mm: simplify filemap_nopage
[deliverable/linux.git] / mm / filemap.c
1 /*
2 * linux/mm/filemap.c
3 *
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
6
7 /*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
11 */
12 #include <linux/module.h>
13 #include <linux/slab.h>
14 #include <linux/compiler.h>
15 #include <linux/fs.h>
16 #include <linux/uaccess.h>
17 #include <linux/aio.h>
18 #include <linux/capability.h>
19 #include <linux/kernel_stat.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/pagevec.h>
29 #include <linux/blkdev.h>
30 #include <linux/security.h>
31 #include <linux/syscalls.h>
32 #include <linux/cpuset.h>
33 #include "filemap.h"
34 #include "internal.h"
35
36 /*
37 * FIXME: remove all knowledge of the buffer layer from the core VM
38 */
39 #include <linux/buffer_head.h> /* for generic_osync_inode */
40
41 #include <asm/mman.h>
42
43 static ssize_t
44 generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
45 loff_t offset, unsigned long nr_segs);
46
47 /*
48 * Shared mappings implemented 30.11.1994. It's not fully working yet,
49 * though.
50 *
51 * Shared mappings now work. 15.8.1995 Bruno.
52 *
53 * finished 'unifying' the page and buffer cache and SMP-threaded the
54 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
55 *
56 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
57 */
58
59 /*
60 * Lock ordering:
61 *
62 * ->i_mmap_lock (vmtruncate)
63 * ->private_lock (__free_pte->__set_page_dirty_buffers)
64 * ->swap_lock (exclusive_swap_page, others)
65 * ->mapping->tree_lock
66 *
67 * ->i_mutex
68 * ->i_mmap_lock (truncate->unmap_mapping_range)
69 *
70 * ->mmap_sem
71 * ->i_mmap_lock
72 * ->page_table_lock or pte_lock (various, mainly in memory.c)
73 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
74 *
75 * ->mmap_sem
76 * ->lock_page (access_process_vm)
77 *
78 * ->i_mutex (generic_file_buffered_write)
79 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
80 *
81 * ->i_mutex
82 * ->i_alloc_sem (various)
83 *
84 * ->inode_lock
85 * ->sb_lock (fs/fs-writeback.c)
86 * ->mapping->tree_lock (__sync_single_inode)
87 *
88 * ->i_mmap_lock
89 * ->anon_vma.lock (vma_adjust)
90 *
91 * ->anon_vma.lock
92 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
93 *
94 * ->page_table_lock or pte_lock
95 * ->swap_lock (try_to_unmap_one)
96 * ->private_lock (try_to_unmap_one)
97 * ->tree_lock (try_to_unmap_one)
98 * ->zone.lru_lock (follow_page->mark_page_accessed)
99 * ->zone.lru_lock (check_pte_range->isolate_lru_page)
100 * ->private_lock (page_remove_rmap->set_page_dirty)
101 * ->tree_lock (page_remove_rmap->set_page_dirty)
102 * ->inode_lock (page_remove_rmap->set_page_dirty)
103 * ->inode_lock (zap_pte_range->set_page_dirty)
104 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
105 *
106 * ->task->proc_lock
107 * ->dcache_lock (proc_pid_lookup)
108 */
109
110 /*
111 * Remove a page from the page cache and free it. Caller has to make
112 * sure the page is locked and that nobody else uses it - or that usage
113 * is safe. The caller must hold a write_lock on the mapping's tree_lock.
114 */
115 void __remove_from_page_cache(struct page *page)
116 {
117 struct address_space *mapping = page->mapping;
118
119 radix_tree_delete(&mapping->page_tree, page->index);
120 page->mapping = NULL;
121 mapping->nrpages--;
122 __dec_zone_page_state(page, NR_FILE_PAGES);
123 }
124
125 void remove_from_page_cache(struct page *page)
126 {
127 struct address_space *mapping = page->mapping;
128
129 BUG_ON(!PageLocked(page));
130
131 write_lock_irq(&mapping->tree_lock);
132 __remove_from_page_cache(page);
133 write_unlock_irq(&mapping->tree_lock);
134 }
135
136 static int sync_page(void *word)
137 {
138 struct address_space *mapping;
139 struct page *page;
140
141 page = container_of((unsigned long *)word, struct page, flags);
142
143 /*
144 * page_mapping() is being called without PG_locked held.
145 * Some knowledge of the state and use of the page is used to
146 * reduce the requirements down to a memory barrier.
147 * The danger here is of a stale page_mapping() return value
148 * indicating a struct address_space different from the one it's
149 * associated with when it is associated with one.
150 * After smp_mb(), it's either the correct page_mapping() for
151 * the page, or an old page_mapping() and the page's own
152 * page_mapping() has gone NULL.
153 * The ->sync_page() address_space operation must tolerate
154 * page_mapping() going NULL. By an amazing coincidence,
155 * this comes about because none of the users of the page
156 * in the ->sync_page() methods make essential use of the
157 * page_mapping(), merely passing the page down to the backing
158 * device's unplug functions when it's non-NULL, which in turn
159 * ignore it for all cases but swap, where only page_private(page) is
160 * of interest. When page_mapping() does go NULL, the entire
161 * call stack gracefully ignores the page and returns.
162 * -- wli
163 */
164 smp_mb();
165 mapping = page_mapping(page);
166 if (mapping && mapping->a_ops && mapping->a_ops->sync_page)
167 mapping->a_ops->sync_page(page);
168 io_schedule();
169 return 0;
170 }
171
172 /**
173 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
174 * @mapping: address space structure to write
175 * @start: offset in bytes where the range starts
176 * @end: offset in bytes where the range ends (inclusive)
177 * @sync_mode: enable synchronous operation
178 *
179 * Start writeback against all of a mapping's dirty pages that lie
180 * within the byte offsets <start, end> inclusive.
181 *
182 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
183 * opposed to a regular memory cleansing writeback. The difference between
184 * these two operations is that if a dirty page/buffer is encountered, it must
185 * be waited upon, and not just skipped over.
186 */
187 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
188 loff_t end, int sync_mode)
189 {
190 int ret;
191 struct writeback_control wbc = {
192 .sync_mode = sync_mode,
193 .nr_to_write = mapping->nrpages * 2,
194 .range_start = start,
195 .range_end = end,
196 };
197
198 if (!mapping_cap_writeback_dirty(mapping))
199 return 0;
200
201 ret = do_writepages(mapping, &wbc);
202 return ret;
203 }
204
205 static inline int __filemap_fdatawrite(struct address_space *mapping,
206 int sync_mode)
207 {
208 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
209 }
210
211 int filemap_fdatawrite(struct address_space *mapping)
212 {
213 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
214 }
215 EXPORT_SYMBOL(filemap_fdatawrite);
216
217 static int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
218 loff_t end)
219 {
220 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
221 }
222
223 /**
224 * filemap_flush - mostly a non-blocking flush
225 * @mapping: target address_space
226 *
227 * This is a mostly non-blocking flush. Not suitable for data-integrity
228 * purposes - I/O may not be started against all dirty pages.
229 */
230 int filemap_flush(struct address_space *mapping)
231 {
232 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
233 }
234 EXPORT_SYMBOL(filemap_flush);
235
236 /**
237 * wait_on_page_writeback_range - wait for writeback to complete
238 * @mapping: target address_space
239 * @start: beginning page index
240 * @end: ending page index
241 *
242 * Wait for writeback to complete against pages indexed by start->end
243 * inclusive
244 */
245 int wait_on_page_writeback_range(struct address_space *mapping,
246 pgoff_t start, pgoff_t end)
247 {
248 struct pagevec pvec;
249 int nr_pages;
250 int ret = 0;
251 pgoff_t index;
252
253 if (end < start)
254 return 0;
255
256 pagevec_init(&pvec, 0);
257 index = start;
258 while ((index <= end) &&
259 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
260 PAGECACHE_TAG_WRITEBACK,
261 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
262 unsigned i;
263
264 for (i = 0; i < nr_pages; i++) {
265 struct page *page = pvec.pages[i];
266
267 /* until radix tree lookup accepts end_index */
268 if (page->index > end)
269 continue;
270
271 wait_on_page_writeback(page);
272 if (PageError(page))
273 ret = -EIO;
274 }
275 pagevec_release(&pvec);
276 cond_resched();
277 }
278
279 /* Check for outstanding write errors */
280 if (test_and_clear_bit(AS_ENOSPC, &mapping->flags))
281 ret = -ENOSPC;
282 if (test_and_clear_bit(AS_EIO, &mapping->flags))
283 ret = -EIO;
284
285 return ret;
286 }
287
288 /**
289 * sync_page_range - write and wait on all pages in the passed range
290 * @inode: target inode
291 * @mapping: target address_space
292 * @pos: beginning offset in pages to write
293 * @count: number of bytes to write
294 *
295 * Write and wait upon all the pages in the passed range. This is a "data
296 * integrity" operation. It waits upon in-flight writeout before starting and
297 * waiting upon new writeout. If there was an IO error, return it.
298 *
299 * We need to re-take i_mutex during the generic_osync_inode list walk because
300 * it is otherwise livelockable.
301 */
302 int sync_page_range(struct inode *inode, struct address_space *mapping,
303 loff_t pos, loff_t count)
304 {
305 pgoff_t start = pos >> PAGE_CACHE_SHIFT;
306 pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
307 int ret;
308
309 if (!mapping_cap_writeback_dirty(mapping) || !count)
310 return 0;
311 ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
312 if (ret == 0) {
313 mutex_lock(&inode->i_mutex);
314 ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
315 mutex_unlock(&inode->i_mutex);
316 }
317 if (ret == 0)
318 ret = wait_on_page_writeback_range(mapping, start, end);
319 return ret;
320 }
321 EXPORT_SYMBOL(sync_page_range);
322
323 /**
324 * sync_page_range_nolock
325 * @inode: target inode
326 * @mapping: target address_space
327 * @pos: beginning offset in pages to write
328 * @count: number of bytes to write
329 *
330 * Note: Holding i_mutex across sync_page_range_nolock() is not a good idea
331 * as it forces O_SYNC writers to different parts of the same file
332 * to be serialised right until io completion.
