dax: support dirty DAX entries in radix tree
[deliverable/linux.git] / mm / filemap.c
1 /*
2 * linux/mm/filemap.c
3 *
4 * Copyright (C) 1994-1999 Linus Torvalds
5 */
6
7 /*
8 * This file handles the generic file mmap semantics used by
9 * most "normal" filesystems (but you don't /have/ to use this:
10 * the NFS filesystem used to do this differently, for example)
11 */
12 #include <linux/export.h>
13 #include <linux/compiler.h>
14 #include <linux/dax.h>
15 #include <linux/fs.h>
16 #include <linux/uaccess.h>
17 #include <linux/capability.h>
18 #include <linux/kernel_stat.h>
19 #include <linux/gfp.h>
20 #include <linux/mm.h>
21 #include <linux/swap.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/file.h>
25 #include <linux/uio.h>
26 #include <linux/hash.h>
27 #include <linux/writeback.h>
28 #include <linux/backing-dev.h>
29 #include <linux/pagevec.h>
30 #include <linux/blkdev.h>
31 #include <linux/security.h>
32 #include <linux/cpuset.h>
33 #include <linux/hardirq.h> /* for BUG_ON(!in_atomic()) only */
34 #include <linux/hugetlb.h>
35 #include <linux/memcontrol.h>
36 #include <linux/cleancache.h>
37 #include <linux/rmap.h>
38 #include "internal.h"
39
40 #define CREATE_TRACE_POINTS
41 #include <trace/events/filemap.h>
42
43 /*
44 * FIXME: remove all knowledge of the buffer layer from the core VM
45 */
46 #include <linux/buffer_head.h> /* for try_to_free_buffers */
47
48 #include <asm/mman.h>
49
50 /*
51 * Shared mappings implemented 30.11.1994. It's not fully working yet,
52 * though.
53 *
54 * Shared mappings now work. 15.8.1995 Bruno.
55 *
56 * finished 'unifying' the page and buffer cache and SMP-threaded the
57 * page-cache, 21.05.1999, Ingo Molnar <mingo@redhat.com>
58 *
59 * SMP-threaded pagemap-LRU 1999, Andrea Arcangeli <andrea@suse.de>
60 */
61
62 /*
63 * Lock ordering:
64 *
65 * ->i_mmap_rwsem (truncate_pagecache)
66 * ->private_lock (__free_pte->__set_page_dirty_buffers)
67 * ->swap_lock (exclusive_swap_page, others)
68 * ->mapping->tree_lock
69 *
70 * ->i_mutex
71 * ->i_mmap_rwsem (truncate->unmap_mapping_range)
72 *
73 * ->mmap_sem
74 * ->i_mmap_rwsem
75 * ->page_table_lock or pte_lock (various, mainly in memory.c)
76 * ->mapping->tree_lock (arch-dependent flush_dcache_mmap_lock)
77 *
78 * ->mmap_sem
79 * ->lock_page (access_process_vm)
80 *
81 * ->i_mutex (generic_perform_write)
82 * ->mmap_sem (fault_in_pages_readable->do_page_fault)
83 *
84 * bdi->wb.list_lock
85 * sb_lock (fs/fs-writeback.c)
86 * ->mapping->tree_lock (__sync_single_inode)
87 *
88 * ->i_mmap_rwsem
89 * ->anon_vma.lock (vma_adjust)
90 *
91 * ->anon_vma.lock
92 * ->page_table_lock or pte_lock (anon_vma_prepare and various)
93 *
94 * ->page_table_lock or pte_lock
95 * ->swap_lock (try_to_unmap_one)
96 * ->private_lock (try_to_unmap_one)
97 * ->tree_lock (try_to_unmap_one)
98 * ->zone.lru_lock (follow_page->mark_page_accessed)
99 * ->zone.lru_lock (check_pte_range->isolate_lru_page)
100 * ->private_lock (page_remove_rmap->set_page_dirty)
101 * ->tree_lock (page_remove_rmap->set_page_dirty)
102 * bdi.wb->list_lock (page_remove_rmap->set_page_dirty)
103 * ->inode->i_lock (page_remove_rmap->set_page_dirty)
104 * ->memcg->move_lock (page_remove_rmap->mem_cgroup_begin_page_stat)
105 * bdi.wb->list_lock (zap_pte_range->set_page_dirty)
106 * ->inode->i_lock (zap_pte_range->set_page_dirty)
107 * ->private_lock (zap_pte_range->__set_page_dirty_buffers)
108 *
109 * ->i_mmap_rwsem
110 * ->tasklist_lock (memory_failure, collect_procs_ao)
111 */
112
113 static void page_cache_tree_delete(struct address_space *mapping,
114 struct page *page, void *shadow)
115 {
116 struct radix_tree_node *node;
117 unsigned long index;
118 unsigned int offset;
119 unsigned int tag;
120 void **slot;
121
122 VM_BUG_ON(!PageLocked(page));
123
124 __radix_tree_lookup(&mapping->page_tree, page->index, &node, &slot);
125
126 if (shadow) {
127 mapping->nrexceptional++;
128 /*
129 * Make sure the nrexceptional update is committed before
130 * the nrpages update so that final truncate racing
131 * with reclaim does not see both counters 0 at the
132 * same time and miss a shadow entry.
133 */
134 smp_wmb();
135 }
136 mapping->nrpages--;
137
138 if (!node) {
139 /* Clear direct pointer tags in root node */
140 mapping->page_tree.gfp_mask &= __GFP_BITS_MASK;
141 radix_tree_replace_slot(slot, shadow);
142 return;
143 }
144
145 /* Clear tree tags for the removed page */
146 index = page->index;
147 offset = index & RADIX_TREE_MAP_MASK;
148 for (tag = 0; tag < RADIX_TREE_MAX_TAGS; tag++) {
149 if (test_bit(offset, node->tags[tag]))
150 radix_tree_tag_clear(&mapping->page_tree, index, tag);
151 }
152
153 /* Delete page, swap shadow entry */
154 radix_tree_replace_slot(slot, shadow);
155 workingset_node_pages_dec(node);
156 if (shadow)
157 workingset_node_shadows_inc(node);
158 else
159 if (__radix_tree_delete_node(&mapping->page_tree, node))
160 return;
161
162 /*
163 * Track node that only contains shadow entries.
164 *
165 * Avoid acquiring the list_lru lock if already tracked. The
166 * list_empty() test is safe as node->private_list is
167 * protected by mapping->tree_lock.
168 */
169 if (!workingset_node_pages(node) &&
170 list_empty(&node->private_list)) {
171 node->private_data = mapping;
172 list_lru_add(&workingset_shadow_nodes, &node->private_list);
173 }
174 }
175
176 /*
177 * Delete a page from the page cache and free it. Caller has to make
178 * sure the page is locked and that nobody else uses it - or that usage
179 * is safe. The caller must hold the mapping's tree_lock and
180 * mem_cgroup_begin_page_stat().
181 */
182 void __delete_from_page_cache(struct page *page, void *shadow,
183 struct mem_cgroup *memcg)
184 {
185 struct address_space *mapping = page->mapping;
186
187 trace_mm_filemap_delete_from_page_cache(page);
188 /*
189 * if we're uptodate, flush out into the cleancache, otherwise
190 * invalidate any existing cleancache entries. We can't leave
191 * stale data around in the cleancache once our page is gone
192 */
193 if (PageUptodate(page) && PageMappedToDisk(page))
194 cleancache_put_page(page);
195 else
196 cleancache_invalidate_page(mapping, page);
197
198 page_cache_tree_delete(mapping, page, shadow);
199
200 page->mapping = NULL;
201 /* Leave page->index set: truncation lookup relies upon it */
202
203 /* hugetlb pages do not participate in page cache accounting. */
204 if (!PageHuge(page))
205 __dec_zone_page_state(page, NR_FILE_PAGES);
206 if (PageSwapBacked(page))
207 __dec_zone_page_state(page, NR_SHMEM);
208 VM_BUG_ON_PAGE(page_mapped(page), page);
209
210 /*
211 * At this point page must be either written or cleaned by truncate.
212 * Dirty page here signals a bug and loss of unwritten data.
213 *
214 * This fixes dirty accounting after removing the page entirely but
215 * leaves PageDirty set: it has no effect for truncated page and
216 * anyway will be cleared before returning page into buddy allocator.
217 */
218 if (WARN_ON_ONCE(PageDirty(page)))
219 account_page_cleaned(page, mapping, memcg,
220 inode_to_wb(mapping->host));
221 }
222
223 /**
224 * delete_from_page_cache - delete page from page cache
225 * @page: the page which the kernel is trying to remove from page cache
226 *
227 * This must be called only on pages that have been verified to be in the page
228 * cache and locked. It will never put the page into the free list, the caller
229 * has a reference on the page.
230 */
231 void delete_from_page_cache(struct page *page)
232 {
233 struct address_space *mapping = page->mapping;
234 struct mem_cgroup *memcg;
235 unsigned long flags;
236
237 void (*freepage)(struct page *);
238
239 BUG_ON(!PageLocked(page));
240
241 freepage = mapping->a_ops->freepage;
242
243 memcg = mem_cgroup_begin_page_stat(page);
244 spin_lock_irqsave(&mapping->tree_lock, flags);
245 __delete_from_page_cache(page, NULL, memcg);
246 spin_unlock_irqrestore(&mapping->tree_lock, flags);
247 mem_cgroup_end_page_stat(memcg);
248
249 if (freepage)
250 freepage(page);
251 page_cache_release(page);
252 }
253 EXPORT_SYMBOL(delete_from_page_cache);
254
255 static int filemap_check_errors(struct address_space *mapping)
256 {
257 int ret = 0;
258 /* Check for outstanding write errors */
259 if (test_bit(AS_ENOSPC, &mapping->flags) &&
260 test_and_clear_bit(AS_ENOSPC, &mapping->flags))
261 ret = -ENOSPC;
262 if (test_bit(AS_EIO, &mapping->flags) &&
263 test_and_clear_bit(AS_EIO, &mapping->flags))
264 ret = -EIO;
265 return ret;
266 }
267
268 /**
269 * __filemap_fdatawrite_range - start writeback on mapping dirty pages in range
270 * @mapping: address space structure to write
271 * @start: offset in bytes where the range starts
272 * @end: offset in bytes where the range ends (inclusive)
273 * @sync_mode: enable synchronous operation
274 *
275 * Start writeback against all of a mapping's dirty pages that lie
276 * within the byte offsets <start, end> inclusive.
277 *
278 * If sync_mode is WB_SYNC_ALL then this is a "data integrity" operation, as
279 * opposed to a regular memory cleansing writeback. The difference between
280 * these two operations is that if a dirty page/buffer is encountered, it must
281 * be waited upon, and not just skipped over.
282 */
283 int __filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
284 loff_t end, int sync_mode)
285 {
286 int ret;
287 struct writeback_control wbc = {
288 .sync_mode = sync_mode,
289 .nr_to_write = LONG_MAX,
290 .range_start = start,
291 .range_end = end,
292 };
293
294 if (!mapping_cap_writeback_dirty(mapping))
295 return 0;
296
297 wbc_attach_fdatawrite_inode(&wbc, mapping->host);
298 ret = do_writepages(mapping, &wbc);
299 wbc_detach_inode(&wbc);
300 return ret;
301 }
302
303 static inline int __filemap_fdatawrite(struct address_space *mapping,
304 int sync_mode)
305 {
306 return __filemap_fdatawrite_range(mapping, 0, LLONG_MAX, sync_mode);
307 }
308
309 int filemap_fdatawrite(struct address_space *mapping)
310 {
311 return __filemap_fdatawrite(mapping, WB_SYNC_ALL);
312 }
313 EXPORT_SYMBOL(filemap_fdatawrite);
314
315 int filemap_fdatawrite_range(struct address_space *mapping, loff_t start,
316 loff_t end)
317 {
318 return __filemap_fdatawrite_range(mapping, start, end, WB_SYNC_ALL);
319 }
320 EXPORT_SYMBOL(filemap_fdatawrite_range);
321
322 /**
323 * filemap_flush - mostly a non-blocking flush
324 * @mapping: target address_space
325 *
326 * This is a mostly non-blocking flush. Not suitable for data-integrity
327 * purposes - I/O may not be started against all dirty pages.
