drm/radeon: Only flush HDP cache from idle ioctl if BO is in VRAM
[deliverable/linux.git] / mm / filemap.c
1 /*
2 * linux/mm/filemap.c
3 *
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
6
7 /*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
11 */
12 #include <linux/export.h>
13 #include <linux/compiler.h>
14 #include <linux/fs.h>
15 #include <linux/uaccess.h>
16 #include <linux/aio.h>
17 #include <linux/capability.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/gfp.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/cpuset.h>
33 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
34 #include <linux/memcontrol.h>
35 #include <linux/cleancache.h>
36 #include <linux/rmap.h>
37 #include "internal.h"
38
39 #define CREATE_TRACE_POINTS
40 #include <trace/events/filemap.h>
41
42 /*
43 * FIXME: remove all knowledge of the buffer layer from the core VM
44 */
45 #include <linux/buffer_head.h> /* for try_to_free_buffers */
46
47 #include <asm/mman.h>
48
49 /*
50 * Shared mappings implemented 30.11.1994. It's not fully working yet,
51 * though.
52 *
53 * Shared mappings now work. 15.8.1995 Bruno.
54 *
55 * finished 'unifying' the page and buffer cache and SMP-threaded the
56 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
57 *
58 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
59 */
60
61 /*
62 * Lock ordering:
63 *
64 * ->i_mmap_mutex (truncate_pagecache)
65 * ->private_lock (__free_pte->__set_page_dirty_buffers)
66 * ->swap_lock (exclusive_swap_page, others)
67 * ->mapping->tree_lock
68 *
69 * ->i_mutex
70 * ->i_mmap_mutex (truncate->unmap_mapping_range)
71 *
72 * ->mmap_sem
73 * ->i_mmap_mutex
74 * ->page_table_lock or pte_lock (various, mainly in memory.c)
75 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
76 *
77 * ->mmap_sem
78 * ->lock_page (access_process_vm)
79 *
80 * ->i_mutex (generic_perform_write)
81 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
82 *
83 * bdi->wb.list_lock
84 * sb_lock (fs/fs-writeback.c)
85 * ->mapping->tree_lock (__sync_single_inode)
86 *
87 * ->i_mmap_mutex
88 * ->anon_vma.lock (vma_adjust)
89 *
90 * ->anon_vma.lock
91 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
92 *
93 * ->page_table_lock or pte_lock
94 * ->swap_lock (try_to_unmap_one)
95 * ->private_lock (try_to_unmap_one)
96 * ->tree_lock (try_to_unmap_one)
97 * ->zone.lru_lock (follow_page->mark_page_accessed)
98 * ->zone.lru_lock (check_pte_range->isolate_lru_page)
99 * ->private_lock (page_remove_rmap->set_page_dirty)
100 * ->tree_lock (page_remove_rmap->set_page_dirty)
101 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
102 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
103 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
104 * ->inode->i_lock (zap_pte_range->set_page_dirty)
105 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
106 *
107 * ->i_mmap_mutex
108 * ->tasklist_lock (memory_failure, collect_procs_ao)
109 */
110
111 static void page_cache_tree_delete(struct address_space *mapping,
112 struct page *page, void *shadow)
113 {
114 struct radix_tree_node *node;
115 unsigned long index;
116 unsigned int offset;
117 unsigned int tag;
118 void **slot;
119
120 VM_BUG_ON(!PageLocked(page));
121
122 __radix_tree_lookup(&mapping->page_tree, page->index, &node, &slot);
123
124 if (shadow) {
125 mapping->nrshadows++;
126 /*
127 * Make sure the nrshadows update is committed before
128 * the nrpages update so that final truncate racing
129 * with reclaim does not see both counters 0 at the
130 * same time and miss a shadow entry.
131 */
132 smp_wmb();
133 }
134 mapping->nrpages--;
135
136 if (!node) {
137 /* Clear direct pointer tags in root node */
138 mapping->page_tree.gfp_mask &= __GFP_BITS_MASK;
139 radix_tree_replace_slot(slot, shadow);
140 return;
141 }
142
143 /* Clear tree tags for the removed page */
144 index = page->index;
145 offset = index & RADIX_TREE_MAP_MASK;
146 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
147 if (test_bit(offset, node->tags[tag]))
148 radix_tree_tag_clear(&mapping->page_tree, index, tag);
149 }
150
151 /* Delete page, swap shadow entry */
152 radix_tree_replace_slot(slot, shadow);
153 workingset_node_pages_dec(node);
154 if (shadow)
155 workingset_node_shadows_inc(node);
156 else
157 if (__radix_tree_delete_node(&mapping->page_tree, node))
158 return;
159
160 /*
161 * Track node that only contains shadow entries.
162 *
163 * Avoid acquiring the list_lru lock if already tracked. The
164 * list_empty() test is safe as node->private_list is
165 * protected by mapping->tree_lock.
166 */
167 if (!workingset_node_pages(node) &&
168 list_empty(&node->private_list)) {
169 node->private_data = mapping;
170 list_lru_add(&workingset_shadow_nodes, &node->private_list);
171 }
172 }
173
174 /*
175 * Delete a page from the page cache and free it. Caller has to make
176 * sure the page is locked and that nobody else uses it - or that usage
177 * is safe. The caller must hold the mapping's tree_lock.
178 */
179 void __delete_from_page_cache(struct page *page, void *shadow)
180 {
181 struct address_space *mapping = page->mapping;
182
183 trace_mm_filemap_delete_from_page_cache(page);
184 /*
185 * if we're uptodate, flush out into the cleancache, otherwise
186 * invalidate any existing cleancache entries. We can't leave
187 * stale data around in the cleancache once our page is gone
188 */
189 if (PageUptodate(page) && PageMappedToDisk(page))
190 cleancache_put_page(page);
191 else
192 cleancache_invalidate_page(mapping, page);
193
194 page_cache_tree_delete(mapping, page, shadow);
195
196 page->mapping = NULL;
197 /* Leave page->index set: truncation lookup relies upon it */
198
199 __dec_zone_page_state(page, NR_FILE_PAGES);
200 if (PageSwapBacked(page))
201 __dec_zone_page_state(page, NR_SHMEM);
202 BUG_ON(page_mapped(page));
203
204 /*
205 * Some filesystems seem to re-dirty the page even after
206 * the VM has canceled the dirty bit (eg ext3 journaling).
207 *
208 * Fix it up by doing a final dirty accounting check after
209 * having removed the page entirely.
210 */
211 if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
212 dec_zone_page_state(page, NR_FILE_DIRTY);
213 dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
214 }
215 }
216
217 /**
218 * delete_from_page_cache - delete page from page cache
219 * @page: the page which the kernel is trying to remove from page cache
220 *
221 * This must be called only on pages that have been verified to be in the page
222 * cache and locked. It will never put the page into the free list, the caller
223 * has a reference on the page.
224 */
225 void delete_from_page_cache(struct page *page)
226 {
227 struct address_space *mapping = page->mapping;
228 void (*freepage)(struct page *);
229
230 BUG_ON(!PageLocked(page));
231
232 freepage = mapping->a_ops->freepage;
233 spin_lock_irq(&mapping->tree_lock);
234 __delete_from_page_cache(page, NULL);
235 spin_unlock_irq(&mapping->tree_lock);
236 mem_cgroup_uncharge_cache_page(page);
237
238 if (freepage)
239 freepage(page);
240 page_cache_release(page);
241 }
242 EXPORT_SYMBOL(delete_from_page_cache);
243
244 static int sleep_on_page(void *word)
245 {
246 io_schedule();
247 return 0;
248 }
249
250 static int sleep_on_page_killable(void *word)
251 {
252 sleep_on_page(word);
253 return fatal_signal_pending(current) ? -EINTR : 0;
254 }
255
256 static int filemap_check_errors(struct address_space *mapping)
257 {
258 int ret = 0;
259 /* Check for outstanding write errors */
260 if (test_bit(AS_ENOSPC, &mapping->flags) &&
261 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
262 ret = -ENOSPC;
263 if (test_bit(AS_EIO, &mapping->flags) &&
264 test_and_clear_bit(AS_EIO, &mapping->flags))
265 ret = -EIO;
266 return ret;
267 }
268
269 /**
270 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
271 * @mapping: address space structure to write
272 * @start: offset in bytes where the range starts
273 * @end: offset in bytes where the range ends (inclusive)
274 * @sync_mode: enable synchronous operation
275 *
276 * Start writeback against all of a mapping's dirty pages that lie
277 * within the byte offsets <start, end> inclusive.
278 *
279 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
280 * opposed to a regular memory cleansing writeback. The difference between
281 * these two operations is that if a dirty page/buffer is encountered, it must
282 * be waited upon, and not just skipped over.
283 */
284 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
285 loff_t end, int sync_mode)
286 {
287 int ret;
288 struct writeback_control wbc = {
289 .sync_mode = sync_mode,
290 .nr_to_write = LONG_MAX,
291 .range_start = start,
292 .range_end = end,
293 };
294
295 if (!mapping_cap_writeback_dirty(mapping))
296 return 0;
297
298 ret = do_writepages(mapping, &wbc);
299 return ret;
300 }
301
302 static inline int __filemap_fdatawrite(struct address_space *mapping,
303 int sync_mode)
304 {
305 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
306 }
307
308 int filemap_fdatawrite(struct address_space *mapping)
309 {
310 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
311 }
312 EXPORT_SYMBOL(filemap_fdatawrite);
313
314 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
315 loff_t end)
316 {
317 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
318 }
319 EXPORT_SYMBOL(filemap_fdatawrite_range);
320
321 /**
322 * filemap_flush - mostly a non-blocking flush
323 * @mapping: target address_space
324 *
325 * This is a mostly non-blocking flush. Not suitable for data-integrity
326 * purposes - I/O may not be started against all dirty pages.
327 */
328 int filemap_flush(struct address_space *mapping)
329 {
330 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
331 }
332 EXPORT_SYMBOL(filemap_flush);
333
334 /**
335 * filemap_fdatawait_range - wait for writeback to complete
336 * @mapping: address space structure to wait for
337 * @start_byte: offset in bytes where the range starts
338 * @end_byte: offset in bytes where the range ends (inclusive)
339 *
340 * Walk the list of under-writeback pages of the given address space
341 * in the given range and wait for all of them.
