mm: export remove_from_page_cache() to modules
[deliverable/linux.git] / mm / filemap.c
1 /*
2 * linux/mm/filemap.c
3 *
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
6
7 /*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
11 */
12 #include <linux/module.h>
13 #include <linux/compiler.h>
14 #include <linux/fs.h>
15 #include <linux/uaccess.h>
16 #include <linux/aio.h>
17 #include <linux/capability.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/gfp.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/syscalls.h>
33 #include <linux/cpuset.h>
34 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
35 #include <linux/memcontrol.h>
36 #include <linux/mm_inline.h> /* for page_is_file_cache() */
37 #include "internal.h"
38
39 /*
40 * FIXME: remove all knowledge of the buffer layer from the core VM
41 */
42 #include <linux/buffer_head.h> /* for try_to_free_buffers */
43
44 #include <asm/mman.h>
45
46 /*
47 * Shared mappings implemented 30.11.1994. It's not fully working yet,
48 * though.
49 *
50 * Shared mappings now work. 15.8.1995 Bruno.
51 *
52 * finished 'unifying' the page and buffer cache and SMP-threaded the
53 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
54 *
55 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
56 */
57
58 /*
59 * Lock ordering:
60 *
61 * ->i_mmap_lock (truncate_pagecache)
62 * ->private_lock (__free_pte->__set_page_dirty_buffers)
63 * ->swap_lock (exclusive_swap_page, others)
64 * ->mapping->tree_lock
65 *
66 * ->i_mutex
67 * ->i_mmap_lock (truncate->unmap_mapping_range)
68 *
69 * ->mmap_sem
70 * ->i_mmap_lock
71 * ->page_table_lock or pte_lock (various, mainly in memory.c)
72 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
73 *
74 * ->mmap_sem
75 * ->lock_page (access_process_vm)
76 *
77 * ->i_mutex (generic_file_buffered_write)
78 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
79 *
80 * ->i_mutex
81 * ->i_alloc_sem (various)
82 *
83 * ->inode_lock
84 * ->sb_lock (fs/fs-writeback.c)
85 * ->mapping->tree_lock (__sync_single_inode)
86 *
87 * ->i_mmap_lock
88 * ->anon_vma.lock (vma_adjust)
89 *
90 * ->anon_vma.lock
91 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
92 *
93 * ->page_table_lock or pte_lock
94 * ->swap_lock (try_to_unmap_one)
95 * ->private_lock (try_to_unmap_one)
96 * ->tree_lock (try_to_unmap_one)
97 * ->zone.lru_lock (follow_page->mark_page_accessed)
98 * ->zone.lru_lock (check_pte_range->isolate_lru_page)
99 * ->private_lock (page_remove_rmap->set_page_dirty)
100 * ->tree_lock (page_remove_rmap->set_page_dirty)
101 * ->inode_lock (page_remove_rmap->set_page_dirty)
102 * ->inode_lock (zap_pte_range->set_page_dirty)
103 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
104 *
105 * ->task->proc_lock
106 * ->dcache_lock (proc_pid_lookup)
107 *
108 * (code doesn't rely on that order, so you could switch it around)
109 * ->tasklist_lock (memory_failure, collect_procs_ao)
110 * ->i_mmap_lock
111 */
112
113 /*
114 * Remove a page from the page cache and free it. Caller has to make
115 * sure the page is locked and that nobody else uses it - or that usage
116 * is safe. The caller must hold the mapping's tree_lock.
117 */
118 void __remove_from_page_cache(struct page *page)
119 {
120 struct address_space *mapping = page->mapping;
121
122 radix_tree_delete(&mapping->page_tree, page->index);
123 page->mapping = NULL;
124 mapping->nrpages--;
125 __dec_zone_page_state(page, NR_FILE_PAGES);
126 if (PageSwapBacked(page))
127 __dec_zone_page_state(page, NR_SHMEM);
128 BUG_ON(page_mapped(page));
129
130 /*
131 * Some filesystems seem to re-dirty the page even after
132 * the VM has canceled the dirty bit (eg ext3 journaling).
133 *
134 * Fix it up by doing a final dirty accounting check after
135 * having removed the page entirely.
136 */
137 if (PageDirty(page) && mapping_cap_account_dirty(mapping)) {
138 dec_zone_page_state(page, NR_FILE_DIRTY);
139 dec_bdi_stat(mapping->backing_dev_info, BDI_RECLAIMABLE);
140 }
141 }
142
143 void remove_from_page_cache(struct page *page)
144 {
145 struct address_space *mapping = page->mapping;
146
147 BUG_ON(!PageLocked(page));
148
149 spin_lock_irq(&mapping->tree_lock);
150 __remove_from_page_cache(page);
151 spin_unlock_irq(&mapping->tree_lock);
152 mem_cgroup_uncharge_cache_page(page);
153 }
154 EXPORT_SYMBOL(remove_from_page_cache);
155
156 static int sync_page(void *word)
157 {
158 struct address_space *mapping;
159 struct page *page;
160
161 page = container_of((unsigned long *)word, struct page, flags);
162
163 /*
164 * page_mapping() is being called without PG_locked held.
165 * Some knowledge of the state and use of the page is used to
166 * reduce the requirements down to a memory barrier.
167 * The danger here is of a stale page_mapping() return value
168 * indicating a struct address_space different from the one it's
169 * associated with when it is associated with one.
170 * After smp_mb(), it's either the correct page_mapping() for
171 * the page, or an old page_mapping() and the page's own
172 * page_mapping() has gone NULL.
173 * The ->sync_page() address_space operation must tolerate
174 * page_mapping() going NULL. By an amazing coincidence,
175 * this comes about because none of the users of the page
176 * in the ->sync_page() methods make essential use of the
177 * page_mapping(), merely passing the page down to the backing
178 * device's unplug functions when it's non-NULL, which in turn
179 * ignore it for all cases but swap, where only page_private(page) is
180 * of interest. When page_mapping() does go NULL, the entire
181 * call stack gracefully ignores the page and returns.
182 * -- wli
183 */
184 smp_mb();
185 mapping = page_mapping(page);
186 if (mapping && mapping->a_ops && mapping->a_ops->sync_page)
187 mapping->a_ops->sync_page(page);
188 io_schedule();
189 return 0;
190 }
191
192 static int sync_page_killable(void *word)
193 {
194 sync_page(word);
195 return fatal_signal_pending(current) ? -EINTR : 0;
196 }
197
198 /**
199 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
200 * @mapping: address space structure to write
201 * @start: offset in bytes where the range starts
202 * @end: offset in bytes where the range ends (inclusive)
203 * @sync_mode: enable synchronous operation
204 *
205 * Start writeback against all of a mapping's dirty pages that lie
206 * within the byte offsets <start, end> inclusive.
207 *
208 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
209 * opposed to a regular memory cleansing writeback. The difference between
210 * these two operations is that if a dirty page/buffer is encountered, it must
211 * be waited upon, and not just skipped over.
212 */
213 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
214 loff_t end, int sync_mode)
215 {
216 int ret;
217 struct writeback_control wbc = {
218 .sync_mode = sync_mode,
219 .nr_to_write = LONG_MAX,
220 .range_start = start,
221 .range_end = end,
222 };
223
224 if (!mapping_cap_writeback_dirty(mapping))
225 return 0;
226
227 ret = do_writepages(mapping, &wbc);
228 return ret;
229 }
230
231 static inline int __filemap_fdatawrite(struct address_space *mapping,
232 int sync_mode)
233 {
234 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
235 }
236
237 int filemap_fdatawrite(struct address_space *mapping)
238 {
239 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
240 }
241 EXPORT_SYMBOL(filemap_fdatawrite);
242
243 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
244 loff_t end)
245 {
246 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
247 }
248 EXPORT_SYMBOL(filemap_fdatawrite_range);
249
250 /**
251 * filemap_flush - mostly a non-blocking flush
252 * @mapping: target address_space
253 *
254 * This is a mostly non-blocking flush. Not suitable for data-integrity
255 * purposes - I/O may not be started against all dirty pages.
256 */
257 int filemap_flush(struct address_space *mapping)
258 {
259 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
260 }
261 EXPORT_SYMBOL(filemap_flush);
262
263 /**
264 * filemap_fdatawait_range - wait for writeback to complete
265 * @mapping: address space structure to wait for
266 * @start_byte: offset in bytes where the range starts
267 * @end_byte: offset in bytes where the range ends (inclusive)
268 *
269 * Walk the list of under-writeback pages of the given address space
270 * in the given range and wait for all of them.
271 */
272 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
273 loff_t end_byte)
274 {
275 pgoff_t index = start_byte >> PAGE_CACHE_SHIFT;
276 pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
277 struct pagevec pvec;
278 int nr_pages;
279 int ret = 0;
280
281 if (end_byte < start_byte)
282 return 0;
283
284 pagevec_init(&pvec, 0);
285 while ((index <= end) &&
286 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
287 PAGECACHE_TAG_WRITEBACK,
288 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
289 unsigned i;
290
291 for (i = 0; i < nr_pages; i++) {
292 struct page *page = pvec.pages[i];
293
294 /* until radix tree lookup accepts end_index */
295 if (page->index > end)
296 continue;
297
298 wait_on_page_writeback(page);
299 if (PageError(page))
300 ret = -EIO;
301 }
302 pagevec_release(&pvec);
303 cond_resched();
304 }
305
306 /* Check for outstanding write errors */
307 if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
308 ret = -ENOSPC;
309 if (test_and_clear_bit(AS_EIO, &mapping->flags))
310 ret = -EIO;
311
312 return ret;
313 }
314 EXPORT_SYMBOL(filemap_fdatawait_range);
315
316 /**
317 * filemap_fdatawait - wait for all under-writeback pages to complete
318 * @mapping: address space structure to wait for
319 *
320 * Walk the list of under-writeback pages of the given address space
321 * and wait for all of them.
