fs: fix data-loss on error
[deliverable/linux.git] / mm / filemap.c
1 /*
2 * linux/mm/filemap.c
3 *
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
6
7 /*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
11 */
12 #include <linux/module.h>
13 #include <linux/slab.h>
14 #include <linux/compiler.h>
15 #include <linux/fs.h>
16 #include <linux/uaccess.h>
17 #include <linux/aio.h>
18 #include <linux/capability.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/pagevec.h>
29 #include <linux/blkdev.h>
30 #include <linux/security.h>
31 #include <linux/syscalls.h>
32 #include <linux/cpuset.h>
33 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
34 #include "internal.h"
35
36 /*
37 * FIXME: remove all knowledge of the buffer layer from the core VM
38 */
39 #include <linux/buffer_head.h> /* for generic_osync_inode */
40
41 #include <asm/mman.h>
42
43 static ssize_t
44 generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
45 loff_t offset, unsigned long nr_segs);
46
47 /*
48 * Shared mappings implemented 30.11.1994. It's not fully working yet,
49 * though.
50 *
51 * Shared mappings now work. 15.8.1995 Bruno.
52 *
53 * finished 'unifying' the page and buffer cache and SMP-threaded the
54 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
55 *
56 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
57 */
58
59 /*
60 * Lock ordering:
61 *
62 * ->i_mmap_lock (vmtruncate)
63 * ->private_lock (__free_pte->__set_page_dirty_buffers)
64 * ->swap_lock (exclusive_swap_page, others)
65 * ->mapping->tree_lock
66 *
67 * ->i_mutex
68 * ->i_mmap_lock (truncate->unmap_mapping_range)
69 *
70 * ->mmap_sem
71 * ->i_mmap_lock
72 * ->page_table_lock or pte_lock (various, mainly in memory.c)
73 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
74 *
75 * ->mmap_sem
76 * ->lock_page (access_process_vm)
77 *
78 * ->i_mutex (generic_file_buffered_write)
79 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
80 *
81 * ->i_mutex
82 * ->i_alloc_sem (various)
83 *
84 * ->inode_lock
85 * ->sb_lock (fs/fs-writeback.c)
86 * ->mapping->tree_lock (__sync_single_inode)
87 *
88 * ->i_mmap_lock
89 * ->anon_vma.lock (vma_adjust)
90 *
91 * ->anon_vma.lock
92 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
93 *
94 * ->page_table_lock or pte_lock
95 * ->swap_lock (try_to_unmap_one)
96 * ->private_lock (try_to_unmap_one)
97 * ->tree_lock (try_to_unmap_one)
98 * ->zone.lru_lock (follow_page->mark_page_accessed)
99 * ->zone.lru_lock (check_pte_range->isolate_lru_page)
100 * ->private_lock (page_remove_rmap->set_page_dirty)
101 * ->tree_lock (page_remove_rmap->set_page_dirty)
102 * ->inode_lock (page_remove_rmap->set_page_dirty)
103 * ->inode_lock (zap_pte_range->set_page_dirty)
104 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
105 *
106 * ->task->proc_lock
107 * ->dcache_lock (proc_pid_lookup)
108 */
109
110 /*
111 * Remove a page from the page cache and free it. Caller has to make
112 * sure the page is locked and that nobody else uses it - or that usage
113 * is safe. The caller must hold a write_lock on the mapping's tree_lock.
114 */
115 void __remove_from_page_cache(struct page *page)
116 {
117 struct address_space *mapping = page->mapping;
118
119 radix_tree_delete(&mapping->page_tree, page->index);
120 page->mapping = NULL;
121 mapping->nrpages--;
122 __dec_zone_page_state(page, NR_FILE_PAGES);
123 BUG_ON(page_mapped(page));
124 }
125
126 void remove_from_page_cache(struct page *page)
127 {
128 struct address_space *mapping = page->mapping;
129
130 BUG_ON(!PageLocked(page));
131
132 write_lock_irq(&mapping->tree_lock);
133 __remove_from_page_cache(page);
134 write_unlock_irq(&mapping->tree_lock);
135 }
136
137 static int sync_page(void *word)
138 {
139 struct address_space *mapping;
140 struct page *page;
141
142 page = container_of((unsigned long *)word, struct page, flags);
143
144 /*
145 * page_mapping() is being called without PG_locked held.
146 * Some knowledge of the state and use of the page is used to
147 * reduce the requirements down to a memory barrier.
148 * The danger here is of a stale page_mapping() return value
149 * indicating a struct address_space different from the one it's
150 * associated with when it is associated with one.
151 * After smp_mb(), it's either the correct page_mapping() for
152 * the page, or an old page_mapping() and the page's own
153 * page_mapping() has gone NULL.
154 * The ->sync_page() address_space operation must tolerate
155 * page_mapping() going NULL. By an amazing coincidence,
156 * this comes about because none of the users of the page
157 * in the ->sync_page() methods make essential use of the
158 * page_mapping(), merely passing the page down to the backing
159 * device's unplug functions when it's non-NULL, which in turn
160 * ignore it for all cases but swap, where only page_private(page) is
161 * of interest. When page_mapping() does go NULL, the entire
162 * call stack gracefully ignores the page and returns.
163 * -- wli
164 */
165 smp_mb();
166 mapping = page_mapping(page);
167 if (mapping && mapping->a_ops && mapping->a_ops->sync_page)
168 mapping->a_ops->sync_page(page);
169 io_schedule();
170 return 0;
171 }
172
173 /**
174 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
175 * @mapping: address space structure to write
176 * @start: offset in bytes where the range starts
177 * @end: offset in bytes where the range ends (inclusive)
178 * @sync_mode: enable synchronous operation
179 *
180 * Start writeback against all of a mapping's dirty pages that lie
181 * within the byte offsets <start, end> inclusive.
182 *
183 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
184 * opposed to a regular memory cleansing writeback. The difference between
185 * these two operations is that if a dirty page/buffer is encountered, it must
186 * be waited upon, and not just skipped over.
187 */
188 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
189 loff_t end, int sync_mode)
190 {
191 int ret;
192 struct writeback_control wbc = {
193 .sync_mode = sync_mode,
194 .nr_to_write = mapping->nrpages * 2,
195 .range_start = start,
196 .range_end = end,
197 };
198
199 if (!mapping_cap_writeback_dirty(mapping))
200 return 0;
201
202 ret = do_writepages(mapping, &wbc);
203 return ret;
204 }
205
206 static inline int __filemap_fdatawrite(struct address_space *mapping,
207 int sync_mode)
208 {
209 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
210 }
211
212 int filemap_fdatawrite(struct address_space *mapping)
213 {
214 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
215 }
216 EXPORT_SYMBOL(filemap_fdatawrite);
217
218 static int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
219 loff_t end)
220 {
221 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
222 }
223
224 /**
225 * filemap_flush - mostly a non-blocking flush
226 * @mapping: target address_space
227 *
228 * This is a mostly non-blocking flush. Not suitable for data-integrity
229 * purposes - I/O may not be started against all dirty pages.
230 */
231 int filemap_flush(struct address_space *mapping)
232 {
233 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
234 }
235 EXPORT_SYMBOL(filemap_flush);
236
237 /**
238 * wait_on_page_writeback_range - wait for writeback to complete
239 * @mapping: target address_space
240 * @start: beginning page index
241 * @end: ending page index
242 *
243 * Wait for writeback to complete against pages indexed by start->end
244 * inclusive
245 */
246 int wait_on_page_writeback_range(struct address_space *mapping,
247 pgoff_t start, pgoff_t end)
248 {
249 struct pagevec pvec;
250 int nr_pages;
251 int ret = 0;
252 pgoff_t index;
253
254 if (end < start)
255 return 0;
256
257 pagevec_init(&pvec, 0);
258 index = start;
259 while ((index <= end) &&
260 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
261 PAGECACHE_TAG_WRITEBACK,
262 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
263 unsigned i;
264
265 for (i = 0; i < nr_pages; i++) {
266 struct page *page = pvec.pages[i];
267
268 /* until radix tree lookup accepts end_index */
269 if (page->index > end)
270 continue;
271
272 wait_on_page_writeback(page);
273 if (PageError(page))
274 ret = -EIO;
275 }
276 pagevec_release(&pvec);
277 cond_resched();
278 }
279
280 /* Check for outstanding write errors */
281 if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
282 ret = -ENOSPC;
283 if (test_and_clear_bit(AS_EIO, &mapping->flags))
284 ret = -EIO;
285
286 return ret;
287 }
288
289 /**
290 * sync_page_range - write and wait on all pages in the passed range
291 * @inode: target inode
292 * @mapping: target address_space
293 * @pos: beginning offset in pages to write
294 * @count: number of bytes to write
295 *
296 * Write and wait upon all the pages in the passed range. This is a "data
297 * integrity" operation. It waits upon in-flight writeout before starting and
298 * waiting upon new writeout. If there was an IO error, return it.
299 *
300 * We need to re-take i_mutex during the generic_osync_inode list walk because
301 * it is otherwise livelockable.
