efc63876477f7fefcdf7de94309bf62448f11687
[deliverable/linux.git] / mm / filemap.c
1 /*
2 * linux/mm/filemap.c
3 *
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
6
7 /*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
11 */
12 #include <linux/export.h>
13 #include <linux/compiler.h>
14 #include <linux/fs.h>
15 #include <linux/uaccess.h>
16 #include <linux/aio.h>
17 #include <linux/capability.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/gfp.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/cpuset.h>
33 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
34 #include <linux/memcontrol.h>
35 #include <linux/cleancache.h>
36 #include "internal.h"
37
38 #define CREATE_TRACE_POINTS
39 #include <trace/events/filemap.h>
40
41 /*
42 * FIXME: remove all knowledge of the buffer layer from the core VM
43 */
44 #include <linux/buffer_head.h> /* for try_to_free_buffers */
45
46 #include <asm/mman.h>
47
48 /*
49 * Shared mappings implemented 30.11.1994. It's not fully working yet,
50 * though.
51 *
52 * Shared mappings now work. 15.8.1995 Bruno.
53 *
54 * finished 'unifying' the page and buffer cache and SMP-threaded the
55 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
56 *
57 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
58 */
59
60 /*
61 * Lock ordering:
62 *
63 * ->i_mmap_mutex (truncate_pagecache)
64 * ->private_lock (__free_pte->__set_page_dirty_buffers)
65 * ->swap_lock (exclusive_swap_page, others)
66 * ->mapping->tree_lock
67 *
68 * ->i_mutex
69 * ->i_mmap_mutex (truncate->unmap_mapping_range)
70 *
71 * ->mmap_sem
72 * ->i_mmap_mutex
73 * ->page_table_lock or pte_lock (various, mainly in memory.c)
74 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
75 *
76 * ->mmap_sem
77 * ->lock_page (access_process_vm)
78 *
79 * ->i_mutex (generic_file_buffered_write)
80 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
81 *
82 * bdi->wb.list_lock
83 * sb_lock (fs/fs-writeback.c)
84 * ->mapping->tree_lock (__sync_single_inode)
85 *
86 * ->i_mmap_mutex
87 * ->anon_vma.lock (vma_adjust)
88 *
89 * ->anon_vma.lock
90 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
91 *
92 * ->page_table_lock or pte_lock
93 * ->swap_lock (try_to_unmap_one)
94 * ->private_lock (try_to_unmap_one)
95 * ->tree_lock (try_to_unmap_one)
96 * ->zone.lru_lock (follow_page->mark_page_accessed)
97 * ->zone.lru_lock (check_pte_range->isolate_lru_page)
98 * ->private_lock (page_remove_rmap->set_page_dirty)
99 * ->tree_lock (page_remove_rmap->set_page_dirty)
100 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
101 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
102 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
103 * ->inode->i_lock (zap_pte_range->set_page_dirty)
104 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
105 *
106 * ->i_mmap_mutex
107 * ->tasklist_lock (memory_failure, collect_procs_ao)
108 */
109
110 /*
111 * Delete a page from the page cache and free it. Caller has to make
112 * sure the page is locked and that nobody else uses it - or that usage
113 * is safe. The caller must hold the mapping's tree_lock.
114 */
115 void __delete_from_page_cache(struct page *page)
116 {
117 struct address_space *mapping = page->mapping;
118
119 trace_mm_filemap_delete_from_page_cache(page);
120 /*
121 * if we're uptodate, flush out into the cleancache, otherwise
122 * invalidate any existing cleancache entries. We can't leave
123 * stale data around in the cleancache once our page is gone
124 */
125 if (PageUptodate(page) && PageMappedToDisk(page))
126 cleancache_put_page(page);
127 else
128 cleancache_invalidate_page(mapping, page);
129
130 radix_tree_delete(&mapping->page_tree, page->index);
131 page->mapping = NULL;
132 /* Leave page->index set: truncation lookup relies upon it */
133 mapping->nrpages--;
134 __dec_zone_page_state(page, NR_FILE_PAGES);
135 if (PageSwapBacked(page))
136 __dec_zone_page_state(page, NR_SHMEM);
137 BUG_ON(page_mapped(page));
138
139 /*
140 * Some filesystems seem to re-dirty the page even after
141 * the VM has canceled the dirty bit (eg ext3 journaling).
142 *
143 * Fix it up by doing a final dirty accounting check after
144 * having removed the page entirely.
145 */
146 if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
147 dec_zone_page_state(page, NR_FILE_DIRTY);
148 dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
149 }
150 }
151
152 /**
153 * delete_from_page_cache - delete page from page cache
154 * @page: the page which the kernel is trying to remove from page cache
155 *
156 * This must be called only on pages that have been verified to be in the page
157 * cache and locked. It will never put the page into the free list, the caller
158 * has a reference on the page.
159 */
160 void delete_from_page_cache(struct page *page)
161 {
162 struct address_space *mapping = page->mapping;
163 void (*freepage)(struct page *);
164
165 BUG_ON(!PageLocked(page));
166
167 freepage = mapping->a_ops->freepage;
168 spin_lock_irq(&mapping->tree_lock);
169 __delete_from_page_cache(page);
170 spin_unlock_irq(&mapping->tree_lock);
171 mem_cgroup_uncharge_cache_page(page);
172
173 if (freepage)
174 freepage(page);
175 page_cache_release(page);
176 }
177 EXPORT_SYMBOL(delete_from_page_cache);
178
179 static int sleep_on_page(void *word)
180 {
181 io_schedule();
182 return 0;
183 }
184
185 static int sleep_on_page_killable(void *word)
186 {
187 sleep_on_page(word);
188 return fatal_signal_pending(current) ? -EINTR : 0;
189 }
190
191 static int filemap_check_errors(struct address_space *mapping)
192 {
193 int ret = 0;
194 /* Check for outstanding write errors */
195 if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
196 ret = -ENOSPC;
197 if (test_and_clear_bit(AS_EIO, &mapping->flags))
198 ret = -EIO;
199 return ret;
200 }
201
202 /**
203 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
204 * @mapping: address space structure to write
205 * @start: offset in bytes where the range starts
206 * @end: offset in bytes where the range ends (inclusive)
207 * @sync_mode: enable synchronous operation
208 *
209 * Start writeback against all of a mapping's dirty pages that lie
210 * within the byte offsets <start, end> inclusive.
211 *
212 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
213 * opposed to a regular memory cleansing writeback. The difference between
214 * these two operations is that if a dirty page/buffer is encountered, it must
215 * be waited upon, and not just skipped over.
216 */
217 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
218 loff_t end, int sync_mode)
219 {
220 int ret;
221 struct writeback_control wbc = {
222 .sync_mode = sync_mode,
223 .nr_to_write = LONG_MAX,
224 .range_start = start,
225 .range_end = end,
226 };
227
228 if (!mapping_cap_writeback_dirty(mapping))
229 return 0;
230
231 ret = do_writepages(mapping, &wbc);
232 return ret;
233 }
234
235 static inline int __filemap_fdatawrite(struct address_space *mapping,
236 int sync_mode)
237 {
238 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
239 }
240
241 int filemap_fdatawrite(struct address_space *mapping)
242 {
243 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
244 }
245 EXPORT_SYMBOL(filemap_fdatawrite);
246
247 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
248 loff_t end)
249 {
250 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
251 }
252 EXPORT_SYMBOL(filemap_fdatawrite_range);
253
254 /**
255 * filemap_flush - mostly a non-blocking flush
256 * @mapping: target address_space
257 *
258 * This is a mostly non-blocking flush. Not suitable for data-integrity
259 * purposes - I/O may not be started against all dirty pages.
260 */
261 int filemap_flush(struct address_space *mapping)
262 {
263 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
264 }
265 EXPORT_SYMBOL(filemap_flush);
266
267 /**
268 * filemap_fdatawait_range - wait for writeback to complete
269 * @mapping: address space structure to wait for
270 * @start_byte: offset in bytes where the range starts
271 * @end_byte: offset in bytes where the range ends (inclusive)
272 *
273 * Walk the list of under-writeback pages of the given address space
274 * in the given range and wait for all of them.
275 */
276 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
277 loff_t end_byte)
278 {
279 pgoff_t index = start_byte >> PAGE_CACHE_SHIFT;
280 pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
281 struct pagevec pvec;
282 int nr_pages;
283 int ret2, ret = 0;
284
285 if (end_byte < start_byte)
286 goto out;
287
288 pagevec_init(&pvec, 0);
289 while ((index <= end) &&
290 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
291 PAGECACHE_TAG_WRITEBACK,
292 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
293 unsigned i;
294
295 for (i = 0; i < nr_pages; i++) {
296 struct page *page = pvec.pages[i];
297
298 /* until radix tree lookup accepts end_index */
299 if (page->index > end)
300 continue;
301
302 wait_on_page_writeback(page);
303 if (TestClearPageError(page))
304 ret = -EIO;
305 }
306 pagevec_release(&pvec);
307 cond_resched();
308 }
309 out:
310 ret2 = filemap_check_errors(mapping);
311 if (!ret)
312 ret = ret2;
313
314 return ret;
315 }
316 EXPORT_SYMBOL(filemap_fdatawait_range);
317
318 /**
319 * filemap_fdatawait - wait for all under-writeback pages to complete
320 * @mapping: address space structure to wait for
321 *
322 * Walk the list of under-writeback pages of the given address space
323 * and wait for all of them.
324 */
325 int filemap_fdatawait(struct address_space *mapping)
326 {
327 loff_t i_size = i_size_read(mapping->host);
328
329 if (i_size == 0)
330 return 0;
331
332 return filemap_fdatawait_range(mapping, 0, i_size - 1);
333 }
334 EXPORT_SYMBOL(filemap_fdatawait);
335
336 int filemap_write_and_wait(struct address_space *mapping)
337 {
338 int err = 0;
339
340 if (mapping->nrpages) {
341 err = filemap_fdatawrite(mapping);
342 /*
343 * Even if the above returned error, the pages may be
344 * written partially (e.g. -ENOSPC), so we wait for it.
345 * But the -EIO is special case, it may indicate the worst
346 * thing (e.g. bug) happened, so we avoid waiting for it.
347 */
348 if (err != -EIO) {
349 int err2 = filemap_fdatawait(mapping);
350 if (!err)
351 err = err2;
352 }
353 } else {
354 err = filemap_check_errors(mapping);
355 }
356 return err;
357 }
358 EXPORT_SYMBOL(filemap_write_and_wait);
359
360 /**
361 * filemap_write_and_wait_range - write out & wait on a file range
362 * @mapping: the address_space for the pages
363 * @lstart: offset in bytes where the range starts
364 * @lend: offset in bytes where the range ends (inclusive)
365 *
366 * Write out and wait upon file offsets lstart->lend, inclusive.
367 *
368 * Note that `lend' is inclusive (describes the last byte to be written) so
369 * that this function can be used to write to the very end-of-file (end = -1).
