Documentation/vm/zswap.txt: fix typos
[deliverable/linux.git] / mm / huge_memory.c
1 /*
2 * Copyright (C) 2009 Red Hat, Inc.
3 *
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
6 */
7
8 #include <linux/mm.h>
9 #include <linux/sched.h>
10 #include <linux/highmem.h>
11 #include <linux/hugetlb.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/rmap.h>
14 #include <linux/swap.h>
15 #include <linux/shrinker.h>
16 #include <linux/mm_inline.h>
17 #include <linux/kthread.h>
18 #include <linux/khugepaged.h>
19 #include <linux/freezer.h>
20 #include <linux/mman.h>
21 #include <linux/pagemap.h>
22 #include <linux/migrate.h>
23 #include <linux/hashtable.h>
24
25 #include <asm/tlb.h>
26 #include <asm/pgalloc.h>
27 #include "internal.h"
28
29 /*
30 * By default transparent hugepage support is disabled in order that avoid
31 * to risk increase the memory footprint of applications without a guaranteed
32 * benefit. When transparent hugepage support is enabled, is for all mappings,
33 * and khugepaged scans all mappings.
34 * Defrag is invoked by khugepaged hugepage allocations and by page faults
35 * for all hugepage allocations.
36 */
37 unsigned long transparent_hugepage_flags __read_mostly =
38 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
39 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
40 #endif
41 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
42 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
43 #endif
44 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
45 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
46 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
47
48 /* default scan 8*512 pte (or vmas) every 30 second */
49 static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
50 static unsigned int khugepaged_pages_collapsed;
51 static unsigned int khugepaged_full_scans;
52 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
53 /* during fragmentation poll the hugepage allocator once every minute */
54 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
55 static struct task_struct *khugepaged_thread __read_mostly;
56 static DEFINE_MUTEX(khugepaged_mutex);
57 static DEFINE_SPINLOCK(khugepaged_mm_lock);
58 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
59 /*
60 * default collapse hugepages if there is at least one pte mapped like
61 * it would have happened if the vma was large enough during page
62 * fault.
63 */
64 static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
65
66 static int khugepaged(void *none);
67 static int khugepaged_slab_init(void);
68
69 #define MM_SLOTS_HASH_BITS 10
70 static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
71
72 static struct kmem_cache *mm_slot_cache __read_mostly;
73
74 /**
75 * struct mm_slot - hash lookup from mm to mm_slot
76 * @hash: hash collision list
77 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
78 * @mm: the mm that this information is valid for
79 */
80 struct mm_slot {
81 struct hlist_node hash;
82 struct list_head mm_node;
83 struct mm_struct *mm;
84 };
85
86 /**
87 * struct khugepaged_scan - cursor for scanning
88 * @mm_head: the head of the mm list to scan
89 * @mm_slot: the current mm_slot we are scanning
90 * @address: the next address inside that to be scanned
91 *
92 * There is only the one khugepaged_scan instance of this cursor structure.
93 */
94 struct khugepaged_scan {
95 struct list_head mm_head;
96 struct mm_slot *mm_slot;
97 unsigned long address;
98 };
99 static struct khugepaged_scan khugepaged_scan = {
100 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
101 };
102
103
104 static int set_recommended_min_free_kbytes(void)
105 {
106 struct zone *zone;
107 int nr_zones = 0;
108 unsigned long recommended_min;
109
110 if (!khugepaged_enabled())
111 return 0;
112
113 for_each_populated_zone(zone)
114 nr_zones++;
115
116 /* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
117 recommended_min = pageblock_nr_pages * nr_zones * 2;
118
119 /*
120 * Make sure that on average at least two pageblocks are almost free
121 * of another type, one for a migratetype to fall back to and a
122 * second to avoid subsequent fallbacks of other types There are 3
123 * MIGRATE_TYPES we care about.
124 */
125 recommended_min += pageblock_nr_pages * nr_zones *
126 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
127
128 /* don't ever allow to reserve more than 5% of the lowmem */
129 recommended_min = min(recommended_min,
130 (unsigned long) nr_free_buffer_pages() / 20);
131 recommended_min <<= (PAGE_SHIFT-10);
132
133 if (recommended_min > min_free_kbytes)
134 min_free_kbytes = recommended_min;
135 setup_per_zone_wmarks();
136 return 0;
137 }
138 late_initcall(set_recommended_min_free_kbytes);
139
140 static int start_khugepaged(void)
141 {
142 int err = 0;
143 if (khugepaged_enabled()) {
144 if (!khugepaged_thread)
145 khugepaged_thread = kthread_run(khugepaged, NULL,
146 "khugepaged");
147 if (unlikely(IS_ERR(khugepaged_thread))) {
148 printk(KERN_ERR
149 "khugepaged: kthread_run(khugepaged) failed\n");
150 err = PTR_ERR(khugepaged_thread);
151 khugepaged_thread = NULL;
152 }
153
154 if (!list_empty(&khugepaged_scan.mm_head))
155 wake_up_interruptible(&khugepaged_wait);
156
157 set_recommended_min_free_kbytes();
158 } else if (khugepaged_thread) {
159 kthread_stop(khugepaged_thread);
160 khugepaged_thread = NULL;
161 }
162
163 return err;
164 }
165
166 static atomic_t huge_zero_refcount;
167 static struct page *huge_zero_page __read_mostly;
168
169 static inline bool is_huge_zero_page(struct page *page)
170 {
171 return ACCESS_ONCE(huge_zero_page) == page;
172 }
173
174 static inline bool is_huge_zero_pmd(pmd_t pmd)
175 {
176 return is_huge_zero_page(pmd_page(pmd));
177 }
178
179 static struct page *get_huge_zero_page(void)
180 {
181 struct page *zero_page;
182 retry:
183 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
184 return ACCESS_ONCE(huge_zero_page);
185
186 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
187 HPAGE_PMD_ORDER);
188 if (!zero_page) {
189 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
190 return NULL;
191 }
192 count_vm_event(THP_ZERO_PAGE_ALLOC);
193 preempt_disable();
194 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
195 preempt_enable();
196 __free_page(zero_page);
197 goto retry;
198 }
199
200 /* We take additional reference here. It will be put back by shrinker */
201 atomic_set(&huge_zero_refcount, 2);
202 preempt_enable();
203 return ACCESS_ONCE(huge_zero_page);
204 }
205
206 static void put_huge_zero_page(void)
207 {
208 /*
209 * Counter should never go to zero here. Only shrinker can put
210 * last reference.
211 */
212 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
213 }
214
215 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
216 struct shrink_control *sc)
217 {
218 /* we can free zero page only if last reference remains */
219 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
220 }
221
222 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
223 struct shrink_control *sc)
224 {
225 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
226 struct page *zero_page = xchg(&huge_zero_page, NULL);
227 BUG_ON(zero_page == NULL);
228 __free_page(zero_page);
229 return HPAGE_PMD_NR;
230 }
231
232 return 0;
233 }
234
235 static struct shrinker huge_zero_page_shrinker = {
236 .count_objects = shrink_huge_zero_page_count,
237 .scan_objects = shrink_huge_zero_page_scan,
238 .seeks = DEFAULT_SEEKS,
239 };
240
241 #ifdef CONFIG_SYSFS
242
243 static ssize_t double_flag_show(struct kobject *kobj,
244 struct kobj_attribute *attr, char *buf,
245 enum transparent_hugepage_flag enabled,
246 enum transparent_hugepage_flag req_madv)
247 {
248 if (test_bit(enabled, &transparent_hugepage_flags)) {
249 VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
250 return sprintf(buf, "[always] madvise never\n");
251 } else if (test_bit(req_madv, &transparent_hugepage_flags))
252 return sprintf(buf, "always [madvise] never\n");
253 else
254 return sprintf(buf, "always madvise [never]\n");
255 }
256 static ssize_t double_flag_store(struct kobject *kobj,
257 struct kobj_attribute *attr,
258 const char *buf, size_t count,
259 enum transparent_hugepage_flag enabled,
260 enum transparent_hugepage_flag req_madv)
261 {
262 if (!memcmp("always", buf,
263 min(sizeof("always")-1, count))) {
264 set_bit(enabled, &transparent_hugepage_flags);
265 clear_bit(req_madv, &transparent_hugepage_flags);
266 } else if (!memcmp("madvise", buf,
267 min(sizeof("madvise")-1, count))) {
268 clear_bit(enabled, &transparent_hugepage_flags);
269 set_bit(req_madv, &transparent_hugepage_flags);
270 } else if (!memcmp("never", buf,
271 min(sizeof("never")-1, count))) {
272 clear_bit(enabled, &transparent_hugepage_flags);
273 clear_bit(req_madv, &transparent_hugepage_flags);
274 } else
275 return -EINVAL;
276
277 return count;
278 }
279
280 static ssize_t enabled_show(struct kobject *kobj,
281 struct kobj_attribute *attr, char *buf)
282 {
283 return double_flag_show(kobj, attr, buf,
284 TRANSPARENT_HUGEPAGE_FLAG,
285 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
286 }
287 static ssize_t enabled_store(struct kobject *kobj,
288 struct kobj_attribute *attr,
289 const char *buf, size_t count)
290 {
291 ssize_t ret;
292
293 ret = double_flag_store(kobj, attr, buf, count,
294 TRANSPARENT_HUGEPAGE_FLAG,
295 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
296
297 if (ret > 0) {
298 int err;
299
300 mutex_lock(&khugepaged_mutex);
301 err = start_khugepaged();
302 mutex_unlock(&khugepaged_mutex);
303
304 if (err)
305 ret = err;
306 }
307
308 return ret;
309 }
310 static struct kobj_attribute enabled_attr =
311 __ATTR(enabled, 0644, enabled_show, enabled_store);
312
313 static ssize_t single_flag_show(struct kobject *kobj,
314 struct kobj_attribute *attr, char *buf,
315 enum transparent_hugepage_flag flag)
316 {
317 return sprintf(buf, "%d\n",
318 !!test_bit(flag, &transparent_hugepage_flags));
319 }
320
321 static ssize_t single_flag_store(struct kobject *kobj,
322 struct kobj_attribute *attr,
323 const char *buf, size_t count,
324 enum transparent_hugepage_flag flag)
325 {
326 unsigned long value;
327 int ret;
328
329 ret = kstrtoul(buf, 10, &value);
330 if (ret < 0)
331 return ret;
332 if (value > 1)
333 return -EINVAL;
334
335 if (value)
336 set_bit(flag, &transparent_hugepage_flags);
337 else
338 clear_bit(flag, &transparent_hugepage_flags);
339
340 return count;
341 }
342
343 /*
344 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
345 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
346 * memory just to allocate one more hugepage.