342 */
343 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
344 loff_t end_byte)
345 {
346 pgoff_t index = start_byte >> PAGE_CACHE_SHIFT;
347 pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
348 struct pagevec pvec;
349 int nr_pages;
350 int ret2, ret = 0;
351
352 if (end_byte < start_byte)
353 goto out;
354
355 pagevec_init(&pvec, 0);
356 while ((index <= end) &&
357 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
358 PAGECACHE_TAG_WRITEBACK,
359 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
360 unsigned i;
361
362 for (i = 0; i < nr_pages; i++) {
363 struct page *page = pvec.pages[i];
364
365 /* until radix tree lookup accepts end_index */
366 if (page->index > end)
367 continue;
368
369 wait_on_page_writeback(page);
370 if (TestClearPageError(page))
371 ret = -EIO;
372 }
373 pagevec_release(&pvec);
374 cond_resched();
375 }
376 out:
377 ret2 = filemap_check_errors(mapping);
378 if (!ret)
379 ret = ret2;
380
381 return ret;
382 }
383 EXPORT_SYMBOL(filemap_fdatawait_range);
384
385 /**
386 * filemap_fdatawait - wait for all under-writeback pages to complete
387 * @mapping: address space structure to wait for
388 *
389 * Walk the list of under-writeback pages of the given address space
390 * and wait for all of them.
391 */
392 int filemap_fdatawait(struct address_space *mapping)
393 {
394 loff_t i_size = i_size_read(mapping->host);
395
396 if (i_size == 0)
397 return 0;
398
399 return filemap_fdatawait_range(mapping, 0, i_size - 1);
400 }
401 EXPORT_SYMBOL(filemap_fdatawait);
402
403 int filemap_write_and_wait(struct address_space *mapping)
404 {
405 int err = 0;
406
407 if (mapping->nrpages) {
408 err = filemap_fdatawrite(mapping);
409 /*
410 * Even if the above returned error, the pages may be
411 * written partially (e.g. -ENOSPC), so we wait for it.
412 * But the -EIO is special case, it may indicate the worst
413 * thing (e.g. bug) happened, so we avoid waiting for it.
414 */
415 if (err != -EIO) {
416 int err2 = filemap_fdatawait(mapping);
417 if (!err)
418 err = err2;
419 }
420 } else {
421 err = filemap_check_errors(mapping);
422 }
423 return err;
424 }
425 EXPORT_SYMBOL(filemap_write_and_wait);
426
427 /**
428 * filemap_write_and_wait_range - write out & wait on a file range
429 * @mapping: the address_space for the pages
430 * @lstart: offset in bytes where the range starts
431 * @lend: offset in bytes where the range ends (inclusive)
432 *
433 * Write out and wait upon file offsets lstart->lend, inclusive.
434 *
435 * Note that `lend' is inclusive (describes the last byte to be written) so
436 * that this function can be used to write to the very end-of-file (end = -1).
437 */
438 int filemap_write_and_wait_range(struct address_space *mapping,
439 loff_t lstart, loff_t lend)
440 {
441 int err = 0;
442
443 if (mapping->nrpages) {
444 err = __filemap_fdatawrite_range(mapping, lstart, lend,
445 WB_SYNC_ALL);
446 /* See comment of filemap_write_and_wait() */
447 if (err != -EIO) {
448 int err2 = filemap_fdatawait_range(mapping,
449 lstart, lend);
450 if (!err)
451 err = err2;
452 }
453 } else {
454 err = filemap_check_errors(mapping);
455 }
456 return err;
457 }
458 EXPORT_SYMBOL(filemap_write_and_wait_range);
459
460 /**
461 * replace_page_cache_page - replace a pagecache page with a new one
462 * @old: page to be replaced
463 * @new: page to replace with
464 * @gfp_mask: allocation mode
465 *
466 * This function replaces a page in the pagecache with a new one. On
467 * success it acquires the pagecache reference for the new page and
468 * drops it for the old page. Both the old and new pages must be
469 * locked. This function does not add the new page to the LRU, the
470 * caller must do that.
471 *
472 * The remove + add is atomic. The only way this function can fail is
473 * memory allocation failure.
474 */
475 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
476 {
477 int error;
478
479 VM_BUG_ON_PAGE(!PageLocked(old), old);
480 VM_BUG_ON_PAGE(!PageLocked(new), new);
481 VM_BUG_ON_PAGE(new->mapping, new);
482
483 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
484 if (!error) {
485 struct address_space *mapping = old->mapping;
486 void (*freepage)(struct page *);
487
488 pgoff_t offset = old->index;
489 freepage = mapping->a_ops->freepage;
490
491 page_cache_get(new);
492 new->mapping = mapping;
493 new->index = offset;
494
495 spin_lock_irq(&mapping->tree_lock);
496 __delete_from_page_cache(old, NULL);
497 error = radix_tree_insert(&mapping->page_tree, offset, new);
498 BUG_ON(error);
499 mapping->nrpages++;
500 __inc_zone_page_state(new, NR_FILE_PAGES);
501 if (PageSwapBacked(new))
502 __inc_zone_page_state(new, NR_SHMEM);
503 spin_unlock_irq(&mapping->tree_lock);
504 /* mem_cgroup codes must not be called under tree_lock */
505 mem_cgroup_replace_page_cache(old, new);
506 radix_tree_preload_end();
507 if (freepage)
508 freepage(old);
509 page_cache_release(old);
510 }
511
512 return error;
513 }
514 EXPORT_SYMBOL_GPL(replace_page_cache_page);
515
516 static int page_cache_tree_insert(struct address_space *mapping,
517 struct page *page, void **shadowp)
518 {
519 struct radix_tree_node *node;
520 void **slot;
521 int error;
522
523 error = __radix_tree_create(&mapping->page_tree, page->index,
524 &node, &slot);
525 if (error)
526 return error;
527 if (*slot) {
528 void *p;
529
530 p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
531 if (!radix_tree_exceptional_entry(p))
532 return -EEXIST;
533 if (shadowp)
534 *shadowp = p;
535 mapping->nrshadows--;
536 if (node)
537 workingset_node_shadows_dec(node);
538 }
539 radix_tree_replace_slot(slot, page);
540 mapping->nrpages++;
541 if (node) {
542 workingset_node_pages_inc(node);
543 /*
544 * Don't track node that contains actual pages.
545 *
546 * Avoid acquiring the list_lru lock if already
547 * untracked. The list_empty() test is safe as
548 * node->private_list is protected by
549 * mapping->tree_lock.
550 */
551 if (!list_empty(&node->private_list))
552 list_lru_del(&workingset_shadow_nodes,
553 &node->private_list);
554 }
555 return 0;
556 }
557
558 static int __add_to_page_cache_locked(struct page *page,
559 struct address_space *mapping,
560 pgoff_t offset, gfp_t gfp_mask,
561 void **shadowp)
562 {
563 int error;
564
565 VM_BUG_ON_PAGE(!PageLocked(page), page);
566 VM_BUG_ON_PAGE(PageSwapBacked(page), page);
567
568 error = mem_cgroup_charge_file(page, current->mm,
569 gfp_mask & GFP_RECLAIM_MASK);
570 if (error)
571 return error;
572
573 error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
574 if (error) {
575 mem_cgroup_uncharge_cache_page(page);
576 return error;
577 }
578
579 page_cache_get(page);
580 page->mapping = mapping;
581 page->index = offset;
582
583 spin_lock_irq(&mapping->tree_lock);
584 error = page_cache_tree_insert(mapping, page, shadowp);
585 radix_tree_preload_end();
586 if (unlikely(error))
587 goto err_insert;
588 __inc_zone_page_state(page, NR_FILE_PAGES);
589 spin_unlock_irq(&mapping->tree_lock);
590 trace_mm_filemap_add_to_page_cache(page);
591 return 0;
592 err_insert:
593 page->mapping = NULL;
594 /* Leave page->index set: truncation relies upon it */
595 spin_unlock_irq(&mapping->tree_lock);
596 mem_cgroup_uncharge_cache_page(page);
597 page_cache_release(page);
598 return error;
599 }
600
601 /**
602 * add_to_page_cache_locked - add a locked page to the pagecache
603 * @page: page to add
604 * @mapping: the page's address_space
605 * @offset: page index
606 * @gfp_mask: page allocation mode
607 *
608 * This function is used to add a page to the pagecache. It must be locked.
609 * This function does not add the page to the LRU. The caller must do that.
610 */
611 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
612 pgoff_t offset, gfp_t gfp_mask)
613 {
614 return __add_to_page_cache_locked(page, mapping, offset,
615 gfp_mask, NULL);
616 }
617 EXPORT_SYMBOL(add_to_page_cache_locked);
618
619 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
620 pgoff_t offset, gfp_t gfp_mask)
621 {
622 void *shadow = NULL;
623 int ret;
624
625 __set_page_locked(page);
626 ret = __add_to_page_cache_locked(page, mapping, offset,
627 gfp_mask, &shadow);
628 if (unlikely(ret))
629 __clear_page_locked(page);
630 else {
631 /*
632 * The page might have been evicted from cache only
633 * recently, in which case it should be activated like
634 * any other repeatedly accessed page.
635 */
636 if (shadow && workingset_refault(shadow)) {
637 SetPageActive(page);
638 workingset_activation(page);
639 } else
640 ClearPageActive(page);
641 lru_cache_add(page);
642 }
643 return ret;
644 }
645 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
646
647 #ifdef CONFIG_NUMA
648 struct page *__page_cache_alloc(gfp_t gfp)
649 {
650 int n;
651 struct page *page;
652
653 if (cpuset_do_page_mem_spread()) {
654 unsigned int cpuset_mems_cookie;
655 do {
656 cpuset_mems_cookie = read_mems_allowed_begin();
657 n = cpuset_mem_spread_node();
658 page = alloc_pages_exact_node(n, gfp, 0);
659 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
660
661 return page;
662 }
663 return alloc_pages(gfp, 0);
664 }
665 EXPORT_SYMBOL(__page_cache_alloc);
666 #endif
667
668 /*
669 * In order to wait for pages to become available there must be
670 * waitqueues associated with pages. By using a hash table of
671 * waitqueues where the bucket discipline is to maintain all
672 * waiters on the same queue and wake all when any of the pages
673 * become available, and for the woken contexts to check to be
674 * sure the appropriate page became available, this saves space
675 * at a cost of "thundering herd" phenomena during rare hash
676 * collisions.