328 */
329 int filemap_flush(struct address_space *mapping)
330 {
331 return __filemap_fdatawrite(mapping, WB_SYNC_NONE);
332 }
333 EXPORT_SYMBOL(filemap_flush);
334
335 static int __filemap_fdatawait_range(struct address_space *mapping,
336 loff_t start_byte, loff_t end_byte)
337 {
338 pgoff_t index = start_byte >> PAGE_CACHE_SHIFT;
339 pgoff_t end = end_byte >> PAGE_CACHE_SHIFT;
340 struct pagevec pvec;
341 int nr_pages;
342 int ret = 0;
343
344 if (end_byte < start_byte)
345 goto out;
346
347 pagevec_init(&pvec, 0);
348 while ((index <= end) &&
349 (nr_pages = pagevec_lookup_tag(&pvec, mapping, &index,
350 PAGECACHE_TAG_WRITEBACK,
351 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1)) != 0) {
352 unsigned i;
353
354 for (i = 0; i < nr_pages; i++) {
355 struct page *page = pvec.pages[i];
356
357 /* until radix tree lookup accepts end_index */
358 if (page->index > end)
359 continue;
360
361 wait_on_page_writeback(page);
362 if (TestClearPageError(page))
363 ret = -EIO;
364 }
365 pagevec_release(&pvec);
366 cond_resched();
367 }
368 out:
369 return ret;
370 }
371
372 /**
373 * filemap_fdatawait_range - wait for writeback to complete
374 * @mapping: address space structure to wait for
375 * @start_byte: offset in bytes where the range starts
376 * @end_byte: offset in bytes where the range ends (inclusive)
377 *
378 * Walk the list of under-writeback pages of the given address space
379 * in the given range and wait for all of them. Check error status of
380 * the address space and return it.
381 *
382 * Since the error status of the address space is cleared by this function,
383 * callers are responsible for checking the return value and handling and/or
384 * reporting the error.
385 */
386 int filemap_fdatawait_range(struct address_space *mapping, loff_t start_byte,
387 loff_t end_byte)
388 {
389 int ret, ret2;
390
391 ret = __filemap_fdatawait_range(mapping, start_byte, end_byte);
392 ret2 = filemap_check_errors(mapping);
393 if (!ret)
394 ret = ret2;
395
396 return ret;
397 }
398 EXPORT_SYMBOL(filemap_fdatawait_range);
399
400 /**
401 * filemap_fdatawait_keep_errors - wait for writeback without clearing errors
402 * @mapping: address space structure to wait for
403 *
404 * Walk the list of under-writeback pages of the given address space
405 * and wait for all of them. Unlike filemap_fdatawait(), this function
406 * does not clear error status of the address space.
407 *
408 * Use this function if callers don't handle errors themselves. Expected
409 * call sites are system-wide / filesystem-wide data flushers: e.g. sync(2),
410 * fsfreeze(8)
411 */
412 void filemap_fdatawait_keep_errors(struct address_space *mapping)
413 {
414 loff_t i_size = i_size_read(mapping->host);
415
416 if (i_size == 0)
417 return;
418
419 __filemap_fdatawait_range(mapping, 0, i_size - 1);
420 }
421
422 /**
423 * filemap_fdatawait - wait for all under-writeback pages to complete
424 * @mapping: address space structure to wait for
425 *
426 * Walk the list of under-writeback pages of the given address space
427 * and wait for all of them. Check error status of the address space
428 * and return it.
429 *
430 * Since the error status of the address space is cleared by this function,
431 * callers are responsible for checking the return value and handling and/or
432 * reporting the error.
433 */
434 int filemap_fdatawait(struct address_space *mapping)
435 {
436 loff_t i_size = i_size_read(mapping->host);
437
438 if (i_size == 0)
439 return 0;
440
441 return filemap_fdatawait_range(mapping, 0, i_size - 1);
442 }
443 EXPORT_SYMBOL(filemap_fdatawait);
444
445 int filemap_write_and_wait(struct address_space *mapping)
446 {
447 int err = 0;
448
449 if (mapping->nrpages) {
450 err = filemap_fdatawrite(mapping);
451 /*
452 * Even if the above returned error, the pages may be
453 * written partially (e.g. -ENOSPC), so we wait for it.
454 * But the -EIO is special case, it may indicate the worst
455 * thing (e.g. bug) happened, so we avoid waiting for it.
456 */
457 if (err != -EIO) {
458 int err2 = filemap_fdatawait(mapping);
459 if (!err)
460 err = err2;
461 }
462 } else {
463 err = filemap_check_errors(mapping);
464 }
465 return err;
466 }
467 EXPORT_SYMBOL(filemap_write_and_wait);
468
469 /**
470 * filemap_write_and_wait_range - write out & wait on a file range
471 * @mapping: the address_space for the pages
472 * @lstart: offset in bytes where the range starts
473 * @lend: offset in bytes where the range ends (inclusive)
474 *
475 * Write out and wait upon file offsets lstart->lend, inclusive.
476 *
477 * Note that `lend' is inclusive (describes the last byte to be written) so
478 * that this function can be used to write to the very end-of-file (end = -1).
479 */
480 int filemap_write_and_wait_range(struct address_space *mapping,
481 loff_t lstart, loff_t lend)
482 {
483 int err = 0;
484
485 if (mapping->nrpages) {
486 err = __filemap_fdatawrite_range(mapping, lstart, lend,
487 WB_SYNC_ALL);
488 /* See comment of filemap_write_and_wait() */
489 if (err != -EIO) {
490 int err2 = filemap_fdatawait_range(mapping,
491 lstart, lend);
492 if (!err)
493 err = err2;
494 }
495 } else {
496 err = filemap_check_errors(mapping);
497 }
498 return err;
499 }
500 EXPORT_SYMBOL(filemap_write_and_wait_range);
501
502 /**
503 * replace_page_cache_page - replace a pagecache page with a new one
504 * @old: page to be replaced
505 * @new: page to replace with
506 * @gfp_mask: allocation mode
507 *
508 * This function replaces a page in the pagecache with a new one. On
509 * success it acquires the pagecache reference for the new page and
510 * drops it for the old page. Both the old and new pages must be
511 * locked. This function does not add the new page to the LRU, the
512 * caller must do that.
513 *
514 * The remove + add is atomic. The only way this function can fail is
515 * memory allocation failure.
516 */
517 int replace_page_cache_page(struct page *old, struct page *new, gfp_t gfp_mask)
518 {
519 int error;
520
521 VM_BUG_ON_PAGE(!PageLocked(old), old);
522 VM_BUG_ON_PAGE(!PageLocked(new), new);
523 VM_BUG_ON_PAGE(new->mapping, new);
524
525 error = radix_tree_preload(gfp_mask & ~__GFP_HIGHMEM);
526 if (!error) {
527 struct address_space *mapping = old->mapping;
528 void (*freepage)(struct page *);
529 struct mem_cgroup *memcg;
530 unsigned long flags;
531
532 pgoff_t offset = old->index;
533 freepage = mapping->a_ops->freepage;
534
535 page_cache_get(new);
536 new->mapping = mapping;
537 new->index = offset;
538
539 memcg = mem_cgroup_begin_page_stat(old);
540 spin_lock_irqsave(&mapping->tree_lock, flags);
541 __delete_from_page_cache(old, NULL, memcg);
542 error = radix_tree_insert(&mapping->page_tree, offset, new);
543 BUG_ON(error);
544 mapping->nrpages++;
545
546 /*
547 * hugetlb pages do not participate in page cache accounting.
548 */
549 if (!PageHuge(new))
550 __inc_zone_page_state(new, NR_FILE_PAGES);
551 if (PageSwapBacked(new))
552 __inc_zone_page_state(new, NR_SHMEM);
553 spin_unlock_irqrestore(&mapping->tree_lock, flags);
554 mem_cgroup_end_page_stat(memcg);
555 mem_cgroup_replace_page(old, new);
556 radix_tree_preload_end();
557 if (freepage)
558 freepage(old);
559 page_cache_release(old);
560 }
561
562 return error;
563 }
564 EXPORT_SYMBOL_GPL(replace_page_cache_page);
565
566 static int page_cache_tree_insert(struct address_space *mapping,
567 struct page *page, void **shadowp)
568 {
569 struct radix_tree_node *node;
570 void **slot;
571 int error;
572
573 error = __radix_tree_create(&mapping->page_tree, page->index,
574 &node, &slot);
575 if (error)
576 return error;
577 if (*slot) {
578 void *p;
579
580 p = radix_tree_deref_slot_protected(slot, &mapping->tree_lock);
581 if (!radix_tree_exceptional_entry(p))
582 return -EEXIST;
583
584 if (WARN_ON(dax_mapping(mapping)))
585 return -EINVAL;
586
587 if (shadowp)
588 *shadowp = p;
589 mapping->nrexceptional--;
590 if (node)
591 workingset_node_shadows_dec(node);
592 }
593 radix_tree_replace_slot(slot, page);
594 mapping->nrpages++;
595 if (node) {
596 workingset_node_pages_inc(node);
597 /*
598 * Don't track node that contains actual pages.
599 *
600 * Avoid acquiring the list_lru lock if already
601 * untracked. The list_empty() test is safe as
602 * node->private_list is protected by
603 * mapping->tree_lock.
604 */
605 if (!list_empty(&node->private_list))
606 list_lru_del(&workingset_shadow_nodes,
607 &node->private_list);
608 }
609 return 0;
610 }
611
612 static int __add_to_page_cache_locked(struct page *page,
613 struct address_space *mapping,
614 pgoff_t offset, gfp_t gfp_mask,
615 void **shadowp)
616 {
617 int huge = PageHuge(page);
618 struct mem_cgroup *memcg;
619 int error;
620
621 VM_BUG_ON_PAGE(!PageLocked(page), page);
622 VM_BUG_ON_PAGE(PageSwapBacked(page), page);
623
624 if (!huge) {
625 error = mem_cgroup_try_charge(page, current->mm,
626 gfp_mask, &memcg, false);
627 if (error)
628 return error;
629 }
630
631 error = radix_tree_maybe_preload(gfp_mask & ~__GFP_HIGHMEM);
632 if (error) {
633 if (!huge)
634 mem_cgroup_cancel_charge(page, memcg, false);
635 return error;
636 }
637
638 page_cache_get(page);
639 page->mapping = mapping;
640 page->index = offset;
641
642 spin_lock_irq(&mapping->tree_lock);
643 error = page_cache_tree_insert(mapping, page, shadowp);
644 radix_tree_preload_end();
645 if (unlikely(error))
646 goto err_insert;
647
648 /* hugetlb pages do not participate in page cache accounting. */
649 if (!huge)
650 __inc_zone_page_state(page, NR_FILE_PAGES);
651 spin_unlock_irq(&mapping->tree_lock);
652 if (!huge)
653 mem_cgroup_commit_charge(page, memcg, false, false);
654 trace_mm_filemap_add_to_page_cache(page);
655 return 0;
656 err_insert:
657 page->mapping = NULL;
658 /* Leave page->index set: truncation relies upon it */
659 spin_unlock_irq(&mapping->tree_lock);
660 if (!huge)
661 mem_cgroup_cancel_charge(page, memcg, false);
662 page_cache_release(page);
663 return error;
664 }
665
666 /**
667 * add_to_page_cache_locked - add a locked page to the pagecache
668 * @page: page to add
669 * @mapping: the page's address_space
670 * @offset: page index
671 * @gfp_mask: page allocation mode
672 *
673 * This function is used to add a page to the pagecache. It must be locked.
674 * This function does not add the page to the LRU. The caller must do that.
