Merge branches 'pm-cpufreq' and 'pm-cpuidle'
[deliverable/linux.git] / mm / filemap.c
1 /*
2 * linux/mm/filemap.c
3 *
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
6
7 /*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
11 */
12 #include <linux/export.h>
13 #include <linux/compiler.h>
14 #include <linux/dax.h>
15 #include <linux/fs.h>
16 #include <linux/uaccess.h>
17 #include <linux/capability.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/gfp.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/cpuset.h>
33 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
34 #include <linux/hugetlb.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cleancache.h>
37 #include <linux/rmap.h>
38 #include "internal.h"
39
40 #define CREATE_TRACE_POINTS
41 #include <trace/events/filemap.h>
42
43 /*
44 * FIXME: remove all knowledge of the buffer layer from the core VM
45 */
46 #include <linux/buffer_head.h> /* for try_to_free_buffers */
47
48 #include <asm/mman.h>
49
50 /*
51 * Shared mappings implemented 30.11.1994. It's not fully working yet,
52 * though.
53 *
54 * Shared mappings now work. 15.8.1995 Bruno.
55 *
56 * finished 'unifying' the page and buffer cache and SMP-threaded the
57 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
58 *
59 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
60 */
61
62 /*
63 * Lock ordering:
64 *
65 * ->i_mmap_rwsem (truncate_pagecache)
66 * ->private_lock (__free_pte->__set_page_dirty_buffers)
67 * ->swap_lock (exclusive_swap_page, others)
68 * ->mapping->tree_lock
69 *
70 * ->i_mutex
71 * ->i_mmap_rwsem (truncate->unmap_mapping_range)
72 *
73 * ->mmap_sem
74 * ->i_mmap_rwsem
75 * ->page_table_lock or pte_lock (various, mainly in memory.c)
76 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
77 *
78 * ->mmap_sem
79 * ->lock_page (access_process_vm)
80 *
81 * ->i_mutex (generic_perform_write)
82 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
83 *
84 * bdi->wb.list_lock
85 * sb_lock (fs/fs-writeback.c)
86 * ->mapping->tree_lock (__sync_single_inode)
87 *
88 * ->i_mmap_rwsem
89 * ->anon_vma.lock (vma_adjust)
90 *
91 * ->anon_vma.lock
92 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
93 *
94 * ->page_table_lock or pte_lock
95 * ->swap_lock (try_to_unmap_one)
96 * ->private_lock (try_to_unmap_one)
97 * ->tree_lock (try_to_unmap_one)
98 * ->zone.lru_lock (follow_page->mark_page_accessed)
99 * ->zone.lru_lock (check_pte_range->isolate_lru_page)
100 * ->private_lock (page_remove_rmap->set_page_dirty)
101 * ->tree_lock (page_remove_rmap->set_page_dirty)
102 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
103 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
104 * ->memcg->move_lock (page_remove_rmap->lock_page_memcg)
105 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
106 * ->inode->i_lock (zap_pte_range->set_page_dirty)
107 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
108 *
109 * ->i_mmap_rwsem
110 * ->tasklist_lock (memory_failure, collect_procs_ao)
111 */
112
113 static void page_cache_tree_delete(struct address_space *mapping,
114 struct page *page, void *shadow)
115 {
116 struct radix_tree_node *node;
117 unsigned long index;
118 unsigned int offset;
119 unsigned int tag;
120 void **slot;
121
122 VM_BUG_ON(!PageLocked(page));
123
124 __radix_tree_lookup(&mapping->page_tree, page->index, &node, &slot);
125
126 if (shadow) {
127 mapping->nrexceptional++;
128 /*
129 * Make sure the nrexceptional update is committed before
130 * the nrpages update so that final truncate racing
131 * with reclaim does not see both counters 0 at the
132 * same time and miss a shadow entry.
133 */
134 smp_wmb();
135 }
136 mapping->nrpages--;
137
138 if (!node) {
139 /* Clear direct pointer tags in root node */
140 mapping->page_tree.gfp_mask &= __GFP_BITS_MASK;
141 radix_tree_replace_slot(slot, shadow);
142 return;
143 }
144
145 /* Clear tree tags for the removed page */
146 index = page->index;
147 offset = index & RADIX_TREE_MAP_MASK;
148 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
149 if (test_bit(offset, node->tags[tag]))
150 radix_tree_tag_clear(&mapping->page_tree, index, tag);
151 }
152
153 /* Delete page, swap shadow entry */
154 radix_tree_replace_slot(slot, shadow);
155 workingset_node_pages_dec(node);
156 if (shadow)
157 workingset_node_shadows_inc(node);
158 else
159 if (__radix_tree_delete_node(&mapping->page_tree, node))
160 return;
161
162 /*
163 * Track node that only contains shadow entries.
164 *
165 * Avoid acquiring the list_lru lock if already tracked. The
166 * list_empty() test is safe as node->private_list is
167 * protected by mapping->tree_lock.
168 */
169 if (!workingset_node_pages(node) &&
170 list_empty(&node->private_list)) {
171 node->private_data = mapping;
172 list_lru_add(&workingset_shadow_nodes, &node->private_list);
173 }
174 }
175
176 /*
177 * Delete a page from the page cache and free it. Caller has to make
178 * sure the page is locked and that nobody else uses it - or that usage
179 * is safe. The caller must hold the mapping's tree_lock.
180 */
181 void __delete_from_page_cache(struct page *page, void *shadow)
182 {
183 struct address_space *mapping = page->mapping;
184
185 trace_mm_filemap_delete_from_page_cache(page);
186 /*
187 * if we're uptodate, flush out into the cleancache, otherwise
188 * invalidate any existing cleancache entries. We can't leave
189 * stale data around in the cleancache once our page is gone
190 */
191 if (PageUptodate(page) && PageMappedToDisk(page))
192 cleancache_put_page(page);
193 else
194 cleancache_invalidate_page(mapping, page);
195
196 VM_BUG_ON_PAGE(page_mapped(page), page);
197 if (!IS_ENABLED(CONFIG_DEBUG_VM) && unlikely(page_mapped(page))) {
198 int mapcount;
199
200 pr_alert("BUG: Bad page cache in process %s pfn:%05lx\n",
201 current->comm, page_to_pfn(page));
202 dump_page(page, "still mapped when deleted");
203 dump_stack();
204 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
205
206 mapcount = page_mapcount(page);
207 if (mapping_exiting(mapping) &&
208 page_count(page) >= mapcount + 2) {
209 /*
210 * All vmas have already been torn down, so it's
211 * a good bet that actually the page is unmapped,
212 * and we'd prefer not to leak it: if we're wrong,
213 * some other bad page check should catch it later.
214 */
215 page_mapcount_reset(page);
216 atomic_sub(mapcount, &page->_count);
217 }
218 }
219
220 page_cache_tree_delete(mapping, page, shadow);
221
222 page->mapping = NULL;
223 /* Leave page->index set: truncation lookup relies upon it */
224
225 /* hugetlb pages do not participate in page cache accounting. */
226 if (!PageHuge(page))
227 __dec_zone_page_state(page, NR_FILE_PAGES);
228 if (PageSwapBacked(page))
229 __dec_zone_page_state(page, NR_SHMEM);
230
231 /*
232 * At this point page must be either written or cleaned by truncate.
233 * Dirty page here signals a bug and loss of unwritten data.
234 *
235 * This fixes dirty accounting after removing the page entirely but
236 * leaves PageDirty set: it has no effect for truncated page and
237 * anyway will be cleared before returning page into buddy allocator.
238 */
239 if (WARN_ON_ONCE(PageDirty(page)))
240 account_page_cleaned(page, mapping, inode_to_wb(mapping->host));
241 }
242
243 /**
244 * delete_from_page_cache - delete page from page cache
245 * @page: the page which the kernel is trying to remove from page cache
246 *
247 * This must be called only on pages that have been verified to be in the page
248 * cache and locked. It will never put the page into the free list, the caller
249 * has a reference on the page.
250 */
251 void delete_from_page_cache(struct page *page)
252 {
253 struct address_space *mapping = page->mapping;
254 unsigned long flags;
255
256 void (*freepage)(struct page *);
257
258 BUG_ON(!PageLocked(page));
259
260 freepage = mapping->a_ops->freepage;
261
262 spin_lock_irqsave(&mapping->tree_lock, flags);
263 __delete_from_page_cache(page, NULL);
264 spin_unlock_irqrestore(&mapping->tree_lock, flags);
265
266 if (freepage)
267 freepage(page);
268 page_cache_release(page);
269 }
270 EXPORT_SYMBOL(delete_from_page_cache);
271
272 static int filemap_check_errors(struct address_space *mapping)
273 {
274 int ret = 0;
275 /* Check for outstanding write errors */
276 if (test_bit(AS_ENOSPC, &mapping->flags) &&
277 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
278 ret = -ENOSPC;
279 if (test_bit(AS_EIO, &mapping->flags) &&
280 test_and_clear_bit(AS_EIO, &mapping->flags))
281 ret = -EIO;
282 return ret;
283 }
284
285 /**
286 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
287 * @mapping: address space structure to write
288 * @start: offset in bytes where the range starts
289 * @end: offset in bytes where the range ends (inclusive)
290 * @sync_mode: enable synchronous operation
291 *
292 * Start writeback against all of a mapping's dirty pages that lie
293 * within the byte offsets <start, end> inclusive.
294 *
295 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
296 * opposed to a regular memory cleansing writeback. The difference between
297 * these two operations is that if a dirty page/buffer is encountered, it must
298 * be waited upon, and not just skipped over.
299 */
300 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
301 loff_t end, int sync_mode)
302 {
303 int ret;
304 struct writeback_control wbc = {
305 .sync_mode = sync_mode,
306 .nr_to_write = LONG_MAX,
307 .range_start = start,
308 .range_end = end,
309 };
310
311 if (!mapping_cap_writeback_dirty(mapping))
312 return 0;
313
314 wbc_attach_fdatawrite_inode(&wbc, mapping->host);
315 ret = do_writepages(mapping, &wbc);
316 wbc_detach_inode(&wbc);
317 return ret;
318 }
319
320 static inline int __filemap_fdatawrite(struct address_space *mapping,
321 int sync_mode)
322 {
323 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
324 }
325
326 int filemap_fdatawrite(struct address_space *mapping)
327 {
328 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
329 }
330 EXPORT_SYMBOL(filemap_fdatawrite);
331
332 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
333 loff_t end)
334 {
335 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
336 }
337 EXPORT_SYMBOL(filemap_fdatawrite_range);
338
339 /**
340 * filemap_flush - mostly a non-blocking flush
341 * @mapping: target address_space
342 *
343 * This is a mostly non-blocking flush. Not suitable for data-integrity
344 * purposes - I/O may not be started against all dirty pages.