322 */
323 int filemap_fdatawait(struct address_space *mapping)
324 {
325 loff_t i_size = i_size_read(mapping->host);
326
327 if (i_size == 0)
328 return 0;
329
330 return filemap_fdatawait_range(mapping, 0, i_size - 1);
331 }
332 EXPORT_SYMBOL(filemap_fdatawait);
333
334 int filemap_write_and_wait(struct address_space *mapping)
335 {
336 int err = 0;
337
338 if (mapping->nrpages) {
339 err = filemap_fdatawrite(mapping);
340 /*
341 * Even if the above returned error, the pages may be
342 * written partially (e.g. -ENOSPC), so we wait for it.
343 * But the -EIO is special case, it may indicate the worst
344 * thing (e.g. bug) happened, so we avoid waiting for it.
345 */
346 if (err != -EIO) {
347 int err2 = filemap_fdatawait(mapping);
348 if (!err)
349 err = err2;
350 }
351 }
352 return err;
353 }
354 EXPORT_SYMBOL(filemap_write_and_wait);
355
356 /**
357 * filemap_write_and_wait_range - write out & wait on a file range
358 * @mapping: the address_space for the pages
359 * @lstart: offset in bytes where the range starts
360 * @lend: offset in bytes where the range ends (inclusive)
361 *
362 * Write out and wait upon file offsets lstart->lend, inclusive.
363 *
364 * Note that `lend' is inclusive (describes the last byte to be written) so
365 * that this function can be used to write to the very end-of-file (end = -1).
366 */
367 int filemap_write_and_wait_range(struct address_space *mapping,
368 loff_t lstart, loff_t lend)
369 {
370 int err = 0;
371
372 if (mapping->nrpages) {
373 err = __filemap_fdatawrite_range(mapping, lstart, lend,
374 WB_SYNC_ALL);
375 /* See comment of filemap_write_and_wait() */
376 if (err != -EIO) {
377 int err2 = filemap_fdatawait_range(mapping,
378 lstart, lend);
379 if (!err)
380 err = err2;
381 }
382 }
383 return err;
384 }
385 EXPORT_SYMBOL(filemap_write_and_wait_range);
386
387 /**
388 * add_to_page_cache_locked - add a locked page to the pagecache
389 * @page: page to add
390 * @mapping: the page's address_space
391 * @offset: page index
392 * @gfp_mask: page allocation mode
393 *
394 * This function is used to add a page to the pagecache. It must be locked.
395 * This function does not add the page to the LRU. The caller must do that.
396 */
397 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
398 pgoff_t offset, gfp_t gfp_mask)
399 {
400 int error;
401
402 VM_BUG_ON(!PageLocked(page));
403
404 error = mem_cgroup_cache_charge(page, current->mm,
405 gfp_mask & GFP_RECLAIM_MASK);
406 if (error)
407 goto out;
408
409 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
410 if (error == 0) {
411 page_cache_get(page);
412 page->mapping = mapping;
413 page->index = offset;
414
415 spin_lock_irq(&mapping->tree_lock);
416 error = radix_tree_insert(&mapping->page_tree, offset, page);
417 if (likely(!error)) {
418 mapping->nrpages++;
419 __inc_zone_page_state(page, NR_FILE_PAGES);
420 if (PageSwapBacked(page))
421 __inc_zone_page_state(page, NR_SHMEM);
422 spin_unlock_irq(&mapping->tree_lock);
423 } else {
424 page->mapping = NULL;
425 spin_unlock_irq(&mapping->tree_lock);
426 mem_cgroup_uncharge_cache_page(page);
427 page_cache_release(page);
428 }
429 radix_tree_preload_end();
430 } else
431 mem_cgroup_uncharge_cache_page(page);
432 out:
433 return error;
434 }
435 EXPORT_SYMBOL(add_to_page_cache_locked);
436
437 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
438 pgoff_t offset, gfp_t gfp_mask)
439 {
440 int ret;
441
442 /*
443 * Splice_read and readahead add shmem/tmpfs pages into the page cache
444 * before shmem_readpage has a chance to mark them as SwapBacked: they
445 * need to go on the active_anon lru below, and mem_cgroup_cache_charge
446 * (called in add_to_page_cache) needs to know where they're going too.
447 */
448 if (mapping_cap_swap_backed(mapping))
449 SetPageSwapBacked(page);
450
451 ret = add_to_page_cache(page, mapping, offset, gfp_mask);
452 if (ret == 0) {
453 if (page_is_file_cache(page))
454 lru_cache_add_file(page);
455 else
456 lru_cache_add_active_anon(page);
457 }
458 return ret;
459 }
460 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
461
462 #ifdef CONFIG_NUMA
463 struct page *__page_cache_alloc(gfp_t gfp)
464 {
465 if (cpuset_do_page_mem_spread()) {
466 int n = cpuset_mem_spread_node();
467 return alloc_pages_exact_node(n, gfp, 0);
468 }
469 return alloc_pages(gfp, 0);
470 }
471 EXPORT_SYMBOL(__page_cache_alloc);
472 #endif
473
474 static int __sleep_on_page_lock(void *word)
475 {
476 io_schedule();
477 return 0;
478 }
479
480 /*
481 * In order to wait for pages to become available there must be
482 * waitqueues associated with pages. By using a hash table of
483 * waitqueues where the bucket discipline is to maintain all
484 * waiters on the same queue and wake all when any of the pages
485 * become available, and for the woken contexts to check to be
486 * sure the appropriate page became available, this saves space
487 * at a cost of "thundering herd" phenomena during rare hash
488 * collisions.
489 */
490 static wait_queue_head_t *page_waitqueue(struct page *page)
491 {
492 const struct zone *zone = page_zone(page);
493
494 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
495 }
496
497 static inline void wake_up_page(struct page *page, int bit)
498 {
499 __wake_up_bit(page_waitqueue(page), &page->flags, bit);
500 }
501
502 void wait_on_page_bit(struct page *page, int bit_nr)
503 {
504 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
505
506 if (test_bit(bit_nr, &page->flags))
507 __wait_on_bit(page_waitqueue(page), &wait, sync_page,
508 TASK_UNINTERRUPTIBLE);
509 }
510 EXPORT_SYMBOL(wait_on_page_bit);
511
512 /**
513 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
514 * @page: Page defining the wait queue of interest
515 * @waiter: Waiter to add to the queue
516 *
517 * Add an arbitrary @waiter to the wait queue for the nominated @page.
518 */
519 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
520 {
521 wait_queue_head_t *q = page_waitqueue(page);
522 unsigned long flags;
523
524 spin_lock_irqsave(&q->lock, flags);
525 __add_wait_queue(q, waiter);
526 spin_unlock_irqrestore(&q->lock, flags);
527 }
528 EXPORT_SYMBOL_GPL(add_page_wait_queue);
529
530 /**
531 * unlock_page - unlock a locked page
532 * @page: the page
533 *
534 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
535 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
536 * mechananism between PageLocked pages and PageWriteback pages is shared.
537 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
538 *
539 * The mb is necessary to enforce ordering between the clear_bit and the read
540 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
541 */
542 void unlock_page(struct page *page)
543 {
544 VM_BUG_ON(!PageLocked(page));
545 clear_bit_unlock(PG_locked, &page->flags);
546 smp_mb__after_clear_bit();
547 wake_up_page(page, PG_locked);
548 }
549 EXPORT_SYMBOL(unlock_page);
550
551 /**
552 * end_page_writeback - end writeback against a page
553 * @page: the page
554 */
555 void end_page_writeback(struct page *page)
556 {
557 if (TestClearPageReclaim(page))
558 rotate_reclaimable_page(page);
559
560 if (!test_clear_page_writeback(page))
561 BUG();
562
563 smp_mb__after_clear_bit();
564 wake_up_page(page, PG_writeback);
565 }
566 EXPORT_SYMBOL(end_page_writeback);
567
568 /**
569 * __lock_page - get a lock on the page, assuming we need to sleep to get it
570 * @page: the page to lock
571 *
572 * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary. If some
573 * random driver's requestfn sets TASK_RUNNING, we could busywait. However
574 * chances are that on the second loop, the block layer's plug list is empty,
575 * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
576 */
577 void __lock_page(struct page *page)
578 {
579 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
580
581 __wait_on_bit_lock(page_waitqueue(page), &wait, sync_page,
582 TASK_UNINTERRUPTIBLE);
583 }
584 EXPORT_SYMBOL(__lock_page);
585
586 int __lock_page_killable(struct page *page)
587 {
588 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
589
590 return __wait_on_bit_lock(page_waitqueue(page), &wait,
591 sync_page_killable, TASK_KILLABLE);
592 }
593 EXPORT_SYMBOL_GPL(__lock_page_killable);
594
595 /**
596 * __lock_page_nosync - get a lock on the page, without calling sync_page()
597 * @page: the page to lock
598 *
599 * Variant of lock_page that does not require the caller to hold a reference
600 * on the page's mapping.
601 */
602 void __lock_page_nosync(struct page *page)
603 {
604 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
605 __wait_on_bit_lock(page_waitqueue(page), &wait, __sleep_on_page_lock,
606 TASK_UNINTERRUPTIBLE);
607 }
608
609 /**
610 * find_get_page - find and get a page reference
611 * @mapping: the address_space to search
612 * @offset: the page index
613 *
614 * Is there a pagecache struct page at the given (mapping, offset) tuple?
615 * If yes, increment its refcount and return it; if no, return NULL.
616 */
617 struct page *find_get_page(struct address_space *mapping, pgoff_t offset)
618 {
619 void **pagep;
620 struct page *page;
621
622 rcu_read_lock();
623 repeat:
624 page = NULL;
625 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
626 if (pagep) {
627 page = radix_tree_deref_slot(pagep);
628 if (unlikely(!page || page == RADIX_TREE_RETRY))
629 goto repeat;
630
631 if (!page_cache_get_speculative(page))
632 goto repeat;
633
634 /*
635 * Has the page moved?