302 */
303 int sync_page_range(struct inode *inode, struct address_space *mapping,
304 loff_t pos, loff_t count)
305 {
306 pgoff_t start = pos >> PAGE_CACHE_SHIFT;
307 pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
308 int ret;
309
310 if (!mapping_cap_writeback_dirty(mapping) || !count)
311 return 0;
312 ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
313 if (ret == 0) {
314 mutex_lock(&inode->i_mutex);
315 ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
316 mutex_unlock(&inode->i_mutex);
317 }
318 if (ret == 0)
319 ret = wait_on_page_writeback_range(mapping, start, end);
320 return ret;
321 }
322 EXPORT_SYMBOL(sync_page_range);
323
324 /**
325 * sync_page_range_nolock
326 * @inode: target inode
327 * @mapping: target address_space
328 * @pos: beginning offset in pages to write
329 * @count: number of bytes to write
330 *
331 * Note: Holding i_mutex across sync_page_range_nolock() is not a good idea
332 * as it forces O_SYNC writers to different parts of the same file
333 * to be serialised right until io completion.
334 */
335 int sync_page_range_nolock(struct inode *inode, struct address_space *mapping,
336 loff_t pos, loff_t count)
337 {
338 pgoff_t start = pos >> PAGE_CACHE_SHIFT;
339 pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
340 int ret;
341
342 if (!mapping_cap_writeback_dirty(mapping) || !count)
343 return 0;
344 ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
345 if (ret == 0)
346 ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
347 if (ret == 0)
348 ret = wait_on_page_writeback_range(mapping, start, end);
349 return ret;
350 }
351 EXPORT_SYMBOL(sync_page_range_nolock);
352
353 /**
354 * filemap_fdatawait - wait for all under-writeback pages to complete
355 * @mapping: address space structure to wait for
356 *
357 * Walk the list of under-writeback pages of the given address space
358 * and wait for all of them.
359 */
360 int filemap_fdatawait(struct address_space *mapping)
361 {
362 loff_t i_size = i_size_read(mapping->host);
363
364 if (i_size == 0)
365 return 0;
366
367 return wait_on_page_writeback_range(mapping, 0,
368 (i_size - 1) >> PAGE_CACHE_SHIFT);
369 }
370 EXPORT_SYMBOL(filemap_fdatawait);
371
372 int filemap_write_and_wait(struct address_space *mapping)
373 {
374 int err = 0;
375
376 if (mapping->nrpages) {
377 err = filemap_fdatawrite(mapping);
378 /*
379 * Even if the above returned error, the pages may be
380 * written partially (e.g. -ENOSPC), so we wait for it.
381 * But the -EIO is special case, it may indicate the worst
382 * thing (e.g. bug) happened, so we avoid waiting for it.
383 */
384 if (err != -EIO) {
385 int err2 = filemap_fdatawait(mapping);
386 if (!err)
387 err = err2;
388 }
389 }
390 return err;
391 }
392 EXPORT_SYMBOL(filemap_write_and_wait);
393
394 /**
395 * filemap_write_and_wait_range - write out & wait on a file range
396 * @mapping: the address_space for the pages
397 * @lstart: offset in bytes where the range starts
398 * @lend: offset in bytes where the range ends (inclusive)
399 *
400 * Write out and wait upon file offsets lstart->lend, inclusive.
401 *
402 * Note that `lend' is inclusive (describes the last byte to be written) so
403 * that this function can be used to write to the very end-of-file (end = -1).
404 */
405 int filemap_write_and_wait_range(struct address_space *mapping,
406 loff_t lstart, loff_t lend)
407 {
408 int err = 0;
409
410 if (mapping->nrpages) {
411 err = __filemap_fdatawrite_range(mapping, lstart, lend,
412 WB_SYNC_ALL);
413 /* See comment of filemap_write_and_wait() */
414 if (err != -EIO) {
415 int err2 = wait_on_page_writeback_range(mapping,
416 lstart >> PAGE_CACHE_SHIFT,
417 lend >> PAGE_CACHE_SHIFT);
418 if (!err)
419 err = err2;
420 }
421 }
422 return err;
423 }
424
425 /**
426 * add_to_page_cache - add newly allocated pagecache pages
427 * @page: page to add
428 * @mapping: the page's address_space
429 * @offset: page index
430 * @gfp_mask: page allocation mode
431 *
432 * This function is used to add newly allocated pagecache pages;
433 * the page is new, so we can just run SetPageLocked() against it.
434 * The other page state flags were set by rmqueue().
435 *
436 * This function does not add the page to the LRU. The caller must do that.
437 */
438 int add_to_page_cache(struct page *page, struct address_space *mapping,
439 pgoff_t offset, gfp_t gfp_mask)
440 {
441 int error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
442
443 if (error == 0) {
444 write_lock_irq(&mapping->tree_lock);
445 error = radix_tree_insert(&mapping->page_tree, offset, page);
446 if (!error) {
447 page_cache_get(page);
448 SetPageLocked(page);
449 page->mapping = mapping;
450 page->index = offset;
451 mapping->nrpages++;
452 __inc_zone_page_state(page, NR_FILE_PAGES);
453 }
454 write_unlock_irq(&mapping->tree_lock);
455 radix_tree_preload_end();
456 }
457 return error;
458 }
459 EXPORT_SYMBOL(add_to_page_cache);
460
461 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
462 pgoff_t offset, gfp_t gfp_mask)
463 {
464 int ret = add_to_page_cache(page, mapping, offset, gfp_mask);
465 if (ret == 0)
466 lru_cache_add(page);
467 return ret;
468 }
469
470 #ifdef CONFIG_NUMA
471 struct page *__page_cache_alloc(gfp_t gfp)
472 {
473 if (cpuset_do_page_mem_spread()) {
474 int n = cpuset_mem_spread_node();
475 return alloc_pages_node(n, gfp, 0);
476 }
477 return alloc_pages(gfp, 0);
478 }
479 EXPORT_SYMBOL(__page_cache_alloc);
480 #endif
481
482 static int __sleep_on_page_lock(void *word)
483 {
484 io_schedule();
485 return 0;
486 }
487
488 /*
489 * In order to wait for pages to become available there must be
490 * waitqueues associated with pages. By using a hash table of
491 * waitqueues where the bucket discipline is to maintain all
492 * waiters on the same queue and wake all when any of the pages
493 * become available, and for the woken contexts to check to be
494 * sure the appropriate page became available, this saves space
495 * at a cost of "thundering herd" phenomena during rare hash
496 * collisions.
497 */
498 static wait_queue_head_t *page_waitqueue(struct page *page)
499 {
500 const struct zone *zone = page_zone(page);
501
502 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
503 }
504
505 static inline void wake_up_page(struct page *page, int bit)
506 {
507 __wake_up_bit(page_waitqueue(page), &page->flags, bit);
508 }
509
510 void fastcall wait_on_page_bit(struct page *page, int bit_nr)
511 {
512 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
513
514 if (test_bit(bit_nr, &page->flags))
515 __wait_on_bit(page_waitqueue(page), &wait, sync_page,
516 TASK_UNINTERRUPTIBLE);
517 }
518 EXPORT_SYMBOL(wait_on_page_bit);
519
520 /**
521 * unlock_page - unlock a locked page
522 * @page: the page
523 *
524 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
525 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
526 * mechananism between PageLocked pages and PageWriteback pages is shared.
527 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
528 *
529 * The first mb is necessary to safely close the critical section opened by the
530 * TestSetPageLocked(), the second mb is necessary to enforce ordering between
531 * the clear_bit and the read of the waitqueue (to avoid SMP races with a
532 * parallel wait_on_page_locked()).
533 */
534 void fastcall unlock_page(struct page *page)
535 {
536 smp_mb__before_clear_bit();
537 if (!TestClearPageLocked(page))
538 BUG();
539 smp_mb__after_clear_bit();
540 wake_up_page(page, PG_locked);
541 }
542 EXPORT_SYMBOL(unlock_page);
543
544 /**
545 * end_page_writeback - end writeback against a page
546 * @page: the page
547 */
548 void end_page_writeback(struct page *page)
549 {
550 if (!TestClearPageReclaim(page) || rotate_reclaimable_page(page)) {
551 if (!test_clear_page_writeback(page))
552 BUG();
553 }
554 smp_mb__after_clear_bit();
555 wake_up_page(page, PG_writeback);
556 }
557 EXPORT_SYMBOL(end_page_writeback);
558
559 /**
560 * __lock_page - get a lock on the page, assuming we need to sleep to get it
561 * @page: the page to lock
562 *
563 * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary. If some
564 * random driver's requestfn sets TASK_RUNNING, we could busywait. However
565 * chances are that on the second loop, the block layer's plug list is empty,
566 * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
567 */
568 void fastcall __lock_page(struct page *page)
569 {
570 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
571
572 __wait_on_bit_lock(page_waitqueue(page), &wait, sync_page,
573 TASK_UNINTERRUPTIBLE);
574 }
575 EXPORT_SYMBOL(__lock_page);
576
577 /*
578 * Variant of lock_page that does not require the caller to hold a reference
579 * on the page's mapping.
580 */
581 void fastcall __lock_page_nosync(struct page *page)
582 {
583 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
584 __wait_on_bit_lock(page_waitqueue(page), &wait, __sleep_on_page_lock,
585 TASK_UNINTERRUPTIBLE);
586 }
587
588 /**
589 * find_get_page - find and get a page reference
590 * @mapping: the address_space to search
591 * @offset: the page index
592 *
593 * Is there a pagecache struct page at the given (mapping, offset) tuple?
594 * If yes, increment its refcount and return it; if no, return NULL.