675 */
676 int add_to_page_cache_locked(struct page *page, struct address_space *mapping,
677 pgoff_t offset, gfp_t gfp_mask)
678 {
679 return __add_to_page_cache_locked(page, mapping, offset,
680 gfp_mask, NULL);
681 }
682 EXPORT_SYMBOL(add_to_page_cache_locked);
683
684 int add_to_page_cache_lru(struct page *page, struct address_space *mapping,
685 pgoff_t offset, gfp_t gfp_mask)
686 {
687 void *shadow = NULL;
688 int ret;
689
690 __SetPageLocked(page);
691 ret = __add_to_page_cache_locked(page, mapping, offset,
692 gfp_mask, &shadow);
693 if (unlikely(ret))
694 __ClearPageLocked(page);
695 else {
696 /*
697 * The page might have been evicted from cache only
698 * recently, in which case it should be activated like
699 * any other repeatedly accessed page.
700 */
701 if (shadow && workingset_refault(shadow)) {
702 SetPageActive(page);
703 workingset_activation(page);
704 } else
705 ClearPageActive(page);
706 lru_cache_add(page);
707 }
708 return ret;
709 }
710 EXPORT_SYMBOL_GPL(add_to_page_cache_lru);
711
712 #ifdef CONFIG_NUMA
713 struct page *__page_cache_alloc(gfp_t gfp)
714 {
715 int n;
716 struct page *page;
717
718 if (cpuset_do_page_mem_spread()) {
719 unsigned int cpuset_mems_cookie;
720 do {
721 cpuset_mems_cookie = read_mems_allowed_begin();
722 n = cpuset_mem_spread_node();
723 page = __alloc_pages_node(n, gfp, 0);
724 } while (!page && read_mems_allowed_retry(cpuset_mems_cookie));
725
726 return page;
727 }
728 return alloc_pages(gfp, 0);
729 }
730 EXPORT_SYMBOL(__page_cache_alloc);
731 #endif
732
733 /*
734 * In order to wait for pages to become available there must be
735 * waitqueues associated with pages. By using a hash table of
736 * waitqueues where the bucket discipline is to maintain all
737 * waiters on the same queue and wake all when any of the pages
738 * become available, and for the woken contexts to check to be
739 * sure the appropriate page became available, this saves space
740 * at a cost of "thundering herd" phenomena during rare hash
741 * collisions.
742 */
743 wait_queue_head_t *page_waitqueue(struct page *page)
744 {
745 const struct zone *zone = page_zone(page);
746
747 return &zone->wait_table[hash_ptr(page, zone->wait_table_bits)];
748 }
749 EXPORT_SYMBOL(page_waitqueue);
750
751 void wait_on_page_bit(struct page *page, int bit_nr)
752 {
753 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
754
755 if (test_bit(bit_nr, &page->flags))
756 __wait_on_bit(page_waitqueue(page), &wait, bit_wait_io,
757 TASK_UNINTERRUPTIBLE);
758 }
759 EXPORT_SYMBOL(wait_on_page_bit);
760
761 int wait_on_page_bit_killable(struct page *page, int bit_nr)
762 {
763 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
764
765 if (!test_bit(bit_nr, &page->flags))
766 return 0;
767
768 return __wait_on_bit(page_waitqueue(page), &wait,
769 bit_wait_io, TASK_KILLABLE);
770 }
771
772 int wait_on_page_bit_killable_timeout(struct page *page,
773 int bit_nr, unsigned long timeout)
774 {
775 DEFINE_WAIT_BIT(wait, &page->flags, bit_nr);
776
777 wait.key.timeout = jiffies + timeout;
778 if (!test_bit(bit_nr, &page->flags))
779 return 0;
780 return __wait_on_bit(page_waitqueue(page), &wait,
781 bit_wait_io_timeout, TASK_KILLABLE);
782 }
783 EXPORT_SYMBOL_GPL(wait_on_page_bit_killable_timeout);
784
785 /**
786 * add_page_wait_queue - Add an arbitrary waiter to a page's wait queue
787 * @page: Page defining the wait queue of interest
788 * @waiter: Waiter to add to the queue
789 *
790 * Add an arbitrary @waiter to the wait queue for the nominated @page.
791 */
792 void add_page_wait_queue(struct page *page, wait_queue_t *waiter)
793 {
794 wait_queue_head_t *q = page_waitqueue(page);
795 unsigned long flags;
796
797 spin_lock_irqsave(&q->lock, flags);
798 __add_wait_queue(q, waiter);
799 spin_unlock_irqrestore(&q->lock, flags);
800 }
801 EXPORT_SYMBOL_GPL(add_page_wait_queue);
802
803 /**
804 * unlock_page - unlock a locked page
805 * @page: the page
806 *
807 * Unlocks the page and wakes up sleepers in ___wait_on_page_locked().
808 * Also wakes sleepers in wait_on_page_writeback() because the wakeup
809 * mechanism between PageLocked pages and PageWriteback pages is shared.
810 * But that's OK - sleepers in wait_on_page_writeback() just go back to sleep.
811 *
812 * The mb is necessary to enforce ordering between the clear_bit and the read
813 * of the waitqueue (to avoid SMP races with a parallel wait_on_page_locked()).
814 */
815 void unlock_page(struct page *page)
816 {
817 page = compound_head(page);
818 VM_BUG_ON_PAGE(!PageLocked(page), page);
819 clear_bit_unlock(PG_locked, &page->flags);
820 smp_mb__after_atomic();
821 wake_up_page(page, PG_locked);
822 }
823 EXPORT_SYMBOL(unlock_page);
824
825 /**
826 * end_page_writeback - end writeback against a page
827 * @page: the page
828 */
829 void end_page_writeback(struct page *page)
830 {
831 /*
832 * TestClearPageReclaim could be used here but it is an atomic
833 * operation and overkill in this particular case. Failing to
834 * shuffle a page marked for immediate reclaim is too mild to
835 * justify taking an atomic operation penalty at the end of
836 * ever page writeback.
837 */
838 if (PageReclaim(page)) {
839 ClearPageReclaim(page);
840 rotate_reclaimable_page(page);
841 }
842
843 if (!test_clear_page_writeback(page))
844 BUG();
845
846 smp_mb__after_atomic();
847 wake_up_page(page, PG_writeback);
848 }
849 EXPORT_SYMBOL(end_page_writeback);
850
851 /*
852 * After completing I/O on a page, call this routine to update the page
853 * flags appropriately
854 */
855 void page_endio(struct page *page, int rw, int err)
856 {
857 if (rw == READ) {
858 if (!err) {
859 SetPageUptodate(page);
860 } else {
861 ClearPageUptodate(page);
862 SetPageError(page);
863 }
864 unlock_page(page);
865 } else { /* rw == WRITE */
866 if (err) {
867 SetPageError(page);
868 if (page->mapping)
869 mapping_set_error(page->mapping, err);
870 }
871 end_page_writeback(page);
872 }
873 }
874 EXPORT_SYMBOL_GPL(page_endio);
875
876 /**
877 * __lock_page - get a lock on the page, assuming we need to sleep to get it
878 * @page: the page to lock
879 */
880 void __lock_page(struct page *page)
881 {
882 struct page *page_head = compound_head(page);
883 DEFINE_WAIT_BIT(wait, &page_head->flags, PG_locked);
884
885 __wait_on_bit_lock(page_waitqueue(page_head), &wait, bit_wait_io,
886 TASK_UNINTERRUPTIBLE);
887 }
888 EXPORT_SYMBOL(__lock_page);
889
890 int __lock_page_killable(struct page *page)
891 {
892 struct page *page_head = compound_head(page);
893 DEFINE_WAIT_BIT(wait, &page_head->flags, PG_locked);
894
895 return __wait_on_bit_lock(page_waitqueue(page_head), &wait,
896 bit_wait_io, TASK_KILLABLE);
897 }
898 EXPORT_SYMBOL_GPL(__lock_page_killable);
899
900 /*
901 * Return values:
902 * 1 - page is locked; mmap_sem is still held.
903 * 0 - page is not locked.
904 * mmap_sem has been released (up_read()), unless flags had both
905 * FAULT_FLAG_ALLOW_RETRY and FAULT_FLAG_RETRY_NOWAIT set, in
906 * which case mmap_sem is still held.
907 *
908 * If neither ALLOW_RETRY nor KILLABLE are set, will always return 1
909 * with the page locked and the mmap_sem unperturbed.
910 */
911 int __lock_page_or_retry(struct page *page, struct mm_struct *mm,
912 unsigned int flags)
913 {
914 if (flags & FAULT_FLAG_ALLOW_RETRY) {
915 /*
916 * CAUTION! In this case, mmap_sem is not released
917 * even though return 0.
918 */
919 if (flags & FAULT_FLAG_RETRY_NOWAIT)
920 return 0;
921
922 up_read(&mm->mmap_sem);
923 if (flags & FAULT_FLAG_KILLABLE)
924 wait_on_page_locked_killable(page);
925 else
926 wait_on_page_locked(page);
927 return 0;
928 } else {
929 if (flags & FAULT_FLAG_KILLABLE) {
930 int ret;
931
932 ret = __lock_page_killable(page);
933 if (ret) {
934 up_read(&mm->mmap_sem);
935 return 0;
936 }
937 } else
938 __lock_page(page);
939 return 1;
940 }
941 }
942
943 /**
944 * page_cache_next_hole - find the next hole (not-present entry)
945 * @mapping: mapping
946 * @index: index
947 * @max_scan: maximum range to search
948 *
949 * Search the set [index, min(index+max_scan-1, MAX_INDEX)] for the
950 * lowest indexed hole.
951 *
952 * Returns: the index of the hole if found, otherwise returns an index
953 * outside of the set specified (in which case 'return - index >=
954 * max_scan' will be true). In rare cases of index wrap-around, 0 will
955 * be returned.
956 *
957 * page_cache_next_hole may be called under rcu_read_lock. However,
958 * like radix_tree_gang_lookup, this will not atomically search a
959 * snapshot of the tree at a single point in time. For example, if a
960 * hole is created at index 5, then subsequently a hole is created at
961 * index 10, page_cache_next_hole covering both indexes may return 10
962 * if called under rcu_read_lock.
963 */
964 pgoff_t page_cache_next_hole(struct address_space *mapping,
965 pgoff_t index, unsigned long max_scan)
966 {
967 unsigned long i;
968
969 for (i = 0; i < max_scan; i++) {
970 struct page *page;
971
972 page = radix_tree_lookup(&mapping->page_tree, index);
973 if (!page || radix_tree_exceptional_entry(page))
974 break;
975 index++;
976 if (index == 0)
977 break;
978 }
979
980 return index;
981 }
982 EXPORT_SYMBOL(page_cache_next_hole);
983
984 /**
985 * page_cache_prev_hole - find the prev hole (not-present entry)
986 * @mapping: mapping
987 * @index: index
988 * @max_scan: maximum range to search
989 *
990 * Search backwards in the range [max(index-max_scan+1, 0), index] for
991 * the first hole.
992 *
993 * Returns: the index of the hole if found, otherwise returns an index
994 * outside of the set specified (in which case 'index - return >=
995 * max_scan' will be true). In rare cases of wrap-around, ULONG_MAX
996 * will be returned.
997 *
998 * page_cache_prev_hole may be called under rcu_read_lock. However,
999 * like radix_tree_gang_lookup, this will not atomically search a
1000 * snapshot of the tree at a single point in time. For example, if a
1001 * hole is created at index 10, then subsequently a hole is created at
1002 * index 5, page_cache_prev_hole covering both indexes may return 5 if
1003 * called under rcu_read_lock.
