[PATCH] cpuset memory spread page cache implementation and hooks
[deliverable/linux.git] / mm / filemap.c
1 /*
2 * linux/mm/filemap.c
3 *
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
6
7 /*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
11 */
12 #include <linux/config.h>
13 #include <linux/module.h>
14 #include <linux/slab.h>
15 #include <linux/compiler.h>
16 #include <linux/fs.h>
17 #include <linux/aio.h>
18 #include <linux/capability.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/pagevec.h>
29 #include <linux/blkdev.h>
30 #include <linux/security.h>
31 #include <linux/syscalls.h>
32 #include <linux/cpuset.h>
33 #include "filemap.h"
34 #include "internal.h"
35
36 /*
37 * FIXME: remove all knowledge of the buffer layer from the core VM
38 */
39 #include <linux/buffer_head.h> /* for generic_osync_inode */
40
41 #include <asm/uaccess.h>
42 #include <asm/mman.h>
43
44 static ssize_t
45 generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
46 loff_t offset, unsigned long nr_segs);
47
48 /*
49 * Shared mappings implemented 30.11.1994. It's not fully working yet,
50 * though.
51 *
52 * Shared mappings now work. 15.8.1995 Bruno.
53 *
54 * finished 'unifying' the page and buffer cache and SMP-threaded the
55 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
56 *
57 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
58 */
59
60 /*
61 * Lock ordering:
62 *
63 * ->i_mmap_lock (vmtruncate)
64 * ->private_lock (__free_pte->__set_page_dirty_buffers)
65 * ->swap_lock (exclusive_swap_page, others)
66 * ->mapping->tree_lock
67 *
68 * ->i_mutex
69 * ->i_mmap_lock (truncate->unmap_mapping_range)
70 *
71 * ->mmap_sem
72 * ->i_mmap_lock
73 * ->page_table_lock or pte_lock (various, mainly in memory.c)
74 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
75 *
76 * ->mmap_sem
77 * ->lock_page (access_process_vm)
78 *
79 * ->mmap_sem
80 * ->i_mutex (msync)
81 *
82 * ->i_mutex
83 * ->i_alloc_sem (various)
84 *
85 * ->inode_lock
86 * ->sb_lock (fs/fs-writeback.c)
87 * ->mapping->tree_lock (__sync_single_inode)
88 *
89 * ->i_mmap_lock
90 * ->anon_vma.lock (vma_adjust)
91 *
92 * ->anon_vma.lock
93 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
94 *
95 * ->page_table_lock or pte_lock
96 * ->swap_lock (try_to_unmap_one)
97 * ->private_lock (try_to_unmap_one)
98 * ->tree_lock (try_to_unmap_one)
99 * ->zone.lru_lock (follow_page->mark_page_accessed)
100 * ->zone.lru_lock (check_pte_range->isolate_lru_page)
101 * ->private_lock (page_remove_rmap->set_page_dirty)
102 * ->tree_lock (page_remove_rmap->set_page_dirty)
103 * ->inode_lock (page_remove_rmap->set_page_dirty)
104 * ->inode_lock (zap_pte_range->set_page_dirty)
105 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
106 *
107 * ->task->proc_lock
108 * ->dcache_lock (proc_pid_lookup)
109 */
110
111 /*
112 * Remove a page from the page cache and free it. Caller has to make
113 * sure the page is locked and that nobody else uses it - or that usage
114 * is safe. The caller must hold a write_lock on the mapping's tree_lock.
115 */
116 void __remove_from_page_cache(struct page *page)
117 {
118 struct address_space *mapping = page->mapping;
119
120 radix_tree_delete(&mapping->page_tree, page->index);
121 page->mapping = NULL;
122 mapping->nrpages--;
123 pagecache_acct(-1);
124 }
125
126 void remove_from_page_cache(struct page *page)
127 {
128 struct address_space *mapping = page->mapping;
129
130 BUG_ON(!PageLocked(page));
131
132 write_lock_irq(&mapping->tree_lock);
133 __remove_from_page_cache(page);
134 write_unlock_irq(&mapping->tree_lock);
135 }
136
137 static int sync_page(void *word)
138 {
139 struct address_space *mapping;
140 struct page *page;
141
142 page = container_of((unsigned long *)word, struct page, flags);
143
144 /*
145 * page_mapping() is being called without PG_locked held.
146 * Some knowledge of the state and use of the page is used to
147 * reduce the requirements down to a memory barrier.
148 * The danger here is of a stale page_mapping() return value
149 * indicating a struct address_space different from the one it's
150 * associated with when it is associated with one.
151 * After smp_mb(), it's either the correct page_mapping() for
152 * the page, or an old page_mapping() and the page's own
153 * page_mapping() has gone NULL.
154 * The ->sync_page() address_space operation must tolerate
155 * page_mapping() going NULL. By an amazing coincidence,
156 * this comes about because none of the users of the page
157 * in the ->sync_page() methods make essential use of the
158 * page_mapping(), merely passing the page down to the backing
159 * device's unplug functions when it's non-NULL, which in turn
160 * ignore it for all cases but swap, where only page_private(page) is
161 * of interest. When page_mapping() does go NULL, the entire
162 * call stack gracefully ignores the page and returns.
163 * -- wli
164 */
165 smp_mb();
166 mapping = page_mapping(page);
167 if (mapping && mapping->a_ops && mapping->a_ops->sync_page)
168 mapping->a_ops->sync_page(page);
169 io_schedule();
170 return 0;
171 }
172
173 /**
174 * filemap_fdatawrite_range - start writeback against all of a mapping's
175 * dirty pages that lie within the byte offsets <start, end>
176 * @mapping: address space structure to write
177 * @start: offset in bytes where the range starts
178 * @end: offset in bytes where the range ends
179 * @sync_mode: enable synchronous operation
180 *
181 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
182 * opposed to a regular memory * cleansing writeback. The difference between
183 * these two operations is that if a dirty page/buffer is encountered, it must
184 * be waited upon, and not just skipped over.
185 */
186 static int __filemap_fdatawrite_range(struct address_space *mapping,
187 loff_t start, loff_t end, int sync_mode)
188 {
189 int ret;
190 struct writeback_control wbc = {
191 .sync_mode = sync_mode,
192 .nr_to_write = mapping->nrpages * 2,
193 .start = start,
194 .end = end,
195 };
196
197 if (!mapping_cap_writeback_dirty(mapping))
198 return 0;
199
200 ret = do_writepages(mapping, &wbc);
201 return ret;
202 }
203
204 static inline int __filemap_fdatawrite(struct address_space *mapping,
205 int sync_mode)
206 {
207 return __filemap_fdatawrite_range(mapping, 0, 0, sync_mode);
208 }
209
210 int filemap_fdatawrite(struct address_space *mapping)
211 {
212 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
213 }
214 EXPORT_SYMBOL(filemap_fdatawrite);
215
216 static int filemap_fdatawrite_range(struct address_space *mapping,
217 loff_t start, loff_t end)
218 {
219 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
220 }
221
222 /*
223 * This is a mostly non-blocking flush. Not suitable for data-integrity
224 * purposes - I/O may not be started against all dirty pages.
225 */
226 int filemap_flush(struct address_space *mapping)
227 {
228 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
229 }
230 EXPORT_SYMBOL(filemap_flush);
231
232 /*
233 * Wait for writeback to complete against pages indexed by start->end
234 * inclusive
235 */
236 static int wait_on_page_writeback_range(struct address_space *mapping,
237 pgoff_t start, pgoff_t end)
238 {
239 struct pagevec pvec;
240 int nr_pages;
241 int ret = 0;
242 pgoff_t index;
243
244 if (end < start)
245 return 0;
246
247 pagevec_init(&pvec, 0);
248 index = start;
249 while ((index <= end) &&
250 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
251 PAGECACHE_TAG_WRITEBACK,
252 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
253 unsigned i;
254
255 for (i = 0; i < nr_pages; i++) {
256 struct page *page = pvec.pages[i];
257
258 /* until radix tree lookup accepts end_index */
259 if (page->index > end)
260 continue;
261
262 wait_on_page_writeback(page);
263 if (PageError(page))
264 ret = -EIO;
265 }
266 pagevec_release(&pvec);
267 cond_resched();
268 }
269
270 /* Check for outstanding write errors */
271 if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
272 ret = -ENOSPC;
273 if (test_and_clear_bit(AS_EIO, &mapping->flags))
274 ret = -EIO;
275
276 return ret;
277 }
278
279 /*
280 * Write and wait upon all the pages in the passed range. This is a "data
281 * integrity" operation. It waits upon in-flight writeout before starting and
282 * waiting upon new writeout. If there was an IO error, return it.
283 *
284 * We need to re-take i_mutex during the generic_osync_inode list walk because
285 * it is otherwise livelockable.
286 */
287 int sync_page_range(struct inode *inode, struct address_space *mapping,
288 loff_t pos, loff_t count)
289 {
290 pgoff_t start = pos >> PAGE_CACHE_SHIFT;
291 pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
292 int ret;
293
294 if (!mapping_cap_writeback_dirty(mapping) || !count)
295 return 0;
296 ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
297 if (ret == 0) {
298 mutex_lock(&inode->i_mutex);
299 ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
300 mutex_unlock(&inode->i_mutex);
301 }
302 if (ret == 0)
303 ret = wait_on_page_writeback_range(mapping, start, end);
304 return ret;
305 }
306 EXPORT_SYMBOL(sync_page_range);
307
308 /*
309 * Note: Holding i_mutex across sync_page_range_nolock is not a good idea
310 * as it forces O_SYNC writers to different parts of the same file
311 * to be serialised right until io completion.