333 */
334 int sync_page_range_nolock(struct inode *inode, struct address_space *mapping,
335 loff_t pos, loff_t count)
336 {
337 pgoff_t start = pos >> PAGE_CACHE_SHIFT;
338 pgoff_t end = (pos + count - 1) >> PAGE_CACHE_SHIFT;
339 int ret;
340
341 if (!mapping_cap_writeback_dirty(mapping) || !count)
342 return 0;
343 ret = filemap_fdatawrite_range(mapping, pos, pos + count - 1);
344 if (ret == 0)
345 ret = generic_osync_inode(inode, mapping, OSYNC_METADATA);
346 if (ret == 0)
347 ret = wait_on_page_writeback_range(mapping, start, end);
348 return ret;
349 }
350 EXPORT_SYMBOL(sync_page_range_nolock);
351
352 /**
353 * filemap_fdatawait - wait for all under-writeback pages to complete
354 * @mapping: address space structure to wait for
355 *
356 * Walk the list of under-writeback pages of the given address space
357 * and wait for all of them.
358 */
359 int filemap_fdatawait(struct address_space *mapping)
360 {
361 loff_t i_size = i_size_read(mapping->host);
362
363 if (i_size == 0)
364 return 0;
365
366 return wait_on_page_writeback_range(mapping, 0,
367 (i_size - 1) >> PAGE_CACHE_SHIFT);
368 }
369 EXPORT_SYMBOL(filemap_fdatawait);
370
371 int filemap_write_and_wait(struct address_space *mapping)
372 {
373 int err = 0;
374
375 if (mapping->nrpages) {
376 err = filemap_fdatawrite(mapping);
377 /*
378 * Even if the above returned error, the pages may be
379 * written partially (e.g. -ENOSPC), so we wait for it.
380 * But the -EIO is special case, it may indicate the worst
381 * thing (e.g. bug) happened, so we avoid waiting for it.
382 */
383 if (err != -EIO) {
384 int err2 = filemap_fdatawait(mapping);
385 if (!err)
386 err = err2;
387 }
388 }
389 return err;
390 }
391 EXPORT_SYMBOL(filemap_write_and_wait);
392
393 /**
394 * filemap_write_and_wait_range - write out & wait on a file range
395 * @mapping: the address_space for the pages
396 * @lstart: offset in bytes where the range starts
397 * @lend: offset in bytes where the range ends (inclusive)
398 *
399 * Write out and wait upon file offsets lstart->lend, inclusive.
400 *
401 * Note that `lend' is inclusive (describes the last byte to be written) so
402 * that this function can be used to write to the very end-of-file (end = -1).
403 */
404 int filemap_write_and_wait_range(struct address_space *mapping,
405 loff_t lstart, loff_t lend)
406 {
407 int err = 0;
408
409 if (mapping->nrpages) {
410 err = __filemap_fdatawrite_range(mapping, lstart, lend,
411 WB_SYNC_ALL);
412 /* See comment of filemap_write_and_wait() */
413 if (err != -EIO) {
414 int err2 = wait_on_page_writeback_range(mapping,
415 lstart >> PAGE_CACHE_SHIFT,
416 lend >> PAGE_CACHE_SHIFT);
417 if (!err)
418 err = err2;
419 }
420 }
421 return err;
422 }
423
424 /**
425 * add_to_page_cache - add newly allocated pagecache pages
426 * @page: page to add
427 * @mapping: the page's address_space
428 * @offset: page index
429 * @gfp_mask: page allocation mode
430 *
431 * This function is used to add newly allocated pagecache pages;
432 * the page is new, so we can just run SetPageLocked() against it.
433 * The other page state flags were set by rmqueue().
434 *
435 * This function does not add the page to the LRU. The caller must do that.
436 */
437 int add_to_page_cache(struct page *page, struct address_space *mapping,
438 pgoff_t offset, gfp_t gfp_mask)
439 {
440 int error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
441
442 if (error == 0) {
443 write_lock_irq(&mapping->tree_lock);
444 error = radix_tree_insert(&mapping->page_tree, offset, page);
445 if (!error) {
446 page_cache_get(page);
447 SetPageLocked(page);
448 page->mapping = mapping;
449 page->index = offset;
450 mapping->nrpages++;
451 __inc_zone_page_state(page, NR_FILE_PAGES);
452 }
453 write_unlock_irq(&mapping->tree_lock);
454 radix_tree_preload_end();
455 }
456 return error;
457 }
458 EXPORT_SYMBOL(add_to_page_cache);
459
460 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
461 pgoff_t offset, gfp_t gfp_mask)
462 {
463 int ret = add_to_page_cache(page, mapping, offset, gfp_mask);
464 if (ret == 0)
465 lru_cache_add(page);
466 return ret;
467 }
468
469 #ifdef CONFIG_NUMA
470 struct page *__page_cache_alloc(gfp_t gfp)
471 {
472 if (cpuset_do_page_mem_spread()) {
473 int n = cpuset_mem_spread_node();
474 return alloc_pages_node(n, gfp, 0);
475 }
476 return alloc_pages(gfp, 0);
477 }
478 EXPORT_SYMBOL(__page_cache_alloc);
479 #endif
480
481 static int __sleep_on_page_lock(void *word)
482 {
483 io_schedule();
484 return 0;
485 }
486
487 /*
488 * In order to wait for pages to become available there must be
489 * waitqueues associated with pages. By using a hash table of
490 * waitqueues where the bucket discipline is to maintain all
491 * waiters on the same queue and wake all when any of the pages
492 * become available, and for the woken contexts to check to be
493 * sure the appropriate page became available, this saves space
494 * at a cost of "thundering herd" phenomena during rare hash
495 * collisions.
496 */
497 static wait_queue_head_t *page_waitqueue(struct page *page)
498 {
499 const struct zone *zone = page_zone(page);
500
501 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
502 }
503
504 static inline void wake_up_page(struct page *page, int bit)
505 {
506 __wake_up_bit(page_waitqueue(page), &page->flags, bit);
507 }
508
509 void fastcall wait_on_page_bit(struct page *page, int bit_nr)
510 {
511 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
512
513 if (test_bit(bit_nr, &page->flags))
514 __wait_on_bit(page_waitqueue(page), &wait, sync_page,
515 TASK_UNINTERRUPTIBLE);
516 }
517 EXPORT_SYMBOL(wait_on_page_bit);
518
519 /**
520 * unlock_page - unlock a locked page
521 * @page: the page
522 *
523 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
524 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
525 * mechananism between PageLocked pages and PageWriteback pages is shared.
526 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
527 *
528 * The first mb is necessary to safely close the critical section opened by the
529 * TestSetPageLocked(), the second mb is necessary to enforce ordering between
530 * the clear_bit and the read of the waitqueue (to avoid SMP races with a
531 * parallel wait_on_page_locked()).
532 */
533 void fastcall unlock_page(struct page *page)
534 {
535 smp_mb__before_clear_bit();
536 if (!TestClearPageLocked(page))
537 BUG();
538 smp_mb__after_clear_bit();
539 wake_up_page(page, PG_locked);
540 }
541 EXPORT_SYMBOL(unlock_page);
542
543 /**
544 * end_page_writeback - end writeback against a page
545 * @page: the page
546 */
547 void end_page_writeback(struct page *page)
548 {
549 if (!TestClearPageReclaim(page) || rotate_reclaimable_page(page)) {
550 if (!test_clear_page_writeback(page))
551 BUG();
552 }
553 smp_mb__after_clear_bit();
554 wake_up_page(page, PG_writeback);
555 }
556 EXPORT_SYMBOL(end_page_writeback);
557
558 /**
559 * __lock_page - get a lock on the page, assuming we need to sleep to get it
560 * @page: the page to lock
561 *
562 * Ugly. Running sync_page() in state TASK_UNINTERRUPTIBLE is scary. If some
563 * random driver's requestfn sets TASK_RUNNING, we could busywait. However
564 * chances are that on the second loop, the block layer's plug list is empty,
565 * so sync_page() will then return in state TASK_UNINTERRUPTIBLE.
566 */
567 void fastcall __lock_page(struct page *page)
568 {
569 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
570
571 __wait_on_bit_lock(page_waitqueue(page), &wait, sync_page,
572 TASK_UNINTERRUPTIBLE);
573 }
574 EXPORT_SYMBOL(__lock_page);
575
576 /*
577 * Variant of lock_page that does not require the caller to hold a reference
578 * on the page's mapping.
579 */
580 void fastcall __lock_page_nosync(struct page *page)
581 {
582 DEFINE_WAIT_BIT(wait, &page->flags, PG_locked);
583 __wait_on_bit_lock(page_waitqueue(page), &wait, __sleep_on_page_lock,
584 TASK_UNINTERRUPTIBLE);
585 }
586
587 /**
588 * find_get_page - find and get a page reference
589 * @mapping: the address_space to search
590 * @offset: the page index
591 *
592 * Is there a pagecache struct page at the given (mapping, offset) tuple?
593 * If yes, increment its refcount and return it; if no, return NULL.
594 */
595 struct page * find_get_page(struct address_space *mapping, unsigned long offset)
596 {
597 struct page *page;
598
599 read_lock_irq(&mapping->tree_lock);
600 page = radix_tree_lookup(&mapping->page_tree, offset);
601 if (page)
602 page_cache_get(page);
603 read_unlock_irq(&mapping->tree_lock);
604 return page;
605 }
606 EXPORT_SYMBOL(find_get_page);
607
608 /**
609 * find_lock_page - locate, pin and lock a pagecache page
610 * @mapping: the address_space to search
611 * @offset: the page index
612 *
613 * Locates the desired pagecache page, locks it, increments its reference
614 * count and returns its address.
615 *
616 * Returns zero if the page was not present. find_lock_page() may sleep.
