Merge tag 'dt-for-3.17' of git://git.kernel.org/pub/scm/linux/kernel/git/arm/arm-soc
[deliverable/linux.git] / mm / filemap.c
1 /*
2 * linux/mm/filemap.c
3 *
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
6
7 /*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
11 */
12 #include <linux/export.h>
13 #include <linux/compiler.h>
14 #include <linux/fs.h>
15 #include <linux/uaccess.h>
16 #include <linux/aio.h>
17 #include <linux/capability.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/gfp.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/cpuset.h>
33 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
34 #include <linux/memcontrol.h>
35 #include <linux/cleancache.h>
36 #include <linux/rmap.h>
37 #include "internal.h"
38
39 #define CREATE_TRACE_POINTS
40 #include <trace/events/filemap.h>
41
42 /*
43 * FIXME: remove all knowledge of the buffer layer from the core VM
44 */
45 #include <linux/buffer_head.h> /* for try_to_free_buffers */
46
47 #include <asm/mman.h>
48
49 /*
50 * Shared mappings implemented 30.11.1994. It's not fully working yet,
51 * though.
52 *
53 * Shared mappings now work. 15.8.1995 Bruno.
54 *
55 * finished 'unifying' the page and buffer cache and SMP-threaded the
56 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
57 *
58 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
59 */
60
61 /*
62 * Lock ordering:
63 *
64 * ->i_mmap_mutex (truncate_pagecache)
65 * ->private_lock (__free_pte->__set_page_dirty_buffers)
66 * ->swap_lock (exclusive_swap_page, others)
67 * ->mapping->tree_lock
68 *
69 * ->i_mutex
70 * ->i_mmap_mutex (truncate->unmap_mapping_range)
71 *
72 * ->mmap_sem
73 * ->i_mmap_mutex
74 * ->page_table_lock or pte_lock (various, mainly in memory.c)
75 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
76 *
77 * ->mmap_sem
78 * ->lock_page (access_process_vm)
79 *
80 * ->i_mutex (generic_perform_write)
81 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
82 *
83 * bdi->wb.list_lock
84 * sb_lock (fs/fs-writeback.c)
85 * ->mapping->tree_lock (__sync_single_inode)
86 *
87 * ->i_mmap_mutex
88 * ->anon_vma.lock (vma_adjust)
89 *
90 * ->anon_vma.lock
91 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
92 *
93 * ->page_table_lock or pte_lock
94 * ->swap_lock (try_to_unmap_one)
95 * ->private_lock (try_to_unmap_one)
96 * ->tree_lock (try_to_unmap_one)
97 * ->zone.lru_lock (follow_page->mark_page_accessed)
98 * ->zone.lru_lock (check_pte_range->isolate_lru_page)
99 * ->private_lock (page_remove_rmap->set_page_dirty)
100 * ->tree_lock (page_remove_rmap->set_page_dirty)
101 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
102 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
103 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
104 * ->inode->i_lock (zap_pte_range->set_page_dirty)
105 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
106 *
107 * ->i_mmap_mutex
108 * ->tasklist_lock (memory_failure, collect_procs_ao)
109 */
110
111 static void page_cache_tree_delete(struct address_space *mapping,
112 struct page *page, void *shadow)
113 {
114 struct radix_tree_node *node;
115 unsigned long index;
116 unsigned int offset;
117 unsigned int tag;
118 void **slot;
119
120 VM_BUG_ON(!PageLocked(page));
121
122 __radix_tree_lookup(&mapping->page_tree, page->index, &node, &slot);
123
124 if (shadow) {
125 mapping->nrshadows++;
126 /*
127 * Make sure the nrshadows update is committed before
128 * the nrpages update so that final truncate racing
129 * with reclaim does not see both counters 0 at the
130 * same time and miss a shadow entry.
131 */
132 smp_wmb();
133 }
134 mapping->nrpages--;
135
136 if (!node) {
137 /* Clear direct pointer tags in root node */
138 mapping->page_tree.gfp_mask &= __GFP_BITS_MASK;
139 radix_tree_replace_slot(slot, shadow);
140 return;
141 }
142
143 /* Clear tree tags for the removed page */
144 index = page->index;
145 offset = index & RADIX_TREE_MAP_MASK;
146 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
147 if (test_bit(offset, node->tags[tag]))
148 radix_tree_tag_clear(&mapping->page_tree, index, tag);
149 }
150
151 /* Delete page, swap shadow entry */
152 radix_tree_replace_slot(slot, shadow);
153 workingset_node_pages_dec(node);
154 if (shadow)
155 workingset_node_shadows_inc(node);
156 else
157 if (__radix_tree_delete_node(&mapping->page_tree, node))
158 return;
159
160 /*
161 * Track node that only contains shadow entries.
162 *
163 * Avoid acquiring the list_lru lock if already tracked. The
164 * list_empty() test is safe as node->private_list is
165 * protected by mapping->tree_lock.
166 */
167 if (!workingset_node_pages(node) &&
168 list_empty(&node->private_list)) {
169 node->private_data = mapping;
170 list_lru_add(&workingset_shadow_nodes, &node->private_list);
171 }
172 }
173
174 /*
175 * Delete a page from the page cache and free it. Caller has to make
176 * sure the page is locked and that nobody else uses it - or that usage
177 * is safe. The caller must hold the mapping's tree_lock.
178 */
179 void __delete_from_page_cache(struct page *page, void *shadow)
180 {
181 struct address_space *mapping = page->mapping;
182
183 trace_mm_filemap_delete_from_page_cache(page);
184 /*
185 * if we're uptodate, flush out into the cleancache, otherwise
186 * invalidate any existing cleancache entries. We can't leave
187 * stale data around in the cleancache once our page is gone
188 */
189 if (PageUptodate(page) && PageMappedToDisk(page))
190 cleancache_put_page(page);
191 else
192 cleancache_invalidate_page(mapping, page);
193
194 page_cache_tree_delete(mapping, page, shadow);
195
196 page->mapping = NULL;
197 /* Leave page->index set: truncation lookup relies upon it */
198
199 __dec_zone_page_state(page, NR_FILE_PAGES);
200 if (PageSwapBacked(page))
201 __dec_zone_page_state(page, NR_SHMEM);
202 BUG_ON(page_mapped(page));
203
204 /*
205 * Some filesystems seem to re-dirty the page even after
206 * the VM has canceled the dirty bit (eg ext3 journaling).
207 *
208 * Fix it up by doing a final dirty accounting check after
209 * having removed the page entirely.
210 */
211 if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
212 dec_zone_page_state(page, NR_FILE_DIRTY);
213 dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
214 }
215 }
216
217 /**
218 * delete_from_page_cache - delete page from page cache
219 * @page: the page which the kernel is trying to remove from page cache
220 *
221 * This must be called only on pages that have been verified to be in the page
222 * cache and locked. It will never put the page into the free list, the caller
223 * has a reference on the page.
224 */
225 void delete_from_page_cache(struct page *page)
226 {
227 struct address_space *mapping = page->mapping;
228 void (*freepage)(struct page *);
229
230 BUG_ON(!PageLocked(page));
231
232 freepage = mapping->a_ops->freepage;
233 spin_lock_irq(&mapping->tree_lock);
234 __delete_from_page_cache(page, NULL);
235 spin_unlock_irq(&mapping->tree_lock);
236 mem_cgroup_uncharge_cache_page(page);
237
238 if (freepage)
239 freepage(page);
240 page_cache_release(page);
241 }
242 EXPORT_SYMBOL(delete_from_page_cache);
243
244 static int filemap_check_errors(struct address_space *mapping)
245 {
246 int ret = 0;
247 /* Check for outstanding write errors */
248 if (test_bit(AS_ENOSPC, &mapping->flags) &&
249 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
250 ret = -ENOSPC;
251 if (test_bit(AS_EIO, &mapping->flags) &&
252 test_and_clear_bit(AS_EIO, &mapping->flags))
253 ret = -EIO;
254 return ret;
255 }
256
257 /**
258 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
259 * @mapping: address space structure to write
260 * @start: offset in bytes where the range starts
261 * @end: offset in bytes where the range ends (inclusive)
262 * @sync_mode: enable synchronous operation
263 *
264 * Start writeback against all of a mapping's dirty pages that lie
265 * within the byte offsets <start, end> inclusive.
266 *
267 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
268 * opposed to a regular memory cleansing writeback. The difference between
269 * these two operations is that if a dirty page/buffer is encountered, it must
270 * be waited upon, and not just skipped over.
271 */
272 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
273 loff_t end, int sync_mode)
274 {
275 int ret;
276 struct writeback_control wbc = {
277 .sync_mode = sync_mode,
278 .nr_to_write = LONG_MAX,
279 .range_start = start,
280 .range_end = end,
281 };
282
283 if (!mapping_cap_writeback_dirty(mapping))
284 return 0;
285
286 ret = do_writepages(mapping, &wbc);
287 return ret;
288 }
289
290 static inline int __filemap_fdatawrite(struct address_space *mapping,
291 int sync_mode)
292 {
293 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
294 }
295
296 int filemap_fdatawrite(struct address_space *mapping)
297 {
298 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
299 }
300 EXPORT_SYMBOL(filemap_fdatawrite);
301
302 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
303 loff_t end)
304 {
305 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
306 }
307 EXPORT_SYMBOL(filemap_fdatawrite_range);
308
309 /**
310 * filemap_flush - mostly a non-blocking flush
311 * @mapping: target address_space
312 *
313 * This is a mostly non-blocking flush. Not suitable for data-integrity
314 * purposes - I/O may not be started against all dirty pages.
315 */
316 int filemap_flush(struct address_space *mapping)
317 {
318 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
319 }
320 EXPORT_SYMBOL(filemap_flush);
321
322 /**
323 * filemap_fdatawait_range - wait for writeback to complete
324 * @mapping: address space structure to wait for
325 * @start_byte: offset in bytes where the range starts
326 * @end_byte: offset in bytes where the range ends (inclusive)
327 *
328 * Walk the list of under-writeback pages of the given address space
329 * in the given range and wait for all of them.
