release(page);
1744
1745 } while (ret == AOP_TRUNCATED_PAGE);
1746
1747 return ret;
1748 }
1749
1750 #define MMAP_LOTSAMISS (100)
1751
1752 /*
1753 * Synchronous readahead happens when we don't even find
1754 * a page in the page cache at all.
1755 */
1756 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1757 struct file_ra_state *ra,
1758 struct file *file,
1759 pgoff_t offset)
1760 {
1761 unsigned long ra_pages;
1762 struct address_space *mapping = file->f_mapping;
1763
1764 /* If we don't want any read-ahead, don't bother */
1765 if (vma->vm_flags & VM_RAND_READ)
1766 return;
1767 if (!ra->ra_pages)
1768 return;
1769
1770 if (vma->vm_flags & VM_SEQ_READ) {
1771 page_cache_sync_readahead(mapping, ra, file, offset,
1772 ra->ra_pages);
1773 return;
1774 }
1775
1776 /* Avoid banging the cache line if not needed */
1777 if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
1778 ra->mmap_miss++;
1779
1780 /*
1781 * Do we miss much more than hit in this file? If so,
1782 * stop bothering with read-ahead. It will only hurt.
1783 */
1784 if (ra->mmap_miss > MMAP_LOTSAMISS)
1785 return;
1786
1787 /*
1788 * mmap read-around
1789 */
1790 ra_pages = max_sane_readahead(ra->ra_pages);
1791 ra->start = max_t(long, 0, offset - ra_pages / 2);
1792 ra->size = ra_pages;
1793 ra->async_size = ra_pages / 4;
1794 ra_submit(ra, mapping, file);
1795 }
1796
1797 /*
1798 * Asynchronous readahead happens when we find the page and PG_readahead,
1799 * so we want to possibly extend the readahead further..
1800 */
1801 static void do_async_mmap_readahead(struct vm_area_struct *vma,
1802 struct file_ra_state *ra,
1803 struct file *file,
1804 struct page *page,
1805 pgoff_t offset)
1806 {
1807 struct address_space *mapping = file->f_mapping;
1808
1809 /* If we don't want any read-ahead, don't bother */
1810 if (vma->vm_flags & VM_RAND_READ)
1811 return;
1812 if (ra->mmap_miss > 0)
1813 ra->mmap_miss--;
1814 if (PageReadahead(page))
1815 page_cache_async_readahead(mapping, ra, file,
1816 page, offset, ra->ra_pages);
1817 }
1818
1819 /**
1820 * filemap_fault - read in file data for page fault handling
1821 * @vma: vma in which the fault was taken
1822 * @vmf: struct vm_fault containing details of the fault
1823 *
1824 * filemap_fault() is invoked via the vma operations vector for a
1825 * mapped memory region to read in file data during a page fault.
1826 *
1827 * The goto's are kind of ugly, but this streamlines the normal case of having
1828 * it in the page cache, and handles the special cases reasonably without
1829 * having a lot of duplicated code.
1830 */
1831 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1832 {
1833 int error;
1834 struct file *file = vma->vm_file;
1835 struct address_space *mapping = file->f_mapping;
1836 struct file_ra_state *ra = &file->f_ra;
1837 struct inode *inode = mapping->host;
1838 pgoff_t offset = vmf->pgoff;
1839 struct page *page;
1840 loff_t size;
1841 int ret = 0;
1842
1843 size = round_up(i_size_read(inode), PAGE_CACHE_SIZE);
1844 if (offset >= size >> PAGE_CACHE_SHIFT)
1845 return VM_FAULT_SIGBUS;
1846
1847 /*
1848 * Do we have something in the page cache already?
1849 */
1850 page = find_get_page(mapping, offset);
1851 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
1852 /*
1853 * We found the page, so try async readahead before
1854 * waiting for the lock.
1855 */
1856 do_async_mmap_readahead(vma, ra, file, page, offset);
1857 } else if (!page) {
1858 /* No page in the page cache at all */
1859 do_sync_mmap_readahead(vma, ra, file, offset);
1860 count_vm_event(PGMAJFAULT);
1861 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1862 ret = VM_FAULT_MAJOR;
1863 retry_find:
1864 page = find_get_page(mapping, offset);
1865 if (!page)
1866 goto no_cached_page;
1867 }
1868
1869 if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
1870 page_cache_release(page);
1871 return ret | VM_FAULT_RETRY;
1872 }
1873
1874 /* Did it get truncated? */
1875 if (unlikely(page->mapping != mapping)) {
1876 unlock_page(page);
1877 put_page(page);
1878 goto retry_find;
1879 }
1880 VM_BUG_ON_PAGE(page->index != offset, page);
1881
1882 /*
1883 * We have a locked page in the page cache, now we need to check
1884 * that it's up-to-date. If not, it is going to be due to an error.