617 */
618 struct page *find_lock_page(struct address_space *mapping,
619 unsigned long offset)
620 {
621 struct page *page;
622
623 read_lock_irq(&mapping->tree_lock);
624 repeat:
625 page = radix_tree_lookup(&mapping->page_tree, offset);
626 if (page) {
627 page_cache_get(page);
628 if (TestSetPageLocked(page)) {
629 read_unlock_irq(&mapping->tree_lock);
630 __lock_page(page);
631 read_lock_irq(&mapping->tree_lock);
632
633 /* Has the page been truncated while we slept? */
634 if (unlikely(page->mapping != mapping ||
635 page->index != offset)) {
636 unlock_page(page);
637 page_cache_release(page);
638 goto repeat;
639 }
640 }
641 }
642 read_unlock_irq(&mapping->tree_lock);
643 return page;
644 }
645 EXPORT_SYMBOL(find_lock_page);
646
647 /**
648 * find_or_create_page - locate or add a pagecache page
649 * @mapping: the page's address_space
650 * @index: the page's index into the mapping
651 * @gfp_mask: page allocation mode
652 *
653 * Locates a page in the pagecache. If the page is not present, a new page
654 * is allocated using @gfp_mask and is added to the pagecache and to the VM's
655 * LRU list. The returned page is locked and has its reference count
656 * incremented.
657 *
658 * find_or_create_page() may sleep, even if @gfp_flags specifies an atomic
659 * allocation!
660 *
661 * find_or_create_page() returns the desired page's address, or zero on
662 * memory exhaustion.
663 */
664 struct page *find_or_create_page(struct address_space *mapping,
665 unsigned long index, gfp_t gfp_mask)
666 {
667 struct page *page, *cached_page = NULL;
668 int err;
669 repeat:
670 page = find_lock_page(mapping, index);
671 if (!page) {
672 if (!cached_page) {
673 cached_page = alloc_page(gfp_mask);
674 if (!cached_page)
675 return NULL;
676 }
677 err = add_to_page_cache_lru(cached_page, mapping,
678 index, gfp_mask);
679 if (!err) {
680 page = cached_page;
681 cached_page = NULL;
682 } else if (err == -EEXIST)
683 goto repeat;
684 }
685 if (cached_page)
686 page_cache_release(cached_page);
687 return page;
688 }
689 EXPORT_SYMBOL(find_or_create_page);
690
691 /**
692 * find_get_pages - gang pagecache lookup
693 * @mapping: The address_space to search
694 * @start: The starting page index
695 * @nr_pages: The maximum number of pages
696 * @pages: Where the resulting pages are placed
697 *
698 * find_get_pages() will search for and return a group of up to
699 * @nr_pages pages in the mapping. The pages are placed at @pages.
700 * find_get_pages() takes a reference against the returned pages.
701 *
702 * The search returns a group of mapping-contiguous pages with ascending
703 * indexes. There may be holes in the indices due to not-present pages.
704 *
705 * find_get_pages() returns the number of pages which were found.
706 */
707 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
708 unsigned int nr_pages, struct page **pages)
709 {
710 unsigned int i;
711 unsigned int ret;
712
713 read_lock_irq(&mapping->tree_lock);
714 ret = radix_tree_gang_lookup(&mapping->page_tree,
715 (void **)pages, start, nr_pages);
716 for (i = 0; i < ret; i++)
717 page_cache_get(pages[i]);
718 read_unlock_irq(&mapping->tree_lock);
719 return ret;
720 }
721
722 /**
723 * find_get_pages_contig - gang contiguous pagecache lookup
724 * @mapping: The address_space to search
725 * @index: The starting page index
726 * @nr_pages: The maximum number of pages
727 * @pages: Where the resulting pages are placed
728 *
729 * find_get_pages_contig() works exactly like find_get_pages(), except
730 * that the returned number of pages are guaranteed to be contiguous.
731 *
732 * find_get_pages_contig() returns the number of pages which were found.
733 */
734 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
735 unsigned int nr_pages, struct page **pages)
736 {
737 unsigned int i;
738 unsigned int ret;
739
740 read_lock_irq(&mapping->tree_lock);
741 ret = radix_tree_gang_lookup(&mapping->page_tree,
742 (void **)pages, index, nr_pages);
743 for (i = 0; i < ret; i++) {
744 if (pages[i]->mapping == NULL || pages[i]->index != index)
745 break;
746
747 page_cache_get(pages[i]);
748 index++;
749 }
750 read_unlock_irq(&mapping->tree_lock);
751 return i;
752 }
753
754 /**
755 * find_get_pages_tag - find and return pages that match @tag
756 * @mapping: the address_space to search
757 * @index: the starting page index
758 * @tag: the tag index
759 * @nr_pages: the maximum number of pages
760 * @pages: where the resulting pages are placed
761 *
762 * Like find_get_pages, except we only return pages which are tagged with
763 * @tag. We update @index to index the next page for the traversal.
764 */
765 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
766 int tag, unsigned int nr_pages, struct page **pages)
767 {
768 unsigned int i;
769 unsigned int ret;
770
771 read_lock_irq(&mapping->tree_lock);
772 ret = radix_tree_gang_lookup_tag(&mapping->page_tree,
773 (void **)pages, *index, nr_pages, tag);
774 for (i = 0; i < ret; i++)
775 page_cache_get(pages[i]);
776 if (ret)
777 *index = pages[ret - 1]->index + 1;
778 read_unlock_irq(&mapping->tree_lock);
779 return ret;
780 }
781
782 /**
783 * grab_cache_page_nowait - returns locked page at given index in given cache
784 * @mapping: target address_space
785 * @index: the page index
786 *
787 * Same as grab_cache_page(), but do not wait if the page is unavailable.
788 * This is intended for speculative data generators, where the data can
789 * be regenerated if the page couldn't be grabbed. This routine should
790 * be safe to call while holding the lock for another page.
791 *
792 * Clear __GFP_FS when allocating the page to avoid recursion into the fs
793 * and deadlock against the caller's locked page.
794 */
795 struct page *
796 grab_cache_page_nowait(struct address_space *mapping, unsigned long index)
797 {
798 struct page *page = find_get_page(mapping, index);
799
800 if (page) {
801 if (!TestSetPageLocked(page))
802 return page;
803 page_cache_release(page);
804 return NULL;
805 }
806 page = __page_cache_alloc(mapping_gfp_mask(mapping) & ~__GFP_FS);
807 if (page && add_to_page_cache_lru(page, mapping, index, GFP_KERNEL)) {
808 page_cache_release(page);
809 page = NULL;
810 }
811 return page;
812 }
813 EXPORT_SYMBOL(grab_cache_page_nowait);
814
815 /*
816 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
817 * a _large_ part of the i/o request. Imagine the worst scenario:
818 *
819 * ---R__________________________________________B__________
820 * ^ reading here ^ bad block(assume 4k)
821 *
822 * read(R) => miss => readahead(R...B) => media error => frustrating retries
823 * => failing the whole request => read(R) => read(R+1) =>
824 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
825 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
826 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
827 *
828 * It is going insane. Fix it by quickly scaling down the readahead size.
829 */
830 static void shrink_readahead_size_eio(struct file *filp,
831 struct file_ra_state *ra)
832 {
833 if (!ra->ra_pages)
834 return;
835
836 ra->ra_pages /= 4;
837 }
838
839 /**
840 * do_generic_mapping_read - generic file read routine
841 * @mapping: address_space to be read
842 * @_ra: file's readahead state
843 * @filp: the file to read
844 * @ppos: current file position
845 * @desc: read_descriptor
846 * @actor: read method
847 *
848 * This is a generic file read routine, and uses the
849 * mapping->a_ops->readpage() function for the actual low-level stuff.
850 *
851 * This is really ugly. But the goto's actually try to clarify some
852 * of the logic when it comes to error handling etc.
853 *
854 * Note the struct file* is only passed for the use of readpage.
855 * It may be NULL.
856 */
857 void do_generic_mapping_read(struct address_space *mapping,
858 struct file_ra_state *_ra,
859 struct file *filp,
860 loff_t *ppos,
861 read_descriptor_t *desc,
862 read_actor_t actor)
863 {
864 struct inode *inode = mapping->host;
865 unsigned long index;
866 unsigned long end_index;
867 unsigned long offset;
868 unsigned long last_index;
869 unsigned long next_index;
870 unsigned long prev_index;
871 loff_t isize;
872 struct page *cached_page;
873 int error;
874 struct file_ra_state ra = *_ra;
875
876 cached_page = NULL;
877 index = *ppos >> PAGE_CACHE_SHIFT;
878 next_index = index;
879 prev_index = ra.prev_page;
880 last_index = (*ppos + desc->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
881 offset = *ppos & ~PAGE_CACHE_MASK;
882
883 isize = i_size_read(inode);
884 if (!isize)
885 goto out;
886
887 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
888 for (;;) {
889 struct page *page;
890 unsigned long nr, ret;
891
892 /* nr is the maximum number of bytes to copy from this page */
893 nr = PAGE_CACHE_SIZE;
894 if (index >= end_index) {
895 if (index > end_index)
896 goto out;
897 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
898 if (nr <= offset) {
899 goto out;
900 }
901 }
902 nr = nr - offset;
903
904 cond_resched();
905 if (index == next_index)
906 next_index = page_cache_readahead(mapping, &ra, filp,
907 index, last_index - index);
908
909 find_page:
910 page = find_get_page(mapping, index);
911 if (unlikely(page == NULL)) {
912 handle_ra_miss(mapping, &ra, index);
913 goto no_cached_page;
914 }
915 if (!PageUptodate(page))
916 goto page_not_up_to_date;
917 page_ok:
918
919 /* If users can be writing to this page using arbitrary
920 * virtual addresses, take care about potential aliasing
921 * before reading the page on the kernel side.
922 */
923 if (mapping_writably_mapped(mapping))
924 flush_dcache_page(page);
925
926 /*
927 * When (part of) the same page is read multiple times
928 * in succession, only mark it as accessed the first time.
929 */
930 if (prev_index != index)
931 mark_page_accessed(page);
932 prev_index = index;
933
934 /*
935 * Ok, we have the page, and it's up-to-date, so
936 * now we can copy it to user space...
937 *
938 * The actor routine returns how many bytes were actually used..
939 * NOTE! This may not be the same as how much of a user buffer
940 * we filled up (we may be padding etc), so we can only update
941 * "pos" here (the actor routine has to update the user buffer
942 * pointers and the remaining count).