330 */
331 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
332 loff_t end_byte)
333 {
334 pgoff_t index = start_byte >> PAGE_CACHE_SHIFT;
335 pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
336 struct pagevec pvec;
337 int nr_pages;
338 int ret2, ret = 0;
339
340 if (end_byte < start_byte)
341 goto out;
342
343 pagevec_init(&pvec, 0);
344 while ((index <= end) &&
345 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
346 PAGECACHE_TAG_WRITEBACK,
347 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
348 unsigned i;
349
350 for (i = 0; i < nr_pages; i++) {
351 struct page *page = pvec.pages[i];
352
353 /* until radix tree lookup accepts end_index */
354 if (page->index > end)
355 continue;
356
357 wait_on_page_writeback(page);
358 if (TestClearPageError(page))
359 ret = -EIO;
360 }
361 pagevec_release(&pvec);
362 cond_resched();
363 }
364 out:
365 ret2 = filemap_check_errors(mapping);
366 if (!ret)
367 ret = ret2;
368
369 return ret;
370 }
371 EXPORT_SYMBOL(filemap_fdatawait_range);
372
373 /**
374 * filemap_fdatawait - wait for all under-writeback pages to complete
375 * @mapping: address space structure to wait for
376 *
377 * Walk the list of under-writeback pages of the given address space
378 * and wait for all of them.
379 */
380 int filemap_fdatawait(struct address_space *mapping)
381 {
382 loff_t i_size = i_size_read(mapping->host);
383
384 if (i_size == 0)
385 return 0;
386
387 return filemap_fdatawait_range(mapping, 0, i_size - 1);
388 }
389 EXPORT_SYMBOL(filemap_fdatawait);
390
391 int filemap_write_and_wait(struct address_space *mapping)
392 {
393 int err = 0;
394
395 if (mapping->nrpages) {
396 err = filemap_fdatawrite(mapping);
397 /*
398 * Even if the above returned error, the pages may be
399 * written partially (e.g. -ENOSPC), so we wait for it.
400 * But the -EIO is special case, it may indicate the worst
401 * thing (e.g. bug) happened, so we avoid waiting for it.
402 */
403 if (err != -EIO) {
404 int err2 = filemap_fdatawait(mapping);
405 if (!err)
406 err = err2;
407 }
408 } else {
409 err = filemap_check_errors(mapping);
410 }
411 return err;
412 }
413 EXPORT_SYMBOL(filemap_write_and_wait);
414
415 /**
416 * filemap_write_and_wait_range - write out & wait on a file range
417 * @mapping: the address_space for the pages
418 * @lstart: offset in bytes where the range starts
419 * @lend: offset in bytes where the range ends (inclusive)
420 *
421 * Write out and wait upon file offsets lstart->lend, inclusive.
422 *
423 * Note that `lend' is inclusive (describes the last byte to be written) so
424 * that this function can be used to write to the very end-of-file (end = -1).
425 */
426 int filemap_write_and_wait_range(struct address_space *mapping,
427 loff_t lstart, loff_t lend)
428 {
429 int err = 0;
430
431 if (mapping->nrpages) {
432 err = __filemap_fdatawrite_range(mapping, lstart, lend,
433 WB_SYNC_ALL);
434 /* See comment of filemap_write_and_wait() */
435 if (err != -EIO) {
436 int err2 = filemap_fdatawait_range(mapping,
437 lstart, lend);
438 if (!err)
439 err = err2;
440 }
441 } else {
442 err = filemap_check_errors(mapping);
443 }
444 return err;
445 }
446 EXPORT_SYMBOL(filemap_write_and_wait_range);
447
448 /**
449 * replace_page_cache_page - replace a pagecache page with a new one
450 * @old: page to be replaced
451 * @new: page to replace with
452 * @gfp_mask: allocation mode
453 *
454 * This function replaces a page in the pagecache with a new one. On
455 * success it acquires the pagecache reference for the new page and
456 * drops it for the old page. Both the old and new pages must be
457 * locked. This function does not add the new page to the LRU, the
458 * caller must do that.
459 *
460 * The remove + add is atomic. The only way this function can fail is
461 * memory allocation failure.
462 */
463 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
464 {
465 int error;
466
467 VM_BUG_ON_PAGE(!PageLocked(old), old);
468 VM_BUG_ON_PAGE(!PageLocked(new), new);
469 VM_BUG_ON_PAGE(new->mapping, new);
470
471 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
472 if (!error) {
473 struct address_space *mapping = old->mapping;
474 void (*freepage)(struct page *);
475
476 pgoff_t offset = old->index;
477 freepage = mapping->a_ops->freepage;
478
479 page_cache_get(new);
480 new->mapping = mapping;
481 new->index = offset;
482
483 spin_lock_irq(&mapping->tree_lock);
484 __delete_from_page_cache(old, NULL);
485 error = radix_tree_insert(&mapping->page_tree, offset, new);
486 BUG_ON(error);
487 mapping->nrpages++;
488 __inc_zone_page_state(new, NR_FILE_PAGES);
489 if (PageSwapBacked(new))
490 __inc_zone_page_state(new, NR_SHMEM);
491 spin_unlock_irq(&mapping->tree_lock);
492 /* mem_cgroup codes must not be called under tree_lock */
493 mem_cgroup_replace_page_cache(old, new);
494 radix_tree_preload_end();
495 if (freepage)
496 freepage(old);
497 page_cache_release(old);
498 }
499
500 return error;
501 }
502 EXPORT_SYMBOL_GPL(replace_page_cache_page);
503
504 static int page_cache_tree_insert(struct address_space *mapping,
505 struct page *page, void **shadowp)
506 {
507 struct radix_tree_node *node;
508 void **slot;
509 int error;
510
511 error = __radix_tree_create(&mapping->page_tree, page->index,
512 &node, &slot);
513 if (error)
514 return error;
515 if (*slot) {
516 void *p;
517
518 p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
519 if (!radix_tree_exceptional_entry(p))
520 return -EEXIST;
521 if (shadowp)
522 *shadowp = p;
523 mapping->nrshadows--;
524 if (node)
525 workingset_node_shadows_dec(node);
526 }
527 radix_tree_replace_slot(slot, page);
528 mapping->nrpages++;
529 if (node) {
530 workingset_node_pages_inc(node);
531 /*
532 * Don't track node that contains actual pages.
533 *
534 * Avoid acquiring the list_lru lock if already
535 * untracked. The list_empty() test is safe as
536 * node->private_list is protected by
537 * mapping->tree_lock.
538 */
539 if (!list_empty(&node->private_list))
540 list_lru_del(&workingset_shadow_nodes,
541 &node->private_list);
542 }
543 return 0;
544 }
545
546 static int __add_to_page_cache_locked(struct page *page,
547 struct address_space *mapping,
548 pgoff_t offset, gfp_t gfp_mask,
549 void **shadowp)
550 {
551 int error;
552
553 VM_BUG_ON_PAGE(!PageLocked(page), page);
554 VM_BUG_ON_PAGE(PageSwapBacked(page), page);
555
556 error = mem_cgroup_charge_file(page, current->mm,
557 gfp_mask & GFP_RECLAIM_MASK);
558 if (error)
559 return error;
560
561 error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
562 if (error) {
563 mem_cgroup_uncharge_cache_page(page);
564 return error;
565 }
566
567 page_cache_get(page);
568 page->mapping = mapping;
569 page->index = offset;
570
571 spin_lock_irq(&mapping->tree_lock);
572 error = page_cache_tree_insert(mapping, page, shadowp);
573 radix_tree_preload_end();
574 if (unlikely(error))
575 goto err_insert;
576 __inc_zone_page_state(page, NR_FILE_PAGES);
577 spin_unlock_irq(&mapping->tree_lock);
578 trace_mm_filemap_add_to_page_cache(page);
579 return 0;
580 err_insert:
581 page->mapping = NULL;
582 /* Leave page->index set: truncation relies upon it */
583 spin_unlock_irq(&mapping->tree_lock);
584 mem_cgroup_uncharge_cache_page(page);
585 page_cache_release(page);
586 return error;
587 }
588
589 /**
590 * add_to_page_cache_locked - add a locked page to the pagecache
591 * @page: page to add
592 * @mapping: the page's address_space
593 * @offset: page index
594 * @gfp_mask: page allocation mode
595 *
596 * This function is used to add a page to the pagecache. It must be locked.
597 * This function does not add the page to the LRU. The caller must do that.
598 */
599 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
600 pgoff_t offset, gfp_t gfp_mask)
601 {
602 return __add_to_page_cache_locked(page, mapping, offset,
603 gfp_mask, NULL);
604 }
605 EXPORT_SYMBOL(add_to_page_cache_locked);
606
607 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
608 pgoff_t offset, gfp_t gfp_mask)
609 {
610 void *shadow = NULL;
611 int ret;
612
613 __set_page_locked(page);
614 ret = __add_to_page_cache_locked(page, mapping, offset,
615 gfp_mask, &shadow);
616 if (unlikely(ret))
617 __clear_page_locked(page);
618 else {
619 /*
620 * The page might have been evicted from cache only
621 * recently, in which case it should be activated like
622 * any other repeatedly accessed page.
623 */
624 if (shadow && workingset_refault(shadow)) {
625 SetPageActive(page);
626 workingset_activation(page);
627 } else
628 ClearPageActive(page);
629 lru_cache_add(page);
630 }
631 return ret;
632 }
633 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
634
635 #ifdef CONFIG_NUMA
636 struct page *__page_cache_alloc(gfp_t gfp)
637 {
638 int n;
639 struct page *page;
640
641 if (cpuset_do_page_mem_spread()) {
642 unsigned int cpuset_mems_cookie;
643 do {
644 cpuset_mems_cookie = read_mems_allowed_begin();
645 n = cpuset_mem_spread_node();
646 page = alloc_pages_exact_node(n, gfp, 0);
647 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
648
649 return page;
650 }
651 return alloc_pages(gfp, 0);
652 }
653 EXPORT_SYMBOL(__page_cache_alloc);
654 #endif
655
656 /*
657 * In order to wait for pages to become available there must be
658 * waitqueues associated with pages. By using a hash table of
659 * waitqueues where the bucket discipline is to maintain all
660 * waiters on the same queue and wake all when any of the pages
661 * become available, and for the woken contexts to check to be
662 * sure the appropriate page became available, this saves space
663 * at a cost of "thundering herd" phenomena during rare hash
664 * collisions.
665 */
666 static wait_queue_head_t *page_waitqueue(struct page *page)
667 {
668 const struct zone *zone = page_zone(page);
669
670 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
671 }
672
673 static inline void wake_up_page(struct page *page, int bit)
674 {
675 __wake_up_bit(page_waitqueue(page), &page->flags, bit);
676 }
677
678 void wait_on_page_bit(struct page *page, int bit_nr)
679 {
680 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
681
682 if (test_bit(bit_nr, &page->flags))
683 __wait_on_bit(page_waitqueue(page), &wait, bit_wait_io,
684 TASK_UNINTERRUPTIBLE);
685 }
686 EXPORT_SYMBOL(wait_on_page_bit);
687
688 int wait_on_page_bit_killable(struct page *page, int bit_nr)
689 {
690 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
691
692 if (!test_bit(bit_nr, &page->flags))
693 return 0;
694
695 return __wait_on_bit(page_waitqueue(page), &wait,
696 bit_wait_io, TASK_KILLABLE);
697 }
698
699 /**
700 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
701 * @page: Page defining the wait queue of interest
702 * @waiter: Waiter to add to the queue
703 *
704 * Add an arbitrary @waiter to the wait queue for the nominated @page.
