Merge tag 'ktest-v3.20' of git://git.kernel.org/pub/scm/linux/kernel/git/rostedt...
[deliverable/linux.git] / mm / huge_memory.c
1 /*
2 * Copyright (C) 2009 Red Hat, Inc.
3 *
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
6 */
7
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
10 #include <linux/mm.h>
11 #include <linux/sched.h>
12 #include <linux/highmem.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mmu_notifier.h>
15 #include <linux/rmap.h>
16 #include <linux/swap.h>
17 #include <linux/shrinker.h>
18 #include <linux/mm_inline.h>
19 #include <linux/kthread.h>
20 #include <linux/khugepaged.h>
21 #include <linux/freezer.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/migrate.h>
25 #include <linux/hashtable.h>
26
27 #include <asm/tlb.h>
28 #include <asm/pgalloc.h>
29 #include "internal.h"
30
31 /*
32 * By default transparent hugepage support is disabled in order that avoid
33 * to risk increase the memory footprint of applications without a guaranteed
34 * benefit. When transparent hugepage support is enabled, is for all mappings,
35 * and khugepaged scans all mappings.
36 * Defrag is invoked by khugepaged hugepage allocations and by page faults
37 * for all hugepage allocations.
38 */
39 unsigned long transparent_hugepage_flags __read_mostly =
40 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
41 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
42 #endif
43 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
44 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
45 #endif
46 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
47 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
48 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
49
50 /* default scan 8*512 pte (or vmas) every 30 second */
51 static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
52 static unsigned int khugepaged_pages_collapsed;
53 static unsigned int khugepaged_full_scans;
54 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
55 /* during fragmentation poll the hugepage allocator once every minute */
56 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
57 static struct task_struct *khugepaged_thread __read_mostly;
58 static DEFINE_MUTEX(khugepaged_mutex);
59 static DEFINE_SPINLOCK(khugepaged_mm_lock);
60 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
61 /*
62 * default collapse hugepages if there is at least one pte mapped like
63 * it would have happened if the vma was large enough during page
64 * fault.
65 */
66 static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
67
68 static int khugepaged(void *none);
69 static int khugepaged_slab_init(void);
70
71 #define MM_SLOTS_HASH_BITS 10
72 static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
73
74 static struct kmem_cache *mm_slot_cache __read_mostly;
75
76 /**
77 * struct mm_slot - hash lookup from mm to mm_slot
78 * @hash: hash collision list
79 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
80 * @mm: the mm that this information is valid for
81 */
82 struct mm_slot {
83 struct hlist_node hash;
84 struct list_head mm_node;
85 struct mm_struct *mm;
86 };
87
88 /**
89 * struct khugepaged_scan - cursor for scanning
90 * @mm_head: the head of the mm list to scan
91 * @mm_slot: the current mm_slot we are scanning
92 * @address: the next address inside that to be scanned
93 *
94 * There is only the one khugepaged_scan instance of this cursor structure.
95 */
96 struct khugepaged_scan {
97 struct list_head mm_head;
98 struct mm_slot *mm_slot;
99 unsigned long address;
100 };
101 static struct khugepaged_scan khugepaged_scan = {
102 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
103 };
104
105
106 static int set_recommended_min_free_kbytes(void)
107 {
108 struct zone *zone;
109 int nr_zones = 0;
110 unsigned long recommended_min;
111
112 if (!khugepaged_enabled())
113 return 0;
114
115 for_each_populated_zone(zone)
116 nr_zones++;
117
118 /* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
119 recommended_min = pageblock_nr_pages * nr_zones * 2;
120
121 /*
122 * Make sure that on average at least two pageblocks are almost free
123 * of another type, one for a migratetype to fall back to and a
124 * second to avoid subsequent fallbacks of other types There are 3
125 * MIGRATE_TYPES we care about.
126 */
127 recommended_min += pageblock_nr_pages * nr_zones *
128 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
129
130 /* don't ever allow to reserve more than 5% of the lowmem */
131 recommended_min = min(recommended_min,
132 (unsigned long) nr_free_buffer_pages() / 20);
133 recommended_min <<= (PAGE_SHIFT-10);
134
135 if (recommended_min > min_free_kbytes) {
136 if (user_min_free_kbytes >= 0)
137 pr_info("raising min_free_kbytes from %d to %lu "
138 "to help transparent hugepage allocations\n",
139 min_free_kbytes, recommended_min);
140
141 min_free_kbytes = recommended_min;
142 }
143 setup_per_zone_wmarks();
144 return 0;
145 }
146 late_initcall(set_recommended_min_free_kbytes);
147
148 static int start_khugepaged(void)
149 {
150 int err = 0;
151 if (khugepaged_enabled()) {
152 if (!khugepaged_thread)
153 khugepaged_thread = kthread_run(khugepaged, NULL,
154 "khugepaged");
155 if (unlikely(IS_ERR(khugepaged_thread))) {
156 pr_err("khugepaged: kthread_run(khugepaged) failed\n");
157 err = PTR_ERR(khugepaged_thread);
158 khugepaged_thread = NULL;
159 }
160
161 if (!list_empty(&khugepaged_scan.mm_head))
162 wake_up_interruptible(&khugepaged_wait);
163
164 set_recommended_min_free_kbytes();
165 } else if (khugepaged_thread) {
166 kthread_stop(khugepaged_thread);
167 khugepaged_thread = NULL;
168 }
169
170 return err;
171 }
172
173 static atomic_t huge_zero_refcount;
174 struct page *huge_zero_page __read_mostly;
175
176 static inline bool is_huge_zero_pmd(pmd_t pmd)
177 {
178 return is_huge_zero_page(pmd_page(pmd));
179 }
180
181 static struct page *get_huge_zero_page(void)
182 {
183 struct page *zero_page;
184 retry:
185 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
186 return ACCESS_ONCE(huge_zero_page);
187
188 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
189 HPAGE_PMD_ORDER);
190 if (!zero_page) {
191 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
192 return NULL;
193 }
194 count_vm_event(THP_ZERO_PAGE_ALLOC);
195 preempt_disable();
196 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
197 preempt_enable();
198 __free_pages(zero_page, compound_order(zero_page));
199 goto retry;
200 }
201
202 /* We take additional reference here. It will be put back by shrinker */
203 atomic_set(&huge_zero_refcount, 2);
204 preempt_enable();
205 return ACCESS_ONCE(huge_zero_page);
206 }
207
208 static void put_huge_zero_page(void)
209 {
210 /*
211 * Counter should never go to zero here. Only shrinker can put
212 * last reference.
213 */
214 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
215 }
216
217 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
218 struct shrink_control *sc)
219 {
220 /* we can free zero page only if last reference remains */
221 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
222 }
223
224 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
225 struct shrink_control *sc)
226 {
227 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
228 struct page *zero_page = xchg(&huge_zero_page, NULL);
229 BUG_ON(zero_page == NULL);
230 __free_pages(zero_page, compound_order(zero_page));
231 return HPAGE_PMD_NR;
232 }
233
234 return 0;
235 }
236
237 static struct shrinker huge_zero_page_shrinker = {
238 .count_objects = shrink_huge_zero_page_count,
239 .scan_objects = shrink_huge_zero_page_scan,
240 .seeks = DEFAULT_SEEKS,
241 };
242
243 #ifdef CONFIG_SYSFS
244
245 static ssize_t double_flag_show(struct kobject *kobj,
246 struct kobj_attribute *attr, char *buf,
247 enum transparent_hugepage_flag enabled,
248 enum transparent_hugepage_flag req_madv)
249 {
250 if (test_bit(enabled, &transparent_hugepage_flags)) {
251 VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
252 return sprintf(buf, "[always] madvise never\n");
253 } else if (test_bit(req_madv, &transparent_hugepage_flags))
254 return sprintf(buf, "always [madvise] never\n");
255 else
256 return sprintf(buf, "always madvise [never]\n");
257 }
258 static ssize_t double_flag_store(struct kobject *kobj,
259 struct kobj_attribute *attr,
260 const char *buf, size_t count,
261 enum transparent_hugepage_flag enabled,
262 enum transparent_hugepage_flag req_madv)
263 {
264 if (!memcmp("always", buf,
265 min(sizeof("always")-1, count))) {
266 set_bit(enabled, &transparent_hugepage_flags);
267 clear_bit(req_madv, &transparent_hugepage_flags);
268 } else if (!memcmp("madvise", buf,
269 min(sizeof("madvise")-1, count))) {
270 clear_bit(enabled, &transparent_hugepage_flags);
271 set_bit(req_madv, &transparent_hugepage_flags);
272 } else if (!memcmp("never", buf,
273 min(sizeof("never")-1, count))) {
274 clear_bit(enabled, &transparent_hugepage_flags);
275 clear_bit(req_madv, &transparent_hugepage_flags);
276 } else
277 return -EINVAL;
278
279 return count;
280 }
281
282 static ssize_t enabled_show(struct kobject *kobj,
283 struct kobj_attribute *attr, char *buf)
284 {
285 return double_flag_show(kobj, attr, buf,
286 TRANSPARENT_HUGEPAGE_FLAG,
287 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
288 }
289 static ssize_t enabled_store(struct kobject *kobj,
290 struct kobj_attribute *attr,
291 const char *buf, size_t count)
292 {
293 ssize_t ret;
294
295 ret = double_flag_store(kobj, attr, buf, count,
296 TRANSPARENT_HUGEPAGE_FLAG,
297 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
298
299 if (ret > 0) {
300 int err;
301
302 mutex_lock(&khugepaged_mutex);
303 err = start_khugepaged();
304 mutex_unlock(&khugepaged_mutex);
305
306 if (err)
307 ret = err;
308 }
309
310 return ret;
311 }
312 static struct kobj_attribute enabled_attr =
313 __ATTR(enabled, 0644, enabled_show, enabled_store);
314
315 static ssize_t single_flag_show(struct kobject *kobj,
316 struct kobj_attribute *attr, char *buf,
317 enum transparent_hugepage_flag flag)
318 {
319 return sprintf(buf, "%d\n",
320 !!test_bit(flag, &transparent_hugepage_flags));
321 }
322
323 static ssize_t single_flag_store(struct kobject *kobj,
324 struct kobj_attribute *attr,
325 const char *buf, size_t count,
326 enum transparent_hugepage_flag flag)
327 {
328 unsigned long value;
329 int ret;
330
331 ret = kstrtoul(buf, 10, &value);
332 if (ret < 0)
333 return ret;
334 if (value > 1)
335 return -EINVAL;
336
337 if (value)
338 set_bit(flag, &transparent_hugepage_flags);
339 else
340 clear_bit(flag, &transparent_hugepage_flags);
341
342 return count;
343 }
344
345 /*
346 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
347 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
348 * memory just to allocate one more hugepage.