943 */
944 ret = actor(desc, page, offset, nr);
945 offset += ret;
946 index += offset >> PAGE_CACHE_SHIFT;
947 offset &= ~PAGE_CACHE_MASK;
948
949 page_cache_release(page);
950 if (ret == nr && desc->count)
951 continue;
952 goto out;
953
954 page_not_up_to_date:
955 /* Get exclusive access to the page ... */
956 lock_page(page);
957
958 /* Did it get truncated before we got the lock? */
959 if (!page->mapping) {
960 unlock_page(page);
961 page_cache_release(page);
962 continue;
963 }
964
965 /* Did somebody else fill it already? */
966 if (PageUptodate(page)) {
967 unlock_page(page);
968 goto page_ok;
969 }
970
971 readpage:
972 /* Start the actual read. The read will unlock the page. */
973 error = mapping->a_ops->readpage(filp, page);
974
975 if (unlikely(error)) {
976 if (error == AOP_TRUNCATED_PAGE) {
977 page_cache_release(page);
978 goto find_page;
979 }
980 goto readpage_error;
981 }
982
983 if (!PageUptodate(page)) {
984 lock_page(page);
985 if (!PageUptodate(page)) {
986 if (page->mapping == NULL) {
987 /*
988 * invalidate_inode_pages got it
989 */
990 unlock_page(page);
991 page_cache_release(page);
992 goto find_page;
993 }
994 unlock_page(page);
995 error = -EIO;
996 shrink_readahead_size_eio(filp, &ra);
997 goto readpage_error;
998 }
999 unlock_page(page);
1000 }
1001
1002 /*
1003 * i_size must be checked after we have done ->readpage.
1004 *
1005 * Checking i_size after the readpage allows us to calculate
1006 * the correct value for "nr", which means the zero-filled
1007 * part of the page is not copied back to userspace (unless
1008 * another truncate extends the file - this is desired though).
1009 */
1010 isize = i_size_read(inode);
1011 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1012 if (unlikely(!isize || index > end_index)) {
1013 page_cache_release(page);
1014 goto out;
1015 }
1016
1017 /* nr is the maximum number of bytes to copy from this page */
1018 nr = PAGE_CACHE_SIZE;
1019 if (index == end_index) {
1020 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1021 if (nr <= offset) {
1022 page_cache_release(page);
1023 goto out;
1024 }
1025 }
1026 nr = nr - offset;
1027 goto page_ok;
1028
1029 readpage_error:
1030 /* UHHUH! A synchronous read error occurred. Report it */
1031 desc->error = error;
1032 page_cache_release(page);
1033 goto out;
1034
1035 no_cached_page:
1036 /*
1037 * Ok, it wasn't cached, so we need to create a new
1038 * page..
1039 */
1040 if (!cached_page) {
1041 cached_page = page_cache_alloc_cold(mapping);
1042 if (!cached_page) {
1043 desc->error = -ENOMEM;
1044 goto out;
1045 }
1046 }
1047 error = add_to_page_cache_lru(cached_page, mapping,
1048 index, GFP_KERNEL);
1049 if (error) {
1050 if (error == -EEXIST)
1051 goto find_page;
1052 desc->error = error;
1053 goto out;
1054 }
1055 page = cached_page;
1056 cached_page = NULL;
1057 goto readpage;
1058 }
1059
1060 out:
1061 *_ra = ra;
1062
1063 *ppos = ((loff_t) index << PAGE_CACHE_SHIFT) + offset;
1064 if (cached_page)
1065 page_cache_release(cached_page);
1066 if (filp)
1067 file_accessed(filp);
1068 }
1069 EXPORT_SYMBOL(do_generic_mapping_read);
1070
1071 int file_read_actor(read_descriptor_t *desc, struct page *page,
1072 unsigned long offset, unsigned long size)
1073 {
1074 char *kaddr;
1075 unsigned long left, count = desc->count;
1076
1077 if (size > count)
1078 size = count;
1079
1080 /*
1081 * Faults on the destination of a read are common, so do it before
1082 * taking the kmap.
1083 */
1084 if (!fault_in_pages_writeable(desc->arg.buf, size)) {
1085 kaddr = kmap_atomic(page, KM_USER0);
1086 left = __copy_to_user_inatomic(desc->arg.buf,
1087 kaddr + offset, size);
1088 kunmap_atomic(kaddr, KM_USER0);
1089 if (left == 0)
1090 goto success;
1091 }
1092
1093 /* Do it the slow way */
1094 kaddr = kmap(page);
1095 left = __copy_to_user(desc->arg.buf, kaddr + offset, size);
1096 kunmap(page);
1097
1098 if (left) {
1099 size -= left;
1100 desc->error = -EFAULT;
1101 }
1102 success:
1103 desc->count = count - size;
1104 desc->written += size;
1105 desc->arg.buf += size;
1106 return size;
1107 }
1108
1109 /**
1110 * generic_file_aio_read - generic filesystem read routine
1111 * @iocb: kernel I/O control block
1112 * @iov: io vector request
1113 * @nr_segs: number of segments in the iovec
1114 * @pos: current file position
1115 *
1116 * This is the "read()" routine for all filesystems
1117 * that can use the page cache directly.
1118 */
1119 ssize_t
1120 generic_file_aio_read(struct kiocb *iocb, const struct iovec *iov,
1121 unsigned long nr_segs, loff_t pos)
1122 {
1123 struct file *filp = iocb->ki_filp;
1124 ssize_t retval;
1125 unsigned long seg;
1126 size_t count;
1127 loff_t *ppos = &iocb->ki_pos;
1128
1129 count = 0;
1130 for (seg = 0; seg < nr_segs; seg++) {
1131 const struct iovec *iv = &iov[seg];
1132
1133 /*
1134 * If any segment has a negative length, or the cumulative
1135 * length ever wraps negative then return -EINVAL.
1136 */
1137 count += iv->iov_len;
1138 if (unlikely((ssize_t)(count|iv->iov_len) < 0))
1139 return -EINVAL;
1140 if (access_ok(VERIFY_WRITE, iv->iov_base, iv->iov_len))
1141 continue;
1142 if (seg == 0)
1143 return -EFAULT;
1144 nr_segs = seg;
1145 count -= iv->iov_len; /* This segment is no good */
1146 break;
1147 }
1148
1149 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
1150 if (filp->f_flags & O_DIRECT) {
1151 loff_t size;
1152 struct address_space *mapping;
1153 struct inode *inode;
1154
1155 mapping = filp->f_mapping;
1156 inode = mapping->host;
1157 retval = 0;
1158 if (!count)
1159 goto out; /* skip atime */
1160 size = i_size_read(inode);
1161 if (pos < size) {
1162 retval = generic_file_direct_IO(READ, iocb,
1163 iov, pos, nr_segs);
1164 if (retval > 0)
1165 *ppos = pos + retval;
1166 }
1167 if (likely(retval != 0)) {
1168 file_accessed(filp);
1169 goto out;
1170 }
1171 }
1172
1173 retval = 0;
1174 if (count) {
1175 for (seg = 0; seg < nr_segs; seg++) {
1176 read_descriptor_t desc;
1177
1178 desc.written = 0;
1179 desc.arg.buf = iov[seg].iov_base;
1180 desc.count = iov[seg].iov_len;
1181 if (desc.count == 0)
1182 continue;
1183 desc.error = 0;
1184 do_generic_file_read(filp,ppos,&desc,file_read_actor);
1185 retval += desc.written;
1186 if (desc.error) {
1187 retval = retval ?: desc.error;
1188 break;
1189 }
1190 }
1191 }
1192 out:
1193 return retval;
1194 }
1195 EXPORT_SYMBOL(generic_file_aio_read);
1196
1197 int file_send_actor(read_descriptor_t * desc, struct page *page, unsigned long offset, unsigned long size)
1198 {
1199 ssize_t written;
1200 unsigned long count = desc->count;
1201 struct file *file = desc->arg.data;
1202
1203 if (size > count)
1204 size = count;
1205
1206 written = file->f_op->sendpage(file, page, offset,
1207 size, &file->f_pos, size<count);
1208 if (written < 0) {
1209 desc->error = written;
1210 written = 0;
1211 }
1212 desc->count = count - written;
1213 desc->written += written;
1214 return written;
1215 }
1216
1217 ssize_t generic_file_sendfile(struct file *in_file, loff_t *ppos,
1218 size_t count, read_actor_t actor, void *target)
1219 {
1220 read_descriptor_t desc;
1221
1222 if (!count)
1223 return 0;
1224
1225 desc.written = 0;
1226 desc.count = count;
1227 desc.arg.data = target;
1228 desc.error = 0;
1229
1230 do_generic_file_read(in_file, ppos, &desc, actor);
1231 if (desc.written)
1232 return desc.written;
1233 return desc.error;
1234 }
1235 EXPORT_SYMBOL(generic_file_sendfile);
1236
1237 static ssize_t
1238 do_readahead(struct address_space *mapping, struct file *filp,
1239 unsigned long index, unsigned long nr)
1240 {
1241 if (!mapping || !mapping->a_ops || !mapping->a_ops->readpage)
1242 return -EINVAL;
1243
1244 force_page_cache_readahead(mapping, filp, index,
1245 max_sane_readahead(nr));
1246 return 0;
1247 }
1248
1249 asmlinkage ssize_t sys_readahead(int fd, loff_t offset, size_t count)
1250 {
1251 ssize_t ret;
1252 struct file *file;
1253
1254 ret = -EBADF;
1255 file = fget(fd);
1256 if (file) {
1257 if (file->f_mode & FMODE_READ) {
1258 struct address_space *mapping = file->f_mapping;
1259 unsigned long start = offset >> PAGE_CACHE_SHIFT;
1260 unsigned long end = (offset + count - 1) >> PAGE_CACHE_SHIFT;
1261 unsigned long len = end - start + 1;
1262 ret = do_readahead(mapping, file, start, len);
1263 }
1264 fput(file);
1265 }
1266 return ret;
1267 }
1268
1269 #ifdef CONFIG_MMU
1270 static int FASTCALL(page_cache_read(struct file * file, unsigned long offset));
1271 /**
1272 * page_cache_read - adds requested page to the page cache if not already there
1273 * @file: file to read
1274 * @offset: page index
1275 *
1276 * This adds the requested page to the page cache if it isn't already there,
1277 * and schedules an I/O to read in its contents from disk.