370 */
371 int filemap_write_and_wait_range(struct address_space *mapping,
372 loff_t lstart, loff_t lend)
373 {
374 int err = 0;
375
376 if (mapping->nrpages) {
377 err = __filemap_fdatawrite_range(mapping, lstart, lend,
378 WB_SYNC_ALL);
379 /* See comment of filemap_write_and_wait() */
380 if (err != -EIO) {
381 int err2 = filemap_fdatawait_range(mapping,
382 lstart, lend);
383 if (!err)
384 err = err2;
385 }
386 } else {
387 err = filemap_check_errors(mapping);
388 }
389 return err;
390 }
391 EXPORT_SYMBOL(filemap_write_and_wait_range);
392
393 /**
394 * replace_page_cache_page - replace a pagecache page with a new one
395 * @old: page to be replaced
396 * @new: page to replace with
397 * @gfp_mask: allocation mode
398 *
399 * This function replaces a page in the pagecache with a new one. On
400 * success it acquires the pagecache reference for the new page and
401 * drops it for the old page. Both the old and new pages must be
402 * locked. This function does not add the new page to the LRU, the
403 * caller must do that.
404 *
405 * The remove + add is atomic. The only way this function can fail is
406 * memory allocation failure.
407 */
408 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
409 {
410 int error;
411
412 VM_BUG_ON_PAGE(!PageLocked(old), old);
413 VM_BUG_ON_PAGE(!PageLocked(new), new);
414 VM_BUG_ON_PAGE(new->mapping, new);
415
416 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
417 if (!error) {
418 struct address_space *mapping = old->mapping;
419 void (*freepage)(struct page *);
420
421 pgoff_t offset = old->index;
422 freepage = mapping->a_ops->freepage;
423
424 page_cache_get(new);
425 new->mapping = mapping;
426 new->index = offset;
427
428 spin_lock_irq(&mapping->tree_lock);
429 __delete_from_page_cache(old);
430 error = radix_tree_insert(&mapping->page_tree, offset, new);
431 BUG_ON(error);
432 mapping->nrpages++;
433 __inc_zone_page_state(new, NR_FILE_PAGES);
434 if (PageSwapBacked(new))
435 __inc_zone_page_state(new, NR_SHMEM);
436 spin_unlock_irq(&mapping->tree_lock);
437 /* mem_cgroup codes must not be called under tree_lock */
438 mem_cgroup_replace_page_cache(old, new);
439 radix_tree_preload_end();
440 if (freepage)
441 freepage(old);
442 page_cache_release(old);
443 }
444
445 return error;
446 }
447 EXPORT_SYMBOL_GPL(replace_page_cache_page);
448
449 static int page_cache_tree_insert(struct address_space *mapping,
450 struct page *page)
451 {
452 void **slot;
453 int error;
454
455 slot = radix_tree_lookup_slot(&mapping->page_tree, page->index);
456 if (slot) {
457 void *p;
458
459 p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
460 if (!radix_tree_exceptional_entry(p))
461 return -EEXIST;
462 radix_tree_replace_slot(slot, page);
463 mapping->nrpages++;
464 return 0;
465 }
466 error = radix_tree_insert(&mapping->page_tree, page->index, page);
467 if (!error)
468 mapping->nrpages++;
469 return error;
470 }
471
472 /**
473 * add_to_page_cache_locked - add a locked page to the pagecache
474 * @page: page to add
475 * @mapping: the page's address_space
476 * @offset: page index
477 * @gfp_mask: page allocation mode
478 *
479 * This function is used to add a page to the pagecache. It must be locked.
480 * This function does not add the page to the LRU. The caller must do that.
481 */
482 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
483 pgoff_t offset, gfp_t gfp_mask)
484 {
485 int error;
486
487 VM_BUG_ON_PAGE(!PageLocked(page), page);
488 VM_BUG_ON_PAGE(PageSwapBacked(page), page);
489
490 error = mem_cgroup_cache_charge(page, current->mm,
491 gfp_mask & GFP_RECLAIM_MASK);
492 if (error)
493 return error;
494
495 error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
496 if (error) {
497 mem_cgroup_uncharge_cache_page(page);
498 return error;
499 }
500
501 page_cache_get(page);
502 page->mapping = mapping;
503 page->index = offset;
504
505 spin_lock_irq(&mapping->tree_lock);
506 error = page_cache_tree_insert(mapping, page);
507 radix_tree_preload_end();
508 if (unlikely(error))
509 goto err_insert;
510 __inc_zone_page_state(page, NR_FILE_PAGES);
511 spin_unlock_irq(&mapping->tree_lock);
512 trace_mm_filemap_add_to_page_cache(page);
513 return 0;
514 err_insert:
515 page->mapping = NULL;
516 /* Leave page->index set: truncation relies upon it */
517 spin_unlock_irq(&mapping->tree_lock);
518 mem_cgroup_uncharge_cache_page(page);
519 page_cache_release(page);
520 return error;
521 }
522 EXPORT_SYMBOL(add_to_page_cache_locked);
523
524 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
525 pgoff_t offset, gfp_t gfp_mask)
526 {
527 int ret;
528
529 ret = add_to_page_cache(page, mapping, offset, gfp_mask);
530 if (ret == 0)
531 lru_cache_add_file(page);
532 return ret;
533 }
534 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
535
536 #ifdef CONFIG_NUMA
537 struct page *__page_cache_alloc(gfp_t gfp)
538 {
539 int n;
540 struct page *page;
541
542 if (cpuset_do_page_mem_spread()) {
543 unsigned int cpuset_mems_cookie;
544 do {
545 cpuset_mems_cookie = read_mems_allowed_begin();
546 n = cpuset_mem_spread_node();
547 page = alloc_pages_exact_node(n, gfp, 0);
548 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
549
550 return page;
551 }
552 return alloc_pages(gfp, 0);
553 }
554 EXPORT_SYMBOL(__page_cache_alloc);
555 #endif
556
557 /*
558 * In order to wait for pages to become available there must be
559 * waitqueues associated with pages. By using a hash table of
560 * waitqueues where the bucket discipline is to maintain all
561 * waiters on the same queue and wake all when any of the pages
562 * become available, and for the woken contexts to check to be
563 * sure the appropriate page became available, this saves space
564 * at a cost of "thundering herd" phenomena during rare hash
565 * collisions.
566 */
567 static wait_queue_head_t *page_waitqueue(struct page *page)
568 {
569 const struct zone *zone = page_zone(page);
570
571 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
572 }
573
574 static inline void wake_up_page(struct page *page, int bit)
575 {
576 __wake_up_bit(page_waitqueue(page), &page->flags, bit);
577 }
578
579 void wait_on_page_bit(struct page *page, int bit_nr)
580 {
581 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
582
583 if (test_bit(bit_nr, &page->flags))
584 __wait_on_bit(page_waitqueue(page), &wait, sleep_on_page,
585 TASK_UNINTERRUPTIBLE);
586 }
587 EXPORT_SYMBOL(wait_on_page_bit);
588
589 int wait_on_page_bit_killable(struct page *page, int bit_nr)
590 {
591 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
592
593 if (!test_bit(bit_nr, &page->flags))
594 return 0;
595
596 return __wait_on_bit(page_waitqueue(page), &wait,
597 sleep_on_page_killable, TASK_KILLABLE);
598 }
599
600 /**
601 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
602 * @page: Page defining the wait queue of interest
603 * @waiter: Waiter to add to the queue
604 *
605 * Add an arbitrary @waiter to the wait queue for the nominated @page.
606 */
607 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
608 {
609 wait_queue_head_t *q = page_waitqueue(page);
610 unsigned long flags;
611
612 spin_lock_irqsave(&q->lock, flags);
613 __add_wait_queue(q, waiter);
614 spin_unlock_irqrestore(&q->lock, flags);
615 }
616 EXPORT_SYMBOL_GPL(add_page_wait_queue);
617
618 /**
619 * unlock_page - unlock a locked page
620 * @page: the page
621 *
622 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
623 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
624 * mechananism between PageLocked pages and PageWriteback pages is shared.
625 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
626 *
627 * The mb is necessary to enforce ordering between the clear_bit and the read
628 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
629 */
630 void unlock_page(struct page *page)
631 {
632 VM_BUG_ON_PAGE(!PageLocked(page), page);
633 clear_bit_unlock(PG_locked, &page->flags);
634 smp_mb__after_clear_bit();
635 wake_up_page(page, PG_locked);
636 }
637 EXPORT_SYMBOL(unlock_page);
638
639 /**
640 * end_page_writeback - end writeback against a page
641 * @page: the page
642 */
643 void end_page_writeback(struct page *page)
644 {
645 if (TestClearPageReclaim(page))
646 rotate_reclaimable_page(page);
647
648 if (!test_clear_page_writeback(page))
649 BUG();
650
651 smp_mb__after_clear_bit();
652 wake_up_page(page, PG_writeback);
653 }
654 EXPORT_SYMBOL(end_page_writeback);
655
656 /**
657 * __lock_page - get a lock on the page, assuming we need to sleep to get it
658 * @page: the page to lock
659 */
660 void __lock_page(struct page *page)
661 {
662 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
663
664 __wait_on_bit_lock(page_waitqueue(page), &wait, sleep_on_page,
665 TASK_UNINTERRUPTIBLE);
666 }
667 EXPORT_SYMBOL(__lock_page);
668
669 int __lock_page_killable(struct page *page)
670 {
671 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
672
673 return __wait_on_bit_lock(page_waitqueue(page), &wait,
674 sleep_on_page_killable, TASK_KILLABLE);
675 }
676 EXPORT_SYMBOL_GPL(__lock_page_killable);
677
678 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
679 unsigned int flags)
680 {
681 if (flags & FAULT_FLAG_ALLOW_RETRY) {
682 /*
683 * CAUTION! In this case, mmap_sem is not released
684 * even though return 0.
685 */
686 if (flags & FAULT_FLAG_RETRY_NOWAIT)
687 return 0;
688
689 up_read(&mm->mmap_sem);
690 if (flags & FAULT_FLAG_KILLABLE)
691 wait_on_page_locked_killable(page);
692 else
693 wait_on_page_locked(page);
694 return 0;
695 } else {
696 if (flags & FAULT_FLAG_KILLABLE) {
697 int ret;
698
699 ret = __lock_page_killable(page);
700 if (ret) {
701 up_read(&mm->mmap_sem);
702 return 0;
703 }
704 } else
705 __lock_page(page);
706 return 1;
707 }
708 }
709
710 /**
711 * page_cache_next_hole - find the next hole (not-present entry)
712 * @mapping: mapping
713 * @index: index
714 * @max_scan: maximum range to search
715 *
716 * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
717 * lowest indexed hole.
718 *
719 * Returns: the index of the hole if found, otherwise returns an index
720 * outside of the set specified (in which case 'return - index >=
721 * max_scan' will be true). In rare cases of index wrap-around, 0 will
722 * be returned.
723 *
724 * page_cache_next_hole may be called under rcu_read_lock. However,
725 * like radix_tree_gang_lookup, this will not atomically search a
726 * snapshot of the tree at a single point in time. For example, if a
727 * hole is created at index 5, then subsequently a hole is created at
728 * index 10, page_cache_next_hole covering both indexes may return 10
729 * if called under rcu_read_lock.