349 */
350 static ssize_t defrag_show(struct kobject *kobj,
351 struct kobj_attribute *attr, char *buf)
352 {
353 return double_flag_show(kobj, attr, buf,
354 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
355 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
356 }
357 static ssize_t defrag_store(struct kobject *kobj,
358 struct kobj_attribute *attr,
359 const char *buf, size_t count)
360 {
361 return double_flag_store(kobj, attr, buf, count,
362 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
363 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
364 }
365 static struct kobj_attribute defrag_attr =
366 __ATTR(defrag, 0644, defrag_show, defrag_store);
367
368 static ssize_t use_zero_page_show(struct kobject *kobj,
369 struct kobj_attribute *attr, char *buf)
370 {
371 return single_flag_show(kobj, attr, buf,
372 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
373 }
374 static ssize_t use_zero_page_store(struct kobject *kobj,
375 struct kobj_attribute *attr, const char *buf, size_t count)
376 {
377 return single_flag_store(kobj, attr, buf, count,
378 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
379 }
380 static struct kobj_attribute use_zero_page_attr =
381 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
382 #ifdef CONFIG_DEBUG_VM
383 static ssize_t debug_cow_show(struct kobject *kobj,
384 struct kobj_attribute *attr, char *buf)
385 {
386 return single_flag_show(kobj, attr, buf,
387 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
388 }
389 static ssize_t debug_cow_store(struct kobject *kobj,
390 struct kobj_attribute *attr,
391 const char *buf, size_t count)
392 {
393 return single_flag_store(kobj, attr, buf, count,
394 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
395 }
396 static struct kobj_attribute debug_cow_attr =
397 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
398 #endif /* CONFIG_DEBUG_VM */
399
400 static struct attribute *hugepage_attr[] = {
401 &enabled_attr.attr,
402 &defrag_attr.attr,
403 &use_zero_page_attr.attr,
404 #ifdef CONFIG_DEBUG_VM
405 &debug_cow_attr.attr,
406 #endif
407 NULL,
408 };
409
410 static struct attribute_group hugepage_attr_group = {
411 .attrs = hugepage_attr,
412 };
413
414 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
415 struct kobj_attribute *attr,
416 char *buf)
417 {
418 return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
419 }
420
421 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
422 struct kobj_attribute *attr,
423 const char *buf, size_t count)
424 {
425 unsigned long msecs;
426 int err;
427
428 err = kstrtoul(buf, 10, &msecs);
429 if (err || msecs > UINT_MAX)
430 return -EINVAL;
431
432 khugepaged_scan_sleep_millisecs = msecs;
433 wake_up_interruptible(&khugepaged_wait);
434
435 return count;
436 }
437 static struct kobj_attribute scan_sleep_millisecs_attr =
438 __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
439 scan_sleep_millisecs_store);
440
441 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
442 struct kobj_attribute *attr,
443 char *buf)
444 {
445 return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
446 }
447
448 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
449 struct kobj_attribute *attr,
450 const char *buf, size_t count)
451 {
452 unsigned long msecs;
453 int err;
454
455 err = kstrtoul(buf, 10, &msecs);
456 if (err || msecs > UINT_MAX)
457 return -EINVAL;
458
459 khugepaged_alloc_sleep_millisecs = msecs;
460 wake_up_interruptible(&khugepaged_wait);
461
462 return count;
463 }
464 static struct kobj_attribute alloc_sleep_millisecs_attr =
465 __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
466 alloc_sleep_millisecs_store);
467
468 static ssize_t pages_to_scan_show(struct kobject *kobj,
469 struct kobj_attribute *attr,
470 char *buf)
471 {
472 return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
473 }
474 static ssize_t pages_to_scan_store(struct kobject *kobj,
475 struct kobj_attribute *attr,
476 const char *buf, size_t count)
477 {
478 int err;
479 unsigned long pages;
480
481 err = kstrtoul(buf, 10, &pages);
482 if (err || !pages || pages > UINT_MAX)
483 return -EINVAL;
484
485 khugepaged_pages_to_scan = pages;
486
487 return count;
488 }
489 static struct kobj_attribute pages_to_scan_attr =
490 __ATTR(pages_to_scan, 0644, pages_to_scan_show,
491 pages_to_scan_store);
492
493 static ssize_t pages_collapsed_show(struct kobject *kobj,
494 struct kobj_attribute *attr,
495 char *buf)
496 {
497 return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
498 }
499 static struct kobj_attribute pages_collapsed_attr =
500 __ATTR_RO(pages_collapsed);
501
502 static ssize_t full_scans_show(struct kobject *kobj,
503 struct kobj_attribute *attr,
504 char *buf)
505 {
506 return sprintf(buf, "%u\n", khugepaged_full_scans);
507 }
508 static struct kobj_attribute full_scans_attr =
509 __ATTR_RO(full_scans);
510
511 static ssize_t khugepaged_defrag_show(struct kobject *kobj,
512 struct kobj_attribute *attr, char *buf)
513 {
514 return single_flag_show(kobj, attr, buf,
515 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
516 }
517 static ssize_t khugepaged_defrag_store(struct kobject *kobj,
518 struct kobj_attribute *attr,
519 const char *buf, size_t count)
520 {
521 return single_flag_store(kobj, attr, buf, count,
522 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
523 }
524 static struct kobj_attribute khugepaged_defrag_attr =
525 __ATTR(defrag, 0644, khugepaged_defrag_show,
526 khugepaged_defrag_store);
527
528 /*
529 * max_ptes_none controls if khugepaged should collapse hugepages over
530 * any unmapped ptes in turn potentially increasing the memory
531 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
532 * reduce the available free memory in the system as it
533 * runs. Increasing max_ptes_none will instead potentially reduce the
534 * free memory in the system during the khugepaged scan.
535 */
536 static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
537 struct kobj_attribute *attr,
538 char *buf)
539 {
540 return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
541 }
542 static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
543 struct kobj_attribute *attr,
544 const char *buf, size_t count)
545 {
546 int err;
547 unsigned long max_ptes_none;
548
549 err = kstrtoul(buf, 10, &max_ptes_none);
550 if (err || max_ptes_none > HPAGE_PMD_NR-1)
551 return -EINVAL;
552
553 khugepaged_max_ptes_none = max_ptes_none;
554
555 return count;
556 }
557 static struct kobj_attribute khugepaged_max_ptes_none_attr =
558 __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
559 khugepaged_max_ptes_none_store);
560
561 static struct attribute *khugepaged_attr[] = {
562 &khugepaged_defrag_attr.attr,
563 &khugepaged_max_ptes_none_attr.attr,
564 &pages_to_scan_attr.attr,
565 &pages_collapsed_attr.attr,
566 &full_scans_attr.attr,
567 &scan_sleep_millisecs_attr.attr,
568 &alloc_sleep_millisecs_attr.attr,
569 NULL,
570 };
571
572 static struct attribute_group khugepaged_attr_group = {
573 .attrs = khugepaged_attr,
574 .name = "khugepaged",
575 };
576
577 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
578 {
579 int err;
580
581 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
582 if (unlikely(!*hugepage_kobj)) {
583 pr_err("failed to create transparent hugepage kobject\n");
584 return -ENOMEM;
585 }
586
587 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
588 if (err) {
589 pr_err("failed to register transparent hugepage group\n");
590 goto delete_obj;
591 }
592
593 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
594 if (err) {
595 pr_err("failed to register transparent hugepage group\n");
596 goto remove_hp_group;
597 }
598
599 return 0;
600
601 remove_hp_group:
602 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
603 delete_obj:
604 kobject_put(*hugepage_kobj);
605 return err;
606 }
607
608 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
609 {
610 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
611 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
612 kobject_put(hugepage_kobj);
613 }
614 #else
615 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
616 {
617 return 0;
618 }
619
620 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
621 {
622 }
623 #endif /* CONFIG_SYSFS */
624
625 static int __init hugepage_init(void)
626 {
627 int err;
628 struct kobject *hugepage_kobj;
629
630 if (!has_transparent_hugepage()) {
631 transparent_hugepage_flags = 0;
632 return -EINVAL;
633 }
634
635 err = hugepage_init_sysfs(&hugepage_kobj);
636 if (err)
637 return err;
638
639 err = khugepaged_slab_init();
640 if (err)
641 goto out;
642
643 register_shrinker(&huge_zero_page_shrinker);
644
645 /*
646 * By default disable transparent hugepages on smaller systems,
647 * where the extra memory used could hurt more than TLB overhead
648 * is likely to save. The admin can still enable it through /sys.