595 */
596 struct page * find_get_page(struct address_space *mapping, pgoff_t offset)
597 {
598 struct page *page;
599
600 read_lock_irq(&mapping->tree_lock);
601 page = radix_tree_lookup(&mapping->page_tree, offset);
602 if (page)
603 page_cache_get(page);
604 read_unlock_irq(&mapping->tree_lock);
605 return page;
606 }
607 EXPORT_SYMBOL(find_get_page);
608
609 /**
610 * find_lock_page - locate, pin and lock a pagecache page
611 * @mapping: the address_space to search
612 * @offset: the page index
613 *
614 * Locates the desired pagecache page, locks it, increments its reference
615 * count and returns its address.
616 *
617 * Returns zero if the page was not present. find_lock_page() may sleep.
618 */
619 struct page *find_lock_page(struct address_space *mapping,
620 pgoff_t offset)
621 {
622 struct page *page;
623
624 repeat:
625 read_lock_irq(&mapping->tree_lock);
626 page = radix_tree_lookup(&mapping->page_tree, offset);
627 if (page) {
628 page_cache_get(page);
629 if (TestSetPageLocked(page)) {
630 read_unlock_irq(&mapping->tree_lock);
631 __lock_page(page);
632
633 /* Has the page been truncated while we slept? */
634 if (unlikely(page->mapping != mapping)) {
635 unlock_page(page);
636 page_cache_release(page);
637 goto repeat;
638 }
639 VM_BUG_ON(page->index != offset);
640 goto out;
641 }
642 }
643 read_unlock_irq(&mapping->tree_lock);
644 out:
645 return page;
646 }
647 EXPORT_SYMBOL(find_lock_page);
648
649 /**
650 * find_or_create_page - locate or add a pagecache page
651 * @mapping: the page's address_space
652 * @index: the page's index into the mapping
653 * @gfp_mask: page allocation mode
654 *
655 * Locates a page in the pagecache. If the page is not present, a new page
656 * is allocated using @gfp_mask and is added to the pagecache and to the VM's
657 * LRU list. The returned page is locked and has its reference count
658 * incremented.
659 *
660 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
661 * allocation!
662 *
663 * find_or_create_page() returns the desired page's address, or zero on
664 * memory exhaustion.
665 */
666 struct page *find_or_create_page(struct address_space *mapping,
667 pgoff_t index, gfp_t gfp_mask)
668 {
669 struct page *page;
670 int err;
671 repeat:
672 page = find_lock_page(mapping, index);
673 if (!page) {
674 page = __page_cache_alloc(gfp_mask);
675 if (!page)
676 return NULL;
677 err = add_to_page_cache_lru(page, mapping, index, gfp_mask);
678 if (unlikely(err)) {
679 page_cache_release(page);
680 page = NULL;
681 if (err == -EEXIST)
682 goto repeat;
683 }
684 }
685 return page;
686 }
687 EXPORT_SYMBOL(find_or_create_page);
688
689 /**
690 * find_get_pages - gang pagecache lookup
691 * @mapping: The address_space to search
692 * @start: The starting page index
693 * @nr_pages: The maximum number of pages
694 * @pages: Where the resulting pages are placed
695 *
696 * find_get_pages() will search for and return a group of up to
697 * @nr_pages pages in the mapping. The pages are placed at @pages.
698 * find_get_pages() takes a reference against the returned pages.
699 *
700 * The search returns a group of mapping-contiguous pages with ascending
701 * indexes. There may be holes in the indices due to not-present pages.
702 *
703 * find_get_pages() returns the number of pages which were found.
704 */
705 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
706 unsigned int nr_pages, struct page **pages)
707 {
708 unsigned int i;
709 unsigned int ret;
710
711 read_lock_irq(&mapping->tree_lock);
712 ret = radix_tree_gang_lookup(&mapping->page_tree,
713 (void **)pages, start, nr_pages);
714 for (i = 0; i < ret; i++)
715 page_cache_get(pages[i]);
716 read_unlock_irq(&mapping->tree_lock);
717 return ret;
718 }
719
720 /**
721 * find_get_pages_contig - gang contiguous pagecache lookup
722 * @mapping: The address_space to search
723 * @index: The starting page index
724 * @nr_pages: The maximum number of pages
725 * @pages: Where the resulting pages are placed
726 *
727 * find_get_pages_contig() works exactly like find_get_pages(), except
728 * that the returned number of pages are guaranteed to be contiguous.
729 *
730 * find_get_pages_contig() returns the number of pages which were found.
731 */
732 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
733 unsigned int nr_pages, struct page **pages)
734 {
735 unsigned int i;
736 unsigned int ret;
737
738 read_lock_irq(&mapping->tree_lock);
739 ret = radix_tree_gang_lookup(&mapping->page_tree,
740 (void **)pages, index, nr_pages);
741 for (i = 0; i < ret; i++) {
742 if (pages[i]->mapping == NULL || pages[i]->index != index)
743 break;
744
745 page_cache_get(pages[i]);
746 index++;
747 }
748 read_unlock_irq(&mapping->tree_lock);
749 return i;
750 }
751 EXPORT_SYMBOL(find_get_pages_contig);
752
753 /**
754 * find_get_pages_tag - find and return pages that match @tag
755 * @mapping: the address_space to search
756 * @index: the starting page index
757 * @tag: the tag index
758 * @nr_pages: the maximum number of pages
759 * @pages: where the resulting pages are placed
760 *
761 * Like find_get_pages, except we only return pages which are tagged with
762 * @tag. We update @index to index the next page for the traversal.
763 */
764 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
765 int tag, unsigned int nr_pages, struct page **pages)
766 {
767 unsigned int i;
768 unsigned int ret;
769
770 read_lock_irq(&mapping->tree_lock);
771 ret = radix_tree_gang_lookup_tag(&mapping->page_tree,
772 (void **)pages, *index, nr_pages, tag);
773 for (i = 0; i < ret; i++)
774 page_cache_get(pages[i]);
775 if (ret)
776 *index = pages[ret - 1]->index + 1;
777 read_unlock_irq(&mapping->tree_lock);
778 return ret;
779 }
780 EXPORT_SYMBOL(find_get_pages_tag);
781
782 /**
783 * grab_cache_page_nowait - returns locked page at given index in given cache
784 * @mapping: target address_space
785 * @index: the page index
786 *
787 * Same as grab_cache_page(), but do not wait if the page is unavailable.
788 * This is intended for speculative data generators, where the data can
789 * be regenerated if the page couldn't be grabbed. This routine should
790 * be safe to call while holding the lock for another page.
791 *
792 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
793 * and deadlock against the caller's locked page.
794 */
795 struct page *
796 grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
797 {
798 struct page *page = find_get_page(mapping, index);
799
800 if (page) {
801 if (!TestSetPageLocked(page))
802 return page;
803 page_cache_release(page);
804 return NULL;
805 }
806 page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
807 if (page && add_to_page_cache_lru(page, mapping, index, GFP_KERNEL)) {
808 page_cache_release(page);
809 page = NULL;
810 }
811 return page;
812 }
813 EXPORT_SYMBOL(grab_cache_page_nowait);
814
815 /*
816 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
817 * a _large_ part of the i/o request. Imagine the worst scenario:
818 *
819 * ---R__________________________________________B__________
820 * ^ reading here ^ bad block(assume 4k)
821 *
822 * read(R) => miss => readahead(R...B) => media error => frustrating retries
823 * => failing the whole request => read(R) => read(R+1) =>
824 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
825 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
826 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
827 *
828 * It is going insane. Fix it by quickly scaling down the readahead size.
829 */
830 static void shrink_readahead_size_eio(struct file *filp,
831 struct file_ra_state *ra)
832 {
833 if (!ra->ra_pages)
834 return;
835
836 ra->ra_pages /= 4;
837 }
838
839 /**
840 * do_generic_mapping_read - generic file read routine
841 * @mapping: address_space to be read
842 * @_ra: file's readahead state
843 * @filp: the file to read
844 * @ppos: current file position
845 * @desc: read_descriptor
846 * @actor: read method
847 *
848 * This is a generic file read routine, and uses the
849 * mapping->a_ops->readpage() function for the actual low-level stuff.
850 *
851 * This is really ugly. But the goto's actually try to clarify some
852 * of the logic when it comes to error handling etc.
853 *
854 * Note the struct file* is only passed for the use of readpage.
855 * It may be NULL.
856 */
857 void do_generic_mapping_read(struct address_space *mapping,
858 struct file_ra_state *ra,
859 struct file *filp,
860 loff_t *ppos,
861 read_descriptor_t *desc,
862 read_actor_t actor)
863 {
864 struct inode *inode = mapping->host;
865 pgoff_t index;
866 pgoff_t last_index;
867 pgoff_t prev_index;
868 unsigned long offset; /* offset into pagecache page */
869 unsigned int prev_offset;
870 int error;
871
872 index = *ppos >> PAGE_CACHE_SHIFT;
873 prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
874 prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
875 last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
876 offset = *ppos & ~PAGE_CACHE_MASK;
877
878 for (;;) {
879 struct page *page;
880 pgoff_t end_index;
881 loff_t isize;
882 unsigned long nr, ret;
883
884 cond_resched();
885 find_page:
886 page = find_get_page(mapping, index);
887 if (!page) {
888 page_cache_sync_readahead(mapping,
889 ra, filp,
890 index, last_index - index);
891 page = find_get_page(mapping, index);
892 if (unlikely(page == NULL))
893 goto no_cached_page;
894 }
895 if (PageReadahead(page)) {
896 page_cache_async_readahead(mapping,
897 ra, filp, page,
898 index, last_index - index);
899 }
900 if (!PageUptodate(page))
901 goto page_not_up_to_date;
902 page_ok:
903 /*
904 * i_size must be checked after we know the page is Uptodate.