312 */
313 int sync_page_range_nolock(struct inode *inode, struct address_space *mapping,
314 loff_t pos, loff_t count)
315 {
316 pgoff_t start = pos >> PAGE_CACHE_SHIFT;
317 pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
318 int ret;
319
320 if (!mapping_cap_writeback_dirty(mapping) || !count)
321 return 0;
322 ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
323 if (ret == 0)
324 ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
325 if (ret == 0)
326 ret = wait_on_page_writeback_range(mapping, start, end);
327 return ret;
328 }
329 EXPORT_SYMBOL(sync_page_range_nolock);
330
331 /**
332 * filemap_fdatawait - walk the list of under-writeback pages of the given
333 * address space and wait for all of them.
334 *
335 * @mapping: address space structure to wait for
336 */
337 int filemap_fdatawait(struct address_space *mapping)
338 {
339 loff_t i_size = i_size_read(mapping->host);
340
341 if (i_size == 0)
342 return 0;
343
344 return wait_on_page_writeback_range(mapping, 0,
345 (i_size - 1) >> PAGE_CACHE_SHIFT);
346 }
347 EXPORT_SYMBOL(filemap_fdatawait);
348
349 int filemap_write_and_wait(struct address_space *mapping)
350 {
351 int err = 0;
352
353 if (mapping->nrpages) {
354 err = filemap_fdatawrite(mapping);
355 /*
356 * Even if the above returned error, the pages may be
357 * written partially (e.g. -ENOSPC), so we wait for it.
358 * But the -EIO is special case, it may indicate the worst
359 * thing (e.g. bug) happened, so we avoid waiting for it.
360 */
361 if (err != -EIO) {
362 int err2 = filemap_fdatawait(mapping);
363 if (!err)
364 err = err2;
365 }
366 }
367 return err;
368 }
369 EXPORT_SYMBOL(filemap_write_and_wait);
370
371 int filemap_write_and_wait_range(struct address_space *mapping,
372 loff_t lstart, loff_t lend)
373 {
374 int err = 0;
375
376 if (mapping->nrpages) {
377 err = __filemap_fdatawrite_range(mapping, lstart, lend,
378 WB_SYNC_ALL);
379 /* See comment of filemap_write_and_wait() */
380 if (err != -EIO) {
381 int err2 = wait_on_page_writeback_range(mapping,
382 lstart >> PAGE_CACHE_SHIFT,
383 lend >> PAGE_CACHE_SHIFT);
384 if (!err)
385 err = err2;
386 }
387 }
388 return err;
389 }
390
391 /*
392 * This function is used to add newly allocated pagecache pages:
393 * the page is new, so we can just run SetPageLocked() against it.
394 * The other page state flags were set by rmqueue().
395 *
396 * This function does not add the page to the LRU. The caller must do that.
397 */
398 int add_to_page_cache(struct page *page, struct address_space *mapping,
399 pgoff_t offset, gfp_t gfp_mask)
400 {
401 int error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
402
403 if (error == 0) {
404 write_lock_irq(&mapping->tree_lock);
405 error = radix_tree_insert(&mapping->page_tree, offset, page);
406 if (!error) {
407 page_cache_get(page);
408 SetPageLocked(page);
409 page->mapping = mapping;
410 page->index = offset;
411 mapping->nrpages++;
412 pagecache_acct(1);
413 }
414 write_unlock_irq(&mapping->tree_lock);
415 radix_tree_preload_end();
416 }
417 return error;
418 }
419
420 EXPORT_SYMBOL(add_to_page_cache);
421
422 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
423 pgoff_t offset, gfp_t gfp_mask)
424 {
425 int ret = add_to_page_cache(page, mapping, offset, gfp_mask);
426 if (ret == 0)
427 lru_cache_add(page);
428 return ret;
429 }
430
431 #ifdef CONFIG_NUMA
432 struct page *page_cache_alloc(struct address_space *x)
433 {
434 if (cpuset_do_page_mem_spread()) {
435 int n = cpuset_mem_spread_node();
436 return alloc_pages_node(n, mapping_gfp_mask(x), 0);
437 }
438 return alloc_pages(mapping_gfp_mask(x), 0);
439 }
440 EXPORT_SYMBOL(page_cache_alloc);
441
442 struct page *page_cache_alloc_cold(struct address_space *x)
443 {
444 if (cpuset_do_page_mem_spread()) {
445 int n = cpuset_mem_spread_node();
446 return alloc_pages_node(n, mapping_gfp_mask(x)|__GFP_COLD, 0);
447 }
448 return alloc_pages(mapping_gfp_mask(x)|__GFP_COLD, 0);
449 }
450 EXPORT_SYMBOL(page_cache_alloc_cold);
451 #endif
452
453 /*
454 * In order to wait for pages to become available there must be
455 * waitqueues associated with pages. By using a hash table of
456 * waitqueues where the bucket discipline is to maintain all
457 * waiters on the same queue and wake all when any of the pages
458 * become available, and for the woken contexts to check to be
459 * sure the appropriate page became available, this saves space
460 * at a cost of "thundering herd" phenomena during rare hash
461 * collisions.
462 */
463 static wait_queue_head_t *page_waitqueue(struct page *page)
464 {
465 const struct zone *zone = page_zone(page);
466
467 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
468 }
469
470 static inline void wake_up_page(struct page *page, int bit)
471 {
472 __wake_up_bit(page_waitqueue(page), &page->flags, bit);
473 }
474
475 void fastcall wait_on_page_bit(struct page *page, int bit_nr)
476 {
477 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
478
479 if (test_bit(bit_nr, &page->flags))
480 __wait_on_bit(page_waitqueue(page), &wait, sync_page,
481 TASK_UNINTERRUPTIBLE);
482 }
483 EXPORT_SYMBOL(wait_on_page_bit);
484
485 /**
486 * unlock_page() - unlock a locked page
487 *
488 * @page: the page
489 *
490 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
491 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
492 * mechananism between PageLocked pages and PageWriteback pages is shared.
493 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
494 *
495 * The first mb is necessary to safely close the critical section opened by the
496 * TestSetPageLocked(), the second mb is necessary to enforce ordering between
497 * the clear_bit and the read of the waitqueue (to avoid SMP races with a
498 * parallel wait_on_page_locked()).
499 */
500 void fastcall unlock_page(struct page *page)
501 {
502 smp_mb__before_clear_bit();
503 if (!TestClearPageLocked(page))
504 BUG();
505 smp_mb__after_clear_bit();
506 wake_up_page(page, PG_locked);
507 }
508 EXPORT_SYMBOL(unlock_page);
509
510 /*
511 * End writeback against a page.
512 */
513 void end_page_writeback(struct page *page)
514 {
515 if (!TestClearPageReclaim(page) || rotate_reclaimable_page(page)) {
516 if (!test_clear_page_writeback(page))
517 BUG();
518 }
519 smp_mb__after_clear_bit();
520 wake_up_page(page, PG_writeback);
521 }
522 EXPORT_SYMBOL(end_page_writeback);
523
524 /*
525 * Get a lock on the page, assuming we need to sleep to get it.
526 *
527 * Ugly: running sync_page() in state TASK_UNINTERRUPTIBLE is scary. If some
528 * random driver's requestfn sets TASK_RUNNING, we could busywait. However
529 * chances are that on the second loop, the block layer's plug list is empty,
530 * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
531 */
532 void fastcall __lock_page(struct page *page)
533 {
534 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
535
536 __wait_on_bit_lock(page_waitqueue(page), &wait, sync_page,
537 TASK_UNINTERRUPTIBLE);
538 }
539 EXPORT_SYMBOL(__lock_page);
540
541 /*
542 * a rather lightweight function, finding and getting a reference to a
543 * hashed page atomically.
544 */
545 struct page * find_get_page(struct address_space *mapping, unsigned long offset)
546 {
547 struct page *page;
548
549 read_lock_irq(&mapping->tree_lock);
550 page = radix_tree_lookup(&mapping->page_tree, offset);
551 if (page)
552 page_cache_get(page);
553 read_unlock_irq(&mapping->tree_lock);
554 return page;
555 }
556
557 EXPORT_SYMBOL(find_get_page);
558
559 /*
560 * Same as above, but trylock it instead of incrementing the count.
561 */
562 struct page *find_trylock_page(struct address_space *mapping, unsigned long offset)
563 {
564 struct page *page;
565
566 read_lock_irq(&mapping->tree_lock);
567 page = radix_tree_lookup(&mapping->page_tree, offset);
568 if (page && TestSetPageLocked(page))
569 page = NULL;
570 read_unlock_irq(&mapping->tree_lock);
571 return page;
572 }
573
574 EXPORT_SYMBOL(find_trylock_page);
575
576 /**
577 * find_lock_page - locate, pin and lock a pagecache page
578 *
579 * @mapping: the address_space to search
580 * @offset: the page index
581 *
582 * Locates the desired pagecache page, locks it, increments its reference
583 * count and returns its address.