345 */
346 int filemap_flush(struct address_space *mapping)
347 {
348 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
349 }
350 EXPORT_SYMBOL(filemap_flush);
351
352 static int __filemap_fdatawait_range(struct address_space *mapping,
353 loff_t start_byte, loff_t end_byte)
354 {
355 pgoff_t index = start_byte >> PAGE_CACHE_SHIFT;
356 pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
357 struct pagevec pvec;
358 int nr_pages;
359 int ret = 0;
360
361 if (end_byte < start_byte)
362 goto out;
363
364 pagevec_init(&pvec, 0);
365 while ((index <= end) &&
366 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
367 PAGECACHE_TAG_WRITEBACK,
368 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
369 unsigned i;
370
371 for (i = 0; i < nr_pages; i++) {
372 struct page *page = pvec.pages[i];
373
374 /* until radix tree lookup accepts end_index */
375 if (page->index > end)
376 continue;
377
378 wait_on_page_writeback(page);
379 if (TestClearPageError(page))
380 ret = -EIO;
381 }
382 pagevec_release(&pvec);
383 cond_resched();
384 }
385 out:
386 return ret;
387 }
388
389 /**
390 * filemap_fdatawait_range - wait for writeback to complete
391 * @mapping: address space structure to wait for
392 * @start_byte: offset in bytes where the range starts
393 * @end_byte: offset in bytes where the range ends (inclusive)
394 *
395 * Walk the list of under-writeback pages of the given address space
396 * in the given range and wait for all of them. Check error status of
397 * the address space and return it.
398 *
399 * Since the error status of the address space is cleared by this function,
400 * callers are responsible for checking the return value and handling and/or
401 * reporting the error.
402 */
403 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
404 loff_t end_byte)
405 {
406 int ret, ret2;
407
408 ret = __filemap_fdatawait_range(mapping, start_byte, end_byte);
409 ret2 = filemap_check_errors(mapping);
410 if (!ret)
411 ret = ret2;
412
413 return ret;
414 }
415 EXPORT_SYMBOL(filemap_fdatawait_range);
416
417 /**
418 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
419 * @mapping: address space structure to wait for
420 *
421 * Walk the list of under-writeback pages of the given address space
422 * and wait for all of them. Unlike filemap_fdatawait(), this function
423 * does not clear error status of the address space.
424 *
425 * Use this function if callers don't handle errors themselves. Expected
426 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
427 * fsfreeze(8)
428 */
429 void filemap_fdatawait_keep_errors(struct address_space *mapping)
430 {
431 loff_t i_size = i_size_read(mapping->host);
432
433 if (i_size == 0)
434 return;
435
436 __filemap_fdatawait_range(mapping, 0, i_size - 1);
437 }
438
439 /**
440 * filemap_fdatawait - wait for all under-writeback pages to complete
441 * @mapping: address space structure to wait for
442 *
443 * Walk the list of under-writeback pages of the given address space
444 * and wait for all of them. Check error status of the address space
445 * and return it.
446 *
447 * Since the error status of the address space is cleared by this function,
448 * callers are responsible for checking the return value and handling and/or
449 * reporting the error.
450 */
451 int filemap_fdatawait(struct address_space *mapping)
452 {
453 loff_t i_size = i_size_read(mapping->host);
454
455 if (i_size == 0)
456 return 0;
457
458 return filemap_fdatawait_range(mapping, 0, i_size - 1);
459 }
460 EXPORT_SYMBOL(filemap_fdatawait);
461
462 int filemap_write_and_wait(struct address_space *mapping)
463 {
464 int err = 0;
465
466 if ((!dax_mapping(mapping) && mapping->nrpages) ||
467 (dax_mapping(mapping) && mapping->nrexceptional)) {
468 err = filemap_fdatawrite(mapping);
469 /*
470 * Even if the above returned error, the pages may be
471 * written partially (e.g. -ENOSPC), so we wait for it.
472 * But the -EIO is special case, it may indicate the worst
473 * thing (e.g. bug) happened, so we avoid waiting for it.
474 */
475 if (err != -EIO) {
476 int err2 = filemap_fdatawait(mapping);
477 if (!err)
478 err = err2;
479 }
480 } else {
481 err = filemap_check_errors(mapping);
482 }
483 return err;
484 }
485 EXPORT_SYMBOL(filemap_write_and_wait);
486
487 /**
488 * filemap_write_and_wait_range - write out & wait on a file range
489 * @mapping: the address_space for the pages
490 * @lstart: offset in bytes where the range starts
491 * @lend: offset in bytes where the range ends (inclusive)
492 *
493 * Write out and wait upon file offsets lstart->lend, inclusive.
494 *
495 * Note that `lend' is inclusive (describes the last byte to be written) so
496 * that this function can be used to write to the very end-of-file (end = -1).
497 */
498 int filemap_write_and_wait_range(struct address_space *mapping,
499 loff_t lstart, loff_t lend)
500 {
501 int err = 0;
502
503 if ((!dax_mapping(mapping) && mapping->nrpages) ||
504 (dax_mapping(mapping) && mapping->nrexceptional)) {
505 err = __filemap_fdatawrite_range(mapping, lstart, lend,
506 WB_SYNC_ALL);
507 /* See comment of filemap_write_and_wait() */
508 if (err != -EIO) {
509 int err2 = filemap_fdatawait_range(mapping,
510 lstart, lend);
511 if (!err)
512 err = err2;
513 }
514 } else {
515 err = filemap_check_errors(mapping);
516 }
517 return err;
518 }
519 EXPORT_SYMBOL(filemap_write_and_wait_range);
520
521 /**
522 * replace_page_cache_page - replace a pagecache page with a new one
523 * @old: page to be replaced
524 * @new: page to replace with
525 * @gfp_mask: allocation mode
526 *
527 * This function replaces a page in the pagecache with a new one. On
528 * success it acquires the pagecache reference for the new page and
529 * drops it for the old page. Both the old and new pages must be
530 * locked. This function does not add the new page to the LRU, the
531 * caller must do that.
532 *
533 * The remove + add is atomic. The only way this function can fail is
534 * memory allocation failure.
535 */
536 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
537 {
538 int error;
539
540 VM_BUG_ON_PAGE(!PageLocked(old), old);
541 VM_BUG_ON_PAGE(!PageLocked(new), new);
542 VM_BUG_ON_PAGE(new->mapping, new);
543
544 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
545 if (!error) {
546 struct address_space *mapping = old->mapping;
547 void (*freepage)(struct page *);
548 unsigned long flags;
549
550 pgoff_t offset = old->index;
551 freepage = mapping->a_ops->freepage;
552
553 page_cache_get(new);
554 new->mapping = mapping;
555 new->index = offset;
556
557 spin_lock_irqsave(&mapping->tree_lock, flags);
558 __delete_from_page_cache(old, NULL);
559 error = radix_tree_insert(&mapping->page_tree, offset, new);
560 BUG_ON(error);
561 mapping->nrpages++;
562
563 /*
564 * hugetlb pages do not participate in page cache accounting.
565 */
566 if (!PageHuge(new))
567 __inc_zone_page_state(new, NR_FILE_PAGES);
568 if (PageSwapBacked(new))
569 __inc_zone_page_state(new, NR_SHMEM);
570 spin_unlock_irqrestore(&mapping->tree_lock, flags);
571 mem_cgroup_migrate(old, new);
572 radix_tree_preload_end();
573 if (freepage)
574 freepage(old);
575 page_cache_release(old);
576 }
577
578 return error;
579 }
580 EXPORT_SYMBOL_GPL(replace_page_cache_page);
581
582 static int page_cache_tree_insert(struct address_space *mapping,
583 struct page *page, void **shadowp)
584 {
585 struct radix_tree_node *node;
586 void **slot;
587 int error;
588
589 error = __radix_tree_create(&mapping->page_tree, page->index,
590 &node, &slot);
591 if (error)
592 return error;
593 if (*slot) {
594 void *p;
595
596 p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
597 if (!radix_tree_exceptional_entry(p))
598 return -EEXIST;
599
600 if (WARN_ON(dax_mapping(mapping)))
601 return -EINVAL;
602
603 if (shadowp)
604 *shadowp = p;
605 mapping->nrexceptional--;
606 if (node)
607 workingset_node_shadows_dec(node);
608 }
609 radix_tree_replace_slot(slot, page);
610 mapping->nrpages++;
611 if (node) {
612 workingset_node_pages_inc(node);
613 /*
614 * Don't track node that contains actual pages.
615 *
616 * Avoid acquiring the list_lru lock if already
617 * untracked. The list_empty() test is safe as
618 * node->private_list is protected by
619 * mapping->tree_lock.
620 */
621 if (!list_empty(&node->private_list))
622 list_lru_del(&workingset_shadow_nodes,
623 &node->private_list);
624 }
625 return 0;
626 }
627
628 static int __add_to_page_cache_locked(struct page *page,
629 struct address_space *mapping,
630 pgoff_t offset, gfp_t gfp_mask,
631 void **shadowp)
632 {
633 int huge = PageHuge(page);
634 struct mem_cgroup *memcg;
635 int error;
636
637 VM_BUG_ON_PAGE(!PageLocked(page), page);
638 VM_BUG_ON_PAGE(PageSwapBacked(page), page);
639
640 if (!huge) {
641 error = mem_cgroup_try_charge(page, current->mm,
642 gfp_mask, &memcg, false);
643 if (error)
644 return error;
645 }
646
647 error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
648 if (error) {
649 if (!huge)
650 mem_cgroup_cancel_charge(page, memcg, false);
651 return error;
652 }
653
654 page_cache_get(page);
655 page->mapping = mapping;
656 page->index = offset;
657
658 spin_lock_irq(&mapping->tree_lock);
659 error = page_cache_tree_insert(mapping, page, shadowp);
660 radix_tree_preload_end();
661 if (unlikely(error))
662 goto err_insert;
663
664 /* hugetlb pages do not participate in page cache accounting. */
665 if (!huge)
666 __inc_zone_page_state(page, NR_FILE_PAGES);
667 spin_unlock_irq(&mapping->tree_lock);
668 if (!huge)
669 mem_cgroup_commit_charge(page, memcg, false, false);
670 trace_mm_filemap_add_to_page_cache(page);
671 return 0;
672 err_insert:
673 page->mapping = NULL;
674 /* Leave page->index set: truncation relies upon it */
675 spin_unlock_irq(&mapping->tree_lock);
676 if (!huge)
677 mem_cgroup_cancel_charge(page, memcg, false);
678 page_cache_release(page);
679 return error;
680 }
681
682 /**
683 * add_to_page_cache_locked - add a locked page to the pagecache
684 * @page: page to add
685 * @mapping: the page's address_space
686 * @offset: page index
687 * @gfp_mask: page allocation mode
688 *
689 * This function is used to add a page to the pagecache. It must be locked.
690 * This function does not add the page to the LRU. The caller must do that.
691 */
692 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
693 pgoff_t offset, gfp_t gfp_mask)
694 {
695 return __add_to_page_cache_locked(page, mapping, offset,
696 gfp_mask, NULL);
697 }
698 EXPORT_SYMBOL(add_to_page_cache_locked);
699
700 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
701 pgoff_t offset, gfp_t gfp_mask)
702 {
703 void *shadow = NULL;
704 int ret;
705
706 __SetPageLocked(page);
707 ret = __add_to_page_cache_locked(page, mapping, offset,
708 gfp_mask, &shadow);
709 if (unlikely(ret))
710 __ClearPageLocked(page);
711 else {
712 /*
713 * The page might have been evicted from cache only
714 * recently, in which case it should be activated like
715 * any other repeatedly accessed page.