677 */
678 static wait_queue_head_t *page_waitqueue(struct page *page)
679 {
680 const struct zone *zone = page_zone(page);
681
682 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
683 }
684
685 static inline void wake_up_page(struct page *page, int bit)
686 {
687 __wake_up_bit(page_waitqueue(page), &page->flags, bit);
688 }
689
690 void wait_on_page_bit(struct page *page, int bit_nr)
691 {
692 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
693
694 if (test_bit(bit_nr, &page->flags))
695 __wait_on_bit(page_waitqueue(page), &wait, sleep_on_page,
696 TASK_UNINTERRUPTIBLE);
697 }
698 EXPORT_SYMBOL(wait_on_page_bit);
699
700 int wait_on_page_bit_killable(struct page *page, int bit_nr)
701 {
702 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
703
704 if (!test_bit(bit_nr, &page->flags))
705 return 0;
706
707 return __wait_on_bit(page_waitqueue(page), &wait,
708 sleep_on_page_killable, TASK_KILLABLE);
709 }
710
711 /**
712 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
713 * @page: Page defining the wait queue of interest
714 * @waiter: Waiter to add to the queue
715 *
716 * Add an arbitrary @waiter to the wait queue for the nominated @page.
717 */
718 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
719 {
720 wait_queue_head_t *q = page_waitqueue(page);
721 unsigned long flags;
722
723 spin_lock_irqsave(&q->lock, flags);
724 __add_wait_queue(q, waiter);
725 spin_unlock_irqrestore(&q->lock, flags);
726 }
727 EXPORT_SYMBOL_GPL(add_page_wait_queue);
728
729 /**
730 * unlock_page - unlock a locked page
731 * @page: the page
732 *
733 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
734 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
735 * mechananism between PageLocked pages and PageWriteback pages is shared.
736 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
737 *
738 * The mb is necessary to enforce ordering between the clear_bit and the read
739 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
740 */
741 void unlock_page(struct page *page)
742 {
743 VM_BUG_ON_PAGE(!PageLocked(page), page);
744 clear_bit_unlock(PG_locked, &page->flags);
745 smp_mb__after_atomic();
746 wake_up_page(page, PG_locked);
747 }
748 EXPORT_SYMBOL(unlock_page);
749
750 /**
751 * end_page_writeback - end writeback against a page
752 * @page: the page
753 */
754 void end_page_writeback(struct page *page)
755 {
756 /*
757 * TestClearPageReclaim could be used here but it is an atomic
758 * operation and overkill in this particular case. Failing to
759 * shuffle a page marked for immediate reclaim is too mild to
760 * justify taking an atomic operation penalty at the end of
761 * ever page writeback.
762 */
763 if (PageReclaim(page)) {
764 ClearPageReclaim(page);
765 rotate_reclaimable_page(page);
766 }
767
768 if (!test_clear_page_writeback(page))
769 BUG();
770
771 smp_mb__after_atomic();
772 wake_up_page(page, PG_writeback);
773 }
774 EXPORT_SYMBOL(end_page_writeback);
775
776 /*
777 * After completing I/O on a page, call this routine to update the page
778 * flags appropriately
779 */
780 void page_endio(struct page *page, int rw, int err)
781 {
782 if (rw == READ) {
783 if (!err) {
784 SetPageUptodate(page);
785 } else {
786 ClearPageUptodate(page);
787 SetPageError(page);
788 }
789 unlock_page(page);
790 } else { /* rw == WRITE */
791 if (err) {
792 SetPageError(page);
793 if (page->mapping)
794 mapping_set_error(page->mapping, err);
795 }
796 end_page_writeback(page);
797 }
798 }
799 EXPORT_SYMBOL_GPL(page_endio);
800
801 /**
802 * __lock_page - get a lock on the page, assuming we need to sleep to get it
803 * @page: the page to lock
804 */
805 void __lock_page(struct page *page)
806 {
807 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
808
809 __wait_on_bit_lock(page_waitqueue(page), &wait, sleep_on_page,
810 TASK_UNINTERRUPTIBLE);
811 }
812 EXPORT_SYMBOL(__lock_page);
813
814 int __lock_page_killable(struct page *page)
815 {
816 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
817
818 return __wait_on_bit_lock(page_waitqueue(page), &wait,
819 sleep_on_page_killable, TASK_KILLABLE);
820 }
821 EXPORT_SYMBOL_GPL(__lock_page_killable);
822
823 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
824 unsigned int flags)
825 {
826 if (flags & FAULT_FLAG_ALLOW_RETRY) {
827 /*
828 * CAUTION! In this case, mmap_sem is not released
829 * even though return 0.
830 */
831 if (flags & FAULT_FLAG_RETRY_NOWAIT)
832 return 0;
833
834 up_read(&mm->mmap_sem);
835 if (flags & FAULT_FLAG_KILLABLE)
836 wait_on_page_locked_killable(page);
837 else
838 wait_on_page_locked(page);
839 return 0;
840 } else {
841 if (flags & FAULT_FLAG_KILLABLE) {
842 int ret;
843
844 ret = __lock_page_killable(page);
845 if (ret) {
846 up_read(&mm->mmap_sem);
847 return 0;
848 }
849 } else
850 __lock_page(page);
851 return 1;
852 }
853 }
854
855 /**
856 * page_cache_next_hole - find the next hole (not-present entry)
857 * @mapping: mapping
858 * @index: index
859 * @max_scan: maximum range to search
860 *
861 * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
862 * lowest indexed hole.
863 *
864 * Returns: the index of the hole if found, otherwise returns an index
865 * outside of the set specified (in which case 'return - index >=
866 * max_scan' will be true). In rare cases of index wrap-around, 0 will
867 * be returned.
868 *
869 * page_cache_next_hole may be called under rcu_read_lock. However,
870 * like radix_tree_gang_lookup, this will not atomically search a
871 * snapshot of the tree at a single point in time. For example, if a
872 * hole is created at index 5, then subsequently a hole is created at
873 * index 10, page_cache_next_hole covering both indexes may return 10
874 * if called under rcu_read_lock.
875 */
876 pgoff_t page_cache_next_hole(struct address_space *mapping,
877 pgoff_t index, unsigned long max_scan)
878 {
879 unsigned long i;
880
881 for (i = 0; i < max_scan; i++) {
882 struct page *page;
883
884 page = radix_tree_lookup(&mapping->page_tree, index);
885 if (!page || radix_tree_exceptional_entry(page))
886 break;
887 index++;
888 if (index == 0)
889 break;
890 }
891
892 return index;
893 }
894 EXPORT_SYMBOL(page_cache_next_hole);
895
896 /**
897 * page_cache_prev_hole - find the prev hole (not-present entry)
898 * @mapping: mapping
899 * @index: index
900 * @max_scan: maximum range to search
901 *
902 * Search backwards in the range [max(index-max_scan+1, 0), index] for
903 * the first hole.
904 *
905 * Returns: the index of the hole if found, otherwise returns an index
906 * outside of the set specified (in which case 'index - return >=
907 * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
908 * will be returned.
909 *
910 * page_cache_prev_hole may be called under rcu_read_lock. However,
911 * like radix_tree_gang_lookup, this will not atomically search a
912 * snapshot of the tree at a single point in time. For example, if a
913 * hole is created at index 10, then subsequently a hole is created at
914 * index 5, page_cache_prev_hole covering both indexes may return 5 if
915 * called under rcu_read_lock.
916 */
917 pgoff_t page_cache_prev_hole(struct address_space *mapping,
918 pgoff_t index, unsigned long max_scan)
919 {
920 unsigned long i;
921
922 for (i = 0; i < max_scan; i++) {
923 struct page *page;
924
925 page = radix_tree_lookup(&mapping->page_tree, index);
926 if (!page || radix_tree_exceptional_entry(page))
927 break;
928 index--;
929 if (index == ULONG_MAX)
930 break;
931 }
932
933 return index;
934 }
935 EXPORT_SYMBOL(page_cache_prev_hole);
936
937 /**
938 * find_get_entry - find and get a page cache entry
939 * @mapping: the address_space to search
940 * @offset: the page cache index
941 *
942 * Looks up the page cache slot at @mapping & @offset. If there is a
943 * page cache page, it is returned with an increased refcount.
944 *
945 * If the slot holds a shadow entry of a previously evicted page, or a
946 * swap entry from shmem/tmpfs, it is returned.
947 *
948 * Otherwise, %NULL is returned.
949 */
950 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
951 {
952 void **pagep;
953 struct page *page;
954
955 rcu_read_lock();
956 repeat:
957 page = NULL;
958 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
959 if (pagep) {
960 page = radix_tree_deref_slot(pagep);
961 if (unlikely(!page))
962 goto out;
963 if (radix_tree_exception(page)) {
964 if (radix_tree_deref_retry(page))
965 goto repeat;
966 /*
967 * A shadow entry of a recently evicted page,
968 * or a swap entry from shmem/tmpfs. Return
969 * it without attempting to raise page count.
970 */
971 goto out;
972 }
973 if (!page_cache_get_speculative(page))
974 goto repeat;
975
976 /*
977 * Has the page moved?
978 * This is part of the lockless pagecache protocol. See
979 * include/linux/pagemap.h for details.
980 */
981 if (unlikely(page != *pagep)) {
982 page_cache_release(page);
983 goto repeat;
984 }
985 }
986 out:
987 rcu_read_unlock();
988
989 return page;
990 }
991 EXPORT_SYMBOL(find_get_entry);
992
993 /**
994 * find_lock_entry - locate, pin and lock a page cache entry
995 * @mapping: the address_space to search
996 * @offset: the page cache index
997 *
998 * Looks up the page cache slot at @mapping & @offset. If there is a
999 * page cache page, it is returned locked and with an increased
1000 * refcount.
1001 *
1002 * If the slot holds a shadow entry of a previously evicted page, or a
1003 * swap entry from shmem/tmpfs, it is returned.
1004 *
1005 * Otherwise, %NULL is returned.
1006 *
1007 * find_lock_entry() may sleep.
1008 */
1009 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1010 {
1011 struct page *page;
1012
1013 repeat:
1014 page = find_get_entry(mapping, offset);
1015 if (page && !radix_tree_exception(page)) {
1016 lock_page(page);
1017 /* Has the page been truncated? */
1018 if (unlikely(page->mapping != mapping)) {
1019 unlock_page(page);
1020 page_cache_release(page);
1021 goto repeat;
1022 }
1023 VM_BUG_ON_PAGE(page->index != offset, page);
1024 }
1025 return page;
1026 }
1027 EXPORT_SYMBOL(find_lock_entry);
1028
1029 /**
1030 * pagecache_get_page - find and get a page reference
1031 * @mapping: the address_space to search
1032 * @offset: the page index
1033 * @fgp_flags: PCG flags
1034 * @cache_gfp_mask: gfp mask to use for the page cache data page allocation
1035 * @radix_gfp_mask: gfp mask to use for radix tree node allocation
1036 *
1037 * Looks up the page cache slot at @mapping & @offset.