584 *
585 * Returns zero if the page was not present. find_lock_page() may sleep.
586 */
587 struct page *find_lock_page(struct address_space *mapping,
588 unsigned long offset)
589 {
590 struct page *page;
591
592 read_lock_irq(&mapping->tree_lock);
593 repeat:
594 page = radix_tree_lookup(&mapping->page_tree, offset);
595 if (page) {
596 page_cache_get(page);
597 if (TestSetPageLocked(page)) {
598 read_unlock_irq(&mapping->tree_lock);
599 __lock_page(page);
600 read_lock_irq(&mapping->tree_lock);
601
602 /* Has the page been truncated while we slept? */
603 if (unlikely(page->mapping != mapping ||
604 page->index != offset)) {
605 unlock_page(page);
606 page_cache_release(page);
607 goto repeat;
608 }
609 }
610 }
611 read_unlock_irq(&mapping->tree_lock);
612 return page;
613 }
614
615 EXPORT_SYMBOL(find_lock_page);
616
617 /**
618 * find_or_create_page - locate or add a pagecache page
619 *
620 * @mapping: the page's address_space
621 * @index: the page's index into the mapping
622 * @gfp_mask: page allocation mode
623 *
624 * Locates a page in the pagecache. If the page is not present, a new page
625 * is allocated using @gfp_mask and is added to the pagecache and to the VM's
626 * LRU list. The returned page is locked and has its reference count
627 * incremented.
628 *
629 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
630 * allocation!
631 *
632 * find_or_create_page() returns the desired page's address, or zero on
633 * memory exhaustion.
634 */
635 struct page *find_or_create_page(struct address_space *mapping,
636 unsigned long index, gfp_t gfp_mask)
637 {
638 struct page *page, *cached_page = NULL;
639 int err;
640 repeat:
641 page = find_lock_page(mapping, index);
642 if (!page) {
643 if (!cached_page) {
644 cached_page = alloc_page(gfp_mask);
645 if (!cached_page)
646 return NULL;
647 }
648 err = add_to_page_cache_lru(cached_page, mapping,
649 index, gfp_mask);
650 if (!err) {
651 page = cached_page;
652 cached_page = NULL;
653 } else if (err == -EEXIST)
654 goto repeat;
655 }
656 if (cached_page)
657 page_cache_release(cached_page);
658 return page;
659 }
660
661 EXPORT_SYMBOL(find_or_create_page);
662
663 /**
664 * find_get_pages - gang pagecache lookup
665 * @mapping: The address_space to search
666 * @start: The starting page index
667 * @nr_pages: The maximum number of pages
668 * @pages: Where the resulting pages are placed
669 *
670 * find_get_pages() will search for and return a group of up to
671 * @nr_pages pages in the mapping. The pages are placed at @pages.
672 * find_get_pages() takes a reference against the returned pages.
673 *
674 * The search returns a group of mapping-contiguous pages with ascending
675 * indexes. There may be holes in the indices due to not-present pages.
676 *
677 * find_get_pages() returns the number of pages which were found.
678 */
679 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
680 unsigned int nr_pages, struct page **pages)
681 {
682 unsigned int i;
683 unsigned int ret;
684
685 read_lock_irq(&mapping->tree_lock);
686 ret = radix_tree_gang_lookup(&mapping->page_tree,
687 (void **)pages, start, nr_pages);
688 for (i = 0; i < ret; i++)
689 page_cache_get(pages[i]);
690 read_unlock_irq(&mapping->tree_lock);
691 return ret;
692 }
693
694 /*
695 * Like find_get_pages, except we only return pages which are tagged with
696 * `tag'. We update *index to index the next page for the traversal.
697 */
698 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
699 int tag, unsigned int nr_pages, struct page **pages)
700 {
701 unsigned int i;
702 unsigned int ret;
703
704 read_lock_irq(&mapping->tree_lock);
705 ret = radix_tree_gang_lookup_tag(&mapping->page_tree,
706 (void **)pages, *index, nr_pages, tag);
707 for (i = 0; i < ret; i++)
708 page_cache_get(pages[i]);
709 if (ret)
710 *index = pages[ret - 1]->index + 1;
711 read_unlock_irq(&mapping->tree_lock);
712 return ret;
713 }
714
715 /*
716 * Same as grab_cache_page, but do not wait if the page is unavailable.
717 * This is intended for speculative data generators, where the data can
718 * be regenerated if the page couldn't be grabbed. This routine should
719 * be safe to call while holding the lock for another page.
720 *
721 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
722 * and deadlock against the caller's locked page.
723 */
724 struct page *
725 grab_cache_page_nowait(struct address_space *mapping, unsigned long index)
726 {
727 struct page *page = find_get_page(mapping, index);
728 gfp_t gfp_mask;
729
730 if (page) {
731 if (!TestSetPageLocked(page))
732 return page;
733 page_cache_release(page);
734 return NULL;
735 }
736 gfp_mask = mapping_gfp_mask(mapping) & ~__GFP_FS;
737 page = alloc_pages(gfp_mask, 0);
738 if (page && add_to_page_cache_lru(page, mapping, index, gfp_mask)) {
739 page_cache_release(page);
740 page = NULL;
741 }
742 return page;
743 }
744
745 EXPORT_SYMBOL(grab_cache_page_nowait);
746
747 /*
748 * This is a generic file read routine, and uses the
749 * mapping->a_ops->readpage() function for the actual low-level
750 * stuff.
751 *
752 * This is really ugly. But the goto's actually try to clarify some
753 * of the logic when it comes to error handling etc.
754 *
755 * Note the struct file* is only passed for the use of readpage. It may be
756 * NULL.
757 */
758 void do_generic_mapping_read(struct address_space *mapping,
759 struct file_ra_state *_ra,
760 struct file *filp,
761 loff_t *ppos,
762 read_descriptor_t *desc,
763 read_actor_t actor)
764 {
765 struct inode *inode = mapping->host;
766 unsigned long index;
767 unsigned long end_index;
768 unsigned long offset;
769 unsigned long last_index;
770 unsigned long next_index;
771 unsigned long prev_index;
772 loff_t isize;
773 struct page *cached_page;
774 int error;
775 struct file_ra_state ra = *_ra;
776
777 cached_page = NULL;
778 index = *ppos >> PAGE_CACHE_SHIFT;
779 next_index = index;
780 prev_index = ra.prev_page;
781 last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
782 offset = *ppos & ~PAGE_CACHE_MASK;
783
784 isize = i_size_read(inode);
785 if (!isize)
786 goto out;
787
788 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
789 for (;;) {
790 struct page *page;
791 unsigned long nr, ret;
792
793 /* nr is the maximum number of bytes to copy from this page */
794 nr = PAGE_CACHE_SIZE;
795 if (index >= end_index) {
796 if (index > end_index)
797 goto out;
798 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
799 if (nr <= offset) {
800 goto out;
801 }
802 }
803 nr = nr - offset;
804
805 cond_resched();
806 if (index == next_index)
807 next_index = page_cache_readahead(mapping, &ra, filp,
808 index, last_index - index);
809
810 find_page:
811 page = find_get_page(mapping, index);
812 if (unlikely(page == NULL)) {
813 handle_ra_miss(mapping, &ra, index);
814 goto no_cached_page;
815 }
816 if (!PageUptodate(page))
817 goto page_not_up_to_date;
818 page_ok:
819
820 /* If users can be writing to this page using arbitrary
821 * virtual addresses, take care about potential aliasing
822 * before reading the page on the kernel side.
823 */
824 if (mapping_writably_mapped(mapping))
825 flush_dcache_page(page);
826
827 /*
828 * When (part of) the same page is read multiple times
829 * in succession, only mark it as accessed the first time.
830 */
831 if (prev_index != index)
832 mark_page_accessed(page);
833 prev_index = index;
834
835 /*
836 * Ok, we have the page, and it's up-to-date, so
837 * now we can copy it to user space...
838 *
839 * The actor routine returns how many bytes were actually used..
840 * NOTE! This may not be the same as how much of a user buffer
841 * we filled up (we may be padding etc), so we can only update
842 * "pos" here (the actor routine has to update the user buffer
843 * pointers and the remaining count).
844 */
845 ret = actor(desc, page, offset, nr);
846 offset += ret;
847 index += offset >> PAGE_CACHE_SHIFT;
848 offset &= ~PAGE_CACHE_MASK;
849
850 page_cache_release(page);
851 if (ret == nr && desc->count)
852 continue;
853 goto out;
854
855 page_not_up_to_date:
856 /* Get exclusive access to the page ... */
857 lock_page(page);
858
859 /* Did it get unhashed before we got the lock? */
860 if (!page->mapping) {
861 unlock_page(page);
862 page_cache_release(page);
863 continue;
864 }
865
866 /* Did somebody else fill it already? */
867 if (PageUptodate(page)) {
868 unlock_page(page);
869 goto page_ok;
870 }
871
872 readpage:
873 /* Start the actual read. The read will unlock the page. */
874 error = mapping->a_ops->readpage(filp, page);
875
876 if (unlikely(error)) {
877 if (error == AOP_TRUNCATED_PAGE) {
878 page_cache_release(page);
879 goto find_page;
880 }
881 goto readpage_error;
882 }
883
884 if (!PageUptodate(page)) {
885 lock_page(page);
886 if (!PageUptodate(page)) {
887 if (page->mapping == NULL) {
888 /*
889 * invalidate_inode_pages got it
890 */
891 unlock_page(page);
892 page_cache_release(page);
893 goto find_page;
894 }
895 unlock_page(page);
896 error = -EIO;
897 goto readpage_error;
898 }
899 unlock_page(page);
900 }
901
902 /*
903 * i_size must be checked after we have done ->readpage.