730 */
731 pgoff_t page_cache_next_hole(struct address_space *mapping,
732 pgoff_t index, unsigned long max_scan)
733 {
734 unsigned long i;
735
736 for (i = 0; i < max_scan; i++) {
737 struct page *page;
738
739 page = radix_tree_lookup(&mapping->page_tree, index);
740 if (!page || radix_tree_exceptional_entry(page))
741 break;
742 index++;
743 if (index == 0)
744 break;
745 }
746
747 return index;
748 }
749 EXPORT_SYMBOL(page_cache_next_hole);
750
751 /**
752 * page_cache_prev_hole - find the prev hole (not-present entry)
753 * @mapping: mapping
754 * @index: index
755 * @max_scan: maximum range to search
756 *
757 * Search backwards in the range [max(index-max_scan+1, 0), index] for
758 * the first hole.
759 *
760 * Returns: the index of the hole if found, otherwise returns an index
761 * outside of the set specified (in which case 'index - return >=
762 * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
763 * will be returned.
764 *
765 * page_cache_prev_hole may be called under rcu_read_lock. However,
766 * like radix_tree_gang_lookup, this will not atomically search a
767 * snapshot of the tree at a single point in time. For example, if a
768 * hole is created at index 10, then subsequently a hole is created at
769 * index 5, page_cache_prev_hole covering both indexes may return 5 if
770 * called under rcu_read_lock.
771 */
772 pgoff_t page_cache_prev_hole(struct address_space *mapping,
773 pgoff_t index, unsigned long max_scan)
774 {
775 unsigned long i;
776
777 for (i = 0; i < max_scan; i++) {
778 struct page *page;
779
780 page = radix_tree_lookup(&mapping->page_tree, index);
781 if (!page || radix_tree_exceptional_entry(page))
782 break;
783 index--;
784 if (index == ULONG_MAX)
785 break;
786 }
787
788 return index;
789 }
790 EXPORT_SYMBOL(page_cache_prev_hole);
791
792 /**
793 * find_get_entry - find and get a page cache entry
794 * @mapping: the address_space to search
795 * @offset: the page cache index
796 *
797 * Looks up the page cache slot at @mapping & @offset. If there is a
798 * page cache page, it is returned with an increased refcount.
799 *
800 * If the slot holds a shadow entry of a previously evicted page, it
801 * is returned.
802 *
803 * Otherwise, %NULL is returned.
804 */
805 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
806 {
807 void **pagep;
808 struct page *page;
809
810 rcu_read_lock();
811 repeat:
812 page = NULL;
813 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
814 if (pagep) {
815 page = radix_tree_deref_slot(pagep);
816 if (unlikely(!page))
817 goto out;
818 if (radix_tree_exception(page)) {
819 if (radix_tree_deref_retry(page))
820 goto repeat;
821 /*
822 * Otherwise, shmem/tmpfs must be storing a swap entry
823 * here as an exceptional entry: so return it without
824 * attempting to raise page count.
825 */
826 goto out;
827 }
828 if (!page_cache_get_speculative(page))
829 goto repeat;
830
831 /*
832 * Has the page moved?
833 * This is part of the lockless pagecache protocol. See
834 * include/linux/pagemap.h for details.
835 */
836 if (unlikely(page != *pagep)) {
837 page_cache_release(page);
838 goto repeat;
839 }
840 }
841 out:
842 rcu_read_unlock();
843
844 return page;
845 }
846 EXPORT_SYMBOL(find_get_entry);
847
848 /**
849 * find_get_page - find and get a page reference
850 * @mapping: the address_space to search
851 * @offset: the page index
852 *
853 * Looks up the page cache slot at @mapping & @offset. If there is a
854 * page cache page, it is returned with an increased refcount.
855 *
856 * Otherwise, %NULL is returned.
857 */
858 struct page *find_get_page(struct address_space *mapping, pgoff_t offset)
859 {
860 struct page *page = find_get_entry(mapping, offset);
861
862 if (radix_tree_exceptional_entry(page))
863 page = NULL;
864 return page;
865 }
866 EXPORT_SYMBOL(find_get_page);
867
868 /**
869 * find_lock_entry - locate, pin and lock a page cache entry
870 * @mapping: the address_space to search
871 * @offset: the page cache index
872 *
873 * Looks up the page cache slot at @mapping & @offset. If there is a
874 * page cache page, it is returned locked and with an increased
875 * refcount.
876 *
877 * If the slot holds a shadow entry of a previously evicted page, it
878 * is returned.
879 *
880 * Otherwise, %NULL is returned.
881 *
882 * find_lock_entry() may sleep.
883 */
884 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
885 {
886 struct page *page;
887
888 repeat:
889 page = find_get_entry(mapping, offset);
890 if (page && !radix_tree_exception(page)) {
891 lock_page(page);
892 /* Has the page been truncated? */
893 if (unlikely(page->mapping != mapping)) {
894 unlock_page(page);
895 page_cache_release(page);
896 goto repeat;
897 }
898 VM_BUG_ON_PAGE(page->index != offset, page);
899 }
900 return page;
901 }
902 EXPORT_SYMBOL(find_lock_entry);
903
904 /**
905 * find_lock_page - locate, pin and lock a pagecache page
906 * @mapping: the address_space to search
907 * @offset: the page index
908 *
909 * Looks up the page cache slot at @mapping & @offset. If there is a
910 * page cache page, it is returned locked and with an increased
911 * refcount.
912 *
913 * Otherwise, %NULL is returned.
914 *
915 * find_lock_page() may sleep.
916 */
917 struct page *find_lock_page(struct address_space *mapping, pgoff_t offset)
918 {
919 struct page *page = find_lock_entry(mapping, offset);
920
921 if (radix_tree_exceptional_entry(page))
922 page = NULL;
923 return page;
924 }
925 EXPORT_SYMBOL(find_lock_page);
926
927 /**
928 * find_or_create_page - locate or add a pagecache page
929 * @mapping: the page's address_space
930 * @index: the page's index into the mapping
931 * @gfp_mask: page allocation mode
932 *
933 * Looks up the page cache slot at @mapping & @offset. If there is a
934 * page cache page, it is returned locked and with an increased
935 * refcount.
936 *
937 * If the page is not present, a new page is allocated using @gfp_mask
938 * and added to the page cache and the VM's LRU list. The page is
939 * returned locked and with an increased refcount.
940 *
941 * On memory exhaustion, %NULL is returned.
942 *
943 * find_or_create_page() may sleep, even if @gfp_flags specifies an
944 * atomic allocation!
945 */
946 struct page *find_or_create_page(struct address_space *mapping,
947 pgoff_t index, gfp_t gfp_mask)
948 {
949 struct page *page;
950 int err;
951 repeat:
952 page = find_lock_page(mapping, index);
953 if (!page) {
954 page = __page_cache_alloc(gfp_mask);
955 if (!page)
956 return NULL;
957 /*
958 * We want a regular kernel memory (not highmem or DMA etc)
959 * allocation for the radix tree nodes, but we need to honour
960 * the context-specific requirements the caller has asked for.
961 * GFP_RECLAIM_MASK collects those requirements.
962 */
963 err = add_to_page_cache_lru(page, mapping, index,
964 (gfp_mask & GFP_RECLAIM_MASK));
965 if (unlikely(err)) {
966 page_cache_release(page);
967 page = NULL;
968 if (err == -EEXIST)
969 goto repeat;
970 }
971 }
972 return page;
973 }
974 EXPORT_SYMBOL(find_or_create_page);
975
976 /**
977 * find_get_entries - gang pagecache lookup
978 * @mapping: The address_space to search
979 * @start: The starting page cache index
980 * @nr_entries: The maximum number of entries
981 * @entries: Where the resulting entries are placed
982 * @indices: The cache indices corresponding to the entries in @entries
983 *
984 * find_get_entries() will search for and return a group of up to
985 * @nr_entries entries in the mapping. The entries are placed at
986 * @entries. find_get_entries() takes a reference against any actual
987 * pages it returns.
988 *
989 * The search returns a group of mapping-contiguous page cache entries
990 * with ascending indexes. There may be holes in the indices due to
991 * not-present pages.
992 *
993 * Any shadow entries of evicted pages are included in the returned
994 * array.
995 *
996 * find_get_entries() returns the number of pages and shadow entries
997 * which were found.
998 */
999 unsigned find_get_entries(struct address_space *mapping,
1000 pgoff_t start, unsigned int nr_entries,
1001 struct page **entries, pgoff_t *indices)
1002 {
1003 void **slot;
1004 unsigned int ret = 0;
1005 struct radix_tree_iter iter;
1006
1007 if (!nr_entries)
1008 return 0;
1009
1010 rcu_read_lock();
1011 restart:
1012 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1013 struct page *page;
1014 repeat:
1015 page = radix_tree_deref_slot(slot);
1016 if (unlikely(!page))
1017 continue;
1018 if (radix_tree_exception(page)) {
1019 if (radix_tree_deref_retry(page))
1020 goto restart;
1021 /*
1022 * Otherwise, we must be storing a swap entry
1023 * here as an exceptional entry: so return it
1024 * without attempting to raise page count.
1025 */
1026 goto export;
1027 }
1028 if (!page_cache_get_speculative(page))
1029 goto repeat;
1030
1031 /* Has the page moved? */
1032 if (unlikely(page != *slot)) {
1033 page_cache_release(page);
1034 goto repeat;
1035 }
1036 export:
1037 indices[ret] = iter.index;
1038 entries[ret] = page;
1039 if (++ret == nr_entries)
1040 break;
1041 }
1042 rcu_read_unlock();
1043 return ret;
1044 }
1045
1046 /**
1047 * find_get_pages - gang pagecache lookup
1048 * @mapping: The address_space to search
1049 * @start: The starting page index
1050 * @nr_pages: The maximum number of pages
1051 * @pages: Where the resulting pages are placed
1052 *
1053 * find_get_pages() will search for and return a group of up to
1054 * @nr_pages pages in the mapping. The pages are placed at @pages.
1055 * find_get_pages() takes a reference against the returned pages.
1056 *
1057 * The search returns a group of mapping-contiguous pages with ascending
1058 * indexes. There may be holes in the indices due to not-present pages.
1059 *
1060 * find_get_pages() returns the number of pages which were found.
1061 */
1062 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
1063 unsigned int nr_pages, struct page **pages)
1064 {
1065 struct radix_tree_iter iter;
1066 void **slot;
1067 unsigned ret = 0;
1068
1069 if (unlikely(!nr_pages))
1070 return 0;
1071
1072 rcu_read_lock();
1073 restart:
1074 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1075 struct page *page;
1076 repeat:
1077 page = radix_tree_deref_slot(slot);
1078 if (unlikely(!page))
1079 continue;
1080
1081 if (radix_tree_exception(page)) {
1082 if (radix_tree_deref_retry(page)) {
1083 /*
1084 * Transient condition which can only trigger
1085 * when entry at index 0 moves out of or back
1086 * to root: none yet gotten, safe to restart.