649 */
650 if (totalram_pages < (512 << (20 - PAGE_SHIFT)))
651 transparent_hugepage_flags = 0;
652
653 start_khugepaged();
654
655 return 0;
656 out:
657 hugepage_exit_sysfs(hugepage_kobj);
658 return err;
659 }
660 subsys_initcall(hugepage_init);
661
662 static int __init setup_transparent_hugepage(char *str)
663 {
664 int ret = 0;
665 if (!str)
666 goto out;
667 if (!strcmp(str, "always")) {
668 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
669 &transparent_hugepage_flags);
670 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
671 &transparent_hugepage_flags);
672 ret = 1;
673 } else if (!strcmp(str, "madvise")) {
674 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
675 &transparent_hugepage_flags);
676 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
677 &transparent_hugepage_flags);
678 ret = 1;
679 } else if (!strcmp(str, "never")) {
680 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
681 &transparent_hugepage_flags);
682 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
683 &transparent_hugepage_flags);
684 ret = 1;
685 }
686 out:
687 if (!ret)
688 pr_warn("transparent_hugepage= cannot parse, ignored\n");
689 return ret;
690 }
691 __setup("transparent_hugepage=", setup_transparent_hugepage);
692
693 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
694 {
695 if (likely(vma->vm_flags & VM_WRITE))
696 pmd = pmd_mkwrite(pmd);
697 return pmd;
698 }
699
700 static inline pmd_t mk_huge_pmd(struct page *page, pgprot_t prot)
701 {
702 pmd_t entry;
703 entry = mk_pmd(page, prot);
704 entry = pmd_mkhuge(entry);
705 return entry;
706 }
707
708 static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
709 struct vm_area_struct *vma,
710 unsigned long haddr, pmd_t *pmd,
711 struct page *page)
712 {
713 struct mem_cgroup *memcg;
714 pgtable_t pgtable;
715 spinlock_t *ptl;
716
717 VM_BUG_ON_PAGE(!PageCompound(page), page);
718
719 if (mem_cgroup_try_charge(page, mm, GFP_TRANSHUGE, &memcg))
720 return VM_FAULT_OOM;
721
722 pgtable = pte_alloc_one(mm, haddr);
723 if (unlikely(!pgtable)) {
724 mem_cgroup_cancel_charge(page, memcg);
725 return VM_FAULT_OOM;
726 }
727
728 clear_huge_page(page, haddr, HPAGE_PMD_NR);
729 /*
730 * The memory barrier inside __SetPageUptodate makes sure that
731 * clear_huge_page writes become visible before the set_pmd_at()
732 * write.
733 */
734 __SetPageUptodate(page);
735
736 ptl = pmd_lock(mm, pmd);
737 if (unlikely(!pmd_none(*pmd))) {
738 spin_unlock(ptl);
739 mem_cgroup_cancel_charge(page, memcg);
740 put_page(page);
741 pte_free(mm, pgtable);
742 } else {
743 pmd_t entry;
744 entry = mk_huge_pmd(page, vma->vm_page_prot);
745 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
746 page_add_new_anon_rmap(page, vma, haddr);
747 mem_cgroup_commit_charge(page, memcg, false);
748 lru_cache_add_active_or_unevictable(page, vma);
749 pgtable_trans_huge_deposit(mm, pmd, pgtable);
750 set_pmd_at(mm, haddr, pmd, entry);
751 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
752 atomic_long_inc(&mm->nr_ptes);
753 spin_unlock(ptl);
754 }
755
756 return 0;
757 }
758
759 static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
760 {
761 return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp;
762 }
763
764 /* Caller must hold page table lock. */
765 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
766 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
767 struct page *zero_page)
768 {
769 pmd_t entry;
770 if (!pmd_none(*pmd))
771 return false;
772 entry = mk_pmd(zero_page, vma->vm_page_prot);
773 entry = pmd_mkhuge(entry);
774 pgtable_trans_huge_deposit(mm, pmd, pgtable);
775 set_pmd_at(mm, haddr, pmd, entry);
776 atomic_long_inc(&mm->nr_ptes);
777 return true;
778 }
779
780 int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
781 unsigned long address, pmd_t *pmd,
782 unsigned int flags)
783 {
784 gfp_t gfp;
785 struct page *page;
786 unsigned long haddr = address & HPAGE_PMD_MASK;
787
788 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
789 return VM_FAULT_FALLBACK;
790 if (unlikely(anon_vma_prepare(vma)))
791 return VM_FAULT_OOM;
792 if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
793 return VM_FAULT_OOM;
794 if (!(flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(mm) &&
795 transparent_hugepage_use_zero_page()) {
796 spinlock_t *ptl;
797 pgtable_t pgtable;
798 struct page *zero_page;
799 bool set;
800 pgtable = pte_alloc_one(mm, haddr);
801 if (unlikely(!pgtable))
802 return VM_FAULT_OOM;
803 zero_page = get_huge_zero_page();
804 if (unlikely(!zero_page)) {
805 pte_free(mm, pgtable);
806 count_vm_event(THP_FAULT_FALLBACK);
807 return VM_FAULT_FALLBACK;
808 }
809 ptl = pmd_lock(mm, pmd);
810 set = set_huge_zero_page(pgtable, mm, vma, haddr, pmd,
811 zero_page);
812 spin_unlock(ptl);
813 if (!set) {
814 pte_free(mm, pgtable);
815 put_huge_zero_page();
816 }
817 return 0;
818 }
819 gfp = alloc_hugepage_gfpmask(transparent_hugepage_defrag(vma), 0);
820 page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
821 if (unlikely(!page)) {
822 count_vm_event(THP_FAULT_FALLBACK);
823 return VM_FAULT_FALLBACK;
824 }
825 if (unlikely(__do_huge_pmd_anonymous_page(mm, vma, haddr, pmd, page))) {
826 put_page(page);
827 count_vm_event(THP_FAULT_FALLBACK);
828 return VM_FAULT_FALLBACK;
829 }
830
831 count_vm_event(THP_FAULT_ALLOC);
832 return 0;
833 }
834
835 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
836 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
837 struct vm_area_struct *vma)
838 {
839 spinlock_t *dst_ptl, *src_ptl;
840 struct page *src_page;
841 pmd_t pmd;
842 pgtable_t pgtable;
843 int ret;
844
845 ret = -ENOMEM;
846 pgtable = pte_alloc_one(dst_mm, addr);
847 if (unlikely(!pgtable))
848 goto out;
849
850 dst_ptl = pmd_lock(dst_mm, dst_pmd);
851 src_ptl = pmd_lockptr(src_mm, src_pmd);
852 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
853
854 ret = -EAGAIN;
855 pmd = *src_pmd;
856 if (unlikely(!pmd_trans_huge(pmd))) {
857 pte_free(dst_mm, pgtable);
858 goto out_unlock;
859 }
860 /*
861 * When page table lock is held, the huge zero pmd should not be
862 * under splitting since we don't split the page itself, only pmd to
863 * a page table.
864 */
865 if (is_huge_zero_pmd(pmd)) {
866 struct page *zero_page;
867 bool set;
868 /*
869 * get_huge_zero_page() will never allocate a new page here,
870 * since we already have a zero page to copy. It just takes a
871 * reference.
872 */
873 zero_page = get_huge_zero_page();
874 set = set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
875 zero_page);
876 BUG_ON(!set); /* unexpected !pmd_none(dst_pmd) */
877 ret = 0;
878 goto out_unlock;
879 }
880
881 if (unlikely(pmd_trans_splitting(pmd))) {
882 /* split huge page running from under us */
883 spin_unlock(src_ptl);
884 spin_unlock(dst_ptl);
885 pte_free(dst_mm, pgtable);
886
887 wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
888 goto out;
889 }
890 src_page = pmd_page(pmd);
891 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
892 get_page(src_page);
893 page_dup_rmap(src_page);
894 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
895
896 pmdp_set_wrprotect(src_mm, addr, src_pmd);
897 pmd = pmd_mkold(pmd_wrprotect(pmd));
898 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
899 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
900 atomic_long_inc(&dst_mm->nr_ptes);
901
902 ret = 0;
903 out_unlock:
904 spin_unlock(src_ptl);
905 spin_unlock(dst_ptl);
906 out:
907 return ret;
908 }
909
910 void huge_pmd_set_accessed(struct mm_struct *mm,
911 struct vm_area_struct *vma,
912 unsigned long address,
913 pmd_t *pmd, pmd_t orig_pmd,
914 int dirty)
915 {
916 spinlock_t *ptl;
917 pmd_t entry;
918 unsigned long haddr;
919
920 ptl = pmd_lock(mm, pmd);
921 if (unlikely(!pmd_same(*pmd, orig_pmd)))
922 goto unlock;
923
924 entry = pmd_mkyoung(orig_pmd);
925 haddr = address & HPAGE_PMD_MASK;
926 if (pmdp_set_access_flags(vma, haddr, pmd, entry, dirty))
927 update_mmu_cache_pmd(vma, address, pmd);
928
929 unlock:
930 spin_unlock(ptl);
931 }
932
933 /*
934 * Save CONFIG_DEBUG_PAGEALLOC from faulting falsely on tail pages
935 * during copy_user_huge_page()'s copy_page_rep(): in the case when
936 * the source page gets split and a tail freed before copy completes.
937 * Called under pmd_lock of checked pmd, so safe from splitting itself.