1885 */
1886 if (unlikely(!PageUptodate(page)))
1887 goto page_not_uptodate;
1888
1889 /*
1890 * Found the page and have a reference on it.
1891 * We must recheck i_size under page lock.
1892 */
1893 size = round_up(i_size_read(inode), PAGE_CACHE_SIZE);
1894 if (unlikely(offset >= size >> PAGE_CACHE_SHIFT)) {
1895 unlock_page(page);
1896 page_cache_release(page);
1897 return VM_FAULT_SIGBUS;
1898 }
1899
1900 vmf->page = page;
1901 return ret | VM_FAULT_LOCKED;
1902
1903 no_cached_page:
1904 /*
1905 * We're only likely to ever get here if MADV_RANDOM is in
1906 * effect.
1907 */
1908 error = page_cache_read(file, offset);
1909
1910 /*
1911 * The page we want has now been added to the page cache.
1912 * In the unlikely event that someone removed it in the
1913 * meantime, we'll just come back here and read it again.
1914 */
1915 if (error >= 0)
1916 goto retry_find;
1917
1918 /*
1919 * An error return from page_cache_read can result if the
1920 * system is low on memory, or a problem occurs while trying
1921 * to schedule I/O.
1922 */
1923 if (error == -ENOMEM)
1924 return VM_FAULT_OOM;
1925 return VM_FAULT_SIGBUS;
1926
1927 page_not_uptodate:
1928 /*
1929 * Umm, take care of errors if the page isn't up-to-date.
1930 * Try to re-read it _once_. We do this synchronously,
1931 * because there really aren't any performance issues here
1932 * and we need to check for errors.
1933 */
1934 ClearPageError(page);
1935 error = mapping->a_ops->readpage(file, page);
1936 if (!error) {
1937 wait_on_page_locked(page);
1938 if (!PageUptodate(page))
1939 error = -EIO;
1940 }
1941 page_cache_release(page);
1942
1943 if (!error || error == AOP_TRUNCATED_PAGE)
1944 goto retry_find;
1945
1946 /* Things didn't work out. Return zero to tell the mm layer so. */
1947 shrink_readahead_size_eio(file, ra);
1948 return VM_FAULT_SIGBUS;
1949 }
1950 EXPORT_SYMBOL(filemap_fault);
1951
1952 void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf)
1953 {
1954 struct radix_tree_iter iter;
1955 void **slot;
1956 struct file *file = vma->vm_file;
1957 struct address_space *mapping = file->f_mapping;
1958 loff_t size;
1959 struct page *page;
1960 unsigned long address = (unsigned long) vmf->virtual_address;
1961 unsigned long addr;
1962 pte_t *pte;
1963
1964 rcu_read_lock();
1965 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, vmf->pgoff) {
1966 if (iter.index > vmf->max_pgoff)
1967 break;
1968 repeat:
1969 page = radix_tree_deref_slot(slot);
1970 if (unlikely(!page))
1971 goto next;
1972 if (radix_tree_exception(page)) {
1973 if (radix_tree_deref_retry(page))
1974 break;
1975 else
1976 goto next;
1977 }
1978
1979 if (!page_cache_get_speculative(page))
1980 goto repeat;
1981
1982 /* Has the page moved? */
1983 if (unlikely(page != *slot)) {
1984 page_cache_release(page);
1985 goto repeat;
1986 }
1987
1988 if (!PageUptodate(page) ||
1989 PageReadahead(page) ||
1990 PageHWPoison(page))
1991 goto skip;
1992 if (!trylock_page(page))
1993 goto skip;
1994
1995 if (page->mapping != mapping || !PageUptodate(page))
1996 goto unlock;
1997
1998 size = round_up(i_size_read(mapping->host), PAGE_CACHE_SIZE);
1999 if (page->index >= size >> PAGE_CACHE_SHIFT)
2000 goto unlock;
2001
2002 pte = vmf->pte + page->index - vmf->pgoff;
2003 if (!pte_none(*pte))
2004 goto unlock;
2005
2006 if (file->f_ra.mmap_miss > 0)
2007 file->f_ra.mmap_miss--;
2008 addr = address + (page->index - vmf->pgoff) * PAGE_SIZE;
2009 do_set_pte(vma, addr, page, pte, false, false);
2010 unlock_page(page);
2011 goto next;
2012 unlock:
2013 unlock_page(page);
2014 skip:
2015 page_cache_release(page);
2016 next:
2017 if (iter.index == vmf->max_pgoff)
2018 break;
2019 }
2020 rcu_read_unlock();
2021 }
2022 EXPORT_SYMBOL(filemap_map_pages);
2023
2024 int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2025 {
2026 struct page *page = vmf->page;
2027 struct inode *inode = file_inode(vma->vm_file);
2028 int ret = VM_FAULT_LOCKED;
2029
2030 sb_start_pagefault(inode->i_sb);
2031 file_update_time(vma->vm_file);
2032 lock_page(page);
2033 if (page->mapping != inode->i_mapping) {
2034 unlock_page(page);
2035 ret = VM_FAULT_NOPAGE;
2036 goto out;
2037 }
2038 /*
2039 * We mark the page dirty already here so that when freeze is in
2040 * progress, we are guaranteed that writeback during freezing will
2041 * see the dirty page and writeprotect it again.
2042 */
2043 set_page_dirty(page);
2044 wait_for_stable_page(page);
2045 out:
2046 sb_end_pagefault(inode->i_sb);
2047 return ret;
2048 }
2049 EXPORT_SYMBOL(filemap_page_mkwrite);
2050
2051 const struct vm_operations_struct generic_file_vm_ops = {
2052 .fault = filemap_fault,
2053 .map_pages = filemap_map_pages,
2054 .page_mkwrite = filemap_page_mkwrite,
2055 .remap_pages = generic_file_remap_pages,
2056 };
2057
2058 /* This is used for a general mmap of a disk file */
2059
2060 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2061 {
2062 struct address_space *mapping = file->f_mapping;
2063
2064 if (!mapping->a_ops->readpage)
2065 return -ENOEXEC;
2066 file_accessed(file);
2067 vma->vm_ops = &generic_file_vm_ops;
2068 return 0;
2069 }
2070
2071 /*
2072 * This is for filesystems which do not implement ->writepage.
2073 */
2074 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2075 {
2076 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2077 return -EINVAL;
2078 return generic_file_mmap(file, vma);
2079 }
2080 #else
2081 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2082 {
2083 return -ENOSYS;
2084 }
2085 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2086 {
2087 return -ENOSYS;
2088 }
2089 #endif /* CONFIG_MMU */
2090
2091 EXPORT_SYMBOL(generic_file_mmap);
2092 EXPORT_SYMBOL(generic_file_readonly_mmap);
2093
2094 static struct page *wait_on_page_read(struct page *page)
2095 {
2096 if (!IS_ERR(page)) {
2097 wait_on_page_locked(page);
2098 if (!PageUptodate(page)) {
2099 page_cache_release(page);
2100 page = ERR_PTR(-EIO);
2101 }
2102 }
2103 return page;
2104 }
2105
2106 static struct page *__read_cache_page(struct address_space *mapping,
2107 pgoff_t index,
2108 int (*filler)(void *, struct page *),
2109 void *data,
2110 gfp_t gfp)
2111 {
2112 struct page *page;
2113 int err;
2114 repeat:
2115 page = find_get_page(mapping, index);
2116 if (!page) {
2117 page = __page_cache_alloc(gfp | __GFP_COLD);
2118 if (!page)
2119 return ERR_PTR(-ENOMEM);
2120 err = add_to_page_cache_lru(page, mapping, index, gfp);
2121 if (unlikely(err)) {
2122 page_cache_release(page);
2123 if (err == -EEXIST)
2124 goto repeat;
2125 /* Presumably ENOMEM for radix tree node */
2126 return ERR_PTR(err);
2127 }
2128 err = filler(data, page);
2129 if (err < 0) {
2130 page_cache_release(page);
2131 page = ERR_PTR(err);
2132 } else {
2133 page = wait_on_page_read(page);
2134 }
2135 }
2136 return page;
2137 }
2138
2139 static struct page *do_read_cache_page(struct address_space *mapping,
2140 pgoff_t index,
2141 int (*filler)(void *, struct page *),
2142 void *data,
2143 gfp_t gfp)
2144
2145 {
2146 struct page *page;
2147 int err;
2148
2149 retry:
2150 page = __read_cache_page(mapping, index, filler, data, gfp);
2151 if (IS_ERR(page))
2152 return page;
2153 if (PageUptodate(page))
2154 goto out;
2155
2156 lock_page(page);
2157 if (!page->mapping) {
2158 unlock_page(page);
2159 page_cache_release(page);
2160 goto retry;
2161 }
2162 if (PageUptodate(page)) {
2163 unlock_page(page);
2164 goto out;
2165 }
2166 err = filler(data, page);
2167 if (err < 0) {
2168 page_cache_release(page);
2169 return ERR_PTR(err);
2170 } else {
2171 page = wait_on_page_read(page);
2172 if (IS_ERR(page))
2173 return page;
2174 }
2175 out:
2176 mark_page_accessed(page);
2177 return page;
2178 }
2179
2180 /**
2181 * read_cache_page - read into page cache, fill it if needed
2182 * @mapping: the page's address_space
2183 * @index: the page index
2184 * @filler: function to perform the read
2185 * @data: first arg to filler(data, page) function, often left as NULL
2186 *
2187 * Read into the page cache. If a page already exists, and PageUptodate() is
2188 * not set, try to fill the page and wait for it to become unlocked.
2189 *
2190 * If the page does not get brought uptodate, return -EIO.
2191 */
2192 struct page *read_cache_page(struct address_space *mapping,
2193 pgoff_t index,
2194 int (*filler)(void *, struct page *),
2195 void *data)
2196 {
2197 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2198 }
2199 EXPORT_SYMBOL(read_cache_page);
2200
2201 /**
2202 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2203 * @mapping: the page's address_space
2204 * @index: the page index
2205 * @gfp: the page allocator flags to use if allocating
2206 *
2207 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2208 * any new page allocations done using the specified allocation flags.
2209 *
2210 * If the page does not get brought uptodate, return -EIO.
2211 */
2212 struct page *read_cache_page_gfp(struct address_space *mapping,
2213 pgoff_t index,
2214 gfp_t gfp)
2215 {
2216 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2217
2218 return do_read_cache_page(mapping, index, filler, NULL, gfp);
2219 }
2220 EXPORT_SYMBOL(read_cache_page_gfp);
2221
2222 /*
2223 * Performs necessary checks before doing a write
2224 *
2225 * Can adjust writing position or amount of bytes to write.
2226 * Returns appropriate error code that caller should return or
2227 * zero in case that write should be allowed.
2228 */
2229 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
2230 {
2231 struct inode *inode = file->f_mapping->host;
2232 unsigned long limit = rlimit(RLIMIT_FSIZE);
2233
2234 if (unlikely(*pos < 0))
2235 return -EINVAL;
2236
2237 if (!isblk) {
2238 /* FIXME: this is for backwards compatibility with 2.4 */
2239 if (file->f_flags & O_APPEND)
2240 *pos = i_size_read(inode);
2241
2242 if (limit != RLIM_INFINITY) {
2243 if (*pos >= limit) {
2244 send_sig(SIGXFSZ, current, 0);
2245 return -EFBIG;
2246 }
2247 if (*count > limit - (typeof(limit))*pos) {
2248 *count = limit - (typeof(limit))*pos;
2249 }
2250 }
2251 }
2252
2253 /*
2254 * LFS rule
2255 */
2256 if (unlikely(*pos + *count > MAX_NON_LFS &&
2257 !(file->f_flags & O_LARGEFILE))) {
2258 if (*pos >= MAX_NON_LFS) {
2259 return -EFBIG;
2260 }
2261 if (*count > MAX_NON_LFS - (unsigned long)*pos) {
2262 *count = MAX_NON_LFS - (unsigned long)*pos;
2263 }
2264 }
2265
2266 /*
2267 * Are we about to exceed the fs block limit ?
2268 *
2269 * If we have written data it becomes a short write. If we have
2270 * exceeded without writing data we send a signal and return EFBIG.
2271 * Linus frestrict idea will clean these up nicely..