705 */
706 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
707 {
708 wait_queue_head_t *q = page_waitqueue(page);
709 unsigned long flags;
710
711 spin_lock_irqsave(&q->lock, flags);
712 __add_wait_queue(q, waiter);
713 spin_unlock_irqrestore(&q->lock, flags);
714 }
715 EXPORT_SYMBOL_GPL(add_page_wait_queue);
716
717 /**
718 * unlock_page - unlock a locked page
719 * @page: the page
720 *
721 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
722 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
723 * mechananism between PageLocked pages and PageWriteback pages is shared.
724 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
725 *
726 * The mb is necessary to enforce ordering between the clear_bit and the read
727 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
728 */
729 void unlock_page(struct page *page)
730 {
731 VM_BUG_ON_PAGE(!PageLocked(page), page);
732 clear_bit_unlock(PG_locked, &page->flags);
733 smp_mb__after_atomic();
734 wake_up_page(page, PG_locked);
735 }
736 EXPORT_SYMBOL(unlock_page);
737
738 /**
739 * end_page_writeback - end writeback against a page
740 * @page: the page
741 */
742 void end_page_writeback(struct page *page)
743 {
744 /*
745 * TestClearPageReclaim could be used here but it is an atomic
746 * operation and overkill in this particular case. Failing to
747 * shuffle a page marked for immediate reclaim is too mild to
748 * justify taking an atomic operation penalty at the end of
749 * ever page writeback.
750 */
751 if (PageReclaim(page)) {
752 ClearPageReclaim(page);
753 rotate_reclaimable_page(page);
754 }
755
756 if (!test_clear_page_writeback(page))
757 BUG();
758
759 smp_mb__after_atomic();
760 wake_up_page(page, PG_writeback);
761 }
762 EXPORT_SYMBOL(end_page_writeback);
763
764 /*
765 * After completing I/O on a page, call this routine to update the page
766 * flags appropriately
767 */
768 void page_endio(struct page *page, int rw, int err)
769 {
770 if (rw == READ) {
771 if (!err) {
772 SetPageUptodate(page);
773 } else {
774 ClearPageUptodate(page);
775 SetPageError(page);
776 }
777 unlock_page(page);
778 } else { /* rw == WRITE */
779 if (err) {
780 SetPageError(page);
781 if (page->mapping)
782 mapping_set_error(page->mapping, err);
783 }
784 end_page_writeback(page);
785 }
786 }
787 EXPORT_SYMBOL_GPL(page_endio);
788
789 /**
790 * __lock_page - get a lock on the page, assuming we need to sleep to get it
791 * @page: the page to lock
792 */
793 void __lock_page(struct page *page)
794 {
795 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
796
797 __wait_on_bit_lock(page_waitqueue(page), &wait, bit_wait_io,
798 TASK_UNINTERRUPTIBLE);
799 }
800 EXPORT_SYMBOL(__lock_page);
801
802 int __lock_page_killable(struct page *page)
803 {
804 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
805
806 return __wait_on_bit_lock(page_waitqueue(page), &wait,
807 bit_wait_io, TASK_KILLABLE);
808 }
809 EXPORT_SYMBOL_GPL(__lock_page_killable);
810
811 /*
812 * Return values:
813 * 1 - page is locked; mmap_sem is still held.
814 * 0 - page is not locked.
815 * mmap_sem has been released (up_read()), unless flags had both
816 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
817 * which case mmap_sem is still held.
818 *
819 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
820 * with the page locked and the mmap_sem unperturbed.
821 */
822 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
823 unsigned int flags)
824 {
825 if (flags & FAULT_FLAG_ALLOW_RETRY) {
826 /*
827 * CAUTION! In this case, mmap_sem is not released
828 * even though return 0.
829 */
830 if (flags & FAULT_FLAG_RETRY_NOWAIT)
831 return 0;
832
833 up_read(&mm->mmap_sem);
834 if (flags & FAULT_FLAG_KILLABLE)
835 wait_on_page_locked_killable(page);
836 else
837 wait_on_page_locked(page);
838 return 0;
839 } else {
840 if (flags & FAULT_FLAG_KILLABLE) {
841 int ret;
842
843 ret = __lock_page_killable(page);
844 if (ret) {
845 up_read(&mm->mmap_sem);
846 return 0;
847 }
848 } else
849 __lock_page(page);
850 return 1;
851 }
852 }
853
854 /**
855 * page_cache_next_hole - find the next hole (not-present entry)
856 * @mapping: mapping
857 * @index: index
858 * @max_scan: maximum range to search
859 *
860 * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
861 * lowest indexed hole.
862 *
863 * Returns: the index of the hole if found, otherwise returns an index
864 * outside of the set specified (in which case 'return - index >=
865 * max_scan' will be true). In rare cases of index wrap-around, 0 will
866 * be returned.
867 *
868 * page_cache_next_hole may be called under rcu_read_lock. However,
869 * like radix_tree_gang_lookup, this will not atomically search a
870 * snapshot of the tree at a single point in time. For example, if a
871 * hole is created at index 5, then subsequently a hole is created at
872 * index 10, page_cache_next_hole covering both indexes may return 10
873 * if called under rcu_read_lock.
874 */
875 pgoff_t page_cache_next_hole(struct address_space *mapping,
876 pgoff_t index, unsigned long max_scan)
877 {
878 unsigned long i;
879
880 for (i = 0; i < max_scan; i++) {
881 struct page *page;
882
883 page = radix_tree_lookup(&mapping->page_tree, index);
884 if (!page || radix_tree_exceptional_entry(page))
885 break;
886 index++;
887 if (index == 0)
888 break;
889 }
890
891 return index;
892 }
893 EXPORT_SYMBOL(page_cache_next_hole);
894
895 /**
896 * page_cache_prev_hole - find the prev hole (not-present entry)
897 * @mapping: mapping
898 * @index: index
899 * @max_scan: maximum range to search
900 *
901 * Search backwards in the range [max(index-max_scan+1, 0), index] for
902 * the first hole.
903 *
904 * Returns: the index of the hole if found, otherwise returns an index
905 * outside of the set specified (in which case 'index - return >=
906 * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
907 * will be returned.
908 *
909 * page_cache_prev_hole may be called under rcu_read_lock. However,
910 * like radix_tree_gang_lookup, this will not atomically search a
911 * snapshot of the tree at a single point in time. For example, if a
912 * hole is created at index 10, then subsequently a hole is created at
913 * index 5, page_cache_prev_hole covering both indexes may return 5 if
914 * called under rcu_read_lock.
915 */
916 pgoff_t page_cache_prev_hole(struct address_space *mapping,
917 pgoff_t index, unsigned long max_scan)
918 {
919 unsigned long i;
920
921 for (i = 0; i < max_scan; i++) {
922 struct page *page;
923
924 page = radix_tree_lookup(&mapping->page_tree, index);
925 if (!page || radix_tree_exceptional_entry(page))
926 break;
927 index--;
928 if (index == ULONG_MAX)
929 break;
930 }
931
932 return index;
933 }
934 EXPORT_SYMBOL(page_cache_prev_hole);
935
936 /**
937 * find_get_entry - find and get a page cache entry
938 * @mapping: the address_space to search
939 * @offset: the page cache index
940 *
941 * Looks up the page cache slot at @mapping & @offset. If there is a
942 * page cache page, it is returned with an increased refcount.
943 *
944 * If the slot holds a shadow entry of a previously evicted page, or a
945 * swap entry from shmem/tmpfs, it is returned.
946 *
947 * Otherwise, %NULL is returned.
948 */
949 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
950 {
951 void **pagep;
952 struct page *page;
953
954 rcu_read_lock();
955 repeat:
956 page = NULL;
957 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
958 if (pagep) {
959 page = radix_tree_deref_slot(pagep);
960 if (unlikely(!page))
961 goto out;
962 if (radix_tree_exception(page)) {
963 if (radix_tree_deref_retry(page))
964 goto repeat;
965 /*
966 * A shadow entry of a recently evicted page,
967 * or a swap entry from shmem/tmpfs. Return
968 * it without attempting to raise page count.
969 */
970 goto out;
971 }
972 if (!page_cache_get_speculative(page))
973 goto repeat;
974
975 /*
976 * Has the page moved?
977 * This is part of the lockless pagecache protocol. See
978 * include/linux/pagemap.h for details.
979 */
980 if (unlikely(page != *pagep)) {
981 page_cache_release(page);
982 goto repeat;
983 }
984 }
985 out:
986 rcu_read_unlock();
987
988 return page;
989 }
990 EXPORT_SYMBOL(find_get_entry);
991
992 /**
993 * find_lock_entry - locate, pin and lock a page cache entry
994 * @mapping: the address_space to search
995 * @offset: the page cache index
996 *
997 * Looks up the page cache slot at @mapping & @offset. If there is a
998 * page cache page, it is returned locked and with an increased
999 * refcount.
1000 *
1001 * If the slot holds a shadow entry of a previously evicted page, or a
1002 * swap entry from shmem/tmpfs, it is returned.
1003 *
1004 * Otherwise, %NULL is returned.
1005 *
1006 * find_lock_entry() may sleep.
1007 */
1008 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1009 {
1010 struct page *page;
1011
1012 repeat:
1013 page = find_get_entry(mapping, offset);
1014 if (page && !radix_tree_exception(page)) {
1015 lock_page(page);
1016 /* Has the page been truncated? */
1017 if (unlikely(page->mapping != mapping)) {
1018 unlock_page(page);
1019 page_cache_release(page);
1020 goto repeat;
1021 }
1022 VM_BUG_ON_PAGE(page->index != offset, page);
1023 }
1024 return page;
1025 }
1026 EXPORT_SYMBOL(find_lock_entry);
1027
1028 /**
1029 * pagecache_get_page - find and get a page reference
1030 * @mapping: the address_space to search
1031 * @offset: the page index
1032 * @fgp_flags: PCG flags
1033 * @cache_gfp_mask: gfp mask to use for the page cache data page allocation
1034 * @radix_gfp_mask: gfp mask to use for radix tree node allocation
1035 *
1036 * Looks up the page cache slot at @mapping & @offset.