938 */
939 static void get_user_huge_page(struct page *page)
940 {
941 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) {
942 struct page *endpage = page + HPAGE_PMD_NR;
943
944 atomic_add(HPAGE_PMD_NR, &page->_count);
945 while (++page < endpage)
946 get_huge_page_tail(page);
947 } else {
948 get_page(page);
949 }
950 }
951
952 static void put_user_huge_page(struct page *page)
953 {
954 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) {
955 struct page *endpage = page + HPAGE_PMD_NR;
956
957 while (page < endpage)
958 put_page(page++);
959 } else {
960 put_page(page);
961 }
962 }
963
964 static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
965 struct vm_area_struct *vma,
966 unsigned long address,
967 pmd_t *pmd, pmd_t orig_pmd,
968 struct page *page,
969 unsigned long haddr)
970 {
971 struct mem_cgroup *memcg;
972 spinlock_t *ptl;
973 pgtable_t pgtable;
974 pmd_t _pmd;
975 int ret = 0, i;
976 struct page **pages;
977 unsigned long mmun_start; /* For mmu_notifiers */
978 unsigned long mmun_end; /* For mmu_notifiers */
979
980 pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
981 GFP_KERNEL);
982 if (unlikely(!pages)) {
983 ret |= VM_FAULT_OOM;
984 goto out;
985 }
986
987 for (i = 0; i < HPAGE_PMD_NR; i++) {
988 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
989 __GFP_OTHER_NODE,
990 vma, address, page_to_nid(page));
991 if (unlikely(!pages[i] ||
992 mem_cgroup_try_charge(pages[i], mm, GFP_KERNEL,
993 &memcg))) {
994 if (pages[i])
995 put_page(pages[i]);
996 while (--i >= 0) {
997 memcg = (void *)page_private(pages[i]);
998 set_page_private(pages[i], 0);
999 mem_cgroup_cancel_charge(pages[i], memcg);
1000 put_page(pages[i]);
1001 }
1002 kfree(pages);
1003 ret |= VM_FAULT_OOM;
1004 goto out;
1005 }
1006 set_page_private(pages[i], (unsigned long)memcg);
1007 }
1008
1009 for (i = 0; i < HPAGE_PMD_NR; i++) {
1010 copy_user_highpage(pages[i], page + i,
1011 haddr + PAGE_SIZE * i, vma);
1012 __SetPageUptodate(pages[i]);
1013 cond_resched();
1014 }
1015
1016 mmun_start = haddr;
1017 mmun_end = haddr + HPAGE_PMD_SIZE;
1018 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1019
1020 ptl = pmd_lock(mm, pmd);
1021 if (unlikely(!pmd_same(*pmd, orig_pmd)))
1022 goto out_free_pages;
1023 VM_BUG_ON_PAGE(!PageHead(page), page);
1024
1025 pmdp_clear_flush_notify(vma, haddr, pmd);
1026 /* leave pmd empty until pte is filled */
1027
1028 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1029 pmd_populate(mm, &_pmd, pgtable);
1030
1031 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1032 pte_t *pte, entry;
1033 entry = mk_pte(pages[i], vma->vm_page_prot);
1034 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1035 memcg = (void *)page_private(pages[i]);
1036 set_page_private(pages[i], 0);
1037 page_add_new_anon_rmap(pages[i], vma, haddr);
1038 mem_cgroup_commit_charge(pages[i], memcg, false);
1039 lru_cache_add_active_or_unevictable(pages[i], vma);
1040 pte = pte_offset_map(&_pmd, haddr);
1041 VM_BUG_ON(!pte_none(*pte));
1042 set_pte_at(mm, haddr, pte, entry);
1043 pte_unmap(pte);
1044 }
1045 kfree(pages);
1046
1047 smp_wmb(); /* make pte visible before pmd */
1048 pmd_populate(mm, pmd, pgtable);
1049 page_remove_rmap(page);
1050 spin_unlock(ptl);
1051
1052 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1053
1054 ret |= VM_FAULT_WRITE;
1055 put_page(page);
1056
1057 out:
1058 return ret;
1059
1060 out_free_pages:
1061 spin_unlock(ptl);
1062 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1063 for (i = 0; i < HPAGE_PMD_NR; i++) {
1064 memcg = (void *)page_private(pages[i]);
1065 set_page_private(pages[i], 0);
1066 mem_cgroup_cancel_charge(pages[i], memcg);
1067 put_page(pages[i]);
1068 }
1069 kfree(pages);
1070 goto out;
1071 }
1072
1073 int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1074 unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
1075 {
1076 spinlock_t *ptl;
1077 int ret = 0;
1078 struct page *page = NULL, *new_page;
1079 struct mem_cgroup *memcg;
1080 unsigned long haddr;
1081 unsigned long mmun_start; /* For mmu_notifiers */
1082 unsigned long mmun_end; /* For mmu_notifiers */
1083
1084 ptl = pmd_lockptr(mm, pmd);
1085 VM_BUG_ON_VMA(!vma->anon_vma, vma);
1086 haddr = address & HPAGE_PMD_MASK;
1087 if (is_huge_zero_pmd(orig_pmd))
1088 goto alloc;
1089 spin_lock(ptl);
1090 if (unlikely(!pmd_same(*pmd, orig_pmd)))
1091 goto out_unlock;
1092
1093 page = pmd_page(orig_pmd);
1094 VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1095 if (page_mapcount(page) == 1) {
1096 pmd_t entry;
1097 entry = pmd_mkyoung(orig_pmd);
1098 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1099 if (pmdp_set_access_flags(vma, haddr, pmd, entry, 1))
1100 update_mmu_cache_pmd(vma, address, pmd);
1101 ret |= VM_FAULT_WRITE;
1102 goto out_unlock;
1103 }
1104 get_user_huge_page(page);
1105 spin_unlock(ptl);
1106 alloc:
1107 if (transparent_hugepage_enabled(vma) &&
1108 !transparent_hugepage_debug_cow()) {
1109 gfp_t gfp;
1110
1111 gfp = alloc_hugepage_gfpmask(transparent_hugepage_defrag(vma), 0);
1112 new_page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
1113 } else
1114 new_page = NULL;
1115
1116 if (unlikely(!new_page)) {
1117 if (!page) {
1118 split_huge_page_pmd(vma, address, pmd);
1119 ret |= VM_FAULT_FALLBACK;
1120 } else {
1121 ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
1122 pmd, orig_pmd, page, haddr);
1123 if (ret & VM_FAULT_OOM) {
1124 split_huge_page(page);
1125 ret |= VM_FAULT_FALLBACK;
1126 }
1127 put_user_huge_page(page);
1128 }
1129 count_vm_event(THP_FAULT_FALLBACK);
1130 goto out;
1131 }
1132
1133 if (unlikely(mem_cgroup_try_charge(new_page, mm,
1134 GFP_TRANSHUGE, &memcg))) {
1135 put_page(new_page);
1136 if (page) {
1137 split_huge_page(page);
1138 put_user_huge_page(page);
1139 } else
1140 split_huge_page_pmd(vma, address, pmd);
1141 ret |= VM_FAULT_FALLBACK;
1142 count_vm_event(THP_FAULT_FALLBACK);
1143 goto out;
1144 }
1145
1146 count_vm_event(THP_FAULT_ALLOC);
1147
1148 if (!page)
1149 clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
1150 else
1151 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
1152 __SetPageUptodate(new_page);
1153
1154 mmun_start = haddr;
1155 mmun_end = haddr + HPAGE_PMD_SIZE;
1156 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1157
1158 spin_lock(ptl);
1159 if (page)
1160 put_user_huge_page(page);
1161 if (unlikely(!pmd_same(*pmd, orig_pmd))) {
1162 spin_unlock(ptl);
1163 mem_cgroup_cancel_charge(new_page, memcg);
1164 put_page(new_page);
1165 goto out_mn;
1166 } else {
1167 pmd_t entry;
1168 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1169 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1170 pmdp_clear_flush_notify(vma, haddr, pmd);
1171 page_add_new_anon_rmap(new_page, vma, haddr);
1172 mem_cgroup_commit_charge(new_page, memcg, false);
1173 lru_cache_add_active_or_unevictable(new_page, vma);
1174 set_pmd_at(mm, haddr, pmd, entry);
1175 update_mmu_cache_pmd(vma, address, pmd);
1176 if (!page) {
1177 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
1178 put_huge_zero_page();
1179 } else {
1180 VM_BUG_ON_PAGE(!PageHead(page), page);
1181 page_remove_rmap(page);
1182 put_page(page);
1183 }
1184 ret |= VM_FAULT_WRITE;
1185 }
1186 spin_unlock(ptl);
1187 out_mn:
1188 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1189 out:
1190 return ret;
1191 out_unlock:
1192 spin_unlock(ptl);
1193 return ret;
1194 }
1195
1196 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1197 unsigned long addr,
1198 pmd_t *pmd,
1199 unsigned int flags)
1200 {
1201 struct mm_struct *mm = vma->vm_mm;
1202 struct page *page = NULL;
1203
1204 assert_spin_locked(pmd_lockptr(mm, pmd));
1205
1206 if (flags & FOLL_WRITE && !pmd_write(*pmd))
1207 goto out;
1208
1209 /* Avoid dumping huge zero page */
1210 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1211 return ERR_PTR(-EFAULT);
1212
1213 /* Full NUMA hinting faults to serialise migration in fault paths */
1214 if ((flags & FOLL_NUMA) && pmd_numa(*pmd))
1215 goto out;
1216
1217 page = pmd_page(*pmd);
1218 VM_BUG_ON_PAGE(!PageHead(page), page);
1219 if (flags & FOLL_TOUCH) {
1220 pmd_t _pmd;
1221 /*
1222 * We should set the dirty bit only for FOLL_WRITE but
1223 * for now the dirty bit in the pmd is meaningless.
1224 * And if the dirty bit will become meaningful and
1225 * we'll only set it with FOLL_WRITE, an atomic
1226 * set_bit will be required on the pmd to set the
1227 * young bit, instead of the current set_pmd_at.
1228 */
1229 _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
1230 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
1231 pmd, _pmd, 1))
1232 update_mmu_cache_pmd(vma, addr, pmd);
1233 }
1234 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1235 if (page->mapping && trylock_page(page)) {
1236 lru_add_drain();
1237 if (page->mapping)
1238 mlock_vma_page(page);
1239 unlock_page(page);
1240 }
1241 }
1242 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1243 VM_BUG_ON_PAGE(!PageCompound(page), page);
1244 if (flags & FOLL_GET)
1245 get_page_foll(page);
1246
1247 out:
1248 return page;
1249 }
1250
1251 /* NUMA hinting page fault entry point for trans huge pmds */
1252 int do_huge_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
1253 unsigned long addr, pmd_t pmd, pmd_t *pmdp)
1254 {
1255 spinlock_t *ptl;
1256 struct anon_vma *anon_vma = NULL;
1257 struct page *page;
1258 unsigned long haddr = addr & HPAGE_PMD_MASK;
1259 int page_nid = -1, this_nid = numa_node_id();
1260 int target_nid, last_cpupid = -1;
1261 bool page_locked;
1262 bool migrated = false;
1263 int flags = 0;
1264
1265 ptl = pmd_lock(mm, pmdp);
1266 if (unlikely(!pmd_same(pmd, *pmdp)))
1267 goto out_unlock;
1268
1269 /*
1270 * If there are potential migrations, wait for completion and retry
1271 * without disrupting NUMA hinting information. Do not relock and
1272 * check_same as the page may no longer be mapped.