2272 */
2273 if (likely(!isblk)) {
2274 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
2275 if (*count || *pos > inode->i_sb->s_maxbytes) {
2276 return -EFBIG;
2277 }
2278 /* zero-length writes at ->s_maxbytes are OK */
2279 }
2280
2281 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
2282 *count = inode->i_sb->s_maxbytes - *pos;
2283 } else {
2284 #ifdef CONFIG_BLOCK
2285 loff_t isize;
2286 if (bdev_read_only(I_BDEV(inode)))
2287 return -EPERM;
2288 isize = i_size_read(inode);
2289 if (*pos >= isize) {
2290 if (*count || *pos > isize)
2291 return -ENOSPC;
2292 }
2293
2294 if (*pos + *count > isize)
2295 *count = isize - *pos;
2296 #else
2297 return -EPERM;
2298 #endif
2299 }
2300 return 0;
2301 }
2302 EXPORT_SYMBOL(generic_write_checks);
2303
2304 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2305 loff_t pos, unsigned len, unsigned flags,
2306 struct page **pagep, void **fsdata)
2307 {
2308 const struct address_space_operations *aops = mapping->a_ops;
2309
2310 return aops->write_begin(file, mapping, pos, len, flags,
2311 pagep, fsdata);
2312 }
2313 EXPORT_SYMBOL(pagecache_write_begin);
2314
2315 int pagecache_write_end(struct file *file, struct address_space *mapping,
2316 loff_t pos, unsigned len, unsigned copied,
2317 struct page *page, void *fsdata)
2318 {
2319 const struct address_space_operations *aops = mapping->a_ops;
2320
2321 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2322 }
2323 EXPORT_SYMBOL(pagecache_write_end);
2324
2325 ssize_t
2326 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from, loff_t pos)
2327 {
2328 struct file *file = iocb->ki_filp;
2329 struct address_space *mapping = file->f_mapping;
2330 struct inode *inode = mapping->host;
2331 ssize_t written;
2332 size_t write_len;
2333 pgoff_t end;
2334 struct iov_iter data;
2335
2336 write_len = iov_iter_count(from);
2337 end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
2338
2339 written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2340 if (written)
2341 goto out;
2342
2343 /*
2344 * After a write we want buffered reads to be sure to go to disk to get
2345 * the new data. We invalidate clean cached page from the region we're
2346 * about to write. We do this *before* the write so that we can return
2347 * without clobbering -EIOCBQUEUED from ->direct_IO().
2348 */
2349 if (mapping->nrpages) {
2350 written = invalidate_inode_pages2_range(mapping,
2351 pos >> PAGE_CACHE_SHIFT, end);
2352 /*
2353 * If a page can not be invalidated, return 0 to fall back
2354 * to buffered write.
2355 */
2356 if (written) {
2357 if (written == -EBUSY)
2358 return 0;
2359 goto out;
2360 }
2361 }
2362
2363 data = *from;
2364 written = mapping->a_ops->direct_IO(WRITE, iocb, &data, pos);
2365
2366 /*
2367 * Finally, try again to invalidate clean pages which might have been
2368 * cached by non-direct readahead, or faulted in by get_user_pages()
2369 * if the source of the write was an mmap'ed region of the file
2370 * we're writing. Either one is a pretty crazy thing to do,
2371 * so we don't support it 100%. If this invalidation
2372 * fails, tough, the write still worked...
2373 */
2374 if (mapping->nrpages) {
2375 invalidate_inode_pages2_range(mapping,
2376 pos >> PAGE_CACHE_SHIFT, end);
2377 }
2378
2379 if (written > 0) {
2380 pos += written;
2381 iov_iter_advance(from, written);
2382 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2383 i_size_write(inode, pos);
2384 mark_inode_dirty(inode);
2385 }
2386 iocb->ki_pos = pos;
2387 }
2388 out:
2389 return written;
2390 }
2391 EXPORT_SYMBOL(generic_file_direct_write);
2392
2393 /*
2394 * Find or create a page at the given pagecache position. Return the locked
2395 * page. This function is specifically for buffered writes.