1037 *
1038 * PCG flags modify how the page is returned.
1039 *
1040 * FGP_ACCESSED: the page will be marked accessed
1041 * FGP_LOCK: Page is return locked
1042 * FGP_CREAT: If page is not present then a new page is allocated using
1043 * @cache_gfp_mask and added to the page cache and the VM's LRU
1044 * list. If radix tree nodes are allocated during page cache
1045 * insertion then @radix_gfp_mask is used. The page is returned
1046 * locked and with an increased refcount. Otherwise, %NULL is
1047 * returned.
1048 *
1049 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1050 * if the GFP flags specified for FGP_CREAT are atomic.
1051 *
1052 * If there is a page cache page, it is returned with an increased refcount.
1053 */
1054 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1055 int fgp_flags, gfp_t cache_gfp_mask, gfp_t radix_gfp_mask)
1056 {
1057 struct page *page;
1058
1059 repeat:
1060 page = find_get_entry(mapping, offset);
1061 if (radix_tree_exceptional_entry(page))
1062 page = NULL;
1063 if (!page)
1064 goto no_page;
1065
1066 if (fgp_flags & FGP_LOCK) {
1067 if (fgp_flags & FGP_NOWAIT) {
1068 if (!trylock_page(page)) {
1069 page_cache_release(page);
1070 return NULL;
1071 }
1072 } else {
1073 lock_page(page);
1074 }
1075
1076 /* Has the page been truncated? */
1077 if (unlikely(page->mapping != mapping)) {
1078 unlock_page(page);
1079 page_cache_release(page);
1080 goto repeat;
1081 }
1082 VM_BUG_ON_PAGE(page->index != offset, page);
1083 }
1084
1085 if (page && (fgp_flags & FGP_ACCESSED))
1086 mark_page_accessed(page);
1087
1088 no_page:
1089 if (!page && (fgp_flags & FGP_CREAT)) {
1090 int err;
1091 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1092 cache_gfp_mask |= __GFP_WRITE;
1093 if (fgp_flags & FGP_NOFS) {
1094 cache_gfp_mask &= ~__GFP_FS;
1095 radix_gfp_mask &= ~__GFP_FS;
1096 }
1097
1098 page = __page_cache_alloc(cache_gfp_mask);
1099 if (!page)
1100 return NULL;
1101
1102 if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1103 fgp_flags |= FGP_LOCK;
1104
1105 /* Init accessed so avoid atomic mark_page_accessed later */
1106 if (fgp_flags & FGP_ACCESSED)
1107 __SetPageReferenced(page);
1108
1109 err = add_to_page_cache_lru(page, mapping, offset, radix_gfp_mask);
1110 if (unlikely(err)) {
1111 page_cache_release(page);
1112 page = NULL;
1113 if (err == -EEXIST)
1114 goto repeat;
1115 }
1116 }
1117
1118 return page;
1119 }
1120 EXPORT_SYMBOL(pagecache_get_page);
1121
1122 /**
1123 * find_get_entries - gang pagecache lookup
1124 * @mapping: The address_space to search
1125 * @start: The starting page cache index
1126 * @nr_entries: The maximum number of entries
1127 * @entries: Where the resulting entries are placed
1128 * @indices: The cache indices corresponding to the entries in @entries
1129 *
1130 * find_get_entries() will search for and return a group of up to
1131 * @nr_entries entries in the mapping. The entries are placed at
1132 * @entries. find_get_entries() takes a reference against any actual
1133 * pages it returns.
1134 *
1135 * The search returns a group of mapping-contiguous page cache entries
1136 * with ascending indexes. There may be holes in the indices due to
1137 * not-present pages.
1138 *
1139 * Any shadow entries of evicted pages, or swap entries from
1140 * shmem/tmpfs, are included in the returned array.
1141 *
1142 * find_get_entries() returns the number of pages and shadow entries
1143 * which were found.
1144 */
1145 unsigned find_get_entries(struct address_space *mapping,
1146 pgoff_t start, unsigned int nr_entries,
1147 struct page **entries, pgoff_t *indices)
1148 {
1149 void **slot;
1150 unsigned int ret = 0;
1151 struct radix_tree_iter iter;
1152
1153 if (!nr_entries)
1154 return 0;
1155
1156 rcu_read_lock();
1157 restart:
1158 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1159 struct page *page;
1160 repeat:
1161 page = radix_tree_deref_slot(slot);
1162 if (unlikely(!page))
1163 continue;
1164 if (radix_tree_exception(page)) {
1165 if (radix_tree_deref_retry(page))
1166 goto restart;
1167 /*
1168 * A shadow entry of a recently evicted page,
1169 * or a swap entry from shmem/tmpfs. Return
1170 * it without attempting to raise page count.
1171 */
1172 goto export;
1173 }
1174 if (!page_cache_get_speculative(page))
1175 goto repeat;
1176
1177 /* Has the page moved? */
1178 if (unlikely(page != *slot)) {
1179 page_cache_release(page);
1180 goto repeat;
1181 }
1182 export:
1183 indices[ret] = iter.index;
1184 entries[ret] = page;
1185 if (++ret == nr_entries)
1186 break;
1187 }
1188 rcu_read_unlock();
1189 return ret;
1190 }
1191
1192 /**
1193 * find_get_pages - gang pagecache lookup
1194 * @mapping: The address_space to search
1195 * @start: The starting page index
1196 * @nr_pages: The maximum number of pages
1197 * @pages: Where the resulting pages are placed
1198 *
1199 * find_get_pages() will search for and return a group of up to
1200 * @nr_pages pages in the mapping. The pages are placed at @pages.
1201 * find_get_pages() takes a reference against the returned pages.
1202 *
1203 * The search returns a group of mapping-contiguous pages with ascending
1204 * indexes. There may be holes in the indices due to not-present pages.
1205 *
1206 * find_get_pages() returns the number of pages which were found.
1207 */
1208 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
1209 unsigned int nr_pages, struct page **pages)
1210 {
1211 struct radix_tree_iter iter;
1212 void **slot;
1213 unsigned ret = 0;
1214
1215 if (unlikely(!nr_pages))
1216 return 0;
1217
1218 rcu_read_lock();
1219 restart:
1220 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1221 struct page *page;
1222 repeat:
1223 page = radix_tree_deref_slot(slot);
1224 if (unlikely(!page))
1225 continue;
1226
1227 if (radix_tree_exception(page)) {
1228 if (radix_tree_deref_retry(page)) {
1229 /*
1230 * Transient condition which can only trigger
1231 * when entry at index 0 moves out of or back
1232 * to root: none yet gotten, safe to restart.
1233 */
1234 WARN_ON(iter.index);
1235 goto restart;
1236 }
1237 /*
1238 * A shadow entry of a recently evicted page,
1239 * or a swap entry from shmem/tmpfs. Skip
1240 * over it.
1241 */
1242 continue;
1243 }
1244
1245 if (!page_cache_get_speculative(page))
1246 goto repeat;
1247
1248 /* Has the page moved? */
1249 if (unlikely(page != *slot)) {
1250 page_cache_release(page);
1251 goto repeat;
1252 }
1253
1254 pages[ret] = page;
1255 if (++ret == nr_pages)
1256 break;
1257 }
1258
1259 rcu_read_unlock();
1260 return ret;
1261 }
1262
1263 /**
1264 * find_get_pages_contig - gang contiguous pagecache lookup
1265 * @mapping: The address_space to search
1266 * @index: The starting page index
1267 * @nr_pages: The maximum number of pages
1268 * @pages: Where the resulting pages are placed
1269 *
1270 * find_get_pages_contig() works exactly like find_get_pages(), except
1271 * that the returned number of pages are guaranteed to be contiguous.
1272 *
1273 * find_get_pages_contig() returns the number of pages which were found.
1274 */
1275 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1276 unsigned int nr_pages, struct page **pages)
1277 {
1278 struct radix_tree_iter iter;
1279 void **slot;
1280 unsigned int ret = 0;
1281
1282 if (unlikely(!nr_pages))
1283 return 0;
1284
1285 rcu_read_lock();
1286 restart:
1287 radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
1288 struct page *page;
1289 repeat:
1290 page = radix_tree_deref_slot(slot);
1291 /* The hole, there no reason to continue */
1292 if (unlikely(!page))
1293 break;
1294
1295 if (radix_tree_exception(page)) {
1296 if (radix_tree_deref_retry(page)) {
1297 /*
1298 * Transient condition which can only trigger
1299 * when entry at index 0 moves out of or back
1300 * to root: none yet gotten, safe to restart.
1301 */
1302 goto restart;
1303 }
1304 /*
1305 * A shadow entry of a recently evicted page,
1306 * or a swap entry from shmem/tmpfs. Stop
1307 * looking for contiguous pages.
1308 */
1309 break;
1310 }
1311
1312 if (!page_cache_get_speculative(page))
1313 goto repeat;
1314
1315 /* Has the page moved? */
1316 if (unlikely(page != *slot)) {
1317 page_cache_release(page);
1318 goto repeat;
1319 }
1320
1321 /*
1322 * must check mapping and index after taking the ref.
1323 * otherwise we can get both false positives and false
1324 * negatives, which is just confusing to the caller.
1325 */
1326 if (page->mapping == NULL || page->index != iter.index) {
1327 page_cache_release(page);
1328 break;
1329 }
1330
1331 pages[ret] = page;
1332 if (++ret == nr_pages)
1333 break;
1334 }
1335 rcu_read_unlock();
1336 return ret;
1337 }
1338 EXPORT_SYMBOL(find_get_pages_contig);
1339
1340 /**
1341 * find_get_pages_tag - find and return pages that match @tag
1342 * @mapping: the address_space to search
1343 * @index: the starting page index
1344 * @tag: the tag index
1345 * @nr_pages: the maximum number of pages
1346 * @pages: where the resulting pages are placed
1347 *
1348 * Like find_get_pages, except we only return pages which are tagged with
1349 * @tag. We update @index to index the next page for the traversal.
1350 */
1351 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1352 int tag, unsigned int nr_pages, struct page **pages)
1353 {
1354 struct radix_tree_iter iter;
1355 void **slot;
1356 unsigned ret = 0;
1357
1358 if (unlikely(!nr_pages))
1359 return 0;
1360
1361 rcu_read_lock();
1362 restart:
1363 radix_tree_for_each_tagged(slot, &mapping->page_tree,
1364 &iter, *index, tag) {
1365 struct page *page;
1366 repeat:
1367 page = radix_tree_deref_slot(slot);
1368 if (unlikely(!page))
1369 continue;
1370
1371 if (radix_tree_exception(page)) {
1372 if (radix_tree_deref_retry(page)) {
1373 /*
1374 * Transient condition which can only trigger
1375 * when entry at index 0 moves out of or back
1376 * to root: none yet gotten, safe to restart.