1087 */
1088 WARN_ON(iter.index);
1089 goto restart;
1090 }
1091 /*
1092 * Otherwise, shmem/tmpfs must be storing a swap entry
1093 * here as an exceptional entry: so skip over it -
1094 * we only reach this from invalidate_mapping_pages().
1095 */
1096 continue;
1097 }
1098
1099 if (!page_cache_get_speculative(page))
1100 goto repeat;
1101
1102 /* Has the page moved? */
1103 if (unlikely(page != *slot)) {
1104 page_cache_release(page);
1105 goto repeat;
1106 }
1107
1108 pages[ret] = page;
1109 if (++ret == nr_pages)
1110 break;
1111 }
1112
1113 rcu_read_unlock();
1114 return ret;
1115 }
1116
1117 /**
1118 * find_get_pages_contig - gang contiguous pagecache lookup
1119 * @mapping: The address_space to search
1120 * @index: The starting page index
1121 * @nr_pages: The maximum number of pages
1122 * @pages: Where the resulting pages are placed
1123 *
1124 * find_get_pages_contig() works exactly like find_get_pages(), except
1125 * that the returned number of pages are guaranteed to be contiguous.
1126 *
1127 * find_get_pages_contig() returns the number of pages which were found.
1128 */
1129 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1130 unsigned int nr_pages, struct page **pages)
1131 {
1132 struct radix_tree_iter iter;
1133 void **slot;
1134 unsigned int ret = 0;
1135
1136 if (unlikely(!nr_pages))
1137 return 0;
1138
1139 rcu_read_lock();
1140 restart:
1141 radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
1142 struct page *page;
1143 repeat:
1144 page = radix_tree_deref_slot(slot);
1145 /* The hole, there no reason to continue */
1146 if (unlikely(!page))
1147 break;
1148
1149 if (radix_tree_exception(page)) {
1150 if (radix_tree_deref_retry(page)) {
1151 /*
1152 * Transient condition which can only trigger
1153 * when entry at index 0 moves out of or back
1154 * to root: none yet gotten, safe to restart.
1155 */
1156 goto restart;
1157 }
1158 /*
1159 * Otherwise, shmem/tmpfs must be storing a swap entry
1160 * here as an exceptional entry: so stop looking for
1161 * contiguous pages.
1162 */
1163 break;
1164 }
1165
1166 if (!page_cache_get_speculative(page))
1167 goto repeat;
1168
1169 /* Has the page moved? */
1170 if (unlikely(page != *slot)) {
1171 page_cache_release(page);
1172 goto repeat;
1173 }
1174
1175 /*
1176 * must check mapping and index after taking the ref.
1177 * otherwise we can get both false positives and false
1178 * negatives, which is just confusing to the caller.
1179 */
1180 if (page->mapping == NULL || page->index != iter.index) {
1181 page_cache_release(page);
1182 break;
1183 }
1184
1185 pages[ret] = page;
1186 if (++ret == nr_pages)
1187 break;
1188 }
1189 rcu_read_unlock();
1190 return ret;
1191 }
1192 EXPORT_SYMBOL(find_get_pages_contig);
1193
1194 /**
1195 * find_get_pages_tag - find and return pages that match @tag
1196 * @mapping: the address_space to search
1197 * @index: the starting page index
1198 * @tag: the tag index
1199 * @nr_pages: the maximum number of pages
1200 * @pages: where the resulting pages are placed
1201 *
1202 * Like find_get_pages, except we only return pages which are tagged with
1203 * @tag. We update @index to index the next page for the traversal.
1204 */
1205 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1206 int tag, unsigned int nr_pages, struct page **pages)
1207 {
1208 struct radix_tree_iter iter;
1209 void **slot;
1210 unsigned ret = 0;
1211
1212 if (unlikely(!nr_pages))
1213 return 0;
1214
1215 rcu_read_lock();
1216 restart:
1217 radix_tree_for_each_tagged(slot, &mapping->page_tree,
1218 &iter, *index, tag) {
1219 struct page *page;
1220 repeat:
1221 page = radix_tree_deref_slot(slot);
1222 if (unlikely(!page))
1223 continue;
1224
1225 if (radix_tree_exception(page)) {
1226 if (radix_tree_deref_retry(page)) {
1227 /*
1228 * Transient condition which can only trigger
1229 * when entry at index 0 moves out of or back
1230 * to root: none yet gotten, safe to restart.
1231 */
1232 goto restart;
1233 }
1234 /*
1235 * This function is never used on a shmem/tmpfs
1236 * mapping, so a swap entry won't be found here.
1237 */
1238 BUG();
1239 }
1240
1241 if (!page_cache_get_speculative(page))
1242 goto repeat;
1243
1244 /* Has the page moved? */
1245 if (unlikely(page != *slot)) {
1246 page_cache_release(page);
1247 goto repeat;
1248 }
1249
1250 pages[ret] = page;
1251 if (++ret == nr_pages)
1252 break;
1253 }
1254
1255 rcu_read_unlock();
1256
1257 if (ret)
1258 *index = pages[ret - 1]->index + 1;
1259
1260 return ret;
1261 }
1262 EXPORT_SYMBOL(find_get_pages_tag);
1263
1264 /**
1265 * grab_cache_page_nowait - returns locked page at given index in given cache
1266 * @mapping: target address_space
1267 * @index: the page index
1268 *
1269 * Same as grab_cache_page(), but do not wait if the page is unavailable.
1270 * This is intended for speculative data generators, where the data can
1271 * be regenerated if the page couldn't be grabbed. This routine should
1272 * be safe to call while holding the lock for another page.
1273 *
1274 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
1275 * and deadlock against the caller's locked page.
1276 */
1277 struct page *
1278 grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
1279 {
1280 struct page *page = find_get_page(mapping, index);
1281
1282 if (page) {
1283 if (trylock_page(page))
1284 return page;
1285 page_cache_release(page);
1286 return NULL;
1287 }
1288 page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
1289 if (page && add_to_page_cache_lru(page, mapping, index, GFP_NOFS)) {
1290 page_cache_release(page);
1291 page = NULL;
1292 }
1293 return page;
1294 }
1295 EXPORT_SYMBOL(grab_cache_page_nowait);
1296
1297 /*
1298 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1299 * a _large_ part of the i/o request. Imagine the worst scenario:
1300 *
1301 * ---R__________________________________________B__________
1302 * ^ reading here ^ bad block(assume 4k)
1303 *
1304 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1305 * => failing the whole request => read(R) => read(R+1) =>
1306 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1307 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1308 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1309 *
1310 * It is going insane. Fix it by quickly scaling down the readahead size.
1311 */
1312 static void shrink_readahead_size_eio(struct file *filp,
1313 struct file_ra_state *ra)
1314 {
1315 ra->ra_pages /= 4;
1316 }
1317
1318 /**
1319 * do_generic_file_read - generic file read routine
1320 * @filp: the file to read
1321 * @ppos: current file position
1322 * @desc: read_descriptor
1323 *
1324 * This is a generic file read routine, and uses the
1325 * mapping->a_ops->readpage() function for the actual low-level stuff.
1326 *
1327 * This is really ugly. But the goto's actually try to clarify some
1328 * of the logic when it comes to error handling etc.
1329 */
1330 static void do_generic_file_read(struct file *filp, loff_t *ppos,
1331 read_descriptor_t *desc)
1332 {
1333 struct address_space *mapping = filp->f_mapping;
1334 struct inode *inode = mapping->host;
1335 struct file_ra_state *ra = &filp->f_ra;
1336 pgoff_t index;
1337 pgoff_t last_index;
1338 pgoff_t prev_index;
1339 unsigned long offset; /* offset into pagecache page */
1340 unsigned int prev_offset;
1341 int error;
1342
1343 index = *ppos >> PAGE_CACHE_SHIFT;
1344 prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
1345 prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
1346 last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1347 offset = *ppos & ~PAGE_CACHE_MASK;
1348
1349 for (;;) {
1350 struct page *page;
1351 pgoff_t end_index;
1352 loff_t isize;
1353 unsigned long nr, ret;
1354
1355 cond_resched();
1356 find_page:
1357 page = find_get_page(mapping, index);
1358 if (!page) {
1359 page_cache_sync_readahead(mapping,
1360 ra, filp,
1361 index, last_index - index);
1362 page = find_get_page(mapping, index);
1363 if (unlikely(page == NULL))
1364 goto no_cached_page;
1365 }
1366 if (PageReadahead(page)) {
1367 page_cache_async_readahead(mapping,
1368 ra, filp, page,
1369 index, last_index - index);
1370 }
1371 if (!PageUptodate(page)) {
1372 if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1373 !mapping->a_ops->is_partially_uptodate)
1374 goto page_not_up_to_date;
1375 if (!trylock_page(page))
1376 goto page_not_up_to_date;
1377 /* Did it get truncated before we got the lock? */
1378 if (!page->mapping)
1379 goto page_not_up_to_date_locked;
1380 if (!mapping->a_ops->is_partially_uptodate(page,
1381 desc, offset))
1382 goto page_not_up_to_date_locked;
1383 unlock_page(page);
1384 }
1385 page_ok:
1386 /*
1387 * i_size must be checked after we know the page is Uptodate.
1388 *
1389 * Checking i_size after the check allows us to calculate
1390 * the correct value for "nr", which means the zero-filled
1391 * part of the page is not copied back to userspace (unless
1392 * another truncate extends the file - this is desired though).
1393 */
1394
1395 isize = i_size_read(inode);
1396 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1397 if (unlikely(!isize || index > end_index)) {
1398 page_cache_release(page);
1399 goto out;
1400 }
1401
1402 /* nr is the maximum number of bytes to copy from this page */
1403 nr = PAGE_CACHE_SIZE;
1404 if (index == end_index) {
1405 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1406 if (nr <= offset) {
1407 page_cache_release(page);
1408 goto out;
1409 }
1410 }
1411 nr = nr - offset;
1412
1413 /* If users can be writing to this page using arbitrary
1414 * virtual addresses, take care about potential aliasing
1415 * before reading the page on the kernel side.
1416 */
1417 if (mapping_writably_mapped(mapping))
1418 flush_dcache_page(page);
1419
1420 /*
1421 * When a sequential read accesses a page several times,
1422 * only mark it as accessed the first time.
1423 */
1424 if (prev_index != index || offset != prev_offset)
1425 mark_page_accessed(page);
1426 prev_index = index;
1427
1428 /*
1429 * Ok, we have the page, and it's up-to-date, so
1430 * now we can copy it to user space...
1431 *
1432 * The file_read_actor routine returns how many bytes were
1433 * actually used..
1434 * NOTE! This may not be the same as how much of a user buffer
1435 * we filled up (we may be padding etc), so we can only update
1436 * "pos" here (the actor routine has to update the user buffer
1437 * pointers and the remaining count).