905 *
906 * Checking i_size after the check allows us to calculate
907 * the correct value for "nr", which means the zero-filled
908 * part of the page is not copied back to userspace (unless
909 * another truncate extends the file - this is desired though).
910 */
911
912 isize = i_size_read(inode);
913 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
914 if (unlikely(!isize || index > end_index)) {
915 page_cache_release(page);
916 goto out;
917 }
918
919 /* nr is the maximum number of bytes to copy from this page */
920 nr = PAGE_CACHE_SIZE;
921 if (index == end_index) {
922 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
923 if (nr <= offset) {
924 page_cache_release(page);
925 goto out;
926 }
927 }
928 nr = nr - offset;
929
930 /* If users can be writing to this page using arbitrary
931 * virtual addresses, take care about potential aliasing
932 * before reading the page on the kernel side.
933 */
934 if (mapping_writably_mapped(mapping))
935 flush_dcache_page(page);
936
937 /*
938 * When a sequential read accesses a page several times,
939 * only mark it as accessed the first time.
940 */
941 if (prev_index != index || offset != prev_offset)
942 mark_page_accessed(page);
943 prev_index = index;
944
945 /*
946 * Ok, we have the page, and it's up-to-date, so
947 * now we can copy it to user space...
948 *
949 * The actor routine returns how many bytes were actually used..
950 * NOTE! This may not be the same as how much of a user buffer
951 * we filled up (we may be padding etc), so we can only update
952 * "pos" here (the actor routine has to update the user buffer
953 * pointers and the remaining count).
954 */
955 ret = actor(desc, page, offset, nr);
956 offset += ret;
957 index += offset >> PAGE_CACHE_SHIFT;
958 offset &= ~PAGE_CACHE_MASK;
959 prev_offset = offset;
960
961 page_cache_release(page);
962 if (ret == nr && desc->count)
963 continue;
964 goto out;
965
966 page_not_up_to_date:
967 /* Get exclusive access to the page ... */
968 lock_page(page);
969
970 /* Did it get truncated before we got the lock? */
971 if (!page->mapping) {
972 unlock_page(page);
973 page_cache_release(page);
974 continue;
975 }
976
977 /* Did somebody else fill it already? */
978 if (PageUptodate(page)) {
979 unlock_page(page);
980 goto page_ok;
981 }
982
983 readpage:
984 /* Start the actual read. The read will unlock the page. */
985 error = mapping->a_ops->readpage(filp, page);
986
987 if (unlikely(error)) {
988 if (error == AOP_TRUNCATED_PAGE) {
989 page_cache_release(page);
990 goto find_page;
991 }
992 goto readpage_error;
993 }
994
995 if (!PageUptodate(page)) {
996 lock_page(page);
997 if (!PageUptodate(page)) {
998 if (page->mapping == NULL) {
999 /*
1000 * invalidate_inode_pages got it
1001 */
1002 unlock_page(page);
1003 page_cache_release(page);
1004 goto find_page;
1005 }
1006 unlock_page(page);
1007 error = -EIO;
1008 shrink_readahead_size_eio(filp, ra);
1009 goto readpage_error;
1010 }
1011 unlock_page(page);
1012 }
1013
1014 goto page_ok;
1015
1016 readpage_error:
1017 /* UHHUH! A synchronous read error occurred. Report it */
1018 desc->error = error;
1019 page_cache_release(page);
1020 goto out;
1021
1022 no_cached_page:
1023 /*
1024 * Ok, it wasn't cached, so we need to create a new
1025 * page..
1026 */
1027 page = page_cache_alloc_cold(mapping);
1028 if (!page) {
1029 desc->error = -ENOMEM;
1030 goto out;
1031 }
1032 error = add_to_page_cache_lru(page, mapping,
1033 index, GFP_KERNEL);
1034 if (error) {
1035 page_cache_release(page);
1036 if (error == -EEXIST)
1037 goto find_page;
1038 desc->error = error;
1039 goto out;
1040 }
1041 goto readpage;
1042 }
1043
1044 out:
1045 ra->prev_pos = prev_index;
1046 ra->prev_pos <<= PAGE_CACHE_SHIFT;
1047 ra->prev_pos |= prev_offset;
1048
1049 *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1050 if (filp)
1051 file_accessed(filp);
1052 }
1053 EXPORT_SYMBOL(do_generic_mapping_read);
1054
1055 int file_read_actor(read_descriptor_t *desc, struct page *page,
1056 unsigned long offset, unsigned long size)
1057 {
1058 char *kaddr;
1059 unsigned long left, count = desc->count;
1060
1061 if (size > count)
1062 size = count;
1063
1064 /*
1065 * Faults on the destination of a read are common, so do it before
1066 * taking the kmap.
1067 */
1068 if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1069 kaddr = kmap_atomic(page, KM_USER0);
1070 left = __copy_to_user_inatomic(desc->arg.buf,
1071 kaddr + offset, size);
1072 kunmap_atomic(kaddr, KM_USER0);
1073 if (left == 0)
1074 goto success;
1075 }
1076
1077 /* Do it the slow way */
1078 kaddr = kmap(page);
1079 left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1080 kunmap(page);
1081
1082 if (left) {
1083 size -= left;
1084 desc->error = -EFAULT;
1085 }
1086 success:
1087 desc->count = count - size;
1088 desc->written += size;
1089 desc->arg.buf += size;
1090 return size;
1091 }
1092
1093 /*
1094 * Performs necessary checks before doing a write
1095 * @iov: io vector request
1096 * @nr_segs: number of segments in the iovec
1097 * @count: number of bytes to write
1098 * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1099 *
1100 * Adjust number of segments and amount of bytes to write (nr_segs should be
1101 * properly initialized first). Returns appropriate error code that caller
1102 * should return or zero in case that write should be allowed.
1103 */
1104 int generic_segment_checks(const struct iovec *iov,
1105 unsigned long *nr_segs, size_t *count, int access_flags)
1106 {
1107 unsigned long seg;
1108 size_t cnt = 0;
1109 for (seg = 0; seg < *nr_segs; seg++) {
1110 const struct iovec *iv = &iov[seg];
1111
1112 /*
1113 * If any segment has a negative length, or the cumulative
1114 * length ever wraps negative then return -EINVAL.
1115 */
1116 cnt += iv->iov_len;
1117 if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1118 return -EINVAL;
1119 if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1120 continue;
1121 if (seg == 0)
1122 return -EFAULT;
1123 *nr_segs = seg;
1124 cnt -= iv->iov_len; /* This segment is no good */
1125 break;
1126 }
1127 *count = cnt;
1128 return 0;
1129 }
1130 EXPORT_SYMBOL(generic_segment_checks);
1131
1132 /**
1133 * generic_file_aio_read - generic filesystem read routine
1134 * @iocb: kernel I/O control block
1135 * @iov: io vector request
1136 * @nr_segs: number of segments in the iovec
1137 * @pos: current file position
1138 *
1139 * This is the "read()" routine for all filesystems
1140 * that can use the page cache directly.
1141 */
1142 ssize_t
1143 generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1144 unsigned long nr_segs, loff_t pos)
1145 {
1146 struct file *filp = iocb->ki_filp;
1147 ssize_t retval;
1148 unsigned long seg;
1149 size_t count;
1150 loff_t *ppos = &iocb->ki_pos;
1151
1152 count = 0;
1153 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1154 if (retval)
1155 return retval;
1156
1157 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1158 if (filp->f_flags & O_DIRECT) {
1159 loff_t size;
1160 struct address_space *mapping;
1161 struct inode *inode;
1162
1163 mapping = filp->f_mapping;
1164 inode = mapping->host;
1165 retval = 0;
1166 if (!count)
1167 goto out; /* skip atime */
1168 size = i_size_read(inode);
1169 if (pos < size) {
1170 retval = generic_file_direct_IO(READ, iocb,
1171 iov, pos, nr_segs);
1172 if (retval > 0)
1173 *ppos = pos + retval;
1174 }
1175 if (likely(retval != 0)) {
1176 file_accessed(filp);
1177 goto out;
1178 }
1179 }
1180
1181 retval = 0;
1182 if (count) {
1183 for (seg = 0; seg < nr_segs; seg++) {
1184 read_descriptor_t desc;
1185
1186 desc.written = 0;
1187 desc.arg.buf = iov[seg].iov_base;
1188 desc.count = iov[seg].iov_len;
1189 if (desc.count == 0)
1190 continue;
1191 desc.error = 0;
1192 do_generic_file_read(filp,ppos,&desc,file_read_actor);
1193 retval += desc.written;
1194 if (desc.error) {
1195 retval = retval ?: desc.error;
1196 break;
1197 }
1198 if (desc.count > 0)
1199 break;
1200 }
1201 }
1202 out:
1203 return retval;
1204 }
1205 EXPORT_SYMBOL(generic_file_aio_read);
1206
1207 static ssize_t
1208 do_readahead(struct address_space *mapping, struct file *filp,
1209 pgoff_t index, unsigned long nr)
1210 {
1211 if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1212 return -EINVAL;
1213
1214 force_page_cache_readahead(mapping, filp, index,
1215 max_sane_readahead(nr));
1216 return 0;
1217 }
1218
1219 asmlinkage ssize_t sys_readahead(int fd, loff_t offset, size_t count)
1220 {
1221 ssize_t ret;
1222 struct file *file;
1223
1224 ret = -EBADF;
1225 file = fget(fd);
1226 if (file) {
1227 if (file->f_mode & FMODE_READ) {
1228 struct address_space *mapping = file->f_mapping;
1229 pgoff_t start = offset >> PAGE_CACHE_SHIFT;
1230 pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1231 unsigned long len = end - start + 1;
1232 ret = do_readahead(mapping, file, start, len);
1233 }
1234 fput(file);
1235 }
1236 return ret;
1237 }
1238
1239 #ifdef CONFIG_MMU
1240 /**
1241 * page_cache_read - adds requested page to the page cache if not already there
1242 * @file: file to read
1243 * @offset: page index
1244 *
1245 * This adds the requested page to the page cache if it isn't already there,
1246 * and schedules an I/O to read in its contents from disk.