904 *
905 * Checking i_size after the readpage allows us to calculate
906 * the correct value for "nr", which means the zero-filled
907 * part of the page is not copied back to userspace (unless
908 * another truncate extends the file - this is desired though).
909 */
910 isize = i_size_read(inode);
911 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
912 if (unlikely(!isize || index > end_index)) {
913 page_cache_release(page);
914 goto out;
915 }
916
917 /* nr is the maximum number of bytes to copy from this page */
918 nr = PAGE_CACHE_SIZE;
919 if (index == end_index) {
920 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
921 if (nr <= offset) {
922 page_cache_release(page);
923 goto out;
924 }
925 }
926 nr = nr - offset;
927 goto page_ok;
928
929 readpage_error:
930 /* UHHUH! A synchronous read error occurred. Report it */
931 desc->error = error;
932 page_cache_release(page);
933 goto out;
934
935 no_cached_page:
936 /*
937 * Ok, it wasn't cached, so we need to create a new
938 * page..
939 */
940 if (!cached_page) {
941 cached_page = page_cache_alloc_cold(mapping);
942 if (!cached_page) {
943 desc->error = -ENOMEM;
944 goto out;
945 }
946 }
947 error = add_to_page_cache_lru(cached_page, mapping,
948 index, GFP_KERNEL);
949 if (error) {
950 if (error == -EEXIST)
951 goto find_page;
952 desc->error = error;
953 goto out;
954 }
955 page = cached_page;
956 cached_page = NULL;
957 goto readpage;
958 }
959
960 out:
961 *_ra = ra;
962
963 *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
964 if (cached_page)
965 page_cache_release(cached_page);
966 if (filp)
967 file_accessed(filp);
968 }
969
970 EXPORT_SYMBOL(do_generic_mapping_read);
971
972 int file_read_actor(read_descriptor_t *desc, struct page *page,
973 unsigned long offset, unsigned long size)
974 {
975 char *kaddr;
976 unsigned long left, count = desc->count;
977
978 if (size > count)
979 size = count;
980
981 /*
982 * Faults on the destination of a read are common, so do it before
983 * taking the kmap.
984 */
985 if (!fault_in_pages_writeable(desc->arg.buf, size)) {
986 kaddr = kmap_atomic(page, KM_USER0);
987 left = __copy_to_user_inatomic(desc->arg.buf,
988 kaddr + offset, size);
989 kunmap_atomic(kaddr, KM_USER0);
990 if (left == 0)
991 goto success;
992 }
993
994 /* Do it the slow way */
995 kaddr = kmap(page);
996 left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
997 kunmap(page);
998
999 if (left) {
1000 size -= left;
1001 desc->error = -EFAULT;
1002 }
1003 success:
1004 desc->count = count - size;
1005 desc->written += size;
1006 desc->arg.buf += size;
1007 return size;
1008 }
1009
1010 /*
1011 * This is the "read()" routine for all filesystems
1012 * that can use the page cache directly.
1013 */
1014 ssize_t
1015 __generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1016 unsigned long nr_segs, loff_t *ppos)
1017 {
1018 struct file *filp = iocb->ki_filp;
1019 ssize_t retval;
1020 unsigned long seg;
1021 size_t count;
1022
1023 count = 0;
1024 for (seg = 0; seg < nr_segs; seg++) {
1025 const struct iovec *iv = &iov[seg];
1026
1027 /*
1028 * If any segment has a negative length, or the cumulative
1029 * length ever wraps negative then return -EINVAL.
1030 */
1031 count += iv->iov_len;
1032 if (unlikely((ssize_t)(count|iv->iov_len) < 0))
1033 return -EINVAL;
1034 if (access_ok(VERIFY_WRITE, iv->iov_base, iv->iov_len))
1035 continue;
1036 if (seg == 0)
1037 return -EFAULT;
1038 nr_segs = seg;
1039 count -= iv->iov_len; /* This segment is no good */
1040 break;
1041 }
1042
1043 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1044 if (filp->f_flags & O_DIRECT) {
1045 loff_t pos = *ppos, size;
1046 struct address_space *mapping;
1047 struct inode *inode;
1048
1049 mapping = filp->f_mapping;
1050 inode = mapping->host;
1051 retval = 0;
1052 if (!count)
1053 goto out; /* skip atime */
1054 size = i_size_read(inode);
1055 if (pos < size) {
1056 retval = generic_file_direct_IO(READ, iocb,
1057 iov, pos, nr_segs);
1058 if (retval > 0 && !is_sync_kiocb(iocb))
1059 retval = -EIOCBQUEUED;
1060 if (retval > 0)
1061 *ppos = pos + retval;
1062 }
1063 file_accessed(filp);
1064 goto out;
1065 }
1066
1067 retval = 0;
1068 if (count) {
1069 for (seg = 0; seg < nr_segs; seg++) {
1070 read_descriptor_t desc;
1071
1072 desc.written = 0;
1073 desc.arg.buf = iov[seg].iov_base;
1074 desc.count = iov[seg].iov_len;
1075 if (desc.count == 0)
1076 continue;
1077 desc.error = 0;
1078 do_generic_file_read(filp,ppos,&desc,file_read_actor);
1079 retval += desc.written;
1080 if (desc.error) {
1081 retval = retval ?: desc.error;
1082 break;
1083 }
1084 }
1085 }
1086 out:
1087 return retval;
1088 }
1089
1090 EXPORT_SYMBOL(__generic_file_aio_read);
1091
1092 ssize_t
1093 generic_file_aio_read(struct kiocb *iocb, char __user *buf, size_t count, loff_t pos)
1094 {
1095 struct iovec local_iov = { .iov_base = buf, .iov_len = count };
1096
1097 BUG_ON(iocb->ki_pos != pos);
1098 return __generic_file_aio_read(iocb, &local_iov, 1, &iocb->ki_pos);
1099 }
1100
1101 EXPORT_SYMBOL(generic_file_aio_read);
1102
1103 ssize_t
1104 generic_file_read(struct file *filp, char __user *buf, size_t count, loff_t *ppos)
1105 {
1106 struct iovec local_iov = { .iov_base = buf, .iov_len = count };
1107 struct kiocb kiocb;
1108 ssize_t ret;
1109
1110 init_sync_kiocb(&kiocb, filp);
1111 ret = __generic_file_aio_read(&kiocb, &local_iov, 1, ppos);
1112 if (-EIOCBQUEUED == ret)
1113 ret = wait_on_sync_kiocb(&kiocb);
1114 return ret;
1115 }
1116
1117 EXPORT_SYMBOL(generic_file_read);
1118
1119 int file_send_actor(read_descriptor_t * desc, struct page *page, unsigned long offset, unsigned long size)
1120 {
1121 ssize_t written;
1122 unsigned long count = desc->count;
1123 struct file *file = desc->arg.data;
1124
1125 if (size > count)
1126 size = count;
1127
1128 written = file->f_op->sendpage(file, page, offset,
1129 size, &file->f_pos, size<count);
1130 if (written < 0) {
1131 desc->error = written;
1132 written = 0;
1133 }
1134 desc->count = count - written;
1135 desc->written += written;
1136 return written;
1137 }
1138
1139 ssize_t generic_file_sendfile(struct file *in_file, loff_t *ppos,
1140 size_t count, read_actor_t actor, void *target)
1141 {
1142 read_descriptor_t desc;
1143
1144 if (!count)
1145 return 0;
1146
1147 desc.written = 0;
1148 desc.count = count;
1149 desc.arg.data = target;
1150 desc.error = 0;
1151
1152 do_generic_file_read(in_file, ppos, &desc, actor);
1153 if (desc.written)
1154 return desc.written;
1155 return desc.error;
1156 }
1157
1158 EXPORT_SYMBOL(generic_file_sendfile);
1159
1160 static ssize_t
1161 do_readahead(struct address_space *mapping, struct file *filp,
1162 unsigned long index, unsigned long nr)
1163 {
1164 if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1165 return -EINVAL;
1166
1167 force_page_cache_readahead(mapping, filp, index,
1168 max_sane_readahead(nr));
1169 return 0;
1170 }
1171
1172 asmlinkage ssize_t sys_readahead(int fd, loff_t offset, size_t count)
1173 {
1174 ssize_t ret;
1175 struct file *file;
1176
1177 ret = -EBADF;
1178 file = fget(fd);
1179 if (file) {
1180 if (file->f_mode & FMODE_READ) {
1181 struct address_space *mapping = file->f_mapping;
1182 unsigned long start = offset >> PAGE_CACHE_SHIFT;
1183 unsigned long end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1184 unsigned long len = end - start + 1;
1185 ret = do_readahead(mapping, file, start, len);
1186 }
1187 fput(file);
1188 }
1189 return ret;
1190 }
1191
1192 #ifdef CONFIG_MMU
1193 /*
1194 * This adds the requested page to the page cache if it isn't already there,
1195 * and schedules an I/O to read in its contents from disk.