1004 */
1005 pgoff_t page_cache_prev_hole(struct address_space *mapping,
1006 pgoff_t index, unsigned long max_scan)
1007 {
1008 unsigned long i;
1009
1010 for (i = 0; i < max_scan; i++) {
1011 struct page *page;
1012
1013 page = radix_tree_lookup(&mapping->page_tree, index);
1014 if (!page || radix_tree_exceptional_entry(page))
1015 break;
1016 index--;
1017 if (index == ULONG_MAX)
1018 break;
1019 }
1020
1021 return index;
1022 }
1023 EXPORT_SYMBOL(page_cache_prev_hole);
1024
1025 /**
1026 * find_get_entry - find and get a page cache entry
1027 * @mapping: the address_space to search
1028 * @offset: the page cache index
1029 *
1030 * Looks up the page cache slot at @mapping & @offset. If there is a
1031 * page cache page, it is returned with an increased refcount.
1032 *
1033 * If the slot holds a shadow entry of a previously evicted page, or a
1034 * swap entry from shmem/tmpfs, it is returned.
1035 *
1036 * Otherwise, %NULL is returned.
1037 */
1038 struct page *find_get_entry(struct address_space *mapping, pgoff_t offset)
1039 {
1040 void **pagep;
1041 struct page *page;
1042
1043 rcu_read_lock();
1044 repeat:
1045 page = NULL;
1046 pagep = radix_tree_lookup_slot(&mapping->page_tree, offset);
1047 if (pagep) {
1048 page = radix_tree_deref_slot(pagep);
1049 if (unlikely(!page))
1050 goto out;
1051 if (radix_tree_exception(page)) {
1052 if (radix_tree_deref_retry(page))
1053 goto repeat;
1054 /*
1055 * A shadow entry of a recently evicted page,
1056 * or a swap entry from shmem/tmpfs. Return
1057 * it without attempting to raise page count.
1058 */
1059 goto out;
1060 }
1061 if (!page_cache_get_speculative(page))
1062 goto repeat;
1063
1064 /*
1065 * Has the page moved?
1066 * This is part of the lockless pagecache protocol. See
1067 * include/linux/pagemap.h for details.
1068 */
1069 if (unlikely(page != *pagep)) {
1070 page_cache_release(page);
1071 goto repeat;
1072 }
1073 }
1074 out:
1075 rcu_read_unlock();
1076
1077 return page;
1078 }
1079 EXPORT_SYMBOL(find_get_entry);
1080
1081 /**
1082 * find_lock_entry - locate, pin and lock a page cache entry
1083 * @mapping: the address_space to search
1084 * @offset: the page cache index
1085 *
1086 * Looks up the page cache slot at @mapping & @offset. If there is a
1087 * page cache page, it is returned locked and with an increased
1088 * refcount.
1089 *
1090 * If the slot holds a shadow entry of a previously evicted page, or a
1091 * swap entry from shmem/tmpfs, it is returned.
1092 *
1093 * Otherwise, %NULL is returned.
1094 *
1095 * find_lock_entry() may sleep.
1096 */
1097 struct page *find_lock_entry(struct address_space *mapping, pgoff_t offset)
1098 {
1099 struct page *page;
1100
1101 repeat:
1102 page = find_get_entry(mapping, offset);
1103 if (page && !radix_tree_exception(page)) {
1104 lock_page(page);
1105 /* Has the page been truncated? */
1106 if (unlikely(page->mapping != mapping)) {
1107 unlock_page(page);
1108 page_cache_release(page);
1109 goto repeat;
1110 }
1111 VM_BUG_ON_PAGE(page->index != offset, page);
1112 }
1113 return page;
1114 }
1115 EXPORT_SYMBOL(find_lock_entry);
1116
1117 /**
1118 * pagecache_get_page - find and get a page reference
1119 * @mapping: the address_space to search
1120 * @offset: the page index
1121 * @fgp_flags: PCG flags
1122 * @gfp_mask: gfp mask to use for the page cache data page allocation
1123 *
1124 * Looks up the page cache slot at @mapping & @offset.
1125 *
1126 * PCG flags modify how the page is returned.
1127 *
1128 * FGP_ACCESSED: the page will be marked accessed
1129 * FGP_LOCK: Page is return locked
1130 * FGP_CREAT: If page is not present then a new page is allocated using
1131 * @gfp_mask and added to the page cache and the VM's LRU
1132 * list. The page is returned locked and with an increased
1133 * refcount. Otherwise, %NULL is returned.
1134 *
1135 * If FGP_LOCK or FGP_CREAT are specified then the function may sleep even
1136 * if the GFP flags specified for FGP_CREAT are atomic.
1137 *
1138 * If there is a page cache page, it is returned with an increased refcount.
1139 */
1140 struct page *pagecache_get_page(struct address_space *mapping, pgoff_t offset,
1141 int fgp_flags, gfp_t gfp_mask)
1142 {
1143 struct page *page;
1144
1145 repeat:
1146 page = find_get_entry(mapping, offset);
1147 if (radix_tree_exceptional_entry(page))
1148 page = NULL;
1149 if (!page)
1150 goto no_page;
1151
1152 if (fgp_flags & FGP_LOCK) {
1153 if (fgp_flags & FGP_NOWAIT) {
1154 if (!trylock_page(page)) {
1155 page_cache_release(page);
1156 return NULL;
1157 }
1158 } else {
1159 lock_page(page);
1160 }
1161
1162 /* Has the page been truncated? */
1163 if (unlikely(page->mapping != mapping)) {
1164 unlock_page(page);
1165 page_cache_release(page);
1166 goto repeat;
1167 }
1168 VM_BUG_ON_PAGE(page->index != offset, page);
1169 }
1170
1171 if (page && (fgp_flags & FGP_ACCESSED))
1172 mark_page_accessed(page);
1173
1174 no_page:
1175 if (!page && (fgp_flags & FGP_CREAT)) {
1176 int err;
1177 if ((fgp_flags & FGP_WRITE) && mapping_cap_account_dirty(mapping))
1178 gfp_mask |= __GFP_WRITE;
1179 if (fgp_flags & FGP_NOFS)
1180 gfp_mask &= ~__GFP_FS;
1181
1182 page = __page_cache_alloc(gfp_mask);
1183 if (!page)
1184 return NULL;
1185
1186 if (WARN_ON_ONCE(!(fgp_flags & FGP_LOCK)))
1187 fgp_flags |= FGP_LOCK;
1188
1189 /* Init accessed so avoid atomic mark_page_accessed later */
1190 if (fgp_flags & FGP_ACCESSED)
1191 __SetPageReferenced(page);
1192
1193 err = add_to_page_cache_lru(page, mapping, offset,
1194 gfp_mask & GFP_RECLAIM_MASK);
1195 if (unlikely(err)) {
1196 page_cache_release(page);
1197 page = NULL;
1198 if (err == -EEXIST)
1199 goto repeat;
1200 }
1201 }
1202
1203 return page;
1204 }
1205 EXPORT_SYMBOL(pagecache_get_page);
1206
1207 /**
1208 * find_get_entries - gang pagecache lookup
1209 * @mapping: The address_space to search
1210 * @start: The starting page cache index
1211 * @nr_entries: The maximum number of entries
1212 * @entries: Where the resulting entries are placed
1213 * @indices: The cache indices corresponding to the entries in @entries
1214 *
1215 * find_get_entries() will search for and return a group of up to
1216 * @nr_entries entries in the mapping. The entries are placed at
1217 * @entries. find_get_entries() takes a reference against any actual
1218 * pages it returns.
1219 *
1220 * The search returns a group of mapping-contiguous page cache entries
1221 * with ascending indexes. There may be holes in the indices due to
1222 * not-present pages.
1223 *
1224 * Any shadow entries of evicted pages, or swap entries from
1225 * shmem/tmpfs, are included in the returned array.
1226 *
1227 * find_get_entries() returns the number of pages and shadow entries
1228 * which were found.
1229 */
1230 unsigned find_get_entries(struct address_space *mapping,
1231 pgoff_t start, unsigned int nr_entries,
1232 struct page **entries, pgoff_t *indices)
1233 {
1234 void **slot;
1235 unsigned int ret = 0;
1236 struct radix_tree_iter iter;
1237
1238 if (!nr_entries)
1239 return 0;
1240
1241 rcu_read_lock();
1242 restart:
1243 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1244 struct page *page;
1245 repeat:
1246 page = radix_tree_deref_slot(slot);
1247 if (unlikely(!page))
1248 continue;
1249 if (radix_tree_exception(page)) {
1250 if (radix_tree_deref_retry(page))
1251 goto restart;
1252 /*
1253 * A shadow entry of a recently evicted page, a swap
1254 * entry from shmem/tmpfs or a DAX entry. Return it
1255 * without attempting to raise page count.
1256 */
1257 goto export;
1258 }
1259 if (!page_cache_get_speculative(page))
1260 goto repeat;
1261
1262 /* Has the page moved? */
1263 if (unlikely(page != *slot)) {
1264 page_cache_release(page);
1265 goto repeat;
1266 }
1267 export:
1268 indices[ret] = iter.index;
1269 entries[ret] = page;
1270 if (++ret == nr_entries)
1271 break;
1272 }
1273 rcu_read_unlock();
1274 return ret;
1275 }
1276
1277 /**
1278 * find_get_pages - gang pagecache lookup
1279 * @mapping: The address_space to search
1280 * @start: The starting page index
1281 * @nr_pages: The maximum number of pages
1282 * @pages: Where the resulting pages are placed
1283 *
1284 * find_get_pages() will search for and return a group of up to
1285 * @nr_pages pages in the mapping. The pages are placed at @pages.
1286 * find_get_pages() takes a reference against the returned pages.
1287 *
1288 * The search returns a group of mapping-contiguous pages with ascending
1289 * indexes. There may be holes in the indices due to not-present pages.
1290 *
1291 * find_get_pages() returns the number of pages which were found.
1292 */
1293 unsigned find_get_pages(struct address_space *mapping, pgoff_t start,
1294 unsigned int nr_pages, struct page **pages)
1295 {
1296 struct radix_tree_iter iter;
1297 void **slot;
1298 unsigned ret = 0;
1299
1300 if (unlikely(!nr_pages))
1301 return 0;
1302
1303 rcu_read_lock();
1304 restart:
1305 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, start) {
1306 struct page *page;
1307 repeat:
1308 page = radix_tree_deref_slot(slot);
1309 if (unlikely(!page))
1310 continue;
1311
1312 if (radix_tree_exception(page)) {
1313 if (radix_tree_deref_retry(page)) {
1314 /*
1315 * Transient condition which can only trigger
1316 * when entry at index 0 moves out of or back
1317 * to root: none yet gotten, safe to restart.
1318 */
1319 WARN_ON(iter.index);
1320 goto restart;
1321 }
1322 /*
1323 * A shadow entry of a recently evicted page,
1324 * or a swap entry from shmem/tmpfs. Skip
1325 * over it.
1326 */
1327 continue;
1328 }
1329
1330 if (!page_cache_get_speculative(page))
1331 goto repeat;
1332
1333 /* Has the page moved? */
1334 if (unlikely(page != *slot)) {
1335 page_cache_release(page);
1336 goto repeat;
1337 }
1338
1339 pages[ret] = page;
1340 if (++ret == nr_pages)
1341 break;
1342 }
1343
1344 rcu_read_unlock();
1345 return ret;
1346 }
1347
1348 /**
1349 * find_get_pages_contig - gang contiguous pagecache lookup
1350 * @mapping: The address_space to search
1351 * @index: The starting page index
1352 * @nr_pages: The maximum number of pages
1353 * @pages: Where the resulting pages are placed
1354 *
1355 * find_get_pages_contig() works exactly like find_get_pages(), except
1356 * that the returned number of pages are guaranteed to be contiguous.
1357 *
1358 * find_get_pages_contig() returns the number of pages which were found.