347 */
348 static ssize_t defrag_show(struct kobject *kobj,
349 struct kobj_attribute *attr, char *buf)
350 {
351 return double_flag_show(kobj, attr, buf,
352 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
353 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
354 }
355 static ssize_t defrag_store(struct kobject *kobj,
356 struct kobj_attribute *attr,
357 const char *buf, size_t count)
358 {
359 return double_flag_store(kobj, attr, buf, count,
360 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
361 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
362 }
363 static struct kobj_attribute defrag_attr =
364 __ATTR(defrag, 0644, defrag_show, defrag_store);
365
366 static ssize_t use_zero_page_show(struct kobject *kobj,
367 struct kobj_attribute *attr, char *buf)
368 {
369 return single_flag_show(kobj, attr, buf,
370 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
371 }
372 static ssize_t use_zero_page_store(struct kobject *kobj,
373 struct kobj_attribute *attr, const char *buf, size_t count)
374 {
375 return single_flag_store(kobj, attr, buf, count,
376 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
377 }
378 static struct kobj_attribute use_zero_page_attr =
379 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
380 #ifdef CONFIG_DEBUG_VM
381 static ssize_t debug_cow_show(struct kobject *kobj,
382 struct kobj_attribute *attr, char *buf)
383 {
384 return single_flag_show(kobj, attr, buf,
385 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
386 }
387 static ssize_t debug_cow_store(struct kobject *kobj,
388 struct kobj_attribute *attr,
389 const char *buf, size_t count)
390 {
391 return single_flag_store(kobj, attr, buf, count,
392 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
393 }
394 static struct kobj_attribute debug_cow_attr =
395 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
396 #endif /* CONFIG_DEBUG_VM */
397
398 static struct attribute *hugepage_attr[] = {
399 &enabled_attr.attr,
400 &defrag_attr.attr,
401 &use_zero_page_attr.attr,
402 #ifdef CONFIG_DEBUG_VM
403 &debug_cow_attr.attr,
404 #endif
405 NULL,
406 };
407
408 static struct attribute_group hugepage_attr_group = {
409 .attrs = hugepage_attr,
410 };
411
412 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
413 struct kobj_attribute *attr,
414 char *buf)
415 {
416 return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
417 }
418
419 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
420 struct kobj_attribute *attr,
421 const char *buf, size_t count)
422 {
423 unsigned long msecs;
424 int err;
425
426 err = kstrtoul(buf, 10, &msecs);
427 if (err || msecs > UINT_MAX)
428 return -EINVAL;
429
430 khugepaged_scan_sleep_millisecs = msecs;
431 wake_up_interruptible(&khugepaged_wait);
432
433 return count;
434 }
435 static struct kobj_attribute scan_sleep_millisecs_attr =
436 __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
437 scan_sleep_millisecs_store);
438
439 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
440 struct kobj_attribute *attr,
441 char *buf)
442 {
443 return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
444 }
445
446 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
447 struct kobj_attribute *attr,
448 const char *buf, size_t count)
449 {
450 unsigned long msecs;
451 int err;
452
453 err = kstrtoul(buf, 10, &msecs);
454 if (err || msecs > UINT_MAX)
455 return -EINVAL;
456
457 khugepaged_alloc_sleep_millisecs = msecs;
458 wake_up_interruptible(&khugepaged_wait);
459
460 return count;
461 }
462 static struct kobj_attribute alloc_sleep_millisecs_attr =
463 __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
464 alloc_sleep_millisecs_store);
465
466 static ssize_t pages_to_scan_show(struct kobject *kobj,
467 struct kobj_attribute *attr,
468 char *buf)
469 {
470 return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
471 }
472 static ssize_t pages_to_scan_store(struct kobject *kobj,
473 struct kobj_attribute *attr,
474 const char *buf, size_t count)
475 {
476 int err;
477 unsigned long pages;
478
479 err = kstrtoul(buf, 10, &pages);
480 if (err || !pages || pages > UINT_MAX)
481 return -EINVAL;
482
483 khugepaged_pages_to_scan = pages;
484
485 return count;
486 }
487 static struct kobj_attribute pages_to_scan_attr =
488 __ATTR(pages_to_scan, 0644, pages_to_scan_show,
489 pages_to_scan_store);
490
491 static ssize_t pages_collapsed_show(struct kobject *kobj,
492 struct kobj_attribute *attr,
493 char *buf)
494 {
495 return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
496 }
497 static struct kobj_attribute pages_collapsed_attr =
498 __ATTR_RO(pages_collapsed);
499
500 static ssize_t full_scans_show(struct kobject *kobj,
501 struct kobj_attribute *attr,
502 char *buf)
503 {
504 return sprintf(buf, "%u\n", khugepaged_full_scans);
505 }
506 static struct kobj_attribute full_scans_attr =
507 __ATTR_RO(full_scans);
508
509 static ssize_t khugepaged_defrag_show(struct kobject *kobj,
510 struct kobj_attribute *attr, char *buf)
511 {
512 return single_flag_show(kobj, attr, buf,
513 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
514 }
515 static ssize_t khugepaged_defrag_store(struct kobject *kobj,
516 struct kobj_attribute *attr,
517 const char *buf, size_t count)
518 {
519 return single_flag_store(kobj, attr, buf, count,
520 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
521 }
522 static struct kobj_attribute khugepaged_defrag_attr =
523 __ATTR(defrag, 0644, khugepaged_defrag_show,
524 khugepaged_defrag_store);
525
526 /*
527 * max_ptes_none controls if khugepaged should collapse hugepages over
528 * any unmapped ptes in turn potentially increasing the memory
529 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
530 * reduce the available free memory in the system as it
531 * runs. Increasing max_ptes_none will instead potentially reduce the
532 * free memory in the system during the khugepaged scan.
533 */
534 static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
535 struct kobj_attribute *attr,
536 char *buf)
537 {
538 return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
539 }
540 static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
541 struct kobj_attribute *attr,
542 const char *buf, size_t count)
543 {
544 int err;
545 unsigned long max_ptes_none;
546
547 err = kstrtoul(buf, 10, &max_ptes_none);
548 if (err || max_ptes_none > HPAGE_PMD_NR-1)
549 return -EINVAL;
550
551 khugepaged_max_ptes_none = max_ptes_none;
552
553 return count;
554 }
555 static struct kobj_attribute khugepaged_max_ptes_none_attr =
556 __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
557 khugepaged_max_ptes_none_store);
558
559 static struct attribute *khugepaged_attr[] = {
560 &khugepaged_defrag_attr.attr,
561 &khugepaged_max_ptes_none_attr.attr,
562 &pages_to_scan_attr.attr,
563 &pages_collapsed_attr.attr,
564 &full_scans_attr.attr,
565 &scan_sleep_millisecs_attr.attr,
566 &alloc_sleep_millisecs_attr.attr,
567 NULL,
568 };
569
570 static struct attribute_group khugepaged_attr_group = {
571 .attrs = khugepaged_attr,
572 .name = "khugepaged",
573 };
574
575 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
576 {
577 int err;
578
579 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
580 if (unlikely(!*hugepage_kobj)) {
581 printk(KERN_ERR "hugepage: failed to create transparent hugepage kobject\n");
582 return -ENOMEM;
583 }
584
585 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
586 if (err) {
587 printk(KERN_ERR "hugepage: failed to register transparent hugepage group\n");
588 goto delete_obj;
589 }
590
591 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
592 if (err) {
593 printk(KERN_ERR "hugepage: failed to register transparent hugepage group\n");
594 goto remove_hp_group;
595 }
596
597 return 0;
598
599 remove_hp_group:
600 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
601 delete_obj:
602 kobject_put(*hugepage_kobj);
603 return err;
604 }
605
606 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
607 {
608 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
609 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
610 kobject_put(hugepage_kobj);
611 }
612 #else
613 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
614 {
615 return 0;
616 }
617
618 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
619 {
620 }
621 #endif /* CONFIG_SYSFS */
622
623 static int __init hugepage_init(void)
624 {
625 int err;
626 struct kobject *hugepage_kobj;
627
628 if (!has_transparent_hugepage()) {
629 transparent_hugepage_flags = 0;
630 return -EINVAL;
631 }
632
633 err = hugepage_init_sysfs(&hugepage_kobj);
634 if (err)
635 return err;
636
637 err = khugepaged_slab_init();
638 if (err)
639 goto out;
640
641 register_shrinker(&huge_zero_page_shrinker);
642
643 /*
644 * By default disable transparent hugepages on smaller systems,
645 * where the extra memory used could hurt more than TLB overhead
646 * is likely to save. The admin can still enable it through /sys.
647 */
648 if (totalram_pages < (512 << (20 - PAGE_SHIFT)))
649 transparent_hugepage_flags = 0;
650
651 start_khugepaged();
652
653 return 0;
654 out:
655 hugepage_exit_sysfs(hugepage_kobj);
656 return err;
657 }
658 module_init(hugepage_init)
659
660 static int __init setup_transparent_hugepage(char *str)
661 {
662 int ret = 0;
663 if (!str)
664 goto out;
665 if (!strcmp(str, "always")) {
666 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
667 &transparent_hugepage_flags);
668 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
669 &transparent_hugepage_flags);
670 ret = 1;
671 } else if (!strcmp(str, "madvise")) {
672 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
673 &transparent_hugepage_flags);
674 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
675 &transparent_hugepage_flags);
676 ret = 1;
677 } else if (!strcmp(str, "never")) {
678 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
679 &transparent_hugepage_flags);
680 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
681 &transparent_hugepage_flags);
682 ret = 1;
683 }
684 out:
685 if (!ret)
686 printk(KERN_WARNING
687 "transparent_hugepage= cannot parse, ignored\n");
688 return ret;
689 }
690 __setup("transparent_hugepage=", setup_transparent_hugepage);
691
692 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
693 {
694 if (likely(vma->vm_flags & VM_WRITE))
695 pmd = pmd_mkwrite(pmd);
696 return pmd;
697 }
698
699 static inline pmd_t mk_huge_pmd(struct page *page, pgprot_t prot)
700 {
701 pmd_t entry;
702 entry = mk_pmd(page, prot);
703 entry = pmd_mkhuge(entry);
704 return entry;
705 }
706
707 static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
708 struct vm_area_struct *vma,
709 unsigned long haddr, pmd_t *pmd,
710 struct page *page)
711 {
712 pgtable_t pgtable;
713
714 VM_BUG_ON(!PageCompound(page));
715 pgtable = pte_alloc_one(mm, haddr);
716 if (unlikely(!pgtable))
717 return VM_FAULT_OOM;
718
719 clear_huge_page(page, haddr, HPAGE_PMD_NR);
720 /*
721 * The memory barrier inside __SetPageUptodate makes sure that
722 * clear_huge_page writes become visible before the set_pmd_at()
723 * write.