716 */
717 if (shadow && workingset_refault(shadow)) {
718 SetPageActive(page);
719 workingset_activation(page);
720 } else
721 ClearPageActive(page);
722 lru_cache_add(page);
723 }
724 return ret;
725 }
726 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
727
728 #ifdef CONFIG_NUMA
729 struct page *__page_cache_alloc(gfp_t gfp)
730 {
731 int n;
732 struct page *page;
733
734 if (cpuset_do_page_mem_spread()) {
735 unsigned int cpuset_mems_cookie;
736 do {
737 cpuset_mems_cookie = read_mems_allowed_begin();
738 n = cpuset_mem_spread_node();
739 page = __alloc_pages_node(n, gfp, 0);
740 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
741
742 return page;
743 }
744 return alloc_pages(gfp, 0);
745 }
746 EXPORT_SYMBOL(__page_cache_alloc);
747 #endif
748
749 /*
750 * In order to wait for pages to become available there must be
751 * waitqueues associated with pages. By using a hash table of
752 * waitqueues where the bucket discipline is to maintain all
753 * waiters on the same queue and wake all when any of the pages
754 * become available, and for the woken contexts to check to be
755 * sure the appropriate page became available, this saves space
756 * at a cost of "thundering herd" phenomena during rare hash
757 * collisions.
758 */
759 wait_queue_head_t *page_waitqueue(struct page *page)
760 {
761 const struct zone *zone = page_zone(page);
762
763 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
764 }
765 EXPORT_SYMBOL(page_waitqueue);
766
767 void wait_on_page_bit(struct page *page, int bit_nr)
768 {
769 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
770
771 if (test_bit(bit_nr, &page->flags))
772 __wait_on_bit(page_waitqueue(page), &wait, bit_wait_io,
773 TASK_UNINTERRUPTIBLE);
774 }
775 EXPORT_SYMBOL(wait_on_page_bit);
776
777 int wait_on_page_bit_killable(struct page *page, int bit_nr)
778 {
779 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
780
781 if (!test_bit(bit_nr, &page->flags))
782 return 0;
783
784 return __wait_on_bit(page_waitqueue(page), &wait,
785 bit_wait_io, TASK_KILLABLE);
786 }
787
788 int wait_on_page_bit_killable_timeout(struct page *page,
789 int bit_nr, unsigned long timeout)
790 {
791 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
792
793 wait.key.timeout = jiffies + timeout;
794 if (!test_bit(bit_nr, &page->flags))
795 return 0;
796 return __wait_on_bit(page_waitqueue(page), &wait,
797 bit_wait_io_timeout, TASK_KILLABLE);
798 }
799 EXPORT_SYMBOL_GPL(wait_on_page_bit_killable_timeout);
800
801 /**
802 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
803 * @page: Page defining the wait queue of interest
804 * @waiter: Waiter to add to the queue
805 *
806 * Add an arbitrary @waiter to the wait queue for the nominated @page.
807 */
808 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
809 {
810 wait_queue_head_t *q = page_waitqueue(page);
811 unsigned long flags;
812
813 spin_lock_irqsave(&q->lock, flags);
814 __add_wait_queue(q, waiter);
815 spin_unlock_irqrestore(&q->lock, flags);
816 }
817 EXPORT_SYMBOL_GPL(add_page_wait_queue);
818
819 /**
820 * unlock_page - unlock a locked page
821 * @page: the page
822 *
823 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
824 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
825 * mechanism between PageLocked pages and PageWriteback pages is shared.
826 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
827 *
828 * The mb is necessary to enforce ordering between the clear_bit and the read
829 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
830 */
831 void unlock_page(struct page *page)
832 {
833 page = compound_head(page);
834 VM_BUG_ON_PAGE(!PageLocked(page), page);
835 clear_bit_unlock(PG_locked, &page->flags);
836 smp_mb__after_atomic();
837 wake_up_page(page, PG_locked);
838 }
839 EXPORT_SYMBOL(unlock_page);
840
841 /**
842 * end_page_writeback - end writeback against a page
843 * @page: the page
844 */
845 void end_page_writeback(struct page *page)
846 {
847 /*
848 * TestClearPageReclaim could be used here but it is an atomic
849 * operation and overkill in this particular case. Failing to
850 * shuffle a page marked for immediate reclaim is too mild to
851 * justify taking an atomic operation penalty at the end of
852 * ever page writeback.
853 */
854 if (PageReclaim(page)) {
855 ClearPageReclaim(page);
856 rotate_reclaimable_page(page);
857 }
858
859 if (!test_clear_page_writeback(page))
860 BUG();
861
862 smp_mb__after_atomic();
863 wake_up_page(page, PG_writeback);
864 }
865 EXPORT_SYMBOL(end_page_writeback);
866
867 /*
868 * After completing I/O on a page, call this routine to update the page
869 * flags appropriately
870 */
871 void page_endio(struct page *page, int rw, int err)
872 {
873 if (rw == READ) {
874 if (!err) {
875 SetPageUptodate(page);
876 } else {
877 ClearPageUptodate(page);
878 SetPageError(page);
879 }
880 unlock_page(page);
881 } else { /* rw == WRITE */
882 if (err) {
883 SetPageError(page);
884 if (page->mapping)
885 mapping_set_error(page->mapping, err);
886 }
887 end_page_writeback(page);
888 }
889 }
890 EXPORT_SYMBOL_GPL(page_endio);
891
892 /**
893 * __lock_page - get a lock on the page, assuming we need to sleep to get it
894 * @page: the page to lock
895 */
896 void __lock_page(struct page *page)
897 {
898 struct page *page_head = compound_head(page);
899 DEFINE_WAIT_BIT(wait, &page_head->flags, PG_locked);
900
901 __wait_on_bit_lock(page_waitqueue(page_head), &wait, bit_wait_io,
902 TASK_UNINTERRUPTIBLE);
903 }
904 EXPORT_SYMBOL(__lock_page);
905
906 int __lock_page_killable(struct page *page)
907 {
908 struct page *page_head = compound_head(page);
909 DEFINE_WAIT_BIT(wait, &page_head->flags, PG_locked);
910
911 return __wait_on_bit_lock(page_waitqueue(page_head), &wait,
912 bit_wait_io, TASK_KILLABLE);
913 }
914 EXPORT_SYMBOL_GPL(__lock_page_killable);
915
916 /*
917 * Return values:
918 * 1 - page is locked; mmap_sem is still held.
919 * 0 - page is not locked.
920 * mmap_sem has been released (up_read()), unless flags had both
921 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
922 * which case mmap_sem is still held.
923 *
924 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
925 * with the page locked and the mmap_sem unperturbed.
926 */
927 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
928 unsigned int flags)
929 {
930 if (flags & FAULT_FLAG_ALLOW_RETRY) {
931 /*
932 * CAUTION! In this case, mmap_sem is not released
933 * even though return 0.
934 */
935 if (flags & FAULT_FLAG_RETRY_NOWAIT)
936 return 0;
937
938 up_read(&mm->mmap_sem);
939 if (flags & FAULT_FLAG_KILLABLE)
940 wait_on_page_locked_killable(page);
941 else
942 wait_on_page_locked(page);
943 return 0;
944 } else {
945 if (flags & FAULT_FLAG_KILLABLE) {
946 int ret;
947
948 ret = __lock_page_killable(page);
949 if (ret) {
950 up_read(&mm->mmap_sem);
951 return 0;
952 }
953 } else
954 __lock_page(page);
955 return 1;
956 }
957 }
958
959 /**
960 * page_cache_next_hole - find the next hole (not-present entry)
961 * @mapping: mapping
962 * @index: index
963 * @max_scan: maximum range to search
964 *
965 * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
966 * lowest indexed hole.
967 *
968 * Returns: the index of the hole if found, otherwise returns an index
969 * outside of the set specified (in which case 'return - index >=
970 * max_scan' will be true). In rare cases of index wrap-around, 0 will
971 * be returned.
972 *
973 * page_cache_next_hole may be called under rcu_read_lock. However,
974 * like radix_tree_gang_lookup, this will not atomically search a
975 * snapshot of the tree at a single point in time. For example, if a
976 * hole is created at index 5, then subsequently a hole is created at
977 * index 10, page_cache_next_hole covering both indexes may return 10
978 * if called under rcu_read_lock.
979 */
980 pgoff_t page_cache_next_hole(struct address_space *mapping,
981 pgoff_t index, unsigned long max_scan)
982 {
983 unsigned long i;
984
985 for (i = 0; i < max_scan; i++) {
986 struct page *page;
987
988 page = radix_tree_lookup(&mapping->page_tree, index);
989 if (!page || radix_tree_exceptional_entry(page))
990 break;
991 index++;
992 if (index == 0)
993 break;
994 }
995
996 return index;
997 }
998 EXPORT_SYMBOL(page_cache_next_hole);
999
1000 /**
1001 * page_cache_prev_hole - find the prev hole (not-present entry)
1002 * @mapping: mapping
1003 * @index: index
1004 * @max_scan: maximum range to search
1005 *
1006 * Search backwards in the range [max(index-max_scan+1, 0), index] for
1007 * the first hole.
1008 *
1009 * Returns: the index of the hole if found, otherwise returns an index
1010 * outside of the set specified (in which case 'index - return >=
1011 * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
1012 * will be returned.
1013 *
1014 * page_cache_prev_hole may be called under rcu_read_lock. However,
1015 * like radix_tree_gang_lookup, this will not atomically search a
1016 * snapshot of the tree at a single point in time. For example, if a
1017 * hole is created at index 10, then subsequently a hole is created at
1018 * index 5, page_cache_prev_hole covering both indexes may return 5 if
1019 * called under rcu_read_lock.
1020 */
1021 pgoff_t page_cache_prev_hole(struct address_space *mapping,
1022 pgoff_t index, unsigned long max_scan)
1023 {
1024 unsigned long i;
1025
1026 for (i = 0; i < max_scan; i++) {
1027 struct page *page;
1028
1029 page = radix_tree_lookup(&mapping->page_tree, index);
1030 if (!page || radix_tree_exceptional_entry(page))
1031 break;
1032 index--;
1033 if (index == ULONG_MAX)
1034 break;
1035 }
1036
1037 return index;
1038 }
1039 EXPORT_SYMBOL(page_cache_prev_hole);
1040
1041 /**
1042 * find_get_entry - find and get a page cache entry
1043 * @mapping: the address_space to search
1044 * @offset: the page cache index
1045 *
1046 * Looks up the page cache slot at @mapping & @offset. If there is a
1047 * page cache page, it is returned with an increased refcount.
1048 *
1049 * If the slot holds a shadow entry of a previously evicted page, or a
1050 * swap entry from shmem/tmpfs, it is returned.
1051 *
1052 * Otherwise, %NULL is returned.
1053 */
1054 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1055 {
1056 void **pagep;
1057 struct page *page;
1058
1059 rcu_read_lock();
1060 repeat:
1061 page = NULL;
1062 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
1063 if (pagep) {
1064 page = radix_tree_deref_slot(pagep);
1065 if (unlikely(!page))
1066 goto out;
1067 if (radix_tree_exception(page)) {
1068 if (radix_tree_deref_retry(page))
1069 goto repeat;
1070 /*
1071 * A shadow entry of a recently evicted page,
1072 * or a swap entry from shmem/tmpfs. Return
1073 * it without attempting to raise page count.
1074 */
1075 goto out;
1076 }
1077 if (!page_cache_get_speculative(page))
1078 goto repeat;
1079
1080 /*
1081 * Has the page moved?
1082 * This is part of the lockless pagecache protocol. See
1083 * include/linux/pagemap.h for details.