1247 */
1248 static int fastcall page_cache_read(struct file * file, pgoff_t offset)
1249 {
1250 struct address_space *mapping = file->f_mapping;
1251 struct page *page;
1252 int ret;
1253
1254 do {
1255 page = page_cache_alloc_cold(mapping);
1256 if (!page)
1257 return -ENOMEM;
1258
1259 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1260 if (ret == 0)
1261 ret = mapping->a_ops->readpage(file, page);
1262 else if (ret == -EEXIST)
1263 ret = 0; /* losing race to add is OK */
1264
1265 page_cache_release(page);
1266
1267 } while (ret == AOP_TRUNCATED_PAGE);
1268
1269 return ret;
1270 }
1271
1272 #define MMAP_LOTSAMISS (100)
1273
1274 /**
1275 * filemap_fault - read in file data for page fault handling
1276 * @vma: vma in which the fault was taken
1277 * @vmf: struct vm_fault containing details of the fault
1278 *
1279 * filemap_fault() is invoked via the vma operations vector for a
1280 * mapped memory region to read in file data during a page fault.
1281 *
1282 * The goto's are kind of ugly, but this streamlines the normal case of having
1283 * it in the page cache, and handles the special cases reasonably without
1284 * having a lot of duplicated code.
1285 */
1286 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1287 {
1288 int error;
1289 struct file *file = vma->vm_file;
1290 struct address_space *mapping = file->f_mapping;
1291 struct file_ra_state *ra = &file->f_ra;
1292 struct inode *inode = mapping->host;
1293 struct page *page;
1294 unsigned long size;
1295 int did_readaround = 0;
1296 int ret = 0;
1297
1298 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1299 if (vmf->pgoff >= size)
1300 goto outside_data_content;
1301
1302 /* If we don't want any read-ahead, don't bother */
1303 if (VM_RandomReadHint(vma))
1304 goto no_cached_page;
1305
1306 /*
1307 * Do we have something in the page cache already?
1308 */
1309 retry_find:
1310 page = find_lock_page(mapping, vmf->pgoff);
1311 /*
1312 * For sequential accesses, we use the generic readahead logic.
1313 */
1314 if (VM_SequentialReadHint(vma)) {
1315 if (!page) {
1316 page_cache_sync_readahead(mapping, ra, file,
1317 vmf->pgoff, 1);
1318 page = find_lock_page(mapping, vmf->pgoff);
1319 if (!page)
1320 goto no_cached_page;
1321 }
1322 if (PageReadahead(page)) {
1323 page_cache_async_readahead(mapping, ra, file, page,
1324 vmf->pgoff, 1);
1325 }
1326 }
1327
1328 if (!page) {
1329 unsigned long ra_pages;
1330
1331 ra->mmap_miss++;
1332
1333 /*
1334 * Do we miss much more than hit in this file? If so,
1335 * stop bothering with read-ahead. It will only hurt.
1336 */
1337 if (ra->mmap_miss > MMAP_LOTSAMISS)
1338 goto no_cached_page;
1339
1340 /*
1341 * To keep the pgmajfault counter straight, we need to
1342 * check did_readaround, as this is an inner loop.
1343 */
1344 if (!did_readaround) {
1345 ret = VM_FAULT_MAJOR;
1346 count_vm_event(PGMAJFAULT);
1347 }
1348 did_readaround = 1;
1349 ra_pages = max_sane_readahead(file->f_ra.ra_pages);
1350 if (ra_pages) {
1351 pgoff_t start = 0;
1352
1353 if (vmf->pgoff > ra_pages / 2)
1354 start = vmf->pgoff - ra_pages / 2;
1355 do_page_cache_readahead(mapping, file, start, ra_pages);
1356 }
1357 page = find_lock_page(mapping, vmf->pgoff);
1358 if (!page)
1359 goto no_cached_page;
1360 }
1361
1362 if (!did_readaround)
1363 ra->mmap_miss--;
1364
1365 /*
1366 * We have a locked page in the page cache, now we need to check
1367 * that it's up-to-date. If not, it is going to be due to an error.
1368 */
1369 if (unlikely(!PageUptodate(page)))
1370 goto page_not_uptodate;
1371
1372 /* Must recheck i_size under page lock */
1373 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1374 if (unlikely(vmf->pgoff >= size)) {
1375 unlock_page(page);
1376 page_cache_release(page);
1377 goto outside_data_content;
1378 }
1379
1380 /*
1381 * Found the page and have a reference on it.
1382 */
1383 mark_page_accessed(page);
1384 ra->prev_pos = (loff_t)page->index << PAGE_CACHE_SHIFT;
1385 vmf->page = page;
1386 return ret | VM_FAULT_LOCKED;
1387
1388 outside_data_content:
1389 /*
1390 * An external ptracer can access pages that normally aren't
1391 * accessible..
1392 */
1393 if (vma->vm_mm == current->mm)
1394 return VM_FAULT_SIGBUS;
1395
1396 /* Fall through to the non-read-ahead case */
1397 no_cached_page:
1398 /*
1399 * We're only likely to ever get here if MADV_RANDOM is in
1400 * effect.
1401 */
1402 error = page_cache_read(file, vmf->pgoff);
1403
1404 /*
1405 * The page we want has now been added to the page cache.
1406 * In the unlikely event that someone removed it in the
1407 * meantime, we'll just come back here and read it again.
1408 */
1409 if (error >= 0)
1410 goto retry_find;
1411
1412 /*
1413 * An error return from page_cache_read can result if the
1414 * system is low on memory, or a problem occurs while trying
1415 * to schedule I/O.
1416 */
1417 if (error == -ENOMEM)
1418 return VM_FAULT_OOM;
1419 return VM_FAULT_SIGBUS;
1420
1421 page_not_uptodate:
1422 /* IO error path */
1423 if (!did_readaround) {
1424 ret = VM_FAULT_MAJOR;
1425 count_vm_event(PGMAJFAULT);
1426 }
1427
1428 /*
1429 * Umm, take care of errors if the page isn't up-to-date.
1430 * Try to re-read it _once_. We do this synchronously,
1431 * because there really aren't any performance issues here
1432 * and we need to check for errors.
1433 */
1434 ClearPageError(page);
1435 error = mapping->a_ops->readpage(file, page);
1436 page_cache_release(page);
1437
1438 if (!error || error == AOP_TRUNCATED_PAGE)
1439 goto retry_find;
1440
1441 /* Things didn't work out. Return zero to tell the mm layer so. */
1442 shrink_readahead_size_eio(file, ra);
1443 return VM_FAULT_SIGBUS;
1444 }
1445 EXPORT_SYMBOL(filemap_fault);
1446
1447 struct vm_operations_struct generic_file_vm_ops = {
1448 .fault = filemap_fault,
1449 };
1450
1451 /* This is used for a general mmap of a disk file */
1452
1453 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1454 {
1455 struct address_space *mapping = file->f_mapping;
1456
1457 if (!mapping->a_ops->readpage)
1458 return -ENOEXEC;
1459 file_accessed(file);
1460 vma->vm_ops = &generic_file_vm_ops;
1461 vma->vm_flags |= VM_CAN_NONLINEAR;
1462 return 0;
1463 }
1464
1465 /*
1466 * This is for filesystems which do not implement ->writepage.
1467 */
1468 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1469 {
1470 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1471 return -EINVAL;
1472 return generic_file_mmap(file, vma);
1473 }
1474 #else
1475 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1476 {
1477 return -ENOSYS;
1478 }
1479 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1480 {
1481 return -ENOSYS;
1482 }
1483 #endif /* CONFIG_MMU */
1484
1485 EXPORT_SYMBOL(generic_file_mmap);
1486 EXPORT_SYMBOL(generic_file_readonly_mmap);
1487
1488 static struct page *__read_cache_page(struct address_space *mapping,
1489 pgoff_t index,
1490 int (*filler)(void *,struct page*),
1491 void *data)
1492 {
1493 struct page *page;
1494 int err;
1495 repeat:
1496 page = find_get_page(mapping, index);
1497 if (!page) {
1498 page = page_cache_alloc_cold(mapping);
1499 if (!page)
1500 return ERR_PTR(-ENOMEM);
1501 err = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL);
1502 if (unlikely(err)) {
1503 page_cache_release(page);
1504 if (err == -EEXIST)
1505 goto repeat;
1506 /* Presumably ENOMEM for radix tree node */
1507 return ERR_PTR(err);
1508 }
1509 err = filler(data, page);
1510 if (err < 0) {
1511 page_cache_release(page);
1512 page = ERR_PTR(err);
1513 }
1514 }
1515 return page;
1516 }
1517
1518 /*
1519 * Same as read_cache_page, but don't wait for page to become unlocked
1520 * after submitting it to the filler.