724 */
725 __SetPageUptodate(page);
726
727 spin_lock(&mm->page_table_lock);
728 if (unlikely(!pmd_none(*pmd))) {
729 spin_unlock(&mm->page_table_lock);
730 mem_cgroup_uncharge_page(page);
731 put_page(page);
732 pte_free(mm, pgtable);
733 } else {
734 pmd_t entry;
735 entry = mk_huge_pmd(page, vma->vm_page_prot);
736 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
737 page_add_new_anon_rmap(page, vma, haddr);
738 pgtable_trans_huge_deposit(mm, pmd, pgtable);
739 set_pmd_at(mm, haddr, pmd, entry);
740 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
741 mm->nr_ptes++;
742 spin_unlock(&mm->page_table_lock);
743 }
744
745 return 0;
746 }
747
748 static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
749 {
750 return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp;
751 }
752
753 static inline struct page *alloc_hugepage_vma(int defrag,
754 struct vm_area_struct *vma,
755 unsigned long haddr, int nd,
756 gfp_t extra_gfp)
757 {
758 return alloc_pages_vma(alloc_hugepage_gfpmask(defrag, extra_gfp),
759 HPAGE_PMD_ORDER, vma, haddr, nd);
760 }
761
762 #ifndef CONFIG_NUMA
763 static inline struct page *alloc_hugepage(int defrag)
764 {
765 return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
766 HPAGE_PMD_ORDER);
767 }
768 #endif
769
770 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
771 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
772 struct page *zero_page)
773 {
774 pmd_t entry;
775 if (!pmd_none(*pmd))
776 return false;
777 entry = mk_pmd(zero_page, vma->vm_page_prot);
778 entry = pmd_wrprotect(entry);
779 entry = pmd_mkhuge(entry);
780 pgtable_trans_huge_deposit(mm, pmd, pgtable);
781 set_pmd_at(mm, haddr, pmd, entry);
782 mm->nr_ptes++;
783 return true;
784 }
785
786 int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
787 unsigned long address, pmd_t *pmd,
788 unsigned int flags)
789 {
790 struct page *page;
791 unsigned long haddr = address & HPAGE_PMD_MASK;
792
793 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
794 return VM_FAULT_FALLBACK;
795 if (unlikely(anon_vma_prepare(vma)))
796 return VM_FAULT_OOM;
797 if (unlikely(khugepaged_enter(vma)))
798 return VM_FAULT_OOM;
799 if (!(flags & FAULT_FLAG_WRITE) &&
800 transparent_hugepage_use_zero_page()) {
801 pgtable_t pgtable;
802 struct page *zero_page;
803 bool set;
804 pgtable = pte_alloc_one(mm, haddr);
805 if (unlikely(!pgtable))
806 return VM_FAULT_OOM;
807 zero_page = get_huge_zero_page();
808 if (unlikely(!zero_page)) {
809 pte_free(mm, pgtable);
810 count_vm_event(THP_FAULT_FALLBACK);
811 return VM_FAULT_FALLBACK;
812 }
813 spin_lock(&mm->page_table_lock);
814 set = set_huge_zero_page(pgtable, mm, vma, haddr, pmd,
815 zero_page);
816 spin_unlock(&mm->page_table_lock);
817 if (!set) {
818 pte_free(mm, pgtable);
819 put_huge_zero_page();
820 }
821 return 0;
822 }
823 page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
824 vma, haddr, numa_node_id(), 0);
825 if (unlikely(!page)) {
826 count_vm_event(THP_FAULT_FALLBACK);
827 return VM_FAULT_FALLBACK;
828 }
829 if (unlikely(mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))) {
830 put_page(page);
831 count_vm_event(THP_FAULT_FALLBACK);
832 return VM_FAULT_FALLBACK;
833 }
834 if (unlikely(__do_huge_pmd_anonymous_page(mm, vma, haddr, pmd, page))) {
835 mem_cgroup_uncharge_page(page);
836 put_page(page);
837 count_vm_event(THP_FAULT_FALLBACK);
838 return VM_FAULT_FALLBACK;
839 }
840
841 count_vm_event(THP_FAULT_ALLOC);
842 return 0;
843 }
844
845 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
846 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
847 struct vm_area_struct *vma)
848 {
849 struct page *src_page;
850 pmd_t pmd;
851 pgtable_t pgtable;
852 int ret;
853
854 ret = -ENOMEM;
855 pgtable = pte_alloc_one(dst_mm, addr);
856 if (unlikely(!pgtable))
857 goto out;
858
859 spin_lock(&dst_mm->page_table_lock);
860 spin_lock_nested(&src_mm->page_table_lock, SINGLE_DEPTH_NESTING);
861
862 ret = -EAGAIN;
863 pmd = *src_pmd;
864 if (unlikely(!pmd_trans_huge(pmd))) {
865 pte_free(dst_mm, pgtable);
866 goto out_unlock;
867 }
868 /*
869 * mm->page_table_lock is enough to be sure that huge zero pmd is not
870 * under splitting since we don't split the page itself, only pmd to
871 * a page table.
872 */
873 if (is_huge_zero_pmd(pmd)) {
874 struct page *zero_page;
875 bool set;
876 /*
877 * get_huge_zero_page() will never allocate a new page here,
878 * since we already have a zero page to copy. It just takes a
879 * reference.
880 */
881 zero_page = get_huge_zero_page();
882 set = set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
883 zero_page);
884 BUG_ON(!set); /* unexpected !pmd_none(dst_pmd) */
885 ret = 0;
886 goto out_unlock;
887 }
888 if (unlikely(pmd_trans_splitting(pmd))) {
889 /* split huge page running from under us */
890 spin_unlock(&src_mm->page_table_lock);
891 spin_unlock(&dst_mm->page_table_lock);
892 pte_free(dst_mm, pgtable);
893
894 wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
895 goto out;
896 }
897 src_page = pmd_page(pmd);
898 VM_BUG_ON(!PageHead(src_page));
899 get_page(src_page);
900 page_dup_rmap(src_page);
901 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
902
903 pmdp_set_wrprotect(src_mm, addr, src_pmd);
904 pmd = pmd_mkold(pmd_wrprotect(pmd));
905 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
906 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
907 dst_mm->nr_ptes++;
908
909 ret = 0;
910 out_unlock:
911 spin_unlock(&src_mm->page_table_lock);
912 spin_unlock(&dst_mm->page_table_lock);
913 out:
914 return ret;
915 }
916
917 void huge_pmd_set_accessed(struct mm_struct *mm,
918 struct vm_area_struct *vma,
919 unsigned long address,
920 pmd_t *pmd, pmd_t orig_pmd,
921 int dirty)
922 {
923 pmd_t entry;
924 unsigned long haddr;
925
926 spin_lock(&mm->page_table_lock);
927 if (unlikely(!pmd_same(*pmd, orig_pmd)))
928 goto unlock;
929
930 entry = pmd_mkyoung(orig_pmd);
931 haddr = address & HPAGE_PMD_MASK;
932 if (pmdp_set_access_flags(vma, haddr, pmd, entry, dirty))
933 update_mmu_cache_pmd(vma, address, pmd);
934
935 unlock:
936 spin_unlock(&mm->page_table_lock);
937 }
938
939 static int do_huge_pmd_wp_zero_page_fallback(struct mm_struct *mm,
940 struct vm_area_struct *vma, unsigned long address,
941 pmd_t *pmd, pmd_t orig_pmd, unsigned long haddr)
942 {
943 pgtable_t pgtable;
944 pmd_t _pmd;
945 struct page *page;
946 int i, ret = 0;
947 unsigned long mmun_start; /* For mmu_notifiers */
948 unsigned long mmun_end; /* For mmu_notifiers */
949
950 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
951 if (!page) {
952 ret |= VM_FAULT_OOM;
953 goto out;
954 }
955
956 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) {
957 put_page(page);
958 ret |= VM_FAULT_OOM;
959 goto out;
960 }
961
962 clear_user_highpage(page, address);
963 __SetPageUptodate(page);
964
965 mmun_start = haddr;
966 mmun_end = haddr + HPAGE_PMD_SIZE;
967 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
968
969 spin_lock(&mm->page_table_lock);
970 if (unlikely(!pmd_same(*pmd, orig_pmd)))
971 goto out_free_page;
972
973 pmdp_clear_flush(vma, haddr, pmd);
974 /* leave pmd empty until pte is filled */
975
976 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
977 pmd_populate(mm, &_pmd, pgtable);
978
979 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
980 pte_t *pte, entry;
981 if (haddr == (address & PAGE_MASK)) {
982 entry = mk_pte(page, vma->vm_page_prot);
983 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
984 page_add_new_anon_rmap(page, vma, haddr);
985 } else {
986 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
987 entry = pte_mkspecial(entry);
988 }
989 pte = pte_offset_map(&_pmd, haddr);
990 VM_BUG_ON(!pte_none(*pte));
991 set_pte_at(mm, haddr, pte, entry);
992 pte_unmap(pte);
993 }
994 smp_wmb(); /* make pte visible before pmd */
995 pmd_populate(mm, pmd, pgtable);
996 spin_unlock(&mm->page_table_lock);
997 put_huge_zero_page();
998 inc_mm_counter(mm, MM_ANONPAGES);
999
1000 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1001
1002 ret |= VM_FAULT_WRITE;
1003 out:
1004 return ret;
1005 out_free_page:
1006 spin_unlock(&mm->page_table_lock);
1007 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1008 mem_cgroup_uncharge_page(page);
1009 put_page(page);
1010 goto out;
1011 }
1012
1013 static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
1014 struct vm_area_struct *vma,
1015 unsigned long address,
1016 pmd_t *pmd, pmd_t orig_pmd,
1017 struct page *page,
1018 unsigned long haddr)
1019 {
1020 pgtable_t pgtable;
1021 pmd_t _pmd;
1022 int ret = 0, i;
1023 struct page **pages;
1024 unsigned long mmun_start; /* For mmu_notifiers */
1025 unsigned long mmun_end; /* For mmu_notifiers */
1026
1027 pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
1028 GFP_KERNEL);
1029 if (unlikely(!pages)) {
1030 ret |= VM_FAULT_OOM;
1031 goto out;
1032 }
1033
1034 for (i = 0; i < HPAGE_PMD_NR; i++) {
1035 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
1036 __GFP_OTHER_NODE,
1037 vma, address, page_to_nid(page));
1038 if (unlikely(!pages[i] ||
1039 mem_cgroup_newpage_charge(pages[i], mm,
1040 GFP_KERNEL))) {
1041 if (pages[i])
1042 put_page(pages[i]);
1043 mem_cgroup_uncharge_start();
1044 while (--i >= 0) {
1045 mem_cgroup_uncharge_page(pages[i]);
1046 put_page(pages[i]);
1047 }
1048 mem_cgroup_uncharge_end();
1049 kfree(pages);
1050 ret |= VM_FAULT_OOM;
1051 goto out;
1052 }
1053 }
1054
1055 for (i = 0; i < HPAGE_PMD_NR; i++) {
1056 copy_user_highpage(pages[i], page + i,
1057 haddr + PAGE_SIZE * i, vma);
1058 __SetPageUptodate(pages[i]);
1059 cond_resched();
1060 }
1061
1062 mmun_start = haddr;
1063 mmun_end = haddr + HPAGE_PMD_SIZE;
1064 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1065
1066 spin_lock(&mm->page_table_lock);
1067 if (unlikely(!pmd_same(*pmd, orig_pmd)))
1068 goto out_free_pages;
1069 VM_BUG_ON(!PageHead(page));
1070
1071 pmdp_clear_flush(vma, haddr, pmd);
1072 /* leave pmd empty until pte is filled */
1073
1074 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1075 pmd_populate(mm, &_pmd, pgtable);
1076
1077 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1078 pte_t *pte, entry;
1079 entry = mk_pte(pages[i], vma->vm_page_prot);
1080 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1081 page_add_new_anon_rmap(pages[i], vma, haddr);
1082 pte = pte_offset_map(&_pmd, haddr);
1083 VM_BUG_ON(!pte_none(*pte));
1084 set_pte_at(mm, haddr, pte, entry);
1085 pte_unmap(pte);
1086 }
1087 kfree(pages);
1088
1089 smp_wmb(); /* make pte visible before pmd */
1090 pmd_populate(mm, pmd, pgtable);
1091 page_remove_rmap(page);
1092 spin_unlock(&mm->page_table_lock);
1093
1094 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1095