636 * This is part of the lockless pagecache protocol. See
637 * include/linux/pagemap.h for details.
638 */
639 if (unlikely(page != *pagep)) {
640 page_cache_release(page);
641 goto repeat;
642 }
643 }
644 rcu_read_unlock();
645
646 return page;
647 }
648 EXPORT_SYMBOL(find_get_page);
649
650 /**
651 * find_lock_page - locate, pin and lock a pagecache page
652 * @mapping: the address_space to search
653 * @offset: the page index
654 *
655 * Locates the desired pagecache page, locks it, increments its reference
656 * count and returns its address.
657 *
658 * Returns zero if the page was not present. find_lock_page() may sleep.
659 */
660 struct page *find_lock_page(struct address_space *mapping, pgoff_t offset)
661 {
662 struct page *page;
663
664 repeat:
665 page = find_get_page(mapping, offset);
666 if (page) {
667 lock_page(page);
668 /* Has the page been truncated? */
669 if (unlikely(page->mapping != mapping)) {
670 unlock_page(page);
671 page_cache_release(page);
672 goto repeat;
673 }
674 VM_BUG_ON(page->index != offset);
675 }
676 return page;
677 }
678 EXPORT_SYMBOL(find_lock_page);
679
680 /**
681 * find_or_create_page - locate or add a pagecache page
682 * @mapping: the page's address_space
683 * @index: the page's index into the mapping
684 * @gfp_mask: page allocation mode
685 *
686 * Locates a page in the pagecache. If the page is not present, a new page
687 * is allocated using @gfp_mask and is added to the pagecache and to the VM's
688 * LRU list. The returned page is locked and has its reference count
689 * incremented.
690 *
691 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
692 * allocation!
693 *
694 * find_or_create_page() returns the desired page's address, or zero on
695 * memory exhaustion.
696 */
697 struct page *find_or_create_page(struct address_space *mapping,
698 pgoff_t index, gfp_t gfp_mask)
699 {
700 struct page *page;
701 int err;
702 repeat:
703 page = find_lock_page(mapping, index);
704 if (!page) {
705 page = __page_cache_alloc(gfp_mask);
706 if (!page)
707 return NULL;
708 /*
709 * We want a regular kernel memory (not highmem or DMA etc)
710 * allocation for the radix tree nodes, but we need to honour
711 * the context-specific requirements the caller has asked for.
712 * GFP_RECLAIM_MASK collects those requirements.
713 */
714 err = add_to_page_cache_lru(page, mapping, index,
715 (gfp_mask & GFP_RECLAIM_MASK));
716 if (unlikely(err)) {
717 page_cache_release(page);
718 page = NULL;
719 if (err == -EEXIST)
720 goto repeat;
721 }
722 }
723 return page;
724 }
725 EXPORT_SYMBOL(find_or_create_page);
726
727 /**
728 * find_get_pages - gang pagecache lookup
729 * @mapping: The address_space to search
730 * @start: The starting page index
731 * @nr_pages: The maximum number of pages
732 * @pages: Where the resulting pages are placed
733 *
734 * find_get_pages() will search for and return a group of up to
735 * @nr_pages pages in the mapping. The pages are placed at @pages.
736 * find_get_pages() takes a reference against the returned pages.
737 *
738 * The search returns a group of mapping-contiguous pages with ascending
739 * indexes. There may be holes in the indices due to not-present pages.
740 *
741 * find_get_pages() returns the number of pages which were found.
742 */
743 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
744 unsigned int nr_pages, struct page **pages)
745 {
746 unsigned int i;
747 unsigned int ret;
748 unsigned int nr_found;
749
750 rcu_read_lock();
751 restart:
752 nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
753 (void ***)pages, start, nr_pages);
754 ret = 0;
755 for (i = 0; i < nr_found; i++) {
756 struct page *page;
757 repeat:
758 page = radix_tree_deref_slot((void **)pages[i]);
759 if (unlikely(!page))
760 continue;
761 /*
762 * this can only trigger if nr_found == 1, making livelock
763 * a non issue.
764 */
765 if (unlikely(page == RADIX_TREE_RETRY))
766 goto restart;
767
768 if (!page_cache_get_speculative(page))
769 goto repeat;
770
771 /* Has the page moved? */
772 if (unlikely(page != *((void **)pages[i]))) {
773 page_cache_release(page);
774 goto repeat;
775 }
776
777 pages[ret] = page;
778 ret++;
779 }
780 rcu_read_unlock();
781 return ret;
782 }
783
784 /**
785 * find_get_pages_contig - gang contiguous pagecache lookup
786 * @mapping: The address_space to search
787 * @index: The starting page index
788 * @nr_pages: The maximum number of pages
789 * @pages: Where the resulting pages are placed
790 *
791 * find_get_pages_contig() works exactly like find_get_pages(), except
792 * that the returned number of pages are guaranteed to be contiguous.
793 *
794 * find_get_pages_contig() returns the number of pages which were found.
795 */
796 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
797 unsigned int nr_pages, struct page **pages)
798 {
799 unsigned int i;
800 unsigned int ret;
801 unsigned int nr_found;
802
803 rcu_read_lock();
804 restart:
805 nr_found = radix_tree_gang_lookup_slot(&mapping->page_tree,
806 (void ***)pages, index, nr_pages);
807 ret = 0;
808 for (i = 0; i < nr_found; i++) {
809 struct page *page;
810 repeat:
811 page = radix_tree_deref_slot((void **)pages[i]);
812 if (unlikely(!page))
813 continue;
814 /*
815 * this can only trigger if nr_found == 1, making livelock
816 * a non issue.
817 */
818 if (unlikely(page == RADIX_TREE_RETRY))
819 goto restart;
820
821 if (page->mapping == NULL || page->index != index)
822 break;
823
824 if (!page_cache_get_speculative(page))
825 goto repeat;
826
827 /* Has the page moved? */
828 if (unlikely(page != *((void **)pages[i]))) {
829 page_cache_release(page);
830 goto repeat;
831 }
832
833 pages[ret] = page;
834 ret++;
835 index++;
836 }
837 rcu_read_unlock();
838 return ret;
839 }
840 EXPORT_SYMBOL(find_get_pages_contig);
841
842 /**
843 * find_get_pages_tag - find and return pages that match @tag
844 * @mapping: the address_space to search
845 * @index: the starting page index
846 * @tag: the tag index
847 * @nr_pages: the maximum number of pages
848 * @pages: where the resulting pages are placed
849 *
850 * Like find_get_pages, except we only return pages which are tagged with
851 * @tag. We update @index to index the next page for the traversal.
852 */
853 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
854 int tag, unsigned int nr_pages, struct page **pages)
855 {
856 unsigned int i;
857 unsigned int ret;
858 unsigned int nr_found;
859
860 rcu_read_lock();
861 restart:
862 nr_found = radix_tree_gang_lookup_tag_slot(&mapping->page_tree,
863 (void ***)pages, *index, nr_pages, tag);
864 ret = 0;
865 for (i = 0; i < nr_found; i++) {
866 struct page *page;
867 repeat:
868 page = radix_tree_deref_slot((void **)pages[i]);
869 if (unlikely(!page))
870 continue;
871 /*
872 * this can only trigger if nr_found == 1, making livelock
873 * a non issue.
874 */
875 if (unlikely(page == RADIX_TREE_RETRY))
876 goto restart;
877
878 if (!page_cache_get_speculative(page))
879 goto repeat;
880
881 /* Has the page moved? */
882 if (unlikely(page != *((void **)pages[i]))) {
883 page_cache_release(page);
884 goto repeat;
885 }
886
887 pages[ret] = page;
888 ret++;
889 }
890 rcu_read_unlock();
891
892 if (ret)
893 *index = pages[ret - 1]->index + 1;
894
895 return ret;
896 }
897 EXPORT_SYMBOL(find_get_pages_tag);
898
899 /**
900 * grab_cache_page_nowait - returns locked page at given index in given cache
901 * @mapping: target address_space
902 * @index: the page index
903 *
904 * Same as grab_cache_page(), but do not wait if the page is unavailable.
905 * This is intended for speculative data generators, where the data can
906 * be regenerated if the page couldn't be grabbed. This routine should
907 * be safe to call while holding the lock for another page.
908 *
909 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
910 * and deadlock against the caller's locked page.
911 */
912 struct page *
913 grab_cache_page_nowait(struct address_space *mapping, pgoff_t index)
914 {
915 struct page *page = find_get_page(mapping, index);
916
917 if (page) {
918 if (trylock_page(page))
919 return page;
920 page_cache_release(page);
921 return NULL;
922 }
923 page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
924 if (page && add_to_page_cache_lru(page, mapping, index, GFP_NOFS)) {
925 page_cache_release(page);
926 page = NULL;
927 }
928 return page;
929 }
930 EXPORT_SYMBOL(grab_cache_page_nowait);
931
932 /*
933 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
934 * a _large_ part of the i/o request. Imagine the worst scenario:
935 *
936 * ---R__________________________________________B__________
937 * ^ reading here ^ bad block(assume 4k)
938 *
939 * read(R) => miss => readahead(R...B) => media error => frustrating retries
940 * => failing the whole request => read(R) => read(R+1) =>
941 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
942 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
943 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
944 *
945 * It is going insane. Fix it by quickly scaling down the readahead size.
946 */
947 static void shrink_readahead_size_eio(struct file *filp,
948 struct file_ra_state *ra)
949 {
950 ra->ra_pages /= 4;
951 }
952
953 /**
954 * do_generic_file_read - generic file read routine
955 * @filp: the file to read
956 * @ppos: current file position
957 * @desc: read_descriptor
958 * @actor: read method
959 *
960 * This is a generic file read routine, and uses the
961 * mapping->a_ops->readpage() function for the actual low-level stuff.
962 *
963 * This is really ugly. But the goto's actually try to clarify some
964 * of the logic when it comes to error handling etc.