2396 */
2397 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2398 pgoff_t index, unsigned flags)
2399 {
2400 struct page *page;
2401 int fgp_flags = FGP_LOCK|FGP_ACCESSED|FGP_WRITE|FGP_CREAT;
2402
2403 if (flags & AOP_FLAG_NOFS)
2404 fgp_flags |= FGP_NOFS;
2405
2406 page = pagecache_get_page(mapping, index, fgp_flags,
2407 mapping_gfp_mask(mapping),
2408 GFP_KERNEL);
2409 if (page)
2410 wait_for_stable_page(page);
2411
2412 return page;
2413 }
2414 EXPORT_SYMBOL(grab_cache_page_write_begin);
2415
2416 ssize_t generic_perform_write(struct file *file,
2417 struct iov_iter *i, loff_t pos)
2418 {
2419 struct address_space *mapping = file->f_mapping;
2420 const struct address_space_operations *a_ops = mapping->a_ops;
2421 long status = 0;
2422 ssize_t written = 0;
2423 unsigned int flags = 0;
2424
2425 /*
2426 * Copies from kernel address space cannot fail (NFSD is a big user).
2427 */
2428 if (segment_eq(get_fs(), KERNEL_DS))
2429 flags |= AOP_FLAG_UNINTERRUPTIBLE;
2430
2431 do {
2432 struct page *page;
2433 unsigned long offset; /* Offset into pagecache page */
2434 unsigned long bytes; /* Bytes to write to page */
2435 size_t copied; /* Bytes copied from user */
2436 void *fsdata;
2437
2438 offset = (pos & (PAGE_CACHE_SIZE - 1));
2439 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2440 iov_iter_count(i));
2441
2442 again:
2443 /*
2444 * Bring in the user page that we will copy from _first_.
2445 * Otherwise there's a nasty deadlock on copying from the
2446 * same page as we're writing to, without it being marked
2447 * up-to-date.
2448 *
2449 * Not only is this an optimisation, but it is also required
2450 * to check that the address is actually valid, when atomic
2451 * usercopies are used, below.
2452 */
2453 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2454 status = -EFAULT;
2455 break;
2456 }
2457
2458 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2459 &page, &fsdata);
2460 if (unlikely(status < 0))
2461 break;
2462
2463 if (mapping_writably_mapped(mapping))
2464 flush_dcache_page(page);
2465
2466 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2467 flush_dcache_page(page);
2468
2469 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2470 page, fsdata);
2471 if (unlikely(status < 0))
2472 break;
2473 copied = status;
2474
2475 cond_resched();
2476
2477 iov_iter_advance(i, copied);
2478 if (unlikely(copied == 0)) {
2479 /*
2480 * If we were unable to copy any data at all, we must
2481 * fall back to a single segment length write.
2482 *
2483 * If we didn't fallback here, we could livelock
2484 * because not all segments in the iov can be copied at
2485 * once without a pagefault.
2486 */
2487 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2488 iov_iter_single_seg_count(i));
2489 goto again;
2490 }
2491 pos += copied;
2492 written += copied;
2493
2494 balance_dirty_pages_ratelimited(mapping);
2495 if (fatal_signal_pending(current)) {
2496 status = -EINTR;
2497 break;
2498 }
2499 } while (iov_iter_count(i));
2500
2501 return written ? written : status;
2502 }
2503 EXPORT_SYMBOL(generic_perform_write);
2504
2505 /**
2506 * __generic_file_write_iter - write data to a file
2507 * @iocb: IO state structure (file, offset, etc.)
2508 * @from: iov_iter with data to write
2509 *
2510 * This function does all the work needed for actually writing data to a
2511 * file. It does all basic checks, removes SUID from the file, updates
2512 * modification times and calls proper subroutines depending on whether we
2513 * do direct IO or a standard buffered write.
2514 *
2515 * It expects i_mutex to be grabbed unless we work on a block device or similar
2516 * object which does not need locking at all.
2517 *
2518 * This function does *not* take care of syncing data in case of O_SYNC write.
2519 * A caller has to handle it. This is mainly due to the fact that we want to
2520 * avoid syncing under i_mutex.