1377 */
1378 goto restart;
1379 }
1380 /*
1381 * A shadow entry of a recently evicted page.
1382 *
1383 * Those entries should never be tagged, but
1384 * this tree walk is lockless and the tags are
1385 * looked up in bulk, one radix tree node at a
1386 * time, so there is a sizable window for page
1387 * reclaim to evict a page we saw tagged.
1388 *
1389 * Skip over it.
1390 */
1391 continue;
1392 }
1393
1394 if (!page_cache_get_speculative(page))
1395 goto repeat;
1396
1397 /* Has the page moved? */
1398 if (unlikely(page != *slot)) {
1399 page_cache_release(page);
1400 goto repeat;
1401 }
1402
1403 pages[ret] = page;
1404 if (++ret == nr_pages)
1405 break;
1406 }
1407
1408 rcu_read_unlock();
1409
1410 if (ret)
1411 *index = pages[ret - 1]->index + 1;
1412
1413 return ret;
1414 }
1415 EXPORT_SYMBOL(find_get_pages_tag);
1416
1417 /*
1418 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1419 * a _large_ part of the i/o request. Imagine the worst scenario:
1420 *
1421 * ---R__________________________________________B__________
1422 * ^ reading here ^ bad block(assume 4k)
1423 *
1424 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1425 * => failing the whole request => read(R) => read(R+1) =>
1426 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1427 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1428 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1429 *
1430 * It is going insane. Fix it by quickly scaling down the readahead size.
1431 */
1432 static void shrink_readahead_size_eio(struct file *filp,
1433 struct file_ra_state *ra)
1434 {
1435 ra->ra_pages /= 4;
1436 }
1437
1438 /**
1439 * do_generic_file_read - generic file read routine
1440 * @filp: the file to read
1441 * @ppos: current file position
1442 * @iter: data destination
1443 * @written: already copied
1444 *
1445 * This is a generic file read routine, and uses the
1446 * mapping->a_ops->readpage() function for the actual low-level stuff.
1447 *
1448 * This is really ugly. But the goto's actually try to clarify some
1449 * of the logic when it comes to error handling etc.
1450 */
1451 static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos,
1452 struct iov_iter *iter, ssize_t written)
1453 {
1454 struct address_space *mapping = filp->f_mapping;
1455 struct inode *inode = mapping->host;
1456 struct file_ra_state *ra = &filp->f_ra;
1457 pgoff_t index;
1458 pgoff_t last_index;
1459 pgoff_t prev_index;
1460 unsigned long offset; /* offset into pagecache page */
1461 unsigned int prev_offset;
1462 int error = 0;
1463
1464 index = *ppos >> PAGE_CACHE_SHIFT;
1465 prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
1466 prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
1467 last_index = (*ppos + iter->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1468 offset = *ppos & ~PAGE_CACHE_MASK;
1469
1470 for (;;) {
1471 struct page *page;
1472 pgoff_t end_index;
1473 loff_t isize;
1474 unsigned long nr, ret;
1475
1476 cond_resched();
1477 find_page:
1478 page = find_get_page(mapping, index);
1479 if (!page) {
1480 page_cache_sync_readahead(mapping,
1481 ra, filp,
1482 index, last_index - index);
1483 page = find_get_page(mapping, index);
1484 if (unlikely(page == NULL))
1485 goto no_cached_page;
1486 }
1487 if (PageReadahead(page)) {
1488 page_cache_async_readahead(mapping,
1489 ra, filp, page,
1490 index, last_index - index);
1491 }
1492 if (!PageUptodate(page)) {
1493 if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1494 !mapping->a_ops->is_partially_uptodate)
1495 goto page_not_up_to_date;
1496 if (!trylock_page(page))
1497 goto page_not_up_to_date;
1498 /* Did it get truncated before we got the lock? */
1499 if (!page->mapping)
1500 goto page_not_up_to_date_locked;
1501 if (!mapping->a_ops->is_partially_uptodate(page,
1502 offset, iter->count))
1503 goto page_not_up_to_date_locked;
1504 unlock_page(page);
1505 }
1506 page_ok:
1507 /*
1508 * i_size must be checked after we know the page is Uptodate.
1509 *
1510 * Checking i_size after the check allows us to calculate
1511 * the correct value for "nr", which means the zero-filled
1512 * part of the page is not copied back to userspace (unless
1513 * another truncate extends the file - this is desired though).
1514 */
1515
1516 isize = i_size_read(inode);
1517 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1518 if (unlikely(!isize || index > end_index)) {
1519 page_cache_release(page);
1520 goto out;
1521 }
1522
1523 /* nr is the maximum number of bytes to copy from this page */
1524 nr = PAGE_CACHE_SIZE;
1525 if (index == end_index) {
1526 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1527 if (nr <= offset) {
1528 page_cache_release(page);
1529 goto out;
1530 }
1531 }
1532 nr = nr - offset;
1533
1534 /* If users can be writing to this page using arbitrary
1535 * virtual addresses, take care about potential aliasing
1536 * before reading the page on the kernel side.
1537 */
1538 if (mapping_writably_mapped(mapping))
1539 flush_dcache_page(page);
1540
1541 /*
1542 * When a sequential read accesses a page several times,
1543 * only mark it as accessed the first time.
1544 */
1545 if (prev_index != index || offset != prev_offset)
1546 mark_page_accessed(page);
1547 prev_index = index;
1548
1549 /*
1550 * Ok, we have the page, and it's up-to-date, so
1551 * now we can copy it to user space...
1552 */
1553
1554 ret = copy_page_to_iter(page, offset, nr, iter);
1555 offset += ret;
1556 index += offset >> PAGE_CACHE_SHIFT;
1557 offset &= ~PAGE_CACHE_MASK;
1558 prev_offset = offset;
1559
1560 page_cache_release(page);
1561 written += ret;
1562 if (!iov_iter_count(iter))
1563 goto out;
1564 if (ret < nr) {
1565 error = -EFAULT;
1566 goto out;
1567 }
1568 continue;
1569
1570 page_not_up_to_date:
1571 /* Get exclusive access to the page ... */
1572 error = lock_page_killable(page);
1573 if (unlikely(error))
1574 goto readpage_error;
1575
1576 page_not_up_to_date_locked:
1577 /* Did it get truncated before we got the lock? */
1578 if (!page->mapping) {
1579 unlock_page(page);
1580 page_cache_release(page);
1581 continue;
1582 }
1583
1584 /* Did somebody else fill it already? */
1585 if (PageUptodate(page)) {
1586 unlock_page(page);
1587 goto page_ok;
1588 }
1589
1590 readpage:
1591 /*
1592 * A previous I/O error may have been due to temporary
1593 * failures, eg. multipath errors.
1594 * PG_error will be set again if readpage fails.
1595 */
1596 ClearPageError(page);
1597 /* Start the actual read. The read will unlock the page. */
1598 error = mapping->a_ops->readpage(filp, page);
1599
1600 if (unlikely(error)) {
1601 if (error == AOP_TRUNCATED_PAGE) {
1602 page_cache_release(page);
1603 error = 0;
1604 goto find_page;
1605 }
1606 goto readpage_error;
1607 }
1608
1609 if (!PageUptodate(page)) {
1610 error = lock_page_killable(page);
1611 if (unlikely(error))
1612 goto readpage_error;
1613 if (!PageUptodate(page)) {
1614 if (page->mapping == NULL) {
1615 /*
1616 * invalidate_mapping_pages got it
1617 */
1618 unlock_page(page);
1619 page_cache_release(page);
1620 goto find_page;
1621 }
1622 unlock_page(page);
1623 shrink_readahead_size_eio(filp, ra);
1624 error = -EIO;
1625 goto readpage_error;
1626 }
1627 unlock_page(page);
1628 }
1629
1630 goto page_ok;
1631
1632 readpage_error:
1633 /* UHHUH! A synchronous read error occurred. Report it */
1634 page_cache_release(page);
1635 goto out;
1636
1637 no_cached_page:
1638 /*
1639 * Ok, it wasn't cached, so we need to create a new
1640 * page..
1641 */
1642 page = page_cache_alloc_cold(mapping);
1643 if (!page) {
1644 error = -ENOMEM;
1645 goto out;
1646 }
1647 error = add_to_page_cache_lru(page, mapping,
1648 index, GFP_KERNEL);
1649 if (error) {
1650 page_cache_release(page);
1651 if (error == -EEXIST) {
1652 error = 0;
1653 goto find_page;
1654 }
1655 goto out;
1656 }
1657 goto readpage;
1658 }
1659
1660 out:
1661 ra->prev_pos = prev_index;
1662 ra->prev_pos <<= PAGE_CACHE_SHIFT;
1663 ra->prev_pos |= prev_offset;
1664
1665 *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1666 file_accessed(filp);
1667 return written ? written : error;
1668 }
1669
1670 /**
1671 * generic_file_read_iter - generic filesystem read routine
1672 * @iocb: kernel I/O control block
1673 * @iter: destination for the data read
1674 *
1675 * This is the "read_iter()" routine for all filesystems
1676 * that can use the page cache directly.
1677 */
1678 ssize_t
1679 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
1680 {
1681 struct file *file = iocb->ki_filp;
1682 ssize_t retval = 0;
1683 loff_t *ppos = &iocb->ki_pos;
1684 loff_t pos = *ppos;
1685
1686 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1687 if (file->f_flags & O_DIRECT) {
1688 struct address_space *mapping = file->f_mapping;
1689 struct inode *inode = mapping->host;
1690 size_t count = iov_iter_count(iter);
1691 loff_t size;
1692
1693 if (!count)
1694 goto out; /* skip atime */
1695 size = i_size_read(inode);
1696 retval = filemap_write_and_wait_range(mapping, pos,
1697 pos + count - 1);
1698 if (!retval) {
1699 struct iov_iter data = *iter;
1700 retval = mapping->a_ops->direct_IO(READ, iocb, &data, pos);
1701 }
1702
1703 if (retval > 0) {
1704 *ppos = pos + retval;
1705 iov_iter_advance(iter, retval);
1706 }
1707
1708 /*
1709 * Btrfs can have a short DIO read if we encounter
1710 * compressed extents, so if there was an error, or if
1711 * we've already read everything we wanted to, or if
1712 * there was a short read because we hit EOF, go ahead
1713 * and return. Otherwise fallthrough to buffered io for
1714 * the rest of the read.