1196 */
1197 static int FASTCALL(page_cache_read(struct file * file, unsigned long offset));
1198 static int fastcall page_cache_read(struct file * file, unsigned long offset)
1199 {
1200 struct address_space *mapping = file->f_mapping;
1201 struct page *page;
1202 int ret;
1203
1204 do {
1205 page = page_cache_alloc_cold(mapping);
1206 if (!page)
1207 return -ENOMEM;
1208
1209 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1210 if (ret == 0)
1211 ret = mapping->a_ops->readpage(file, page);
1212 else if (ret == -EEXIST)
1213 ret = 0; /* losing race to add is OK */
1214
1215 page_cache_release(page);
1216
1217 } while (ret == AOP_TRUNCATED_PAGE);
1218
1219 return ret;
1220 }
1221
1222 #define MMAP_LOTSAMISS (100)
1223
1224 /*
1225 * filemap_nopage() is invoked via the vma operations vector for a
1226 * mapped memory region to read in file data during a page fault.
1227 *
1228 * The goto's are kind of ugly, but this streamlines the normal case of having
1229 * it in the page cache, and handles the special cases reasonably without
1230 * having a lot of duplicated code.
1231 */
1232 struct page *filemap_nopage(struct vm_area_struct *area,
1233 unsigned long address, int *type)
1234 {
1235 int error;
1236 struct file *file = area->vm_file;
1237 struct address_space *mapping = file->f_mapping;
1238 struct file_ra_state *ra = &file->f_ra;
1239 struct inode *inode = mapping->host;
1240 struct page *page;
1241 unsigned long size, pgoff;
1242 int did_readaround = 0, majmin = VM_FAULT_MINOR;
1243
1244 pgoff = ((address-area->vm_start) >> PAGE_CACHE_SHIFT) + area->vm_pgoff;
1245
1246 retry_all:
1247 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1248 if (pgoff >= size)
1249 goto outside_data_content;
1250
1251 /* If we don't want any read-ahead, don't bother */
1252 if (VM_RandomReadHint(area))
1253 goto no_cached_page;
1254
1255 /*
1256 * The readahead code wants to be told about each and every page
1257 * so it can build and shrink its windows appropriately
1258 *
1259 * For sequential accesses, we use the generic readahead logic.
1260 */
1261 if (VM_SequentialReadHint(area))
1262 page_cache_readahead(mapping, ra, file, pgoff, 1);
1263
1264 /*
1265 * Do we have something in the page cache already?
1266 */
1267 retry_find:
1268 page = find_get_page(mapping, pgoff);
1269 if (!page) {
1270 unsigned long ra_pages;
1271
1272 if (VM_SequentialReadHint(area)) {
1273 handle_ra_miss(mapping, ra, pgoff);
1274 goto no_cached_page;
1275 }
1276 ra->mmap_miss++;
1277
1278 /*
1279 * Do we miss much more than hit in this file? If so,
1280 * stop bothering with read-ahead. It will only hurt.
1281 */
1282 if (ra->mmap_miss > ra->mmap_hit + MMAP_LOTSAMISS)
1283 goto no_cached_page;
1284
1285 /*
1286 * To keep the pgmajfault counter straight, we need to
1287 * check did_readaround, as this is an inner loop.
1288 */
1289 if (!did_readaround) {
1290 majmin = VM_FAULT_MAJOR;
1291 inc_page_state(pgmajfault);
1292 }
1293 did_readaround = 1;
1294 ra_pages = max_sane_readahead(file->f_ra.ra_pages);
1295 if (ra_pages) {
1296 pgoff_t start = 0;
1297
1298 if (pgoff > ra_pages / 2)
1299 start = pgoff - ra_pages / 2;
1300 do_page_cache_readahead(mapping, file, start, ra_pages);
1301 }
1302 page = find_get_page(mapping, pgoff);
1303 if (!page)
1304 goto no_cached_page;
1305 }
1306
1307 if (!did_readaround)
1308 ra->mmap_hit++;
1309
1310 /*
1311 * Ok, found a page in the page cache, now we need to check
1312 * that it's up-to-date.
1313 */
1314 if (!PageUptodate(page))
1315 goto page_not_uptodate;
1316
1317 success:
1318 /*
1319 * Found the page and have a reference on it.
1320 */
1321 mark_page_accessed(page);
1322 if (type)
1323 *type = majmin;
1324 return page;
1325
1326 outside_data_content:
1327 /*
1328 * An external ptracer can access pages that normally aren't
1329 * accessible..
1330 */
1331 if (area->vm_mm == current->mm)
1332 return NULL;
1333 /* Fall through to the non-read-ahead case */
1334 no_cached_page:
1335 /*
1336 * We're only likely to ever get here if MADV_RANDOM is in
1337 * effect.
1338 */
1339 error = page_cache_read(file, pgoff);
1340 grab_swap_token();
1341
1342 /*
1343 * The page we want has now been added to the page cache.
1344 * In the unlikely event that someone removed it in the
1345 * meantime, we'll just come back here and read it again.
1346 */
1347 if (error >= 0)
1348 goto retry_find;
1349
1350 /*
1351 * An error return from page_cache_read can result if the
1352 * system is low on memory, or a problem occurs while trying
1353 * to schedule I/O.
1354 */
1355 if (error == -ENOMEM)
1356 return NOPAGE_OOM;
1357 return NULL;
1358
1359 page_not_uptodate:
1360 if (!did_readaround) {
1361 majmin = VM_FAULT_MAJOR;
1362 inc_page_state(pgmajfault);
1363 }
1364 lock_page(page);
1365
1366 /* Did it get unhashed while we waited for it? */
1367 if (!page->mapping) {
1368 unlock_page(page);
1369 page_cache_release(page);
1370 goto retry_all;
1371 }
1372
1373 /* Did somebody else get it up-to-date? */
1374 if (PageUptodate(page)) {
1375 unlock_page(page);
1376 goto success;
1377 }
1378
1379 error = mapping->a_ops->readpage(file, page);
1380 if (!error) {
1381 wait_on_page_locked(page);
1382 if (PageUptodate(page))
1383 goto success;
1384 } else if (error == AOP_TRUNCATED_PAGE) {
1385 page_cache_release(page);
1386 goto retry_find;
1387 }
1388
1389 /*
1390 * Umm, take care of errors if the page isn't up-to-date.
1391 * Try to re-read it _once_. We do this synchronously,
1392 * because there really aren't any performance issues here
1393 * and we need to check for errors.
1394 */
1395 lock_page(page);
1396
1397 /* Somebody truncated the page on us? */
1398 if (!page->mapping) {
1399 unlock_page(page);
1400 page_cache_release(page);
1401 goto retry_all;
1402 }
1403
1404 /* Somebody else successfully read it in? */
1405 if (PageUptodate(page)) {
1406 unlock_page(page);
1407 goto success;
1408 }
1409 ClearPageError(page);
1410 error = mapping->a_ops->readpage(file, page);
1411 if (!error) {
1412 wait_on_page_locked(page);
1413 if (PageUptodate(page))
1414 goto success;
1415 } else if (error == AOP_TRUNCATED_PAGE) {
1416 page_cache_release(page);
1417 goto retry_find;
1418 }
1419
1420 /*
1421 * Things didn't work out. Return zero to tell the
1422 * mm layer so, possibly freeing the page cache page first.
1423 */
1424 page_cache_release(page);
1425 return NULL;
1426 }
1427
1428 EXPORT_SYMBOL(filemap_nopage);
1429
1430 static struct page * filemap_getpage(struct file *file, unsigned long pgoff,
1431 int nonblock)
1432 {
1433 struct address_space *mapping = file->f_mapping;
1434 struct page *page;
1435 int error;
1436
1437 /*
1438 * Do we have something in the page cache already?
1439 */
1440 retry_find:
1441 page = find_get_page(mapping, pgoff);
1442 if (!page) {
1443 if (nonblock)
1444 return NULL;
1445 goto no_cached_page;
1446 }
1447
1448 /*
1449 * Ok, found a page in the page cache, now we need to check
1450 * that it's up-to-date.
1451 */
1452 if (!PageUptodate(page)) {
1453 if (nonblock) {
1454 page_cache_release(page);
1455 return NULL;
1456 }
1457 goto page_not_uptodate;
1458 }
1459
1460 success:
1461 /*
1462 * Found the page and have a reference on it.
1463 */
1464 mark_page_accessed(page);
1465 return page;
1466
1467 no_cached_page:
1468 error = page_cache_read(file, pgoff);
1469
1470 /*
1471 * The page we want has now been added to the page cache.
1472 * In the unlikely event that someone removed it in the
1473 * meantime, we'll just come back here and read it again.
1474 */
1475 if (error >= 0)
1476 goto retry_find;
1477
1478 /*
1479 * An error return from page_cache_read can result if the
1480 * system is low on memory, or a problem occurs while trying
1481 * to schedule I/O.