2521 */
2522 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2523 {
2524 struct file *file = iocb->ki_filp;
2525 struct address_space * mapping = file->f_mapping;
2526 struct inode *inode = mapping->host;
2527 loff_t pos = iocb->ki_pos;
2528 ssize_t written = 0;
2529 ssize_t err;
2530 ssize_t status;
2531 size_t count = iov_iter_count(from);
2532
2533 /* We can write back this queue in page reclaim */
2534 current->backing_dev_info = mapping->backing_dev_info;
2535 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2536 if (err)
2537 goto out;
2538
2539 if (count == 0)
2540 goto out;
2541
2542 iov_iter_truncate(from, count);
2543
2544 err = file_remove_suid(file);
2545 if (err)
2546 goto out;
2547
2548 err = file_update_time(file);
2549 if (err)
2550 goto out;
2551
2552 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2553 if (unlikely(file->f_flags & O_DIRECT)) {
2554 loff_t endbyte;
2555
2556 written = generic_file_direct_write(iocb, from, pos);
2557 if (written < 0 || written == count)
2558 goto out;
2559
2560 /*
2561 * direct-io write to a hole: fall through to buffered I/O
2562 * for completing the rest of the request.
2563 */
2564 pos += written;
2565 count -= written;
2566
2567 status = generic_perform_write(file, from, pos);
2568 /*
2569 * If generic_perform_write() returned a synchronous error
2570 * then we want to return the number of bytes which were
2571 * direct-written, or the error code if that was zero. Note
2572 * that this differs from normal direct-io semantics, which
2573 * will return -EFOO even if some bytes were written.
2574 */
2575 if (unlikely(status < 0) && !written) {
2576 err = status;
2577 goto out;
2578 }
2579 iocb->ki_pos = pos + status;
2580 /*
2581 * We need to ensure that the page cache pages are written to
2582 * disk and invalidated to preserve the expected O_DIRECT
2583 * semantics.
2584 */
2585 endbyte = pos + status - 1;
2586 err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
2587 if (err == 0) {
2588 written += status;
2589 invalidate_mapping_pages(mapping,
2590 pos >> PAGE_CACHE_SHIFT,
2591 endbyte >> PAGE_CACHE_SHIFT);
2592 } else {
2593 /*
2594 * We don't know how much we wrote, so just return
2595 * the number of bytes which were direct-written
2596 */
2597 }
2598 } else {
2599 written = generic_perform_write(file, from, pos);
2600 if (likely(written >= 0))
2601 iocb->ki_pos = pos + written;
2602 }
2603 out:
2604 current->backing_dev_info = NULL;
2605 return written ? written : err;
2606 }
2607 EXPORT_SYMBOL(__generic_file_write_iter);
2608
2609 /**
2610 * generic_file_write_iter - write data to a file
2611 * @iocb: IO state structure
2612 * @from: iov_iter with data to write
2613 *
2614 * This is a wrapper around __generic_file_write_iter() to be used by most
2615 * filesystems. It takes care of syncing the file in case of O_SYNC file
2616 * and acquires i_mutex as needed.
2617 */
2618 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2619 {
2620 struct file *file = iocb->ki_filp;
2621 struct inode *inode = file->f_mapping->host;
2622 ssize_t ret;
2623
2624 mutex_lock(&inode->i_mutex);
2625 ret = __generic_file_write_iter(iocb, from);
2626 mutex_unlock(&inode->i_mutex);
2627
2628 if (ret > 0) {
2629 ssize_t err;
2630
2631 err = generic_write_sync(file, iocb->ki_pos - ret, ret);
2632 if (err < 0)
2633 ret = err;
2634 }
2635 return ret;
2636 }
2637 EXPORT_SYMBOL(generic_file_write_iter);
2638
2639 /**
2640 * try_to_release_page() - release old fs-specific metadata on a page
2641 *
2642 * @page: the page which the kernel is trying to free
2643 * @gfp_mask: memory allocation flags (and I/O mode)
2644 *
2645 * The address_space is to try to release any data against the page
2646 * (presumably at page->private). If the release was successful, return `1'.
2647 * Otherwise return zero.
2648 *
2649 * This may also be called if PG_fscache is set on a page, indicating that the
2650 * page is known to the local caching routines.
2651 *
2652 * The @gfp_mask argument specifies whether I/O may be performed to release
2653 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
2654 *
2655 */
2656 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2657 {
2658 struct address_space * const mapping = page->mapping;
2659
2660 BUG_ON(!PageLocked(page));
2661 if (PageWriteback(page))
2662 return 0;
2663
2664 if (mapping && mapping->a_ops->releasepage)
2665 return mapping->a_ops->releasepage(page, gfp_mask);
2666 return try_to_free_buffers(page);
2667 }
2668
2669 EXPORT_SYMBOL(try_to_release_page);
This page took 0.084103 seconds and 5 git commands to generate.