1273 */
1274 if (unlikely(pmd_trans_migrating(*pmdp))) {
1275 spin_unlock(ptl);
1276 wait_migrate_huge_page(vma->anon_vma, pmdp);
1277 goto out;
1278 }
1279
1280 page = pmd_page(pmd);
1281 BUG_ON(is_huge_zero_page(page));
1282 page_nid = page_to_nid(page);
1283 last_cpupid = page_cpupid_last(page);
1284 count_vm_numa_event(NUMA_HINT_FAULTS);
1285 if (page_nid == this_nid) {
1286 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1287 flags |= TNF_FAULT_LOCAL;
1288 }
1289
1290 /*
1291 * Avoid grouping on DSO/COW pages in specific and RO pages
1292 * in general, RO pages shouldn't hurt as much anyway since
1293 * they can be in shared cache state.
1294 */
1295 if (!pmd_write(pmd))
1296 flags |= TNF_NO_GROUP;
1297
1298 /*
1299 * Acquire the page lock to serialise THP migrations but avoid dropping
1300 * page_table_lock if at all possible
1301 */
1302 page_locked = trylock_page(page);
1303 target_nid = mpol_misplaced(page, vma, haddr);
1304 if (target_nid == -1) {
1305 /* If the page was locked, there are no parallel migrations */
1306 if (page_locked)
1307 goto clear_pmdnuma;
1308 }
1309
1310 /* Migration could have started since the pmd_trans_migrating check */
1311 if (!page_locked) {
1312 spin_unlock(ptl);
1313 wait_on_page_locked(page);
1314 page_nid = -1;
1315 goto out;
1316 }
1317
1318 /*
1319 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1320 * to serialises splits
1321 */
1322 get_page(page);
1323 spin_unlock(ptl);
1324 anon_vma = page_lock_anon_vma_read(page);
1325
1326 /* Confirm the PMD did not change while page_table_lock was released */
1327 spin_lock(ptl);
1328 if (unlikely(!pmd_same(pmd, *pmdp))) {
1329 unlock_page(page);
1330 put_page(page);
1331 page_nid = -1;
1332 goto out_unlock;
1333 }
1334
1335 /* Bail if we fail to protect against THP splits for any reason */
1336 if (unlikely(!anon_vma)) {
1337 put_page(page);
1338 page_nid = -1;
1339 goto clear_pmdnuma;
1340 }
1341
1342 /*
1343 * Migrate the THP to the requested node, returns with page unlocked
1344 * and pmd_numa cleared.
1345 */
1346 spin_unlock(ptl);
1347 migrated = migrate_misplaced_transhuge_page(mm, vma,
1348 pmdp, pmd, addr, page, target_nid);
1349 if (migrated) {
1350 flags |= TNF_MIGRATED;
1351 page_nid = target_nid;
1352 }
1353
1354 goto out;
1355 clear_pmdnuma:
1356 BUG_ON(!PageLocked(page));
1357 pmd = pmd_mknonnuma(pmd);
1358 set_pmd_at(mm, haddr, pmdp, pmd);
1359 VM_BUG_ON(pmd_numa(*pmdp));
1360 update_mmu_cache_pmd(vma, addr, pmdp);
1361 unlock_page(page);
1362 out_unlock:
1363 spin_unlock(ptl);
1364
1365 out:
1366 if (anon_vma)
1367 page_unlock_anon_vma_read(anon_vma);
1368
1369 if (page_nid != -1)
1370 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, flags);
1371
1372 return 0;
1373 }
1374
1375 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1376 pmd_t *pmd, unsigned long addr)
1377 {
1378 spinlock_t *ptl;
1379 int ret = 0;
1380
1381 if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
1382 struct page *page;
1383 pgtable_t pgtable;
1384 pmd_t orig_pmd;
1385 /*
1386 * For architectures like ppc64 we look at deposited pgtable
1387 * when calling pmdp_get_and_clear. So do the
1388 * pgtable_trans_huge_withdraw after finishing pmdp related
1389 * operations.
1390 */
1391 orig_pmd = pmdp_get_and_clear_full(tlb->mm, addr, pmd,
1392 tlb->fullmm);
1393 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1394 pgtable = pgtable_trans_huge_withdraw(tlb->mm, pmd);
1395 if (is_huge_zero_pmd(orig_pmd)) {
1396 atomic_long_dec(&tlb->mm->nr_ptes);
1397 spin_unlock(ptl);
1398 put_huge_zero_page();
1399 } else {
1400 page = pmd_page(orig_pmd);
1401 page_remove_rmap(page);
1402 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1403 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1404 VM_BUG_ON_PAGE(!PageHead(page), page);
1405 atomic_long_dec(&tlb->mm->nr_ptes);
1406 spin_unlock(ptl);
1407 tlb_remove_page(tlb, page);
1408 }
1409 pte_free(tlb->mm, pgtable);
1410 ret = 1;
1411 }
1412 return ret;
1413 }
1414
1415 int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
1416 unsigned long old_addr,
1417 unsigned long new_addr, unsigned long old_end,
1418 pmd_t *old_pmd, pmd_t *new_pmd)
1419 {
1420 spinlock_t *old_ptl, *new_ptl;
1421 int ret = 0;
1422 pmd_t pmd;
1423
1424 struct mm_struct *mm = vma->vm_mm;
1425
1426 if ((old_addr & ~HPAGE_PMD_MASK) ||
1427 (new_addr & ~HPAGE_PMD_MASK) ||
1428 old_end - old_addr < HPAGE_PMD_SIZE ||
1429 (new_vma->vm_flags & VM_NOHUGEPAGE))
1430 goto out;
1431
1432 /*
1433 * The destination pmd shouldn't be established, free_pgtables()
1434 * should have release it.
1435 */
1436 if (WARN_ON(!pmd_none(*new_pmd))) {
1437 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1438 goto out;
1439 }
1440
1441 /*
1442 * We don't have to worry about the ordering of src and dst
1443 * ptlocks because exclusive mmap_sem prevents deadlock.
1444 */
1445 ret = __pmd_trans_huge_lock(old_pmd, vma, &old_ptl);
1446 if (ret == 1) {
1447 new_ptl = pmd_lockptr(mm, new_pmd);
1448 if (new_ptl != old_ptl)
1449 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1450 pmd = pmdp_get_and_clear(mm, old_addr, old_pmd);
1451 VM_BUG_ON(!pmd_none(*new_pmd));
1452
1453 if (pmd_move_must_withdraw(new_ptl, old_ptl)) {
1454 pgtable_t pgtable;
1455 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1456 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1457 }
1458 set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
1459 if (new_ptl != old_ptl)
1460 spin_unlock(new_ptl);
1461 spin_unlock(old_ptl);
1462 }
1463 out:
1464 return ret;
1465 }
1466
1467 /*
1468 * Returns
1469 * - 0 if PMD could not be locked
1470 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1471 * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1472 */
1473 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1474 unsigned long addr, pgprot_t newprot, int prot_numa)
1475 {
1476 struct mm_struct *mm = vma->vm_mm;
1477 spinlock_t *ptl;
1478 int ret = 0;
1479
1480 if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
1481 pmd_t entry;
1482 ret = 1;
1483 if (!prot_numa) {
1484 entry = pmdp_get_and_clear_notify(mm, addr, pmd);
1485 if (pmd_numa(entry))
1486 entry = pmd_mknonnuma(entry);
1487 entry = pmd_modify(entry, newprot);
1488 ret = HPAGE_PMD_NR;
1489 set_pmd_at(mm, addr, pmd, entry);
1490 BUG_ON(pmd_write(entry));
1491 } else {
1492 struct page *page = pmd_page(*pmd);
1493
1494 /*
1495 * Do not trap faults against the zero page. The
1496 * read-only data is likely to be read-cached on the
1497 * local CPU cache and it is less useful to know about
1498 * local vs remote hits on the zero page.
1499 */
1500 if (!is_huge_zero_page(page) &&
1501 !pmd_numa(*pmd)) {
1502 pmdp_set_numa(mm, addr, pmd);
1503 ret = HPAGE_PMD_NR;
1504 }
1505 }
1506 spin_unlock(ptl);
1507 }
1508
1509 return ret;
1510 }
1511
1512 /*
1513 * Returns 1 if a given pmd maps a stable (not under splitting) thp.
1514 * Returns -1 if it maps a thp under splitting. Returns 0 otherwise.
1515 *
1516 * Note that if it returns 1, this routine returns without unlocking page
1517 * table locks. So callers must unlock them.
1518 */
1519 int __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma,
1520 spinlock_t **ptl)
1521 {
1522 *ptl = pmd_lock(vma->vm_mm, pmd);
1523 if (likely(pmd_trans_huge(*pmd))) {
1524 if (unlikely(pmd_trans_splitting(*pmd))) {
1525 spin_unlock(*ptl);
1526 wait_split_huge_page(vma->anon_vma, pmd);
1527 return -1;
1528 } else {
1529 /* Thp mapped by 'pmd' is stable, so we can
1530 * handle it as it is. */
1531 return 1;
1532 }
1533 }
1534 spin_unlock(*ptl);
1535 return 0;
1536 }
1537
1538 /*
1539 * This function returns whether a given @page is mapped onto the @address
1540 * in the virtual space of @mm.
1541 *
1542 * When it's true, this function returns *pmd with holding the page table lock
1543 * and passing it back to the caller via @ptl.
1544 * If it's false, returns NULL without holding the page table lock.
1545 */
1546 pmd_t *page_check_address_pmd(struct page *page,
1547 struct mm_struct *mm,
1548 unsigned long address,
1549 enum page_check_address_pmd_flag flag,
1550 spinlock_t **ptl)
1551 {
1552 pgd_t *pgd;
1553 pud_t *pud;
1554 pmd_t *pmd;
1555
1556 if (address & ~HPAGE_PMD_MASK)
1557 return NULL;
1558
1559 pgd = pgd_offset(mm, address);
1560 if (!pgd_present(*pgd))
1561 return NULL;
1562 pud = pud_offset(pgd, address);
1563 if (!pud_present(*pud))
1564 return NULL;
1565 pmd = pmd_offset(pud, address);
1566
1567 *ptl = pmd_lock(mm, pmd);
1568 if (!pmd_present(*pmd))
1569 goto unlock;
1570 if (pmd_page(*pmd) != page)
1571 goto unlock;
1572 /*
1573 * split_vma() may create temporary aliased mappings. There is
1574 * no risk as long as all huge pmd are found and have their
1575 * splitting bit set before __split_huge_page_refcount
1576 * runs. Finding the same huge pmd more than once during the
1577 * same rmap walk is not a problem.