965 */
966 static void do_generic_file_read(struct file *filp, loff_t *ppos,
967 read_descriptor_t *desc, read_actor_t actor)
968 {
969 struct address_space *mapping = filp->f_mapping;
970 struct inode *inode = mapping->host;
971 struct file_ra_state *ra = &filp->f_ra;
972 pgoff_t index;
973 pgoff_t last_index;
974 pgoff_t prev_index;
975 unsigned long offset; /* offset into pagecache page */
976 unsigned int prev_offset;
977 int error;
978
979 index = *ppos >> PAGE_CACHE_SHIFT;
980 prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
981 prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
982 last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
983 offset = *ppos & ~PAGE_CACHE_MASK;
984
985 for (;;) {
986 struct page *page;
987 pgoff_t end_index;
988 loff_t isize;
989 unsigned long nr, ret;
990
991 cond_resched();
992 find_page:
993 page = find_get_page(mapping, index);
994 if (!page) {
995 page_cache_sync_readahead(mapping,
996 ra, filp,
997 index, last_index - index);
998 page = find_get_page(mapping, index);
999 if (unlikely(page == NULL))
1000 goto no_cached_page;
1001 }
1002 if (PageReadahead(page)) {
1003 page_cache_async_readahead(mapping,
1004 ra, filp, page,
1005 index, last_index - index);
1006 }
1007 if (!PageUptodate(page)) {
1008 if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1009 !mapping->a_ops->is_partially_uptodate)
1010 goto page_not_up_to_date;
1011 if (!trylock_page(page))
1012 goto page_not_up_to_date;
1013 if (!mapping->a_ops->is_partially_uptodate(page,
1014 desc, offset))
1015 goto page_not_up_to_date_locked;
1016 unlock_page(page);
1017 }
1018 page_ok:
1019 /*
1020 * i_size must be checked after we know the page is Uptodate.
1021 *
1022 * Checking i_size after the check allows us to calculate
1023 * the correct value for "nr", which means the zero-filled
1024 * part of the page is not copied back to userspace (unless
1025 * another truncate extends the file - this is desired though).
1026 */
1027
1028 isize = i_size_read(inode);
1029 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1030 if (unlikely(!isize || index > end_index)) {
1031 page_cache_release(page);
1032 goto out;
1033 }
1034
1035 /* nr is the maximum number of bytes to copy from this page */
1036 nr = PAGE_CACHE_SIZE;
1037 if (index == end_index) {
1038 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1039 if (nr <= offset) {
1040 page_cache_release(page);
1041 goto out;
1042 }
1043 }
1044 nr = nr - offset;
1045
1046 /* If users can be writing to this page using arbitrary
1047 * virtual addresses, take care about potential aliasing
1048 * before reading the page on the kernel side.
1049 */
1050 if (mapping_writably_mapped(mapping))
1051 flush_dcache_page(page);
1052
1053 /*
1054 * When a sequential read accesses a page several times,
1055 * only mark it as accessed the first time.
1056 */
1057 if (prev_index != index || offset != prev_offset)
1058 mark_page_accessed(page);
1059 prev_index = index;
1060
1061 /*
1062 * Ok, we have the page, and it's up-to-date, so
1063 * now we can copy it to user space...
1064 *
1065 * The actor routine returns how many bytes were actually used..
1066 * NOTE! This may not be the same as how much of a user buffer
1067 * we filled up (we may be padding etc), so we can only update
1068 * "pos" here (the actor routine has to update the user buffer
1069 * pointers and the remaining count).
1070 */
1071 ret = actor(desc, page, offset, nr);
1072 offset += ret;
1073 index += offset >> PAGE_CACHE_SHIFT;
1074 offset &= ~PAGE_CACHE_MASK;
1075 prev_offset = offset;
1076
1077 page_cache_release(page);
1078 if (ret == nr && desc->count)
1079 continue;
1080 goto out;
1081
1082 page_not_up_to_date:
1083 /* Get exclusive access to the page ... */
1084 error = lock_page_killable(page);
1085 if (unlikely(error))
1086 goto readpage_error;
1087
1088 page_not_up_to_date_locked:
1089 /* Did it get truncated before we got the lock? */
1090 if (!page->mapping) {
1091 unlock_page(page);
1092 page_cache_release(page);
1093 continue;
1094 }
1095
1096 /* Did somebody else fill it already? */
1097 if (PageUptodate(page)) {
1098 unlock_page(page);
1099 goto page_ok;
1100 }
1101
1102 readpage:
1103 /* Start the actual read. The read will unlock the page. */
1104 error = mapping->a_ops->readpage(filp, page);
1105
1106 if (unlikely(error)) {
1107 if (error == AOP_TRUNCATED_PAGE) {
1108 page_cache_release(page);
1109 goto find_page;
1110 }
1111 goto readpage_error;
1112 }
1113
1114 if (!PageUptodate(page)) {
1115 error = lock_page_killable(page);
1116 if (unlikely(error))
1117 goto readpage_error;
1118 if (!PageUptodate(page)) {
1119 if (page->mapping == NULL) {
1120 /*
1121 * invalidate_mapping_pages got it
1122 */
1123 unlock_page(page);
1124 page_cache_release(page);
1125 goto find_page;
1126 }
1127 unlock_page(page);
1128 shrink_readahead_size_eio(filp, ra);
1129 error = -EIO;
1130 goto readpage_error;
1131 }
1132 unlock_page(page);
1133 }
1134
1135 goto page_ok;
1136
1137 readpage_error:
1138 /* UHHUH! A synchronous read error occurred. Report it */
1139 desc->error = error;
1140 page_cache_release(page);
1141 goto out;
1142
1143 no_cached_page:
1144 /*
1145 * Ok, it wasn't cached, so we need to create a new
1146 * page..
1147 */
1148 page = page_cache_alloc_cold(mapping);
1149 if (!page) {
1150 desc->error = -ENOMEM;
1151 goto out;
1152 }
1153 error = add_to_page_cache_lru(page, mapping,
1154 index, GFP_KERNEL);
1155 if (error) {
1156 page_cache_release(page);
1157 if (error == -EEXIST)
1158 goto find_page;
1159 desc->error = error;
1160 goto out;
1161 }
1162 goto readpage;
1163 }
1164
1165 out:
1166 ra->prev_pos = prev_index;
1167 ra->prev_pos <<= PAGE_CACHE_SHIFT;
1168 ra->prev_pos |= prev_offset;
1169
1170 *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1171 file_accessed(filp);
1172 }
1173
1174 int file_read_actor(read_descriptor_t *desc, struct page *page,
1175 unsigned long offset, unsigned long size)
1176 {
1177 char *kaddr;
1178 unsigned long left, count = desc->count;
1179
1180 if (size > count)
1181 size = count;
1182
1183 /*
1184 * Faults on the destination of a read are common, so do it before
1185 * taking the kmap.
1186 */
1187 if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1188 kaddr = kmap_atomic(page, KM_USER0);
1189 left = __copy_to_user_inatomic(desc->arg.buf,
1190 kaddr + offset, size);
1191 kunmap_atomic(kaddr, KM_USER0);
1192 if (left == 0)
1193 goto success;
1194 }
1195
1196 /* Do it the slow way */
1197 kaddr = kmap(page);
1198 left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1199 kunmap(page);
1200
1201 if (left) {
1202 size -= left;
1203 desc->error = -EFAULT;
1204 }
1205 success:
1206 desc->count = count - size;
1207 desc->written += size;
1208 desc->arg.buf += size;
1209 return size;
1210 }
1211
1212 /*
1213 * Performs necessary checks before doing a write
1214 * @iov: io vector request
1215 * @nr_segs: number of segments in the iovec
1216 * @count: number of bytes to write
1217 * @access_flags: type of access: %VERIFY_READ or %VERIFY_WRITE
1218 *
1219 * Adjust number of segments and amount of bytes to write (nr_segs should be
1220 * properly initialized first). Returns appropriate error code that caller
1221 * should return or zero in case that write should be allowed.
1222 */
1223 int generic_segment_checks(const struct iovec *iov,
1224 unsigned long *nr_segs, size_t *count, int access_flags)
1225 {
1226 unsigned long seg;
1227 size_t cnt = 0;
1228 for (seg = 0; seg < *nr_segs; seg++) {
1229 const struct iovec *iv = &iov[seg];
1230
1231 /*
1232 * If any segment has a negative length, or the cumulative
1233 * length ever wraps negative then return -EINVAL.
1234 */
1235 cnt += iv->iov_len;
1236 if (unlikely((ssize_t)(cnt|iv->iov_len) < 0))
1237 return -EINVAL;
1238 if (access_ok(access_flags, iv->iov_base, iv->iov_len))
1239 continue;
1240 if (seg == 0)
1241 return -EFAULT;
1242 *nr_segs = seg;
1243 cnt -= iv->iov_len; /* This segment is no good */
1244 break;
1245 }
1246 *count = cnt;
1247 return 0;
1248 }
1249 EXPORT_SYMBOL(generic_segment_checks);
1250
1251 /**
1252 * generic_file_aio_read - generic filesystem read routine
1253 * @iocb: kernel I/O control block
1254 * @iov: io vector request
1255 * @nr_segs: number of segments in the iovec
1256 * @pos: current file position
1257 *
1258 * This is the "read()" routine for all filesystems
1259 * that can use the page cache directly.