1438 */
1439 ret = file_read_actor(desc, page, offset, nr);
1440 offset += ret;
1441 index += offset >> PAGE_CACHE_SHIFT;
1442 offset &= ~PAGE_CACHE_MASK;
1443 prev_offset = offset;
1444
1445 page_cache_release(page);
1446 if (ret == nr && desc->count)
1447 continue;
1448 goto out;
1449
1450 page_not_up_to_date:
1451 /* Get exclusive access to the page ... */
1452 error = lock_page_killable(page);
1453 if (unlikely(error))
1454 goto readpage_error;
1455
1456 page_not_up_to_date_locked:
1457 /* Did it get truncated before we got the lock? */
1458 if (!page->mapping) {
1459 unlock_page(page);
1460 page_cache_release(page);
1461 continue;
1462 }
1463
1464 /* Did somebody else fill it already? */
1465 if (PageUptodate(page)) {
1466 unlock_page(page);
1467 goto page_ok;
1468 }
1469
1470 readpage:
1471 /*
1472 * A previous I/O error may have been due to temporary
1473 * failures, eg. multipath errors.
1474 * PG_error will be set again if readpage fails.
1475 */
1476 ClearPageError(page);
1477 /* Start the actual read. The read will unlock the page. */
1478 error = mapping->a_ops->readpage(filp, page);
1479
1480 if (unlikely(error)) {
1481 if (error == AOP_TRUNCATED_PAGE) {
1482 page_cache_release(page);
1483 goto find_page;
1484 }
1485 goto readpage_error;
1486 }
1487
1488 if (!PageUptodate(page)) {
1489 error = lock_page_killable(page);
1490 if (unlikely(error))
1491 goto readpage_error;
1492 if (!PageUptodate(page)) {
1493 if (page->mapping == NULL) {
1494 /*
1495 * invalidate_mapping_pages got it
1496 */
1497 unlock_page(page);
1498 page_cache_release(page);
1499 goto find_page;
1500 }
1501 unlock_page(page);
1502 shrink_readahead_size_eio(filp, ra);
1503 error = -EIO;
1504 goto readpage_error;
1505 }
1506 unlock_page(page);
1507 }
1508
1509 goto page_ok;
1510
1511 readpage_error:
1512 /* UHHUH! A synchronous read error occurred. Report it */
1513 desc->error = error;
1514 page_cache_release(page);
1515 goto out;
1516
1517 no_cached_page:
1518 /*
1519 * Ok, it wasn't cached, so we need to create a new
1520 * page..
1521 */
1522 page = page_cache_alloc_cold(mapping);
1523 if (!page) {
1524 desc->error = -ENOMEM;
1525 goto out;
1526 }
1527 error = add_to_page_cache_lru(page, mapping,
1528 index, GFP_KERNEL);
1529 if (error) {
1530 page_cache_release(page);
1531 if (error == -EEXIST)
1532 goto find_page;
1533 desc->error = error;
1534 goto out;
1535 }
1536 goto readpage;
1537 }
1538
1539 out:
1540 ra->prev_pos = prev_index;
1541 ra->prev_pos <<= PAGE_CACHE_SHIFT;
1542 ra->prev_pos |= prev_offset;
1543
1544 *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1545 file_accessed(filp);
1546 }
1547
1548 int file_read_actor(read_descriptor_t *desc, struct page *page,
1549 unsigned long offset, unsigned long size)
1550 {
1551 char *kaddr;
1552 unsigned long left, count = desc->count;
1553
1554 if (size > count)
1555 size = count;
1556
1557 /*
1558 * Faults on the destination of a read are common, so do it before
1559 * taking the kmap.
1560 */
1561 if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1562 kaddr = kmap_atomic(page);
1563 left = __copy_to_user_inatomic(desc->arg.buf,
1564 kaddr + offset, size);
1565 kunmap_atomic(kaddr);
1566 if (left == 0)
1567 goto success;
1568 }
1569
1570 /* Do it the slow way */
1571 kaddr = kmap(page);
1572 left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1573 kunmap(page);
1574
1575 if (left) {
1576 size -= left;
1577 desc->error = -EFAULT;
1578 }
1579 success:
1580 desc->count = count - size;
1581 desc->written += size;
1582 desc->arg.buf += size;
1583 return size;
1584 }
1585
1586 /*
1587 * Performs necessary checks before doing a write
1588 * @iov: io vector request
1589 * @nr_segs: number of segments in the iovec
1590 * @count: number of bytes to write
1591 * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1592 *
1593 * Adjust number of segments and amount of bytes to write (nr_segs should be
1594 * properly initialized first). Returns appropriate error code that caller
1595 * should return or zero in case that write should be allowed.
1596 */
1597 int generic_segment_checks(const struct iovec *iov,
1598 unsigned long *nr_segs, size_t *count, int access_flags)
1599 {
1600 unsigned long seg;
1601 size_t cnt = 0;
1602 for (seg = 0; seg < *nr_segs; seg++) {
1603 const struct iovec *iv = &iov[seg];
1604
1605 /*
1606 * If any segment has a negative length, or the cumulative
1607 * length ever wraps negative then return -EINVAL.
1608 */
1609 cnt += iv->iov_len;
1610 if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1611 return -EINVAL;
1612 if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1613 continue;
1614 if (seg == 0)
1615 return -EFAULT;
1616 *nr_segs = seg;
1617 cnt -= iv->iov_len; /* This segment is no good */
1618 break;
1619 }
1620 *count = cnt;
1621 return 0;
1622 }
1623 EXPORT_SYMBOL(generic_segment_checks);
1624
1625 /**
1626 * generic_file_aio_read - generic filesystem read routine
1627 * @iocb: kernel I/O control block
1628 * @iov: io vector request
1629 * @nr_segs: number of segments in the iovec
1630 * @pos: current file position
1631 *
1632 * This is the "read()" routine for all filesystems
1633 * that can use the page cache directly.
1634 */
1635 ssize_t
1636 generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1637 unsigned long nr_segs, loff_t pos)
1638 {
1639 struct file *filp = iocb->ki_filp;
1640 ssize_t retval;
1641 unsigned long seg = 0;
1642 size_t count;
1643 loff_t *ppos = &iocb->ki_pos;
1644
1645 count = 0;
1646 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1647 if (retval)
1648 return retval;
1649
1650 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1651 if (filp->f_flags & O_DIRECT) {
1652 loff_t size;
1653 struct address_space *mapping;
1654 struct inode *inode;
1655
1656 mapping = filp->f_mapping;
1657 inode = mapping->host;
1658 if (!count)
1659 goto out; /* skip atime */
1660 size = i_size_read(inode);
1661 retval = filemap_write_and_wait_range(mapping, pos,
1662 pos + iov_length(iov, nr_segs) - 1);
1663 if (!retval) {
1664 retval = mapping->a_ops->direct_IO(READ, iocb,
1665 iov, pos, nr_segs);
1666 }
1667 if (retval > 0) {
1668 *ppos = pos + retval;
1669 count -= retval;
1670 }
1671
1672 /*
1673 * Btrfs can have a short DIO read if we encounter
1674 * compressed extents, so if there was an error, or if
1675 * we've already read everything we wanted to, or if
1676 * there was a short read because we hit EOF, go ahead
1677 * and return. Otherwise fallthrough to buffered io for
1678 * the rest of the read.
1679 */
1680 if (retval < 0 || !count || *ppos >= size) {
1681 file_accessed(filp);
1682 goto out;
1683 }
1684 }
1685
1686 count = retval;
1687 for (seg = 0; seg < nr_segs; seg++) {
1688 read_descriptor_t desc;
1689 loff_t offset = 0;
1690
1691 /*
1692 * If we did a short DIO read we need to skip the section of the
1693 * iov that we've already read data into.
1694 */
1695 if (count) {
1696 if (count > iov[seg].iov_len) {
1697 count -= iov[seg].iov_len;
1698 continue;
1699 }
1700 offset = count;
1701 count = 0;
1702 }
1703
1704 desc.written = 0;
1705 desc.arg.buf = iov[seg].iov_base + offset;
1706 desc.count = iov[seg].iov_len - offset;
1707 if (desc.count == 0)
1708 continue;
1709 desc.error = 0;
1710 do_generic_file_read(filp, ppos, &desc);
1711 retval += desc.written;
1712 if (desc.error) {
1713 retval = retval ?: desc.error;
1714 break;
1715 }
1716 if (desc.count > 0)
1717 break;
1718 }
1719 out:
1720 return retval;
1721 }
1722 EXPORT_SYMBOL(generic_file_aio_read);
1723
1724 #ifdef CONFIG_MMU
1725 /**
1726 * page_cache_read - adds requested page to the page cache if not already there
1727 * @file: file to read
1728 * @offset: page index
1729 *
1730 * This adds the requested page to the page cache if it isn't already there,
1731 * and schedules an I/O to read in its contents from disk.
1732 */
1733 static int page_cache_read(struct file *file, pgoff_t offset)
1734 {
1735 struct address_space *mapping = file->f_mapping;
1736 struct page *page;
1737 int ret;
1738
1739 do {
1740 page = page_cache_alloc_cold(mapping);
1741 if (!page)
1742 return -ENOMEM;
1743
1744 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1745 if (ret == 0)
1746 ret = mapping->a_ops->readpage(file, page);
1747 else if (ret == -EEXIST)
1748 ret = 0; /* losing race to add is OK */
1749
1750 page_cache_release(page);
1751
1752 } while (ret == AOP_TRUNCATED_PAGE);
1753
1754 return ret;
1755 }
1756
1757 #define MMAP_LOTSAMISS (100)
1758
1759 /*
1760 * Synchronous readahead happens when we don't even find
1761 * a page in the page cache at all.
1762 */
1763 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1764 struct file_ra_state *ra,
1765 struct file *file,
1766 pgoff_t offset)
1767 {
1768 unsigned long ra_pages;
1769 struct address_space *mapping = file->f_mapping;
1770
1771 /* If we don't want any read-ahead, don't bother */
1772 if (vma->vm_flags & VM_RAND_READ)
1773 return;
1774 if (!ra->ra_pages)
1775 return;
1776
1777 if (vma->vm_flags & VM_SEQ_READ) {
1778 page_cache_sync_readahead(mapping, ra, file, offset,
1779 ra->ra_pages);
1780 return;
1781 }
1782
1783 /* Avoid banging the cache line if not needed */
1784 if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
1785 ra->mmap_miss++;
1786
1787 /*
1788 * Do we miss much more than hit in this file? If so,
1789 * stop bothering with read-ahead. It will only hurt.
1790 */
1791 if (ra->mmap_miss > MMAP_LOTSAMISS)
1792 return;
1793
1794 /*
1795 * mmap read-around
1796 */
1797 ra_pages = max_sane_readahead(ra->ra_pages);
1798 ra->start = max_t(long, 0, offset - ra_pages / 2);
1799 ra->size = ra_pages;
1800 ra->async_size = ra_pages / 4;
1801 ra_submit(ra, mapping, file);
1802 }
1803
1804 /*
1805 * Asynchronous readahead happens when we find the page and PG_readahead,
1806 * so we want to possibly extend the readahead further..