1096 ret |= VM_FAULT_WRITE;
1097 put_page(page);
1098
1099 out:
1100 return ret;
1101
1102 out_free_pages:
1103 spin_unlock(&mm->page_table_lock);
1104 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1105 mem_cgroup_uncharge_start();
1106 for (i = 0; i < HPAGE_PMD_NR; i++) {
1107 mem_cgroup_uncharge_page(pages[i]);
1108 put_page(pages[i]);
1109 }
1110 mem_cgroup_uncharge_end();
1111 kfree(pages);
1112 goto out;
1113 }
1114
1115 int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1116 unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
1117 {
1118 int ret = 0;
1119 struct page *page = NULL, *new_page;
1120 unsigned long haddr;
1121 unsigned long mmun_start; /* For mmu_notifiers */
1122 unsigned long mmun_end; /* For mmu_notifiers */
1123
1124 VM_BUG_ON(!vma->anon_vma);
1125 haddr = address & HPAGE_PMD_MASK;
1126 if (is_huge_zero_pmd(orig_pmd))
1127 goto alloc;
1128 spin_lock(&mm->page_table_lock);
1129 if (unlikely(!pmd_same(*pmd, orig_pmd)))
1130 goto out_unlock;
1131
1132 page = pmd_page(orig_pmd);
1133 VM_BUG_ON(!PageCompound(page) || !PageHead(page));
1134 if (page_mapcount(page) == 1) {
1135 pmd_t entry;
1136 entry = pmd_mkyoung(orig_pmd);
1137 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1138 if (pmdp_set_access_flags(vma, haddr, pmd, entry, 1))
1139 update_mmu_cache_pmd(vma, address, pmd);
1140 ret |= VM_FAULT_WRITE;
1141 goto out_unlock;
1142 }
1143 get_page(page);
1144 spin_unlock(&mm->page_table_lock);
1145 alloc:
1146 if (transparent_hugepage_enabled(vma) &&
1147 !transparent_hugepage_debug_cow())
1148 new_page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
1149 vma, haddr, numa_node_id(), 0);
1150 else
1151 new_page = NULL;
1152
1153 if (unlikely(!new_page)) {
1154 if (is_huge_zero_pmd(orig_pmd)) {
1155 ret = do_huge_pmd_wp_zero_page_fallback(mm, vma,
1156 address, pmd, orig_pmd, haddr);
1157 } else {
1158 ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
1159 pmd, orig_pmd, page, haddr);
1160 if (ret & VM_FAULT_OOM)
1161 split_huge_page(page);
1162 put_page(page);
1163 }
1164 count_vm_event(THP_FAULT_FALLBACK);
1165 goto out;
1166 }
1167
1168 if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
1169 put_page(new_page);
1170 if (page) {
1171 split_huge_page(page);
1172 put_page(page);
1173 }
1174 count_vm_event(THP_FAULT_FALLBACK);
1175 ret |= VM_FAULT_OOM;
1176 goto out;
1177 }
1178
1179 count_vm_event(THP_FAULT_ALLOC);
1180
1181 if (is_huge_zero_pmd(orig_pmd))
1182 clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
1183 else
1184 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
1185 __SetPageUptodate(new_page);
1186
1187 mmun_start = haddr;
1188 mmun_end = haddr + HPAGE_PMD_SIZE;
1189 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1190
1191 spin_lock(&mm->page_table_lock);
1192 if (page)
1193 put_page(page);
1194 if (unlikely(!pmd_same(*pmd, orig_pmd))) {
1195 spin_unlock(&mm->page_table_lock);
1196 mem_cgroup_uncharge_page(new_page);
1197 put_page(new_page);
1198 goto out_mn;
1199 } else {
1200 pmd_t entry;
1201 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1202 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1203 pmdp_clear_flush(vma, haddr, pmd);
1204 page_add_new_anon_rmap(new_page, vma, haddr);
1205 set_pmd_at(mm, haddr, pmd, entry);
1206 update_mmu_cache_pmd(vma, address, pmd);
1207 if (is_huge_zero_pmd(orig_pmd)) {
1208 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
1209 put_huge_zero_page();
1210 } else {
1211 VM_BUG_ON(!PageHead(page));
1212 page_remove_rmap(page);
1213 put_page(page);
1214 }
1215 ret |= VM_FAULT_WRITE;
1216 }
1217 spin_unlock(&mm->page_table_lock);
1218 out_mn:
1219 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1220 out:
1221 return ret;
1222 out_unlock:
1223 spin_unlock(&mm->page_table_lock);
1224 return ret;
1225 }
1226
1227 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1228 unsigned long addr,
1229 pmd_t *pmd,
1230 unsigned int flags)
1231 {
1232 struct mm_struct *mm = vma->vm_mm;
1233 struct page *page = NULL;
1234
1235 assert_spin_locked(&mm->page_table_lock);
1236
1237 if (flags & FOLL_WRITE && !pmd_write(*pmd))
1238 goto out;
1239
1240 /* Avoid dumping huge zero page */
1241 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1242 return ERR_PTR(-EFAULT);
1243
1244 page = pmd_page(*pmd);
1245 VM_BUG_ON(!PageHead(page));
1246 if (flags & FOLL_TOUCH) {
1247 pmd_t _pmd;
1248 /*
1249 * We should set the dirty bit only for FOLL_WRITE but
1250 * for now the dirty bit in the pmd is meaningless.
1251 * And if the dirty bit will become meaningful and
1252 * we'll only set it with FOLL_WRITE, an atomic
1253 * set_bit will be required on the pmd to set the
1254 * young bit, instead of the current set_pmd_at.
1255 */
1256 _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
1257 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
1258 pmd, _pmd, 1))
1259 update_mmu_cache_pmd(vma, addr, pmd);
1260 }
1261 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1262 if (page->mapping && trylock_page(page)) {
1263 lru_add_drain();
1264 if (page->mapping)
1265 mlock_vma_page(page);
1266 unlock_page(page);
1267 }
1268 }
1269 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1270 VM_BUG_ON(!PageCompound(page));
1271 if (flags & FOLL_GET)
1272 get_page_foll(page);
1273
1274 out:
1275 return page;
1276 }
1277
1278 /* NUMA hinting page fault entry point for trans huge pmds */
1279 int do_huge_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
1280 unsigned long addr, pmd_t pmd, pmd_t *pmdp)
1281 {
1282 struct anon_vma *anon_vma = NULL;
1283 struct page *page;
1284 unsigned long haddr = addr & HPAGE_PMD_MASK;
1285 int page_nid = -1, this_nid = numa_node_id();
1286 int target_nid, last_cpupid = -1;
1287 bool page_locked;
1288 bool migrated = false;
1289 int flags = 0;
1290
1291 spin_lock(&mm->page_table_lock);
1292 if (unlikely(!pmd_same(pmd, *pmdp)))
1293 goto out_unlock;
1294
1295 page = pmd_page(pmd);
1296 BUG_ON(is_huge_zero_page(page));
1297 page_nid = page_to_nid(page);
1298 last_cpupid = page_cpupid_last(page);
1299 count_vm_numa_event(NUMA_HINT_FAULTS);
1300 if (page_nid == this_nid) {
1301 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1302 flags |= TNF_FAULT_LOCAL;
1303 }
1304
1305 /*
1306 * Avoid grouping on DSO/COW pages in specific and RO pages
1307 * in general, RO pages shouldn't hurt as much anyway since
1308 * they can be in shared cache state.
1309 */
1310 if (!pmd_write(pmd))
1311 flags |= TNF_NO_GROUP;
1312
1313 /*
1314 * Acquire the page lock to serialise THP migrations but avoid dropping
1315 * page_table_lock if at all possible
1316 */
1317 page_locked = trylock_page(page);
1318 target_nid = mpol_misplaced(page, vma, haddr);
1319 if (target_nid == -1) {
1320 /* If the page was locked, there are no parallel migrations */
1321 if (page_locked)
1322 goto clear_pmdnuma;
1323
1324 /*
1325 * Otherwise wait for potential migrations and retry. We do
1326 * relock and check_same as the page may no longer be mapped.
1327 * As the fault is being retried, do not account for it.
1328 */
1329 spin_unlock(&mm->page_table_lock);
1330 wait_on_page_locked(page);
1331 page_nid = -1;
1332 goto out;
1333 }
1334
1335 /* Page is misplaced, serialise migrations and parallel THP splits */
1336 get_page(page);
1337 spin_unlock(&mm->page_table_lock);
1338 if (!page_locked)
1339 lock_page(page);
1340 anon_vma = page_lock_anon_vma_read(page);
1341
1342 /* Confirm the PMD did not change while page_table_lock was released */
1343 spin_lock(&mm->page_table_lock);
1344 if (unlikely(!pmd_same(pmd, *pmdp))) {
1345 unlock_page(page);
1346 put_page(page);
1347 page_nid = -1;
1348 goto out_unlock;
1349 }
1350
1351 /*
1352 * Migrate the THP to the requested node, returns with page unlocked
1353 * and pmd_numa cleared.
1354 */
1355 spin_unlock(&mm->page_table_lock);
1356 migrated = migrate_misplaced_transhuge_page(mm, vma,
1357 pmdp, pmd, addr, page, target_nid);
1358 if (migrated) {
1359 flags |= TNF_MIGRATED;
1360 page_nid = target_nid;
1361 }
1362
1363 goto out;
1364 clear_pmdnuma:
1365 BUG_ON(!PageLocked(page));
1366 pmd = pmd_mknonnuma(pmd);
1367 set_pmd_at(mm, haddr, pmdp, pmd);
1368 VM_BUG_ON(pmd_numa(*pmdp));
1369 update_mmu_cache_pmd(vma, addr, pmdp);
1370 unlock_page(page);
1371 out_unlock:
1372 spin_unlock(&mm->page_table_lock);
1373
1374 out:
1375 if (anon_vma)
1376 page_unlock_anon_vma_read(anon_vma);
1377
1378 if (page_nid != -1)
1379 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, flags);
1380
1381 return 0;
1382 }
1383
1384 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1385 pmd_t *pmd, unsigned long addr)
1386 {
1387 int ret = 0;
1388
1389 if (__pmd_trans_huge_lock(pmd, vma) == 1) {
1390 struct page *page;
1391 pgtable_t pgtable;
1392 pmd_t orig_pmd;
1393 /*
1394 * For architectures like ppc64 we look at deposited pgtable
1395 * when calling pmdp_get_and_clear. So do the
1396 * pgtable_trans_huge_withdraw after finishing pmdp related
1397 * operations.
1398 */
1399 orig_pmd = pmdp_get_and_clear(tlb->mm, addr, pmd);
1400 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1401 pgtable = pgtable_trans_huge_withdraw(tlb->mm, pmd);
1402 if (is_huge_zero_pmd(orig_pmd)) {
1403 tlb->mm->nr_ptes--;
1404 spin_unlock(&tlb->mm->page_table_lock);
1405 put_huge_zero_page();
1406 } else {
1407 page = pmd_page(orig_pmd);
1408 page_remove_rmap(page);
1409 VM_BUG_ON(page_mapcount(page) < 0);
1410 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1411 VM_BUG_ON(!PageHead(page));
1412 tlb->mm->nr_ptes--;
1413 spin_unlock(&tlb->mm->page_table_lock);
1414 tlb_remove_page(tlb, page);
1415 }
1416 pte_free(tlb->mm, pgtable);
1417 ret = 1;
1418 }
1419 return ret;
1420 }
1421
1422 int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1423 unsigned long addr, unsigned long end,
1424 unsigned char *vec)
1425 {
1426 int ret = 0;
1427
1428 if (__pmd_trans_huge_lock(pmd, vma) == 1) {
1429 /*
1430 * All logical pages in the range are present
1431 * if backed by a huge page.
1432 */
1433 spin_unlock(&vma->vm_mm->page_table_lock);
1434 memset(vec, 1, (end - addr) >> PAGE_SHIFT);
1435 ret = 1;
1436 }
1437
1438 return ret;
1439 }
1440
1441 int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
1442 unsigned long old_addr,
1443 unsigned long new_addr, unsigned long old_end,
1444 pmd_t *old_pmd, pmd_t *new_pmd)
1445 {
1446 int ret = 0;
1447 pmd_t pmd;
1448
1449 struct mm_struct *mm = vma->vm_mm;
1450
1451 if ((old_addr & ~HPAGE_PMD_MASK) ||
1452 (new_addr & ~HPAGE_PMD_MASK) ||
1453 old_end - old_addr < HPAGE_PMD_SIZE ||
1454 (new_vma->vm_flags & VM_NOHUGEPAGE))
1455 goto out;
1456
1457 /*
1458 * The destination pmd shouldn't be established, free_pgtables()
1459 * should have release it.