1359 */
1360 unsigned find_get_pages_contig(struct address_space *mapping, pgoff_t index,
1361 unsigned int nr_pages, struct page **pages)
1362 {
1363 struct radix_tree_iter iter;
1364 void **slot;
1365 unsigned int ret = 0;
1366
1367 if (unlikely(!nr_pages))
1368 return 0;
1369
1370 rcu_read_lock();
1371 restart:
1372 radix_tree_for_each_contig(slot, &mapping->page_tree, &iter, index) {
1373 struct page *page;
1374 repeat:
1375 page = radix_tree_deref_slot(slot);
1376 /* The hole, there no reason to continue */
1377 if (unlikely(!page))
1378 break;
1379
1380 if (radix_tree_exception(page)) {
1381 if (radix_tree_deref_retry(page)) {
1382 /*
1383 * Transient condition which can only trigger
1384 * when entry at index 0 moves out of or back
1385 * to root: none yet gotten, safe to restart.
1386 */
1387 goto restart;
1388 }
1389 /*
1390 * A shadow entry of a recently evicted page,
1391 * or a swap entry from shmem/tmpfs. Stop
1392 * looking for contiguous pages.
1393 */
1394 break;
1395 }
1396
1397 if (!page_cache_get_speculative(page))
1398 goto repeat;
1399
1400 /* Has the page moved? */
1401 if (unlikely(page != *slot)) {
1402 page_cache_release(page);
1403 goto repeat;
1404 }
1405
1406 /*
1407 * must check mapping and index after taking the ref.
1408 * otherwise we can get both false positives and false
1409 * negatives, which is just confusing to the caller.
1410 */
1411 if (page->mapping == NULL || page->index != iter.index) {
1412 page_cache_release(page);
1413 break;
1414 }
1415
1416 pages[ret] = page;
1417 if (++ret == nr_pages)
1418 break;
1419 }
1420 rcu_read_unlock();
1421 return ret;
1422 }
1423 EXPORT_SYMBOL(find_get_pages_contig);
1424
1425 /**
1426 * find_get_pages_tag - find and return pages that match @tag
1427 * @mapping: the address_space to search
1428 * @index: the starting page index
1429 * @tag: the tag index
1430 * @nr_pages: the maximum number of pages
1431 * @pages: where the resulting pages are placed
1432 *
1433 * Like find_get_pages, except we only return pages which are tagged with
1434 * @tag. We update @index to index the next page for the traversal.
1435 */
1436 unsigned find_get_pages_tag(struct address_space *mapping, pgoff_t *index,
1437 int tag, unsigned int nr_pages, struct page **pages)
1438 {
1439 struct radix_tree_iter iter;
1440 void **slot;
1441 unsigned ret = 0;
1442
1443 if (unlikely(!nr_pages))
1444 return 0;
1445
1446 rcu_read_lock();
1447 restart:
1448 radix_tree_for_each_tagged(slot, &mapping->page_tree,
1449 &iter, *index, tag) {
1450 struct page *page;
1451 repeat:
1452 page = radix_tree_deref_slot(slot);
1453 if (unlikely(!page))
1454 continue;
1455
1456 if (radix_tree_exception(page)) {
1457 if (radix_tree_deref_retry(page)) {
1458 /*
1459 * Transient condition which can only trigger
1460 * when entry at index 0 moves out of or back
1461 * to root: none yet gotten, safe to restart.
1462 */
1463 goto restart;
1464 }
1465 /*
1466 * A shadow entry of a recently evicted page.
1467 *
1468 * Those entries should never be tagged, but
1469 * this tree walk is lockless and the tags are
1470 * looked up in bulk, one radix tree node at a
1471 * time, so there is a sizable window for page
1472 * reclaim to evict a page we saw tagged.
1473 *
1474 * Skip over it.
1475 */
1476 continue;
1477 }
1478
1479 if (!page_cache_get_speculative(page))
1480 goto repeat;
1481
1482 /* Has the page moved? */
1483 if (unlikely(page != *slot)) {
1484 page_cache_release(page);
1485 goto repeat;
1486 }
1487
1488 pages[ret] = page;
1489 if (++ret == nr_pages)
1490 break;
1491 }
1492
1493 rcu_read_unlock();
1494
1495 if (ret)
1496 *index = pages[ret - 1]->index + 1;
1497
1498 return ret;
1499 }
1500 EXPORT_SYMBOL(find_get_pages_tag);
1501
1502 /*
1503 * CD/DVDs are error prone. When a medium error occurs, the driver may fail
1504 * a _large_ part of the i/o request. Imagine the worst scenario:
1505 *
1506 * ---R__________________________________________B__________
1507 * ^ reading here ^ bad block(assume 4k)
1508 *
1509 * read(R) => miss => readahead(R...B) => media error => frustrating retries
1510 * => failing the whole request => read(R) => read(R+1) =>
1511 * readahead(R+1...B+1) => bang => read(R+2) => read(R+3) =>
1512 * readahead(R+3...B+2) => bang => read(R+3) => read(R+4) =>
1513 * readahead(R+4...B+3) => bang => read(R+4) => read(R+5) => ......
1514 *
1515 * It is going insane. Fix it by quickly scaling down the readahead size.
1516 */
1517 static void shrink_readahead_size_eio(struct file *filp,
1518 struct file_ra_state *ra)
1519 {
1520 ra->ra_pages /= 4;
1521 }
1522
1523 /**
1524 * do_generic_file_read - generic file read routine
1525 * @filp: the file to read
1526 * @ppos: current file position
1527 * @iter: data destination
1528 * @written: already copied
1529 *
1530 * This is a generic file read routine, and uses the
1531 * mapping->a_ops->readpage() function for the actual low-level stuff.
1532 *
1533 * This is really ugly. But the goto's actually try to clarify some
1534 * of the logic when it comes to error handling etc.
1535 */
1536 static ssize_t do_generic_file_read(struct file *filp, loff_t *ppos,
1537 struct iov_iter *iter, ssize_t written)
1538 {
1539 struct address_space *mapping = filp->f_mapping;
1540 struct inode *inode = mapping->host;
1541 struct file_ra_state *ra = &filp->f_ra;
1542 pgoff_t index;
1543 pgoff_t last_index;
1544 pgoff_t prev_index;
1545 unsigned long offset; /* offset into pagecache page */
1546 unsigned int prev_offset;
1547 int error = 0;
1548
1549 index = *ppos >> PAGE_CACHE_SHIFT;
1550 prev_index = ra->prev_pos >> PAGE_CACHE_SHIFT;
1551 prev_offset = ra->prev_pos & (PAGE_CACHE_SIZE-1);
1552 last_index = (*ppos + iter->count + PAGE_CACHE_SIZE-1) >> PAGE_CACHE_SHIFT;
1553 offset = *ppos & ~PAGE_CACHE_MASK;
1554
1555 for (;;) {
1556 struct page *page;
1557 pgoff_t end_index;
1558 loff_t isize;
1559 unsigned long nr, ret;
1560
1561 cond_resched();
1562 find_page:
1563 page = find_get_page(mapping, index);
1564 if (!page) {
1565 page_cache_sync_readahead(mapping,
1566 ra, filp,
1567 index, last_index - index);
1568 page = find_get_page(mapping, index);
1569 if (unlikely(page == NULL))
1570 goto no_cached_page;
1571 }
1572 if (PageReadahead(page)) {
1573 page_cache_async_readahead(mapping,
1574 ra, filp, page,
1575 index, last_index - index);
1576 }
1577 if (!PageUptodate(page)) {
1578 if (inode->i_blkbits == PAGE_CACHE_SHIFT ||
1579 !mapping->a_ops->is_partially_uptodate)
1580 goto page_not_up_to_date;
1581 if (!trylock_page(page))
1582 goto page_not_up_to_date;
1583 /* Did it get truncated before we got the lock? */
1584 if (!page->mapping)
1585 goto page_not_up_to_date_locked;
1586 if (!mapping->a_ops->is_partially_uptodate(page,
1587 offset, iter->count))
1588 goto page_not_up_to_date_locked;
1589 unlock_page(page);
1590 }
1591 page_ok:
1592 /*
1593 * i_size must be checked after we know the page is Uptodate.
1594 *
1595 * Checking i_size after the check allows us to calculate
1596 * the correct value for "nr", which means the zero-filled
1597 * part of the page is not copied back to userspace (unless
1598 * another truncate extends the file - this is desired though).
1599 */
1600
1601 isize = i_size_read(inode);
1602 end_index = (isize - 1) >> PAGE_CACHE_SHIFT;
1603 if (unlikely(!isize || index > end_index)) {
1604 page_cache_release(page);
1605 goto out;
1606 }
1607
1608 /* nr is the maximum number of bytes to copy from this page */
1609 nr = PAGE_CACHE_SIZE;
1610 if (index == end_index) {
1611 nr = ((isize - 1) & ~PAGE_CACHE_MASK) + 1;
1612 if (nr <= offset) {
1613 page_cache_release(page);
1614 goto out;
1615 }
1616 }
1617 nr = nr - offset;
1618
1619 /* If users can be writing to this page using arbitrary
1620 * virtual addresses, take care about potential aliasing
1621 * before reading the page on the kernel side.
1622 */
1623 if (mapping_writably_mapped(mapping))
1624 flush_dcache_page(page);
1625
1626 /*
1627 * When a sequential read accesses a page several times,
1628 * only mark it as accessed the first time.
1629 */
1630 if (prev_index != index || offset != prev_offset)
1631 mark_page_accessed(page);
1632 prev_index = index;
1633
1634 /*
1635 * Ok, we have the page, and it's up-to-date, so
1636 * now we can copy it to user space...
1637 */
1638
1639 ret = copy_page_to_iter(page, offset, nr, iter);
1640 offset += ret;
1641 index += offset >> PAGE_CACHE_SHIFT;
1642 offset &= ~PAGE_CACHE_MASK;
1643 prev_offset = offset;
1644
1645 page_cache_release(page);
1646 written += ret;
1647 if (!iov_iter_count(iter))
1648 goto out;
1649 if (ret < nr) {
1650 error = -EFAULT;
1651 goto out;
1652 }
1653 continue;
1654
1655 page_not_up_to_date:
1656 /* Get exclusive access to the page ... */
1657 error = lock_page_killable(page);
1658 if (unlikely(error))
1659 goto readpage_error;
1660
1661 page_not_up_to_date_locked:
1662 /* Did it get truncated before we got the lock? */
1663 if (!page->mapping) {
1664 unlock_page(page);
1665 page_cache_release(page);
1666 continue;
1667 }
1668
1669 /* Did somebody else fill it already? */
1670 if (PageUptodate(page)) {
1671 unlock_page(page);
1672 goto page_ok;
1673 }
1674
1675 readpage:
1676 /*
1677 * A previous I/O error may have been due to temporary
1678 * failures, eg. multipath errors.
1679 * PG_error will be set again if readpage fails.
1680 */
1681 ClearPageError(page);
1682 /* Start the actual read. The read will unlock the page. */
1683 error = mapping->a_ops->readpage(filp, page);
1684
1685 if (unlikely(error)) {
1686 if (error == AOP_TRUNCATED_PAGE) {
1687 page_cache_release(page);
1688 error = 0;
1689 goto find_page;
1690 }
1691 goto readpage_error;
1692 }
1693
1694 if (!PageUptodate(page)) {
1695 error = lock_page_killable(page);
1696 if (unlikely(error))
1697 goto readpage_error;
1698 if (!PageUptodate(page)) {
1699 if (page->mapping == NULL) {
1700 /*
1701 * invalidate_mapping_pages got it
1702 */
1703 unlock_page(page);
1704 page_cache_release(page);
1705 goto find_page;
1706 }
1707 unlock_page(page);
1708 shrink_readahead_size_eio(filp, ra);
1709 error = -EIO;
1710 goto readpage_error;
1711 }
1712 unlock_page(page);
1713 }
1714
1715 goto page_ok;
1716
1717 readpage_error:
1718 /* UHHUH! A synchronous read error occurred. Report it */
1719 page_cache_release(page);
1720 goto out;
1721
1722 no_cached_page:
1723 /*
1724 * Ok, it wasn't cached, so we need to create a new
1725 * page..