1260 */
1261 ssize_t
1262 generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1263 unsigned long nr_segs, loff_t pos)
1264 {
1265 struct file *filp = iocb->ki_filp;
1266 ssize_t retval;
1267 unsigned long seg;
1268 size_t count;
1269 loff_t *ppos = &iocb->ki_pos;
1270
1271 count = 0;
1272 retval = generic_segment_checks(iov, &nr_segs, &count, VERIFY_WRITE);
1273 if (retval)
1274 return retval;
1275
1276 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1277 if (filp->f_flags & O_DIRECT) {
1278 loff_t size;
1279 struct address_space *mapping;
1280 struct inode *inode;
1281
1282 mapping = filp->f_mapping;
1283 inode = mapping->host;
1284 if (!count)
1285 goto out; /* skip atime */
1286 size = i_size_read(inode);
1287 if (pos < size) {
1288 retval = filemap_write_and_wait_range(mapping, pos,
1289 pos + iov_length(iov, nr_segs) - 1);
1290 if (!retval) {
1291 retval = mapping->a_ops->direct_IO(READ, iocb,
1292 iov, pos, nr_segs);
1293 }
1294 if (retval > 0)
1295 *ppos = pos + retval;
1296 if (retval) {
1297 file_accessed(filp);
1298 goto out;
1299 }
1300 }
1301 }
1302
1303 for (seg = 0; seg < nr_segs; seg++) {
1304 read_descriptor_t desc;
1305
1306 desc.written = 0;
1307 desc.arg.buf = iov[seg].iov_base;
1308 desc.count = iov[seg].iov_len;
1309 if (desc.count == 0)
1310 continue;
1311 desc.error = 0;
1312 do_generic_file_read(filp, ppos, &desc, file_read_actor);
1313 retval += desc.written;
1314 if (desc.error) {
1315 retval = retval ?: desc.error;
1316 break;
1317 }
1318 if (desc.count > 0)
1319 break;
1320 }
1321 out:
1322 return retval;
1323 }
1324 EXPORT_SYMBOL(generic_file_aio_read);
1325
1326 static ssize_t
1327 do_readahead(struct address_space *mapping, struct file *filp,
1328 pgoff_t index, unsigned long nr)
1329 {
1330 if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1331 return -EINVAL;
1332
1333 force_page_cache_readahead(mapping, filp, index, nr);
1334 return 0;
1335 }
1336
1337 SYSCALL_DEFINE(readahead)(int fd, loff_t offset, size_t count)
1338 {
1339 ssize_t ret;
1340 struct file *file;
1341
1342 ret = -EBADF;
1343 file = fget(fd);
1344 if (file) {
1345 if (file->f_mode & FMODE_READ) {
1346 struct address_space *mapping = file->f_mapping;
1347 pgoff_t start = offset >> PAGE_CACHE_SHIFT;
1348 pgoff_t end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1349 unsigned long len = end - start + 1;
1350 ret = do_readahead(mapping, file, start, len);
1351 }
1352 fput(file);
1353 }
1354 return ret;
1355 }
1356 #ifdef CONFIG_HAVE_SYSCALL_WRAPPERS
1357 asmlinkage long SyS_readahead(long fd, loff_t offset, long count)
1358 {
1359 return SYSC_readahead((int) fd, offset, (size_t) count);
1360 }
1361 SYSCALL_ALIAS(sys_readahead, SyS_readahead);
1362 #endif
1363
1364 #ifdef CONFIG_MMU
1365 /**
1366 * page_cache_read - adds requested page to the page cache if not already there
1367 * @file: file to read
1368 * @offset: page index
1369 *
1370 * This adds the requested page to the page cache if it isn't already there,
1371 * and schedules an I/O to read in its contents from disk.
1372 */
1373 static int page_cache_read(struct file *file, pgoff_t offset)
1374 {
1375 struct address_space *mapping = file->f_mapping;
1376 struct page *page;
1377 int ret;
1378
1379 do {
1380 page = page_cache_alloc_cold(mapping);
1381 if (!page)
1382 return -ENOMEM;
1383
1384 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1385 if (ret == 0)
1386 ret = mapping->a_ops->readpage(file, page);
1387 else if (ret == -EEXIST)
1388 ret = 0; /* losing race to add is OK */
1389
1390 page_cache_release(page);
1391
1392 } while (ret == AOP_TRUNCATED_PAGE);
1393
1394 return ret;
1395 }
1396
1397 #define MMAP_LOTSAMISS (100)
1398
1399 /*
1400 * Synchronous readahead happens when we don't even find
1401 * a page in the page cache at all.
1402 */
1403 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1404 struct file_ra_state *ra,
1405 struct file *file,
1406 pgoff_t offset)
1407 {
1408 unsigned long ra_pages;
1409 struct address_space *mapping = file->f_mapping;
1410
1411 /* If we don't want any read-ahead, don't bother */
1412 if (VM_RandomReadHint(vma))
1413 return;
1414
1415 if (VM_SequentialReadHint(vma) ||
1416 offset - 1 == (ra->prev_pos >> PAGE_CACHE_SHIFT)) {
1417 page_cache_sync_readahead(mapping, ra, file, offset,
1418 ra->ra_pages);
1419 return;
1420 }
1421
1422 if (ra->mmap_miss < INT_MAX)
1423 ra->mmap_miss++;
1424
1425 /*
1426 * Do we miss much more than hit in this file? If so,
1427 * stop bothering with read-ahead. It will only hurt.
1428 */
1429 if (ra->mmap_miss > MMAP_LOTSAMISS)
1430 return;
1431
1432 /*
1433 * mmap read-around
1434 */
1435 ra_pages = max_sane_readahead(ra->ra_pages);
1436 if (ra_pages) {
1437 ra->start = max_t(long, 0, offset - ra_pages/2);
1438 ra->size = ra_pages;
1439 ra->async_size = 0;
1440 ra_submit(ra, mapping, file);
1441 }
1442 }
1443
1444 /*
1445 * Asynchronous readahead happens when we find the page and PG_readahead,
1446 * so we want to possibly extend the readahead further..
1447 */
1448 static void do_async_mmap_readahead(struct vm_area_struct *vma,
1449 struct file_ra_state *ra,
1450 struct file *file,
1451 struct page *page,
1452 pgoff_t offset)
1453 {
1454 struct address_space *mapping = file->f_mapping;
1455
1456 /* If we don't want any read-ahead, don't bother */
1457 if (VM_RandomReadHint(vma))
1458 return;
1459 if (ra->mmap_miss > 0)
1460 ra->mmap_miss--;
1461 if (PageReadahead(page))
1462 page_cache_async_readahead(mapping, ra, file,
1463 page, offset, ra->ra_pages);
1464 }
1465
1466 /**
1467 * filemap_fault - read in file data for page fault handling
1468 * @vma: vma in which the fault was taken
1469 * @vmf: struct vm_fault containing details of the fault
1470 *
1471 * filemap_fault() is invoked via the vma operations vector for a
1472 * mapped memory region to read in file data during a page fault.
1473 *
1474 * The goto's are kind of ugly, but this streamlines the normal case of having
1475 * it in the page cache, and handles the special cases reasonably without
1476 * having a lot of duplicated code.
1477 */
1478 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1479 {
1480 int error;
1481 struct file *file = vma->vm_file;
1482 struct address_space *mapping = file->f_mapping;
1483 struct file_ra_state *ra = &file->f_ra;
1484 struct inode *inode = mapping->host;
1485 pgoff_t offset = vmf->pgoff;
1486 struct page *page;
1487 pgoff_t size;
1488 int ret = 0;
1489
1490 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1491 if (offset >= size)
1492 return VM_FAULT_SIGBUS;
1493
1494 /*
1495 * Do we have something in the page cache already?
1496 */
1497 page = find_get_page(mapping, offset);
1498 if (likely(page)) {
1499 /*
1500 * We found the page, so try async readahead before
1501 * waiting for the lock.
1502 */
1503 do_async_mmap_readahead(vma, ra, file, page, offset);
1504 lock_page(page);
1505
1506 /* Did it get truncated? */
1507 if (unlikely(page->mapping != mapping)) {
1508 unlock_page(page);
1509 put_page(page);
1510 goto no_cached_page;
1511 }
1512 } else {
1513 /* No page in the page cache at all */
1514 do_sync_mmap_readahead(vma, ra, file, offset);
1515 count_vm_event(PGMAJFAULT);
1516 ret = VM_FAULT_MAJOR;
1517 retry_find:
1518 page = find_lock_page(mapping, offset);
1519 if (!page)
1520 goto no_cached_page;
1521 }
1522
1523 /*
1524 * We have a locked page in the page cache, now we need to check
1525 * that it's up-to-date. If not, it is going to be due to an error.
1526 */
1527 if (unlikely(!PageUptodate(page)))
1528 goto page_not_uptodate;
1529
1530 /*
1531 * Found the page and have a reference on it.
1532 * We must recheck i_size under page lock.
1533 */
1534 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1535 if (unlikely(offset >= size)) {
1536 unlock_page(page);
1537 page_cache_release(page);
1538 return VM_FAULT_SIGBUS;
1539 }
1540
1541 ra->prev_pos = (loff_t)offset << PAGE_CACHE_SHIFT;
1542 vmf->page = page;
1543 return ret | VM_FAULT_LOCKED;
1544
1545 no_cached_page:
1546 /*
1547 * We're only likely to ever get here if MADV_RANDOM is in
1548 * effect.
1549 */
1550 error = page_cache_read(file, offset);
1551
1552 /*
1553 * The page we want has now been added to the page cache.
1554 * In the unlikely event that someone removed it in the
1555 * meantime, we'll just come back here and read it again.
1556 */
1557 if (error >= 0)
1558 goto retry_find;
1559
1560 /*
1561 * An error return from page_cache_read can result if the
1562 * system is low on memory, or a problem occurs while trying
1563 * to schedule I/O.
1564 */
1565 if (error == -ENOMEM)
1566 return VM_FAULT_OOM;
1567 return VM_FAULT_SIGBUS;
1568
1569 page_not_uptodate:
1570 /*
1571 * Umm, take care of errors if the page isn't up-to-date.
1572 * Try to re-read it _once_. We do this synchronously,
1573 * because there really aren't any performance issues here
1574 * and we need to check for errors.