1715 */
1716 if (retval < 0 || !iov_iter_count(iter) || *ppos >= size) {
1717 file_accessed(file);
1718 goto out;
1719 }
1720 }
1721
1722 retval = do_generic_file_read(file, ppos, iter, retval);
1723 out:
1724 return retval;
1725 }
1726 EXPORT_SYMBOL(generic_file_read_iter);
1727
1728 #ifdef CONFIG_MMU
1729 /**
1730 * page_cache_read - adds requested page to the page cache if not already there
1731 * @file: file to read
1732 * @offset: page index
1733 *
1734 * This adds the requested page to the page cache if it isn't already there,
1735 * and schedules an I/O to read in its contents from disk.
1736 */
1737 static int page_cache_read(struct file *file, pgoff_t offset)
1738 {
1739 struct address_space *mapping = file->f_mapping;
1740 struct page *page;
1741 int ret;
1742
1743 do {
1744 page = page_cache_alloc_cold(mapping);
1745 if (!page)
1746 return -ENOMEM;
1747
1748 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1749 if (ret == 0)
1750 ret = mapping->a_ops->readpage(file, page);
1751 else if (ret == -EEXIST)
1752 ret = 0; /* losing race to add is OK */
1753
1754 page_cache_release(page);
1755
1756 } while (ret == AOP_TRUNCATED_PAGE);
1757
1758 return ret;
1759 }
1760
1761 #define MMAP_LOTSAMISS (100)
1762
1763 /*
1764 * Synchronous readahead happens when we don't even find
1765 * a page in the page cache at all.
1766 */
1767 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1768 struct file_ra_state *ra,
1769 struct file *file,
1770 pgoff_t offset)
1771 {
1772 unsigned long ra_pages;
1773 struct address_space *mapping = file->f_mapping;
1774
1775 /* If we don't want any read-ahead, don't bother */
1776 if (vma->vm_flags & VM_RAND_READ)
1777 return;
1778 if (!ra->ra_pages)
1779 return;
1780
1781 if (vma->vm_flags & VM_SEQ_READ) {
1782 page_cache_sync_readahead(mapping, ra, file, offset,
1783 ra->ra_pages);
1784 return;
1785 }
1786
1787 /* Avoid banging the cache line if not needed */
1788 if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
1789 ra->mmap_miss++;
1790
1791 /*
1792 * Do we miss much more than hit in this file? If so,
1793 * stop bothering with read-ahead. It will only hurt.
1794 */
1795 if (ra->mmap_miss > MMAP_LOTSAMISS)
1796 return;
1797
1798 /*
1799 * mmap read-around
1800 */
1801 ra_pages = max_sane_readahead(ra->ra_pages);
1802 ra->start = max_t(long, 0, offset - ra_pages / 2);
1803 ra->size = ra_pages;
1804 ra->async_size = ra_pages / 4;
1805 ra_submit(ra, mapping, file);
1806 }
1807
1808 /*
1809 * Asynchronous readahead happens when we find the page and PG_readahead,
1810 * so we want to possibly extend the readahead further..
1811 */
1812 static void do_async_mmap_readahead(struct vm_area_struct *vma,
1813 struct file_ra_state *ra,
1814 struct file *file,
1815 struct page *page,
1816 pgoff_t offset)
1817 {
1818 struct address_space *mapping = file->f_mapping;
1819
1820 /* If we don't want any read-ahead, don't bother */
1821 if (vma->vm_flags & VM_RAND_READ)
1822 return;
1823 if (ra->mmap_miss > 0)
1824 ra->mmap_miss--;
1825 if (PageReadahead(page))
1826 page_cache_async_readahead(mapping, ra, file,
1827 page, offset, ra->ra_pages);
1828 }
1829
1830 /**
1831 * filemap_fault - read in file data for page fault handling
1832 * @vma: vma in which the fault was taken
1833 * @vmf: struct vm_fault containing details of the fault
1834 *
1835 * filemap_fault() is invoked via the vma operations vector for a
1836 * mapped memory region to read in file data during a page fault.
1837 *
1838 * The goto's are kind of ugly, but this streamlines the normal case of having
1839 * it in the page cache, and handles the special cases reasonably without
1840 * having a lot of duplicated code.
1841 *
1842 * vma->vm_mm->mmap_sem must be held on entry.
1843 *
1844 * If our return value has VM_FAULT_RETRY set, it's because
1845 * lock_page_or_retry() returned 0.
1846 * The mmap_sem has usually been released in this case.
1847 * See __lock_page_or_retry() for the exception.
1848 *
1849 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
1850 * has not been released.
1851 *
1852 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
1853 */
1854 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1855 {
1856 int error;
1857 struct file *file = vma->vm_file;
1858 struct address_space *mapping = file->f_mapping;
1859 struct file_ra_state *ra = &file->f_ra;
1860 struct inode *inode = mapping->host;
1861 pgoff_t offset = vmf->pgoff;
1862 struct page *page;
1863 loff_t size;
1864 int ret = 0;
1865
1866 size = round_up(i_size_read(inode), PAGE_CACHE_SIZE);
1867 if (offset >= size >> PAGE_CACHE_SHIFT)
1868 return VM_FAULT_SIGBUS;
1869
1870 /*
1871 * Do we have something in the page cache already?
1872 */
1873 page = find_get_page(mapping, offset);
1874 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
1875 /*
1876 * We found the page, so try async readahead before
1877 * waiting for the lock.
1878 */
1879 do_async_mmap_readahead(vma, ra, file, page, offset);
1880 } else if (!page) {
1881 /* No page in the page cache at all */
1882 do_sync_mmap_readahead(vma, ra, file, offset);
1883 count_vm_event(PGMAJFAULT);
1884 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1885 ret = VM_FAULT_MAJOR;
1886 retry_find:
1887 page = find_get_page(mapping, offset);
1888 if (!page)
1889 goto no_cached_page;
1890 }
1891
1892 if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
1893 page_cache_release(page);
1894 return ret | VM_FAULT_RETRY;
1895 }
1896
1897 /* Did it get truncated? */
1898 if (unlikely(page->mapping != mapping)) {
1899 unlock_page(page);
1900 put_page(page);
1901 goto retry_find;
1902 }
1903 VM_BUG_ON_PAGE(page->index != offset, page);
1904
1905 /*
1906 * We have a locked page in the page cache, now we need to check
1907 * that it's up-to-date. If not, it is going to be due to an error.
1908 */
1909 if (unlikely(!PageUptodate(page)))
1910 goto page_not_uptodate;
1911
1912 /*
1913 * Found the page and have a reference on it.
1914 * We must recheck i_size under page lock.
1915 */
1916 size = round_up(i_size_read(inode), PAGE_CACHE_SIZE);
1917 if (unlikely(offset >= size >> PAGE_CACHE_SHIFT)) {
1918 unlock_page(page);
1919 page_cache_release(page);
1920 return VM_FAULT_SIGBUS;
1921 }
1922
1923 vmf->page = page;
1924 return ret | VM_FAULT_LOCKED;
1925
1926 no_cached_page:
1927 /*
1928 * We're only likely to ever get here if MADV_RANDOM is in
1929 * effect.
1930 */
1931 error = page_cache_read(file, offset);
1932
1933 /*
1934 * The page we want has now been added to the page cache.
1935 * In the unlikely event that someone removed it in the
1936 * meantime, we'll just come back here and read it again.
1937 */
1938 if (error >= 0)
1939 goto retry_find;
1940
1941 /*
1942 * An error return from page_cache_read can result if the
1943 * system is low on memory, or a problem occurs while trying
1944 * to schedule I/O.
1945 */
1946 if (error == -ENOMEM)
1947 return VM_FAULT_OOM;
1948 return VM_FAULT_SIGBUS;
1949
1950 page_not_uptodate:
1951 /*
1952 * Umm, take care of errors if the page isn't up-to-date.
1953 * Try to re-read it _once_. We do this synchronously,
1954 * because there really aren't any performance issues here
1955 * and we need to check for errors.
1956 */
1957 ClearPageError(page);
1958 error = mapping->a_ops->readpage(file, page);
1959 if (!error) {
1960 wait_on_page_locked(page);
1961 if (!PageUptodate(page))
1962 error = -EIO;
1963 }
1964 page_cache_release(page);
1965
1966 if (!error || error == AOP_TRUNCATED_PAGE)
1967 goto retry_find;
1968
1969 /* Things didn't work out. Return zero to tell the mm layer so. */
1970 shrink_readahead_size_eio(file, ra);
1971 return VM_FAULT_SIGBUS;
1972 }
1973 EXPORT_SYMBOL(filemap_fault);
1974
1975 void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf)
1976 {
1977 struct radix_tree_iter iter;
1978 void **slot;
1979 struct file *file = vma->vm_file;
1980 struct address_space *mapping = file->f_mapping;
1981 loff_t size;
1982 struct page *page;
1983 unsigned long address = (unsigned long) vmf->virtual_address;
1984 unsigned long addr;
1985 pte_t *pte;
1986
1987 rcu_read_lock();
1988 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, vmf->pgoff) {
1989 if (iter.index > vmf->max_pgoff)
1990 break;
1991 repeat:
1992 page = radix_tree_deref_slot(slot);
1993 if (unlikely(!page))
1994 goto next;
1995 if (radix_tree_exception(page)) {
1996 if (radix_tree_deref_retry(page))
1997 break;
1998 else
1999 goto next;
2000 }
2001
2002 if (!page_cache_get_speculative(page))
2003 goto repeat;
2004
2005 /* Has the page moved? */
2006 if (unlikely(page != *slot)) {
2007 page_cache_release(page);
2008 goto repeat;
2009 }
2010
2011 if (!PageUptodate(page) ||
2012 PageReadahead(page) ||
2013 PageHWPoison(page))
2014 goto skip;
2015 if (!trylock_page(page))
2016 goto skip;
2017
2018 if (page->mapping != mapping || !PageUptodate(page))
2019 goto unlock;
2020
2021 size = round_up(i_size_read(mapping->host), PAGE_CACHE_SIZE);
2022 if (page->index >= size >> PAGE_CACHE_SHIFT)
2023 goto unlock;
2024
2025 pte = vmf->pte + page->index - vmf->pgoff;
2026 if (!pte_none(*pte))
2027 goto unlock;
2028
2029 if (file->f_ra.mmap_miss > 0)
2030 file->f_ra.mmap_miss--;
2031 addr = address + (page->index - vmf->pgoff) * PAGE_SIZE;
2032 do_set_pte(vma, addr, page, pte, false, false);
2033 unlock_page(page);
2034 goto next;
2035 unlock:
2036 unlock_page(page);
2037 skip:
2038 page_cache_release(page);
2039 next:
2040 if (iter.index == vmf->max_pgoff)
2041 break;
2042 }
2043 rcu_read_unlock();
2044 }
2045 EXPORT_SYMBOL(filemap_map_pages);
2046
2047 int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2048 {
2049 struct page *page = vmf->page;
2050 struct inode *inode = file_inode(vma->vm_file);
2051 int ret = VM_FAULT_LOCKED;
2052
2053 sb_start_pagefault(inode->i_sb);
2054 file_update_time(vma->vm_file);
2055 lock_page(page);
2056 if (page->mapping != inode->i_mapping) {
2057 unlock_page(page);
2058 ret = VM_FAULT_NOPAGE;
2059 goto out;
2060 }
2061 /*
2062 * We mark the page dirty already here so that when freeze is in
2063 * progress, we are guaranteed that writeback during freezing will
2064 * see the dirty page and writeprotect it again.