1578 */
1579 if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
1580 pmd_trans_splitting(*pmd))
1581 goto unlock;
1582 if (pmd_trans_huge(*pmd)) {
1583 VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
1584 !pmd_trans_splitting(*pmd));
1585 return pmd;
1586 }
1587 unlock:
1588 spin_unlock(*ptl);
1589 return NULL;
1590 }
1591
1592 static int __split_huge_page_splitting(struct page *page,
1593 struct vm_area_struct *vma,
1594 unsigned long address)
1595 {
1596 struct mm_struct *mm = vma->vm_mm;
1597 spinlock_t *ptl;
1598 pmd_t *pmd;
1599 int ret = 0;
1600 /* For mmu_notifiers */
1601 const unsigned long mmun_start = address;
1602 const unsigned long mmun_end = address + HPAGE_PMD_SIZE;
1603
1604 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1605 pmd = page_check_address_pmd(page, mm, address,
1606 PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG, &ptl);
1607 if (pmd) {
1608 /*
1609 * We can't temporarily set the pmd to null in order
1610 * to split it, the pmd must remain marked huge at all
1611 * times or the VM won't take the pmd_trans_huge paths
1612 * and it won't wait on the anon_vma->root->rwsem to
1613 * serialize against split_huge_page*.
1614 */
1615 pmdp_splitting_flush(vma, address, pmd);
1616
1617 ret = 1;
1618 spin_unlock(ptl);
1619 }
1620 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1621
1622 return ret;
1623 }
1624
1625 static void __split_huge_page_refcount(struct page *page,
1626 struct list_head *list)
1627 {
1628 int i;
1629 struct zone *zone = page_zone(page);
1630 struct lruvec *lruvec;
1631 int tail_count = 0;
1632
1633 /* prevent PageLRU to go away from under us, and freeze lru stats */
1634 spin_lock_irq(&zone->lru_lock);
1635 lruvec = mem_cgroup_page_lruvec(page, zone);
1636
1637 compound_lock(page);
1638 /* complete memcg works before add pages to LRU */
1639 mem_cgroup_split_huge_fixup(page);
1640
1641 for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
1642 struct page *page_tail = page + i;
1643
1644 /* tail_page->_mapcount cannot change */
1645 BUG_ON(page_mapcount(page_tail) < 0);
1646 tail_count += page_mapcount(page_tail);
1647 /* check for overflow */
1648 BUG_ON(tail_count < 0);
1649 BUG_ON(atomic_read(&page_tail->_count) != 0);
1650 /*
1651 * tail_page->_count is zero and not changing from
1652 * under us. But get_page_unless_zero() may be running
1653 * from under us on the tail_page. If we used
1654 * atomic_set() below instead of atomic_add(), we
1655 * would then run atomic_set() concurrently with
1656 * get_page_unless_zero(), and atomic_set() is
1657 * implemented in C not using locked ops. spin_unlock
1658 * on x86 sometime uses locked ops because of PPro
1659 * errata 66, 92, so unless somebody can guarantee
1660 * atomic_set() here would be safe on all archs (and
1661 * not only on x86), it's safer to use atomic_add().
1662 */
1663 atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1,
1664 &page_tail->_count);
1665
1666 /* after clearing PageTail the gup refcount can be released */
1667 smp_mb__after_atomic();
1668
1669 /*
1670 * retain hwpoison flag of the poisoned tail page:
1671 * fix for the unsuitable process killed on Guest Machine(KVM)
1672 * by the memory-failure.
1673 */
1674 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON;
1675 page_tail->flags |= (page->flags &
1676 ((1L << PG_referenced) |
1677 (1L << PG_swapbacked) |
1678 (1L << PG_mlocked) |
1679 (1L << PG_uptodate) |
1680 (1L << PG_active) |
1681 (1L << PG_unevictable)));
1682 page_tail->flags |= (1L << PG_dirty);
1683
1684 /* clear PageTail before overwriting first_page */
1685 smp_wmb();
1686
1687 /*
1688 * __split_huge_page_splitting() already set the
1689 * splitting bit in all pmd that could map this
1690 * hugepage, that will ensure no CPU can alter the
1691 * mapcount on the head page. The mapcount is only
1692 * accounted in the head page and it has to be
1693 * transferred to all tail pages in the below code. So
1694 * for this code to be safe, the split the mapcount
1695 * can't change. But that doesn't mean userland can't
1696 * keep changing and reading the page contents while
1697 * we transfer the mapcount, so the pmd splitting
1698 * status is achieved setting a reserved bit in the
1699 * pmd, not by clearing the present bit.
1700 */
1701 page_tail->_mapcount = page->_mapcount;
1702
1703 BUG_ON(page_tail->mapping);
1704 page_tail->mapping = page->mapping;
1705
1706 page_tail->index = page->index + i;
1707 page_cpupid_xchg_last(page_tail, page_cpupid_last(page));
1708
1709 BUG_ON(!PageAnon(page_tail));
1710 BUG_ON(!PageUptodate(page_tail));
1711 BUG_ON(!PageDirty(page_tail));
1712 BUG_ON(!PageSwapBacked(page_tail));
1713
1714 lru_add_page_tail(page, page_tail, lruvec, list);
1715 }
1716 atomic_sub(tail_count, &page->_count);
1717 BUG_ON(atomic_read(&page->_count) <= 0);
1718
1719 __mod_zone_page_state(zone, NR_ANON_TRANSPARENT_HUGEPAGES, -1);
1720
1721 ClearPageCompound(page);
1722 compound_unlock(page);
1723 spin_unlock_irq(&zone->lru_lock);
1724
1725 for (i = 1; i < HPAGE_PMD_NR; i++) {
1726 struct page *page_tail = page + i;
1727 BUG_ON(page_count(page_tail) <= 0);
1728 /*
1729 * Tail pages may be freed if there wasn't any mapping
1730 * like if add_to_swap() is running on a lru page that
1731 * had its mapping zapped. And freeing these pages
1732 * requires taking the lru_lock so we do the put_page
1733 * of the tail pages after the split is complete.
1734 */
1735 put_page(page_tail);
1736 }
1737
1738 /*
1739 * Only the head page (now become a regular page) is required
1740 * to be pinned by the caller.
1741 */
1742 BUG_ON(page_count(page) <= 0);
1743 }
1744
1745 static int __split_huge_page_map(struct page *page,
1746 struct vm_area_struct *vma,
1747 unsigned long address)
1748 {
1749 struct mm_struct *mm = vma->vm_mm;
1750 spinlock_t *ptl;
1751 pmd_t *pmd, _pmd;
1752 int ret = 0, i;
1753 pgtable_t pgtable;
1754 unsigned long haddr;
1755
1756 pmd = page_check_address_pmd(page, mm, address,
1757 PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG, &ptl);
1758 if (pmd) {
1759 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1760 pmd_populate(mm, &_pmd, pgtable);
1761 if (pmd_write(*pmd))
1762 BUG_ON(page_mapcount(page) != 1);
1763
1764 haddr = address;
1765 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1766 pte_t *pte, entry;
1767 BUG_ON(PageCompound(page+i));
1768 /*
1769 * Note that pmd_numa is not transferred deliberately
1770 * to avoid any possibility that pte_numa leaks to
1771 * a PROT_NONE VMA by accident.
1772 */
1773 entry = mk_pte(page + i, vma->vm_page_prot);
1774 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1775 if (!pmd_write(*pmd))
1776 entry = pte_wrprotect(entry);
1777 if (!pmd_young(*pmd))
1778 entry = pte_mkold(entry);
1779 pte = pte_offset_map(&_pmd, haddr);
1780 BUG_ON(!pte_none(*pte));
1781 set_pte_at(mm, haddr, pte, entry);
1782 pte_unmap(pte);
1783 }
1784
1785 smp_wmb(); /* make pte visible before pmd */
1786 /*
1787 * Up to this point the pmd is present and huge and
1788 * userland has the whole access to the hugepage
1789 * during the split (which happens in place). If we
1790 * overwrite the pmd with the not-huge version
1791 * pointing to the pte here (which of course we could
1792 * if all CPUs were bug free), userland could trigger
1793 * a small page size TLB miss on the small sized TLB
1794 * while the hugepage TLB entry is still established
1795 * in the huge TLB. Some CPU doesn't like that. See
1796 * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
1797 * Erratum 383 on page 93. Intel should be safe but is
1798 * also warns that it's only safe if the permission
1799 * and cache attributes of the two entries loaded in
1800 * the two TLB is identical (which should be the case
1801 * here). But it is generally safer to never allow
1802 * small and huge TLB entries for the same virtual
1803 * address to be loaded simultaneously. So instead of
1804 * doing "pmd_populate(); flush_tlb_range();" we first
1805 * mark the current pmd notpresent (atomically because
1806 * here the pmd_trans_huge and pmd_trans_splitting
1807 * must remain set at all times on the pmd until the
1808 * split is complete for this pmd), then we flush the
1809 * SMP TLB and finally we write the non-huge version
1810 * of the pmd entry with pmd_populate.