1460 */
1461 if (WARN_ON(!pmd_none(*new_pmd))) {
1462 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1463 goto out;
1464 }
1465
1466 ret = __pmd_trans_huge_lock(old_pmd, vma);
1467 if (ret == 1) {
1468 pmd = pmdp_get_and_clear(mm, old_addr, old_pmd);
1469 VM_BUG_ON(!pmd_none(*new_pmd));
1470 set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
1471 spin_unlock(&mm->page_table_lock);
1472 }
1473 out:
1474 return ret;
1475 }
1476
1477 /*
1478 * Returns
1479 * - 0 if PMD could not be locked
1480 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1481 * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1482 */
1483 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1484 unsigned long addr, pgprot_t newprot, int prot_numa)
1485 {
1486 struct mm_struct *mm = vma->vm_mm;
1487 int ret = 0;
1488
1489 if (__pmd_trans_huge_lock(pmd, vma) == 1) {
1490 pmd_t entry;
1491 ret = 1;
1492 if (!prot_numa) {
1493 entry = pmdp_get_and_clear(mm, addr, pmd);
1494 entry = pmd_modify(entry, newprot);
1495 ret = HPAGE_PMD_NR;
1496 BUG_ON(pmd_write(entry));
1497 } else {
1498 struct page *page = pmd_page(*pmd);
1499
1500 /*
1501 * Do not trap faults against the zero page. The
1502 * read-only data is likely to be read-cached on the
1503 * local CPU cache and it is less useful to know about
1504 * local vs remote hits on the zero page.
1505 */
1506 if (!is_huge_zero_page(page) &&
1507 !pmd_numa(*pmd)) {
1508 entry = pmdp_get_and_clear(mm, addr, pmd);
1509 entry = pmd_mknuma(entry);
1510 ret = HPAGE_PMD_NR;
1511 }
1512 }
1513
1514 /* Set PMD if cleared earlier */
1515 if (ret == HPAGE_PMD_NR)
1516 set_pmd_at(mm, addr, pmd, entry);
1517
1518 spin_unlock(&vma->vm_mm->page_table_lock);
1519 }
1520
1521 return ret;
1522 }
1523
1524 /*
1525 * Returns 1 if a given pmd maps a stable (not under splitting) thp.
1526 * Returns -1 if it maps a thp under splitting. Returns 0 otherwise.
1527 *
1528 * Note that if it returns 1, this routine returns without unlocking page
1529 * table locks. So callers must unlock them.
1530 */
1531 int __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1532 {
1533 spin_lock(&vma->vm_mm->page_table_lock);
1534 if (likely(pmd_trans_huge(*pmd))) {
1535 if (unlikely(pmd_trans_splitting(*pmd))) {
1536 spin_unlock(&vma->vm_mm->page_table_lock);
1537 wait_split_huge_page(vma->anon_vma, pmd);
1538 return -1;
1539 } else {
1540 /* Thp mapped by 'pmd' is stable, so we can
1541 * handle it as it is. */
1542 return 1;
1543 }
1544 }
1545 spin_unlock(&vma->vm_mm->page_table_lock);
1546 return 0;
1547 }
1548
1549 pmd_t *page_check_address_pmd(struct page *page,
1550 struct mm_struct *mm,
1551 unsigned long address,
1552 enum page_check_address_pmd_flag flag)
1553 {
1554 pmd_t *pmd, *ret = NULL;
1555
1556 if (address & ~HPAGE_PMD_MASK)
1557 goto out;
1558
1559 pmd = mm_find_pmd(mm, address);
1560 if (!pmd)
1561 goto out;
1562 if (pmd_none(*pmd))
1563 goto out;
1564 if (pmd_page(*pmd) != page)
1565 goto out;
1566 /*
1567 * split_vma() may create temporary aliased mappings. There is
1568 * no risk as long as all huge pmd are found and have their
1569 * splitting bit set before __split_huge_page_refcount
1570 * runs. Finding the same huge pmd more than once during the
1571 * same rmap walk is not a problem.
1572 */
1573 if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
1574 pmd_trans_splitting(*pmd))
1575 goto out;
1576 if (pmd_trans_huge(*pmd)) {
1577 VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
1578 !pmd_trans_splitting(*pmd));
1579 ret = pmd;
1580 }
1581 out:
1582 return ret;
1583 }
1584
1585 static int __split_huge_page_splitting(struct page *page,
1586 struct vm_area_struct *vma,
1587 unsigned long address)
1588 {
1589 struct mm_struct *mm = vma->vm_mm;
1590 pmd_t *pmd;
1591 int ret = 0;
1592 /* For mmu_notifiers */
1593 const unsigned long mmun_start = address;
1594 const unsigned long mmun_end = address + HPAGE_PMD_SIZE;
1595
1596 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1597 spin_lock(&mm->page_table_lock);
1598 pmd = page_check_address_pmd(page, mm, address,
1599 PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG);
1600 if (pmd) {
1601 /*
1602 * We can't temporarily set the pmd to null in order
1603 * to split it, the pmd must remain marked huge at all
1604 * times or the VM won't take the pmd_trans_huge paths
1605 * and it won't wait on the anon_vma->root->rwsem to
1606 * serialize against split_huge_page*.
1607 */
1608 pmdp_splitting_flush(vma, address, pmd);
1609 ret = 1;
1610 }
1611 spin_unlock(&mm->page_table_lock);
1612 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1613
1614 return ret;
1615 }
1616
1617 static void __split_huge_page_refcount(struct page *page,
1618 struct list_head *list)
1619 {
1620 int i;
1621 struct zone *zone = page_zone(page);
1622 struct lruvec *lruvec;
1623 int tail_count = 0;
1624
1625 /* prevent PageLRU to go away from under us, and freeze lru stats */
1626 spin_lock_irq(&zone->lru_lock);
1627 lruvec = mem_cgroup_page_lruvec(page, zone);
1628
1629 compound_lock(page);
1630 /* complete memcg works before add pages to LRU */
1631 mem_cgroup_split_huge_fixup(page);
1632
1633 for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
1634 struct page *page_tail = page + i;
1635
1636 /* tail_page->_mapcount cannot change */
1637 BUG_ON(page_mapcount(page_tail) < 0);
1638 tail_count += page_mapcount(page_tail);
1639 /* check for overflow */
1640 BUG_ON(tail_count < 0);
1641 BUG_ON(atomic_read(&page_tail->_count) != 0);
1642 /*
1643 * tail_page->_count is zero and not changing from
1644 * under us. But get_page_unless_zero() may be running
1645 * from under us on the tail_page. If we used
1646 * atomic_set() below instead of atomic_add(), we
1647 * would then run atomic_set() concurrently with
1648 * get_page_unless_zero(), and atomic_set() is
1649 * implemented in C not using locked ops. spin_unlock
1650 * on x86 sometime uses locked ops because of PPro
1651 * errata 66, 92, so unless somebody can guarantee
1652 * atomic_set() here would be safe on all archs (and
1653 * not only on x86), it's safer to use atomic_add().
1654 */
1655 atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1,
1656 &page_tail->_count);
1657
1658 /* after clearing PageTail the gup refcount can be released */
1659 smp_mb();
1660
1661 /*
1662 * retain hwpoison flag of the poisoned tail page:
1663 * fix for the unsuitable process killed on Guest Machine(KVM)
1664 * by the memory-failure.
1665 */
1666 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON;
1667 page_tail->flags |= (page->flags &
1668 ((1L << PG_referenced) |
1669 (1L << PG_swapbacked) |
1670 (1L << PG_mlocked) |
1671 (1L << PG_uptodate) |
1672 (1L << PG_active) |
1673 (1L << PG_unevictable)));
1674 page_tail->flags |= (1L << PG_dirty);
1675
1676 /* clear PageTail before overwriting first_page */
1677 smp_wmb();
1678
1679 /*
1680 * __split_huge_page_splitting() already set the
1681 * splitting bit in all pmd that could map this
1682 * hugepage, that will ensure no CPU can alter the
1683 * mapcount on the head page. The mapcount is only
1684 * accounted in the head page and it has to be
1685 * transferred to all tail pages in the below code. So
1686 * for this code to be safe, the split the mapcount
1687 * can't change. But that doesn't mean userland can't
1688 * keep changing and reading the page contents while
1689 * we transfer the mapcount, so the pmd splitting
1690 * status is achieved setting a reserved bit in the
1691 * pmd, not by clearing the present bit.
1692 */
1693 page_tail->_mapcount = page->_mapcount;
1694
1695 BUG_ON(page_tail->mapping);
1696 page_tail->mapping = page->mapping;
1697
1698 page_tail->index = page->index + i;
1699 page_cpupid_xchg_last(page_tail, page_cpupid_last(page));
1700
1701 BUG_ON(!PageAnon(page_tail));
1702 BUG_ON(!PageUptodate(page_tail));
1703 BUG_ON(!PageDirty(page_tail));
1704 BUG_ON(!PageSwapBacked(page_tail));
1705
1706 lru_add_page_tail(page, page_tail, lruvec, list);
1707 }
1708 atomic_sub(tail_count, &page->_count);
1709 BUG_ON(atomic_read(&page->_count) <= 0);
1710
1711 __mod_zone_page_state(zone, NR_ANON_TRANSPARENT_HUGEPAGES, -1);
1712
1713 ClearPageCompound(page);
1714 compound_unlock(page);
1715 spin_unlock_irq(&zone->lru_lock);
1716
1717 for (i = 1; i < HPAGE_PMD_NR; i++) {
1718 struct page *page_tail = page + i;
1719 BUG_ON(page_count(page_tail) <= 0);
1720 /*
1721 * Tail pages may be freed if there wasn't any mapping
1722 * like if add_to_swap() is running on a lru page that
1723 * had its mapping zapped. And freeing these pages
1724 * requires taking the lru_lock so we do the put_page
1725 * of the tail pages after the split is complete.
1726 */
1727 put_page(page_tail);
1728 }
1729
1730 /*
1731 * Only the head page (now become a regular page) is required
1732 * to be pinned by the caller.
1733 */
1734 BUG_ON(page_count(page) <= 0);
1735 }
1736
1737 static int __split_huge_page_map(struct page *page,
1738 struct vm_area_struct *vma,
1739 unsigned long address)
1740 {
1741 struct mm_struct *mm = vma->vm_mm;
1742 pmd_t *pmd, _pmd;
1743 int ret = 0, i;
1744 pgtable_t pgtable;
1745 unsigned long haddr;
1746
1747 spin_lock(&mm->page_table_lock);
1748 pmd = page_check_address_pmd(page, mm, address,
1749 PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG);
1750 if (pmd) {
1751 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1752 pmd_populate(mm, &_pmd, pgtable);
1753
1754 haddr = address;
1755 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1756 pte_t *pte, entry;
1757 BUG_ON(PageCompound(page+i));
1758 entry = mk_pte(page + i, vma->vm_page_prot);
1759 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1760 if (!pmd_write(*pmd))
1761 entry = pte_wrprotect(entry);
1762 else
1763 BUG_ON(page_mapcount(page) != 1);
1764 if (!pmd_young(*pmd))
1765 entry = pte_mkold(entry);
1766 if (pmd_numa(*pmd))
1767 entry = pte_mknuma(entry);
1768 pte = pte_offset_map(&_pmd, haddr);
1769 BUG_ON(!pte_none(*pte));
1770 set_pte_at(mm, haddr, pte, entry);
1771 pte_unmap(pte);
1772 }
1773
1774 smp_wmb(); /* make pte visible before pmd */
1775 /*
1776 * Up to this point the pmd is present and huge and
1777 * userland has the whole access to the hugepage
1778 * during the split (which happens in place). If we
1779 * overwrite the pmd with the not-huge version
1780 * pointing to the pte here (which of course we could
1781 * if all CPUs were bug free), userland could trigger
1782 * a small page size TLB miss on the small sized TLB
1783 * while the hugepage TLB entry is still established
1784 * in the huge TLB. Some CPU doesn't like that. See
1785 * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
1786 * Erratum 383 on page 93. Intel should be safe but is
1787 * also warns that it's only safe if the permission
1788 * and cache attributes of the two entries loaded in
1789 * the two TLB is identical (which should be the case
1790 * here). But it is generally safer to never allow
1791 * small and huge TLB entries for the same virtual
1792 * address to be loaded simultaneously. So instead of
1793 * doing "pmd_populate(); flush_tlb_range();" we first
1794 * mark the current pmd notpresent (atomically because
1795 * here the pmd_trans_huge and pmd_trans_splitting
1796 * must remain set at all times on the pmd until the
1797 * split is complete for this pmd), then we flush the
1798 * SMP TLB and finally we write the non-huge version
1799 * of the pmd entry with pmd_populate.