1726 */
1727 page = page_cache_alloc_cold(mapping);
1728 if (!page) {
1729 error = -ENOMEM;
1730 goto out;
1731 }
1732 error = add_to_page_cache_lru(page, mapping, index,
1733 mapping_gfp_constraint(mapping, GFP_KERNEL));
1734 if (error) {
1735 page_cache_release(page);
1736 if (error == -EEXIST) {
1737 error = 0;
1738 goto find_page;
1739 }
1740 goto out;
1741 }
1742 goto readpage;
1743 }
1744
1745 out:
1746 ra->prev_pos = prev_index;
1747 ra->prev_pos <<= PAGE_CACHE_SHIFT;
1748 ra->prev_pos |= prev_offset;
1749
1750 *ppos = ((loff_t)index << PAGE_CACHE_SHIFT) + offset;
1751 file_accessed(filp);
1752 return written ? written : error;
1753 }
1754
1755 /**
1756 * generic_file_read_iter - generic filesystem read routine
1757 * @iocb: kernel I/O control block
1758 * @iter: destination for the data read
1759 *
1760 * This is the "read_iter()" routine for all filesystems
1761 * that can use the page cache directly.
1762 */
1763 ssize_t
1764 generic_file_read_iter(struct kiocb *iocb, struct iov_iter *iter)
1765 {
1766 struct file *file = iocb->ki_filp;
1767 ssize_t retval = 0;
1768 loff_t *ppos = &iocb->ki_pos;
1769 loff_t pos = *ppos;
1770
1771 if (iocb->ki_flags & IOCB_DIRECT) {
1772 struct address_space *mapping = file->f_mapping;
1773 struct inode *inode = mapping->host;
1774 size_t count = iov_iter_count(iter);
1775 loff_t size;
1776
1777 if (!count)
1778 goto out; /* skip atime */
1779 size = i_size_read(inode);
1780 retval = filemap_write_and_wait_range(mapping, pos,
1781 pos + count - 1);
1782 if (!retval) {
1783 struct iov_iter data = *iter;
1784 retval = mapping->a_ops->direct_IO(iocb, &data, pos);
1785 }
1786
1787 if (retval > 0) {
1788 *ppos = pos + retval;
1789 iov_iter_advance(iter, retval);
1790 }
1791
1792 /*
1793 * Btrfs can have a short DIO read if we encounter
1794 * compressed extents, so if there was an error, or if
1795 * we've already read everything we wanted to, or if
1796 * there was a short read because we hit EOF, go ahead
1797 * and return. Otherwise fallthrough to buffered io for
1798 * the rest of the read. Buffered reads will not work for
1799 * DAX files, so don't bother trying.
1800 */
1801 if (retval < 0 || !iov_iter_count(iter) || *ppos >= size ||
1802 IS_DAX(inode)) {
1803 file_accessed(file);
1804 goto out;
1805 }
1806 }
1807
1808 retval = do_generic_file_read(file, ppos, iter, retval);
1809 out:
1810 return retval;
1811 }
1812 EXPORT_SYMBOL(generic_file_read_iter);
1813
1814 #ifdef CONFIG_MMU
1815 /**
1816 * page_cache_read - adds requested page to the page cache if not already there
1817 * @file: file to read
1818 * @offset: page index
1819 *
1820 * This adds the requested page to the page cache if it isn't already there,
1821 * and schedules an I/O to read in its contents from disk.
1822 */
1823 static int page_cache_read(struct file *file, pgoff_t offset, gfp_t gfp_mask)
1824 {
1825 struct address_space *mapping = file->f_mapping;
1826 struct page *page;
1827 int ret;
1828
1829 do {
1830 page = __page_cache_alloc(gfp_mask|__GFP_COLD);
1831 if (!page)
1832 return -ENOMEM;
1833
1834 ret = add_to_page_cache_lru(page, mapping, offset, gfp_mask & GFP_KERNEL);
1835 if (ret == 0)
1836 ret = mapping->a_ops->readpage(file, page);
1837 else if (ret == -EEXIST)
1838 ret = 0; /* losing race to add is OK */
1839
1840 page_cache_release(page);
1841
1842 } while (ret == AOP_TRUNCATED_PAGE);
1843
1844 return ret;
1845 }
1846
1847 #define MMAP_LOTSAMISS (100)
1848
1849 /*
1850 * Synchronous readahead happens when we don't even find
1851 * a page in the page cache at all.
1852 */
1853 static void do_sync_mmap_readahead(struct vm_area_struct *vma,
1854 struct file_ra_state *ra,
1855 struct file *file,
1856 pgoff_t offset)
1857 {
1858 struct address_space *mapping = file->f_mapping;
1859
1860 /* If we don't want any read-ahead, don't bother */
1861 if (vma->vm_flags & VM_RAND_READ)
1862 return;
1863 if (!ra->ra_pages)
1864 return;
1865
1866 if (vma->vm_flags & VM_SEQ_READ) {
1867 page_cache_sync_readahead(mapping, ra, file, offset,
1868 ra->ra_pages);
1869 return;
1870 }
1871
1872 /* Avoid banging the cache line if not needed */
1873 if (ra->mmap_miss < MMAP_LOTSAMISS * 10)
1874 ra->mmap_miss++;
1875
1876 /*
1877 * Do we miss much more than hit in this file? If so,
1878 * stop bothering with read-ahead. It will only hurt.
1879 */
1880 if (ra->mmap_miss > MMAP_LOTSAMISS)
1881 return;
1882
1883 /*
1884 * mmap read-around
1885 */
1886 ra->start = max_t(long, 0, offset - ra->ra_pages / 2);
1887 ra->size = ra->ra_pages;
1888 ra->async_size = ra->ra_pages / 4;
1889 ra_submit(ra, mapping, file);
1890 }
1891
1892 /*
1893 * Asynchronous readahead happens when we find the page and PG_readahead,
1894 * so we want to possibly extend the readahead further..
1895 */
1896 static void do_async_mmap_readahead(struct vm_area_struct *vma,
1897 struct file_ra_state *ra,
1898 struct file *file,
1899 struct page *page,
1900 pgoff_t offset)
1901 {
1902 struct address_space *mapping = file->f_mapping;
1903
1904 /* If we don't want any read-ahead, don't bother */
1905 if (vma->vm_flags & VM_RAND_READ)
1906 return;
1907 if (ra->mmap_miss > 0)
1908 ra->mmap_miss--;
1909 if (PageReadahead(page))
1910 page_cache_async_readahead(mapping, ra, file,
1911 page, offset, ra->ra_pages);
1912 }
1913
1914 /**
1915 * filemap_fault - read in file data for page fault handling
1916 * @vma: vma in which the fault was taken
1917 * @vmf: struct vm_fault containing details of the fault
1918 *
1919 * filemap_fault() is invoked via the vma operations vector for a
1920 * mapped memory region to read in file data during a page fault.
1921 *
1922 * The goto's are kind of ugly, but this streamlines the normal case of having
1923 * it in the page cache, and handles the special cases reasonably without
1924 * having a lot of duplicated code.
1925 *
1926 * vma->vm_mm->mmap_sem must be held on entry.
1927 *
1928 * If our return value has VM_FAULT_RETRY set, it's because
1929 * lock_page_or_retry() returned 0.
1930 * The mmap_sem has usually been released in this case.
1931 * See __lock_page_or_retry() for the exception.
1932 *
1933 * If our return value does not have VM_FAULT_RETRY set, the mmap_sem
1934 * has not been released.
1935 *
1936 * We never return with VM_FAULT_RETRY and a bit from VM_FAULT_ERROR set.
1937 */
1938 int filemap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1939 {
1940 int error;
1941 struct file *file = vma->vm_file;
1942 struct address_space *mapping = file->f_mapping;
1943 struct file_ra_state *ra = &file->f_ra;
1944 struct inode *inode = mapping->host;
1945 pgoff_t offset = vmf->pgoff;
1946 struct page *page;
1947 loff_t size;
1948 int ret = 0;
1949
1950 size = round_up(i_size_read(inode), PAGE_CACHE_SIZE);
1951 if (offset >= size >> PAGE_CACHE_SHIFT)
1952 return VM_FAULT_SIGBUS;
1953
1954 /*
1955 * Do we have something in the page cache already?
1956 */
1957 page = find_get_page(mapping, offset);
1958 if (likely(page) && !(vmf->flags & FAULT_FLAG_TRIED)) {
1959 /*
1960 * We found the page, so try async readahead before
1961 * waiting for the lock.
1962 */
1963 do_async_mmap_readahead(vma, ra, file, page, offset);
1964 } else if (!page) {
1965 /* No page in the page cache at all */
1966 do_sync_mmap_readahead(vma, ra, file, offset);
1967 count_vm_event(PGMAJFAULT);
1968 mem_cgroup_count_vm_event(vma->vm_mm, PGMAJFAULT);
1969 ret = VM_FAULT_MAJOR;
1970 retry_find:
1971 page = find_get_page(mapping, offset);
1972 if (!page)
1973 goto no_cached_page;
1974 }
1975
1976 if (!lock_page_or_retry(page, vma->vm_mm, vmf->flags)) {
1977 page_cache_release(page);
1978 return ret | VM_FAULT_RETRY;
1979 }
1980
1981 /* Did it get truncated? */
1982 if (unlikely(page->mapping != mapping)) {
1983 unlock_page(page);
1984 put_page(page);
1985 goto retry_find;
1986 }
1987 VM_BUG_ON_PAGE(page->index != offset, page);
1988
1989 /*
1990 * We have a locked page in the page cache, now we need to check
1991 * that it's up-to-date. If not, it is going to be due to an error.
1992 */
1993 if (unlikely(!PageUptodate(page)))
1994 goto page_not_uptodate;
1995
1996 /*
1997 * Found the page and have a reference on it.
1998 * We must recheck i_size under page lock.
1999 */
2000 size = round_up(i_size_read(inode), PAGE_CACHE_SIZE);
2001 if (unlikely(offset >= size >> PAGE_CACHE_SHIFT)) {
2002 unlock_page(page);
2003 page_cache_release(page);
2004 return VM_FAULT_SIGBUS;
2005 }
2006
2007 vmf->page = page;
2008 return ret | VM_FAULT_LOCKED;
2009
2010 no_cached_page:
2011 /*
2012 * We're only likely to ever get here if MADV_RANDOM is in
2013 * effect.
2014 */
2015 error = page_cache_read(file, offset, vmf->gfp_mask);
2016
2017 /*
2018 * The page we want has now been added to the page cache.
2019 * In the unlikely event that someone removed it in the
2020 * meantime, we'll just come back here and read it again.
2021 */
2022 if (error >= 0)
2023 goto retry_find;
2024
2025 /*
2026 * An error return from page_cache_read can result if the
2027 * system is low on memory, or a problem occurs while trying
2028 * to schedule I/O.
2029 */
2030 if (error == -ENOMEM)
2031 return VM_FAULT_OOM;
2032 return VM_FAULT_SIGBUS;
2033
2034 page_not_uptodate:
2035 /*
2036 * Umm, take care of errors if the page isn't up-to-date.
2037 * Try to re-read it _once_. We do this synchronously,
2038 * because there really aren't any performance issues here
2039 * and we need to check for errors.