1038 *
1039 * PCG flags modify how the page is returned.
1040 *
1041 * FGP_ACCESSED: the page will be marked accessed
1042 * FGP_LOCK: Page is return locked
1043 * FGP_CREAT: If page is not present then a new page is allocated using
1044 * @cache_gfp_mask and added to the page cache and the VM's LRU
1045 * list. If radix tree nodes are allocated during page cache
1046 * insertion then @radix_gfp_mask is used. The page is returned
1047 * locked and with an increased refcount. Otherwise, %NULL is
1048 * returned.
1049 *
1050 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1051 * if the GFP flags specified for FGP_CREAT are atomic.
1052 *
1053 * If there is a page cache page, it is returned with an increased refcount.
1054 */
1055 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1056 int fgp_flags, gfp_t cache_gfp_mask, gfp_t radix_gfp_mask)
1057 {
1058 struct page *page;
1059
1060 repeat:
1061 page = find_get_entry(mapping, offset);
1062 if (radix_tree_exceptional_entry(page))
1063 page = NULL;
1064 if (!page)
1065 goto no_page;
1066
1067 if (fgp_flags & FGP_LOCK) {
1068 if (fgp_flags & FGP_NOWAIT) {
1069 if (!trylock_page(page)) {
1070 page_cache_release(page);
1071 return NULL;
1072 }
1073 } else {
1074 lock_page(page);
1075 }
1076
1077 /* Has the page been truncated? */
1078 if (unlikely(page->mapping != mapping)) {
1079 unlock_page(page);
1080 page_cache_release(page);
1081 goto repeat;
1082 }
1083 VM_BUG_ON_PAGE(page->index != offset, page);
1084 }
1085
1086 if (page && (fgp_flags & FGP_ACCESSED))
1087 mark_page_accessed(page);
1088
1089 no_page:
1090 if (!page && (fgp_flags & FGP_CREAT)) {
1091 int err;
1092 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1093 cache_gfp_mask |= __GFP_WRITE;
1094 if (fgp_flags & FGP_NOFS) {
1095 cache_gfp_mask &= ~__GFP_FS;
1096 radix_gfp_mask &= ~__GFP_FS;
1097 }
1098
1099 page = __page_cache_alloc(cache_gfp_mask);
1100 if (!page)
1101 return NULL;
1102
1103 if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1104 fgp_flags |= FGP_LOCK;
1105
1106 /* Init accessed so avoit atomic mark_page_accessed later */
1107 if (fgp_flags & FGP_ACCESSED)
1108 init_page_accessed(page);
1109
1110 err = add_to_page_cache_lru(page, mapping, offset, radix_gfp_mask);
1111 if (unlikely(err)) {
1112 page_cache_release(page);
1113 page = NULL;
1114 if (err == -EEXIST)
1115 goto repeat;
1116 }
1117 }
1118
1119 return page;
1120 }
1121 EXPORT_SYMBOL(pagecache_get_page);
1122
1123 /**
1124 * find_get_entries - gang pagecache lookup
1125 * @mapping: The address_space to search
1126 * @start: The starting page cache index
1127 * @nr_entries: The maximum number of entries
1128 * @entries: Where the resulting entries are placed
1129 * @indices: The cache indices corresponding to the entries in @entries
1130 *
1131 * find_get_entries() will search for and return a group of up to
1132 * @nr_entries entries in the mapping. The entries are placed at
1133 * @entries. find_get_entries() takes a reference against any actual
1134 * pages it returns.
1135 *
1136 * The search returns a group of mapping-contiguous page cache entries
1137 * with ascending indexes. There may be holes in the indices due to
1138 * not-present pages.
1139 *
1140 * Any shadow entries of evicted pages, or swap entries from
1141 * shmem/tmpfs, are included in the returned array.
1142 *
1143 * find_get_entries() returns the number of pages and shadow entries
1144 * which were found.
1145 */
1146 unsigned find_get_entries(struct address_space *mapping,
1147 pgoff_t start, unsigned int nr_entries,
1148 struct page **entries, pgoff_t *indices)
1149 {
1150 void **slot;
1151 unsigned int ret = 0;
1152 struct radix_tree_iter iter;
1153
1154 if (!nr_entries)
1155 return 0;
1156
1157 rcu_read_lock();
1158 restart:
1159 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1160 struct page *page;
1161 repeat:
1162 page = radix_tree_deref_slot(slot);
1163 if (unlikely(!page))
1164 continue;
1165 if (radix_tree_exception(page)) {
1166 if (radix_tree_deref_retry(page))
1167 goto restart;
1168 /*
1169 * A shadow entry of a recently evicted page,
1170 * or a swap entry from shmem/tmpfs. Return
1171 * it without attempting to raise page count.
1172 */
1173 goto export;
1174 }
1175 if (!page_cache_get_speculative(page))
1176 goto repeat;
1177
1178 /* Has the page moved? */
1179 if (unlikely(page != *slot)) {
1180 page_cache_release(page);
1181 goto repeat;
1182 }
1183 export:
1184 indices[ret] = iter.index;
1185 entries[ret] = page;
1186 if (++ret == nr_entries)
1187 break;
1188 }
1189 rcu_read_unlock();
1190 return ret;
1191 }
1192
1193 /**
1194 * find_get_pages - gang pagecache lookup
1195 * @mapping: The address_space to search
1196 * @start: The starting page index
1197 * @nr_pages: The maximum number of pages
1198 * @pages: Where the resulting pages are placed
1199 *
1200 * find_get_pages() will search for and return a group of up to
1201 * @nr_pages pages in the mapping. The pages are placed at @pages.
1202 * find_get_pages() takes a reference against the returned pages.
1203 *
1204 * The search returns a group of mapping-contiguous pages with ascending
1205 * indexes. There may be holes in the indices due to not-present pages.
1206 *
1207 * find_get_pages() returns the number of pages which were found.
1208 */
1209 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
1210 unsigned int nr_pages, struct page **pages)
1211 {
1212 struct radix_tree_iter iter;
1213 void **slot;
1214 unsigned ret = 0;
1215
1216 if (unlikely(!nr_pages))
1217 return 0;
1218
1219 rcu_read_lock();
1220 restart:
1221 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1222 struct page *page;
1223 repeat:
1224 page = radix_tree_deref_slot(slot);
1225 if (unlikely(!page))
1226 continue;
1227
1228 if (radix_tree_exception(page)) {
1229 if (radix_tree_deref_retry(page)) {
1230 /*
1231 * Transient condition which can only trigger
1232 * when entry at index 0 moves out of or back
1233 * to root: none yet gotten, safe to restart.
1234 */
1235 WARN_ON(iter.index);
1236 goto restart;
1237 }
1238 /*
1239 * A shadow entry of a recently evicted page,
1240 * or a swap entry from shmem/tmpfs. Skip
1241 * over it.
1242 */
1243 continue;
1244 }
1245
1246 if (!page_cache_get_speculative(page))
1247 goto repeat;
1248
1249 /* Has the page moved? */
1250 if (unlikely(page != *slot)) {
1251 page_cache_release(page);
1252 goto repeat;
1253 }
1254
1255 pages[ret] = page;
1256 if (++ret == nr_pages)
1257 break;
1258 }
1259
1260 rcu_read_unlock();
1261 return ret;
1262 }
1263
1264 /**
1265 * find_get_pages_contig - gang contiguous pagecache lookup
1266 * @mapping: The address_space to search
1267 * @index: The starting page index
1268 * @nr_pages: The maximum number of pages
1269 * @pages: Where the resulting pages are placed
1270 *
1271 * find_get_pages_contig() works exactly like find_get_pages(), except
1272 * that the returned number of pages are guaranteed to be contiguous.
1273 *
1274 * find_get_pages_contig() returns the number of pages which were found.
1275 */
1276 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1277 unsigned int nr_pages, struct page **pages)
1278 {
1279 struct radix_tree_iter iter;
1280 void **slot;
1281 unsigned int ret = 0;
1282
1283 if (unlikely(!nr_pages))
1284 return 0;
1285
1286 rcu_read_lock();
1287 restart:
1288 radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
1289 struct page *page;
1290 repeat:
1291 page = radix_tree_deref_slot(slot);
1292 /* The hole, there no reason to continue */
1293 if (unlikely(!page))
1294 break;
1295
1296 if (radix_tree_exception(page)) {
1297 if (radix_tree_deref_retry(page)) {
1298 /*
1299 * Transient condition which can only trigger
1300 * when entry at index 0 moves out of or back
1301 * to root: none yet gotten, safe to restart.
1302 */
1303 goto restart;
1304 }
1305 /*
1306 * A shadow entry of a recently evicted page,
1307 * or a swap entry from shmem/tmpfs. Stop
1308 * looking for contiguous pages.
1309 */
1310 break;
1311 }
1312
1313 if (!page_cache_get_speculative(page))
1314 goto repeat;
1315
1316 /* Has the page moved? */
1317 if (unlikely(page != *slot)) {
1318 page_cache_release(page);
1319 goto repeat;
1320 }
1321
1322 /*
1323 * must check mapping and index after taking the ref.
1324 * otherwise we can get both false positives and false
1325 * negatives, which is just confusing to the caller.
1326 */
1327 if (page->mapping == NULL || page->index != iter.index) {
1328 page_cache_release(page);
1329 break;
1330 }
1331
1332 pages[ret] = page;
1333 if (++ret == nr_pages)
1334 break;
1335 }
1336 rcu_read_unlock();
1337 return ret;
1338 }
1339 EXPORT_SYMBOL(find_get_pages_contig);
1340
1341 /**
1342 * find_get_pages_tag - find and return pages that match @tag
1343 * @mapping: the address_space to search
1344 * @index: the starting page index
1345 * @tag: the tag index
1346 * @nr_pages: the maximum number of pages
1347 * @pages: where the resulting pages are placed
1348 *
1349 * Like find_get_pages, except we only return pages which are tagged with
1350 * @tag. We update @index to index the next page for the traversal.