1521 */
1522 struct page *read_cache_page_async(struct address_space *mapping,
1523 pgoff_t index,
1524 int (*filler)(void *,struct page*),
1525 void *data)
1526 {
1527 struct page *page;
1528 int err;
1529
1530 retry:
1531 page = __read_cache_page(mapping, index, filler, data);
1532 if (IS_ERR(page))
1533 return page;
1534 if (PageUptodate(page))
1535 goto out;
1536
1537 lock_page(page);
1538 if (!page->mapping) {
1539 unlock_page(page);
1540 page_cache_release(page);
1541 goto retry;
1542 }
1543 if (PageUptodate(page)) {
1544 unlock_page(page);
1545 goto out;
1546 }
1547 err = filler(data, page);
1548 if (err < 0) {
1549 page_cache_release(page);
1550 return ERR_PTR(err);
1551 }
1552 out:
1553 mark_page_accessed(page);
1554 return page;
1555 }
1556 EXPORT_SYMBOL(read_cache_page_async);
1557
1558 /**
1559 * read_cache_page - read into page cache, fill it if needed
1560 * @mapping: the page's address_space
1561 * @index: the page index
1562 * @filler: function to perform the read
1563 * @data: destination for read data
1564 *
1565 * Read into the page cache. If a page already exists, and PageUptodate() is
1566 * not set, try to fill the page then wait for it to become unlocked.
1567 *
1568 * If the page does not get brought uptodate, return -EIO.
1569 */
1570 struct page *read_cache_page(struct address_space *mapping,
1571 pgoff_t index,
1572 int (*filler)(void *,struct page*),
1573 void *data)
1574 {
1575 struct page *page;
1576
1577 page = read_cache_page_async(mapping, index, filler, data);
1578 if (IS_ERR(page))
1579 goto out;
1580 wait_on_page_locked(page);
1581 if (!PageUptodate(page)) {
1582 page_cache_release(page);
1583 page = ERR_PTR(-EIO);
1584 }
1585 out:
1586 return page;
1587 }
1588 EXPORT_SYMBOL(read_cache_page);
1589
1590 /*
1591 * The logic we want is
1592 *
1593 * if suid or (sgid and xgrp)
1594 * remove privs
1595 */
1596 int should_remove_suid(struct dentry *dentry)
1597 {
1598 mode_t mode = dentry->d_inode->i_mode;
1599 int kill = 0;
1600
1601 /* suid always must be killed */
1602 if (unlikely(mode & S_ISUID))
1603 kill = ATTR_KILL_SUID;
1604
1605 /*
1606 * sgid without any exec bits is just a mandatory locking mark; leave
1607 * it alone. If some exec bits are set, it's a real sgid; kill it.
1608 */
1609 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1610 kill |= ATTR_KILL_SGID;
1611
1612 if (unlikely(kill && !capable(CAP_FSETID)))
1613 return kill;
1614
1615 return 0;
1616 }
1617 EXPORT_SYMBOL(should_remove_suid);
1618
1619 int __remove_suid(struct dentry *dentry, int kill)
1620 {
1621 struct iattr newattrs;
1622
1623 newattrs.ia_valid = ATTR_FORCE | kill;
1624 return notify_change(dentry, &newattrs);
1625 }
1626
1627 int remove_suid(struct dentry *dentry)
1628 {
1629 int kill = should_remove_suid(dentry);
1630
1631 if (unlikely(kill))
1632 return __remove_suid(dentry, kill);
1633
1634 return 0;
1635 }
1636 EXPORT_SYMBOL(remove_suid);
1637
1638 static size_t __iovec_copy_from_user_inatomic(char *vaddr,
1639 const struct iovec *iov, size_t base, size_t bytes)
1640 {
1641 size_t copied = 0, left = 0;
1642
1643 while (bytes) {
1644 char __user *buf = iov->iov_base + base;
1645 int copy = min(bytes, iov->iov_len - base);
1646
1647 base = 0;
1648 left = __copy_from_user_inatomic_nocache(vaddr, buf, copy);
1649 copied += copy;
1650 bytes -= copy;
1651 vaddr += copy;
1652 iov++;
1653
1654 if (unlikely(left))
1655 break;
1656 }
1657 return copied - left;
1658 }
1659
1660 /*
1661 * Copy as much as we can into the page and return the number of bytes which
1662 * were sucessfully copied. If a fault is encountered then return the number of
1663 * bytes which were copied.
1664 */
1665 size_t iov_iter_copy_from_user_atomic(struct page *page,
1666 struct iov_iter *i, unsigned long offset, size_t bytes)
1667 {
1668 char *kaddr;
1669 size_t copied;
1670
1671 BUG_ON(!in_atomic());
1672 kaddr = kmap_atomic(page, KM_USER0);
1673 if (likely(i->nr_segs == 1)) {
1674 int left;
1675 char __user *buf = i->iov->iov_base + i->iov_offset;
1676 left = __copy_from_user_inatomic_nocache(kaddr + offset,
1677 buf, bytes);
1678 copied = bytes - left;
1679 } else {
1680 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1681 i->iov, i->iov_offset, bytes);
1682 }
1683 kunmap_atomic(kaddr, KM_USER0);
1684
1685 return copied;
1686 }
1687
1688 /*
1689 * This has the same sideeffects and return value as
1690 * iov_iter_copy_from_user_atomic().
1691 * The difference is that it attempts to resolve faults.
1692 * Page must not be locked.
1693 */
1694 size_t iov_iter_copy_from_user(struct page *page,
1695 struct iov_iter *i, unsigned long offset, size_t bytes)
1696 {
1697 char *kaddr;
1698 size_t copied;
1699
1700 kaddr = kmap(page);
1701 if (likely(i->nr_segs == 1)) {
1702 int left;
1703 char __user *buf = i->iov->iov_base + i->iov_offset;
1704 left = __copy_from_user_nocache(kaddr + offset, buf, bytes);
1705 copied = bytes - left;
1706 } else {
1707 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1708 i->iov, i->iov_offset, bytes);
1709 }
1710 kunmap(page);
1711 return copied;
1712 }
1713
1714 static void __iov_iter_advance_iov(struct iov_iter *i, size_t bytes)
1715 {
1716 if (likely(i->nr_segs == 1)) {
1717 i->iov_offset += bytes;
1718 } else {
1719 const struct iovec *iov = i->iov;
1720 size_t base = i->iov_offset;
1721
1722 while (bytes) {
1723 int copy = min(bytes, iov->iov_len - base);
1724
1725 bytes -= copy;
1726 base += copy;
1727 if (iov->iov_len == base) {
1728 iov++;
1729 base = 0;
1730 }
1731 }
1732 i->iov = iov;
1733 i->iov_offset = base;
1734 }
1735 }
1736
1737 void iov_iter_advance(struct iov_iter *i, size_t bytes)
1738 {
1739 BUG_ON(i->count < bytes);
1740
1741 __iov_iter_advance_iov(i, bytes);
1742 i->count -= bytes;
1743 }
1744
1745 int iov_iter_fault_in_readable(struct iov_iter *i)
1746 {
1747 size_t seglen = min(i->iov->iov_len - i->iov_offset, i->count);
1748 char __user *buf = i->iov->iov_base + i->iov_offset;
1749 return fault_in_pages_readable(buf, seglen);
1750 }
1751
1752 /*
1753 * Return the count of just the current iov_iter segment.
1754 */
1755 size_t iov_iter_single_seg_count(struct iov_iter *i)
1756 {
1757 const struct iovec *iov = i->iov;
1758 if (i->nr_segs == 1)
1759 return i->count;
1760 else
1761 return min(i->count, iov->iov_len - i->iov_offset);
1762 }
1763
1764 /*
1765 * Performs necessary checks before doing a write
1766 *
1767 * Can adjust writing position or amount of bytes to write.
1768 * Returns appropriate error code that caller should return or
1769 * zero in case that write should be allowed.
1770 */
1771 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
1772 {
1773 struct inode *inode = file->f_mapping->host;
1774 unsigned long limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1775
1776 if (unlikely(*pos < 0))
1777 return -EINVAL;
1778
1779 if (!isblk) {
1780 /* FIXME: this is for backwards compatibility with 2.4 */
1781 if (file->f_flags & O_APPEND)
1782 *pos = i_size_read(inode);
1783
1784 if (limit != RLIM_INFINITY) {
1785 if (*pos >= limit) {
1786 send_sig(SIGXFSZ, current, 0);
1787 return -EFBIG;
1788 }
1789 if (*count > limit - (typeof(limit))*pos) {
1790 *count = limit - (typeof(limit))*pos;
1791 }
1792 }
1793 }
1794
1795 /*
1796 * LFS rule
1797 */
1798 if (unlikely(*pos + *count > MAX_NON_LFS &&
1799 !(file->f_flags & O_LARGEFILE))) {
1800 if (*pos >= MAX_NON_LFS) {
1801 return -EFBIG;
1802 }
1803 if (*count > MAX_NON_LFS - (unsigned long)*pos) {
1804 *count = MAX_NON_LFS - (unsigned long)*pos;
1805 }
1806 }
1807
1808 /*
1809 * Are we about to exceed the fs block limit ?