1811 */
1812 pmdp_invalidate(vma, address, pmd);
1813 pmd_populate(mm, pmd, pgtable);
1814 ret = 1;
1815 spin_unlock(ptl);
1816 }
1817
1818 return ret;
1819 }
1820
1821 /* must be called with anon_vma->root->rwsem held */
1822 static void __split_huge_page(struct page *page,
1823 struct anon_vma *anon_vma,
1824 struct list_head *list)
1825 {
1826 int mapcount, mapcount2;
1827 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1828 struct anon_vma_chain *avc;
1829
1830 BUG_ON(!PageHead(page));
1831 BUG_ON(PageTail(page));
1832
1833 mapcount = 0;
1834 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1835 struct vm_area_struct *vma = avc->vma;
1836 unsigned long addr = vma_address(page, vma);
1837 BUG_ON(is_vma_temporary_stack(vma));
1838 mapcount += __split_huge_page_splitting(page, vma, addr);
1839 }
1840 /*
1841 * It is critical that new vmas are added to the tail of the
1842 * anon_vma list. This guarantes that if copy_huge_pmd() runs
1843 * and establishes a child pmd before
1844 * __split_huge_page_splitting() freezes the parent pmd (so if
1845 * we fail to prevent copy_huge_pmd() from running until the
1846 * whole __split_huge_page() is complete), we will still see
1847 * the newly established pmd of the child later during the
1848 * walk, to be able to set it as pmd_trans_splitting too.
1849 */
1850 if (mapcount != page_mapcount(page)) {
1851 pr_err("mapcount %d page_mapcount %d\n",
1852 mapcount, page_mapcount(page));
1853 BUG();
1854 }
1855
1856 __split_huge_page_refcount(page, list);
1857
1858 mapcount2 = 0;
1859 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1860 struct vm_area_struct *vma = avc->vma;
1861 unsigned long addr = vma_address(page, vma);
1862 BUG_ON(is_vma_temporary_stack(vma));
1863 mapcount2 += __split_huge_page_map(page, vma, addr);
1864 }
1865 if (mapcount != mapcount2) {
1866 pr_err("mapcount %d mapcount2 %d page_mapcount %d\n",
1867 mapcount, mapcount2, page_mapcount(page));
1868 BUG();
1869 }
1870 }
1871
1872 /*
1873 * Split a hugepage into normal pages. This doesn't change the position of head
1874 * page. If @list is null, tail pages will be added to LRU list, otherwise, to
1875 * @list. Both head page and tail pages will inherit mapping, flags, and so on
1876 * from the hugepage.
1877 * Return 0 if the hugepage is split successfully otherwise return 1.
1878 */
1879 int split_huge_page_to_list(struct page *page, struct list_head *list)
1880 {
1881 struct anon_vma *anon_vma;
1882 int ret = 1;
1883
1884 BUG_ON(is_huge_zero_page(page));
1885 BUG_ON(!PageAnon(page));
1886
1887 /*
1888 * The caller does not necessarily hold an mmap_sem that would prevent
1889 * the anon_vma disappearing so we first we take a reference to it
1890 * and then lock the anon_vma for write. This is similar to
1891 * page_lock_anon_vma_read except the write lock is taken to serialise
1892 * against parallel split or collapse operations.
1893 */
1894 anon_vma = page_get_anon_vma(page);
1895 if (!anon_vma)
1896 goto out;
1897 anon_vma_lock_write(anon_vma);
1898
1899 ret = 0;
1900 if (!PageCompound(page))
1901 goto out_unlock;
1902
1903 BUG_ON(!PageSwapBacked(page));
1904 __split_huge_page(page, anon_vma, list);
1905 count_vm_event(THP_SPLIT);
1906
1907 BUG_ON(PageCompound(page));
1908 out_unlock:
1909 anon_vma_unlock_write(anon_vma);
1910 put_anon_vma(anon_vma);
1911 out:
1912 return ret;
1913 }
1914
1915 #define VM_NO_THP (VM_SPECIAL | VM_HUGETLB | VM_SHARED | VM_MAYSHARE)
1916
1917 int hugepage_madvise(struct vm_area_struct *vma,
1918 unsigned long *vm_flags, int advice)
1919 {
1920 switch (advice) {
1921 case MADV_HUGEPAGE:
1922 #ifdef CONFIG_S390
1923 /*
1924 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
1925 * can't handle this properly after s390_enable_sie, so we simply
1926 * ignore the madvise to prevent qemu from causing a SIGSEGV.
1927 */
1928 if (mm_has_pgste(vma->vm_mm))
1929 return 0;
1930 #endif
1931 /*
1932 * Be somewhat over-protective like KSM for now!
1933 */
1934 if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP))
1935 return -EINVAL;
1936 *vm_flags &= ~VM_NOHUGEPAGE;
1937 *vm_flags |= VM_HUGEPAGE;
1938 /*
1939 * If the vma become good for khugepaged to scan,
1940 * register it here without waiting a page fault that
1941 * may not happen any time soon.
1942 */
1943 if (unlikely(khugepaged_enter_vma_merge(vma, *vm_flags)))
1944 return -ENOMEM;
1945 break;
1946 case MADV_NOHUGEPAGE:
1947 /*
1948 * Be somewhat over-protective like KSM for now!
1949 */
1950 if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP))
1951 return -EINVAL;
1952 *vm_flags &= ~VM_HUGEPAGE;
1953 *vm_flags |= VM_NOHUGEPAGE;
1954 /*
1955 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1956 * this vma even if we leave the mm registered in khugepaged if
1957 * it got registered before VM_NOHUGEPAGE was set.
1958 */
1959 break;
1960 }
1961
1962 return 0;
1963 }
1964
1965 static int __init khugepaged_slab_init(void)
1966 {
1967 mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
1968 sizeof(struct mm_slot),
1969 __alignof__(struct mm_slot), 0, NULL);
1970 if (!mm_slot_cache)
1971 return -ENOMEM;
1972
1973 return 0;
1974 }
1975
1976 static inline struct mm_slot *alloc_mm_slot(void)
1977 {
1978 if (!mm_slot_cache) /* initialization failed */
1979 return NULL;
1980 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
1981 }
1982
1983 static inline void free_mm_slot(struct mm_slot *mm_slot)
1984 {
1985 kmem_cache_free(mm_slot_cache, mm_slot);
1986 }
1987
1988 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
1989 {
1990 struct mm_slot *mm_slot;
1991
1992 hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
1993 if (mm == mm_slot->mm)
1994 return mm_slot;
1995
1996 return NULL;
1997 }
1998
1999 static void insert_to_mm_slots_hash(struct mm_struct *mm,
2000 struct mm_slot *mm_slot)
2001 {
2002 mm_slot->mm = mm;
2003 hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
2004 }
2005
2006 static inline int khugepaged_test_exit(struct mm_struct *mm)
2007 {
2008 return atomic_read(&mm->mm_users) == 0;
2009 }
2010
2011 int __khugepaged_enter(struct mm_struct *mm)
2012 {
2013 struct mm_slot *mm_slot;
2014 int wakeup;
2015
2016 mm_slot = alloc_mm_slot();
2017 if (!mm_slot)
2018 return -ENOMEM;
2019
2020 /* __khugepaged_exit() must not run from under us */
2021 VM_BUG_ON_MM(khugepaged_test_exit(mm), mm);
2022 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
2023 free_mm_slot(mm_slot);
2024 return 0;
2025 }
2026
2027 spin_lock(&khugepaged_mm_lock);
2028 insert_to_mm_slots_hash(mm, mm_slot);
2029 /*
2030 * Insert just behind the scanning cursor, to let the area settle
2031 * down a little.
2032 */
2033 wakeup = list_empty(&khugepaged_scan.mm_head);
2034 list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
2035 spin_unlock(&khugepaged_mm_lock);
2036
2037 atomic_inc(&mm->mm_count);
2038 if (wakeup)
2039 wake_up_interruptible(&khugepaged_wait);
2040
2041 return 0;
2042 }
2043
2044 int khugepaged_enter_vma_merge(struct vm_area_struct *vma,
2045 unsigned long vm_flags)
2046 {
2047 unsigned long hstart, hend;
2048 if (!vma->anon_vma)
2049 /*
2050 * Not yet faulted in so we will register later in the
2051 * page fault if needed.
2052 */
2053 return 0;
2054 if (vma->vm_ops)
2055 /* khugepaged not yet working on file or special mappings */
2056 return 0;
2057 VM_BUG_ON_VMA(vm_flags & VM_NO_THP, vma);
2058 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2059 hend = vma->vm_end & HPAGE_PMD_MASK;
2060 if (hstart < hend)
2061 return khugepaged_enter(vma, vm_flags);
2062 return 0;
2063 }
2064
2065 void __khugepaged_exit(struct mm_struct *mm)
2066 {
2067 struct mm_slot *mm_slot;
2068 int free = 0;
2069
2070 spin_lock(&khugepaged_mm_lock);
2071 mm_slot = get_mm_slot(mm);
2072 if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
2073 hash_del(&mm_slot->hash);
2074 list_del(&mm_slot->mm_node);
2075 free = 1;
2076 }
2077 spin_unlock(&khugepaged_mm_lock);
2078
2079 if (free) {
2080 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2081 free_mm_slot(mm_slot);
2082 mmdrop(mm);
2083 } else if (mm_slot) {
2084 /*
2085 * This is required to serialize against
2086 * khugepaged_test_exit() (which is guaranteed to run
2087 * under mmap sem read mode). Stop here (after we
2088 * return all pagetables will be destroyed) until
2089 * khugepaged has finished working on the pagetables
2090 * under the mmap_sem.
2091 */
2092 down_write(&mm->mmap_sem);
2093 up_write(&mm->mmap_sem);
2094 }
2095 }
2096
2097 static void release_pte_page(struct page *page)
2098 {
2099 /* 0 stands for page_is_file_cache(page) == false */
2100 dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
2101 unlock_page(page);
2102 putback_lru_page(page);
2103 }
2104
2105 static void release_pte_pages(pte_t *pte, pte_t *_pte)
2106 {
2107 while (--_pte >= pte) {
2108 pte_t pteval = *_pte;
2109 if (!pte_none(pteval))
2110 release_pte_page(pte_page(pteval));
2111 }
2112 }
2113
2114 static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
2115 unsigned long address,
2116 pte_t *pte)
2117 {
2118 struct page *page;
2119 pte_t *_pte;
2120 int none = 0;
2121 bool referenced = false, writable = false;
2122 for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
2123 _pte++, address += PAGE_SIZE) {
2124 pte_t pteval = *_pte;
2125 if (pte_none(pteval)) {
2126 if (++none <= khugepaged_max_ptes_none)
2127 continue;
2128 else
2129 goto out;
2130 }
2131 if (!pte_present(pteval))
2132 goto out;
2133 page = vm_normal_page(vma, address, pteval);
2134 if (unlikely(!page))
2135 goto out;
2136
2137 VM_BUG_ON_PAGE(PageCompound(page), page);
2138 VM_BUG_ON_PAGE(!PageAnon(page), page);
2139 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
2140
2141 /*
2142 * We can do it before isolate_lru_page because the
2143 * page can't be freed from under us. NOTE: PG_lock
2144 * is needed to serialize against split_huge_page
2145 * when invoked from the VM.