1351 */
1352 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1353 int tag, unsigned int nr_pages, struct page **pages)
1354 {
1355 struct radix_tree_iter iter;
1356 void **slot;
1357 unsigned ret = 0;
1358
1359 if (unlikely(!nr_pages))
1360 return 0;
1361
1362 rcu_read_lock();
1363 restart:
1364 radix_tree_for_each_tagged(slot, &mapping->page_tree,
1365 &iter, *index, tag) {
1366 struct page *page;
1367 repeat:
1368 page = radix_tree_deref_slot(slot);
1369 if (unlikely(!page))
1370 continue;
1371
1372 if (radix_tree_exception(page)) {
1373 if (radix_tree_deref_retry(page)) {
1374 /*
1375 * Transient condition which can only trigger
1376 * when entry at index 0 moves out of or back
1377 * to root: none yet gotten, safe to restart.
1378 */
1379 goto restart;
1380 }
1381 /*
1382 * A shadow entry of a recently evicted page.
1383 *
1384 * Those entries should never be tagged, but
1385 * this tree walk is lockless and the tags are
1386 * looked up in bulk, one radix tree node at a
1387 * time, so there is a sizable window for page
1388 * reclaim to evict a page we saw tagged.
1389 *
1390 * Skip over it.
1391 */
1392 continue;
1393 }
1394
1395 if (!page_cache_get_speculative(page))
1396 goto repeat;
1397
1398 /* Has the page moved? */
1399 if (unlikely(page != *slot)) {
1400 page_cache_release(page);
1401 goto repeat;
1402 }
1403
1404 pages[ret] = page;
1405 if (++ret == nr_pages)
1406 break;
1407 }
1408
1409 rcu_read_unlock();
1410
1411 if (ret)
1412 *index = pages[ret - 1]->index + 1;
1413
1414 return ret;
1415 }
1416 EXPORT_SYMBOL(find_get_pages_tag);
1417
1418 /*
1419 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1420 * a _large_ part of the i/o request. Imagine the worst scenario:
1421 *
1422 * ---R__________________________________________B__________
1423 * ^ reading here ^ bad block(assume 4k)
1424 *
1425 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1426 * => failing the whole request => read(R) => read(R+1) =>
1427 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1428 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1429 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1430 *
1431 * It is going insane. Fix it by quickly scaling down the readahead size.
1432 */
1433 static void shrink_readahead_size_eio(struct file *filp,
1434 struct file_ra_state *ra)
1435 {
1436 ra->ra_pages /= 4;
1437 }
1438
1439 /**
1440 * do_generic_file_read - generic file read routine
1441 * @filp: the file to read
1442 * @ppos: current file position
1443 * @iter: data destination
1444 * @written: already copied
1445 *
1446 * This is a generic file read routine, and uses the
1447 * mapping->a_ops->readpage() function for the actual low-level stuff.
1448 *
1449 * This is really ugly. But the goto's actually try to clarify some
1450 * of the logic when it comes to error handling etc.
1451 */
1452 static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos,
1453 struct iov_iter *iter, ssize_t written)
1454 {
1455 struct address_space *mapping = filp->f_mapping;
1456 struct inode *inode = mapping->host;
1457 struct file_ra_state *ra = &filp->f_ra;
1458 pgoff_t index;
1459 pgoff_t last_index;
1460 pgoff_t prev_index;
1461 unsigned long offset; /* offset into pagecache page */
1462 unsigned int prev_offset;
1463 int error = 0;
1464
1465 index = *ppos >> PAGE_CACHE_SHIFT;
1466 prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
1467 prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
1468 last_index = (*ppos + iter->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1469 offset = *ppos & ~PAGE_CACHE_MASK;
1470
1471 for (;;) {
1472 struct page *page;
1473 pgoff_t end_index;
1474 loff_t isize;
1475 unsigned long nr, ret;
1476
1477 cond_resched();
1478 find_page:
1479 page = find_get_page(mapping, index);
1480 if (!page) {
1481 page_cache_sync_readahead(mapping,
1482 ra, filp,
1483 index, last_index - index);
1484 page = find_get_page(mapping, index);
1485 if (unlikely(page == NULL))
1486 goto no_cached_page;
1487 }
1488 if (PageReadahead(page)) {
1489 page_cache_async_readahead(mapping,
1490 ra, filp, page,
1491 index, last_index - index);
1492 }
1493 if (!PageUptodate(page)) {
1494 if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1495 !mapping->a_ops->is_partially_uptodate)
1496 goto page_not_up_to_date;
1497 if (!trylock_page(page))
1498 goto page_not_up_to_date;
1499 /* Did it get truncated before we got the lock? */
1500 if (!page->mapping)
1501 goto page_not_up_to_date_locked;
1502 if (!mapping->a_ops->is_partially_uptodate(page,
1503 offset, iter->count))
1504 goto page_not_up_to_date_locked;
1505 unlock_page(page);
1506 }
1507 page_ok:
1508 /*
1509 * i_size must be checked after we know the page is Uptodate.
1510 *
1511 * Checking i_size after the check allows us to calculate
1512 * the correct value for "nr", which means the zero-filled
1513 * part of the page is not copied back to userspace (unless
1514 * another truncate extends the file - this is desired though).
1515 */
1516
1517 isize = i_size_read(inode);
1518 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1519 if (unlikely(!isize || index > end_index)) {
1520 page_cache_release(page);
1521 goto out;
1522 }
1523
1524 /* nr is the maximum number of bytes to copy from this page */
1525 nr = PAGE_CACHE_SIZE;
1526 if (index == end_index) {
1527 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1528 if (nr <= offset) {
1529 page_cache_release(page);
1530 goto out;
1531 }
1532 }
1533 nr = nr - offset;
1534
1535 /* If users can be writing to this page using arbitrary
1536 * virtual addresses, take care about potential aliasing
1537 * before reading the page on the kernel side.
1538 */
1539 if (mapping_writably_mapped(mapping))
1540 flush_dcache_page(page);
1541
1542 /*
1543 * When a sequential read accesses a page several times,
1544 * only mark it as accessed the first time.
1545 */
1546 if (prev_index != index || offset != prev_offset)
1547 mark_page_accessed(page);
1548 prev_index = index;
1549
1550 /*
1551 * Ok, we have the page, and it's up-to-date, so
1552 * now we can copy it to user space...
1553 */
1554
1555 ret = copy_page_to_iter(page, offset, nr, iter);
1556 offset += ret;
1557 index += offset >> PAGE_CACHE_SHIFT;
1558 offset &= ~PAGE_CACHE_MASK;
1559 prev_offset = offset;
1560
1561 page_cache_release(page);
1562 written += ret;
1563 if (!iov_iter_count(iter))
1564 goto out;
1565 if (ret < nr) {
1566 error = -EFAULT;
1567 goto out;
1568 }
1569 continue;
1570
1571 page_not_up_to_date:
1572 /* Get exclusive access to the page ... */
1573 error = lock_page_killable(page);
1574 if (unlikely(error))
1575 goto readpage_error;
1576
1577 page_not_up_to_date_locked:
1578 /* Did it get truncated before we got the lock? */
1579 if (!page->mapping) {
1580 unlock_page(page);
1581 page_cache_release(page);
1582 continue;
1583 }
1584
1585 /* Did somebody else fill it already? */
1586 if (PageUptodate(page)) {
1587 unlock_page(page);
1588 goto page_ok;
1589 }
1590
1591 readpage:
1592 /*
1593 * A previous I/O error may have been due to temporary
1594 * failures, eg. multipath errors.
1595 * PG_error will be set again if readpage fails.
1596 */
1597 ClearPageError(page);
1598 /* Start the actual read. The read will unlock the page. */
1599 error = mapping->a_ops->readpage(filp, page);
1600
1601 if (unlikely(error)) {
1602 if (error == AOP_TRUNCATED_PAGE) {
1603 page_cache_release(page);
1604 error = 0;
1605 goto find_page;
1606 }
1607 goto readpage_error;
1608 }
1609
1610 if (!PageUptodate(page)) {
1611 error = lock_page_killable(page);
1612 if (unlikely(error))
1613 goto readpage_error;
1614 if (!PageUptodate(page)) {
1615 if (page->mapping == NULL) {
1616 /*
1617 * invalidate_mapping_pages got it
1618 */
1619 unlock_page(page);
1620 page_cache_release(page);
1621 goto find_page;
1622 }
1623 unlock_page(page);
1624 shrink_readahead_size_eio(filp, ra);
1625 error = -EIO;
1626 goto readpage_error;
1627 }
1628 unlock_page(page);
1629 }
1630
1631 goto page_ok;
1632
1633 readpage_error:
1634 /* UHHUH! A synchronous read error occurred. Report it */
1635 page_cache_release(page);
1636 goto out;
1637
1638 no_cached_page:
1639 /*
1640 * Ok, it wasn't cached, so we need to create a new
1641 * page..
1642 */
1643 page = page_cache_alloc_cold(mapping);
1644 if (!page) {
1645 error = -ENOMEM;
1646 goto out;
1647 }
1648 error = add_to_page_cache_lru(page, mapping,
1649 index, GFP_KERNEL);
1650 if (error) {
1651 page_cache_release(page);
1652 if (error == -EEXIST) {
1653 error = 0;
1654 goto find_page;
1655 }
1656 goto out;
1657 }
1658 goto readpage;
1659 }
1660
1661 out:
1662 ra->prev_pos = prev_index;
1663 ra->prev_pos <<= PAGE_CACHE_SHIFT;
1664 ra->prev_pos |= prev_offset;
1665
1666 *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1667 file_accessed(filp);
1668 return written ? written : error;
1669 }
1670
1671 /**
1672 * generic_file_read_iter - generic filesystem read routine
1673 * @iocb: kernel I/O control block
1674 * @iter: destination for the data read
1675 *
1676 * This is the "read_iter()" routine for all filesystems
1677 * that can use the page cache directly.
1678 */
1679 ssize_t
1680 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
1681 {
1682 struct file *file = iocb->ki_filp;
1683 ssize_t retval = 0;
1684 loff_t *ppos = &iocb->ki_pos;
1685 loff_t pos = *ppos;
1686
1687 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1688 if (file->f_flags & O_DIRECT) {
1689 struct address_space *mapping = file->f_mapping;
1690 struct inode *inode = mapping->host;
1691 size_t count = iov_iter_count(iter);
1692 loff_t size;
1693
1694 if (!count)
1695 goto out; /* skip atime */
1696 size = i_size_read(inode);
1697 retval = filemap_write_and_wait_range(mapping, pos,
1698 pos + count - 1);
1699 if (!retval) {
1700 struct iov_iter data = *iter;
1701 retval = mapping->a_ops->direct_IO(READ, iocb, &data, pos);
1702 }
1703
1704 if (retval > 0) {
1705 *ppos = pos + retval;
1706 iov_iter_advance(iter, retval);
1707 }
1708
1709 /*
1710 * Btrfs can have a short DIO read if we encounter
1711 * compressed extents, so if there was an error, or if
1712 * we've already read everything we wanted to, or if
1713 * there was a short read because we hit EOF, go ahead
1714 * and return. Otherwise fallthrough to buffered io for
1715 * the rest of the read.