2065 */
2066 set_page_dirty(page);
2067 wait_for_stable_page(page);
2068 out:
2069 sb_end_pagefault(inode->i_sb);
2070 return ret;
2071 }
2072 EXPORT_SYMBOL(filemap_page_mkwrite);
2073
2074 const struct vm_operations_struct generic_file_vm_ops = {
2075 .fault = filemap_fault,
2076 .map_pages = filemap_map_pages,
2077 .page_mkwrite = filemap_page_mkwrite,
2078 .remap_pages = generic_file_remap_pages,
2079 };
2080
2081 /* This is used for a general mmap of a disk file */
2082
2083 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2084 {
2085 struct address_space *mapping = file->f_mapping;
2086
2087 if (!mapping->a_ops->readpage)
2088 return -ENOEXEC;
2089 file_accessed(file);
2090 vma->vm_ops = &generic_file_vm_ops;
2091 return 0;
2092 }
2093
2094 /*
2095 * This is for filesystems which do not implement ->writepage.
2096 */
2097 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2098 {
2099 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2100 return -EINVAL;
2101 return generic_file_mmap(file, vma);
2102 }
2103 #else
2104 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2105 {
2106 return -ENOSYS;
2107 }
2108 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2109 {
2110 return -ENOSYS;
2111 }
2112 #endif /* CONFIG_MMU */
2113
2114 EXPORT_SYMBOL(generic_file_mmap);
2115 EXPORT_SYMBOL(generic_file_readonly_mmap);
2116
2117 static struct page *wait_on_page_read(struct page *page)
2118 {
2119 if (!IS_ERR(page)) {
2120 wait_on_page_locked(page);
2121 if (!PageUptodate(page)) {
2122 page_cache_release(page);
2123 page = ERR_PTR(-EIO);
2124 }
2125 }
2126 return page;
2127 }
2128
2129 static struct page *__read_cache_page(struct address_space *mapping,
2130 pgoff_t index,
2131 int (*filler)(void *, struct page *),
2132 void *data,
2133 gfp_t gfp)
2134 {
2135 struct page *page;
2136 int err;
2137 repeat:
2138 page = find_get_page(mapping, index);
2139 if (!page) {
2140 page = __page_cache_alloc(gfp | __GFP_COLD);
2141 if (!page)
2142 return ERR_PTR(-ENOMEM);
2143 err = add_to_page_cache_lru(page, mapping, index, gfp);
2144 if (unlikely(err)) {
2145 page_cache_release(page);
2146 if (err == -EEXIST)
2147 goto repeat;
2148 /* Presumably ENOMEM for radix tree node */
2149 return ERR_PTR(err);
2150 }
2151 err = filler(data, page);
2152 if (err < 0) {
2153 page_cache_release(page);
2154 page = ERR_PTR(err);
2155 } else {
2156 page = wait_on_page_read(page);
2157 }
2158 }
2159 return page;
2160 }
2161
2162 static struct page *do_read_cache_page(struct address_space *mapping,
2163 pgoff_t index,
2164 int (*filler)(void *, struct page *),
2165 void *data,
2166 gfp_t gfp)
2167
2168 {
2169 struct page *page;
2170 int err;
2171
2172 retry:
2173 page = __read_cache_page(mapping, index, filler, data, gfp);
2174 if (IS_ERR(page))
2175 return page;
2176 if (PageUptodate(page))
2177 goto out;
2178
2179 lock_page(page);
2180 if (!page->mapping) {
2181 unlock_page(page);
2182 page_cache_release(page);
2183 goto retry;
2184 }
2185 if (PageUptodate(page)) {
2186 unlock_page(page);
2187 goto out;
2188 }
2189 err = filler(data, page);
2190 if (err < 0) {
2191 page_cache_release(page);
2192 return ERR_PTR(err);
2193 } else {
2194 page = wait_on_page_read(page);
2195 if (IS_ERR(page))
2196 return page;
2197 }
2198 out:
2199 mark_page_accessed(page);
2200 return page;
2201 }
2202
2203 /**
2204 * read_cache_page - read into page cache, fill it if needed
2205 * @mapping: the page's address_space
2206 * @index: the page index
2207 * @filler: function to perform the read
2208 * @data: first arg to filler(data, page) function, often left as NULL
2209 *
2210 * Read into the page cache. If a page already exists, and PageUptodate() is
2211 * not set, try to fill the page and wait for it to become unlocked.
2212 *
2213 * If the page does not get brought uptodate, return -EIO.
2214 */
2215 struct page *read_cache_page(struct address_space *mapping,
2216 pgoff_t index,
2217 int (*filler)(void *, struct page *),
2218 void *data)
2219 {
2220 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2221 }
2222 EXPORT_SYMBOL(read_cache_page);
2223
2224 /**
2225 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2226 * @mapping: the page's address_space
2227 * @index: the page index
2228 * @gfp: the page allocator flags to use if allocating
2229 *
2230 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2231 * any new page allocations done using the specified allocation flags.
2232 *
2233 * If the page does not get brought uptodate, return -EIO.
2234 */
2235 struct page *read_cache_page_gfp(struct address_space *mapping,
2236 pgoff_t index,
2237 gfp_t gfp)
2238 {
2239 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2240
2241 return do_read_cache_page(mapping, index, filler, NULL, gfp);
2242 }
2243 EXPORT_SYMBOL(read_cache_page_gfp);
2244
2245 /*
2246 * Performs necessary checks before doing a write
2247 *
2248 * Can adjust writing position or amount of bytes to write.
2249 * Returns appropriate error code that caller should return or
2250 * zero in case that write should be allowed.
2251 */
2252 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
2253 {
2254 struct inode *inode = file->f_mapping->host;
2255 unsigned long limit = rlimit(RLIMIT_FSIZE);
2256
2257 if (unlikely(*pos < 0))
2258 return -EINVAL;
2259
2260 if (!isblk) {
2261 /* FIXME: this is for backwards compatibility with 2.4 */
2262 if (file->f_flags & O_APPEND)
2263 *pos = i_size_read(inode);
2264
2265 if (limit != RLIM_INFINITY) {
2266 if (*pos >= limit) {
2267 send_sig(SIGXFSZ, current, 0);
2268 return -EFBIG;
2269 }
2270 if (*count > limit - (typeof(limit))*pos) {
2271 *count = limit - (typeof(limit))*pos;
2272 }
2273 }
2274 }
2275
2276 /*
2277 * LFS rule
2278 */
2279 if (unlikely(*pos + *count > MAX_NON_LFS &&
2280 !(file->f_flags & O_LARGEFILE))) {
2281 if (*pos >= MAX_NON_LFS) {
2282 return -EFBIG;
2283 }
2284 if (*count > MAX_NON_LFS - (unsigned long)*pos) {
2285 *count = MAX_NON_LFS - (unsigned long)*pos;
2286 }
2287 }
2288
2289 /*
2290 * Are we about to exceed the fs block limit ?
2291 *
2292 * If we have written data it becomes a short write. If we have
2293 * exceeded without writing data we send a signal and return EFBIG.
2294 * Linus frestrict idea will clean these up nicely..
2295 */
2296 if (likely(!isblk)) {
2297 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
2298 if (*count || *pos > inode->i_sb->s_maxbytes) {
2299 return -EFBIG;
2300 }
2301 /* zero-length writes at ->s_maxbytes are OK */
2302 }
2303
2304 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
2305 *count = inode->i_sb->s_maxbytes - *pos;
2306 } else {
2307 #ifdef CONFIG_BLOCK
2308 loff_t isize;
2309 if (bdev_read_only(I_BDEV(inode)))
2310 return -EPERM;
2311 isize = i_size_read(inode);
2312 if (*pos >= isize) {
2313 if (*count || *pos > isize)
2314 return -ENOSPC;
2315 }
2316
2317 if (*pos + *count > isize)
2318 *count = isize - *pos;
2319 #else
2320 return -EPERM;
2321 #endif
2322 }
2323 return 0;
2324 }
2325 EXPORT_SYMBOL(generic_write_checks);
2326
2327 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2328 loff_t pos, unsigned len, unsigned flags,
2329 struct page **pagep, void **fsdata)
2330 {
2331 const struct address_space_operations *aops = mapping->a_ops;
2332
2333 return aops->write_begin(file, mapping, pos, len, flags,
2334 pagep, fsdata);
2335 }
2336 EXPORT_SYMBOL(pagecache_write_begin);
2337
2338 int pagecache_write_end(struct file *file, struct address_space *mapping,
2339 loff_t pos, unsigned len, unsigned copied,
2340 struct page *page, void *fsdata)
2341 {
2342 const struct address_space_operations *aops = mapping->a_ops;
2343
2344 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2345 }
2346 EXPORT_SYMBOL(pagecache_write_end);
2347
2348 ssize_t
2349 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from, loff_t pos)
2350 {
2351 struct file *file = iocb->ki_filp;
2352 struct address_space *mapping = file->f_mapping;
2353 struct inode *inode = mapping->host;
2354 ssize_t written;
2355 size_t write_len;
2356 pgoff_t end;
2357 struct iov_iter data;
2358
2359 write_len = iov_iter_count(from);
2360 end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
2361
2362 written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2363 if (written)
2364 goto out;
2365
2366 /*
2367 * After a write we want buffered reads to be sure to go to disk to get
2368 * the new data. We invalidate clean cached page from the region we're
2369 * about to write. We do this *before* the write so that we can return
2370 * without clobbering -EIOCBQUEUED from ->direct_IO().