1482 */
1483 return NULL;
1484
1485 page_not_uptodate:
1486 lock_page(page);
1487
1488 /* Did it get unhashed while we waited for it? */
1489 if (!page->mapping) {
1490 unlock_page(page);
1491 goto err;
1492 }
1493
1494 /* Did somebody else get it up-to-date? */
1495 if (PageUptodate(page)) {
1496 unlock_page(page);
1497 goto success;
1498 }
1499
1500 error = mapping->a_ops->readpage(file, page);
1501 if (!error) {
1502 wait_on_page_locked(page);
1503 if (PageUptodate(page))
1504 goto success;
1505 } else if (error == AOP_TRUNCATED_PAGE) {
1506 page_cache_release(page);
1507 goto retry_find;
1508 }
1509
1510 /*
1511 * Umm, take care of errors if the page isn't up-to-date.
1512 * Try to re-read it _once_. We do this synchronously,
1513 * because there really aren't any performance issues here
1514 * and we need to check for errors.
1515 */
1516 lock_page(page);
1517
1518 /* Somebody truncated the page on us? */
1519 if (!page->mapping) {
1520 unlock_page(page);
1521 goto err;
1522 }
1523 /* Somebody else successfully read it in? */
1524 if (PageUptodate(page)) {
1525 unlock_page(page);
1526 goto success;
1527 }
1528
1529 ClearPageError(page);
1530 error = mapping->a_ops->readpage(file, page);
1531 if (!error) {
1532 wait_on_page_locked(page);
1533 if (PageUptodate(page))
1534 goto success;
1535 } else if (error == AOP_TRUNCATED_PAGE) {
1536 page_cache_release(page);
1537 goto retry_find;
1538 }
1539
1540 /*
1541 * Things didn't work out. Return zero to tell the
1542 * mm layer so, possibly freeing the page cache page first.
1543 */
1544 err:
1545 page_cache_release(page);
1546
1547 return NULL;
1548 }
1549
1550 int filemap_populate(struct vm_area_struct *vma, unsigned long addr,
1551 unsigned long len, pgprot_t prot, unsigned long pgoff,
1552 int nonblock)
1553 {
1554 struct file *file = vma->vm_file;
1555 struct address_space *mapping = file->f_mapping;
1556 struct inode *inode = mapping->host;
1557 unsigned long size;
1558 struct mm_struct *mm = vma->vm_mm;
1559 struct page *page;
1560 int err;
1561
1562 if (!nonblock)
1563 force_page_cache_readahead(mapping, vma->vm_file,
1564 pgoff, len >> PAGE_CACHE_SHIFT);
1565
1566 repeat:
1567 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1568 if (pgoff + (len >> PAGE_CACHE_SHIFT) > size)
1569 return -EINVAL;
1570
1571 page = filemap_getpage(file, pgoff, nonblock);
1572
1573 /* XXX: This is wrong, a filesystem I/O error may have happened. Fix that as
1574 * done in shmem_populate calling shmem_getpage */
1575 if (!page && !nonblock)
1576 return -ENOMEM;
1577
1578 if (page) {
1579 err = install_page(mm, vma, addr, page, prot);
1580 if (err) {
1581 page_cache_release(page);
1582 return err;
1583 }
1584 } else if (vma->vm_flags & VM_NONLINEAR) {
1585 /* No page was found just because we can't read it in now (being
1586 * here implies nonblock != 0), but the page may exist, so set
1587 * the PTE to fault it in later. */
1588 err = install_file_pte(mm, vma, addr, pgoff, prot);
1589 if (err)
1590 return err;
1591 }
1592
1593 len -= PAGE_SIZE;
1594 addr += PAGE_SIZE;
1595 pgoff++;
1596 if (len)
1597 goto repeat;
1598
1599 return 0;
1600 }
1601 EXPORT_SYMBOL(filemap_populate);
1602
1603 struct vm_operations_struct generic_file_vm_ops = {
1604 .nopage = filemap_nopage,
1605 .populate = filemap_populate,
1606 };
1607
1608 /* This is used for a general mmap of a disk file */
1609
1610 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1611 {
1612 struct address_space *mapping = file->f_mapping;
1613
1614 if (!mapping->a_ops->readpage)
1615 return -ENOEXEC;
1616 file_accessed(file);
1617 vma->vm_ops = &generic_file_vm_ops;
1618 return 0;
1619 }
1620
1621 /*
1622 * This is for filesystems which do not implement ->writepage.
1623 */
1624 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1625 {
1626 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1627 return -EINVAL;
1628 return generic_file_mmap(file, vma);
1629 }
1630 #else
1631 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1632 {
1633 return -ENOSYS;
1634 }
1635 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1636 {
1637 return -ENOSYS;
1638 }
1639 #endif /* CONFIG_MMU */
1640
1641 EXPORT_SYMBOL(generic_file_mmap);
1642 EXPORT_SYMBOL(generic_file_readonly_mmap);
1643
1644 static inline struct page *__read_cache_page(struct address_space *mapping,
1645 unsigned long index,
1646 int (*filler)(void *,struct page*),
1647 void *data)
1648 {
1649 struct page *page, *cached_page = NULL;
1650 int err;
1651 repeat:
1652 page = find_get_page(mapping, index);
1653 if (!page) {
1654 if (!cached_page) {
1655 cached_page = page_cache_alloc_cold(mapping);
1656 if (!cached_page)
1657 return ERR_PTR(-ENOMEM);
1658 }
1659 err = add_to_page_cache_lru(cached_page, mapping,
1660 index, GFP_KERNEL);
1661 if (err == -EEXIST)
1662 goto repeat;
1663 if (err < 0) {
1664 /* Presumably ENOMEM for radix tree node */
1665 page_cache_release(cached_page);
1666 return ERR_PTR(err);
1667 }
1668 page = cached_page;
1669 cached_page = NULL;
1670 err = filler(data, page);
1671 if (err < 0) {
1672 page_cache_release(page);
1673 page = ERR_PTR(err);
1674 }
1675 }
1676 if (cached_page)
1677 page_cache_release(cached_page);
1678 return page;
1679 }
1680
1681 /*
1682 * Read into the page cache. If a page already exists,
1683 * and PageUptodate() is not set, try to fill the page.
1684 */
1685 struct page *read_cache_page(struct address_space *mapping,
1686 unsigned long index,
1687 int (*filler)(void *,struct page*),
1688 void *data)
1689 {
1690 struct page *page;
1691 int err;
1692
1693 retry:
1694 page = __read_cache_page(mapping, index, filler, data);
1695 if (IS_ERR(page))
1696 goto out;
1697 mark_page_accessed(page);
1698 if (PageUptodate(page))
1699 goto out;
1700
1701 lock_page(page);
1702 if (!page->mapping) {
1703 unlock_page(page);
1704 page_cache_release(page);
1705 goto retry;
1706 }
1707 if (PageUptodate(page)) {
1708 unlock_page(page);
1709 goto out;
1710 }
1711 err = filler(data, page);
1712 if (err < 0) {
1713 page_cache_release(page);
1714 page = ERR_PTR(err);
1715 }
1716 out:
1717 return page;
1718 }
1719
1720 EXPORT_SYMBOL(read_cache_page);
1721
1722 /*
1723 * If the page was newly created, increment its refcount and add it to the
1724 * caller's lru-buffering pagevec. This function is specifically for
1725 * generic_file_write().
1726 */
1727 static inline struct page *
1728 __grab_cache_page(struct address_space *mapping, unsigned long index,
1729 struct page **cached_page, struct pagevec *lru_pvec)
1730 {
1731 int err;
1732 struct page *page;
1733 repeat:
1734 page = find_lock_page(mapping, index);
1735 if (!page) {
1736 if (!*cached_page) {
1737 *cached_page = page_cache_alloc(mapping);
1738 if (!*cached_page)
1739 return NULL;
1740 }
1741 err = add_to_page_cache(*cached_page, mapping,
1742 index, GFP_KERNEL);
1743 if (err == -EEXIST)
1744 goto repeat;
1745 if (err == 0) {
1746 page = *cached_page;
1747 page_cache_get(page);
1748 if (!pagevec_add(lru_pvec, page))
1749 __pagevec_lru_add(lru_pvec);
1750 *cached_page = NULL;
1751 }
1752 }
1753 return page;
1754 }
1755
1756 /*
1757 * The logic we want is
1758 *
1759 * if suid or (sgid and xgrp)
1760 * remove privs
1761 */
1762 int remove_suid(struct dentry *dentry)
1763 {
1764 mode_t mode = dentry->d_inode->i_mode;
1765 int kill = 0;
1766 int result = 0;
1767
1768 /* suid always must be killed */
1769 if (unlikely(mode & S_ISUID))
1770 kill = ATTR_KILL_SUID;
1771
1772 /*
1773 * sgid without any exec bits is just a mandatory locking mark; leave
1774 * it alone. If some exec bits are set, it's a real sgid; kill it.
1775 */
1776 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1777 kill |= ATTR_KILL_SGID;
1778
1779 if (unlikely(kill && !capable(CAP_FSETID))) {
1780 struct iattr newattrs;
1781
1782 newattrs.ia_valid = ATTR_FORCE | kill;
1783 result = notify_change(dentry, &newattrs);
1784 }
1785 return result;
1786 }
1787 EXPORT_SYMBOL(remove_suid);
1788
1789 size_t
1790 __filemap_copy_from_user_iovec(char *vaddr,
1791 const struct iovec *iov, size_t base, size_t bytes)
1792 {
1793 size_t copied = 0, left = 0;
1794
1795 while (bytes) {
1796 char __user *buf = iov->iov_base + base;
1797 int copy = min(bytes, iov->iov_len - base);
1798
1799 base = 0;
1800 left = __copy_from_user_inatomic(vaddr, buf, copy);
1801 copied += copy;
1802 bytes -= copy;
1803 vaddr += copy;
1804 iov++;
1805
1806 if (unlikely(left)) {
1807 /* zero the rest of the target like __copy_from_user */
1808 if (bytes)
1809 memset(vaddr, 0, bytes);
1810 break;
1811 }
1812 }
1813 return copied - left;
1814 }
1815
1816 /*
1817 * Performs necessary checks before doing a write
1818 *
1819 * Can adjust writing position aor amount of bytes to write.