1084 */
1085 if (unlikely(page != *pagep)) {
1086 page_cache_release(page);
1087 goto repeat;
1088 }
1089 }
1090 out:
1091 rcu_read_unlock();
1092
1093 return page;
1094 }
1095 EXPORT_SYMBOL(find_get_entry);
1096
1097 /**
1098 * find_lock_entry - locate, pin and lock a page cache entry
1099 * @mapping: the address_space to search
1100 * @offset: the page cache index
1101 *
1102 * Looks up the page cache slot at @mapping & @offset. If there is a
1103 * page cache page, it is returned locked and with an increased
1104 * refcount.
1105 *
1106 * If the slot holds a shadow entry of a previously evicted page, or a
1107 * swap entry from shmem/tmpfs, it is returned.
1108 *
1109 * Otherwise, %NULL is returned.
1110 *
1111 * find_lock_entry() may sleep.
1112 */
1113 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1114 {
1115 struct page *page;
1116
1117 repeat:
1118 page = find_get_entry(mapping, offset);
1119 if (page && !radix_tree_exception(page)) {
1120 lock_page(page);
1121 /* Has the page been truncated? */
1122 if (unlikely(page->mapping != mapping)) {
1123 unlock_page(page);
1124 page_cache_release(page);
1125 goto repeat;
1126 }
1127 VM_BUG_ON_PAGE(page->index != offset, page);
1128 }
1129 return page;
1130 }
1131 EXPORT_SYMBOL(find_lock_entry);
1132
1133 /**
1134 * pagecache_get_page - find and get a page reference
1135 * @mapping: the address_space to search
1136 * @offset: the page index
1137 * @fgp_flags: PCG flags
1138 * @gfp_mask: gfp mask to use for the page cache data page allocation
1139 *
1140 * Looks up the page cache slot at @mapping & @offset.
1141 *
1142 * PCG flags modify how the page is returned.
1143 *
1144 * FGP_ACCESSED: the page will be marked accessed
1145 * FGP_LOCK: Page is return locked
1146 * FGP_CREAT: If page is not present then a new page is allocated using
1147 * @gfp_mask and added to the page cache and the VM's LRU
1148 * list. The page is returned locked and with an increased
1149 * refcount. Otherwise, %NULL is returned.
1150 *
1151 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1152 * if the GFP flags specified for FGP_CREAT are atomic.
1153 *
1154 * If there is a page cache page, it is returned with an increased refcount.
1155 */
1156 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1157 int fgp_flags, gfp_t gfp_mask)
1158 {
1159 struct page *page;
1160
1161 repeat:
1162 page = find_get_entry(mapping, offset);
1163 if (radix_tree_exceptional_entry(page))
1164 page = NULL;
1165 if (!page)
1166 goto no_page;
1167
1168 if (fgp_flags & FGP_LOCK) {
1169 if (fgp_flags & FGP_NOWAIT) {
1170 if (!trylock_page(page)) {
1171 page_cache_release(page);
1172 return NULL;
1173 }
1174 } else {
1175 lock_page(page);
1176 }
1177
1178 /* Has the page been truncated? */
1179 if (unlikely(page->mapping != mapping)) {
1180 unlock_page(page);
1181 page_cache_release(page);
1182 goto repeat;
1183 }
1184 VM_BUG_ON_PAGE(page->index != offset, page);
1185 }
1186
1187 if (page && (fgp_flags & FGP_ACCESSED))
1188 mark_page_accessed(page);
1189
1190 no_page:
1191 if (!page && (fgp_flags & FGP_CREAT)) {
1192 int err;
1193 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1194 gfp_mask |= __GFP_WRITE;
1195 if (fgp_flags & FGP_NOFS)
1196 gfp_mask &= ~__GFP_FS;
1197
1198 page = __page_cache_alloc(gfp_mask);
1199 if (!page)
1200 return NULL;
1201
1202 if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1203 fgp_flags |= FGP_LOCK;
1204
1205 /* Init accessed so avoid atomic mark_page_accessed later */
1206 if (fgp_flags & FGP_ACCESSED)
1207 __SetPageReferenced(page);
1208
1209 err = add_to_page_cache_lru(page, mapping, offset,
1210 gfp_mask & GFP_RECLAIM_MASK);
1211 if (unlikely(err)) {
1212 page_cache_release(page);
1213 page = NULL;
1214 if (err == -EEXIST)
1215 goto repeat;
1216 }
1217 }
1218
1219 return page;
1220 }
1221 EXPORT_SYMBOL(pagecache_get_page);
1222
1223 /**
1224 * find_get_entries - gang pagecache lookup
1225 * @mapping: The address_space to search
1226 * @start: The starting page cache index
1227 * @nr_entries: The maximum number of entries
1228 * @entries: Where the resulting entries are placed
1229 * @indices: The cache indices corresponding to the entries in @entries
1230 *
1231 * find_get_entries() will search for and return a group of up to
1232 * @nr_entries entries in the mapping. The entries are placed at
1233 * @entries. find_get_entries() takes a reference against any actual
1234 * pages it returns.
1235 *
1236 * The search returns a group of mapping-contiguous page cache entries
1237 * with ascending indexes. There may be holes in the indices due to
1238 * not-present pages.
1239 *
1240 * Any shadow entries of evicted pages, or swap entries from
1241 * shmem/tmpfs, are included in the returned array.
1242 *
1243 * find_get_entries() returns the number of pages and shadow entries
1244 * which were found.
1245 */
1246 unsigned find_get_entries(struct address_space *mapping,
1247 pgoff_t start, unsigned int nr_entries,
1248 struct page **entries, pgoff_t *indices)
1249 {
1250 void **slot;
1251 unsigned int ret = 0;
1252 struct radix_tree_iter iter;
1253
1254 if (!nr_entries)
1255 return 0;
1256
1257 rcu_read_lock();
1258 restart:
1259 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1260 struct page *page;
1261 repeat:
1262 page = radix_tree_deref_slot(slot);
1263 if (unlikely(!page))
1264 continue;
1265 if (radix_tree_exception(page)) {
1266 if (radix_tree_deref_retry(page))
1267 goto restart;
1268 /*
1269 * A shadow entry of a recently evicted page, a swap
1270 * entry from shmem/tmpfs or a DAX entry. Return it
1271 * without attempting to raise page count.
1272 */
1273 goto export;
1274 }
1275 if (!page_cache_get_speculative(page))
1276 goto repeat;
1277
1278 /* Has the page moved? */
1279 if (unlikely(page != *slot)) {
1280 page_cache_release(page);
1281 goto repeat;
1282 }
1283 export:
1284 indices[ret] = iter.index;
1285 entries[ret] = page;
1286 if (++ret == nr_entries)
1287 break;
1288 }
1289 rcu_read_unlock();
1290 return ret;
1291 }
1292
1293 /**
1294 * find_get_pages - gang pagecache lookup
1295 * @mapping: The address_space to search
1296 * @start: The starting page index
1297 * @nr_pages: The maximum number of pages
1298 * @pages: Where the resulting pages are placed
1299 *
1300 * find_get_pages() will search for and return a group of up to
1301 * @nr_pages pages in the mapping. The pages are placed at @pages.
1302 * find_get_pages() takes a reference against the returned pages.
1303 *
1304 * The search returns a group of mapping-contiguous pages with ascending
1305 * indexes. There may be holes in the indices due to not-present pages.
1306 *
1307 * find_get_pages() returns the number of pages which were found.
1308 */
1309 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
1310 unsigned int nr_pages, struct page **pages)
1311 {
1312 struct radix_tree_iter iter;
1313 void **slot;
1314 unsigned ret = 0;
1315
1316 if (unlikely(!nr_pages))
1317 return 0;
1318
1319 rcu_read_lock();
1320 restart:
1321 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1322 struct page *page;
1323 repeat:
1324 page = radix_tree_deref_slot(slot);
1325 if (unlikely(!page))
1326 continue;
1327
1328 if (radix_tree_exception(page)) {
1329 if (radix_tree_deref_retry(page)) {
1330 /*
1331 * Transient condition which can only trigger
1332 * when entry at index 0 moves out of or back
1333 * to root: none yet gotten, safe to restart.
1334 */
1335 WARN_ON(iter.index);
1336 goto restart;
1337 }
1338 /*
1339 * A shadow entry of a recently evicted page,
1340 * or a swap entry from shmem/tmpfs. Skip
1341 * over it.
1342 */
1343 continue;
1344 }
1345
1346 if (!page_cache_get_speculative(page))
1347 goto repeat;
1348
1349 /* Has the page moved? */
1350 if (unlikely(page != *slot)) {
1351 page_cache_release(page);
1352 goto repeat;
1353 }
1354
1355 pages[ret] = page;
1356 if (++ret == nr_pages)
1357 break;
1358 }
1359
1360 rcu_read_unlock();
1361 return ret;
1362 }
1363
1364 /**
1365 * find_get_pages_contig - gang contiguous pagecache lookup
1366 * @mapping: The address_space to search
1367 * @index: The starting page index
1368 * @nr_pages: The maximum number of pages
1369 * @pages: Where the resulting pages are placed
1370 *
1371 * find_get_pages_contig() works exactly like find_get_pages(), except
1372 * that the returned number of pages are guaranteed to be contiguous.
1373 *
1374 * find_get_pages_contig() returns the number of pages which were found.
1375 */
1376 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1377 unsigned int nr_pages, struct page **pages)
1378 {
1379 struct radix_tree_iter iter;
1380 void **slot;
1381 unsigned int ret = 0;
1382
1383 if (unlikely(!nr_pages))
1384 return 0;
1385
1386 rcu_read_lock();
1387 restart:
1388 radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
1389 struct page *page;
1390 repeat:
1391 page = radix_tree_deref_slot(slot);
1392 /* The hole, there no reason to continue */
1393 if (unlikely(!page))
1394 break;
1395
1396 if (radix_tree_exception(page)) {
1397 if (radix_tree_deref_retry(page)) {
1398 /*
1399 * Transient condition which can only trigger
1400 * when entry at index 0 moves out of or back
1401 * to root: none yet gotten, safe to restart.
1402 */
1403 goto restart;
1404 }
1405 /*
1406 * A shadow entry of a recently evicted page,
1407 * or a swap entry from shmem/tmpfs. Stop
1408 * looking for contiguous pages.
1409 */
1410 break;
1411 }
1412
1413 if (!page_cache_get_speculative(page))
1414 goto repeat;
1415
1416 /* Has the page moved? */
1417 if (unlikely(page != *slot)) {
1418 page_cache_release(page);
1419 goto repeat;
1420 }
1421
1422 /*
1423 * must check mapping and index after taking the ref.
1424 * otherwise we can get both false positives and false
1425 * negatives, which is just confusing to the caller.
1426 */
1427 if (page->mapping == NULL || page->index != iter.index) {
1428 page_cache_release(page);
1429 break;
1430 }
1431
1432 pages[ret] = page;
1433 if (++ret == nr_pages)
1434 break;
1435 }
1436 rcu_read_unlock();
1437 return ret;
1438 }
1439 EXPORT_SYMBOL(find_get_pages_contig);
1440
1441 /**
1442 * find_get_pages_tag - find and return pages that match @tag
1443 * @mapping: the address_space to search
1444 * @index: the starting page index
1445 * @tag: the tag index
1446 * @nr_pages: the maximum number of pages
1447 * @pages: where the resulting pages are placed
1448 *
1449 * Like find_get_pages, except we only return pages which are tagged with
1450 * @tag. We update @index to index the next page for the traversal.