1575 */
1576 ClearPageError(page);
1577 error = mapping->a_ops->readpage(file, page);
1578 if (!error) {
1579 wait_on_page_locked(page);
1580 if (!PageUptodate(page))
1581 error = -EIO;
1582 }
1583 page_cache_release(page);
1584
1585 if (!error || error == AOP_TRUNCATED_PAGE)
1586 goto retry_find;
1587
1588 /* Things didn't work out. Return zero to tell the mm layer so. */
1589 shrink_readahead_size_eio(file, ra);
1590 return VM_FAULT_SIGBUS;
1591 }
1592 EXPORT_SYMBOL(filemap_fault);
1593
1594 const struct vm_operations_struct generic_file_vm_ops = {
1595 .fault = filemap_fault,
1596 };
1597
1598 /* This is used for a general mmap of a disk file */
1599
1600 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1601 {
1602 struct address_space *mapping = file->f_mapping;
1603
1604 if (!mapping->a_ops->readpage)
1605 return -ENOEXEC;
1606 file_accessed(file);
1607 vma->vm_ops = &generic_file_vm_ops;
1608 vma->vm_flags |= VM_CAN_NONLINEAR;
1609 return 0;
1610 }
1611
1612 /*
1613 * This is for filesystems which do not implement ->writepage.
1614 */
1615 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1616 {
1617 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1618 return -EINVAL;
1619 return generic_file_mmap(file, vma);
1620 }
1621 #else
1622 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1623 {
1624 return -ENOSYS;
1625 }
1626 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1627 {
1628 return -ENOSYS;
1629 }
1630 #endif /* CONFIG_MMU */
1631
1632 EXPORT_SYMBOL(generic_file_mmap);
1633 EXPORT_SYMBOL(generic_file_readonly_mmap);
1634
1635 static struct page *__read_cache_page(struct address_space *mapping,
1636 pgoff_t index,
1637 int (*filler)(void *,struct page*),
1638 void *data,
1639 gfp_t gfp)
1640 {
1641 struct page *page;
1642 int err;
1643 repeat:
1644 page = find_get_page(mapping, index);
1645 if (!page) {
1646 page = __page_cache_alloc(gfp | __GFP_COLD);
1647 if (!page)
1648 return ERR_PTR(-ENOMEM);
1649 err = add_to_page_cache_lru(page, mapping, index, GFP_KERNEL);
1650 if (unlikely(err)) {
1651 page_cache_release(page);
1652 if (err == -EEXIST)
1653 goto repeat;
1654 /* Presumably ENOMEM for radix tree node */
1655 return ERR_PTR(err);
1656 }
1657 err = filler(data, page);
1658 if (err < 0) {
1659 page_cache_release(page);
1660 page = ERR_PTR(err);
1661 }
1662 }
1663 return page;
1664 }
1665
1666 static struct page *do_read_cache_page(struct address_space *mapping,
1667 pgoff_t index,
1668 int (*filler)(void *,struct page*),
1669 void *data,
1670 gfp_t gfp)
1671
1672 {
1673 struct page *page;
1674 int err;
1675
1676 retry:
1677 page = __read_cache_page(mapping, index, filler, data, gfp);
1678 if (IS_ERR(page))
1679 return page;
1680 if (PageUptodate(page))
1681 goto out;
1682
1683 lock_page(page);
1684 if (!page->mapping) {
1685 unlock_page(page);
1686 page_cache_release(page);
1687 goto retry;
1688 }
1689 if (PageUptodate(page)) {
1690 unlock_page(page);
1691 goto out;
1692 }
1693 err = filler(data, page);
1694 if (err < 0) {
1695 page_cache_release(page);
1696 return ERR_PTR(err);
1697 }
1698 out:
1699 mark_page_accessed(page);
1700 return page;
1701 }
1702
1703 /**
1704 * read_cache_page_async - read into page cache, fill it if needed
1705 * @mapping: the page's address_space
1706 * @index: the page index
1707 * @filler: function to perform the read
1708 * @data: destination for read data
1709 *
1710 * Same as read_cache_page, but don't wait for page to become unlocked
1711 * after submitting it to the filler.
1712 *
1713 * Read into the page cache. If a page already exists, and PageUptodate() is
1714 * not set, try to fill the page but don't wait for it to become unlocked.
1715 *
1716 * If the page does not get brought uptodate, return -EIO.
1717 */
1718 struct page *read_cache_page_async(struct address_space *mapping,
1719 pgoff_t index,
1720 int (*filler)(void *,struct page*),
1721 void *data)
1722 {
1723 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
1724 }
1725 EXPORT_SYMBOL(read_cache_page_async);
1726
1727 static struct page *wait_on_page_read(struct page *page)
1728 {
1729 if (!IS_ERR(page)) {
1730 wait_on_page_locked(page);
1731 if (!PageUptodate(page)) {
1732 page_cache_release(page);
1733 page = ERR_PTR(-EIO);
1734 }
1735 }
1736 return page;
1737 }
1738
1739 /**
1740 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
1741 * @mapping: the page's address_space
1742 * @index: the page index
1743 * @gfp: the page allocator flags to use if allocating
1744 *
1745 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
1746 * any new page allocations done using the specified allocation flags. Note
1747 * that the Radix tree operations will still use GFP_KERNEL, so you can't
1748 * expect to do this atomically or anything like that - but you can pass in
1749 * other page requirements.
1750 *
1751 * If the page does not get brought uptodate, return -EIO.
1752 */
1753 struct page *read_cache_page_gfp(struct address_space *mapping,
1754 pgoff_t index,
1755 gfp_t gfp)
1756 {
1757 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
1758
1759 return wait_on_page_read(do_read_cache_page(mapping, index, filler, NULL, gfp));
1760 }
1761 EXPORT_SYMBOL(read_cache_page_gfp);
1762
1763 /**
1764 * read_cache_page - read into page cache, fill it if needed
1765 * @mapping: the page's address_space
1766 * @index: the page index
1767 * @filler: function to perform the read
1768 * @data: destination for read data
1769 *
1770 * Read into the page cache. If a page already exists, and PageUptodate() is
1771 * not set, try to fill the page then wait for it to become unlocked.
1772 *
1773 * If the page does not get brought uptodate, return -EIO.
1774 */
1775 struct page *read_cache_page(struct address_space *mapping,
1776 pgoff_t index,
1777 int (*filler)(void *,struct page*),
1778 void *data)
1779 {
1780 return wait_on_page_read(read_cache_page_async(mapping, index, filler, data));
1781 }
1782 EXPORT_SYMBOL(read_cache_page);
1783
1784 /*
1785 * The logic we want is
1786 *
1787 * if suid or (sgid and xgrp)
1788 * remove privs
1789 */
1790 int should_remove_suid(struct dentry *dentry)
1791 {
1792 mode_t mode = dentry->d_inode->i_mode;
1793 int kill = 0;
1794
1795 /* suid always must be killed */
1796 if (unlikely(mode & S_ISUID))
1797 kill = ATTR_KILL_SUID;
1798
1799 /*
1800 * sgid without any exec bits is just a mandatory locking mark; leave
1801 * it alone. If some exec bits are set, it's a real sgid; kill it.
1802 */
1803 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1804 kill |= ATTR_KILL_SGID;
1805
1806 if (unlikely(kill && !capable(CAP_FSETID) && S_ISREG(mode)))
1807 return kill;
1808
1809 return 0;
1810 }
1811 EXPORT_SYMBOL(should_remove_suid);
1812
1813 static int __remove_suid(struct dentry *dentry, int kill)
1814 {
1815 struct iattr newattrs;
1816
1817 newattrs.ia_valid = ATTR_FORCE | kill;
1818 return notify_change(dentry, &newattrs);
1819 }
1820
1821 int file_remove_suid(struct file *file)
1822 {
1823 struct dentry *dentry = file->f_path.dentry;
1824 int killsuid = should_remove_suid(dentry);
1825 int killpriv = security_inode_need_killpriv(dentry);
1826 int error = 0;
1827
1828 if (killpriv < 0)
1829 return killpriv;
1830 if (killpriv)
1831 error = security_inode_killpriv(dentry);
1832 if (!error && killsuid)
1833 error = __remove_suid(dentry, killsuid);
1834
1835 return error;
1836 }
1837 EXPORT_SYMBOL(file_remove_suid);
1838
1839 static size_t __iovec_copy_from_user_inatomic(char *vaddr,
1840 const struct iovec *iov, size_t base, size_t bytes)
1841 {
1842 size_t copied = 0, left = 0;
1843
1844 while (bytes) {
1845 char __user *buf = iov->iov_base + base;
1846 int copy = min(bytes, iov->iov_len - base);
1847
1848 base = 0;
1849 left = __copy_from_user_inatomic(vaddr, buf, copy);
1850 copied += copy;
1851 bytes -= copy;
1852 vaddr += copy;
1853 iov++;
1854
1855 if (unlikely(left))
1856 break;
1857 }
1858 return copied - left;
1859 }
1860
1861 /*
1862 * Copy as much as we can into the page and return the number of bytes which
1863 * were successfully copied. If a fault is encountered then return the number of
1864 * bytes which were copied.
1865 */
1866 size_t iov_iter_copy_from_user_atomic(struct page *page,
1867 struct iov_iter *i, unsigned long offset, size_t bytes)
1868 {
1869 char *kaddr;
1870 size_t copied;
1871
1872 BUG_ON(!in_atomic());
1873 kaddr = kmap_atomic(page, KM_USER0);
1874 if (likely(i->nr_segs == 1)) {
1875 int left;
1876 char __user *buf = i->iov->iov_base + i->iov_offset;
1877 left = __copy_from_user_inatomic(kaddr + offset, buf, bytes);
1878 copied = bytes - left;
1879 } else {
1880 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1881 i->iov, i->iov_offset, bytes);
1882 }
1883 kunmap_atomic(kaddr, KM_USER0);
1884
1885 return copied;
1886 }
1887 EXPORT_SYMBOL(iov_iter_copy_from_user_atomic);
1888
1889 /*
1890 * This has the same sideeffects and return value as
1891 * iov_iter_copy_from_user_atomic().