1278 */
1279 static int fastcall page_cache_read(struct file * file, unsigned long offset)
1280 {
1281 struct address_space *mapping = file->f_mapping;
1282 struct page *page;
1283 int ret;
1284
1285 do {
1286 page = page_cache_alloc_cold(mapping);
1287 if (!page)
1288 return -ENOMEM;
1289
1290 ret = add_to_page_cache_lru(page, mapping, offset, GFP_KERNEL);
1291 if (ret == 0)
1292 ret = mapping->a_ops->readpage(file, page);
1293 else if (ret == -EEXIST)
1294 ret = 0; /* losing race to add is OK */
1295
1296 page_cache_release(page);
1297
1298 } while (ret == AOP_TRUNCATED_PAGE);
1299
1300 return ret;
1301 }
1302
1303 #define MMAP_LOTSAMISS (100)
1304
1305 /**
1306 * filemap_nopage - read in file data for page fault handling
1307 * @area: the applicable vm_area
1308 * @address: target address to read in
1309 * @type: returned with VM_FAULT_{MINOR,MAJOR} if not %NULL
1310 *
1311 * filemap_nopage() is invoked via the vma operations vector for a
1312 * mapped memory region to read in file data during a page fault.
1313 *
1314 * The goto's are kind of ugly, but this streamlines the normal case of having
1315 * it in the page cache, and handles the special cases reasonably without
1316 * having a lot of duplicated code.
1317 */
1318 struct page *filemap_nopage(struct vm_area_struct *area,
1319 unsigned long address, int *type)
1320 {
1321 int error;
1322 struct file *file = area->vm_file;
1323 struct address_space *mapping = file->f_mapping;
1324 struct file_ra_state *ra = &file->f_ra;
1325 struct inode *inode = mapping->host;
1326 struct page *page;
1327 unsigned long size, pgoff;
1328 int did_readaround = 0, majmin = VM_FAULT_MINOR;
1329
1330 pgoff = ((address-area->vm_start) >> PAGE_CACHE_SHIFT) + area->vm_pgoff;
1331
1332 retry_all:
1333 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1334 if (pgoff >= size)
1335 goto outside_data_content;
1336
1337 /* If we don't want any read-ahead, don't bother */
1338 if (VM_RandomReadHint(area))
1339 goto no_cached_page;
1340
1341 /*
1342 * The readahead code wants to be told about each and every page
1343 * so it can build and shrink its windows appropriately
1344 *
1345 * For sequential accesses, we use the generic readahead logic.
1346 */
1347 if (VM_SequentialReadHint(area))
1348 page_cache_readahead(mapping, ra, file, pgoff, 1);
1349
1350 /*
1351 * Do we have something in the page cache already?
1352 */
1353 retry_find:
1354 page = find_get_page(mapping, pgoff);
1355 if (!page) {
1356 unsigned long ra_pages;
1357
1358 if (VM_SequentialReadHint(area)) {
1359 handle_ra_miss(mapping, ra, pgoff);
1360 goto no_cached_page;
1361 }
1362 ra->mmap_miss++;
1363
1364 /*
1365 * Do we miss much more than hit in this file? If so,
1366 * stop bothering with read-ahead. It will only hurt.
1367 */
1368 if (ra->mmap_miss > ra->mmap_hit + MMAP_LOTSAMISS)
1369 goto no_cached_page;
1370
1371 /*
1372 * To keep the pgmajfault counter straight, we need to
1373 * check did_readaround, as this is an inner loop.
1374 */
1375 if (!did_readaround) {
1376 majmin = VM_FAULT_MAJOR;
1377 count_vm_event(PGMAJFAULT);
1378 }
1379 did_readaround = 1;
1380 ra_pages = max_sane_readahead(file->f_ra.ra_pages);
1381 if (ra_pages) {
1382 pgoff_t start = 0;
1383
1384 if (pgoff > ra_pages / 2)
1385 start = pgoff - ra_pages / 2;
1386 do_page_cache_readahead(mapping, file, start, ra_pages);
1387 }
1388 page = find_get_page(mapping, pgoff);
1389 if (!page)
1390 goto no_cached_page;
1391 }
1392
1393 if (!did_readaround)
1394 ra->mmap_hit++;
1395
1396 /*
1397 * Ok, found a page in the page cache, now we need to check
1398 * that it's up-to-date.
1399 */
1400 if (!PageUptodate(page))
1401 goto page_not_uptodate;
1402
1403 success:
1404 /*
1405 * Found the page and have a reference on it.
1406 */
1407 mark_page_accessed(page);
1408 if (type)
1409 *type = majmin;
1410 return page;
1411
1412 outside_data_content:
1413 /*
1414 * An external ptracer can access pages that normally aren't
1415 * accessible..
1416 */
1417 if (area->vm_mm == current->mm)
1418 return NOPAGE_SIGBUS;
1419 /* Fall through to the non-read-ahead case */
1420 no_cached_page:
1421 /*
1422 * We're only likely to ever get here if MADV_RANDOM is in
1423 * effect.
1424 */
1425 error = page_cache_read(file, pgoff);
1426
1427 /*
1428 * The page we want has now been added to the page cache.
1429 * In the unlikely event that someone removed it in the
1430 * meantime, we'll just come back here and read it again.
1431 */
1432 if (error >= 0)
1433 goto retry_find;
1434
1435 /*
1436 * An error return from page_cache_read can result if the
1437 * system is low on memory, or a problem occurs while trying
1438 * to schedule I/O.
1439 */
1440 if (error == -ENOMEM)
1441 return NOPAGE_OOM;
1442 return NOPAGE_SIGBUS;
1443
1444 page_not_uptodate:
1445 if (!did_readaround) {
1446 majmin = VM_FAULT_MAJOR;
1447 count_vm_event(PGMAJFAULT);
1448 }
1449
1450 /*
1451 * Umm, take care of errors if the page isn't up-to-date.
1452 * Try to re-read it _once_. We do this synchronously,
1453 * because there really aren't any performance issues here
1454 * and we need to check for errors.
1455 */
1456 lock_page(page);
1457
1458 /* Somebody truncated the page on us? */
1459 if (!page->mapping) {
1460 unlock_page(page);
1461 page_cache_release(page);
1462 goto retry_all;
1463 }
1464
1465 /* Somebody else successfully read it in? */
1466 if (PageUptodate(page)) {
1467 unlock_page(page);
1468 goto success;
1469 }
1470 ClearPageError(page);
1471 error = mapping->a_ops->readpage(file, page);
1472 if (!error) {
1473 wait_on_page_locked(page);
1474 if (PageUptodate(page))
1475 goto success;
1476 } else if (error == AOP_TRUNCATED_PAGE) {
1477 page_cache_release(page);
1478 goto retry_find;
1479 }
1480
1481 /*
1482 * Things didn't work out. Return zero to tell the
1483 * mm layer so, possibly freeing the page cache page first.
1484 */
1485 shrink_readahead_size_eio(file, ra);
1486 page_cache_release(page);
1487 return NOPAGE_SIGBUS;
1488 }
1489 EXPORT_SYMBOL(filemap_nopage);
1490
1491 static struct page * filemap_getpage(struct file *file, unsigned long pgoff,
1492 int nonblock)
1493 {
1494 struct address_space *mapping = file->f_mapping;
1495 struct page *page;
1496 int error;
1497
1498 /*
1499 * Do we have something in the page cache already?
1500 */
1501 retry_find:
1502 page = find_get_page(mapping, pgoff);
1503 if (!page) {
1504 if (nonblock)
1505 return NULL;
1506 goto no_cached_page;
1507 }
1508
1509 /*
1510 * Ok, found a page in the page cache, now we need to check
1511 * that it's up-to-date.
1512 */
1513 if (!PageUptodate(page)) {
1514 if (nonblock) {
1515 page_cache_release(page);
1516 return NULL;
1517 }
1518 goto page_not_uptodate;
1519 }
1520
1521 success:
1522 /*
1523 * Found the page and have a reference on it.
1524 */
1525 mark_page_accessed(page);
1526 return page;
1527
1528 no_cached_page:
1529 error = page_cache_read(file, pgoff);
1530
1531 /*
1532 * The page we want has now been added to the page cache.
1533 * In the unlikely event that someone removed it in the
1534 * meantime, we'll just come back here and read it again.
1535 */
1536 if (error >= 0)
1537 goto retry_find;
1538
1539 /*
1540 * An error return from page_cache_read can result if the
1541 * system is low on memory, or a problem occurs while trying
1542 * to schedule I/O.
1543 */
1544 return NULL;
1545
1546 page_not_uptodate:
1547 lock_page(page);
1548
1549 /* Did it get truncated while we waited for it? */
1550 if (!page->mapping) {
1551 unlock_page(page);
1552 goto err;
1553 }
1554
1555 /* Did somebody else get it up-to-date? */
1556 if (PageUptodate(page)) {
1557 unlock_page(page);
1558 goto success;
1559 }
1560
1561 error = mapping->a_ops->readpage(file, page);
1562 if (!error) {
1563 wait_on_page_locked(page);
1564 if (PageUptodate(page))
1565 goto success;
1566 } else if (error == AOP_TRUNCATED_PAGE) {
1567 page_cache_release(page);
1568 goto retry_find;
1569 }
1570
1571 /*
1572 * Umm, take care of errors if the page isn't up-to-date.
1573 * Try to re-read it _once_. We do this synchronously,
1574 * because there really aren't any performance issues here
1575 * and we need to check for errors.