1716 */
1717 if (retval < 0 || !iov_iter_count(iter) || *ppos >= size) {
1718 file_accessed(file);
1719 goto out;
1720 }
1721 }
1722
1723 retval = do_generic_file_read(file, ppos, iter, retval);
1724 out:
1725 return retval;
1726 }
1727 EXPORT_SYMBOL(generic_file_read_iter);
1728
1729 #ifdef CONFIG_MMU
1730 /**
1731 * page_cache_read - adds requested page to the page cache if not already there
1732 * @file: file to read
1733 * @offset: page index
1734 *
1735 * This adds the requested page to the page cache if it isn't already there,
1736 * and schedules an I/O to read in its contents from disk.
1737 */
1738 static int page_cache_read(struct file *file, pgoff_t offset)
1739 {
1740 struct address_space *mapping = file->f_mapping;
1741 struct page *page;
1742 int ret;
1743
1744 do {
1745 page = page_cache_alloc_cold(mapping);
1746 if (!page)
1747 return -ENOMEM;
1748
1749 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1750 if (ret == 0)
1751 ret = mapping->a_ops->readpage(file, page);
1752 else if (ret == -EEXIST)
1753 ret = 0; /* losing race to add is OK */
1754
1755 page_cache_release(page);
1756
1757 } while (ret == AOP_TRUNCATED_PAGE);
1758
1759 return ret;
1760 }
1761
1762 #define MMAP_LOTSAMISS (100)
1763
1764 /*
1765 * Synchronous readahead happens when we don't even find
1766 * a page in the page cache at all.
1767 */
1768 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1769 struct file_ra_state *ra,
1770 struct file *file,
1771 pgoff_t offset)
1772 {
1773 unsigned long ra_pages;
1774 struct address_space *mapping = file->f_mapping;
1775
1776 /* If we don't want any read-ahead, don't bother */
1777 if (vma->vm_flags & VM_RAND_READ)
1778 return;
1779 if (!ra->ra_pages)
1780 return;
1781
1782 if (vma->vm_flags & VM_SEQ_READ) {
1783 page_cache_sync_readahead(mapping, ra, file, offset,
1784 ra->ra_pages);
1785 return;
1786 }
1787
1788 /* Avoid banging the cache line if not needed */
1789 if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
1790 ra->mmap_miss++;
1791
1792 /*
1793 * Do we miss much more than hit in this file? If so,
1794 * stop bothering with read-ahead. It will only hurt.
1795 */
1796 if (ra->mmap_miss > MMAP_LOTSAMISS)
1797 return;
1798
1799 /*
1800 * mmap read-around
1801 */
1802 ra_pages = max_sane_readahead(ra->ra_pages);
1803 ra->start = max_t(long, 0, offset - ra_pages / 2);
1804 ra->size = ra_pages;
1805 ra->async_size = ra_pages / 4;
1806 ra_submit(ra, mapping, file);
1807 }
1808
1809 /*
1810 * Asynchronous readahead happens when we find the page and PG_readahead,
1811 * so we want to possibly extend the readahead further..
1812 */
1813 static void do_async_mmap_readahead(struct vm_area_struct *vma,
1814 struct file_ra_state *ra,
1815 struct file *file,
1816 struct page *page,
1817 pgoff_t offset)
1818 {
1819 struct address_space *mapping = file->f_mapping;
1820
1821 /* If we don't want any read-ahead, don't bother */
1822 if (vma->vm_flags & VM_RAND_READ)
1823 return;
1824 if (ra->mmap_miss > 0)
1825 ra->mmap_miss--;
1826 if (PageReadahead(page))
1827 page_cache_async_readahead(mapping, ra, file,
1828 page, offset, ra->ra_pages);
1829 }
1830
1831 /**
1832 * filemap_fault - read in file data for page fault handling
1833 * @vma: vma in which the fault was taken
1834 * @vmf: struct vm_fault containing details of the fault
1835 *
1836 * filemap_fault() is invoked via the vma operations vector for a
1837 * mapped memory region to read in file data during a page fault.
1838 *
1839 * The goto's are kind of ugly, but this streamlines the normal case of having
1840 * it in the page cache, and handles the special cases reasonably without
1841 * having a lot of duplicated code.
1842 */
1843 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1844 {
1845 int error;
1846 struct file *file = vma->vm_file;
1847 struct address_space *mapping = file->f_mapping;
1848 struct file_ra_state *ra = &file->f_ra;
1849 struct inode *inode = mapping->host;
1850 pgoff_t offset = vmf->pgoff;
1851 struct page *page;
1852 loff_t size;
1853 int ret = 0;
1854
1855 size = round_up(i_size_read(inode), PAGE_CACHE_SIZE);
1856 if (offset >= size >> PAGE_CACHE_SHIFT)
1857 return VM_FAULT_SIGBUS;
1858
1859 /*
1860 * Do we have something in the page cache already?
1861 */
1862 page = find_get_page(mapping, offset);
1863 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
1864 /*
1865 * We found the page, so try async readahead before
1866 * waiting for the lock.
1867 */
1868 do_async_mmap_readahead(vma, ra, file, page, offset);
1869 } else if (!page) {
1870 /* No page in the page cache at all */
1871 do_sync_mmap_readahead(vma, ra, file, offset);
1872 count_vm_event(PGMAJFAULT);
1873 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1874 ret = VM_FAULT_MAJOR;
1875 retry_find:
1876 page = find_get_page(mapping, offset);
1877 if (!page)
1878 goto no_cached_page;
1879 }
1880
1881 if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
1882 page_cache_release(page);
1883 return ret | VM_FAULT_RETRY;
1884 }
1885
1886 /* Did it get truncated? */
1887 if (unlikely(page->mapping != mapping)) {
1888 unlock_page(page);
1889 put_page(page);
1890 goto retry_find;
1891 }
1892 VM_BUG_ON_PAGE(page->index != offset, page);
1893
1894 /*
1895 * We have a locked page in the page cache, now we need to check
1896 * that it's up-to-date. If not, it is going to be due to an error.
1897 */
1898 if (unlikely(!PageUptodate(page)))
1899 goto page_not_uptodate;
1900
1901 /*
1902 * Found the page and have a reference on it.
1903 * We must recheck i_size under page lock.
1904 */
1905 size = round_up(i_size_read(inode), PAGE_CACHE_SIZE);
1906 if (unlikely(offset >= size >> PAGE_CACHE_SHIFT)) {
1907 unlock_page(page);
1908 page_cache_release(page);
1909 return VM_FAULT_SIGBUS;
1910 }
1911
1912 vmf->page = page;
1913 return ret | VM_FAULT_LOCKED;
1914
1915 no_cached_page:
1916 /*
1917 * We're only likely to ever get here if MADV_RANDOM is in
1918 * effect.
1919 */
1920 error = page_cache_read(file, offset);
1921
1922 /*
1923 * The page we want has now been added to the page cache.
1924 * In the unlikely event that someone removed it in the
1925 * meantime, we'll just come back here and read it again.
1926 */
1927 if (error >= 0)
1928 goto retry_find;
1929
1930 /*
1931 * An error return from page_cache_read can result if the
1932 * system is low on memory, or a problem occurs while trying
1933 * to schedule I/O.
1934 */
1935 if (error == -ENOMEM)
1936 return VM_FAULT_OOM;
1937 return VM_FAULT_SIGBUS;
1938
1939 page_not_uptodate:
1940 /*
1941 * Umm, take care of errors if the page isn't up-to-date.
1942 * Try to re-read it _once_. We do this synchronously,
1943 * because there really aren't any performance issues here
1944 * and we need to check for errors.
1945 */
1946 ClearPageError(page);
1947 error = mapping->a_ops->readpage(file, page);
1948 if (!error) {
1949 wait_on_page_locked(page);
1950 if (!PageUptodate(page))
1951 error = -EIO;
1952 }
1953 page_cache_release(page);
1954
1955 if (!error || error == AOP_TRUNCATED_PAGE)
1956 goto retry_find;
1957
1958 /* Things didn't work out. Return zero to tell the mm layer so. */
1959 shrink_readahead_size_eio(file, ra);
1960 return VM_FAULT_SIGBUS;
1961 }
1962 EXPORT_SYMBOL(filemap_fault);
1963
1964 void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf)
1965 {
1966 struct radix_tree_iter iter;
1967 void **slot;
1968 struct file *file = vma->vm_file;
1969 struct address_space *mapping = file->f_mapping;
1970 loff_t size;
1971 struct page *page;
1972 unsigned long address = (unsigned long) vmf->virtual_address;
1973 unsigned long addr;
1974 pte_t *pte;
1975
1976 rcu_read_lock();
1977 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, vmf->pgoff) {
1978 if (iter.index > vmf->max_pgoff)
1979 break;
1980 repeat:
1981 page = radix_tree_deref_slot(slot);
1982 if (unlikely(!page))
1983 goto next;
1984 if (radix_tree_exception(page)) {
1985 if (radix_tree_deref_retry(page))
1986 break;
1987 else
1988 goto next;
1989 }
1990
1991 if (!page_cache_get_speculative(page))
1992 goto repeat;
1993
1994 /* Has the page moved? */
1995 if (unlikely(page != *slot)) {
1996 page_cache_release(page);
1997 goto repeat;
1998 }
1999
2000 if (!PageUptodate(page) ||
2001 PageReadahead(page) ||
2002 PageHWPoison(page))
2003 goto skip;
2004 if (!trylock_page(page))
2005 goto skip;
2006
2007 if (page->mapping != mapping || !PageUptodate(page))
2008 goto unlock;
2009
2010 size = round_up(i_size_read(mapping->host), PAGE_CACHE_SIZE);
2011 if (page->index >= size >> PAGE_CACHE_SHIFT)
2012 goto unlock;
2013
2014 pte = vmf->pte + page->index - vmf->pgoff;
2015 if (!pte_none(*pte))
2016 goto unlock;
2017
2018 if (file->f_ra.mmap_miss > 0)
2019 file->f_ra.mmap_miss--;
2020 addr = address + (page->index - vmf->pgoff) * PAGE_SIZE;
2021 do_set_pte(vma, addr, page, pte, false, false);
2022 unlock_page(page);
2023 goto next;
2024 unlock:
2025 unlock_page(page);
2026 skip:
2027 page_cache_release(page);
2028 next:
2029 if (iter.index == vmf->max_pgoff)
2030 break;
2031 }
2032 rcu_read_unlock();
2033 }
2034 EXPORT_SYMBOL(filemap_map_pages);
2035
2036 int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2037 {
2038 struct page *page = vmf->page;
2039 struct inode *inode = file_inode(vma->vm_file);
2040 int ret = VM_FAULT_LOCKED;
2041
2042 sb_start_pagefault(inode->i_sb);
2043 file_update_time(vma->vm_file);
2044 lock_page(page);
2045 if (page->mapping != inode->i_mapping) {
2046 unlock_page(page);
2047 ret = VM_FAULT_NOPAGE;
2048 goto out;
2049 }
2050 /*
2051 * We mark the page dirty already here so that when freeze is in
2052 * progress, we are guaranteed that writeback during freezing will
2053 * see the dirty page and writeprotect it again.