1807 */
1808 static void do_async_mmap_readahead(struct vm_area_struct *vma,
1809 struct file_ra_state *ra,
1810 struct file *file,
1811 struct page *page,
1812 pgoff_t offset)
1813 {
1814 struct address_space *mapping = file->f_mapping;
1815
1816 /* If we don't want any read-ahead, don't bother */
1817 if (vma->vm_flags & VM_RAND_READ)
1818 return;
1819 if (ra->mmap_miss > 0)
1820 ra->mmap_miss--;
1821 if (PageReadahead(page))
1822 page_cache_async_readahead(mapping, ra, file,
1823 page, offset, ra->ra_pages);
1824 }
1825
1826 /**
1827 * filemap_fault - read in file data for page fault handling
1828 * @vma: vma in which the fault was taken
1829 * @vmf: struct vm_fault containing details of the fault
1830 *
1831 * filemap_fault() is invoked via the vma operations vector for a
1832 * mapped memory region to read in file data during a page fault.
1833 *
1834 * The goto's are kind of ugly, but this streamlines the normal case of having
1835 * it in the page cache, and handles the special cases reasonably without
1836 * having a lot of duplicated code.
1837 */
1838 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1839 {
1840 int error;
1841 struct file *file = vma->vm_file;
1842 struct address_space *mapping = file->f_mapping;
1843 struct file_ra_state *ra = &file->f_ra;
1844 struct inode *inode = mapping->host;
1845 pgoff_t offset = vmf->pgoff;
1846 struct page *page;
1847 pgoff_t size;
1848 int ret = 0;
1849
1850 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1851 if (offset >= size)
1852 return VM_FAULT_SIGBUS;
1853
1854 /*
1855 * Do we have something in the page cache already?
1856 */
1857 page = find_get_page(mapping, offset);
1858 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
1859 /*
1860 * We found the page, so try async readahead before
1861 * waiting for the lock.
1862 */
1863 do_async_mmap_readahead(vma, ra, file, page, offset);
1864 } else if (!page) {
1865 /* No page in the page cache at all */
1866 do_sync_mmap_readahead(vma, ra, file, offset);
1867 count_vm_event(PGMAJFAULT);
1868 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1869 ret = VM_FAULT_MAJOR;
1870 retry_find:
1871 page = find_get_page(mapping, offset);
1872 if (!page)
1873 goto no_cached_page;
1874 }
1875
1876 if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
1877 page_cache_release(page);
1878 return ret | VM_FAULT_RETRY;
1879 }
1880
1881 /* Did it get truncated? */
1882 if (unlikely(page->mapping != mapping)) {
1883 unlock_page(page);
1884 put_page(page);
1885 goto retry_find;
1886 }
1887 VM_BUG_ON_PAGE(page->index != offset, page);
1888
1889 /*
1890 * We have a locked page in the page cache, now we need to check
1891 * that it's up-to-date. If not, it is going to be due to an error.
1892 */
1893 if (unlikely(!PageUptodate(page)))
1894 goto page_not_uptodate;
1895
1896 /*
1897 * Found the page and have a reference on it.
1898 * We must recheck i_size under page lock.
1899 */
1900 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1901 if (unlikely(offset >= size)) {
1902 unlock_page(page);
1903 page_cache_release(page);
1904 return VM_FAULT_SIGBUS;
1905 }
1906
1907 vmf->page = page;
1908 return ret | VM_FAULT_LOCKED;
1909
1910 no_cached_page:
1911 /*
1912 * We're only likely to ever get here if MADV_RANDOM is in
1913 * effect.
1914 */
1915 error = page_cache_read(file, offset);
1916
1917 /*
1918 * The page we want has now been added to the page cache.
1919 * In the unlikely event that someone removed it in the
1920 * meantime, we'll just come back here and read it again.
1921 */
1922 if (error >= 0)
1923 goto retry_find;
1924
1925 /*
1926 * An error return from page_cache_read can result if the
1927 * system is low on memory, or a problem occurs while trying
1928 * to schedule I/O.
1929 */
1930 if (error == -ENOMEM)
1931 return VM_FAULT_OOM;
1932 return VM_FAULT_SIGBUS;
1933
1934 page_not_uptodate:
1935 /*
1936 * Umm, take care of errors if the page isn't up-to-date.
1937 * Try to re-read it _once_. We do this synchronously,
1938 * because there really aren't any performance issues here
1939 * and we need to check for errors.
1940 */
1941 ClearPageError(page);
1942 error = mapping->a_ops->readpage(file, page);
1943 if (!error) {
1944 wait_on_page_locked(page);
1945 if (!PageUptodate(page))
1946 error = -EIO;
1947 }
1948 page_cache_release(page);
1949
1950 if (!error || error == AOP_TRUNCATED_PAGE)
1951 goto retry_find;
1952
1953 /* Things didn't work out. Return zero to tell the mm layer so. */
1954 shrink_readahead_size_eio(file, ra);
1955 return VM_FAULT_SIGBUS;
1956 }
1957 EXPORT_SYMBOL(filemap_fault);
1958
1959 int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
1960 {
1961 struct page *page = vmf->page;
1962 struct inode *inode = file_inode(vma->vm_file);
1963 int ret = VM_FAULT_LOCKED;
1964
1965 sb_start_pagefault(inode->i_sb);
1966 file_update_time(vma->vm_file);
1967 lock_page(page);
1968 if (page->mapping != inode->i_mapping) {
1969 unlock_page(page);
1970 ret = VM_FAULT_NOPAGE;
1971 goto out;
1972 }
1973 /*
1974 * We mark the page dirty already here so that when freeze is in
1975 * progress, we are guaranteed that writeback during freezing will
1976 * see the dirty page and writeprotect it again.
1977 */
1978 set_page_dirty(page);
1979 wait_for_stable_page(page);
1980 out:
1981 sb_end_pagefault(inode->i_sb);
1982 return ret;
1983 }
1984 EXPORT_SYMBOL(filemap_page_mkwrite);
1985
1986 const struct vm_operations_struct generic_file_vm_ops = {
1987 .fault = filemap_fault,
1988 .page_mkwrite = filemap_page_mkwrite,
1989 .remap_pages = generic_file_remap_pages,
1990 };
1991
1992 /* This is used for a general mmap of a disk file */
1993
1994 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1995 {
1996 struct address_space *mapping = file->f_mapping;
1997
1998 if (!mapping->a_ops->readpage)
1999 return -ENOEXEC;
2000 file_accessed(file);
2001 vma->vm_ops = &generic_file_vm_ops;
2002 return 0;
2003 }
2004
2005 /*
2006 * This is for filesystems which do not implement ->writepage.
2007 */
2008 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2009 {
2010 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2011 return -EINVAL;
2012 return generic_file_mmap(file, vma);
2013 }
2014 #else
2015 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2016 {
2017 return -ENOSYS;
2018 }
2019 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2020 {
2021 return -ENOSYS;
2022 }
2023 #endif /* CONFIG_MMU */
2024
2025 EXPORT_SYMBOL(generic_file_mmap);
2026 EXPORT_SYMBOL(generic_file_readonly_mmap);
2027
2028 static struct page *__read_cache_page(struct address_space *mapping,
2029 pgoff_t index,
2030 int (*filler)(void *, struct page *),
2031 void *data,
2032 gfp_t gfp)
2033 {
2034 struct page *page;
2035 int err;
2036 repeat:
2037 page = find_get_page(mapping, index);
2038 if (!page) {
2039 page = __page_cache_alloc(gfp | __GFP_COLD);
2040 if (!page)
2041 return ERR_PTR(-ENOMEM);
2042 err = add_to_page_cache_lru(page, mapping, index, gfp);
2043 if (unlikely(err)) {
2044 page_cache_release(page);
2045 if (err == -EEXIST)
2046 goto repeat;
2047 /* Presumably ENOMEM for radix tree node */
2048 return ERR_PTR(err);
2049 }
2050 err = filler(data, page);
2051 if (err < 0) {
2052 page_cache_release(page);
2053 page = ERR_PTR(err);
2054 }
2055 }
2056 return page;
2057 }
2058
2059 static struct page *do_read_cache_page(struct address_space *mapping,
2060 pgoff_t index,
2061 int (*filler)(void *, struct page *),
2062 void *data,
2063 gfp_t gfp)
2064
2065 {
2066 struct page *page;
2067 int err;
2068
2069 retry:
2070 page = __read_cache_page(mapping, index, filler, data, gfp);
2071 if (IS_ERR(page))
2072 return page;
2073 if (PageUptodate(page))
2074 goto out;
2075
2076 lock_page(page);
2077 if (!page->mapping) {
2078 unlock_page(page);
2079 page_cache_release(page);
2080 goto retry;
2081 }
2082 if (PageUptodate(page)) {
2083 unlock_page(page);
2084 goto out;
2085 }
2086 err = filler(data, page);
2087 if (err < 0) {
2088 page_cache_release(page);
2089 return ERR_PTR(err);
2090 }
2091 out:
2092 mark_page_accessed(page);
2093 return page;
2094 }
2095
2096 /**
2097 * read_cache_page_async - read into page cache, fill it if needed
2098 * @mapping: the page's address_space
2099 * @index: the page index
2100 * @filler: function to perform the read
2101 * @data: first arg to filler(data, page) function, often left as NULL
2102 *
2103 * Same as read_cache_page, but don't wait for page to become unlocked
2104 * after submitting it to the filler.
2105 *
2106 * Read into the page cache. If a page already exists, and PageUptodate() is
2107 * not set, try to fill the page but don't wait for it to become unlocked.
2108 *
2109 * If the page does not get brought uptodate, return -EIO.
2110 */
2111 struct page *read_cache_page_async(struct address_space *mapping,
2112 pgoff_t index,
2113 int (*filler)(void *, struct page *),
2114 void *data)
2115 {
2116 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2117 }
2118 EXPORT_SYMBOL(read_cache_page_async);
2119
2120 static struct page *wait_on_page_read(struct page *page)
2121 {
2122 if (!IS_ERR(page)) {
2123 wait_on_page_locked(page);
2124 if (!PageUptodate(page)) {
2125 page_cache_release(page);
2126 page = ERR_PTR(-EIO);
2127 }
2128 }
2129 return page;
2130 }
2131
2132 /**
2133 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2134 * @mapping: the page's address_space
2135 * @index: the page index
2136 * @gfp: the page allocator flags to use if allocating
2137 *
2138 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2139 * any new page allocations done using the specified allocation flags.
2140 *
2141 * If the page does not get brought uptodate, return -EIO.
2142 */
2143 struct page *read_cache_page_gfp(struct address_space *mapping,
2144 pgoff_t index,
2145 gfp_t gfp)
2146 {
2147 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2148
2149 return wait_on_page_read(do_read_cache_page(mapping, index, filler, NULL, gfp));
2150 }
2151 EXPORT_SYMBOL(read_cache_page_gfp);
2152
2153 /**
2154 * read_cache_page - read into page cache, fill it if needed
2155 * @mapping: the page's address_space
2156 * @index: the page index
2157 * @filler: function to perform the read
2158 * @data: first arg to filler(data, page) function, often left as NULL
2159 *
2160 * Read into the page cache. If a page already exists, and PageUptodate() is
2161 * not set, try to fill the page then wait for it to become unlocked.