1451 */
1452 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1453 int tag, unsigned int nr_pages, struct page **pages)
1454 {
1455 struct radix_tree_iter iter;
1456 void **slot;
1457 unsigned ret = 0;
1458
1459 if (unlikely(!nr_pages))
1460 return 0;
1461
1462 rcu_read_lock();
1463 restart:
1464 radix_tree_for_each_tagged(slot, &mapping->page_tree,
1465 &iter, *index, tag) {
1466 struct page *page;
1467 repeat:
1468 page = radix_tree_deref_slot(slot);
1469 if (unlikely(!page))
1470 continue;
1471
1472 if (radix_tree_exception(page)) {
1473 if (radix_tree_deref_retry(page)) {
1474 /*
1475 * Transient condition which can only trigger
1476 * when entry at index 0 moves out of or back
1477 * to root: none yet gotten, safe to restart.
1478 */
1479 goto restart;
1480 }
1481 /*
1482 * A shadow entry of a recently evicted page.
1483 *
1484 * Those entries should never be tagged, but
1485 * this tree walk is lockless and the tags are
1486 * looked up in bulk, one radix tree node at a
1487 * time, so there is a sizable window for page
1488 * reclaim to evict a page we saw tagged.
1489 *
1490 * Skip over it.
1491 */
1492 continue;
1493 }
1494
1495 if (!page_cache_get_speculative(page))
1496 goto repeat;
1497
1498 /* Has the page moved? */
1499 if (unlikely(page != *slot)) {
1500 page_cache_release(page);
1501 goto repeat;
1502 }
1503
1504 pages[ret] = page;
1505 if (++ret == nr_pages)
1506 break;
1507 }
1508
1509 rcu_read_unlock();
1510
1511 if (ret)
1512 *index = pages[ret - 1]->index + 1;
1513
1514 return ret;
1515 }
1516 EXPORT_SYMBOL(find_get_pages_tag);
1517
1518 /**
1519 * find_get_entries_tag - find and return entries that match @tag
1520 * @mapping: the address_space to search
1521 * @start: the starting page cache index
1522 * @tag: the tag index
1523 * @nr_entries: the maximum number of entries
1524 * @entries: where the resulting entries are placed
1525 * @indices: the cache indices corresponding to the entries in @entries
1526 *
1527 * Like find_get_entries, except we only return entries which are tagged with
1528 * @tag.
1529 */
1530 unsigned find_get_entries_tag(struct address_space *mapping, pgoff_t start,
1531 int tag, unsigned int nr_entries,
1532 struct page **entries, pgoff_t *indices)
1533 {
1534 void **slot;
1535 unsigned int ret = 0;
1536 struct radix_tree_iter iter;
1537
1538 if (!nr_entries)
1539 return 0;
1540
1541 rcu_read_lock();
1542 restart:
1543 radix_tree_for_each_tagged(slot, &mapping->page_tree,
1544 &iter, start, tag) {
1545 struct page *page;
1546 repeat:
1547 page = radix_tree_deref_slot(slot);
1548 if (unlikely(!page))
1549 continue;
1550 if (radix_tree_exception(page)) {
1551 if (radix_tree_deref_retry(page)) {
1552 /*
1553 * Transient condition which can only trigger
1554 * when entry at index 0 moves out of or back
1555 * to root: none yet gotten, safe to restart.
1556 */
1557 goto restart;
1558 }
1559
1560 /*
1561 * A shadow entry of a recently evicted page, a swap
1562 * entry from shmem/tmpfs or a DAX entry. Return it
1563 * without attempting to raise page count.
1564 */
1565 goto export;
1566 }
1567 if (!page_cache_get_speculative(page))
1568 goto repeat;
1569
1570 /* Has the page moved? */
1571 if (unlikely(page != *slot)) {
1572 page_cache_release(page);
1573 goto repeat;
1574 }
1575 export:
1576 indices[ret] = iter.index;
1577 entries[ret] = page;
1578 if (++ret == nr_entries)
1579 break;
1580 }
1581 rcu_read_unlock();
1582 return ret;
1583 }
1584 EXPORT_SYMBOL(find_get_entries_tag);
1585
1586 /*
1587 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1588 * a _large_ part of the i/o request. Imagine the worst scenario:
1589 *
1590 * ---R__________________________________________B__________
1591 * ^ reading here ^ bad block(assume 4k)
1592 *
1593 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1594 * => failing the whole request => read(R) => read(R+1) =>
1595 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1596 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1597 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1598 *
1599 * It is going insane. Fix it by quickly scaling down the readahead size.
1600 */
1601 static void shrink_readahead_size_eio(struct file *filp,
1602 struct file_ra_state *ra)
1603 {
1604 ra->ra_pages /= 4;
1605 }
1606
1607 /**
1608 * do_generic_file_read - generic file read routine
1609 * @filp: the file to read
1610 * @ppos: current file position
1611 * @iter: data destination
1612 * @written: already copied
1613 *
1614 * This is a generic file read routine, and uses the
1615 * mapping->a_ops->readpage() function for the actual low-level stuff.
1616 *
1617 * This is really ugly. But the goto's actually try to clarify some
1618 * of the logic when it comes to error handling etc.
1619 */
1620 static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos,
1621 struct iov_iter *iter, ssize_t written)
1622 {
1623 struct address_space *mapping = filp->f_mapping;
1624 struct inode *inode = mapping->host;
1625 struct file_ra_state *ra = &filp->f_ra;
1626 pgoff_t index;
1627 pgoff_t last_index;
1628 pgoff_t prev_index;
1629 unsigned long offset; /* offset into pagecache page */
1630 unsigned int prev_offset;
1631 int error = 0;
1632
1633 index = *ppos >> PAGE_CACHE_SHIFT;
1634 prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
1635 prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
1636 last_index = (*ppos + iter->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1637 offset = *ppos & ~PAGE_CACHE_MASK;
1638
1639 for (;;) {
1640 struct page *page;
1641 pgoff_t end_index;
1642 loff_t isize;
1643 unsigned long nr, ret;
1644
1645 cond_resched();
1646 find_page:
1647 page = find_get_page(mapping, index);
1648 if (!page) {
1649 page_cache_sync_readahead(mapping,
1650 ra, filp,
1651 index, last_index - index);
1652 page = find_get_page(mapping, index);
1653 if (unlikely(page == NULL))
1654 goto no_cached_page;
1655 }
1656 if (PageReadahead(page)) {
1657 page_cache_async_readahead(mapping,
1658 ra, filp, page,
1659 index, last_index - index);
1660 }
1661 if (!PageUptodate(page)) {
1662 /*
1663 * See comment in do_read_cache_page on why
1664 * wait_on_page_locked is used to avoid unnecessarily
1665 * serialisations and why it's safe.
1666 */
1667 wait_on_page_locked_killable(page);
1668 if (PageUptodate(page))
1669 goto page_ok;
1670
1671 if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1672 !mapping->a_ops->is_partially_uptodate)
1673 goto page_not_up_to_date;
1674 if (!trylock_page(page))
1675 goto page_not_up_to_date;
1676 /* Did it get truncated before we got the lock? */
1677 if (!page->mapping)
1678 goto page_not_up_to_date_locked;
1679 if (!mapping->a_ops->is_partially_uptodate(page,
1680 offset, iter->count))
1681 goto page_not_up_to_date_locked;
1682 unlock_page(page);
1683 }
1684 page_ok:
1685 /*
1686 * i_size must be checked after we know the page is Uptodate.
1687 *
1688 * Checking i_size after the check allows us to calculate
1689 * the correct value for "nr", which means the zero-filled
1690 * part of the page is not copied back to userspace (unless
1691 * another truncate extends the file - this is desired though).
1692 */
1693
1694 isize = i_size_read(inode);
1695 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1696 if (unlikely(!isize || index > end_index)) {
1697 page_cache_release(page);
1698 goto out;
1699 }
1700
1701 /* nr is the maximum number of bytes to copy from this page */
1702 nr = PAGE_CACHE_SIZE;
1703 if (index == end_index) {
1704 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1705 if (nr <= offset) {
1706 page_cache_release(page);
1707 goto out;
1708 }
1709 }
1710 nr = nr - offset;
1711
1712 /* If users can be writing to this page using arbitrary
1713 * virtual addresses, take care about potential aliasing
1714 * before reading the page on the kernel side.
1715 */
1716 if (mapping_writably_mapped(mapping))
1717 flush_dcache_page(page);
1718
1719 /*
1720 * When a sequential read accesses a page several times,
1721 * only mark it as accessed the first time.
1722 */
1723 if (prev_index != index || offset != prev_offset)
1724 mark_page_accessed(page);
1725 prev_index = index;
1726
1727 /*
1728 * Ok, we have the page, and it's up-to-date, so
1729 * now we can copy it to user space...
1730 */
1731
1732 ret = copy_page_to_iter(page, offset, nr, iter);
1733 offset += ret;
1734 index += offset >> PAGE_CACHE_SHIFT;
1735 offset &= ~PAGE_CACHE_MASK;
1736 prev_offset = offset;
1737
1738 page_cache_release(page);
1739 written += ret;
1740 if (!iov_iter_count(iter))
1741 goto out;
1742 if (ret < nr) {
1743 error = -EFAULT;
1744 goto out;
1745 }
1746 continue;
1747
1748 page_not_up_to_date:
1749 /* Get exclusive access to the page ... */
1750 error = lock_page_killable(page);
1751 if (unlikely(error))
1752 goto readpage_error;
1753
1754 page_not_up_to_date_locked:
1755 /* Did it get truncated before we got the lock? */
1756 if (!page->mapping) {
1757 unlock_page(page);
1758 page_cache_release(page);
1759 continue;
1760 }
1761
1762 /* Did somebody else fill it already? */
1763 if (PageUptodate(page)) {
1764 unlock_page(page);
1765 goto page_ok;
1766 }
1767
1768 readpage:
1769 /*
1770 * A previous I/O error may have been due to temporary
1771 * failures, eg. multipath errors.
1772 * PG_error will be set again if readpage fails.
1773 */
1774 ClearPageError(page);
1775 /* Start the actual read. The read will unlock the page. */
1776 error = mapping->a_ops->readpage(filp, page);
1777
1778 if (unlikely(error)) {
1779 if (error == AOP_TRUNCATED_PAGE) {
1780 page_cache_release(page);
1781 error = 0;
1782 goto find_page;
1783 }
1784 goto readpage_error;
1785 }
1786
1787 if (!PageUptodate(page)) {
1788 error = lock_page_killable(page);
1789 if (unlikely(error))
1790 goto readpage_error;
1791 if (!PageUptodate(page)) {
1792 if (page->mapping == NULL) {
1793 /*
1794 * invalidate_mapping_pages got it
1795 */
1796 unlock_page(page);
1797 page_cache_release(page);
1798 goto find_page;
1799 }
1800 unlock_page(page);
1801 shrink_readahead_size_eio(filp, ra);
1802 error = -EIO;
1803 goto readpage_error;
1804 }
1805 unlock_page(page);
1806 }
1807
1808 goto page_ok;
1809
1810 readpage_error:
1811 /* UHHUH! A synchronous read error occurred. Report it */
1812 page_cache_release(page);
1813 goto out;
1814
1815 no_cached_page:
1816 /*
1817 * Ok, it wasn't cached, so we need to create a new
1818 * page..