1576 */
1577 lock_page(page);
1578
1579 /* Somebody truncated the page on us? */
1580 if (!page->mapping) {
1581 unlock_page(page);
1582 goto err;
1583 }
1584 /* Somebody else successfully read it in? */
1585 if (PageUptodate(page)) {
1586 unlock_page(page);
1587 goto success;
1588 }
1589
1590 ClearPageError(page);
1591 error = mapping->a_ops->readpage(file, page);
1592 if (!error) {
1593 wait_on_page_locked(page);
1594 if (PageUptodate(page))
1595 goto success;
1596 } else if (error == AOP_TRUNCATED_PAGE) {
1597 page_cache_release(page);
1598 goto retry_find;
1599 }
1600
1601 /*
1602 * Things didn't work out. Return zero to tell the
1603 * mm layer so, possibly freeing the page cache page first.
1604 */
1605 err:
1606 page_cache_release(page);
1607
1608 return NULL;
1609 }
1610
1611 int filemap_populate(struct vm_area_struct *vma, unsigned long addr,
1612 unsigned long len, pgprot_t prot, unsigned long pgoff,
1613 int nonblock)
1614 {
1615 struct file *file = vma->vm_file;
1616 struct address_space *mapping = file->f_mapping;
1617 struct inode *inode = mapping->host;
1618 unsigned long size;
1619 struct mm_struct *mm = vma->vm_mm;
1620 struct page *page;
1621 int err;
1622
1623 if (!nonblock)
1624 force_page_cache_readahead(mapping, vma->vm_file,
1625 pgoff, len >> PAGE_CACHE_SHIFT);
1626
1627 repeat:
1628 size = (i_size_read(inode) + PAGE_CACHE_SIZE - 1) >> PAGE_CACHE_SHIFT;
1629 if (pgoff + (len >> PAGE_CACHE_SHIFT) > size)
1630 return -EINVAL;
1631
1632 page = filemap_getpage(file, pgoff, nonblock);
1633
1634 /* XXX: This is wrong, a filesystem I/O error may have happened. Fix that as
1635 * done in shmem_populate calling shmem_getpage */
1636 if (!page && !nonblock)
1637 return -ENOMEM;
1638
1639 if (page) {
1640 err = install_page(mm, vma, addr, page, prot);
1641 if (err) {
1642 page_cache_release(page);
1643 return err;
1644 }
1645 } else if (vma->vm_flags & VM_NONLINEAR) {
1646 /* No page was found just because we can't read it in now (being
1647 * here implies nonblock != 0), but the page may exist, so set
1648 * the PTE to fault it in later. */
1649 err = install_file_pte(mm, vma, addr, pgoff, prot);
1650 if (err)
1651 return err;
1652 }
1653
1654 len -= PAGE_SIZE;
1655 addr += PAGE_SIZE;
1656 pgoff++;
1657 if (len)
1658 goto repeat;
1659
1660 return 0;
1661 }
1662 EXPORT_SYMBOL(filemap_populate);
1663
1664 struct vm_operations_struct generic_file_vm_ops = {
1665 .nopage = filemap_nopage,
1666 .populate = filemap_populate,
1667 };
1668
1669 /* This is used for a general mmap of a disk file */
1670
1671 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1672 {
1673 struct address_space *mapping = file->f_mapping;
1674
1675 if (!mapping->a_ops->readpage)
1676 return -ENOEXEC;
1677 file_accessed(file);
1678 vma->vm_ops = &generic_file_vm_ops;
1679 return 0;
1680 }
1681
1682 /*
1683 * This is for filesystems which do not implement ->writepage.
1684 */
1685 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
1686 {
1687 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
1688 return -EINVAL;
1689 return generic_file_mmap(file, vma);
1690 }
1691 #else
1692 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
1693 {
1694 return -ENOSYS;
1695 }
1696 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
1697 {
1698 return -ENOSYS;
1699 }
1700 #endif /* CONFIG_MMU */
1701
1702 EXPORT_SYMBOL(generic_file_mmap);
1703 EXPORT_SYMBOL(generic_file_readonly_mmap);
1704
1705 static struct page *__read_cache_page(struct address_space *mapping,
1706 unsigned long index,
1707 int (*filler)(void *,struct page*),
1708 void *data)
1709 {
1710 struct page *page, *cached_page = NULL;
1711 int err;
1712 repeat:
1713 page = find_get_page(mapping, index);
1714 if (!page) {
1715 if (!cached_page) {
1716 cached_page = page_cache_alloc_cold(mapping);
1717 if (!cached_page)
1718 return ERR_PTR(-ENOMEM);
1719 }
1720 err = add_to_page_cache_lru(cached_page, mapping,
1721 index, GFP_KERNEL);
1722 if (err == -EEXIST)
1723 goto repeat;
1724 if (err < 0) {
1725 /* Presumably ENOMEM for radix tree node */
1726 page_cache_release(cached_page);
1727 return ERR_PTR(err);
1728 }
1729 page = cached_page;
1730 cached_page = NULL;
1731 err = filler(data, page);
1732 if (err < 0) {
1733 page_cache_release(page);
1734 page = ERR_PTR(err);
1735 }
1736 }
1737 if (cached_page)
1738 page_cache_release(cached_page);
1739 return page;
1740 }
1741
1742 /*
1743 * Same as read_cache_page, but don't wait for page to become unlocked
1744 * after submitting it to the filler.
1745 */
1746 struct page *read_cache_page_async(struct address_space *mapping,
1747 unsigned long index,
1748 int (*filler)(void *,struct page*),
1749 void *data)
1750 {
1751 struct page *page;
1752 int err;
1753
1754 retry:
1755 page = __read_cache_page(mapping, index, filler, data);
1756 if (IS_ERR(page))
1757 goto out;
1758 mark_page_accessed(page);
1759 if (PageUptodate(page))
1760 goto out;
1761
1762 lock_page(page);
1763 if (!page->mapping) {
1764 unlock_page(page);
1765 page_cache_release(page);
1766 goto retry;
1767 }
1768 if (PageUptodate(page)) {
1769 unlock_page(page);
1770 goto out;
1771 }
1772 err = filler(data, page);
1773 if (err < 0) {
1774 page_cache_release(page);
1775 page = ERR_PTR(err);
1776 }
1777 out:
1778 mark_page_accessed(page);
1779 return page;
1780 }
1781 EXPORT_SYMBOL(read_cache_page_async);
1782
1783 /**
1784 * read_cache_page - read into page cache, fill it if needed
1785 * @mapping: the page's address_space
1786 * @index: the page index
1787 * @filler: function to perform the read
1788 * @data: destination for read data
1789 *
1790 * Read into the page cache. If a page already exists, and PageUptodate() is
1791 * not set, try to fill the page then wait for it to become unlocked.
1792 *
1793 * If the page does not get brought uptodate, return -EIO.
1794 */
1795 struct page *read_cache_page(struct address_space *mapping,
1796 unsigned long index,
1797 int (*filler)(void *,struct page*),
1798 void *data)
1799 {
1800 struct page *page;
1801
1802 page = read_cache_page_async(mapping, index, filler, data);
1803 if (IS_ERR(page))
1804 goto out;
1805 wait_on_page_locked(page);
1806 if (!PageUptodate(page)) {
1807 page_cache_release(page);
1808 page = ERR_PTR(-EIO);
1809 }
1810 out:
1811 return page;
1812 }
1813 EXPORT_SYMBOL(read_cache_page);
1814
1815 /*
1816 * If the page was newly created, increment its refcount and add it to the
1817 * caller's lru-buffering pagevec. This function is specifically for
1818 * generic_file_write().
1819 */
1820 static inline struct page *
1821 __grab_cache_page(struct address_space *mapping, unsigned long index,
1822 struct page **cached_page, struct pagevec *lru_pvec)
1823 {
1824 int err;
1825 struct page *page;
1826 repeat:
1827 page = find_lock_page(mapping, index);
1828 if (!page) {
1829 if (!*cached_page) {
1830 *cached_page = page_cache_alloc(mapping);
1831 if (!*cached_page)
1832 return NULL;
1833 }
1834 err = add_to_page_cache(*cached_page, mapping,
1835 index, GFP_KERNEL);
1836 if (err == -EEXIST)
1837 goto repeat;
1838 if (err == 0) {
1839 page = *cached_page;
1840 page_cache_get(page);
1841 if (!pagevec_add(lru_pvec, page))
1842 __pagevec_lru_add(lru_pvec);
1843 *cached_page = NULL;
1844 }
1845 }
1846 return page;
1847 }
1848
1849 /*
1850 * The logic we want is
1851 *
1852 * if suid or (sgid and xgrp)
1853 * remove privs
1854 */
1855 int should_remove_suid(struct dentry *dentry)
1856 {
1857 mode_t mode = dentry->d_inode->i_mode;
1858 int kill = 0;
1859
1860 /* suid always must be killed */
1861 if (unlikely(mode & S_ISUID))
1862 kill = ATTR_KILL_SUID;
1863
1864 /*
1865 * sgid without any exec bits is just a mandatory locking mark; leave
1866 * it alone. If some exec bits are set, it's a real sgid; kill it.
1867 */
1868 if (unlikely((mode & S_ISGID) && (mode & S_IXGRP)))
1869 kill |= ATTR_KILL_SGID;
1870
1871 if (unlikely(kill && !capable(CAP_FSETID)))
1872 return kill;
1873
1874 return 0;
1875 }
1876 EXPORT_SYMBOL(should_remove_suid);
1877
1878 int __remove_suid(struct dentry *dentry, int kill)
1879 {
1880 struct iattr newattrs;
1881
1882 newattrs.ia_valid = ATTR_FORCE | kill;
1883 return notify_change(dentry, &newattrs);
1884 }
1885
1886 int remove_suid(struct dentry *dentry)
1887 {
1888 int kill = should_remove_suid(dentry);
1889
1890 if (unlikely(kill))
1891 return __remove_suid(dentry, kill);
1892
1893 return 0;
1894 }
1895 EXPORT_SYMBOL(remove_suid);
1896
1897 size_t
1898 __filemap_copy_from_user_iovec_inatomic(char *vaddr,
1899 const struct iovec *iov, size_t base, size_t bytes)
1900 {
1901 size_t copied = 0, left = 0;
1902
1903 while (bytes) {
1904 char __user *buf = iov->iov_base + base;
1905 int copy = min(bytes, iov->iov_len - base);
1906
1907 base = 0;
1908 left = __copy_from_user_inatomic_nocache(vaddr, buf, copy);
1909 copied += copy;
1910 bytes -= copy;
1911 vaddr += copy;
1912 iov++;
1913
1914 if (unlikely(left))
1915 break;
1916 }
1917 return copied - left;
1918 }
1919
1920 /*
1921 * Performs necessary checks before doing a write
1922 *
1923 * Can adjust writing position or amount of bytes to write.