2162 *
2163 * If the page does not get brought uptodate, return -EIO.
2164 */
2165 struct page *read_cache_page(struct address_space *mapping,
2166 pgoff_t index,
2167 int (*filler)(void *, struct page *),
2168 void *data)
2169 {
2170 return wait_on_page_read(read_cache_page_async(mapping, index, filler, data));
2171 }
2172 EXPORT_SYMBOL(read_cache_page);
2173
2174 static size_t __iovec_copy_from_user_inatomic(char *vaddr,
2175 const struct iovec *iov, size_t base, size_t bytes)
2176 {
2177 size_t copied = 0, left = 0;
2178
2179 while (bytes) {
2180 char __user *buf = iov->iov_base + base;
2181 int copy = min(bytes, iov->iov_len - base);
2182
2183 base = 0;
2184 left = __copy_from_user_inatomic(vaddr, buf, copy);
2185 copied += copy;
2186 bytes -= copy;
2187 vaddr += copy;
2188 iov++;
2189
2190 if (unlikely(left))
2191 break;
2192 }
2193 return copied - left;
2194 }
2195
2196 /*
2197 * Copy as much as we can into the page and return the number of bytes which
2198 * were successfully copied. If a fault is encountered then return the number of
2199 * bytes which were copied.
2200 */
2201 size_t iov_iter_copy_from_user_atomic(struct page *page,
2202 struct iov_iter *i, unsigned long offset, size_t bytes)
2203 {
2204 char *kaddr;
2205 size_t copied;
2206
2207 BUG_ON(!in_atomic());
2208 kaddr = kmap_atomic(page);
2209 if (likely(i->nr_segs == 1)) {
2210 int left;
2211 char __user *buf = i->iov->iov_base + i->iov_offset;
2212 left = __copy_from_user_inatomic(kaddr + offset, buf, bytes);
2213 copied = bytes - left;
2214 } else {
2215 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
2216 i->iov, i->iov_offset, bytes);
2217 }
2218 kunmap_atomic(kaddr);
2219
2220 return copied;
2221 }
2222 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
2223
2224 /*
2225 * This has the same sideeffects and return value as
2226 * iov_iter_copy_from_user_atomic().
2227 * The difference is that it attempts to resolve faults.
2228 * Page must not be locked.
2229 */
2230 size_t iov_iter_copy_from_user(struct page *page,
2231 struct iov_iter *i, unsigned long offset, size_t bytes)
2232 {
2233 char *kaddr;
2234 size_t copied;
2235
2236 kaddr = kmap(page);
2237 if (likely(i->nr_segs == 1)) {
2238 int left;
2239 char __user *buf = i->iov->iov_base + i->iov_offset;
2240 left = __copy_from_user(kaddr + offset, buf, bytes);
2241 copied = bytes - left;
2242 } else {
2243 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
2244 i->iov, i->iov_offset, bytes);
2245 }
2246 kunmap(page);
2247 return copied;
2248 }
2249 EXPORT_SYMBOL(iov_iter_copy_from_user);
2250
2251 void iov_iter_advance(struct iov_iter *i, size_t bytes)
2252 {
2253 BUG_ON(i->count < bytes);
2254
2255 if (likely(i->nr_segs == 1)) {
2256 i->iov_offset += bytes;
2257 i->count -= bytes;
2258 } else {
2259 const struct iovec *iov = i->iov;
2260 size_t base = i->iov_offset;
2261 unsigned long nr_segs = i->nr_segs;
2262
2263 /*
2264 * The !iov->iov_len check ensures we skip over unlikely
2265 * zero-length segments (without overruning the iovec).
2266 */
2267 while (bytes || unlikely(i->count && !iov->iov_len)) {
2268 int copy;
2269
2270 copy = min(bytes, iov->iov_len - base);
2271 BUG_ON(!i->count || i->count < copy);
2272 i->count -= copy;
2273 bytes -= copy;
2274 base += copy;
2275 if (iov->iov_len == base) {
2276 iov++;
2277 nr_segs--;
2278 base = 0;
2279 }
2280 }
2281 i->iov = iov;
2282 i->iov_offset = base;
2283 i->nr_segs = nr_segs;
2284 }
2285 }
2286 EXPORT_SYMBOL(iov_iter_advance);
2287
2288 /*
2289 * Fault in the first iovec of the given iov_iter, to a maximum length
2290 * of bytes. Returns 0 on success, or non-zero if the memory could not be
2291 * accessed (ie. because it is an invalid address).
2292 *
2293 * writev-intensive code may want this to prefault several iovecs -- that
2294 * would be possible (callers must not rely on the fact that _only_ the
2295 * first iovec will be faulted with the current implementation).
2296 */
2297 int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
2298 {
2299 char __user *buf = i->iov->iov_base + i->iov_offset;
2300 bytes = min(bytes, i->iov->iov_len - i->iov_offset);
2301 return fault_in_pages_readable(buf, bytes);
2302 }
2303 EXPORT_SYMBOL(iov_iter_fault_in_readable);
2304
2305 /*
2306 * Return the count of just the current iov_iter segment.
2307 */
2308 size_t iov_iter_single_seg_count(const struct iov_iter *i)
2309 {
2310 const struct iovec *iov = i->iov;
2311 if (i->nr_segs == 1)
2312 return i->count;
2313 else
2314 return min(i->count, iov->iov_len - i->iov_offset);
2315 }
2316 EXPORT_SYMBOL(iov_iter_single_seg_count);
2317
2318 /*
2319 * Performs necessary checks before doing a write
2320 *
2321 * Can adjust writing position or amount of bytes to write.
2322 * Returns appropriate error code that caller should return or
2323 * zero in case that write should be allowed.
2324 */
2325 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
2326 {
2327 struct inode *inode = file->f_mapping->host;
2328 unsigned long limit = rlimit(RLIMIT_FSIZE);
2329
2330 if (unlikely(*pos < 0))
2331 return -EINVAL;
2332
2333 if (!isblk) {
2334 /* FIXME: this is for backwards compatibility with 2.4 */
2335 if (file->f_flags & O_APPEND)
2336 *pos = i_size_read(inode);
2337
2338 if (limit != RLIM_INFINITY) {
2339 if (*pos >= limit) {
2340 send_sig(SIGXFSZ, current, 0);
2341 return -EFBIG;
2342 }
2343 if (*count > limit - (typeof(limit))*pos) {
2344 *count = limit - (typeof(limit))*pos;
2345 }
2346 }
2347 }
2348
2349 /*
2350 * LFS rule
2351 */
2352 if (unlikely(*pos + *count > MAX_NON_LFS &&
2353 !(file->f_flags & O_LARGEFILE))) {
2354 if (*pos >= MAX_NON_LFS) {
2355 return -EFBIG;
2356 }
2357 if (*count > MAX_NON_LFS - (unsigned long)*pos) {
2358 *count = MAX_NON_LFS - (unsigned long)*pos;
2359 }
2360 }
2361
2362 /*
2363 * Are we about to exceed the fs block limit ?
2364 *
2365 * If we have written data it becomes a short write. If we have
2366 * exceeded without writing data we send a signal and return EFBIG.
2367 * Linus frestrict idea will clean these up nicely..
2368 */
2369 if (likely(!isblk)) {
2370 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
2371 if (*count || *pos > inode->i_sb->s_maxbytes) {
2372 return -EFBIG;
2373 }
2374 /* zero-length writes at ->s_maxbytes are OK */
2375 }
2376
2377 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
2378 *count = inode->i_sb->s_maxbytes - *pos;
2379 } else {
2380 #ifdef CONFIG_BLOCK
2381 loff_t isize;
2382 if (bdev_read_only(I_BDEV(inode)))
2383 return -EPERM;
2384 isize = i_size_read(inode);
2385 if (*pos >= isize) {
2386 if (*count || *pos > isize)
2387 return -ENOSPC;
2388 }
2389
2390 if (*pos + *count > isize)
2391 *count = isize - *pos;
2392 #else
2393 return -EPERM;
2394 #endif
2395 }
2396 return 0;
2397 }
2398 EXPORT_SYMBOL(generic_write_checks);
2399
2400 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2401 loff_t pos, unsigned len, unsigned flags,
2402 struct page **pagep, void **fsdata)
2403 {
2404 const struct address_space_operations *aops = mapping->a_ops;
2405
2406 return aops->write_begin(file, mapping, pos, len, flags,
2407 pagep, fsdata);
2408 }
2409 EXPORT_SYMBOL(pagecache_write_begin);
2410
2411 int pagecache_write_end(struct file *file, struct address_space *mapping,
2412 loff_t pos, unsigned len, unsigned copied,
2413 struct page *page, void *fsdata)
2414 {
2415 const struct address_space_operations *aops = mapping->a_ops;
2416
2417 mark_page_accessed(page);
2418 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2419 }
2420 EXPORT_SYMBOL(pagecache_write_end);
2421
2422 ssize_t
2423 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
2424 unsigned long *nr_segs, loff_t pos, loff_t *ppos,
2425 size_t count, size_t ocount)
2426 {
2427 struct file *file = iocb->ki_filp;
2428 struct address_space *mapping = file->f_mapping;
2429 struct inode *inode = mapping->host;
2430 ssize_t written;
2431 size_t write_len;
2432 pgoff_t end;
2433
2434 if (count != ocount)
2435 *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
2436
2437 write_len = iov_length(iov, *nr_segs);
2438 end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
2439
2440 written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2441 if (written)
2442 goto out;
2443
2444 /*
2445 * After a write we want buffered reads to be sure to go to disk to get
2446 * the new data. We invalidate clean cached page from the region we're
2447 * about to write. We do this *before* the write so that we can return
2448 * without clobbering -EIOCBQUEUED from ->direct_IO().
2449 */
2450 if (mapping->nrpages) {
2451 written = invalidate_inode_pages2_range(mapping,
2452 pos >> PAGE_CACHE_SHIFT, end);
2453 /*
2454 * If a page can not be invalidated, return 0 to fall back
2455 * to buffered write.
2456 */
2457 if (written) {
2458 if (written == -EBUSY)
2459 return 0;
2460 goto out;
2461 }
2462 }
2463
2464 written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs);
2465
2466 /*
2467 * Finally, try again to invalidate clean pages which might have been
2468 * cached by non-direct readahead, or faulted in by get_user_pages()
2469 * if the source of the write was an mmap'ed region of the file
2470 * we're writing. Either one is a pretty crazy thing to do,
2471 * so we don't support it 100%. If this invalidation
2472 * fails, tough, the write still worked...