2054 */
2055 set_page_dirty(page);
2056 wait_for_stable_page(page);
2057 out:
2058 sb_end_pagefault(inode->i_sb);
2059 return ret;
2060 }
2061 EXPORT_SYMBOL(filemap_page_mkwrite);
2062
2063 const struct vm_operations_struct generic_file_vm_ops = {
2064 .fault = filemap_fault,
2065 .map_pages = filemap_map_pages,
2066 .page_mkwrite = filemap_page_mkwrite,
2067 .remap_pages = generic_file_remap_pages,
2068 };
2069
2070 /* This is used for a general mmap of a disk file */
2071
2072 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2073 {
2074 struct address_space *mapping = file->f_mapping;
2075
2076 if (!mapping->a_ops->readpage)
2077 return -ENOEXEC;
2078 file_accessed(file);
2079 vma->vm_ops = &generic_file_vm_ops;
2080 return 0;
2081 }
2082
2083 /*
2084 * This is for filesystems which do not implement ->writepage.
2085 */
2086 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2087 {
2088 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2089 return -EINVAL;
2090 return generic_file_mmap(file, vma);
2091 }
2092 #else
2093 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2094 {
2095 return -ENOSYS;
2096 }
2097 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2098 {
2099 return -ENOSYS;
2100 }
2101 #endif /* CONFIG_MMU */
2102
2103 EXPORT_SYMBOL(generic_file_mmap);
2104 EXPORT_SYMBOL(generic_file_readonly_mmap);
2105
2106 static struct page *wait_on_page_read(struct page *page)
2107 {
2108 if (!IS_ERR(page)) {
2109 wait_on_page_locked(page);
2110 if (!PageUptodate(page)) {
2111 page_cache_release(page);
2112 page = ERR_PTR(-EIO);
2113 }
2114 }
2115 return page;
2116 }
2117
2118 static struct page *__read_cache_page(struct address_space *mapping,
2119 pgoff_t index,
2120 int (*filler)(void *, struct page *),
2121 void *data,
2122 gfp_t gfp)
2123 {
2124 struct page *page;
2125 int err;
2126 repeat:
2127 page = find_get_page(mapping, index);
2128 if (!page) {
2129 page = __page_cache_alloc(gfp | __GFP_COLD);
2130 if (!page)
2131 return ERR_PTR(-ENOMEM);
2132 err = add_to_page_cache_lru(page, mapping, index, gfp);
2133 if (unlikely(err)) {
2134 page_cache_release(page);
2135 if (err == -EEXIST)
2136 goto repeat;
2137 /* Presumably ENOMEM for radix tree node */
2138 return ERR_PTR(err);
2139 }
2140 err = filler(data, page);
2141 if (err < 0) {
2142 page_cache_release(page);
2143 page = ERR_PTR(err);
2144 } else {
2145 page = wait_on_page_read(page);
2146 }
2147 }
2148 return page;
2149 }
2150
2151 static struct page *do_read_cache_page(struct address_space *mapping,
2152 pgoff_t index,
2153 int (*filler)(void *, struct page *),
2154 void *data,
2155 gfp_t gfp)
2156
2157 {
2158 struct page *page;
2159 int err;
2160
2161 retry:
2162 page = __read_cache_page(mapping, index, filler, data, gfp);
2163 if (IS_ERR(page))
2164 return page;
2165 if (PageUptodate(page))
2166 goto out;
2167
2168 lock_page(page);
2169 if (!page->mapping) {
2170 unlock_page(page);
2171 page_cache_release(page);
2172 goto retry;
2173 }
2174 if (PageUptodate(page)) {
2175 unlock_page(page);
2176 goto out;
2177 }
2178 err = filler(data, page);
2179 if (err < 0) {
2180 page_cache_release(page);
2181 return ERR_PTR(err);
2182 } else {
2183 page = wait_on_page_read(page);
2184 if (IS_ERR(page))
2185 return page;
2186 }
2187 out:
2188 mark_page_accessed(page);
2189 return page;
2190 }
2191
2192 /**
2193 * read_cache_page - read into page cache, fill it if needed
2194 * @mapping: the page's address_space
2195 * @index: the page index
2196 * @filler: function to perform the read
2197 * @data: first arg to filler(data, page) function, often left as NULL
2198 *
2199 * Read into the page cache. If a page already exists, and PageUptodate() is
2200 * not set, try to fill the page and wait for it to become unlocked.
2201 *
2202 * If the page does not get brought uptodate, return -EIO.
2203 */
2204 struct page *read_cache_page(struct address_space *mapping,
2205 pgoff_t index,
2206 int (*filler)(void *, struct page *),
2207 void *data)
2208 {
2209 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2210 }
2211 EXPORT_SYMBOL(read_cache_page);
2212
2213 /**
2214 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2215 * @mapping: the page's address_space
2216 * @index: the page index
2217 * @gfp: the page allocator flags to use if allocating
2218 *
2219 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2220 * any new page allocations done using the specified allocation flags.
2221 *
2222 * If the page does not get brought uptodate, return -EIO.
2223 */
2224 struct page *read_cache_page_gfp(struct address_space *mapping,
2225 pgoff_t index,
2226 gfp_t gfp)
2227 {
2228 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2229
2230 return do_read_cache_page(mapping, index, filler, NULL, gfp);
2231 }
2232 EXPORT_SYMBOL(read_cache_page_gfp);
2233
2234 /*
2235 * Performs necessary checks before doing a write
2236 *
2237 * Can adjust writing position or amount of bytes to write.
2238 * Returns appropriate error code that caller should return or
2239 * zero in case that write should be allowed.
2240 */
2241 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
2242 {
2243 struct inode *inode = file->f_mapping->host;
2244 unsigned long limit = rlimit(RLIMIT_FSIZE);
2245
2246 if (unlikely(*pos < 0))
2247 return -EINVAL;
2248
2249 if (!isblk) {
2250 /* FIXME: this is for backwards compatibility with 2.4 */
2251 if (file->f_flags & O_APPEND)
2252 *pos = i_size_read(inode);
2253
2254 if (limit != RLIM_INFINITY) {
2255 if (*pos >= limit) {
2256 send_sig(SIGXFSZ, current, 0);
2257 return -EFBIG;
2258 }
2259 if (*count > limit - (typeof(limit))*pos) {
2260 *count = limit - (typeof(limit))*pos;
2261 }
2262 }
2263 }
2264
2265 /*
2266 * LFS rule
2267 */
2268 if (unlikely(*pos + *count > MAX_NON_LFS &&
2269 !(file->f_flags & O_LARGEFILE))) {
2270 if (*pos >= MAX_NON_LFS) {
2271 return -EFBIG;
2272 }
2273 if (*count > MAX_NON_LFS - (unsigned long)*pos) {
2274 *count = MAX_NON_LFS - (unsigned long)*pos;
2275 }
2276 }
2277
2278 /*
2279 * Are we about to exceed the fs block limit ?
2280 *
2281 * If we have written data it becomes a short write. If we have
2282 * exceeded without writing data we send a signal and return EFBIG.
2283 * Linus frestrict idea will clean these up nicely..
2284 */
2285 if (likely(!isblk)) {
2286 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
2287 if (*count || *pos > inode->i_sb->s_maxbytes) {
2288 return -EFBIG;
2289 }
2290 /* zero-length writes at ->s_maxbytes are OK */
2291 }
2292
2293 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
2294 *count = inode->i_sb->s_maxbytes - *pos;
2295 } else {
2296 #ifdef CONFIG_BLOCK
2297 loff_t isize;
2298 if (bdev_read_only(I_BDEV(inode)))
2299 return -EPERM;
2300 isize = i_size_read(inode);
2301 if (*pos >= isize) {
2302 if (*count || *pos > isize)
2303 return -ENOSPC;
2304 }
2305
2306 if (*pos + *count > isize)
2307 *count = isize - *pos;
2308 #else
2309 return -EPERM;
2310 #endif
2311 }
2312 return 0;
2313 }
2314 EXPORT_SYMBOL(generic_write_checks);
2315
2316 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2317 loff_t pos, unsigned len, unsigned flags,
2318 struct page **pagep, void **fsdata)
2319 {
2320 const struct address_space_operations *aops = mapping->a_ops;
2321
2322 return aops->write_begin(file, mapping, pos, len, flags,
2323 pagep, fsdata);
2324 }
2325 EXPORT_SYMBOL(pagecache_write_begin);
2326
2327 int pagecache_write_end(struct file *file, struct address_space *mapping,
2328 loff_t pos, unsigned len, unsigned copied,
2329 struct page *page, void *fsdata)
2330 {
2331 const struct address_space_operations *aops = mapping->a_ops;
2332
2333 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2334 }
2335 EXPORT_SYMBOL(pagecache_write_end);
2336
2337 ssize_t
2338 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from, loff_t pos)
2339 {
2340 struct file *file = iocb->ki_filp;
2341 struct address_space *mapping = file->f_mapping;
2342 struct inode *inode = mapping->host;
2343 ssize_t written;
2344 size_t write_len;
2345 pgoff_t end;
2346 struct iov_iter data;
2347
2348 write_len = iov_iter_count(from);
2349 end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
2350
2351 written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2352 if (written)
2353 goto out;
2354
2355 /*
2356 * After a write we want buffered reads to be sure to go to disk to get
2357 * the new data. We invalidate clean cached page from the region we're
2358 * about to write. We do this *before* the write so that we can return
2359 * without clobbering -EIOCBQUEUED from ->direct_IO().