2371 */
2372 if (mapping->nrpages) {
2373 written = invalidate_inode_pages2_range(mapping,
2374 pos >> PAGE_CACHE_SHIFT, end);
2375 /*
2376 * If a page can not be invalidated, return 0 to fall back
2377 * to buffered write.
2378 */
2379 if (written) {
2380 if (written == -EBUSY)
2381 return 0;
2382 goto out;
2383 }
2384 }
2385
2386 data = *from;
2387 written = mapping->a_ops->direct_IO(WRITE, iocb, &data, pos);
2388
2389 /*
2390 * Finally, try again to invalidate clean pages which might have been
2391 * cached by non-direct readahead, or faulted in by get_user_pages()
2392 * if the source of the write was an mmap'ed region of the file
2393 * we're writing. Either one is a pretty crazy thing to do,
2394 * so we don't support it 100%. If this invalidation
2395 * fails, tough, the write still worked...
2396 */
2397 if (mapping->nrpages) {
2398 invalidate_inode_pages2_range(mapping,
2399 pos >> PAGE_CACHE_SHIFT, end);
2400 }
2401
2402 if (written > 0) {
2403 pos += written;
2404 iov_iter_advance(from, written);
2405 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2406 i_size_write(inode, pos);
2407 mark_inode_dirty(inode);
2408 }
2409 iocb->ki_pos = pos;
2410 }
2411 out:
2412 return written;
2413 }
2414 EXPORT_SYMBOL(generic_file_direct_write);
2415
2416 /*
2417 * Find or create a page at the given pagecache position. Return the locked
2418 * page. This function is specifically for buffered writes.
2419 */
2420 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2421 pgoff_t index, unsigned flags)
2422 {
2423 struct page *page;
2424 int fgp_flags = FGP_LOCK|FGP_ACCESSED|FGP_WRITE|FGP_CREAT;
2425
2426 if (flags & AOP_FLAG_NOFS)
2427 fgp_flags |= FGP_NOFS;
2428
2429 page = pagecache_get_page(mapping, index, fgp_flags,
2430 mapping_gfp_mask(mapping),
2431 GFP_KERNEL);
2432 if (page)
2433 wait_for_stable_page(page);
2434
2435 return page;
2436 }
2437 EXPORT_SYMBOL(grab_cache_page_write_begin);
2438
2439 ssize_t generic_perform_write(struct file *file,
2440 struct iov_iter *i, loff_t pos)
2441 {
2442 struct address_space *mapping = file->f_mapping;
2443 const struct address_space_operations *a_ops = mapping->a_ops;
2444 long status = 0;
2445 ssize_t written = 0;
2446 unsigned int flags = 0;
2447
2448 /*
2449 * Copies from kernel address space cannot fail (NFSD is a big user).
2450 */
2451 if (segment_eq(get_fs(), KERNEL_DS))
2452 flags |= AOP_FLAG_UNINTERRUPTIBLE;
2453
2454 do {
2455 struct page *page;
2456 unsigned long offset; /* Offset into pagecache page */
2457 unsigned long bytes; /* Bytes to write to page */
2458 size_t copied; /* Bytes copied from user */
2459 void *fsdata;
2460
2461 offset = (pos & (PAGE_CACHE_SIZE - 1));
2462 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2463 iov_iter_count(i));
2464
2465 again:
2466 /*
2467 * Bring in the user page that we will copy from _first_.
2468 * Otherwise there's a nasty deadlock on copying from the
2469 * same page as we're writing to, without it being marked
2470 * up-to-date.
2471 *
2472 * Not only is this an optimisation, but it is also required
2473 * to check that the address is actually valid, when atomic
2474 * usercopies are used, below.
2475 */
2476 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2477 status = -EFAULT;
2478 break;
2479 }
2480
2481 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2482 &page, &fsdata);
2483 if (unlikely(status < 0))
2484 break;
2485
2486 if (mapping_writably_mapped(mapping))
2487 flush_dcache_page(page);
2488
2489 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2490 flush_dcache_page(page);
2491
2492 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2493 page, fsdata);
2494 if (unlikely(status < 0))
2495 break;
2496 copied = status;
2497
2498 cond_resched();
2499
2500 iov_iter_advance(i, copied);
2501 if (unlikely(copied == 0)) {
2502 /*
2503 * If we were unable to copy any data at all, we must
2504 * fall back to a single segment length write.
2505 *
2506 * If we didn't fallback here, we could livelock
2507 * because not all segments in the iov can be copied at
2508 * once without a pagefault.
2509 */
2510 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2511 iov_iter_single_seg_count(i));
2512 goto again;
2513 }
2514 pos += copied;
2515 written += copied;
2516
2517 balance_dirty_pages_ratelimited(mapping);
2518 if (fatal_signal_pending(current)) {
2519 status = -EINTR;
2520 break;
2521 }
2522 } while (iov_iter_count(i));
2523
2524 return written ? written : status;
2525 }
2526 EXPORT_SYMBOL(generic_perform_write);
2527
2528 /**
2529 * __generic_file_write_iter - write data to a file
2530 * @iocb: IO state structure (file, offset, etc.)
2531 * @from: iov_iter with data to write
2532 *
2533 * This function does all the work needed for actually writing data to a
2534 * file. It does all basic checks, removes SUID from the file, updates
2535 * modification times and calls proper subroutines depending on whether we
2536 * do direct IO or a standard buffered write.
2537 *
2538 * It expects i_mutex to be grabbed unless we work on a block device or similar
2539 * object which does not need locking at all.
2540 *
2541 * This function does *not* take care of syncing data in case of O_SYNC write.
2542 * A caller has to handle it. This is mainly due to the fact that we want to
2543 * avoid syncing under i_mutex.
2544 */
2545 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2546 {
2547 struct file *file = iocb->ki_filp;
2548 struct address_space * mapping = file->f_mapping;
2549 struct inode *inode = mapping->host;
2550 loff_t pos = iocb->ki_pos;
2551 ssize_t written = 0;
2552 ssize_t err;
2553 ssize_t status;
2554 size_t count = iov_iter_count(from);
2555
2556 /* We can write back this queue in page reclaim */
2557 current->backing_dev_info = mapping->backing_dev_info;
2558 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2559 if (err)
2560 goto out;
2561
2562 if (count == 0)
2563 goto out;
2564
2565 iov_iter_truncate(from, count);
2566
2567 err = file_remove_suid(file);
2568 if (err)
2569 goto out;
2570
2571 err = file_update_time(file);
2572 if (err)
2573 goto out;
2574
2575 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2576 if (unlikely(file->f_flags & O_DIRECT)) {
2577 loff_t endbyte;
2578
2579 written = generic_file_direct_write(iocb, from, pos);
2580 if (written < 0 || written == count)
2581 goto out;
2582
2583 /*
2584 * direct-io write to a hole: fall through to buffered I/O
2585 * for completing the rest of the request.
2586 */
2587 pos += written;
2588 count -= written;
2589
2590 status = generic_perform_write(file, from, pos);
2591 /*
2592 * If generic_perform_write() returned a synchronous error
2593 * then we want to return the number of bytes which were
2594 * direct-written, or the error code if that was zero. Note
2595 * that this differs from normal direct-io semantics, which
2596 * will return -EFOO even if some bytes were written.
2597 */
2598 if (unlikely(status < 0) && !written) {
2599 err = status;
2600 goto out;
2601 }
2602 iocb->ki_pos = pos + status;
2603 /*
2604 * We need to ensure that the page cache pages are written to
2605 * disk and invalidated to preserve the expected O_DIRECT
2606 * semantics.
2607 */
2608 endbyte = pos + status - 1;
2609 err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
2610 if (err == 0) {
2611 written += status;
2612 invalidate_mapping_pages(mapping,
2613 pos >> PAGE_CACHE_SHIFT,
2614 endbyte >> PAGE_CACHE_SHIFT);
2615 } else {
2616 /*
2617 * We don't know how much we wrote, so just return
2618 * the number of bytes which were direct-written
2619 */
2620 }
2621 } else {
2622 written = generic_perform_write(file, from, pos);
2623 if (likely(written >= 0))
2624 iocb->ki_pos = pos + written;
2625 }
2626 out:
2627 current->backing_dev_info = NULL;
2628 return written ? written : err;
2629 }
2630 EXPORT_SYMBOL(__generic_file_write_iter);
2631
2632 /**
2633 * generic_file_write_iter - write data to a file
2634 * @iocb: IO state structure
2635 * @from: iov_iter with data to write
2636 *
2637 * This is a wrapper around __generic_file_write_iter() to be used by most
2638 * filesystems. It takes care of syncing the file in case of O_SYNC file
2639 * and acquires i_mutex as needed.
2640 */
2641 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2642 {
2643 struct file *file = iocb->ki_filp;
2644 struct inode *inode = file->f_mapping->host;
2645 ssize_t ret;
2646
2647 mutex_lock(&inode->i_mutex);
2648 ret = __generic_file_write_iter(iocb, from);
2649 mutex_unlock(&inode->i_mutex);
2650
2651 if (ret > 0) {
2652 ssize_t err;
2653
2654 err = generic_write_sync(file, iocb->ki_pos - ret, ret);
2655 if (err < 0)
2656 ret = err;
2657 }
2658 return ret;
2659 }
2660 EXPORT_SYMBOL(generic_file_write_iter);
2661
2662 /**
2663 * try_to_release_page() - release old fs-specific metadata on a page
2664 *
2665 * @page: the page which the kernel is trying to free
2666 * @gfp_mask: memory allocation flags (and I/O mode)
2667 *
2668 * The address_space is to try to release any data against the page
2669 * (presumably at page->private). If the release was successful, return `1'.
2670 * Otherwise return zero.
2671 *
2672 * This may also be called if PG_fscache is set on a page, indicating that the
2673 * page is known to the local caching routines.
2674 *
2675 * The @gfp_mask argument specifies whether I/O may be performed to release
2676 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
2677 *
2678 */
2679 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2680 {
2681 struct address_space * const mapping = page->mapping;
2682
2683 BUG_ON(!PageLocked(page));
2684 if (PageWriteback(page))
2685 return 0;
2686
2687 if (mapping && mapping->a_ops->releasepage)
2688 return mapping->a_ops->releasepage(page, gfp_mask);
2689 return try_to_free_buffers(page);
2690 }
2691
2692 EXPORT_SYMBOL(try_to_release_page);
This page took 0.085372 seconds and 5 git commands to generate.