1924 * Returns appropriate error code that caller should return or
1925 * zero in case that write should be allowed.
1926 */
1927 inline int generic_write_checks(struct file *file, loff_t *pos, size_t *count, int isblk)
1928 {
1929 struct inode *inode = file->f_mapping->host;
1930 unsigned long limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
1931
1932 if (unlikely(*pos < 0))
1933 return -EINVAL;
1934
1935 if (!isblk) {
1936 /* FIXME: this is for backwards compatibility with 2.4 */
1937 if (file->f_flags & O_APPEND)
1938 *pos = i_size_read(inode);
1939
1940 if (limit != RLIM_INFINITY) {
1941 if (*pos >= limit) {
1942 send_sig(SIGXFSZ, current, 0);
1943 return -EFBIG;
1944 }
1945 if (*count > limit - (typeof(limit))*pos) {
1946 *count = limit - (typeof(limit))*pos;
1947 }
1948 }
1949 }
1950
1951 /*
1952 * LFS rule
1953 */
1954 if (unlikely(*pos + *count > MAX_NON_LFS &&
1955 !(file->f_flags & O_LARGEFILE))) {
1956 if (*pos >= MAX_NON_LFS) {
1957 send_sig(SIGXFSZ, current, 0);
1958 return -EFBIG;
1959 }
1960 if (*count > MAX_NON_LFS - (unsigned long)*pos) {
1961 *count = MAX_NON_LFS - (unsigned long)*pos;
1962 }
1963 }
1964
1965 /*
1966 * Are we about to exceed the fs block limit ?
1967 *
1968 * If we have written data it becomes a short write. If we have
1969 * exceeded without writing data we send a signal and return EFBIG.
1970 * Linus frestrict idea will clean these up nicely..
1971 */
1972 if (likely(!isblk)) {
1973 if (unlikely(*pos >= inode->i_sb->s_maxbytes)) {
1974 if (*count || *pos > inode->i_sb->s_maxbytes) {
1975 send_sig(SIGXFSZ, current, 0);
1976 return -EFBIG;
1977 }
1978 /* zero-length writes at ->s_maxbytes are OK */
1979 }
1980
1981 if (unlikely(*pos + *count > inode->i_sb->s_maxbytes))
1982 *count = inode->i_sb->s_maxbytes - *pos;
1983 } else {
1984 #ifdef CONFIG_BLOCK
1985 loff_t isize;
1986 if (bdev_read_only(I_BDEV(inode)))
1987 return -EPERM;
1988 isize = i_size_read(inode);
1989 if (*pos >= isize) {
1990 if (*count || *pos > isize)
1991 return -ENOSPC;
1992 }
1993
1994 if (*pos + *count > isize)
1995 *count = isize - *pos;
1996 #else
1997 return -EPERM;
1998 #endif
1999 }
2000 return 0;
2001 }
2002 EXPORT_SYMBOL(generic_write_checks);
2003
2004 ssize_t
2005 generic_file_direct_write(struct kiocb *iocb, const struct iovec *iov,
2006 unsigned long *nr_segs, loff_t pos, loff_t *ppos,
2007 size_t count, size_t ocount)
2008 {
2009 struct file *file = iocb->ki_filp;
2010 struct address_space *mapping = file->f_mapping;
2011 struct inode *inode = mapping->host;
2012 ssize_t written;
2013
2014 if (count != ocount)
2015 *nr_segs = iov_shorten((struct iovec *)iov, *nr_segs, count);
2016
2017 written = generic_file_direct_IO(WRITE, iocb, iov, pos, *nr_segs);
2018 if (written > 0) {
2019 loff_t end = pos + written;
2020 if (end > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2021 i_size_write(inode, end);
2022 mark_inode_dirty(inode);
2023 }
2024 *ppos = end;
2025 }
2026
2027 /*
2028 * Sync the fs metadata but not the minor inode changes and
2029 * of course not the data as we did direct DMA for the IO.
2030 * i_mutex is held, which protects generic_osync_inode() from
2031 * livelocking. AIO O_DIRECT ops attempt to sync metadata here.
2032 */
2033 if ((written >= 0 || written == -EIOCBQUEUED) &&
2034 ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2035 int err = generic_osync_inode(inode, mapping, OSYNC_METADATA);
2036 if (err < 0)
2037 written = err;
2038 }
2039 return written;
2040 }
2041 EXPORT_SYMBOL(generic_file_direct_write);
2042
2043 ssize_t
2044 generic_file_buffered_write(struct kiocb *iocb, const struct iovec *iov,
2045 unsigned long nr_segs, loff_t pos, loff_t *ppos,
2046 size_t count, ssize_t written)
2047 {
2048 struct file *file = iocb->ki_filp;
2049 struct address_space * mapping = file->f_mapping;
2050 const struct address_space_operations *a_ops = mapping->a_ops;
2051 struct inode *inode = mapping->host;
2052 long status = 0;
2053 struct page *page;
2054 struct page *cached_page = NULL;
2055 size_t bytes;
2056 struct pagevec lru_pvec;
2057 const struct iovec *cur_iov = iov; /* current iovec */
2058 size_t iov_base = 0; /* offset in the current iovec */
2059 char __user *buf;
2060
2061 pagevec_init(&lru_pvec, 0);
2062
2063 /*
2064 * handle partial DIO write. Adjust cur_iov if needed.
2065 */
2066 if (likely(nr_segs == 1))
2067 buf = iov->iov_base + written;
2068 else {
2069 filemap_set_next_iovec(&cur_iov, &iov_base, written);
2070 buf = cur_iov->iov_base + iov_base;
2071 }
2072
2073 do {
2074 unsigned long index;
2075 unsigned long offset;
2076 size_t copied;
2077
2078 offset = (pos & (PAGE_CACHE_SIZE -1)); /* Within page */
2079 index = pos >> PAGE_CACHE_SHIFT;
2080 bytes = PAGE_CACHE_SIZE - offset;
2081
2082 /* Limit the size of the copy to the caller's write size */
2083 bytes = min(bytes, count);
2084
2085 /* We only need to worry about prefaulting when writes are from
2086 * user-space. NFSd uses vfs_writev with several non-aligned
2087 * segments in the vector, and limiting to one segment a time is
2088 * a noticeable performance for re-write
2089 */
2090 if (!segment_eq(get_fs(), KERNEL_DS)) {
2091 /*
2092 * Limit the size of the copy to that of the current
2093 * segment, because fault_in_pages_readable() doesn't
2094 * know how to walk segments.
2095 */
2096 bytes = min(bytes, cur_iov->iov_len - iov_base);
2097
2098 /*
2099 * Bring in the user page that we will copy from
2100 * _first_. Otherwise there's a nasty deadlock on
2101 * copying from the same page as we're writing to,
2102 * without it being marked up-to-date.
2103 */
2104 fault_in_pages_readable(buf, bytes);
2105 }
2106 page = __grab_cache_page(mapping,index,&cached_page,&lru_pvec);
2107 if (!page) {
2108 status = -ENOMEM;
2109 break;
2110 }
2111
2112 if (unlikely(bytes == 0)) {
2113 status = 0;
2114 copied = 0;
2115 goto zero_length_segment;
2116 }
2117
2118 status = a_ops->prepare_write(file, page, offset, offset+bytes);
2119 if (unlikely(status)) {
2120 loff_t isize = i_size_read(inode);
2121
2122 if (status != AOP_TRUNCATED_PAGE)
2123 unlock_page(page);
2124 page_cache_release(page);
2125 if (status == AOP_TRUNCATED_PAGE)
2126 continue;
2127 /*
2128 * prepare_write() may have instantiated a few blocks
2129 * outside i_size. Trim these off again.
2130 */
2131 if (pos + bytes > isize)
2132 vmtruncate(inode, isize);
2133 break;
2134 }
2135 if (likely(nr_segs == 1))
2136 copied = filemap_copy_from_user(page, offset,
2137 buf, bytes);
2138 else
2139 copied = filemap_copy_from_user_iovec(page, offset,
2140 cur_iov, iov_base, bytes);
2141 flush_dcache_page(page);
2142 status = a_ops->commit_write(file, page, offset, offset+bytes);
2143 if (status == AOP_TRUNCATED_PAGE) {
2144 page_cache_release(page);
2145 continue;
2146 }
2147 zero_length_segment:
2148 if (likely(copied >= 0)) {
2149 if (!status)
2150 status = copied;
2151
2152 if (status >= 0) {
2153 written += status;
2154 count -= status;
2155 pos += status;
2156 buf += status;
2157 if (unlikely(nr_segs > 1)) {
2158 filemap_set_next_iovec(&cur_iov,
2159 &iov_base, status);
2160 if (count)
2161 buf = cur_iov->iov_base +
2162 iov_base;
2163 } else {
2164 iov_base += status;
2165 }
2166 }
2167 }
2168 if (unlikely(copied != bytes))
2169 if (status >= 0)
2170 status = -EFAULT;
2171 unlock_page(page);
2172 mark_page_accessed(page);
2173 page_cache_release(page);
2174 if (status < 0)
2175 break;
2176 balance_dirty_pages_ratelimited(mapping);
2177 cond_resched();
2178 } while (count);
2179 *ppos = pos;
2180
2181 if (cached_page)
2182 page_cache_release(cached_page);
2183
2184 /*
2185 * For now, when the user asks for O_SYNC, we'll actually give O_DSYNC
2186 */
2187 if (likely(status >= 0)) {
2188 if (unlikely((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2189 if (!a_ops->writepage || !is_sync_kiocb(iocb))
2190 status = generic_osync_inode(inode, mapping,
2191 OSYNC_METADATA|OSYNC_DATA);
2192 }
2193 }
2194
2195 /*
2196 * If we get here for O_DIRECT writes then we must have fallen through
2197 * to buffered writes (block instantiation inside i_size). So we sync
2198 * the file data here, to try to honour O_DIRECT expectations.