1800 */
1801 pmdp_invalidate(vma, address, pmd);
1802 pmd_populate(mm, pmd, pgtable);
1803 ret = 1;
1804 }
1805 spin_unlock(&mm->page_table_lock);
1806
1807 return ret;
1808 }
1809
1810 /* must be called with anon_vma->root->rwsem held */
1811 static void __split_huge_page(struct page *page,
1812 struct anon_vma *anon_vma,
1813 struct list_head *list)
1814 {
1815 int mapcount, mapcount2;
1816 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1817 struct anon_vma_chain *avc;
1818
1819 BUG_ON(!PageHead(page));
1820 BUG_ON(PageTail(page));
1821
1822 mapcount = 0;
1823 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1824 struct vm_area_struct *vma = avc->vma;
1825 unsigned long addr = vma_address(page, vma);
1826 BUG_ON(is_vma_temporary_stack(vma));
1827 mapcount += __split_huge_page_splitting(page, vma, addr);
1828 }
1829 /*
1830 * It is critical that new vmas are added to the tail of the
1831 * anon_vma list. This guarantes that if copy_huge_pmd() runs
1832 * and establishes a child pmd before
1833 * __split_huge_page_splitting() freezes the parent pmd (so if
1834 * we fail to prevent copy_huge_pmd() from running until the
1835 * whole __split_huge_page() is complete), we will still see
1836 * the newly established pmd of the child later during the
1837 * walk, to be able to set it as pmd_trans_splitting too.
1838 */
1839 if (mapcount != page_mapcount(page))
1840 printk(KERN_ERR "mapcount %d page_mapcount %d\n",
1841 mapcount, page_mapcount(page));
1842 BUG_ON(mapcount != page_mapcount(page));
1843
1844 __split_huge_page_refcount(page, list);
1845
1846 mapcount2 = 0;
1847 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1848 struct vm_area_struct *vma = avc->vma;
1849 unsigned long addr = vma_address(page, vma);
1850 BUG_ON(is_vma_temporary_stack(vma));
1851 mapcount2 += __split_huge_page_map(page, vma, addr);
1852 }
1853 if (mapcount != mapcount2)
1854 printk(KERN_ERR "mapcount %d mapcount2 %d page_mapcount %d\n",
1855 mapcount, mapcount2, page_mapcount(page));
1856 BUG_ON(mapcount != mapcount2);
1857 }
1858
1859 /*
1860 * Split a hugepage into normal pages. This doesn't change the position of head
1861 * page. If @list is null, tail pages will be added to LRU list, otherwise, to
1862 * @list. Both head page and tail pages will inherit mapping, flags, and so on
1863 * from the hugepage.
1864 * Return 0 if the hugepage is split successfully otherwise return 1.
1865 */
1866 int split_huge_page_to_list(struct page *page, struct list_head *list)
1867 {
1868 struct anon_vma *anon_vma;
1869 int ret = 1;
1870
1871 BUG_ON(is_huge_zero_page(page));
1872 BUG_ON(!PageAnon(page));
1873
1874 /*
1875 * The caller does not necessarily hold an mmap_sem that would prevent
1876 * the anon_vma disappearing so we first we take a reference to it
1877 * and then lock the anon_vma for write. This is similar to
1878 * page_lock_anon_vma_read except the write lock is taken to serialise
1879 * against parallel split or collapse operations.
1880 */
1881 anon_vma = page_get_anon_vma(page);
1882 if (!anon_vma)
1883 goto out;
1884 anon_vma_lock_write(anon_vma);
1885
1886 ret = 0;
1887 if (!PageCompound(page))
1888 goto out_unlock;
1889
1890 BUG_ON(!PageSwapBacked(page));
1891 __split_huge_page(page, anon_vma, list);
1892 count_vm_event(THP_SPLIT);
1893
1894 BUG_ON(PageCompound(page));
1895 out_unlock:
1896 anon_vma_unlock_write(anon_vma);
1897 put_anon_vma(anon_vma);
1898 out:
1899 return ret;
1900 }
1901
1902 #define VM_NO_THP (VM_SPECIAL|VM_MIXEDMAP|VM_HUGETLB|VM_SHARED|VM_MAYSHARE)
1903
1904 int hugepage_madvise(struct vm_area_struct *vma,
1905 unsigned long *vm_flags, int advice)
1906 {
1907 struct mm_struct *mm = vma->vm_mm;
1908
1909 switch (advice) {
1910 case MADV_HUGEPAGE:
1911 /*
1912 * Be somewhat over-protective like KSM for now!
1913 */
1914 if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP))
1915 return -EINVAL;
1916 if (mm->def_flags & VM_NOHUGEPAGE)
1917 return -EINVAL;
1918 *vm_flags &= ~VM_NOHUGEPAGE;
1919 *vm_flags |= VM_HUGEPAGE;
1920 /*
1921 * If the vma become good for khugepaged to scan,
1922 * register it here without waiting a page fault that
1923 * may not happen any time soon.
1924 */
1925 if (unlikely(khugepaged_enter_vma_merge(vma)))
1926 return -ENOMEM;
1927 break;
1928 case MADV_NOHUGEPAGE:
1929 /*
1930 * Be somewhat over-protective like KSM for now!
1931 */
1932 if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP))
1933 return -EINVAL;
1934 *vm_flags &= ~VM_HUGEPAGE;
1935 *vm_flags |= VM_NOHUGEPAGE;
1936 /*
1937 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1938 * this vma even if we leave the mm registered in khugepaged if
1939 * it got registered before VM_NOHUGEPAGE was set.
1940 */
1941 break;
1942 }
1943
1944 return 0;
1945 }
1946
1947 static int __init khugepaged_slab_init(void)
1948 {
1949 mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
1950 sizeof(struct mm_slot),
1951 __alignof__(struct mm_slot), 0, NULL);
1952 if (!mm_slot_cache)
1953 return -ENOMEM;
1954
1955 return 0;
1956 }
1957
1958 static inline struct mm_slot *alloc_mm_slot(void)
1959 {
1960 if (!mm_slot_cache) /* initialization failed */
1961 return NULL;
1962 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
1963 }
1964
1965 static inline void free_mm_slot(struct mm_slot *mm_slot)
1966 {
1967 kmem_cache_free(mm_slot_cache, mm_slot);
1968 }
1969
1970 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
1971 {
1972 struct mm_slot *mm_slot;
1973
1974 hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
1975 if (mm == mm_slot->mm)
1976 return mm_slot;
1977
1978 return NULL;
1979 }
1980
1981 static void insert_to_mm_slots_hash(struct mm_struct *mm,
1982 struct mm_slot *mm_slot)
1983 {
1984 mm_slot->mm = mm;
1985 hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
1986 }
1987
1988 static inline int khugepaged_test_exit(struct mm_struct *mm)
1989 {
1990 return atomic_read(&mm->mm_users) == 0;
1991 }
1992
1993 int __khugepaged_enter(struct mm_struct *mm)
1994 {
1995 struct mm_slot *mm_slot;
1996 int wakeup;
1997
1998 mm_slot = alloc_mm_slot();
1999 if (!mm_slot)
2000 return -ENOMEM;
2001
2002 /* __khugepaged_exit() must not run from under us */
2003 VM_BUG_ON(khugepaged_test_exit(mm));
2004 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
2005 free_mm_slot(mm_slot);
2006 return 0;
2007 }
2008
2009 spin_lock(&khugepaged_mm_lock);
2010 insert_to_mm_slots_hash(mm, mm_slot);
2011 /*
2012 * Insert just behind the scanning cursor, to let the area settle
2013 * down a little.
2014 */
2015 wakeup = list_empty(&khugepaged_scan.mm_head);
2016 list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
2017 spin_unlock(&khugepaged_mm_lock);
2018
2019 atomic_inc(&mm->mm_count);
2020 if (wakeup)
2021 wake_up_interruptible(&khugepaged_wait);
2022
2023 return 0;
2024 }
2025
2026 int khugepaged_enter_vma_merge(struct vm_area_struct *vma)
2027 {
2028 unsigned long hstart, hend;
2029 if (!vma->anon_vma)
2030 /*
2031 * Not yet faulted in so we will register later in the
2032 * page fault if needed.
2033 */
2034 return 0;
2035 if (vma->vm_ops)
2036 /* khugepaged not yet working on file or special mappings */
2037 return 0;
2038 VM_BUG_ON(vma->vm_flags & VM_NO_THP);
2039 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2040 hend = vma->vm_end & HPAGE_PMD_MASK;
2041 if (hstart < hend)
2042 return khugepaged_enter(vma);
2043 return 0;
2044 }
2045
2046 void __khugepaged_exit(struct mm_struct *mm)
2047 {
2048 struct mm_slot *mm_slot;
2049 int free = 0;
2050
2051 spin_lock(&khugepaged_mm_lock);
2052 mm_slot = get_mm_slot(mm);
2053 if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
2054 hash_del(&mm_slot->hash);
2055 list_del(&mm_slot->mm_node);
2056 free = 1;
2057 }
2058 spin_unlock(&khugepaged_mm_lock);
2059
2060 if (free) {
2061 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2062 free_mm_slot(mm_slot);
2063 mmdrop(mm);
2064 } else if (mm_slot) {
2065 /*
2066 * This is required to serialize against
2067 * khugepaged_test_exit() (which is guaranteed to run
2068 * under mmap sem read mode). Stop here (after we
2069 * return all pagetables will be destroyed) until
2070 * khugepaged has finished working on the pagetables
2071 * under the mmap_sem.
2072 */
2073 down_write(&mm->mmap_sem);
2074 up_write(&mm->mmap_sem);
2075 }
2076 }
2077
2078 static void release_pte_page(struct page *page)
2079 {
2080 /* 0 stands for page_is_file_cache(page) == false */
2081 dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
2082 unlock_page(page);
2083 putback_lru_page(page);
2084 }
2085
2086 static void release_pte_pages(pte_t *pte, pte_t *_pte)
2087 {
2088 while (--_pte >= pte) {
2089 pte_t pteval = *_pte;
2090 if (!pte_none(pteval))
2091 release_pte_page(pte_page(pteval));
2092 }
2093 }
2094
2095 static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
2096 unsigned long address,
2097 pte_t *pte)
2098 {
2099 struct page *page;
2100 pte_t *_pte;
2101 int referenced = 0, none = 0;
2102 for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
2103 _pte++, address += PAGE_SIZE) {
2104 pte_t pteval = *_pte;
2105 if (pte_none(pteval)) {
2106 if (++none <= khugepaged_max_ptes_none)
2107 continue;
2108 else
2109 goto out;
2110 }
2111 if (!pte_present(pteval) || !pte_write(pteval))
2112 goto out;
2113 page = vm_normal_page(vma, address, pteval);
2114 if (unlikely(!page))
2115 goto out;
2116
2117 VM_BUG_ON(PageCompound(page));
2118 BUG_ON(!PageAnon(page));
2119 VM_BUG_ON(!PageSwapBacked(page));
2120
2121 /* cannot use mapcount: can't collapse if there's a gup pin */
2122 if (page_count(page) != 1)
2123 goto out;
2124 /*
2125 * We can do it before isolate_lru_page because the
2126 * page can't be freed from under us. NOTE: PG_lock
2127 * is needed to serialize against split_huge_page
2128 * when invoked from the VM.
2129 */
2130 if (!trylock_page(page))
2131 goto out;
2132 /*
2133 * Isolate the page to avoid collapsing an hugepage
2134 * currently in use by the VM.