1810 *
1811 * If we have written data it becomes a short write. If we have
1812 * exceeded without writing data we send a signal and return EFBIG.
1813 * Linus frestrict idea will clean these up nicely..
1814 */
1815 if (likely(!isblk)) {
1816 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
1817 if (*count || *pos > inode->i_sb->s_maxbytes) {
1818 return -EFBIG;
1819 }
1820 /* zero-length writes at ->s_maxbytes are OK */
1821 }
1822
1823 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
1824 *count = inode->i_sb->s_maxbytes - *pos;
1825 } else {
1826 #ifdef CONFIG_BLOCK
1827 loff_t isize;
1828 if (bdev_read_only(I_BDEV(inode)))
1829 return -EPERM;
1830 isize = i_size_read(inode);
1831 if (*pos >= isize) {
1832 if (*count || *pos > isize)
1833 return -ENOSPC;
1834 }
1835
1836 if (*pos + *count > isize)
1837 *count = isize - *pos;
1838 #else
1839 return -EPERM;
1840 #endif
1841 }
1842 return 0;
1843 }
1844 EXPORT_SYMBOL(generic_write_checks);
1845
1846 ssize_t
1847 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
1848 unsigned long *nr_segs, loff_t pos, loff_t *ppos,
1849 size_t count, size_t ocount)
1850 {
1851 struct file *file = iocb->ki_filp;
1852 struct address_space *mapping = file->f_mapping;
1853 struct inode *inode = mapping->host;
1854 ssize_t written;
1855
1856 if (count != ocount)
1857 *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
1858
1859 written = generic_file_direct_IO(WRITE, iocb, iov, pos, *nr_segs);
1860 if (written > 0) {
1861 loff_t end = pos + written;
1862 if (end > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
1863 i_size_write(inode, end);
1864 mark_inode_dirty(inode);
1865 }
1866 *ppos = end;
1867 }
1868
1869 /*
1870 * Sync the fs metadata but not the minor inode changes and
1871 * of course not the data as we did direct DMA for the IO.
1872 * i_mutex is held, which protects generic_osync_inode() from
1873 * livelocking. AIO O_DIRECT ops attempt to sync metadata here.
1874 */
1875 if ((written >= 0 || written == -EIOCBQUEUED) &&
1876 ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
1877 int err = generic_osync_inode(inode, mapping, OSYNC_METADATA);
1878 if (err < 0)
1879 written = err;
1880 }
1881 return written;
1882 }
1883 EXPORT_SYMBOL(generic_file_direct_write);
1884
1885 /*
1886 * Find or create a page at the given pagecache position. Return the locked
1887 * page. This function is specifically for buffered writes.
1888 */
1889 static struct page *__grab_cache_page(struct address_space *mapping,
1890 pgoff_t index)
1891 {
1892 int status;
1893 struct page *page;
1894 repeat:
1895 page = find_lock_page(mapping, index);
1896 if (likely(page))
1897 return page;
1898
1899 page = page_cache_alloc(mapping);
1900 if (!page)
1901 return NULL;
1902 status = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL);
1903 if (unlikely(status)) {
1904 page_cache_release(page);
1905 if (status == -EEXIST)
1906 goto repeat;
1907 return NULL;
1908 }
1909 return page;
1910 }
1911
1912 ssize_t
1913 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
1914 unsigned long nr_segs, loff_t pos, loff_t *ppos,
1915 size_t count, ssize_t written)
1916 {
1917 struct file *file = iocb->ki_filp;
1918 struct address_space *mapping = file->f_mapping;
1919 const struct address_space_operations *a_ops = mapping->a_ops;
1920 struct inode *inode = mapping->host;
1921 long status = 0;
1922 struct iov_iter i;
1923
1924 iov_iter_init(&i, iov, nr_segs, count, written);
1925
1926 do {
1927 struct page *src_page;
1928 struct page *page;
1929 pgoff_t index; /* Pagecache index for current page */
1930 unsigned long offset; /* Offset into pagecache page */
1931 unsigned long bytes; /* Bytes to write to page */
1932 size_t copied; /* Bytes copied from user */
1933
1934 offset = (pos & (PAGE_CACHE_SIZE - 1));
1935 index = pos >> PAGE_CACHE_SHIFT;
1936 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
1937 iov_iter_count(&i));
1938
1939 /*
1940 * a non-NULL src_page indicates that we're doing the
1941 * copy via get_user_pages and kmap.
1942 */
1943 src_page = NULL;
1944
1945 /*
1946 * Bring in the user page that we will copy from _first_.
1947 * Otherwise there's a nasty deadlock on copying from the
1948 * same page as we're writing to, without it being marked
1949 * up-to-date.
1950 *
1951 * Not only is this an optimisation, but it is also required
1952 * to check that the address is actually valid, when atomic
1953 * usercopies are used, below.
1954 */
1955 if (unlikely(iov_iter_fault_in_readable(&i))) {
1956 status = -EFAULT;
1957 break;
1958 }
1959
1960 page = __grab_cache_page(mapping, index);
1961 if (!page) {
1962 status = -ENOMEM;
1963 break;
1964 }
1965
1966 /*
1967 * non-uptodate pages cannot cope with short copies, and we
1968 * cannot take a pagefault with the destination page locked.
1969 * So pin the source page to copy it.
1970 */
1971 if (!PageUptodate(page)) {
1972 unlock_page(page);
1973
1974 src_page = alloc_page(GFP_KERNEL);
1975 if (!src_page) {
1976 page_cache_release(page);
1977 status = -ENOMEM;
1978 break;
1979 }
1980
1981 /*
1982 * Cannot get_user_pages with a page locked for the
1983 * same reason as we can't take a page fault with a
1984 * page locked (as explained below).
1985 */
1986 copied = iov_iter_copy_from_user(src_page, &i,
1987 offset, bytes);
1988 if (unlikely(copied == 0)) {
1989 status = -EFAULT;
1990 page_cache_release(page);
1991 page_cache_release(src_page);
1992 break;
1993 }
1994 bytes = copied;
1995
1996 lock_page(page);
1997 /*
1998 * Can't handle the page going uptodate here, because
1999 * that means we would use non-atomic usercopies, which
2000 * zero out the tail of the page, which can cause
2001 * zeroes to become transiently visible. We could just
2002 * use a non-zeroing copy, but the APIs aren't too
2003 * consistent.
2004 */
2005 if (unlikely(!page->mapping || PageUptodate(page))) {
2006 unlock_page(page);
2007 page_cache_release(page);
2008 page_cache_release(src_page);
2009 continue;
2010 }
2011
2012 }
2013
2014 status = a_ops->prepare_write(file, page, offset, offset+bytes);
2015 if (unlikely(status))
2016 goto fs_write_aop_error;
2017
2018 if (!src_page) {
2019 /*
2020 * Must not enter the pagefault handler here, because
2021 * we hold the page lock, so we might recursively
2022 * deadlock on the same lock, or get an ABBA deadlock
2023 * against a different lock, or against the mmap_sem
2024 * (which nests outside the page lock). So increment
2025 * preempt count, and use _atomic usercopies.
2026 *
2027 * The page is uptodate so we are OK to encounter a
2028 * short copy: if unmodified parts of the page are
2029 * marked dirty and written out to disk, it doesn't
2030 * really matter.
2031 */
2032 pagefault_disable();
2033 copied = iov_iter_copy_from_user_atomic(page, &i,
2034 offset, bytes);
2035 pagefault_enable();
2036 } else {
2037 void *src, *dst;
2038 src = kmap_atomic(src_page, KM_USER0);
2039 dst = kmap_atomic(page, KM_USER1);
2040 memcpy(dst + offset, src + offset, bytes);
2041 kunmap_atomic(dst, KM_USER1);
2042 kunmap_atomic(src, KM_USER0);
2043 copied = bytes;
2044 }
2045 flush_dcache_page(page);
2046
2047 status = a_ops->commit_write(file, page, offset, offset+bytes);
2048 if (unlikely(status < 0 || status == AOP_TRUNCATED_PAGE))
2049 goto fs_write_aop_error;
2050 if (unlikely(status > 0)) /* filesystem did partial write */
2051 copied = min_t(size_t, copied, status);
2052
2053 unlock_page(page);
2054 mark_page_accessed(page);
2055 page_cache_release(page);
2056 if (src_page)
2057 page_cache_release(src_page);
2058
2059 iov_iter_advance(&i, copied);
2060 written += copied;
2061 pos += copied;
2062
2063 balance_dirty_pages_ratelimited(mapping);
2064 cond_resched();
2065 continue;
2066
2067 fs_write_aop_error:
2068 if (status != AOP_TRUNCATED_PAGE)
2069 unlock_page(page);
2070 page_cache_release(page);
2071 if (src_page)
2072 page_cache_release(src_page);
2073
2074 /*
2075 * prepare_write() may have instantiated a few blocks
2076 * outside i_size. Trim these off again. Don't need
2077 * i_size_read because we hold i_mutex.