2199 */
2200 if (unlikely(file->f_flags & O_DIRECT) && written)
2201 status = filemap_write_and_wait(mapping);
2202
2203 pagevec_lru_add(&lru_pvec);
2204 return written ? written : status;
2205 }
2206 EXPORT_SYMBOL(generic_file_buffered_write);
2207
2208 static ssize_t
2209 __generic_file_aio_write_nolock(struct kiocb *iocb, const struct iovec *iov,
2210 unsigned long nr_segs, loff_t *ppos)
2211 {
2212 struct file *file = iocb->ki_filp;
2213 struct address_space * mapping = file->f_mapping;
2214 size_t ocount; /* original count */
2215 size_t count; /* after file limit checks */
2216 struct inode *inode = mapping->host;
2217 unsigned long seg;
2218 loff_t pos;
2219 ssize_t written;
2220 ssize_t err;
2221
2222 ocount = 0;
2223 for (seg = 0; seg < nr_segs; seg++) {
2224 const struct iovec *iv = &iov[seg];
2225
2226 /*
2227 * If any segment has a negative length, or the cumulative
2228 * length ever wraps negative then return -EINVAL.
2229 */
2230 ocount += iv->iov_len;
2231 if (unlikely((ssize_t)(ocount|iv->iov_len) < 0))
2232 return -EINVAL;
2233 if (access_ok(VERIFY_READ, iv->iov_base, iv->iov_len))
2234 continue;
2235 if (seg == 0)
2236 return -EFAULT;
2237 nr_segs = seg;
2238 ocount -= iv->iov_len; /* This segment is no good */
2239 break;
2240 }
2241
2242 count = ocount;
2243 pos = *ppos;
2244
2245 vfs_check_frozen(inode->i_sb, SB_FREEZE_WRITE);
2246
2247 /* We can write back this queue in page reclaim */
2248 current->backing_dev_info = mapping->backing_dev_info;
2249 written = 0;
2250
2251 err = generic_write_checks(file, &pos, &count, S_ISBLK(inode->i_mode));
2252 if (err)
2253 goto out;
2254
2255 if (count == 0)
2256 goto out;
2257
2258 err = remove_suid(file->f_path.dentry);
2259 if (err)
2260 goto out;
2261
2262 file_update_time(file);
2263
2264 /* coalesce the iovecs and go direct-to-BIO for O_DIRECT */
2265 if (unlikely(file->f_flags & O_DIRECT)) {
2266 loff_t endbyte;
2267 ssize_t written_buffered;
2268
2269 written = generic_file_direct_write(iocb, iov, &nr_segs, pos,
2270 ppos, count, ocount);
2271 if (written < 0 || written == count)
2272 goto out;
2273 /*
2274 * direct-io write to a hole: fall through to buffered I/O
2275 * for completing the rest of the request.
2276 */
2277 pos += written;
2278 count -= written;
2279 written_buffered = generic_file_buffered_write(iocb, iov,
2280 nr_segs, pos, ppos, count,
2281 written);
2282 /*
2283 * If generic_file_buffered_write() retuned a synchronous error
2284 * then we want to return the number of bytes which were
2285 * direct-written, or the error code if that was zero. Note
2286 * that this differs from normal direct-io semantics, which
2287 * will return -EFOO even if some bytes were written.
2288 */
2289 if (written_buffered < 0) {
2290 err = written_buffered;
2291 goto out;
2292 }
2293
2294 /*
2295 * We need to ensure that the page cache pages are written to
2296 * disk and invalidated to preserve the expected O_DIRECT
2297 * semantics.
2298 */
2299 endbyte = pos + written_buffered - written - 1;
2300 err = do_sync_file_range(file, pos, endbyte,
2301 SYNC_FILE_RANGE_WAIT_BEFORE|
2302 SYNC_FILE_RANGE_WRITE|
2303 SYNC_FILE_RANGE_WAIT_AFTER);
2304 if (err == 0) {
2305 written = written_buffered;
2306 invalidate_mapping_pages(mapping,
2307 pos >> PAGE_CACHE_SHIFT,
2308 endbyte >> PAGE_CACHE_SHIFT);
2309 } else {
2310 /*
2311 * We don't know how much we wrote, so just return
2312 * the number of bytes which were direct-written
2313 */
2314 }
2315 } else {
2316 written = generic_file_buffered_write(iocb, iov, nr_segs,
2317 pos, ppos, count, written);
2318 }
2319 out:
2320 current->backing_dev_info = NULL;
2321 return written ? written : err;
2322 }
2323
2324 ssize_t generic_file_aio_write_nolock(struct kiocb *iocb,
2325 const struct iovec *iov, unsigned long nr_segs, loff_t pos)
2326 {
2327 struct file *file = iocb->ki_filp;
2328 struct address_space *mapping = file->f_mapping;
2329 struct inode *inode = mapping->host;
2330 ssize_t ret;
2331
2332 BUG_ON(iocb->ki_pos != pos);
2333
2334 ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
2335 &iocb->ki_pos);
2336
2337 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2338 ssize_t err;
2339
2340 err = sync_page_range_nolock(inode, mapping, pos, ret);
2341 if (err < 0)
2342 ret = err;
2343 }
2344 return ret;
2345 }
2346 EXPORT_SYMBOL(generic_file_aio_write_nolock);
2347
2348 ssize_t generic_file_aio_write(struct kiocb *iocb, const struct iovec *iov,
2349 unsigned long nr_segs, loff_t pos)
2350 {
2351 struct file *file = iocb->ki_filp;
2352 struct address_space *mapping = file->f_mapping;
2353 struct inode *inode = mapping->host;
2354 ssize_t ret;
2355
2356 BUG_ON(iocb->ki_pos != pos);
2357
2358 mutex_lock(&inode->i_mutex);
2359 ret = __generic_file_aio_write_nolock(iocb, iov, nr_segs,
2360 &iocb->ki_pos);
2361 mutex_unlock(&inode->i_mutex);
2362
2363 if (ret > 0 && ((file->f_flags & O_SYNC) || IS_SYNC(inode))) {
2364 ssize_t err;
2365
2366 err = sync_page_range(inode, mapping, pos, ret);
2367 if (err < 0)
2368 ret = err;
2369 }
2370 return ret;
2371 }
2372 EXPORT_SYMBOL(generic_file_aio_write);
2373
2374 /*
2375 * Called under i_mutex for writes to S_ISREG files. Returns -EIO if something
2376 * went wrong during pagecache shootdown.
2377 */
2378 static ssize_t
2379 generic_file_direct_IO(int rw, struct kiocb *iocb, const struct iovec *iov,
2380 loff_t offset, unsigned long nr_segs)
2381 {
2382 struct file *file = iocb->ki_filp;
2383 struct address_space *mapping = file->f_mapping;
2384 ssize_t retval;
2385 size_t write_len;
2386 pgoff_t end = 0; /* silence gcc */
2387
2388 /*
2389 * If it's a write, unmap all mmappings of the file up-front. This
2390 * will cause any pte dirty bits to be propagated into the pageframes
2391 * for the subsequent filemap_write_and_wait().
2392 */
2393 if (rw == WRITE) {
2394 write_len = iov_length(iov, nr_segs);
2395 end = (offset + write_len - 1) >> PAGE_CACHE_SHIFT;
2396 if (mapping_mapped(mapping))
2397 unmap_mapping_range(mapping, offset, write_len, 0);
2398 }
2399
2400 retval = filemap_write_and_wait(mapping);
2401 if (retval)
2402 goto out;
2403
2404 /*
2405 * After a write we want buffered reads to be sure to go to disk to get
2406 * the new data. We invalidate clean cached page from the region we're
2407 * about to write. We do this *before* the write so that we can return
2408 * -EIO without clobbering -EIOCBQUEUED from ->direct_IO().
2409 */
2410 if (rw == WRITE && mapping->nrpages) {
2411 retval = invalidate_inode_pages2_range(mapping,
2412 offset >> PAGE_CACHE_SHIFT, end);
2413 if (retval)
2414 goto out;
2415 }
2416
2417 retval = mapping->a_ops->direct_IO(rw, iocb, iov, offset, nr_segs);
2418 if (retval)
2419 goto out;
2420
2421 /*
2422 * Finally, try again to invalidate clean pages which might have been
2423 * faulted in by get_user_pages() if the source of the write was an
2424 * mmap()ed region of the file we're writing. That's a pretty crazy
2425 * thing to do, so we don't support it 100%. If this invalidation
2426 * fails and we have -EIOCBQUEUED we ignore the failure.
2427 */
2428 if (rw == WRITE && mapping->nrpages) {
2429 int err = invalidate_inode_pages2_range(mapping,
2430 offset >> PAGE_CACHE_SHIFT, end);
2431 if (err && retval >= 0)
2432 retval = err;
2433 }
2434 out:
2435 return retval;
2436 }
2437
2438 /**
2439 * try_to_release_page() - release old fs-specific metadata on a page
2440 *
2441 * @page: the page which the kernel is trying to free
2442 * @gfp_mask: memory allocation flags (and I/O mode)
2443 *
2444 * The address_space is to try to release any data against the page
2445 * (presumably at page->private). If the release was successful, return `1'.
2446 * Otherwise return zero.
2447 *
2448 * The @gfp_mask argument specifies whether I/O may be performed to release
2449 * this page (__GFP_IO), and whether the call may block (__GFP_WAIT).
2450 *
2451 * NOTE: @gfp_mask may go away, and this function may become non-blocking.
2452 */
2453 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2454 {
2455 struct address_space * const mapping = page->mapping;
2456
2457 BUG_ON(!PageLocked(page));
2458 if (PageWriteback(page))
2459 return 0;
2460
2461 if (mapping && mapping->a_ops->releasepage)
2462 return mapping->a_ops->releasepage(page, gfp_mask);
2463 return try_to_free_buffers(page);
2464 }
2465
2466 EXPORT_SYMBOL(try_to_release_page);
This page took 0.08531 seconds and 6 git commands to generate.