2040 */
2041 ClearPageError(page);
2042 error = mapping->a_ops->readpage(file, page);
2043 if (!error) {
2044 wait_on_page_locked(page);
2045 if (!PageUptodate(page))
2046 error = -EIO;
2047 }
2048 page_cache_release(page);
2049
2050 if (!error || error == AOP_TRUNCATED_PAGE)
2051 goto retry_find;
2052
2053 /* Things didn't work out. Return zero to tell the mm layer so. */
2054 shrink_readahead_size_eio(file, ra);
2055 return VM_FAULT_SIGBUS;
2056 }
2057 EXPORT_SYMBOL(filemap_fault);
2058
2059 void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf)
2060 {
2061 struct radix_tree_iter iter;
2062 void **slot;
2063 struct file *file = vma->vm_file;
2064 struct address_space *mapping = file->f_mapping;
2065 loff_t size;
2066 struct page *page;
2067 unsigned long address = (unsigned long) vmf->virtual_address;
2068 unsigned long addr;
2069 pte_t *pte;
2070
2071 rcu_read_lock();
2072 radix_tree_for_each_slot(slot, &mapping->page_tree, &iter, vmf->pgoff) {
2073 if (iter.index > vmf->max_pgoff)
2074 break;
2075 repeat:
2076 page = radix_tree_deref_slot(slot);
2077 if (unlikely(!page))
2078 goto next;
2079 if (radix_tree_exception(page)) {
2080 if (radix_tree_deref_retry(page))
2081 break;
2082 else
2083 goto next;
2084 }
2085
2086 if (!page_cache_get_speculative(page))
2087 goto repeat;
2088
2089 /* Has the page moved? */
2090 if (unlikely(page != *slot)) {
2091 page_cache_release(page);
2092 goto repeat;
2093 }
2094
2095 if (!PageUptodate(page) ||
2096 PageReadahead(page) ||
2097 PageHWPoison(page))
2098 goto skip;
2099 if (!trylock_page(page))
2100 goto skip;
2101
2102 if (page->mapping != mapping || !PageUptodate(page))
2103 goto unlock;
2104
2105 size = round_up(i_size_read(mapping->host), PAGE_CACHE_SIZE);
2106 if (page->index >= size >> PAGE_CACHE_SHIFT)
2107 goto unlock;
2108
2109 pte = vmf->pte + page->index - vmf->pgoff;
2110 if (!pte_none(*pte))
2111 goto unlock;
2112
2113 if (file->f_ra.mmap_miss > 0)
2114 file->f_ra.mmap_miss--;
2115 addr = address + (page->index - vmf->pgoff) * PAGE_SIZE;
2116 do_set_pte(vma, addr, page, pte, false, false);
2117 unlock_page(page);
2118 goto next;
2119 unlock:
2120 unlock_page(page);
2121 skip:
2122 page_cache_release(page);
2123 next:
2124 if (iter.index == vmf->max_pgoff)
2125 break;
2126 }
2127 rcu_read_unlock();
2128 }
2129 EXPORT_SYMBOL(filemap_map_pages);
2130
2131 int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf)
2132 {
2133 struct page *page = vmf->page;
2134 struct inode *inode = file_inode(vma->vm_file);
2135 int ret = VM_FAULT_LOCKED;
2136
2137 sb_start_pagefault(inode->i_sb);
2138 file_update_time(vma->vm_file);
2139 lock_page(page);
2140 if (page->mapping != inode->i_mapping) {
2141 unlock_page(page);
2142 ret = VM_FAULT_NOPAGE;
2143 goto out;
2144 }
2145 /*
2146 * We mark the page dirty already here so that when freeze is in
2147 * progress, we are guaranteed that writeback during freezing will
2148 * see the dirty page and writeprotect it again.
2149 */
2150 set_page_dirty(page);
2151 wait_for_stable_page(page);
2152 out:
2153 sb_end_pagefault(inode->i_sb);
2154 return ret;
2155 }
2156 EXPORT_SYMBOL(filemap_page_mkwrite);
2157
2158 const struct vm_operations_struct generic_file_vm_ops = {
2159 .fault = filemap_fault,
2160 .map_pages = filemap_map_pages,
2161 .page_mkwrite = filemap_page_mkwrite,
2162 };
2163
2164 /* This is used for a general mmap of a disk file */
2165
2166 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2167 {
2168 struct address_space *mapping = file->f_mapping;
2169
2170 if (!mapping->a_ops->readpage)
2171 return -ENOEXEC;
2172 file_accessed(file);
2173 vma->vm_ops = &generic_file_vm_ops;
2174 return 0;
2175 }
2176
2177 /*
2178 * This is for filesystems which do not implement ->writepage.
2179 */
2180 int generic_file_readonly_mmap(struct file *file, struct vm_area_struct *vma)
2181 {
2182 if ((vma->vm_flags & VM_SHARED) && (vma->vm_flags & VM_MAYWRITE))
2183 return -EINVAL;
2184 return generic_file_mmap(file, vma);
2185 }
2186 #else
2187 int generic_file_mmap(struct file * file, struct vm_area_struct * vma)
2188 {
2189 return -ENOSYS;
2190 }
2191 int generic_file_readonly_mmap(struct file * file, struct vm_area_struct * vma)
2192 {
2193 return -ENOSYS;
2194 }
2195 #endif /* CONFIG_MMU */
2196
2197 EXPORT_SYMBOL(generic_file_mmap);
2198 EXPORT_SYMBOL(generic_file_readonly_mmap);
2199
2200 static struct page *wait_on_page_read(struct page *page)
2201 {
2202 if (!IS_ERR(page)) {
2203 wait_on_page_locked(page);
2204 if (!PageUptodate(page)) {
2205 page_cache_release(page);
2206 page = ERR_PTR(-EIO);
2207 }
2208 }
2209 return page;
2210 }
2211
2212 static struct page *__read_cache_page(struct address_space *mapping,
2213 pgoff_t index,
2214 int (*filler)(void *, struct page *),
2215 void *data,
2216 gfp_t gfp)
2217 {
2218 struct page *page;
2219 int err;
2220 repeat:
2221 page = find_get_page(mapping, index);
2222 if (!page) {
2223 page = __page_cache_alloc(gfp | __GFP_COLD);
2224 if (!page)
2225 return ERR_PTR(-ENOMEM);
2226 err = add_to_page_cache_lru(page, mapping, index, gfp);
2227 if (unlikely(err)) {
2228 page_cache_release(page);
2229 if (err == -EEXIST)
2230 goto repeat;
2231 /* Presumably ENOMEM for radix tree node */
2232 return ERR_PTR(err);
2233 }
2234 err = filler(data, page);
2235 if (err < 0) {
2236 page_cache_release(page);
2237 page = ERR_PTR(err);
2238 } else {
2239 page = wait_on_page_read(page);
2240 }
2241 }
2242 return page;
2243 }
2244
2245 static struct page *do_read_cache_page(struct address_space *mapping,
2246 pgoff_t index,
2247 int (*filler)(void *, struct page *),
2248 void *data,
2249 gfp_t gfp)
2250
2251 {
2252 struct page *page;
2253 int err;
2254
2255 retry:
2256 page = __read_cache_page(mapping, index, filler, data, gfp);
2257 if (IS_ERR(page))
2258 return page;
2259 if (PageUptodate(page))
2260 goto out;
2261
2262 lock_page(page);
2263 if (!page->mapping) {
2264 unlock_page(page);
2265 page_cache_release(page);
2266 goto retry;
2267 }
2268 if (PageUptodate(page)) {
2269 unlock_page(page);
2270 goto out;
2271 }
2272 err = filler(data, page);
2273 if (err < 0) {
2274 page_cache_release(page);
2275 return ERR_PTR(err);
2276 } else {
2277 page = wait_on_page_read(page);
2278 if (IS_ERR(page))
2279 return page;
2280 }
2281 out:
2282 mark_page_accessed(page);
2283 return page;
2284 }
2285
2286 /**
2287 * read_cache_page - read into page cache, fill it if needed
2288 * @mapping: the page's address_space
2289 * @index: the page index
2290 * @filler: function to perform the read
2291 * @data: first arg to filler(data, page) function, often left as NULL
2292 *
2293 * Read into the page cache. If a page already exists, and PageUptodate() is
2294 * not set, try to fill the page and wait for it to become unlocked.
2295 *
2296 * If the page does not get brought uptodate, return -EIO.
2297 */
2298 struct page *read_cache_page(struct address_space *mapping,
2299 pgoff_t index,
2300 int (*filler)(void *, struct page *),
2301 void *data)
2302 {
2303 return do_read_cache_page(mapping, index, filler, data, mapping_gfp_mask(mapping));
2304 }
2305 EXPORT_SYMBOL(read_cache_page);
2306
2307 /**
2308 * read_cache_page_gfp - read into page cache, using specified page allocation flags.
2309 * @mapping: the page's address_space
2310 * @index: the page index
2311 * @gfp: the page allocator flags to use if allocating
2312 *
2313 * This is the same as "read_mapping_page(mapping, index, NULL)", but with
2314 * any new page allocations done using the specified allocation flags.
2315 *
2316 * If the page does not get brought uptodate, return -EIO.
2317 */
2318 struct page *read_cache_page_gfp(struct address_space *mapping,
2319 pgoff_t index,
2320 gfp_t gfp)
2321 {
2322 filler_t *filler = (filler_t *)mapping->a_ops->readpage;
2323
2324 return do_read_cache_page(mapping, index, filler, NULL, gfp);
2325 }
2326 EXPORT_SYMBOL(read_cache_page_gfp);
2327
2328 /*
2329 * Performs necessary checks before doing a write
2330 *
2331 * Can adjust writing position or amount of bytes to write.
2332 * Returns appropriate error code that caller should return or
2333 * zero in case that write should be allowed.
2334 */
2335 inline ssize_t generic_write_checks(struct kiocb *iocb, struct iov_iter *from)
2336 {
2337 struct file *file = iocb->ki_filp;
2338 struct inode *inode = file->f_mapping->host;
2339 unsigned long limit = rlimit(RLIMIT_FSIZE);
2340 loff_t pos;
2341
2342 if (!iov_iter_count(from))
2343 return 0;
2344
2345 /* FIXME: this is for backwards compatibility with 2.4 */
2346 if (iocb->ki_flags & IOCB_APPEND)
2347 iocb->ki_pos = i_size_read(inode);
2348
2349 pos = iocb->ki_pos;
2350
2351 if (limit != RLIM_INFINITY) {
2352 if (iocb->ki_pos >= limit) {
2353 send_sig(SIGXFSZ, current, 0);
2354 return -EFBIG;
2355 }
2356 iov_iter_truncate(from, limit - (unsigned long)pos);
2357 }
2358
2359 /*
2360 * LFS rule
2361 */
2362 if (unlikely(pos + iov_iter_count(from) > MAX_NON_LFS &&
2363 !(file->f_flags & O_LARGEFILE))) {
2364 if (pos >= MAX_NON_LFS)
2365 return -EFBIG;
2366 iov_iter_truncate(from, MAX_NON_LFS - (unsigned long)pos);
2367 }
2368
2369 /*
2370 * Are we about to exceed the fs block limit ?
2371 *
2372 * If we have written data it becomes a short write. If we have
2373 * exceeded without writing data we send a signal and return EFBIG.
2374 * Linus frestrict idea will clean these up nicely..
2375 */
2376 if (unlikely(pos >= inode->i_sb->s_maxbytes))
2377 return -EFBIG;
2378
2379 iov_iter_truncate(from, inode->i_sb->s_maxbytes - pos);
2380 return iov_iter_count(from);
2381 }
2382 EXPORT_SYMBOL(generic_write_checks);
2383
2384 int pagecache_write_begin(struct file *file, struct address_space *mapping,
2385 loff_t pos, unsigned len, unsigned flags,
2386 struct page **pagep, void **fsdata)
2387 {
2388 const struct address_space_operations *aops = mapping->a_ops;
2389
2390 return aops->write_begin(file, mapping, pos, len, flags,
2391 pagep, fsdata);
2392 }
2393 EXPORT_SYMBOL(pagecache_write_begin);
2394
2395 int pagecache_write_end(struct file *file, struct address_space *mapping,
2396 loff_t pos, unsigned len, unsigned copied,
2397 struct page *page, void *fsdata)
2398 {
2399 const struct address_space_operations *aops = mapping->a_ops;
2400
2401 return aops->write_end(file, mapping, pos, len, copied, page, fsdata);
2402 }
2403 EXPORT_SYMBOL(pagecache_write_end);
2404
2405 ssize_t
2406 generic_file_direct_write(struct kiocb *iocb, struct iov_iter *from, loff_t pos)
2407 {
2408 struct file *file = iocb->ki_filp;
2409 struct address_space *mapping = file->f_mapping;
2410 struct inode *inode = mapping->host;
2411 ssize_t written;
2412 size_t write_len;
2413 pgoff_t end;
2414 struct iov_iter data;
2415
2416 write_len = iov_iter_count(from);
2417 end = (pos + write_len - 1) >> PAGE_CACHE_SHIFT;
2418
2419 written = filemap_write_and_wait_range(mapping, pos, pos + write_len - 1);
2420 if (written)
2421 goto out;
2422
2423 /*
2424 * After a write we want buffered reads to be sure to go to disk to get
2425 * the new data. We invalidate clean cached page from the region we're
2426 * about to write. We do this *before* the write so that we can return
2427 * without clobbering -EIOCBQUEUED from ->direct_IO().