1820 * Returns appropriate error code that caller should return or
1821 * zero in case that write should be allowed.
1822 */
1823 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
1824 {
1825 struct inode *inode = file->f_mapping->host;
1826 unsigned long limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1827
1828 if (unlikely(*pos < 0))
1829 return -EINVAL;
1830
1831 if (!isblk) {
1832 /* FIXME: this is for backwards compatibility with 2.4 */
1833 if (file->f_flags & O_APPEND)
1834 *pos = i_size_read(inode);
1835
1836 if (limit != RLIM_INFINITY) {
1837 if (*pos >= limit) {
1838 send_sig(SIGXFSZ, current, 0);
1839 return -EFBIG;
1840 }
1841 if (*count > limit - (typeof(limit))*pos) {
1842 *count = limit - (typeof(limit))*pos;
1843 }
1844 }
1845 }
1846
1847 /*
1848 * LFS rule
1849 */
1850 if (unlikely(*pos + *count > MAX_NON_LFS &&
1851 !(file->f_flags & O_LARGEFILE))) {
1852 if (*pos >= MAX_NON_LFS) {
1853 send_sig(SIGXFSZ, current, 0);
1854 return -EFBIG;
1855 }
1856 if (*count > MAX_NON_LFS - (unsigned long)*pos) {
1857 *count = MAX_NON_LFS - (unsigned long)*pos;
1858 }
1859 }
1860
1861 /*
1862 * Are we about to exceed the fs block limit ?
1863 *
1864 * If we have written data it becomes a short write. If we have
1865 * exceeded without writing data we send a signal and return EFBIG.
1866 * Linus frestrict idea will clean these up nicely..
1867 */
1868 if (likely(!isblk)) {
1869 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
1870 if (*count || *pos > inode->i_sb->s_maxbytes) {
1871 send_sig(SIGXFSZ, current, 0);
1872 return -EFBIG;
1873 }
1874 /* zero-length writes at ->s_maxbytes are OK */
1875 }
1876
1877 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
1878 *count = inode->i_sb->s_maxbytes - *pos;
1879 } else {
1880 loff_t isize;
1881 if (bdev_read_only(I_BDEV(inode)))
1882 return -EPERM;
1883 isize = i_size_read(inode);
1884 if (*pos >= isize) {
1885 if (*count || *pos > isize)
1886 return -ENOSPC;
1887 }
1888
1889 if (*pos + *count > isize)
1890 *count = isize - *pos;
1891 }
1892 return 0;
1893 }
1894 EXPORT_SYMBOL(generic_write_checks);
1895
1896 ssize_t
1897 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
1898 unsigned long *nr_segs, loff_t pos, loff_t *ppos,
1899 size_t count, size_t ocount)
1900 {
1901 struct file *file = iocb->ki_filp;
1902 struct address_space *mapping = file->f_mapping;
1903 struct inode *inode = mapping->host;
1904 ssize_t written;
1905
1906 if (count != ocount)
1907 *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
1908
1909 written = generic_file_direct_IO(WRITE, iocb, iov, pos, *nr_segs);
1910 if (written > 0) {
1911 loff_t end = pos + written;
1912 if (end > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
1913 i_size_write(inode, end);
1914 mark_inode_dirty(inode);
1915 }
1916 *ppos = end;
1917 }
1918
1919 /*
1920 * Sync the fs metadata but not the minor inode changes and
1921 * of course not the data as we did direct DMA for the IO.
1922 * i_mutex is held, which protects generic_osync_inode() from
1923 * livelocking.
1924 */
1925 if (written >= 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
1926 int err = generic_osync_inode(inode, mapping, OSYNC_METADATA);
1927 if (err < 0)
1928 written = err;
1929 }
1930 if (written == count && !is_sync_kiocb(iocb))
1931 written = -EIOCBQUEUED;
1932 return written;
1933 }
1934 EXPORT_SYMBOL(generic_file_direct_write);
1935
1936 ssize_t
1937 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
1938 unsigned long nr_segs, loff_t pos, loff_t *ppos,
1939 size_t count, ssize_t written)
1940 {
1941 struct file *file = iocb->ki_filp;
1942 struct address_space * mapping = file->f_mapping;
1943 struct address_space_operations *a_ops = mapping->a_ops;
1944 struct inode *inode = mapping->host;
1945 long status = 0;
1946 struct page *page;
1947 struct page *cached_page = NULL;
1948 size_t bytes;
1949 struct pagevec lru_pvec;
1950 const struct iovec *cur_iov = iov; /* current iovec */
1951 size_t iov_base = 0; /* offset in the current iovec */
1952 char __user *buf;
1953
1954 pagevec_init(&lru_pvec, 0);
1955
1956 /*
1957 * handle partial DIO write. Adjust cur_iov if needed.
1958 */
1959 if (likely(nr_segs == 1))
1960 buf = iov->iov_base + written;
1961 else {
1962 filemap_set_next_iovec(&cur_iov, &iov_base, written);
1963 buf = cur_iov->iov_base + iov_base;
1964 }
1965
1966 do {
1967 unsigned long index;
1968 unsigned long offset;
1969 unsigned long maxlen;
1970 size_t copied;
1971
1972 offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
1973 index = pos >> PAGE_CACHE_SHIFT;
1974 bytes = PAGE_CACHE_SIZE - offset;
1975 if (bytes > count)
1976 bytes = count;
1977
1978 /*
1979 * Bring in the user page that we will copy from _first_.
1980 * Otherwise there's a nasty deadlock on copying from the
1981 * same page as we're writing to, without it being marked
1982 * up-to-date.
1983 */
1984 maxlen = cur_iov->iov_len - iov_base;
1985 if (maxlen > bytes)
1986 maxlen = bytes;
1987 fault_in_pages_readable(buf, maxlen);
1988
1989 page = __grab_cache_page(mapping,index,&cached_page,&lru_pvec);
1990 if (!page) {
1991 status = -ENOMEM;
1992 break;
1993 }
1994
1995 status = a_ops->prepare_write(file, page, offset, offset+bytes);
1996 if (unlikely(status)) {
1997 loff_t isize = i_size_read(inode);
1998
1999 if (status != AOP_TRUNCATED_PAGE)
2000 unlock_page(page);
2001 page_cache_release(page);
2002 if (status == AOP_TRUNCATED_PAGE)
2003 continue;
2004 /*
2005 * prepare_write() may have instantiated a few blocks
2006 * outside i_size. Trim these off again.
2007 */
2008 if (pos + bytes > isize)
2009 vmtruncate(inode, isize);
2010 break;
2011 }
2012 if (likely(nr_segs == 1))
2013 copied = filemap_copy_from_user(page, offset,
2014 buf, bytes);
2015 else
2016 copied = filemap_copy_from_user_iovec(page, offset,
2017 cur_iov, iov_base, bytes);
2018 flush_dcache_page(page);
2019 status = a_ops->commit_write(file, page, offset, offset+bytes);
2020 if (status == AOP_TRUNCATED_PAGE) {
2021 page_cache_release(page);
2022 continue;
2023 }
2024 if (likely(copied > 0)) {
2025 if (!status)
2026 status = copied;
2027
2028 if (status >= 0) {
2029 written += status;
2030 count -= status;
2031 pos += status;
2032 buf += status;
2033 if (unlikely(nr_segs > 1)) {
2034 filemap_set_next_iovec(&cur_iov,
2035 &iov_base, status);
2036 if (count)
2037 buf = cur_iov->iov_base +
2038 iov_base;
2039 } else {
2040 iov_base += status;
2041 }
2042 }
2043 }
2044 if (unlikely(copied != bytes))
2045 if (status >= 0)
2046 status = -EFAULT;
2047 unlock_page(page);
2048 mark_page_accessed(page);
2049 page_cache_release(page);
2050 if (status < 0)
2051 break;
2052 balance_dirty_pages_ratelimited(mapping);
2053 cond_resched();
2054 } while (count);
2055 *ppos = pos;
2056
2057 if (cached_page)
2058 page_cache_release(cached_page);
2059
2060 /*
2061 * For now, when the user asks for O_SYNC, we'll actually give O_DSYNC
2062 */
2063 if (likely(status >= 0)) {
2064 if (unlikely((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2065 if (!a_ops->writepage || !is_sync_kiocb(iocb))
2066 status = generic_osync_inode(inode, mapping,
2067 OSYNC_METADATA|OSYNC_DATA);
2068 }
2069 }
2070
2071 /*
2072 * If we get here for O_DIRECT writes then we must have fallen through
2073 * to buffered writes (block instantiation inside i_size). So we sync
2074 * the file data here, to try to honour O_DIRECT expectations.