1892 * The difference is that it attempts to resolve faults.
1893 * Page must not be locked.
1894 */
1895 size_t iov_iter_copy_from_user(struct page *page,
1896 struct iov_iter *i, unsigned long offset, size_t bytes)
1897 {
1898 char *kaddr;
1899 size_t copied;
1900
1901 kaddr = kmap(page);
1902 if (likely(i->nr_segs == 1)) {
1903 int left;
1904 char __user *buf = i->iov->iov_base + i->iov_offset;
1905 left = __copy_from_user(kaddr + offset, buf, bytes);
1906 copied = bytes - left;
1907 } else {
1908 copied = __iovec_copy_from_user_inatomic(kaddr + offset,
1909 i->iov, i->iov_offset, bytes);
1910 }
1911 kunmap(page);
1912 return copied;
1913 }
1914 EXPORT_SYMBOL(iov_iter_copy_from_user);
1915
1916 void iov_iter_advance(struct iov_iter *i, size_t bytes)
1917 {
1918 BUG_ON(i->count < bytes);
1919
1920 if (likely(i->nr_segs == 1)) {
1921 i->iov_offset += bytes;
1922 i->count -= bytes;
1923 } else {
1924 const struct iovec *iov = i->iov;
1925 size_t base = i->iov_offset;
1926
1927 /*
1928 * The !iov->iov_len check ensures we skip over unlikely
1929 * zero-length segments (without overruning the iovec).
1930 */
1931 while (bytes || unlikely(i->count && !iov->iov_len)) {
1932 int copy;
1933
1934 copy = min(bytes, iov->iov_len - base);
1935 BUG_ON(!i->count || i->count < copy);
1936 i->count -= copy;
1937 bytes -= copy;
1938 base += copy;
1939 if (iov->iov_len == base) {
1940 iov++;
1941 base = 0;
1942 }
1943 }
1944 i->iov = iov;
1945 i->iov_offset = base;
1946 }
1947 }
1948 EXPORT_SYMBOL(iov_iter_advance);
1949
1950 /*
1951 * Fault in the first iovec of the given iov_iter, to a maximum length
1952 * of bytes. Returns 0 on success, or non-zero if the memory could not be
1953 * accessed (ie. because it is an invalid address).
1954 *
1955 * writev-intensive code may want this to prefault several iovecs -- that
1956 * would be possible (callers must not rely on the fact that _only_ the
1957 * first iovec will be faulted with the current implementation).
1958 */
1959 int iov_iter_fault_in_readable(struct iov_iter *i, size_t bytes)
1960 {
1961 char __user *buf = i->iov->iov_base + i->iov_offset;
1962 bytes = min(bytes, i->iov->iov_len - i->iov_offset);
1963 return fault_in_pages_readable(buf, bytes);
1964 }
1965 EXPORT_SYMBOL(iov_iter_fault_in_readable);
1966
1967 /*
1968 * Return the count of just the current iov_iter segment.
1969 */
1970 size_t iov_iter_single_seg_count(struct iov_iter *i)
1971 {
1972 const struct iovec *iov = i->iov;
1973 if (i->nr_segs == 1)
1974 return i->count;
1975 else
1976 return min(i->count, iov->iov_len - i->iov_offset);
1977 }
1978 EXPORT_SYMBOL(iov_iter_single_seg_count);
1979
1980 /*
1981 * Performs necessary checks before doing a write
1982 *
1983 * Can adjust writing position or amount of bytes to write.
1984 * Returns appropriate error code that caller should return or
1985 * zero in case that write should be allowed.
1986 */
1987 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
1988 {
1989 struct inode *inode = file->f_mapping->host;
1990 unsigned long limit = rlimit(RLIMIT_FSIZE);
1991
1992 if (unlikely(*pos < 0))
1993 return -EINVAL;
1994
1995 if (!isblk) {
1996 /* FIXME: this is for backwards compatibility with 2.4 */
1997 if (file->f_flags & O_APPEND)
1998 *pos = i_size_read(inode);
1999
2000 if (limit != RLIM_INFINITY) {
2001 if (*pos >= limit) {
2002 send_sig(SIGXFSZ, current, 0);
2003 return -EFBIG;
2004 }
2005 if (*count > limit - (typeof(limit))*pos) {
2006 *count = limit - (typeof(limit))*pos;
2007 }
2008 }
2009 }
2010
2011 /*
2012 * LFS rule
2013 */
2014 if (unlikely(*pos + *count > MAX_NON_LFS &&
2015 !(file->f_flags & O_LARGEFILE))) {
2016 if (*pos >= MAX_NON_LFS) {
2017 return -EFBIG;
2018 }
2019 if (*count > MAX_NON_LFS - (unsigned long)*pos) {
2020 *count = MAX_NON_LFS - (unsigned long)*pos;
2021 }
2022 }
2023
2024 /*
2025 * Are we about to exceed the fs block limit ?
2026 *
2027 * If we have written data it becomes a short write. If we have
2028 * exceeded without writing data we send a signal and return EFBIG.
2029 * Linus frestrict idea will clean these up nicely..
2030 */
2031 if (likely(!isblk)) {
2032 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
2033 if (*count || *pos > inode->i_sb->s_maxbytes) {
2034 return -EFBIG;
2035 }
2036 /* zero-length writes at ->s_maxbytes are OK */
2037 }
2038
2039 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
2040 *count = inode->i_sb->s_maxbytes - *pos;
2041 } else {
2042 #ifdef CONFIG_BLOCK
2043 loff_t isize;
2044 if (bdev_read_only(I_BDEV(inode)))
2045 return -EPERM;
2046 isize = i_size_read(inode);
2047 if (*pos >= isize) {
2048 if (*count || *pos > isize)
2049 return -ENOSPC;
2050 }
2051
2052 if (*pos + *count > isize)
2053 *count = isize - *pos;
2054 #else
2055 return -EPERM;
2056 #endif
2057 }
2058 return 0;
2059 }
2060 EXPORT_SYMBOL(generic_write_checks);
2061
2062 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2063 loff_t pos, unsigned len, unsigned flags,
2064 struct page **pagep, void **fsdata)
2065 {
2066 const struct address_space_operations *aops = mapping->a_ops;
2067
2068 return aops->write_begin(file, mapping, pos, len, flags,
2069 pagep, fsdata);
2070 }
2071 EXPORT_SYMBOL(pagecache_write_begin);
2072
2073 int pagecache_write_end(struct file *file, struct address_space *mapping,
2074 loff_t pos, unsigned len, unsigned copied,
2075 struct page *page, void *fsdata)
2076 {
2077 const struct address_space_operations *aops = mapping->a_ops;
2078
2079 mark_page_accessed(page);
2080 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2081 }
2082 EXPORT_SYMBOL(pagecache_write_end);
2083
2084 ssize_t
2085 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
2086 unsigned long *nr_segs, loff_t pos, loff_t *ppos,
2087 size_t count, size_t ocount)
2088 {
2089 struct file *file = iocb->ki_filp;
2090 struct address_space *mapping = file->f_mapping;
2091 struct inode *inode = mapping->host;
2092 ssize_t written;
2093 size_t write_len;
2094 pgoff_t end;
2095
2096 if (count != ocount)
2097 *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
2098
2099 write_len = iov_length(iov, *nr_segs);
2100 end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
2101
2102 written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2103 if (written)
2104 goto out;
2105
2106 /*
2107 * After a write we want buffered reads to be sure to go to disk to get
2108 * the new data. We invalidate clean cached page from the region we're
2109 * about to write. We do this *before* the write so that we can return
2110 * without clobbering -EIOCBQUEUED from ->direct_IO().
2111 */
2112 if (mapping->nrpages) {
2113 written = invalidate_inode_pages2_range(mapping,
2114 pos >> PAGE_CACHE_SHIFT, end);
2115 /*
2116 * If a page can not be invalidated, return 0 to fall back
2117 * to buffered write.
2118 */
2119 if (written) {
2120 if (written == -EBUSY)
2121 return 0;
2122 goto out;
2123 }
2124 }
2125
2126 written = mapping->a_ops->direct_IO(WRITE, iocb, iov, pos, *nr_segs);
2127
2128 /*
2129 * Finally, try again to invalidate clean pages which might have been
2130 * cached by non-direct readahead, or faulted in by get_user_pages()
2131 * if the source of the write was an mmap'ed region of the file
2132 * we're writing. Either one is a pretty crazy thing to do,
2133 * so we don't support it 100%. If this invalidation
2134 * fails, tough, the write still worked...
2135 */
2136 if (mapping->nrpages) {
2137 invalidate_inode_pages2_range(mapping,
2138 pos >> PAGE_CACHE_SHIFT, end);
2139 }
2140
2141 if (written > 0) {
2142 loff_t end = pos + written;
2143 if (end > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2144 i_size_write(inode, end);
2145 mark_inode_dirty(inode);
2146 }
2147 *ppos = end;
2148 }
2149 out:
2150 return written;
2151 }
2152 EXPORT_SYMBOL(generic_file_direct_write);
2153
2154 /*
2155 * Find or create a page at the given pagecache position. Return the locked
2156 * page. This function is specifically for buffered writes.