2135 */
2136 if (isolate_lru_page(page)) {
2137 unlock_page(page);
2138 goto out;
2139 }
2140 /* 0 stands for page_is_file_cache(page) == false */
2141 inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
2142 VM_BUG_ON(!PageLocked(page));
2143 VM_BUG_ON(PageLRU(page));
2144
2145 /* If there is no mapped pte young don't collapse the page */
2146 if (pte_young(pteval) || PageReferenced(page) ||
2147 mmu_notifier_test_young(vma->vm_mm, address))
2148 referenced = 1;
2149 }
2150 if (likely(referenced))
2151 return 1;
2152 out:
2153 release_pte_pages(pte, _pte);
2154 return 0;
2155 }
2156
2157 static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
2158 struct vm_area_struct *vma,
2159 unsigned long address,
2160 spinlock_t *ptl)
2161 {
2162 pte_t *_pte;
2163 for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
2164 pte_t pteval = *_pte;
2165 struct page *src_page;
2166
2167 if (pte_none(pteval)) {
2168 clear_user_highpage(page, address);
2169 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
2170 } else {
2171 src_page = pte_page(pteval);
2172 copy_user_highpage(page, src_page, address, vma);
2173 VM_BUG_ON(page_mapcount(src_page) != 1);
2174 release_pte_page(src_page);
2175 /*
2176 * ptl mostly unnecessary, but preempt has to
2177 * be disabled to update the per-cpu stats
2178 * inside page_remove_rmap().
2179 */
2180 spin_lock(ptl);
2181 /*
2182 * paravirt calls inside pte_clear here are
2183 * superfluous.
2184 */
2185 pte_clear(vma->vm_mm, address, _pte);
2186 page_remove_rmap(src_page);
2187 spin_unlock(ptl);
2188 free_page_and_swap_cache(src_page);
2189 }
2190
2191 address += PAGE_SIZE;
2192 page++;
2193 }
2194 }
2195
2196 static void khugepaged_alloc_sleep(void)
2197 {
2198 wait_event_freezable_timeout(khugepaged_wait, false,
2199 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
2200 }
2201
2202 #ifdef CONFIG_NUMA
2203 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2204 {
2205 if (IS_ERR(*hpage)) {
2206 if (!*wait)
2207 return false;
2208
2209 *wait = false;
2210 *hpage = NULL;
2211 khugepaged_alloc_sleep();
2212 } else if (*hpage) {
2213 put_page(*hpage);
2214 *hpage = NULL;
2215 }
2216
2217 return true;
2218 }
2219
2220 static struct page
2221 *khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
2222 struct vm_area_struct *vma, unsigned long address,
2223 int node)
2224 {
2225 VM_BUG_ON(*hpage);
2226 /*
2227 * Allocate the page while the vma is still valid and under
2228 * the mmap_sem read mode so there is no memory allocation
2229 * later when we take the mmap_sem in write mode. This is more
2230 * friendly behavior (OTOH it may actually hide bugs) to
2231 * filesystems in userland with daemons allocating memory in
2232 * the userland I/O paths. Allocating memory with the
2233 * mmap_sem in read mode is good idea also to allow greater
2234 * scalability.
2235 */
2236 *hpage = alloc_hugepage_vma(khugepaged_defrag(), vma, address,
2237 node, __GFP_OTHER_NODE);
2238
2239 /*
2240 * After allocating the hugepage, release the mmap_sem read lock in
2241 * preparation for taking it in write mode.
2242 */
2243 up_read(&mm->mmap_sem);
2244 if (unlikely(!*hpage)) {
2245 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2246 *hpage = ERR_PTR(-ENOMEM);
2247 return NULL;
2248 }
2249
2250 count_vm_event(THP_COLLAPSE_ALLOC);
2251 return *hpage;
2252 }
2253 #else
2254 static struct page *khugepaged_alloc_hugepage(bool *wait)
2255 {
2256 struct page *hpage;
2257
2258 do {
2259 hpage = alloc_hugepage(khugepaged_defrag());
2260 if (!hpage) {
2261 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2262 if (!*wait)
2263 return NULL;
2264
2265 *wait = false;
2266 khugepaged_alloc_sleep();
2267 } else
2268 count_vm_event(THP_COLLAPSE_ALLOC);
2269 } while (unlikely(!hpage) && likely(khugepaged_enabled()));
2270
2271 return hpage;
2272 }
2273
2274 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2275 {
2276 if (!*hpage)
2277 *hpage = khugepaged_alloc_hugepage(wait);
2278
2279 if (unlikely(!*hpage))
2280 return false;
2281
2282 return true;
2283 }
2284
2285 static struct page
2286 *khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
2287 struct vm_area_struct *vma, unsigned long address,
2288 int node)
2289 {
2290 up_read(&mm->mmap_sem);
2291 VM_BUG_ON(!*hpage);
2292 return *hpage;
2293 }
2294 #endif
2295
2296 static bool hugepage_vma_check(struct vm_area_struct *vma)
2297 {
2298 if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
2299 (vma->vm_flags & VM_NOHUGEPAGE))
2300 return false;
2301
2302 if (!vma->anon_vma || vma->vm_ops)
2303 return false;
2304 if (is_vma_temporary_stack(vma))
2305 return false;
2306 VM_BUG_ON(vma->vm_flags & VM_NO_THP);
2307 return true;
2308 }
2309
2310 static void collapse_huge_page(struct mm_struct *mm,
2311 unsigned long address,
2312 struct page **hpage,
2313 struct vm_area_struct *vma,
2314 int node)
2315 {
2316 pmd_t *pmd, _pmd;
2317 pte_t *pte;
2318 pgtable_t pgtable;
2319 struct page *new_page;
2320 spinlock_t *ptl;
2321 int isolated;
2322 unsigned long hstart, hend;
2323 unsigned long mmun_start; /* For mmu_notifiers */
2324 unsigned long mmun_end; /* For mmu_notifiers */
2325
2326 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2327
2328 /* release the mmap_sem read lock. */
2329 new_page = khugepaged_alloc_page(hpage, mm, vma, address, node);
2330 if (!new_page)
2331 return;
2332
2333 if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL)))
2334 return;
2335
2336 /*
2337 * Prevent all access to pagetables with the exception of
2338 * gup_fast later hanlded by the ptep_clear_flush and the VM
2339 * handled by the anon_vma lock + PG_lock.
2340 */
2341 down_write(&mm->mmap_sem);
2342 if (unlikely(khugepaged_test_exit(mm)))
2343 goto out;
2344
2345 vma = find_vma(mm, address);
2346 if (!vma)
2347 goto out;
2348 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2349 hend = vma->vm_end & HPAGE_PMD_MASK;
2350 if (address < hstart || address + HPAGE_PMD_SIZE > hend)
2351 goto out;
2352 if (!hugepage_vma_check(vma))
2353 goto out;
2354 pmd = mm_find_pmd(mm, address);
2355 if (!pmd)
2356 goto out;
2357 if (pmd_trans_huge(*pmd))
2358 goto out;
2359
2360 anon_vma_lock_write(vma->anon_vma);
2361
2362 pte = pte_offset_map(pmd, address);
2363 ptl = pte_lockptr(mm, pmd);
2364
2365 mmun_start = address;
2366 mmun_end = address + HPAGE_PMD_SIZE;
2367 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2368 spin_lock(&mm->page_table_lock); /* probably unnecessary */
2369 /*
2370 * After this gup_fast can't run anymore. This also removes
2371 * any huge TLB entry from the CPU so we won't allow
2372 * huge and small TLB entries for the same virtual address
2373 * to avoid the risk of CPU bugs in that area.
2374 */
2375 _pmd = pmdp_clear_flush(vma, address, pmd);
2376 spin_unlock(&mm->page_table_lock);
2377 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2378
2379 spin_lock(ptl);
2380 isolated = __collapse_huge_page_isolate(vma, address, pte);
2381 spin_unlock(ptl);
2382
2383 if (unlikely(!isolated)) {
2384 pte_unmap(pte);
2385 spin_lock(&mm->page_table_lock);
2386 BUG_ON(!pmd_none(*pmd));
2387 /*
2388 * We can only use set_pmd_at when establishing
2389 * hugepmds and never for establishing regular pmds that
2390 * points to regular pagetables. Use pmd_populate for that
2391 */
2392 pmd_populate(mm, pmd, pmd_pgtable(_pmd));
2393 spin_unlock(&mm->page_table_lock);
2394 anon_vma_unlock_write(vma->anon_vma);
2395 goto out;
2396 }
2397
2398 /*
2399 * All pages are isolated and locked so anon_vma rmap
2400 * can't run anymore.
2401 */
2402 anon_vma_unlock_write(vma->anon_vma);
2403
2404 __collapse_huge_page_copy(pte, new_page, vma, address, ptl);
2405 pte_unmap(pte);
2406 __SetPageUptodate(new_page);
2407 pgtable = pmd_pgtable(_pmd);
2408
2409 _pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
2410 _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
2411
2412 /*
2413 * spin_lock() below is not the equivalent of smp_wmb(), so
2414 * this is needed to avoid the copy_huge_page writes to become
2415 * visible after the set_pmd_at() write.
2416 */
2417 smp_wmb();
2418
2419 spin_lock(&mm->page_table_lock);
2420 BUG_ON(!pmd_none(*pmd));
2421 page_add_new_anon_rmap(new_page, vma, address);
2422 pgtable_trans_huge_deposit(mm, pmd, pgtable);
2423 set_pmd_at(mm, address, pmd, _pmd);
2424 update_mmu_cache_pmd(vma, address, pmd);
2425 spin_unlock(&mm->page_table_lock);
2426
2427 *hpage = NULL;
2428
2429 khugepaged_pages_collapsed++;
2430 out_up_write:
2431 up_write(&mm->mmap_sem);
2432 return;
2433
2434 out:
2435 mem_cgroup_uncharge_page(new_page);
2436 goto out_up_write;
2437 }
2438
2439 static int khugepaged_scan_pmd(struct mm_struct *mm,
2440 struct vm_area_struct *vma,
2441 unsigned long address,
2442 struct page **hpage)
2443 {
2444 pmd_t *pmd;
2445 pte_t *pte, *_pte;
2446 int ret = 0, referenced = 0, none = 0;
2447 struct page *page;
2448 unsigned long _address;
2449 spinlock_t *ptl;
2450 int node = NUMA_NO_NODE;
2451
2452 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2453
2454 pmd = mm_find_pmd(mm, address);
2455 if (!pmd)
2456 goto out;
2457 if (pmd_trans_huge(*pmd))
2458 goto out;
2459
2460 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2461 for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
2462 _pte++, _address += PAGE_SIZE) {
2463 pte_t pteval = *_pte;
2464 if (pte_none(pteval)) {
2465 if (++none <= khugepaged_max_ptes_none)
2466 continue;
2467 else
2468 goto out_unmap;
2469 }
2470 if (!pte_present(pteval) || !pte_write(pteval))
2471 goto out_unmap;
2472 page = vm_normal_page(vma, _address, pteval);
2473 if (unlikely(!page))
2474 goto out_unmap;
2475 /*
2476 * Chose the node of the first page. This could
2477 * be more sophisticated and look at more pages,
2478 * but isn't for now.
2479 */
2480 if (node == NUMA_NO_NODE)
2481 node = page_to_nid(page);
2482 VM_BUG_ON(PageCompound(page));
2483 if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
2484 goto out_unmap;
2485 /* cannot use mapcount: can't collapse if there's a gup pin */
2486 if (page_count(page) != 1)
2487 goto out_unmap;
2488 if (pte_young(pteval) || PageReferenced(page) ||
2489 mmu_notifier_test_young(vma->vm_mm, address))
2490 referenced = 1;
2491 }
2492 if (referenced)
2493 ret = 1;
2494 out_unmap:
2495 pte_unmap_unlock(pte, ptl);
2496 if (ret)
2497 /* collapse_huge_page will return with the mmap_sem released */
2498 collapse_huge_page(mm, address, hpage, vma, node);
2499 out:
2500 return ret;
2501 }
2502
2503 static void collect_mm_slot(struct mm_slot *mm_slot)
2504 {
2505 struct mm_struct *mm = mm_slot->mm;
2506
2507 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2508
2509 if (khugepaged_test_exit(mm)) {
2510 /* free mm_slot */
2511 hash_del(&mm_slot->hash);
2512 list_del(&mm_slot->mm_node);
2513
2514 /*
2515 * Not strictly needed because the mm exited already.