2075 */
2076 if (unlikely(file->f_flags & O_DIRECT) && written)
2077 status = filemap_write_and_wait(mapping);
2078
2079 pagevec_lru_add(&lru_pvec);
2080 return written ? written : status;
2081 }
2082 EXPORT_SYMBOL(generic_file_buffered_write);
2083
2084 static ssize_t
2085 __generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov,
2086 unsigned long nr_segs, loff_t *ppos)
2087 {
2088 struct file *file = iocb->ki_filp;
2089 struct address_space * mapping = file->f_mapping;
2090 size_t ocount; /* original count */
2091 size_t count; /* after file limit checks */
2092 struct inode *inode = mapping->host;
2093 unsigned long seg;
2094 loff_t pos;
2095 ssize_t written;
2096 ssize_t err;
2097
2098 ocount = 0;
2099 for (seg = 0; seg < nr_segs; seg++) {
2100 const struct iovec *iv = &iov[seg];
2101
2102 /*
2103 * If any segment has a negative length, or the cumulative
2104 * length ever wraps negative then return -EINVAL.
2105 */
2106 ocount += iv->iov_len;
2107 if (unlikely((ssize_t)(ocount|iv->iov_len) < 0))
2108 return -EINVAL;
2109 if (access_ok(VERIFY_READ, iv->iov_base, iv->iov_len))
2110 continue;
2111 if (seg == 0)
2112 return -EFAULT;
2113 nr_segs = seg;
2114 ocount -= iv->iov_len; /* This segment is no good */
2115 break;
2116 }
2117
2118 count = ocount;
2119 pos = *ppos;
2120
2121 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2122
2123 /* We can write back this queue in page reclaim */
2124 current->backing_dev_info = mapping->backing_dev_info;
2125 written = 0;
2126
2127 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2128 if (err)
2129 goto out;
2130
2131 if (count == 0)
2132 goto out;
2133
2134 err = remove_suid(file->f_dentry);
2135 if (err)
2136 goto out;
2137
2138 file_update_time(file);
2139
2140 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2141 if (unlikely(file->f_flags & O_DIRECT)) {
2142 written = generic_file_direct_write(iocb, iov,
2143 &nr_segs, pos, ppos, count, ocount);
2144 if (written < 0 || written == count)
2145 goto out;
2146 /*
2147 * direct-io write to a hole: fall through to buffered I/O
2148 * for completing the rest of the request.
2149 */
2150 pos += written;
2151 count -= written;
2152 }
2153
2154 written = generic_file_buffered_write(iocb, iov, nr_segs,
2155 pos, ppos, count, written);
2156 out:
2157 current->backing_dev_info = NULL;
2158 return written ? written : err;
2159 }
2160 EXPORT_SYMBOL(generic_file_aio_write_nolock);
2161
2162 ssize_t
2163 generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov,
2164 unsigned long nr_segs, loff_t *ppos)
2165 {
2166 struct file *file = iocb->ki_filp;
2167 struct address_space *mapping = file->f_mapping;
2168 struct inode *inode = mapping->host;
2169 ssize_t ret;
2170 loff_t pos = *ppos;
2171
2172 ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs, ppos);
2173
2174 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2175 int err;
2176
2177 err = sync_page_range_nolock(inode, mapping, pos, ret);
2178 if (err < 0)
2179 ret = err;
2180 }
2181 return ret;
2182 }
2183
2184 static ssize_t
2185 __generic_file_write_nolock(struct file *file, const struct iovec *iov,
2186 unsigned long nr_segs, loff_t *ppos)
2187 {
2188 struct kiocb kiocb;
2189 ssize_t ret;
2190
2191 init_sync_kiocb(&kiocb, file);
2192 ret = __generic_file_aio_write_nolock(&kiocb, iov, nr_segs, ppos);
2193 if (ret == -EIOCBQUEUED)
2194 ret = wait_on_sync_kiocb(&kiocb);
2195 return ret;
2196 }
2197
2198 ssize_t
2199 generic_file_write_nolock(struct file *file, const struct iovec *iov,
2200 unsigned long nr_segs, loff_t *ppos)
2201 {
2202 struct kiocb kiocb;
2203 ssize_t ret;
2204
2205 init_sync_kiocb(&kiocb, file);
2206 ret = generic_file_aio_write_nolock(&kiocb, iov, nr_segs, ppos);
2207 if (-EIOCBQUEUED == ret)
2208 ret = wait_on_sync_kiocb(&kiocb);
2209 return ret;
2210 }
2211 EXPORT_SYMBOL(generic_file_write_nolock);
2212
2213 ssize_t generic_file_aio_write(struct kiocb *iocb, const char __user *buf,
2214 size_t count, loff_t pos)
2215 {
2216 struct file *file = iocb->ki_filp;
2217 struct address_space *mapping = file->f_mapping;
2218 struct inode *inode = mapping->host;
2219 ssize_t ret;
2220 struct iovec local_iov = { .iov_base = (void __user *)buf,
2221 .iov_len = count };
2222
2223 BUG_ON(iocb->ki_pos != pos);
2224
2225 mutex_lock(&inode->i_mutex);
2226 ret = __generic_file_aio_write_nolock(iocb, &local_iov, 1,
2227 &iocb->ki_pos);
2228 mutex_unlock(&inode->i_mutex);
2229
2230 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2231 ssize_t err;
2232
2233 err = sync_page_range(inode, mapping, pos, ret);
2234 if (err < 0)
2235 ret = err;
2236 }
2237 return ret;
2238 }
2239 EXPORT_SYMBOL(generic_file_aio_write);
2240
2241 ssize_t generic_file_write(struct file *file, const char __user *buf,
2242 size_t count, loff_t *ppos)
2243 {
2244 struct address_space *mapping = file->f_mapping;
2245 struct inode *inode = mapping->host;
2246 ssize_t ret;
2247 struct iovec local_iov = { .iov_base = (void __user *)buf,
2248 .iov_len = count };
2249
2250 mutex_lock(&inode->i_mutex);
2251 ret = __generic_file_write_nolock(file, &local_iov, 1, ppos);
2252 mutex_unlock(&inode->i_mutex);
2253
2254 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2255 ssize_t err;
2256
2257 err = sync_page_range(inode, mapping, *ppos - ret, ret);
2258 if (err < 0)
2259 ret = err;
2260 }
2261 return ret;
2262 }
2263 EXPORT_SYMBOL(generic_file_write);
2264
2265 ssize_t generic_file_readv(struct file *filp, const struct iovec *iov,
2266 unsigned long nr_segs, loff_t *ppos)
2267 {
2268 struct kiocb kiocb;
2269 ssize_t ret;
2270
2271 init_sync_kiocb(&kiocb, filp);
2272 ret = __generic_file_aio_read(&kiocb, iov, nr_segs, ppos);
2273 if (-EIOCBQUEUED == ret)
2274 ret = wait_on_sync_kiocb(&kiocb);
2275 return ret;
2276 }
2277 EXPORT_SYMBOL(generic_file_readv);
2278
2279 ssize_t generic_file_writev(struct file *file, const struct iovec *iov,
2280 unsigned long nr_segs, loff_t *ppos)
2281 {
2282 struct address_space *mapping = file->f_mapping;
2283 struct inode *inode = mapping->host;
2284 ssize_t ret;
2285
2286 mutex_lock(&inode->i_mutex);
2287 ret = __generic_file_write_nolock(file, iov, nr_segs, ppos);
2288 mutex_unlock(&inode->i_mutex);
2289
2290 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2291 int err;
2292
2293 err = sync_page_range(inode, mapping, *ppos - ret, ret);
2294 if (err < 0)
2295 ret = err;
2296 }
2297 return ret;
2298 }
2299 EXPORT_SYMBOL(generic_file_writev);
2300
2301 /*
2302 * Called under i_mutex for writes to S_ISREG files. Returns -EIO if something
2303 * went wrong during pagecache shootdown.
2304 */
2305 static ssize_t
2306 generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
2307 loff_t offset, unsigned long nr_segs)
2308 {
2309 struct file *file = iocb->ki_filp;
2310 struct address_space *mapping = file->f_mapping;
2311 ssize_t retval;
2312 size_t write_len = 0;
2313
2314 /*
2315 * If it's a write, unmap all mmappings of the file up-front. This
2316 * will cause any pte dirty bits to be propagated into the pageframes
2317 * for the subsequent filemap_write_and_wait().
2318 */
2319 if (rw == WRITE) {
2320 write_len = iov_length(iov, nr_segs);
2321 if (mapping_mapped(mapping))
2322 unmap_mapping_range(mapping, offset, write_len, 0);
2323 }
2324
2325 retval = filemap_write_and_wait(mapping);
2326 if (retval == 0) {
2327 retval = mapping->a_ops->direct_IO(rw, iocb, iov,
2328 offset, nr_segs);
2329 if (rw == WRITE && mapping->nrpages) {
2330 pgoff_t end = (offset + write_len - 1)
2331 >> PAGE_CACHE_SHIFT;
2332 int err = invalidate_inode_pages2_range(mapping,
2333 offset >> PAGE_CACHE_SHIFT, end);
2334 if (err)
2335 retval = err;
2336 }
2337 }
2338 return retval;
2339 }
This page took 0.115225 seconds and 6 git commands to generate.