1819 */
1820 page = page_cache_alloc_cold(mapping);
1821 if (!page) {
1822 error = -ENOMEM;
1823 goto out;
1824 }
1825 error = add_to_page_cache_lru(page, mapping, index,
1826 mapping_gfp_constraint(mapping, GFP_KERNEL));
1827 if (error) {
1828 page_cache_release(page);
1829 if (error == -EEXIST) {
1830 error = 0;
1831 goto find_page;
1832 }
1833 goto out;
1834 }
1835 goto readpage;
1836 }
1837
1838 out:
1839 ra->prev_pos = prev_index;
1840 ra->prev_pos <<= PAGE_CACHE_SHIFT;
1841 ra->prev_pos |= prev_offset;
1842
1843 *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1844 file_accessed(filp);
1845 return written ? written : error;
1846 }
1847
1848 /**
1849 * generic_file_read_iter - generic filesystem read routine
1850 * @iocb: kernel I/O control block
1851 * @iter: destination for the data read
1852 *
1853 * This is the "read_iter()" routine for all filesystems
1854 * that can use the page cache directly.
1855 */
1856 ssize_t
1857 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
1858 {
1859 struct file *file = iocb->ki_filp;
1860 ssize_t retval = 0;
1861 loff_t *ppos = &iocb->ki_pos;
1862 loff_t pos = *ppos;
1863
1864 if (iocb->ki_flags & IOCB_DIRECT) {
1865 struct address_space *mapping = file->f_mapping;
1866 struct inode *inode = mapping->host;
1867 size_t count = iov_iter_count(iter);
1868 loff_t size;
1869
1870 if (!count)
1871 goto out; /* skip atime */
1872 size = i_size_read(inode);
1873 retval = filemap_write_and_wait_range(mapping, pos,
1874 pos + count - 1);
1875 if (!retval) {
1876 struct iov_iter data = *iter;
1877 retval = mapping->a_ops->direct_IO(iocb, &data, pos);
1878 }
1879
1880 if (retval > 0) {
1881 *ppos = pos + retval;
1882 iov_iter_advance(iter, retval);
1883 }
1884
1885 /*
1886 * Btrfs can have a short DIO read if we encounter
1887 * compressed extents, so if there was an error, or if
1888 * we've already read everything we wanted to, or if
1889 * there was a short read because we hit EOF, go ahead
1890 * and return. Otherwise fallthrough to buffered io for
1891 * the rest of the read. Buffered reads will not work for
1892 * DAX files, so don't bother trying.
1893 */
1894 if (retval < 0 || !iov_iter_count(iter) || *ppos >= size ||
1895 IS_DAX(inode)) {
1896 file_accessed(file);
1897 goto out;
1898 }
1899 }
1900
1901 retval = do_generic_file_read(file, ppos, iter, retval);
1902 out:
1903 return retval;
1904 }
1905 EXPORT_SYMBOL(generic_file_read_iter);
1906
1907 #ifdef CONFIG_MMU
1908 /**
1909 * page_cache_read - adds requested page to the page cache if not already there
1910 * @file: file to read
1911 * @offset: page index
1912 * @gfp_mask: memory allocation flags
1913 *
1914 * This adds the requested page to the page cache if it isn't already there,
1915 * and schedules an I/O to read in its contents from disk.
1916 */
1917 static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask)
1918 {
1919 struct address_space *mapping = file->f_mapping;
1920 struct page *page;
1921 int ret;
1922
1923 do {
1924 page = __page_cache_alloc(gfp_mask|__GFP_COLD);
1925 if (!page)
1926 return -ENOMEM;
1927
1928 ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask & GFP_KERNEL);
1929 if (ret == 0)
1930 ret = mapping->a_ops->readpage(file, page);
1931 else if (ret == -EEXIST)
1932 ret = 0; /* losing race to add is OK */
1933
1934 page_cache_release(page);
1935
1936 } while (ret == AOP_TRUNCATED_PAGE);
1937
1938 return ret;
1939 }
1940
1941 #define MMAP_LOTSAMISS (100)
1942
1943 /*
1944 * Synchronous readahead happens when we don't even find
1945 * a page in the page cache at all.
1946 */
1947 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1948 struct file_ra_state *ra,
1949 struct file *file,
1950 pgoff_t offset)
1951 {
1952 struct address_space *mapping = file->f_mapping;
1953
1954 /* If we don't want any read-ahead, don't bother */
1955 if (vma->vm_flags & VM_RAND_READ)
1956 return;
1957 if (!ra->ra_pages)
1958 return;
1959
1960 if (vma->vm_flags & VM_SEQ_READ) {
1961 page_cache_sync_readahead(mapping, ra, file, offset,
1962 ra->ra_pages);
1963 return;
1964 }
1965
1966 /* Avoid banging the cache line if not needed */
1967 if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
1968 ra->mmap_miss++;
1969
1970 /*
1971 * Do we miss much more than hit in this file? If so,
1972 * stop bothering with read-ahead. It will only hurt.
1973 */
1974 if (ra->mmap_miss > MMAP_LOTSAMISS)
1975 return;
1976
1977 /*
1978 * mmap read-around
1979 */
1980 ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
1981 ra->size = ra->ra_pages;
1982 ra->async_size = ra->ra_pages / 4;
1983 ra_submit(ra, mapping, file);
1984 }
1985
1986 /*
1987 * Asynchronous readahead happens when we find the page and PG_readahead,
1988 * so we want to possibly extend the readahead further..
1989 */
1990 static void do_async_mmap_readahead(struct vm_area_struct *vma,
1991 struct file_ra_state *ra,
1992 struct file *file,
1993 struct page *page,
1994 pgoff_t offset)
1995 {
1996 struct address_space *mapping = file->f_mapping;
1997
1998 /* If we don't want any read-ahead, don't bother */
1999 if (vma->vm_flags & VM_RAND_READ)
2000 return;
2001 if (ra->mmap_miss > 0)
2002 ra->mmap_miss--;
2003 if (PageReadahead(page))
2004 page_cache_async_readahead(mapping, ra, file,
2005 page, offset, ra->ra_pages);
2006 }
2007
2008 /**
2009 * filemap_fault - read in file data for page fault handling
2010 * @vma: vma in which the fault was taken
2011 * @vmf: struct vm_fault containing details of the fault
2012 *
2013 * filemap_fault() is invoked via the vma operations vector for a
2014 * mapped memory region to read in file data during a page fault.
2015 *
2016 * The goto's are kind of ugly, but this streamlines the normal case of having
2017 * it in the page cache, and handles the special cases reasonably without
2018 * having a lot of duplicated code.
2019 *
2020 * vma->vm_mm->mmap_sem must be held on entry.
2021 *
2022 * If our return value has VM_FAULT_RETRY set, it's because
2023 * lock_page_or_retry() returned 0.
2024 * The mmap_sem has usually been released in this case.
2025 * See __lock_page_or_retry() for the exception.
2026 *
2027 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
2028 * has not been released.
2029 *
2030 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
2031 */
2032 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
2033 {
2034 int error;
2035 struct file *file = vma->vm_file;
2036 struct address_space *mapping = file->f_mapping;
2037 struct file_ra_state *ra = &file->f_ra;
2038 struct inode *inode = mapping->host;
2039 pgoff_t offset = vmf->pgoff;
2040 struct page *page;
2041 loff_t size;
2042 int ret = 0;
2043
2044 size = round_up(i_size_read(inode), PAGE_CACHE_SIZE);
2045 if (offset >= size >> PAGE_CACHE_SHIFT)
2046 return VM_FAULT_SIGBUS;
2047
2048 /*
2049 * Do we have something in the page cache already?
2050 */
2051 page = find_get_page(mapping, offset);
2052 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
2053 /*
2054 * We found the page, so try async readahead before
2055 * waiting for the lock.
2056 */
2057 do_async_mmap_readahead(vma, ra, file, page, offset);
2058 } else if (!page) {
2059 /* No page in the page cache at all */
2060 do_sync_mmap_readahead(vma, ra, file, offset);
2061 count_vm_event(PGMAJFAULT);
2062 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
2063 ret = VM_FAULT_MAJOR;
2064 retry_find:
2065 page = find_get_page(mapping, offset);
2066 if (!page)
2067 goto no_cached_page;
2068 }
2069
2070 if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
2071 page_cache_release(page);
2072 return ret | VM_FAULT_RETRY;
2073 }
2074
2075 /* Did it get truncated? */
2076 if (unlikely(page->mapping != mapping)) {
2077 unlock_page(page);
2078 put_page(page);
2079 goto retry_find;
2080 }
2081 VM_BUG_ON_PAGE(page->index != offset, page);
2082
2083 /*
2084 * We have a locked page in the page cache, now we need to check
2085 * that it's up-to-date. If not, it is going to be due to an error.
2086 */
2087 if (unlikely(!PageUptodate(page)))
2088 goto page_not_uptodate;
2089
2090 /*
2091 * Found the page and have a reference on it.
2092 * We must recheck i_size under page lock.
2093 */
2094 size = round_up(i_size_read(inode), PAGE_CACHE_SIZE);
2095 if (unlikely(offset >= size >> PAGE_CACHE_SHIFT)) {
2096 unlock_page(page);
2097 page_cache_release(page);
2098 return VM_FAULT_SIGBUS;
2099 }
2100
2101 vmf->page = page;
2102 return ret | VM_FAULT_LOCKED;
2103
2104 no_cached_page:
2105 /*
2106 * We're only likely to ever get here if MADV_RANDOM is in
2107 * effect.
2108 */
2109 error = page_cache_read(file, offset, vmf->gfp_mask);
2110
2111 /*
2112 * The page we want has now been added to the page cache.
2113 * In the unlikely event that someone removed it in the
2114 * meantime, we'll just come back here and read it again.
2115 */
2116 if (error >= 0)
2117 goto retry_find;
2118
2119 /*
2120 * An error return from page_cache_read can result if the
2121 * system is low on memory, or a problem occurs while trying
2122 * to schedule I/O.
2123 */
2124 if (error == -ENOMEM)
2125 return VM_FAULT_OOM;
2126 return VM_FAULT_SIGBUS;
2127
2128 page_not_uptodate:
2129 /*
2130 * Umm, take care of errors if the page isn't up-to-date.
2131 * Try to re-read it _once_. We do this synchronously,
2132 * because there really aren't any performance issues here
2133 * and we need to check for errors.