2473 */
2474 if (mapping->nrpages) {
2475 invalidate_inode_pages2_range(mapping,
2476 pos >> PAGE_CACHE_SHIFT, end);
2477 }
2478
2479 if (written > 0) {
2480 pos += written;
2481 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2482 i_size_write(inode, pos);
2483 mark_inode_dirty(inode);
2484 }
2485 *ppos = pos;
2486 }
2487 out:
2488 return written;
2489 }
2490 EXPORT_SYMBOL(generic_file_direct_write);
2491
2492 /*
2493 * Find or create a page at the given pagecache position. Return the locked
2494 * page. This function is specifically for buffered writes.
2495 */
2496 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2497 pgoff_t index, unsigned flags)
2498 {
2499 int status;
2500 gfp_t gfp_mask;
2501 struct page *page;
2502 gfp_t gfp_notmask = 0;
2503
2504 gfp_mask = mapping_gfp_mask(mapping);
2505 if (mapping_cap_account_dirty(mapping))
2506 gfp_mask |= __GFP_WRITE;
2507 if (flags & AOP_FLAG_NOFS)
2508 gfp_notmask = __GFP_FS;
2509 repeat:
2510 page = find_lock_page(mapping, index);
2511 if (page)
2512 goto found;
2513
2514 page = __page_cache_alloc(gfp_mask & ~gfp_notmask);
2515 if (!page)
2516 return NULL;
2517 status = add_to_page_cache_lru(page, mapping, index,
2518 GFP_KERNEL & ~gfp_notmask);
2519 if (unlikely(status)) {
2520 page_cache_release(page);
2521 if (status == -EEXIST)
2522 goto repeat;
2523 return NULL;
2524 }
2525 found:
2526 wait_for_stable_page(page);
2527 return page;
2528 }
2529 EXPORT_SYMBOL(grab_cache_page_write_begin);
2530
2531 static ssize_t generic_perform_write(struct file *file,
2532 struct iov_iter *i, loff_t pos)
2533 {
2534 struct address_space *mapping = file->f_mapping;
2535 const struct address_space_operations *a_ops = mapping->a_ops;
2536 long status = 0;
2537 ssize_t written = 0;
2538 unsigned int flags = 0;
2539
2540 /*
2541 * Copies from kernel address space cannot fail (NFSD is a big user).
2542 */
2543 if (segment_eq(get_fs(), KERNEL_DS))
2544 flags |= AOP_FLAG_UNINTERRUPTIBLE;
2545
2546 do {
2547 struct page *page;
2548 unsigned long offset; /* Offset into pagecache page */
2549 unsigned long bytes; /* Bytes to write to page */
2550 size_t copied; /* Bytes copied from user */
2551 void *fsdata;
2552
2553 offset = (pos & (PAGE_CACHE_SIZE - 1));
2554 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2555 iov_iter_count(i));
2556
2557 again:
2558 /*
2559 * Bring in the user page that we will copy from _first_.
2560 * Otherwise there's a nasty deadlock on copying from the
2561 * same page as we're writing to, without it being marked
2562 * up-to-date.
2563 *
2564 * Not only is this an optimisation, but it is also required
2565 * to check that the address is actually valid, when atomic
2566 * usercopies are used, below.
2567 */
2568 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2569 status = -EFAULT;
2570 break;
2571 }
2572
2573 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2574 &page, &fsdata);
2575 if (unlikely(status))
2576 break;
2577
2578 if (mapping_writably_mapped(mapping))
2579 flush_dcache_page(page);
2580
2581 pagefault_disable();
2582 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2583 pagefault_enable();
2584 flush_dcache_page(page);
2585
2586 mark_page_accessed(page);
2587 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2588 page, fsdata);
2589 if (unlikely(status < 0))
2590 break;
2591 copied = status;
2592
2593 cond_resched();
2594
2595 iov_iter_advance(i, copied);
2596 if (unlikely(copied == 0)) {
2597 /*
2598 * If we were unable to copy any data at all, we must
2599 * fall back to a single segment length write.
2600 *
2601 * If we didn't fallback here, we could livelock
2602 * because not all segments in the iov can be copied at
2603 * once without a pagefault.
2604 */
2605 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2606 iov_iter_single_seg_count(i));
2607 goto again;
2608 }
2609 pos += copied;
2610 written += copied;
2611
2612 balance_dirty_pages_ratelimited(mapping);
2613 if (fatal_signal_pending(current)) {
2614 status = -EINTR;
2615 break;
2616 }
2617 } while (iov_iter_count(i));
2618
2619 return written ? written : status;
2620 }
2621
2622 ssize_t
2623 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2624 unsigned long nr_segs, loff_t pos, loff_t *ppos,
2625 size_t count, ssize_t written)
2626 {
2627 struct file *file = iocb->ki_filp;
2628 ssize_t status;
2629 struct iov_iter i;
2630
2631 iov_iter_init(&i, iov, nr_segs, count, written);
2632 status = generic_perform_write(file, &i, pos);
2633
2634 if (likely(status >= 0)) {
2635 written += status;
2636 *ppos = pos + status;
2637 }
2638
2639 return written ? written : status;
2640 }
2641 EXPORT_SYMBOL(generic_file_buffered_write);
2642
2643 /**
2644 * __generic_file_aio_write - write data to a file
2645 * @iocb: IO state structure (file, offset, etc.)
2646 * @iov: vector with data to write
2647 * @nr_segs: number of segments in the vector
2648 * @ppos: position where to write
2649 *
2650 * This function does all the work needed for actually writing data to a
2651 * file. It does all basic checks, removes SUID from the file, updates
2652 * modification times and calls proper subroutines depending on whether we
2653 * do direct IO or a standard buffered write.
2654 *
2655 * It expects i_mutex to be grabbed unless we work on a block device or similar
2656 * object which does not need locking at all.
2657 *
2658 * This function does *not* take care of syncing data in case of O_SYNC write.
2659 * A caller has to handle it. This is mainly due to the fact that we want to
2660 * avoid syncing under i_mutex.
2661 */
2662 ssize_t __generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2663 unsigned long nr_segs, loff_t *ppos)
2664 {
2665 struct file *file = iocb->ki_filp;
2666 struct address_space * mapping = file->f_mapping;
2667 size_t ocount; /* original count */
2668 size_t count; /* after file limit checks */
2669 struct inode *inode = mapping->host;
2670 loff_t pos;
2671 ssize_t written;
2672 ssize_t err;
2673
2674 ocount = 0;
2675 err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2676 if (err)
2677 return err;
2678
2679 count = ocount;
2680 pos = *ppos;
2681
2682 /* We can write back this queue in page reclaim */
2683 current->backing_dev_info = mapping->backing_dev_info;
2684 written = 0;
2685
2686 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2687 if (err)
2688 goto out;
2689
2690 if (count == 0)
2691 goto out;
2692
2693 err = file_remove_suid(file);
2694 if (err)
2695 goto out;
2696
2697 err = file_update_time(file);
2698 if (err)
2699 goto out;
2700
2701 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2702 if (unlikely(file->f_flags & O_DIRECT)) {
2703 loff_t endbyte;
2704 ssize_t written_buffered;
2705
2706 written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2707 ppos, count, ocount);
2708 if (written < 0 || written == count)
2709 goto out;
2710 /*
2711 * direct-io write to a hole: fall through to buffered I/O
2712 * for completing the rest of the request.
2713 */
2714 pos += written;
2715 count -= written;
2716 written_buffered = generic_file_buffered_write(iocb, iov,
2717 nr_segs, pos, ppos, count,
2718 written);
2719 /*
2720 * If generic_file_buffered_write() retuned a synchronous error
2721 * then we want to return the number of bytes which were
2722 * direct-written, or the error code if that was zero. Note
2723 * that this differs from normal direct-io semantics, which
2724 * will return -EFOO even if some bytes were written.
2725 */
2726 if (written_buffered < 0) {
2727 err = written_buffered;
2728 goto out;
2729 }
2730
2731 /*
2732 * We need to ensure that the page cache pages are written to
2733 * disk and invalidated to preserve the expected O_DIRECT
2734 * semantics.
2735 */
2736 endbyte = pos + written_buffered - written - 1;
2737 err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
2738 if (err == 0) {
2739 written = written_buffered;
2740 invalidate_mapping_pages(mapping,
2741 pos >> PAGE_CACHE_SHIFT,
2742 endbyte >> PAGE_CACHE_SHIFT);
2743 } else {
2744 /*
2745 * We don't know how much we wrote, so just return
2746 * the number of bytes which were direct-written
2747 */
2748 }
2749 } else {
2750 written = generic_file_buffered_write(iocb, iov, nr_segs,
2751 pos, ppos, count, written);
2752 }
2753 out:
2754 current->backing_dev_info = NULL;
2755 return written ? written : err;
2756 }
2757 EXPORT_SYMBOL(__generic_file_aio_write);
2758
2759 /**
2760 * generic_file_aio_write - write data to a file
2761 * @iocb: IO state structure
2762 * @iov: vector with data to write
2763 * @nr_segs: number of segments in the vector
2764 * @pos: position in file where to write
2765 *
2766 * This is a wrapper around __generic_file_aio_write() to be used by most
2767 * filesystems. It takes care of syncing the file in case of O_SYNC file
2768 * and acquires i_mutex as needed.
2769 */
2770 ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2771 unsigned long nr_segs, loff_t pos)
2772 {
2773 struct file *file = iocb->ki_filp;
2774 struct inode *inode = file->f_mapping->host;
2775 ssize_t ret;
2776
2777 BUG_ON(iocb->ki_pos != pos);
2778
2779 mutex_lock(&inode->i_mutex);
2780 ret = __generic_file_aio_write(iocb, iov, nr_segs, &iocb->ki_pos);
2781 mutex_unlock(&inode->i_mutex);
2782
2783 if (ret > 0) {
2784 ssize_t err;
2785
2786 err = generic_write_sync(file, iocb->ki_pos - ret, ret);
2787 if (err < 0)
2788 ret = err;
2789 }
2790 return ret;
2791 }
2792 EXPORT_SYMBOL(generic_file_aio_write);
2793
2794 /**
2795 * try_to_release_page() - release old fs-specific metadata on a page
2796 *
2797 * @page: the page which the kernel is trying to free
2798 * @gfp_mask: memory allocation flags (and I/O mode)
2799 *
2800 * The address_space is to try to release any data against the page
2801 * (presumably at page->private). If the release was successful, return `1'.
2802 * Otherwise return zero.
2803 *
2804 * This may also be called if PG_fscache is set on a page, indicating that the
2805 * page is known to the local caching routines.
2806 *
2807 * The @gfp_mask argument specifies whether I/O may be performed to release
2808 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
2809 *
2810 */
2811 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2812 {
2813 struct address_space * const mapping = page->mapping;
2814
2815 BUG_ON(!PageLocked(page));
2816 if (PageWriteback(page))
2817 return 0;
2818
2819 if (mapping && mapping->a_ops->releasepage)
2820 return mapping->a_ops->releasepage(page, gfp_mask);
2821 return try_to_free_buffers(page);
2822 }
2823
2824 EXPORT_SYMBOL(try_to_release_page);
This page took 0.115349 seconds and 4 git commands to generate.