2078 */
2079 if (pos + bytes > inode->i_size)
2080 vmtruncate(inode, inode->i_size);
2081 if (status == AOP_TRUNCATED_PAGE)
2082 continue;
2083 else
2084 break;
2085 } while (iov_iter_count(&i));
2086 *ppos = pos;
2087
2088 /*
2089 * For now, when the user asks for O_SYNC, we'll actually give O_DSYNC
2090 */
2091 if (likely(status >= 0)) {
2092 if (unlikely((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2093 if (!a_ops->writepage || !is_sync_kiocb(iocb))
2094 status = generic_osync_inode(inode, mapping,
2095 OSYNC_METADATA|OSYNC_DATA);
2096 }
2097 }
2098
2099 /*
2100 * If we get here for O_DIRECT writes then we must have fallen through
2101 * to buffered writes (block instantiation inside i_size). So we sync
2102 * the file data here, to try to honour O_DIRECT expectations.
2103 */
2104 if (unlikely(file->f_flags & O_DIRECT) && written)
2105 status = filemap_write_and_wait(mapping);
2106
2107 return written ? written : status;
2108 }
2109 EXPORT_SYMBOL(generic_file_buffered_write);
2110
2111 static ssize_t
2112 __generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov,
2113 unsigned long nr_segs, loff_t *ppos)
2114 {
2115 struct file *file = iocb->ki_filp;
2116 struct address_space * mapping = file->f_mapping;
2117 size_t ocount; /* original count */
2118 size_t count; /* after file limit checks */
2119 struct inode *inode = mapping->host;
2120 loff_t pos;
2121 ssize_t written;
2122 ssize_t err;
2123
2124 ocount = 0;
2125 err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2126 if (err)
2127 return err;
2128
2129 count = ocount;
2130 pos = *ppos;
2131
2132 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2133
2134 /* We can write back this queue in page reclaim */
2135 current->backing_dev_info = mapping->backing_dev_info;
2136 written = 0;
2137
2138 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2139 if (err)
2140 goto out;
2141
2142 if (count == 0)
2143 goto out;
2144
2145 err = remove_suid(file->f_path.dentry);
2146 if (err)
2147 goto out;
2148
2149 file_update_time(file);
2150
2151 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2152 if (unlikely(file->f_flags & O_DIRECT)) {
2153 loff_t endbyte;
2154 ssize_t written_buffered;
2155
2156 written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2157 ppos, count, ocount);
2158 if (written < 0 || written == count)
2159 goto out;
2160 /*
2161 * direct-io write to a hole: fall through to buffered I/O
2162 * for completing the rest of the request.
2163 */
2164 pos += written;
2165 count -= written;
2166 written_buffered = generic_file_buffered_write(iocb, iov,
2167 nr_segs, pos, ppos, count,
2168 written);
2169 /*
2170 * If generic_file_buffered_write() retuned a synchronous error
2171 * then we want to return the number of bytes which were
2172 * direct-written, or the error code if that was zero. Note
2173 * that this differs from normal direct-io semantics, which
2174 * will return -EFOO even if some bytes were written.
2175 */
2176 if (written_buffered < 0) {
2177 err = written_buffered;
2178 goto out;
2179 }
2180
2181 /*
2182 * We need to ensure that the page cache pages are written to
2183 * disk and invalidated to preserve the expected O_DIRECT
2184 * semantics.
2185 */
2186 endbyte = pos + written_buffered - written - 1;
2187 err = do_sync_mapping_range(file->f_mapping, pos, endbyte,
2188 SYNC_FILE_RANGE_WAIT_BEFORE|
2189 SYNC_FILE_RANGE_WRITE|
2190 SYNC_FILE_RANGE_WAIT_AFTER);
2191 if (err == 0) {
2192 written = written_buffered;
2193 invalidate_mapping_pages(mapping,
2194 pos >> PAGE_CACHE_SHIFT,
2195 endbyte >> PAGE_CACHE_SHIFT);
2196 } else {
2197 /*
2198 * We don't know how much we wrote, so just return
2199 * the number of bytes which were direct-written
2200 */
2201 }
2202 } else {
2203 written = generic_file_buffered_write(iocb, iov, nr_segs,
2204 pos, ppos, count, written);
2205 }
2206 out:
2207 current->backing_dev_info = NULL;
2208 return written ? written : err;
2209 }
2210
2211 ssize_t generic_file_aio_write_nolock(struct kiocb *iocb,
2212 const struct iovec *iov, unsigned long nr_segs, loff_t pos)
2213 {
2214 struct file *file = iocb->ki_filp;
2215 struct address_space *mapping = file->f_mapping;
2216 struct inode *inode = mapping->host;
2217 ssize_t ret;
2218
2219 BUG_ON(iocb->ki_pos != pos);
2220
2221 ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
2222 &iocb->ki_pos);
2223
2224 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2225 ssize_t err;
2226
2227 err = sync_page_range_nolock(inode, mapping, pos, ret);
2228 if (err < 0)
2229 ret = err;
2230 }
2231 return ret;
2232 }
2233 EXPORT_SYMBOL(generic_file_aio_write_nolock);
2234
2235 ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2236 unsigned long nr_segs, loff_t pos)
2237 {
2238 struct file *file = iocb->ki_filp;
2239 struct address_space *mapping = file->f_mapping;
2240 struct inode *inode = mapping->host;
2241 ssize_t ret;
2242
2243 BUG_ON(iocb->ki_pos != pos);
2244
2245 mutex_lock(&inode->i_mutex);
2246 ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
2247 &iocb->ki_pos);
2248 mutex_unlock(&inode->i_mutex);
2249
2250 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2251 ssize_t err;
2252
2253 err = sync_page_range(inode, mapping, pos, ret);
2254 if (err < 0)
2255 ret = err;
2256 }
2257 return ret;
2258 }
2259 EXPORT_SYMBOL(generic_file_aio_write);
2260
2261 /*
2262 * Called under i_mutex for writes to S_ISREG files. Returns -EIO if something
2263 * went wrong during pagecache shootdown.
2264 */
2265 static ssize_t
2266 generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
2267 loff_t offset, unsigned long nr_segs)
2268 {
2269 struct file *file = iocb->ki_filp;
2270 struct address_space *mapping = file->f_mapping;
2271 ssize_t retval;
2272 size_t write_len;
2273 pgoff_t end = 0; /* silence gcc */
2274
2275 /*
2276 * If it's a write, unmap all mmappings of the file up-front. This
2277 * will cause any pte dirty bits to be propagated into the pageframes
2278 * for the subsequent filemap_write_and_wait().
2279 */
2280 if (rw == WRITE) {
2281 write_len = iov_length(iov, nr_segs);
2282 end = (offset + write_len - 1) >> PAGE_CACHE_SHIFT;
2283 if (mapping_mapped(mapping))
2284 unmap_mapping_range(mapping, offset, write_len, 0);
2285 }
2286
2287 retval = filemap_write_and_wait(mapping);
2288 if (retval)
2289 goto out;
2290
2291 /*
2292 * After a write we want buffered reads to be sure to go to disk to get
2293 * the new data. We invalidate clean cached page from the region we're
2294 * about to write. We do this *before* the write so that we can return
2295 * -EIO without clobbering -EIOCBQUEUED from ->direct_IO().
2296 */
2297 if (rw == WRITE && mapping->nrpages) {
2298 retval = invalidate_inode_pages2_range(mapping,
2299 offset >> PAGE_CACHE_SHIFT, end);
2300 if (retval)
2301 goto out;
2302 }
2303
2304 retval = mapping->a_ops->direct_IO(rw, iocb, iov, offset, nr_segs);
2305 if (retval)
2306 goto out;
2307
2308 /*
2309 * Finally, try again to invalidate clean pages which might have been
2310 * faulted in by get_user_pages() if the source of the write was an
2311 * mmap()ed region of the file we're writing. That's a pretty crazy
2312 * thing to do, so we don't support it 100%. If this invalidation
2313 * fails and we have -EIOCBQUEUED we ignore the failure.
2314 */
2315 if (rw == WRITE && mapping->nrpages) {
2316 int err = invalidate_inode_pages2_range(mapping,
2317 offset >> PAGE_CACHE_SHIFT, end);
2318 if (err && retval >= 0)
2319 retval = err;
2320 }
2321 out:
2322 return retval;
2323 }
2324
2325 /**
2326 * try_to_release_page() - release old fs-specific metadata on a page
2327 *
2328 * @page: the page which the kernel is trying to free
2329 * @gfp_mask: memory allocation flags (and I/O mode)
2330 *
2331 * The address_space is to try to release any data against the page
2332 * (presumably at page->private). If the release was successful, return `1'.
2333 * Otherwise return zero.
2334 *
2335 * The @gfp_mask argument specifies whether I/O may be performed to release
2336 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT).
2337 *
2338 * NOTE: @gfp_mask may go away, and this function may become non-blocking.
2339 */
2340 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2341 {
2342 struct address_space * const mapping = page->mapping;
2343
2344 BUG_ON(!PageLocked(page));
2345 if (PageWriteback(page))
2346 return 0;
2347
2348 if (mapping && mapping->a_ops->releasepage)
2349 return mapping->a_ops->releasepage(page, gfp_mask);
2350 return try_to_free_buffers(page);
2351 }
2352
2353 EXPORT_SYMBOL(try_to_release_page);
This page took 0.075324 seconds and 6 git commands to generate.