2428 */
2429 if (mapping->nrpages) {
2430 written = invalidate_inode_pages2_range(mapping,
2431 pos >> PAGE_CACHE_SHIFT, end);
2432 /*
2433 * If a page can not be invalidated, return 0 to fall back
2434 * to buffered write.
2435 */
2436 if (written) {
2437 if (written == -EBUSY)
2438 return 0;
2439 goto out;
2440 }
2441 }
2442
2443 data = *from;
2444 written = mapping->a_ops->direct_IO(iocb, &data, pos);
2445
2446 /*
2447 * Finally, try again to invalidate clean pages which might have been
2448 * cached by non-direct readahead, or faulted in by get_user_pages()
2449 * if the source of the write was an mmap'ed region of the file
2450 * we're writing. Either one is a pretty crazy thing to do,
2451 * so we don't support it 100%. If this invalidation
2452 * fails, tough, the write still worked...
2453 */
2454 if (mapping->nrpages) {
2455 invalidate_inode_pages2_range(mapping,
2456 pos >> PAGE_CACHE_SHIFT, end);
2457 }
2458
2459 if (written > 0) {
2460 pos += written;
2461 iov_iter_advance(from, written);
2462 if (pos > i_size_read(inode) && !S_ISBLK(inode->i_mode)) {
2463 i_size_write(inode, pos);
2464 mark_inode_dirty(inode);
2465 }
2466 iocb->ki_pos = pos;
2467 }
2468 out:
2469 return written;
2470 }
2471 EXPORT_SYMBOL(generic_file_direct_write);
2472
2473 /*
2474 * Find or create a page at the given pagecache position. Return the locked
2475 * page. This function is specifically for buffered writes.
2476 */
2477 struct page *grab_cache_page_write_begin(struct address_space *mapping,
2478 pgoff_t index, unsigned flags)
2479 {
2480 struct page *page;
2481 int fgp_flags = FGP_LOCK|FGP_ACCESSED|FGP_WRITE|FGP_CREAT;
2482
2483 if (flags & AOP_FLAG_NOFS)
2484 fgp_flags |= FGP_NOFS;
2485
2486 page = pagecache_get_page(mapping, index, fgp_flags,
2487 mapping_gfp_mask(mapping));
2488 if (page)
2489 wait_for_stable_page(page);
2490
2491 return page;
2492 }
2493 EXPORT_SYMBOL(grab_cache_page_write_begin);
2494
2495 ssize_t generic_perform_write(struct file *file,
2496 struct iov_iter *i, loff_t pos)
2497 {
2498 struct address_space *mapping = file->f_mapping;
2499 const struct address_space_operations *a_ops = mapping->a_ops;
2500 long status = 0;
2501 ssize_t written = 0;
2502 unsigned int flags = 0;
2503
2504 /*
2505 * Copies from kernel address space cannot fail (NFSD is a big user).
2506 */
2507 if (!iter_is_iovec(i))
2508 flags |= AOP_FLAG_UNINTERRUPTIBLE;
2509
2510 do {
2511 struct page *page;
2512 unsigned long offset; /* Offset into pagecache page */
2513 unsigned long bytes; /* Bytes to write to page */
2514 size_t copied; /* Bytes copied from user */
2515 void *fsdata;
2516
2517 offset = (pos & (PAGE_CACHE_SIZE - 1));
2518 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2519 iov_iter_count(i));
2520
2521 again:
2522 /*
2523 * Bring in the user page that we will copy from _first_.
2524 * Otherwise there's a nasty deadlock on copying from the
2525 * same page as we're writing to, without it being marked
2526 * up-to-date.
2527 *
2528 * Not only is this an optimisation, but it is also required
2529 * to check that the address is actually valid, when atomic
2530 * usercopies are used, below.
2531 */
2532 if (unlikely(iov_iter_fault_in_readable(i, bytes))) {
2533 status = -EFAULT;
2534 break;
2535 }
2536
2537 if (fatal_signal_pending(current)) {
2538 status = -EINTR;
2539 break;
2540 }
2541
2542 status = a_ops->write_begin(file, mapping, pos, bytes, flags,
2543 &page, &fsdata);
2544 if (unlikely(status < 0))
2545 break;
2546
2547 if (mapping_writably_mapped(mapping))
2548 flush_dcache_page(page);
2549
2550 copied = iov_iter_copy_from_user_atomic(page, i, offset, bytes);
2551 flush_dcache_page(page);
2552
2553 status = a_ops->write_end(file, mapping, pos, bytes, copied,
2554 page, fsdata);
2555 if (unlikely(status < 0))
2556 break;
2557 copied = status;
2558
2559 cond_resched();
2560
2561 iov_iter_advance(i, copied);
2562 if (unlikely(copied == 0)) {
2563 /*
2564 * If we were unable to copy any data at all, we must
2565 * fall back to a single segment length write.
2566 *
2567 * If we didn't fallback here, we could livelock
2568 * because not all segments in the iov can be copied at
2569 * once without a pagefault.
2570 */
2571 bytes = min_t(unsigned long, PAGE_CACHE_SIZE - offset,
2572 iov_iter_single_seg_count(i));
2573 goto again;
2574 }
2575 pos += copied;
2576 written += copied;
2577
2578 balance_dirty_pages_ratelimited(mapping);
2579 } while (iov_iter_count(i));
2580
2581 return written ? written : status;
2582 }
2583 EXPORT_SYMBOL(generic_perform_write);
2584
2585 /**
2586 * __generic_file_write_iter - write data to a file
2587 * @iocb: IO state structure (file, offset, etc.)
2588 * @from: iov_iter with data to write
2589 *
2590 * This function does all the work needed for actually writing data to a
2591 * file. It does all basic checks, removes SUID from the file, updates
2592 * modification times and calls proper subroutines depending on whether we
2593 * do direct IO or a standard buffered write.
2594 *
2595 * It expects i_mutex to be grabbed unless we work on a block device or similar
2596 * object which does not need locking at all.
2597 *
2598 * This function does *not* take care of syncing data in case of O_SYNC write.
2599 * A caller has to handle it. This is mainly due to the fact that we want to
2600 * avoid syncing under i_mutex.
2601 */
2602 ssize_t __generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2603 {
2604 struct file *file = iocb->ki_filp;
2605 struct address_space * mapping = file->f_mapping;
2606 struct inode *inode = mapping->host;
2607 ssize_t written = 0;
2608 ssize_t err;
2609 ssize_t status;
2610
2611 /* We can write back this queue in page reclaim */
2612 current->backing_dev_info = inode_to_bdi(inode);
2613 err = file_remove_privs(file);
2614 if (err)
2615 goto out;
2616
2617 err = file_update_time(file);
2618 if (err)
2619 goto out;
2620
2621 if (iocb->ki_flags & IOCB_DIRECT) {
2622 loff_t pos, endbyte;
2623
2624 written = generic_file_direct_write(iocb, from, iocb->ki_pos);
2625 /*
2626 * If the write stopped short of completing, fall back to
2627 * buffered writes. Some filesystems do this for writes to
2628 * holes, for example. For DAX files, a buffered write will
2629 * not succeed (even if it did, DAX does not handle dirty
2630 * page-cache pages correctly).
2631 */
2632 if (written < 0 || !iov_iter_count(from) || IS_DAX(inode))
2633 goto out;
2634
2635 status = generic_perform_write(file, from, pos = iocb->ki_pos);
2636 /*
2637 * If generic_perform_write() returned a synchronous error
2638 * then we want to return the number of bytes which were
2639 * direct-written, or the error code if that was zero. Note
2640 * that this differs from normal direct-io semantics, which
2641 * will return -EFOO even if some bytes were written.
2642 */
2643 if (unlikely(status < 0)) {
2644 err = status;
2645 goto out;
2646 }
2647 /*
2648 * We need to ensure that the page cache pages are written to
2649 * disk and invalidated to preserve the expected O_DIRECT
2650 * semantics.
2651 */
2652 endbyte = pos + status - 1;
2653 err = filemap_write_and_wait_range(mapping, pos, endbyte);
2654 if (err == 0) {
2655 iocb->ki_pos = endbyte + 1;
2656 written += status;
2657 invalidate_mapping_pages(mapping,
2658 pos >> PAGE_CACHE_SHIFT,
2659 endbyte >> PAGE_CACHE_SHIFT);
2660 } else {
2661 /*
2662 * We don't know how much we wrote, so just return
2663 * the number of bytes which were direct-written
2664 */
2665 }
2666 } else {
2667 written = generic_perform_write(file, from, iocb->ki_pos);
2668 if (likely(written > 0))
2669 iocb->ki_pos += written;
2670 }
2671 out:
2672 current->backing_dev_info = NULL;
2673 return written ? written : err;
2674 }
2675 EXPORT_SYMBOL(__generic_file_write_iter);
2676
2677 /**
2678 * generic_file_write_iter - write data to a file
2679 * @iocb: IO state structure
2680 * @from: iov_iter with data to write
2681 *
2682 * This is a wrapper around __generic_file_write_iter() to be used by most
2683 * filesystems. It takes care of syncing the file in case of O_SYNC file
2684 * and acquires i_mutex as needed.
2685 */
2686 ssize_t generic_file_write_iter(struct kiocb *iocb, struct iov_iter *from)
2687 {
2688 struct file *file = iocb->ki_filp;
2689 struct inode *inode = file->f_mapping->host;
2690 ssize_t ret;
2691
2692 mutex_lock(&inode->i_mutex);
2693 ret = generic_write_checks(iocb, from);
2694 if (ret > 0)
2695 ret = __generic_file_write_iter(iocb, from);
2696 mutex_unlock(&inode->i_mutex);
2697
2698 if (ret > 0) {
2699 ssize_t err;
2700
2701 err = generic_write_sync(file, iocb->ki_pos - ret, ret);
2702 if (err < 0)
2703 ret = err;
2704 }
2705 return ret;
2706 }
2707 EXPORT_SYMBOL(generic_file_write_iter);
2708
2709 /**
2710 * try_to_release_page() - release old fs-specific metadata on a page
2711 *
2712 * @page: the page which the kernel is trying to free
2713 * @gfp_mask: memory allocation flags (and I/O mode)
2714 *
2715 * The address_space is to try to release any data against the page
2716 * (presumably at page->private). If the release was successful, return `1'.
2717 * Otherwise return zero.
2718 *
2719 * This may also be called if PG_fscache is set on a page, indicating that the
2720 * page is known to the local caching routines.
2721 *
2722 * The @gfp_mask argument specifies whether I/O may be performed to release
2723 * this page (__GFP_IO), and whether the call may block (__GFP_RECLAIM & __GFP_FS).
2724 *
2725 */
2726 int try_to_release_page(struct page *page, gfp_t gfp_mask)
2727 {
2728 struct address_space * const mapping = page->mapping;
2729
2730 BUG_ON(!PageLocked(page));
2731 if (PageWriteback(page))
2732 return 0;
2733
2734 if (mapping && mapping->a_ops->releasepage)
2735 return mapping->a_ops->releasepage(page, gfp_mask);
2736 return try_to_free_buffers(page);
2737 }
2738
2739 EXPORT_SYMBOL(try_to_release_page);
This page took 0.089196 seconds and 6 git commands to generate.