2134 */
2135 ClearPageError(page);
2136 error = mapping->a_ops->readpage(file, page);
2137 if (!error) {
2138 wait_on_page_locked(page);
2139 if (!PageUptodate(page))
2140 error = -EIO;
2141 }
2142 page_cache_release(page);
2143
2144 if (!error || error == AOP_TRUNCATED_PAGE)
2145 goto retry_find;
2146
2147 /* Things didn't work out. Return zero to tell the mm layer so. */
2148 shrink_readahead_size_eio(file, ra);
2149 return VM_FAULT_SIGBUS;
2150 }
2151 EXPORT_SYMBOL(filemap_fault);
2152
2153 void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf)
2154 {
2155 struct radix_tree_iter iter;
2156 void **slot;
2157 struct file *file = vma->vm_file;
2158 struct address_space *mapping = file->f_mapping;
2159 loff_t size;
2160 struct page *page;
2161 unsigned long address = (unsigned long) vmf->virtual_address;
2162 unsigned long addr;
2163 pte_t *pte;
2164
2165 rcu_read_lock();
2166 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, vmf->pgoff) {
2167 if (iter.index > vmf->max_pgoff)
2168 break;
2169 repeat:
2170 page = radix_tree_deref_slot(slot);
2171 if (unlikely(!page))
2172 goto next;
2173 if (radix_tree_exception(page)) {
2174 if (radix_tree_deref_retry(page))
2175 break;
2176 else
2177 goto next;
2178 }
2179
2180 if (!page_cache_get_speculative(page))
2181 goto repeat;
2182
2183 /* Has the page moved? */
2184 if (unlikely(page != *slot)) {
2185 page_cache_release(page);
2186 goto repeat;
2187 }
2188
2189 if (!PageUptodate(page) ||
2190 PageReadahead(page) ||
2191 PageHWPoison(page))
2192 goto skip;
2193 if (!trylock_page(page))
2194 goto skip;
2195
2196 if (page->mapping != mapping || !PageUptodate(page))
2197 goto unlock;
2198
2199 size = round_up(i_size_read(mapping->host), PAGE_CACHE_SIZE);
2200 if (page->index >= size >> PAGE_CACHE_SHIFT)
2201 goto unlock;
2202
2203 pte = vmf->pte + page->index - vmf->pgoff;
2204 if (!pte_none(*pte))
2205 goto unlock;
2206
2207 if (file->f_ra.mmap_miss > 0)
2208 file->f_ra.mmap_miss--;
2209 addr = address + (page->index - vmf->pgoff) * PAGE_SIZE;
2210 do_set_pte(vma, addr, page, pte, false, false);
2211 unlock_page(page);
2212 goto next;
2213 unlock:
2214 unlock_page(page);
2215 skip:
2216 page_cache_release(page);
2217 next:
2218 if (iter.index == vmf->max_pgoff)
2219 break;
2220 }
2221 rcu_read_unlock();
2222 }
2223 EXPORT_SYMBOL(filemap_map_pages);
2224
2225 int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2226 {
2227 struct page *page = vmf->page;
2228 struct inode *inode = file_inode(vma->vm_file);
2229 int ret = VM_FAULT_LOCKED;
2230
2231 sb_start_pagefault(inode->i_sb);
2232 file_update_time(vma->vm_file);
2233 lock_page(page);
2234 if (page->mapping != inode->i_mapping) {
2235 unlock_page(page);
2236 ret = VM_FAULT_NOPAGE;
2237 goto out;
2238 }
2239 /*
2240 * We mark the page dirty already here so that when freeze is in
2241 * progress, we are guaranteed that writeback during freezing will
2242 * see the dirty page and writeprotect it again.
2243 */
2244 set_page_dirty(page);
2245 wait_for_stable_page(page);
2246 out:
2247 sb_end_pagefault(inode->i_sb);
2248 return ret;
2249 }
2250 EXPORT_SYMBOL(filemap_page_mkwrite);
2251
2252 const struct vm_operations_struct generic_file_vm_ops = {
2253 .fault = filemap_fault,
2254 .map_pages = filemap_map_pages,
2255 .page_mkwrite = filemap_page_mkwrite,
2256 };
2257
2258 /* This is used for a general mmap of a disk file */
2259
2260 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2261 {
2262 struct address_space *mapping = file->f_mapping;
2263
2264 if (!mapping->a_ops->readpage)
2265 return -ENOEXEC;
2266 file_accessed(file);
2267 vma->vm_ops = &generic_file_vm_ops;
2268 return 0;
2269 }
2270
2271 /*
2272 * This is for filesystems which do not implement ->writepage.
2273 */
2274 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2275 {
2276 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2277 return -EINVAL;
2278 return generic_file_mmap(file, vma);
2279 }
2280 #else
2281 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2282 {
2283 return -ENOSYS;
2284 }
2285 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2286 {
2287 return -ENOSYS;
2288 }
2289 #endif /* CONFIG_MMU */
2290
2291 EXPORT_SYMBOL(generic_file_mmap);
2292 EXPORT_SYMBOL(generic_file_readonly_mmap);
2293
2294 static struct page *wait_on_page_read(struct page *page)
2295 {
2296 if (!IS_ERR(page)) {
2297 wait_on_page_locked(page);
2298 if (!PageUptodate(page)) {
2299 page_cache_release(page);
2300 page = ERR_PTR(-EIO);
2301 }
2302 }
2303 return page;
2304 }
2305
2306 static struct page *do_read_cache_page(struct address_space *mapping,
2307 pgoff_t index,
2308 int (*filler)(void *, struct page *),
2309 void *data,
2310 gfp_t gfp)
2311 {
2312 struct page *page;
2313 int err;
2314 repeat:
2315 page = find_get_page(mapping, index);
2316 if (!page) {
2317 page = __page_cache_alloc(gfp | __GFP_COLD);
2318 if (!page)
2319 return ERR_PTR(-ENOMEM);
2320 err = add_to_page_cache_lru(page, mapping, index, gfp);
2321 if (unlikely(err)) {
2322 page_cache_release(page);
2323 if (err == -EEXIST)
2324 goto repeat;
2325 /* Presumably ENOMEM for radix tree node */
2326 return ERR_PTR(err);
2327 }
2328
2329 filler:
2330 err = filler(data, page);
2331 if (err < 0) {
2332 page_cache_release(page);
2333 return ERR_PTR(err);
2334 }
2335
2336 page = wait_on_page_read(page);
2337 if (IS_ERR(page))
2338 return page;
2339 goto out;
2340 }
2341 if (PageUptodate(page))
2342 goto out;
2343
2344 /*
2345 * Page is not up to date and may be locked due one of the following
2346 * case a: Page is being filled and the page lock is held
2347 * case b: Read/write error clearing the page uptodate status
2348 * case c: Truncation in progress (page locked)
2349 * case d: Reclaim in progress
2350 *
2351 * Case a, the page will be up to date when the page is unlocked.
2352 * There is no need to serialise on the page lock here as the page
2353 * is pinned so the lock gives no additional protection. Even if the
2354 * the page is truncated, the data is still valid if PageUptodate as
2355 * it's a race vs truncate race.
2356 * Case b, the page will not be up to date
2357 * Case c, the page may be truncated but in itself, the data may still
2358 * be valid after IO completes as it's a read vs truncate race. The
2359 * operation must restart if the page is not uptodate on unlock but
2360 * otherwise serialising on page lock to stabilise the mapping gives
2361 * no additional guarantees to the caller as the page lock is
2362 * released before return.
2363 * Case d, similar to truncation. If reclaim holds the page lock, it
2364 * will be a race with remove_mapping that determines if the mapping
2365 * is valid on unlock but otherwise the data is valid and there is
2366 * no need to serialise with page lock.
2367 *
2368 * As the page lock gives no additional guarantee, we optimistically
2369 * wait on the page to be unlocked and check if it's up to date and
2370 * use the page if it is. Otherwise, the page lock is required to
2371 * distinguish between the different cases. The motivation is that we
2372 * avoid spurious serialisations and wakeups when multiple processes
2373 * wait on the same page for IO to complete.
2374 */
2375 wait_on_page_locked(page);
2376 if (PageUptodate(page))
2377 goto out;
2378
2379 /* Distinguish between all the cases under the safety of the lock */
2380 lock_page(page);
2381
2382 /* Case c or d, restart the operation */
2383 if (!page->mapping) {
2384 unlock_page(page);
2385 page_cache_release(page);
2386 goto repeat;
2387 }
2388
2389 /* Someone else locked and filled the page in a very small window */
2390 if (PageUptodate(page)) {
2391 unlock_page(page);
2392 goto out;
2393 }
2394 goto filler;
2395
2396 out:
2397 mark_page_accessed(page);
2398 return page;
2399 }
2400
2401 /**
2402 * read_cache_page - read into page cache, fill it if needed
2403 * @mapping: the page's address_space
2404 * @index: the page index
2405 * @filler: function to perform the read
2406 * @data: first arg to filler(data, page) function, often left as NULL
2407 *
2408 * Read into the page cache. If a page already exists, and PageUptodate() is
2409 * not set, try to fill the page and wait for it to become unlocked.
2410 *
2411 * If the page does not get brought uptodate, return -EIO.
2412 */
2413 struct page *read_cache_page(struct address_space *mapping,
2414 pgoff_t index,
2415 int (*filler)(void *, struct page *),
2416 void *data)
2417 {
2418 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2419 }
2420 EXPORT_SYMBOL(read_cache_page);
2421
2422 /**
2423 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2424 * @mapping: the page's address_space
2425 * @index: the page index
2426 * @gfp: the page allocator flags to use if allocating
2427 *
2428 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2429 * any new page allocations done using the specified allocation flags.
2430 *
2431 * If the page does not get brought uptodate, return -EIO.
2432 */
2433 struct page *read_cache_page_gfp(struct address_space *mapping,
2434 pgoff_t index,
2435 gfp_t gfp)
2436 {
2437 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2438
2439 return do_read_cache_page(mapping, index, filler, NULL, gfp);
2440 }
2441 EXPORT_SYMBOL(read_cache_page_gfp);
2442
2443 /*
2444 * Performs necessary checks before doing a write
2445 *
2446 * Can adjust writing position or amount of bytes to write.
2447 * Returns appropriate error code that caller should return or
2448 * zero in case that write should be allowed.
2449 */
2450 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
2451 {
2452 struct file *file = iocb->ki_filp;
2453 struct inode *inode = file->f_mapping->host;
2454 unsigned long limit = rlimit(RLIMIT_FSIZE);
2455 loff_t pos;
2456
2457 if (!iov_iter_count(from))
2458 return 0;
2459
2460 /* FIXME: this is for backwards compatibility with 2.4 */
2461 if (iocb->ki_flags & IOCB_APPEND)
2462 iocb->ki_pos = i_size_read(inode);
2463
2464 pos = iocb->ki_pos;
2465
2466 if (limit != RLIM_INFINITY) {
2467 if (iocb->ki_pos >= limit) {
2468 send_sig(SIGXFSZ, current, 0);
2469 return -EFBIG;
2470 }
2471 iov_iter_truncate(from, limit - (unsigned long)pos);
2472 }
2473
2474 /*
2475 * LFS rule
2476 */
2477 if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS &&
2478 !(file->f_flags & O_LARGEFILE))) {
2479 if (pos >= MAX_NON_LFS)
2480 return -EFBIG;
2481 iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos);
2482 }
2483
2484 /*
2485 * Are we about to exceed the fs block limit ?
2486 *
2487 * If we have written data it becomes a short write. If we have
2488 * exceeded without writing data we send a signal and return EFBIG.
2489 * Linus frestrict idea will clean these up nicely..