2360 */
2361 if (mapping->nrpages) {
2362 written = invalidate_inode_pages2_range(mapping,
2363 pos >> PAGE_CACHE_SHIFT, end);
2364 /*
2365 * If a page can not be invalidated, return 0 to fall back
2366 * to buffered write.
2367 */
2368 if (written) {
2369 if (written == -EBUSY)
2370 return 0;
2371 goto out;
2372 }
2373 }
2374
2375 data = *from;
2376 written = mapping->a_ops->direct_IO(WRITE, iocb, &data, pos);
2377
2378 /*
2379 * Finally, try again to invalidate clean pages which might have been
2380 * cached by non-direct readahead, or faulted in by get_user_pages()
2381 * if the source of the write was an mmap'ed region of the file
2382 * we're writing. Either one is a pretty crazy thing to do,
2383 * so we don't support it 100%. If this invalidation
2384 * fails, tough, the write still worked...
2385 */
2386 if (mapping->nrpages) {
2387 invalidate_inode_pages2_range(mapping,
2388 pos >> PAGE_CACHE_SHIFT, end);
2389 }
2390
2391 if (written > 0) {
2392 pos += written;
2393 iov_iter_advance(from, written);
2394 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2395 i_size_write(inode, pos);
2396 mark_inode_dirty(inode);
2397 }
2398 iocb->ki_pos = pos;
2399 }
2400 out:
2401 return written;
2402 }
2403 EXPORT_SYMBOL(generic_file_direct_write);
2404
2405 /*
2406 * Find or create a page at the given pagecache position. Return the locked
2407 * page. This function is specifically for buffered writes.
2408 */
2409 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2410 pgoff_t index, unsigned flags)
2411 {
2412 struct page *page;
2413 int fgp_flags = FGP_LOCK|FGP_ACCESSED|FGP_WRITE|FGP_CREAT;
2414
2415 if (flags & AOP_FLAG_NOFS)
2416 fgp_flags |= FGP_NOFS;
2417
2418 page = pagecache_get_page(mapping, index, fgp_flags,
2419 mapping_gfp_mask(mapping),
2420 GFP_KERNEL);
2421 if (page)
2422 wait_for_stable_page(page);
2423
2424 return page;
2425 }
2426 EXPORT_SYMBOL(grab_cache_page_write_begin);
2427
2428 ssize_t generic_perform_write(struct file *file,
2429 struct iov_iter *i, loff_t pos)
2430 {
2431 struct address_space *mapping = file->f_mapping;
2432 const struct address_space_operations *a_ops = mapping->a_ops;
2433 long status = 0;
2434 ssize_t written = 0;
2435 unsigned int flags = 0;
2436
2437 /*
2438 * Copies from kernel address space cannot fail (NFSD is a big user).
2439 */
2440 if (segment_eq(get_fs(), KERNEL_DS))
2441 flags |= AOP_FLAG_UNINTERRUPTIBLE;
2442
2443 do {
2444 struct page *page;
2445 unsigned long offset; /* Offset into pagecache page */
2446 unsigned long bytes; /* Bytes to write to page */
2447 size_t copied; /* Bytes copied from user */
2448 void *fsdata;
2449
2450 offset = (pos & (PAGE_CACHE_SIZE - 1));
2451 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2452 iov_iter_count(i));
2453
2454 again:
2455 /*
2456 * Bring in the user page that we will copy from _first_.
2457 * Otherwise there's a nasty deadlock on copying from the
2458 * same page as we're writing to, without it being marked
2459 * up-to-date.
2460 *
2461 * Not only is this an optimisation, but it is also required
2462 * to check that the address is actually valid, when atomic
2463 * usercopies are used, below.
2464 */
2465 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2466 status = -EFAULT;
2467 break;
2468 }
2469
2470 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2471 &page, &fsdata);
2472 if (unlikely(status < 0))
2473 break;
2474
2475 if (mapping_writably_mapped(mapping))
2476 flush_dcache_page(page);
2477
2478 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2479 flush_dcache_page(page);
2480
2481 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2482 page, fsdata);
2483 if (unlikely(status < 0))
2484 break;
2485 copied = status;
2486
2487 cond_resched();
2488
2489 iov_iter_advance(i, copied);
2490 if (unlikely(copied == 0)) {
2491 /*
2492 * If we were unable to copy any data at all, we must
2493 * fall back to a single segment length write.
2494 *
2495 * If we didn't fallback here, we could livelock
2496 * because not all segments in the iov can be copied at
2497 * once without a pagefault.
2498 */
2499 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2500 iov_iter_single_seg_count(i));
2501 goto again;
2502 }
2503 pos += copied;
2504 written += copied;
2505
2506 balance_dirty_pages_ratelimited(mapping);
2507 if (fatal_signal_pending(current)) {
2508 status = -EINTR;
2509 break;
2510 }
2511 } while (iov_iter_count(i));
2512
2513 return written ? written : status;
2514 }
2515 EXPORT_SYMBOL(generic_perform_write);
2516
2517 /**
2518 * __generic_file_write_iter - write data to a file
2519 * @iocb: IO state structure (file, offset, etc.)
2520 * @from: iov_iter with data to write
2521 *
2522 * This function does all the work needed for actually writing data to a
2523 * file. It does all basic checks, removes SUID from the file, updates
2524 * modification times and calls proper subroutines depending on whether we
2525 * do direct IO or a standard buffered write.
2526 *
2527 * It expects i_mutex to be grabbed unless we work on a block device or similar
2528 * object which does not need locking at all.
2529 *
2530 * This function does *not* take care of syncing data in case of O_SYNC write.
2531 * A caller has to handle it. This is mainly due to the fact that we want to
2532 * avoid syncing under i_mutex.
2533 */
2534 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2535 {
2536 struct file *file = iocb->ki_filp;
2537 struct address_space * mapping = file->f_mapping;
2538 struct inode *inode = mapping->host;
2539 loff_t pos = iocb->ki_pos;
2540 ssize_t written = 0;
2541 ssize_t err;
2542 ssize_t status;
2543 size_t count = iov_iter_count(from);
2544
2545 /* We can write back this queue in page reclaim */
2546 current->backing_dev_info = mapping->backing_dev_info;
2547 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2548 if (err)
2549 goto out;
2550
2551 if (count == 0)
2552 goto out;
2553
2554 iov_iter_truncate(from, count);
2555
2556 err = file_remove_suid(file);
2557 if (err)
2558 goto out;
2559
2560 err = file_update_time(file);
2561 if (err)
2562 goto out;
2563
2564 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2565 if (unlikely(file->f_flags & O_DIRECT)) {
2566 loff_t endbyte;
2567
2568 written = generic_file_direct_write(iocb, from, pos);
2569 if (written < 0 || written == count)
2570 goto out;
2571
2572 /*
2573 * direct-io write to a hole: fall through to buffered I/O
2574 * for completing the rest of the request.
2575 */
2576 pos += written;
2577 count -= written;
2578
2579 status = generic_perform_write(file, from, pos);
2580 /*
2581 * If generic_perform_write() returned a synchronous error
2582 * then we want to return the number of bytes which were
2583 * direct-written, or the error code if that was zero. Note
2584 * that this differs from normal direct-io semantics, which
2585 * will return -EFOO even if some bytes were written.
2586 */
2587 if (unlikely(status < 0) && !written) {
2588 err = status;
2589 goto out;
2590 }
2591 iocb->ki_pos = pos + status;
2592 /*
2593 * We need to ensure that the page cache pages are written to
2594 * disk and invalidated to preserve the expected O_DIRECT
2595 * semantics.
2596 */
2597 endbyte = pos + status - 1;
2598 err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
2599 if (err == 0) {
2600 written += status;
2601 invalidate_mapping_pages(mapping,
2602 pos >> PAGE_CACHE_SHIFT,
2603 endbyte >> PAGE_CACHE_SHIFT);
2604 } else {
2605 /*
2606 * We don't know how much we wrote, so just return
2607 * the number of bytes which were direct-written
2608 */
2609 }
2610 } else {
2611 written = generic_perform_write(file, from, pos);
2612 if (likely(written >= 0))
2613 iocb->ki_pos = pos + written;
2614 }
2615 out:
2616 current->backing_dev_info = NULL;
2617 return written ? written : err;
2618 }
2619 EXPORT_SYMBOL(__generic_file_write_iter);
2620
2621 /**
2622 * generic_file_write_iter - write data to a file
2623 * @iocb: IO state structure
2624 * @from: iov_iter with data to write
2625 *
2626 * This is a wrapper around __generic_file_write_iter() to be used by most
2627 * filesystems. It takes care of syncing the file in case of O_SYNC file
2628 * and acquires i_mutex as needed.
2629 */
2630 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2631 {
2632 struct file *file = iocb->ki_filp;
2633 struct inode *inode = file->f_mapping->host;
2634 ssize_t ret;
2635
2636 mutex_lock(&inode->i_mutex);
2637 ret = __generic_file_write_iter(iocb, from);
2638 mutex_unlock(&inode->i_mutex);
2639
2640 if (ret > 0) {
2641 ssize_t err;
2642
2643 err = generic_write_sync(file, iocb->ki_pos - ret, ret);
2644 if (err < 0)
2645 ret = err;
2646 }
2647 return ret;
2648 }
2649 EXPORT_SYMBOL(generic_file_write_iter);
2650
2651 /**
2652 * try_to_release_page() - release old fs-specific metadata on a page
2653 *
2654 * @page: the page which the kernel is trying to free
2655 * @gfp_mask: memory allocation flags (and I/O mode)
2656 *
2657 * The address_space is to try to release any data against the page
2658 * (presumably at page->private). If the release was successful, return `1'.
2659 * Otherwise return zero.
2660 *
2661 * This may also be called if PG_fscache is set on a page, indicating that the
2662 * page is known to the local caching routines.
2663 *
2664 * The @gfp_mask argument specifies whether I/O may be performed to release
2665 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
2666 *
2667 */
2668 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2669 {
2670 struct address_space * const mapping = page->mapping;
2671
2672 BUG_ON(!PageLocked(page));
2673 if (PageWriteback(page))
2674 return 0;
2675
2676 if (mapping && mapping->a_ops->releasepage)
2677 return mapping->a_ops->releasepage(page, gfp_mask);
2678 return try_to_free_buffers(page);
2679 }
2680
2681 EXPORT_SYMBOL(try_to_release_page);
This page took 0.090307 seconds and 5 git commands to generate.