2157 */
2158 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2159 pgoff_t index, unsigned flags)
2160 {
2161 int status;
2162 struct page *page;
2163 gfp_t gfp_notmask = 0;
2164 if (flags & AOP_FLAG_NOFS)
2165 gfp_notmask = __GFP_FS;
2166 repeat:
2167 page = find_lock_page(mapping, index);
2168 if (likely(page))
2169 return page;
2170
2171 page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~gfp_notmask);
2172 if (!page)
2173 return NULL;
2174 status = add_to_page_cache_lru(page, mapping, index,
2175 GFP_KERNEL & ~gfp_notmask);
2176 if (unlikely(status)) {
2177 page_cache_release(page);
2178 if (status == -EEXIST)
2179 goto repeat;
2180 return NULL;
2181 }
2182 return page;
2183 }
2184 EXPORT_SYMBOL(grab_cache_page_write_begin);
2185
2186 static ssize_t generic_perform_write(struct file *file,
2187 struct iov_iter *i, loff_t pos)
2188 {
2189 struct address_space *mapping = file->f_mapping;
2190 const struct address_space_operations *a_ops = mapping->a_ops;
2191 long status = 0;
2192 ssize_t written = 0;
2193 unsigned int flags = 0;
2194
2195 /*
2196 * Copies from kernel address space cannot fail (NFSD is a big user).
2197 */
2198 if (segment_eq(get_fs(), KERNEL_DS))
2199 flags |= AOP_FLAG_UNINTERRUPTIBLE;
2200
2201 do {
2202 struct page *page;
2203 pgoff_t index; /* Pagecache index for current page */
2204 unsigned long offset; /* Offset into pagecache page */
2205 unsigned long bytes; /* Bytes to write to page */
2206 size_t copied; /* Bytes copied from user */
2207 void *fsdata;
2208
2209 offset = (pos & (PAGE_CACHE_SIZE - 1));
2210 index = pos >> PAGE_CACHE_SHIFT;
2211 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2212 iov_iter_count(i));
2213
2214 again:
2215
2216 /*
2217 * Bring in the user page that we will copy from _first_.
2218 * Otherwise there's a nasty deadlock on copying from the
2219 * same page as we're writing to, without it being marked
2220 * up-to-date.
2221 *
2222 * Not only is this an optimisation, but it is also required
2223 * to check that the address is actually valid, when atomic
2224 * usercopies are used, below.
2225 */
2226 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2227 status = -EFAULT;
2228 break;
2229 }
2230
2231 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2232 &page, &fsdata);
2233 if (unlikely(status))
2234 break;
2235
2236 if (mapping_writably_mapped(mapping))
2237 flush_dcache_page(page);
2238
2239 pagefault_disable();
2240 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2241 pagefault_enable();
2242 flush_dcache_page(page);
2243
2244 mark_page_accessed(page);
2245 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2246 page, fsdata);
2247 if (unlikely(status < 0))
2248 break;
2249 copied = status;
2250
2251 cond_resched();
2252
2253 iov_iter_advance(i, copied);
2254 if (unlikely(copied == 0)) {
2255 /*
2256 * If we were unable to copy any data at all, we must
2257 * fall back to a single segment length write.
2258 *
2259 * If we didn't fallback here, we could livelock
2260 * because not all segments in the iov can be copied at
2261 * once without a pagefault.
2262 */
2263 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2264 iov_iter_single_seg_count(i));
2265 goto again;
2266 }
2267 pos += copied;
2268 written += copied;
2269
2270 balance_dirty_pages_ratelimited(mapping);
2271
2272 } while (iov_iter_count(i));
2273
2274 return written ? written : status;
2275 }
2276
2277 ssize_t
2278 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2279 unsigned long nr_segs, loff_t pos, loff_t *ppos,
2280 size_t count, ssize_t written)
2281 {
2282 struct file *file = iocb->ki_filp;
2283 ssize_t status;
2284 struct iov_iter i;
2285
2286 iov_iter_init(&i, iov, nr_segs, count, written);
2287 status = generic_perform_write(file, &i, pos);
2288
2289 if (likely(status >= 0)) {
2290 written += status;
2291 *ppos = pos + status;
2292 }
2293
2294 return written ? written : status;
2295 }
2296 EXPORT_SYMBOL(generic_file_buffered_write);
2297
2298 /**
2299 * __generic_file_aio_write - write data to a file
2300 * @iocb: IO state structure (file, offset, etc.)
2301 * @iov: vector with data to write
2302 * @nr_segs: number of segments in the vector
2303 * @ppos: position where to write
2304 *
2305 * This function does all the work needed for actually writing data to a
2306 * file. It does all basic checks, removes SUID from the file, updates
2307 * modification times and calls proper subroutines depending on whether we
2308 * do direct IO or a standard buffered write.
2309 *
2310 * It expects i_mutex to be grabbed unless we work on a block device or similar
2311 * object which does not need locking at all.
2312 *
2313 * This function does *not* take care of syncing data in case of O_SYNC write.
2314 * A caller has to handle it. This is mainly due to the fact that we want to
2315 * avoid syncing under i_mutex.
2316 */
2317 ssize_t __generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2318 unsigned long nr_segs, loff_t *ppos)
2319 {
2320 struct file *file = iocb->ki_filp;
2321 struct address_space * mapping = file->f_mapping;
2322 size_t ocount; /* original count */
2323 size_t count; /* after file limit checks */
2324 struct inode *inode = mapping->host;
2325 loff_t pos;
2326 ssize_t written;
2327 ssize_t err;
2328
2329 ocount = 0;
2330 err = generic_segment_checks(iov, &nr_segs, &ocount, VERIFY_READ);
2331 if (err)
2332 return err;
2333
2334 count = ocount;
2335 pos = *ppos;
2336
2337 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2338
2339 /* We can write back this queue in page reclaim */
2340 current->backing_dev_info = mapping->backing_dev_info;
2341 written = 0;
2342
2343 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2344 if (err)
2345 goto out;
2346
2347 if (count == 0)
2348 goto out;
2349
2350 err = file_remove_suid(file);
2351 if (err)
2352 goto out;
2353
2354 file_update_time(file);
2355
2356 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2357 if (unlikely(file->f_flags & O_DIRECT)) {
2358 loff_t endbyte;
2359 ssize_t written_buffered;
2360
2361 written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2362 ppos, count, ocount);
2363 if (written < 0 || written == count)
2364 goto out;
2365 /*
2366 * direct-io write to a hole: fall through to buffered I/O
2367 * for completing the rest of the request.
2368 */
2369 pos += written;
2370 count -= written;
2371 written_buffered = generic_file_buffered_write(iocb, iov,
2372 nr_segs, pos, ppos, count,
2373 written);
2374 /*
2375 * If generic_file_buffered_write() retuned a synchronous error
2376 * then we want to return the number of bytes which were
2377 * direct-written, or the error code if that was zero. Note
2378 * that this differs from normal direct-io semantics, which
2379 * will return -EFOO even if some bytes were written.
2380 */
2381 if (written_buffered < 0) {
2382 err = written_buffered;
2383 goto out;
2384 }
2385
2386 /*
2387 * We need to ensure that the page cache pages are written to
2388 * disk and invalidated to preserve the expected O_DIRECT
2389 * semantics.
2390 */
2391 endbyte = pos + written_buffered - written - 1;
2392 err = filemap_write_and_wait_range(file->f_mapping, pos, endbyte);
2393 if (err == 0) {
2394 written = written_buffered;
2395 invalidate_mapping_pages(mapping,
2396 pos >> PAGE_CACHE_SHIFT,
2397 endbyte >> PAGE_CACHE_SHIFT);
2398 } else {
2399 /*
2400 * We don't know how much we wrote, so just return
2401 * the number of bytes which were direct-written
2402 */
2403 }
2404 } else {
2405 written = generic_file_buffered_write(iocb, iov, nr_segs,
2406 pos, ppos, count, written);
2407 }
2408 out:
2409 current->backing_dev_info = NULL;
2410 return written ? written : err;
2411 }
2412 EXPORT_SYMBOL(__generic_file_aio_write);
2413
2414 /**
2415 * generic_file_aio_write - write data to a file
2416 * @iocb: IO state structure
2417 * @iov: vector with data to write
2418 * @nr_segs: number of segments in the vector
2419 * @pos: position in file where to write
2420 *
2421 * This is a wrapper around __generic_file_aio_write() to be used by most
2422 * filesystems. It takes care of syncing the file in case of O_SYNC file
2423 * and acquires i_mutex as needed.
2424 */
2425 ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2426 unsigned long nr_segs, loff_t pos)
2427 {
2428 struct file *file = iocb->ki_filp;
2429 struct inode *inode = file->f_mapping->host;
2430 ssize_t ret;
2431
2432 BUG_ON(iocb->ki_pos != pos);
2433
2434 mutex_lock(&inode->i_mutex);
2435 ret = __generic_file_aio_write(iocb, iov, nr_segs, &iocb->ki_pos);
2436 mutex_unlock(&inode->i_mutex);
2437
2438 if (ret > 0 || ret == -EIOCBQUEUED) {
2439 ssize_t err;
2440
2441 err = generic_write_sync(file, pos, ret);
2442 if (err < 0 && ret > 0)
2443 ret = err;
2444 }
2445 return ret;
2446 }
2447 EXPORT_SYMBOL(generic_file_aio_write);
2448
2449 /**
2450 * try_to_release_page() - release old fs-specific metadata on a page
2451 *
2452 * @page: the page which the kernel is trying to free
2453 * @gfp_mask: memory allocation flags (and I/O mode)
2454 *
2455 * The address_space is to try to release any data against the page
2456 * (presumably at page->private). If the release was successful, return `1'.
2457 * Otherwise return zero.
2458 *
2459 * This may also be called if PG_fscache is set on a page, indicating that the
2460 * page is known to the local caching routines.
2461 *
2462 * The @gfp_mask argument specifies whether I/O may be performed to release
2463 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT & __GFP_FS).
2464 *
2465 */
2466 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2467 {
2468 struct address_space * const mapping = page->mapping;
2469
2470 BUG_ON(!PageLocked(page));
2471 if (PageWriteback(page))
2472 return 0;
2473
2474 if (mapping && mapping->a_ops->releasepage)
2475 return mapping->a_ops->releasepage(page, gfp_mask);
2476 return try_to_free_buffers(page);
2477 }
2478
2479 EXPORT_SYMBOL(try_to_release_page);
This page took 0.076885 seconds and 6 git commands to generate.