2490 */
2491 if (unlikely(pos >= inode->i_sb->s_maxbytes))
2492 return -EFBIG;
2493
2494 iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos);
2495 return iov_iter_count(from);
2496 }
2497 EXPORT_SYMBOL(generic_write_checks);
2498
2499 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2500 loff_t pos, unsigned len, unsigned flags,
2501 struct page **pagep, void **fsdata)
2502 {
2503 const struct address_space_operations *aops = mapping->a_ops;
2504
2505 return aops->write_begin(file, mapping, pos, len, flags,
2506 pagep, fsdata);
2507 }
2508 EXPORT_SYMBOL(pagecache_write_begin);
2509
2510 int pagecache_write_end(struct file *file, struct address_space *mapping,
2511 loff_t pos, unsigned len, unsigned copied,
2512 struct page *page, void *fsdata)
2513 {
2514 const struct address_space_operations *aops = mapping->a_ops;
2515
2516 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2517 }
2518 EXPORT_SYMBOL(pagecache_write_end);
2519
2520 ssize_t
2521 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from, loff_t pos)
2522 {
2523 struct file *file = iocb->ki_filp;
2524 struct address_space *mapping = file->f_mapping;
2525 struct inode *inode = mapping->host;
2526 ssize_t written;
2527 size_t write_len;
2528 pgoff_t end;
2529 struct iov_iter data;
2530
2531 write_len = iov_iter_count(from);
2532 end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
2533
2534 written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2535 if (written)
2536 goto out;
2537
2538 /*
2539 * After a write we want buffered reads to be sure to go to disk to get
2540 * the new data. We invalidate clean cached page from the region we're
2541 * about to write. We do this *before* the write so that we can return
2542 * without clobbering -EIOCBQUEUED from ->direct_IO().
2543 */
2544 if (mapping->nrpages) {
2545 written = invalidate_inode_pages2_range(mapping,
2546 pos >> PAGE_CACHE_SHIFT, end);
2547 /*
2548 * If a page can not be invalidated, return 0 to fall back
2549 * to buffered write.
2550 */
2551 if (written) {
2552 if (written == -EBUSY)
2553 return 0;
2554 goto out;
2555 }
2556 }
2557
2558 data = *from;
2559 written = mapping->a_ops->direct_IO(iocb, &data, pos);
2560
2561 /*
2562 * Finally, try again to invalidate clean pages which might have been
2563 * cached by non-direct readahead, or faulted in by get_user_pages()
2564 * if the source of the write was an mmap'ed region of the file
2565 * we're writing. Either one is a pretty crazy thing to do,
2566 * so we don't support it 100%. If this invalidation
2567 * fails, tough, the write still worked...
2568 */
2569 if (mapping->nrpages) {
2570 invalidate_inode_pages2_range(mapping,
2571 pos >> PAGE_CACHE_SHIFT, end);
2572 }
2573
2574 if (written > 0) {
2575 pos += written;
2576 iov_iter_advance(from, written);
2577 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2578 i_size_write(inode, pos);
2579 mark_inode_dirty(inode);
2580 }
2581 iocb->ki_pos = pos;
2582 }
2583 out:
2584 return written;
2585 }
2586 EXPORT_SYMBOL(generic_file_direct_write);
2587
2588 /*
2589 * Find or create a page at the given pagecache position. Return the locked
2590 * page. This function is specifically for buffered writes.
2591 */
2592 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2593 pgoff_t index, unsigned flags)
2594 {
2595 struct page *page;
2596 int fgp_flags = FGP_LOCK|FGP_ACCESSED|FGP_WRITE|FGP_CREAT;
2597
2598 if (flags & AOP_FLAG_NOFS)
2599 fgp_flags |= FGP_NOFS;
2600
2601 page = pagecache_get_page(mapping, index, fgp_flags,
2602 mapping_gfp_mask(mapping));
2603 if (page)
2604 wait_for_stable_page(page);
2605
2606 return page;
2607 }
2608 EXPORT_SYMBOL(grab_cache_page_write_begin);
2609
2610 ssize_t generic_perform_write(struct file *file,
2611 struct iov_iter *i, loff_t pos)
2612 {
2613 struct address_space *mapping = file->f_mapping;
2614 const struct address_space_operations *a_ops = mapping->a_ops;
2615 long status = 0;
2616 ssize_t written = 0;
2617 unsigned int flags = 0;
2618
2619 /*
2620 * Copies from kernel address space cannot fail (NFSD is a big user).
2621 */
2622 if (!iter_is_iovec(i))
2623 flags |= AOP_FLAG_UNINTERRUPTIBLE;
2624
2625 do {
2626 struct page *page;
2627 unsigned long offset; /* Offset into pagecache page */
2628 unsigned long bytes; /* Bytes to write to page */
2629 size_t copied; /* Bytes copied from user */
2630 void *fsdata;
2631
2632 offset = (pos & (PAGE_CACHE_SIZE - 1));
2633 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2634 iov_iter_count(i));
2635
2636 again:
2637 /*
2638 * Bring in the user page that we will copy from _first_.
2639 * Otherwise there's a nasty deadlock on copying from the
2640 * same page as we're writing to, without it being marked
2641 * up-to-date.
2642 *
2643 * Not only is this an optimisation, but it is also required
2644 * to check that the address is actually valid, when atomic
2645 * usercopies are used, below.
2646 */
2647 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2648 status = -EFAULT;
2649 break;
2650 }
2651
2652 if (fatal_signal_pending(current)) {
2653 status = -EINTR;
2654 break;
2655 }
2656
2657 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2658 &page, &fsdata);
2659 if (unlikely(status < 0))
2660 break;
2661
2662 if (mapping_writably_mapped(mapping))
2663 flush_dcache_page(page);
2664
2665 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2666 flush_dcache_page(page);
2667
2668 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2669 page, fsdata);
2670 if (unlikely(status < 0))
2671 break;
2672 copied = status;
2673
2674 cond_resched();
2675
2676 iov_iter_advance(i, copied);
2677 if (unlikely(copied == 0)) {
2678 /*
2679 * If we were unable to copy any data at all, we must
2680 * fall back to a single segment length write.
2681 *
2682 * If we didn't fallback here, we could livelock
2683 * because not all segments in the iov can be copied at
2684 * once without a pagefault.
2685 */
2686 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2687 iov_iter_single_seg_count(i));
2688 goto again;
2689 }
2690 pos += copied;
2691 written += copied;
2692
2693 balance_dirty_pages_ratelimited(mapping);
2694 } while (iov_iter_count(i));
2695
2696 return written ? written : status;
2697 }
2698 EXPORT_SYMBOL(generic_perform_write);
2699
2700 /**
2701 * __generic_file_write_iter - write data to a file
2702 * @iocb: IO state structure (file, offset, etc.)
2703 * @from: iov_iter with data to write
2704 *
2705 * This function does all the work needed for actually writing data to a
2706 * file. It does all basic checks, removes SUID from the file, updates
2707 * modification times and calls proper subroutines depending on whether we
2708 * do direct IO or a standard buffered write.
2709 *
2710 * It expects i_mutex to be grabbed unless we work on a block device or similar
2711 * object which does not need locking at all.
2712 *
2713 * This function does *not* take care of syncing data in case of O_SYNC write.
2714 * A caller has to handle it. This is mainly due to the fact that we want to
2715 * avoid syncing under i_mutex.
2716 */
2717 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2718 {
2719 struct file *file = iocb->ki_filp;
2720 struct address_space * mapping = file->f_mapping;
2721 struct inode *inode = mapping->host;
2722 ssize_t written = 0;
2723 ssize_t err;
2724 ssize_t status;
2725
2726 /* We can write back this queue in page reclaim */
2727 current->backing_dev_info = inode_to_bdi(inode);
2728 err = file_remove_privs(file);
2729 if (err)
2730 goto out;
2731
2732 err = file_update_time(file);
2733 if (err)
2734 goto out;
2735
2736 if (iocb->ki_flags & IOCB_DIRECT) {
2737 loff_t pos, endbyte;
2738
2739 written = generic_file_direct_write(iocb, from, iocb->ki_pos);
2740 /*
2741 * If the write stopped short of completing, fall back to
2742 * buffered writes. Some filesystems do this for writes to
2743 * holes, for example. For DAX files, a buffered write will
2744 * not succeed (even if it did, DAX does not handle dirty
2745 * page-cache pages correctly).
2746 */
2747 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
2748 goto out;
2749
2750 status = generic_perform_write(file, from, pos = iocb->ki_pos);
2751 /*
2752 * If generic_perform_write() returned a synchronous error
2753 * then we want to return the number of bytes which were
2754 * direct-written, or the error code if that was zero. Note
2755 * that this differs from normal direct-io semantics, which
2756 * will return -EFOO even if some bytes were written.
2757 */
2758 if (unlikely(status < 0)) {
2759 err = status;
2760 goto out;
2761 }
2762 /*
2763 * We need to ensure that the page cache pages are written to
2764 * disk and invalidated to preserve the expected O_DIRECT
2765 * semantics.
2766 */
2767 endbyte = pos + status - 1;
2768 err = filemap_write_and_wait_range(mapping, pos, endbyte);
2769 if (err == 0) {
2770 iocb->ki_pos = endbyte + 1;
2771 written += status;
2772 invalidate_mapping_pages(mapping,
2773 pos >> PAGE_CACHE_SHIFT,
2774 endbyte >> PAGE_CACHE_SHIFT);
2775 } else {
2776 /*
2777 * We don't know how much we wrote, so just return
2778 * the number of bytes which were direct-written
2779 */
2780 }
2781 } else {
2782 written = generic_perform_write(file, from, iocb->ki_pos);
2783 if (likely(written > 0))
2784 iocb->ki_pos += written;
2785 }
2786 out:
2787 current->backing_dev_info = NULL;
2788 return written ? written : err;
2789 }
2790 EXPORT_SYMBOL(__generic_file_write_iter);
2791
2792 /**
2793 * generic_file_write_iter - write data to a file
2794 * @iocb: IO state structure
2795 * @from: iov_iter with data to write
2796 *
2797 * This is a wrapper around __generic_file_write_iter() to be used by most
2798 * filesystems. It takes care of syncing the file in case of O_SYNC file
2799 * and acquires i_mutex as needed.
2800 */
2801 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2802 {
2803 struct file *file = iocb->ki_filp;
2804 struct inode *inode = file->f_mapping->host;
2805 ssize_t ret;
2806
2807 inode_lock(inode);
2808 ret = generic_write_checks(iocb, from);
2809 if (ret > 0)
2810 ret = __generic_file_write_iter(iocb, from);
2811 inode_unlock(inode);
2812
2813 if (ret > 0) {
2814 ssize_t err;
2815
2816 err = generic_write_sync(file, iocb->ki_pos - ret, ret);
2817 if (err < 0)
2818 ret = err;
2819 }
2820 return ret;
2821 }
2822 EXPORT_SYMBOL(generic_file_write_iter);
2823
2824 /**
2825 * try_to_release_page() - release old fs-specific metadata on a page
2826 *
2827 * @page: the page which the kernel is trying to free
2828 * @gfp_mask: memory allocation flags (and I/O mode)
2829 *
2830 * The address_space is to try to release any data against the page
2831 * (presumably at page->private). If the release was successful, return `1'.
2832 * Otherwise return zero.
2833 *
2834 * This may also be called if PG_fscache is set on a page, indicating that the
2835 * page is known to the local caching routines.
2836 *
2837 * The @gfp_mask argument specifies whether I/O may be performed to release
2838 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
2839 *
2840 */
2841 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2842 {
2843 struct address_space * const mapping = page->mapping;
2844
2845 BUG_ON(!PageLocked(page));
2846 if (PageWriteback(page))
2847 return 0;
2848
2849 if (mapping && mapping->a_ops->releasepage)
2850 return mapping->a_ops->releasepage(page, gfp_mask);
2851 return try_to_free_buffers(page);
2852 }
2853
2854 EXPORT_SYMBOL(try_to_release_page);
This page took 0.091733 seconds and 6 git commands to generate.