2516 *
2517 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2518 */
2519
2520 /* khugepaged_mm_lock actually not necessary for the below */
2521 free_mm_slot(mm_slot);
2522 mmdrop(mm);
2523 }
2524 }
2525
2526 static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2527 struct page **hpage)
2528 __releases(&khugepaged_mm_lock)
2529 __acquires(&khugepaged_mm_lock)
2530 {
2531 struct mm_slot *mm_slot;
2532 struct mm_struct *mm;
2533 struct vm_area_struct *vma;
2534 int progress = 0;
2535
2536 VM_BUG_ON(!pages);
2537 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2538
2539 if (khugepaged_scan.mm_slot)
2540 mm_slot = khugepaged_scan.mm_slot;
2541 else {
2542 mm_slot = list_entry(khugepaged_scan.mm_head.next,
2543 struct mm_slot, mm_node);
2544 khugepaged_scan.address = 0;
2545 khugepaged_scan.mm_slot = mm_slot;
2546 }
2547 spin_unlock(&khugepaged_mm_lock);
2548
2549 mm = mm_slot->mm;
2550 down_read(&mm->mmap_sem);
2551 if (unlikely(khugepaged_test_exit(mm)))
2552 vma = NULL;
2553 else
2554 vma = find_vma(mm, khugepaged_scan.address);
2555
2556 progress++;
2557 for (; vma; vma = vma->vm_next) {
2558 unsigned long hstart, hend;
2559
2560 cond_resched();
2561 if (unlikely(khugepaged_test_exit(mm))) {
2562 progress++;
2563 break;
2564 }
2565 if (!hugepage_vma_check(vma)) {
2566 skip:
2567 progress++;
2568 continue;
2569 }
2570 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2571 hend = vma->vm_end & HPAGE_PMD_MASK;
2572 if (hstart >= hend)
2573 goto skip;
2574 if (khugepaged_scan.address > hend)
2575 goto skip;
2576 if (khugepaged_scan.address < hstart)
2577 khugepaged_scan.address = hstart;
2578 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2579
2580 while (khugepaged_scan.address < hend) {
2581 int ret;
2582 cond_resched();
2583 if (unlikely(khugepaged_test_exit(mm)))
2584 goto breakouterloop;
2585
2586 VM_BUG_ON(khugepaged_scan.address < hstart ||
2587 khugepaged_scan.address + HPAGE_PMD_SIZE >
2588 hend);
2589 ret = khugepaged_scan_pmd(mm, vma,
2590 khugepaged_scan.address,
2591 hpage);
2592 /* move to next address */
2593 khugepaged_scan.address += HPAGE_PMD_SIZE;
2594 progress += HPAGE_PMD_NR;
2595 if (ret)
2596 /* we released mmap_sem so break loop */
2597 goto breakouterloop_mmap_sem;
2598 if (progress >= pages)
2599 goto breakouterloop;
2600 }
2601 }
2602 breakouterloop:
2603 up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2604 breakouterloop_mmap_sem:
2605
2606 spin_lock(&khugepaged_mm_lock);
2607 VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2608 /*
2609 * Release the current mm_slot if this mm is about to die, or
2610 * if we scanned all vmas of this mm.
2611 */
2612 if (khugepaged_test_exit(mm) || !vma) {
2613 /*
2614 * Make sure that if mm_users is reaching zero while
2615 * khugepaged runs here, khugepaged_exit will find
2616 * mm_slot not pointing to the exiting mm.
2617 */
2618 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2619 khugepaged_scan.mm_slot = list_entry(
2620 mm_slot->mm_node.next,
2621 struct mm_slot, mm_node);
2622 khugepaged_scan.address = 0;
2623 } else {
2624 khugepaged_scan.mm_slot = NULL;
2625 khugepaged_full_scans++;
2626 }
2627
2628 collect_mm_slot(mm_slot);
2629 }
2630
2631 return progress;
2632 }
2633
2634 static int khugepaged_has_work(void)
2635 {
2636 return !list_empty(&khugepaged_scan.mm_head) &&
2637 khugepaged_enabled();
2638 }
2639
2640 static int khugepaged_wait_event(void)
2641 {
2642 return !list_empty(&khugepaged_scan.mm_head) ||
2643 kthread_should_stop();
2644 }
2645
2646 static void khugepaged_do_scan(void)
2647 {
2648 struct page *hpage = NULL;
2649 unsigned int progress = 0, pass_through_head = 0;
2650 unsigned int pages = khugepaged_pages_to_scan;
2651 bool wait = true;
2652
2653 barrier(); /* write khugepaged_pages_to_scan to local stack */
2654
2655 while (progress < pages) {
2656 if (!khugepaged_prealloc_page(&hpage, &wait))
2657 break;
2658
2659 cond_resched();
2660
2661 if (unlikely(kthread_should_stop() || freezing(current)))
2662 break;
2663
2664 spin_lock(&khugepaged_mm_lock);
2665 if (!khugepaged_scan.mm_slot)
2666 pass_through_head++;
2667 if (khugepaged_has_work() &&
2668 pass_through_head < 2)
2669 progress += khugepaged_scan_mm_slot(pages - progress,
2670 &hpage);
2671 else
2672 progress = pages;
2673 spin_unlock(&khugepaged_mm_lock);
2674 }
2675
2676 if (!IS_ERR_OR_NULL(hpage))
2677 put_page(hpage);
2678 }
2679
2680 static void khugepaged_wait_work(void)
2681 {
2682 try_to_freeze();
2683
2684 if (khugepaged_has_work()) {
2685 if (!khugepaged_scan_sleep_millisecs)
2686 return;
2687
2688 wait_event_freezable_timeout(khugepaged_wait,
2689 kthread_should_stop(),
2690 msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
2691 return;
2692 }
2693
2694 if (khugepaged_enabled())
2695 wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2696 }
2697
2698 static int khugepaged(void *none)
2699 {
2700 struct mm_slot *mm_slot;
2701
2702 set_freezable();
2703 set_user_nice(current, 19);
2704
2705 while (!kthread_should_stop()) {
2706 khugepaged_do_scan();
2707 khugepaged_wait_work();
2708 }
2709
2710 spin_lock(&khugepaged_mm_lock);
2711 mm_slot = khugepaged_scan.mm_slot;
2712 khugepaged_scan.mm_slot = NULL;
2713 if (mm_slot)
2714 collect_mm_slot(mm_slot);
2715 spin_unlock(&khugepaged_mm_lock);
2716 return 0;
2717 }
2718
2719 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2720 unsigned long haddr, pmd_t *pmd)
2721 {
2722 struct mm_struct *mm = vma->vm_mm;
2723 pgtable_t pgtable;
2724 pmd_t _pmd;
2725 int i;
2726
2727 pmdp_clear_flush(vma, haddr, pmd);
2728 /* leave pmd empty until pte is filled */
2729
2730 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2731 pmd_populate(mm, &_pmd, pgtable);
2732
2733 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2734 pte_t *pte, entry;
2735 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2736 entry = pte_mkspecial(entry);
2737 pte = pte_offset_map(&_pmd, haddr);
2738 VM_BUG_ON(!pte_none(*pte));
2739 set_pte_at(mm, haddr, pte, entry);
2740 pte_unmap(pte);
2741 }
2742 smp_wmb(); /* make pte visible before pmd */
2743 pmd_populate(mm, pmd, pgtable);
2744 put_huge_zero_page();
2745 }
2746
2747 void __split_huge_page_pmd(struct vm_area_struct *vma, unsigned long address,
2748 pmd_t *pmd)
2749 {
2750 struct page *page;
2751 struct mm_struct *mm = vma->vm_mm;
2752 unsigned long haddr = address & HPAGE_PMD_MASK;
2753 unsigned long mmun_start; /* For mmu_notifiers */
2754 unsigned long mmun_end; /* For mmu_notifiers */
2755
2756 BUG_ON(vma->vm_start > haddr || vma->vm_end < haddr + HPAGE_PMD_SIZE);
2757
2758 mmun_start = haddr;
2759 mmun_end = haddr + HPAGE_PMD_SIZE;
2760 again:
2761 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2762 spin_lock(&mm->page_table_lock);
2763 if (unlikely(!pmd_trans_huge(*pmd))) {
2764 spin_unlock(&mm->page_table_lock);
2765 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2766 return;
2767 }
2768 if (is_huge_zero_pmd(*pmd)) {
2769 __split_huge_zero_page_pmd(vma, haddr, pmd);
2770 spin_unlock(&mm->page_table_lock);
2771 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2772 return;
2773 }
2774 page = pmd_page(*pmd);
2775 VM_BUG_ON(!page_count(page));
2776 get_page(page);
2777 spin_unlock(&mm->page_table_lock);
2778 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2779
2780 split_huge_page(page);
2781
2782 put_page(page);
2783
2784 /*
2785 * We don't always have down_write of mmap_sem here: a racing
2786 * do_huge_pmd_wp_page() might have copied-on-write to another
2787 * huge page before our split_huge_page() got the anon_vma lock.
2788 */
2789 if (unlikely(pmd_trans_huge(*pmd)))
2790 goto again;
2791 }
2792
2793 void split_huge_page_pmd_mm(struct mm_struct *mm, unsigned long address,
2794 pmd_t *pmd)
2795 {
2796 struct vm_area_struct *vma;
2797
2798 vma = find_vma(mm, address);
2799 BUG_ON(vma == NULL);
2800 split_huge_page_pmd(vma, address, pmd);
2801 }
2802
2803 static void split_huge_page_address(struct mm_struct *mm,
2804 unsigned long address)
2805 {
2806 pmd_t *pmd;
2807
2808 VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
2809
2810 pmd = mm_find_pmd(mm, address);
2811 if (!pmd)
2812 return;
2813 /*
2814 * Caller holds the mmap_sem write mode, so a huge pmd cannot
2815 * materialize from under us.
2816 */
2817 split_huge_page_pmd_mm(mm, address, pmd);
2818 }
2819
2820 void __vma_adjust_trans_huge(struct vm_area_struct *vma,
2821 unsigned long start,
2822 unsigned long end,
2823 long adjust_next)
2824 {
2825 /*
2826 * If the new start address isn't hpage aligned and it could
2827 * previously contain an hugepage: check if we need to split
2828 * an huge pmd.
2829 */
2830 if (start & ~HPAGE_PMD_MASK &&
2831 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2832 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2833 split_huge_page_address(vma->vm_mm, start);
2834
2835 /*
2836 * If the new end address isn't hpage aligned and it could
2837 * previously contain an hugepage: check if we need to split
2838 * an huge pmd.
2839 */
2840 if (end & ~HPAGE_PMD_MASK &&
2841 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2842 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2843 split_huge_page_address(vma->vm_mm, end);
2844
2845 /*
2846 * If we're also updating the vma->vm_next->vm_start, if the new
2847 * vm_next->vm_start isn't page aligned and it could previously
2848 * contain an hugepage: check if we need to split an huge pmd.
2849 */
2850 if (adjust_next > 0) {
2851 struct vm_area_struct *next = vma->vm_next;
2852 unsigned long nstart = next->vm_start;
2853 nstart += adjust_next << PAGE_SHIFT;
2854 if (nstart & ~HPAGE_PMD_MASK &&
2855 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2856 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2857 split_huge_page_address(next->vm_mm, nstart);
2858 }
2859 }
This page took 0.089395 seconds and 6 git commands to generate.