2146 */
2147 if (!trylock_page(page))
2148 goto out;
2149
2150 /*
2151 * cannot use mapcount: can't collapse if there's a gup pin.
2152 * The page must only be referenced by the scanned process
2153 * and page swap cache.
2154 */
2155 if (page_count(page) != 1 + !!PageSwapCache(page)) {
2156 unlock_page(page);
2157 goto out;
2158 }
2159 if (pte_write(pteval)) {
2160 writable = true;
2161 } else {
2162 if (PageSwapCache(page) && !reuse_swap_page(page)) {
2163 unlock_page(page);
2164 goto out;
2165 }
2166 /*
2167 * Page is not in the swap cache. It can be collapsed
2168 * into a THP.
2169 */
2170 }
2171
2172 /*
2173 * Isolate the page to avoid collapsing an hugepage
2174 * currently in use by the VM.
2175 */
2176 if (isolate_lru_page(page)) {
2177 unlock_page(page);
2178 goto out;
2179 }
2180 /* 0 stands for page_is_file_cache(page) == false */
2181 inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
2182 VM_BUG_ON_PAGE(!PageLocked(page), page);
2183 VM_BUG_ON_PAGE(PageLRU(page), page);
2184
2185 /* If there is no mapped pte young don't collapse the page */
2186 if (pte_young(pteval) || PageReferenced(page) ||
2187 mmu_notifier_test_young(vma->vm_mm, address))
2188 referenced = true;
2189 }
2190 if (likely(referenced && writable))
2191 return 1;
2192 out:
2193 release_pte_pages(pte, _pte);
2194 return 0;
2195 }
2196
2197 static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
2198 struct vm_area_struct *vma,
2199 unsigned long address,
2200 spinlock_t *ptl)
2201 {
2202 pte_t *_pte;
2203 for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
2204 pte_t pteval = *_pte;
2205 struct page *src_page;
2206
2207 if (pte_none(pteval)) {
2208 clear_user_highpage(page, address);
2209 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
2210 } else {
2211 src_page = pte_page(pteval);
2212 copy_user_highpage(page, src_page, address, vma);
2213 VM_BUG_ON_PAGE(page_mapcount(src_page) != 1, src_page);
2214 release_pte_page(src_page);
2215 /*
2216 * ptl mostly unnecessary, but preempt has to
2217 * be disabled to update the per-cpu stats
2218 * inside page_remove_rmap().
2219 */
2220 spin_lock(ptl);
2221 /*
2222 * paravirt calls inside pte_clear here are
2223 * superfluous.
2224 */
2225 pte_clear(vma->vm_mm, address, _pte);
2226 page_remove_rmap(src_page);
2227 spin_unlock(ptl);
2228 free_page_and_swap_cache(src_page);
2229 }
2230
2231 address += PAGE_SIZE;
2232 page++;
2233 }
2234 }
2235
2236 static void khugepaged_alloc_sleep(void)
2237 {
2238 wait_event_freezable_timeout(khugepaged_wait, false,
2239 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
2240 }
2241
2242 static int khugepaged_node_load[MAX_NUMNODES];
2243
2244 static bool khugepaged_scan_abort(int nid)
2245 {
2246 int i;
2247
2248 /*
2249 * If zone_reclaim_mode is disabled, then no extra effort is made to
2250 * allocate memory locally.
2251 */
2252 if (!zone_reclaim_mode)
2253 return false;
2254
2255 /* If there is a count for this node already, it must be acceptable */
2256 if (khugepaged_node_load[nid])
2257 return false;
2258
2259 for (i = 0; i < MAX_NUMNODES; i++) {
2260 if (!khugepaged_node_load[i])
2261 continue;
2262 if (node_distance(nid, i) > RECLAIM_DISTANCE)
2263 return true;
2264 }
2265 return false;
2266 }
2267
2268 #ifdef CONFIG_NUMA
2269 static int khugepaged_find_target_node(void)
2270 {
2271 static int last_khugepaged_target_node = NUMA_NO_NODE;
2272 int nid, target_node = 0, max_value = 0;
2273
2274 /* find first node with max normal pages hit */
2275 for (nid = 0; nid < MAX_NUMNODES; nid++)
2276 if (khugepaged_node_load[nid] > max_value) {
2277 max_value = khugepaged_node_load[nid];
2278 target_node = nid;
2279 }
2280
2281 /* do some balance if several nodes have the same hit record */
2282 if (target_node <= last_khugepaged_target_node)
2283 for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
2284 nid++)
2285 if (max_value == khugepaged_node_load[nid]) {
2286 target_node = nid;
2287 break;
2288 }
2289
2290 last_khugepaged_target_node = target_node;
2291 return target_node;
2292 }
2293
2294 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2295 {
2296 if (IS_ERR(*hpage)) {
2297 if (!*wait)
2298 return false;
2299
2300 *wait = false;
2301 *hpage = NULL;
2302 khugepaged_alloc_sleep();
2303 } else if (*hpage) {
2304 put_page(*hpage);
2305 *hpage = NULL;
2306 }
2307
2308 return true;
2309 }
2310
2311 static struct page
2312 *khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
2313 struct vm_area_struct *vma, unsigned long address,
2314 int node)
2315 {
2316 VM_BUG_ON_PAGE(*hpage, *hpage);
2317
2318 /*
2319 * Before allocating the hugepage, release the mmap_sem read lock.
2320 * The allocation can take potentially a long time if it involves
2321 * sync compaction, and we do not need to hold the mmap_sem during
2322 * that. We will recheck the vma after taking it again in write mode.
2323 */
2324 up_read(&mm->mmap_sem);
2325
2326 *hpage = alloc_pages_exact_node(node, alloc_hugepage_gfpmask(
2327 khugepaged_defrag(), __GFP_OTHER_NODE), HPAGE_PMD_ORDER);
2328 if (unlikely(!*hpage)) {
2329 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2330 *hpage = ERR_PTR(-ENOMEM);
2331 return NULL;
2332 }
2333
2334 count_vm_event(THP_COLLAPSE_ALLOC);
2335 return *hpage;
2336 }
2337 #else
2338 static int khugepaged_find_target_node(void)
2339 {
2340 return 0;
2341 }
2342
2343 static inline struct page *alloc_hugepage(int defrag)
2344 {
2345 return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
2346 HPAGE_PMD_ORDER);
2347 }
2348
2349 static struct page *khugepaged_alloc_hugepage(bool *wait)
2350 {
2351 struct page *hpage;
2352
2353 do {
2354 hpage = alloc_hugepage(khugepaged_defrag());
2355 if (!hpage) {
2356 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2357 if (!*wait)
2358 return NULL;
2359
2360 *wait = false;
2361 khugepaged_alloc_sleep();
2362 } else
2363 count_vm_event(THP_COLLAPSE_ALLOC);
2364 } while (unlikely(!hpage) && likely(khugepaged_enabled()));
2365
2366 return hpage;
2367 }
2368
2369 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2370 {
2371 if (!*hpage)
2372 *hpage = khugepaged_alloc_hugepage(wait);
2373
2374 if (unlikely(!*hpage))
2375 return false;
2376
2377 return true;
2378 }
2379
2380 static struct page
2381 *khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
2382 struct vm_area_struct *vma, unsigned long address,
2383 int node)
2384 {
2385 up_read(&mm->mmap_sem);
2386 VM_BUG_ON(!*hpage);
2387 return *hpage;
2388 }
2389 #endif
2390
2391 static bool hugepage_vma_check(struct vm_area_struct *vma)
2392 {
2393 if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
2394 (vma->vm_flags & VM_NOHUGEPAGE))
2395 return false;
2396
2397 if (!vma->anon_vma || vma->vm_ops)
2398 return false;
2399 if (is_vma_temporary_stack(vma))
2400 return false;
2401 VM_BUG_ON_VMA(vma->vm_flags & VM_NO_THP, vma);
2402 return true;
2403 }
2404
2405 static void collapse_huge_page(struct mm_struct *mm,
2406 unsigned long address,
2407 struct page **hpage,
2408 struct vm_area_struct *vma,
2409 int node)
2410 {
2411 pmd_t *pmd, _pmd;
2412 pte_t *pte;
2413 pgtable_t pgtable;
2414 struct page *new_page;
2415 spinlock_t *pmd_ptl, *pte_ptl;
2416 int isolated;
2417 unsigned long hstart, hend;
2418 struct mem_cgroup *memcg;
2419 unsigned long mmun_start; /* For mmu_notifiers */
2420 unsigned long mmun_end; /* For mmu_notifiers */
2421
2422 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2423
2424 /* release the mmap_sem read lock. */
2425 new_page = khugepaged_alloc_page(hpage, mm, vma, address, node);
2426 if (!new_page)
2427 return;
2428
2429 if (unlikely(mem_cgroup_try_charge(new_page, mm,
2430 GFP_TRANSHUGE, &memcg)))
2431 return;
2432
2433 /*
2434 * Prevent all access to pagetables with the exception of
2435 * gup_fast later hanlded by the ptep_clear_flush and the VM
2436 * handled by the anon_vma lock + PG_lock.
2437 */
2438 down_write(&mm->mmap_sem);
2439 if (unlikely(khugepaged_test_exit(mm)))
2440 goto out;
2441
2442 vma = find_vma(mm, address);
2443 if (!vma)
2444 goto out;
2445 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2446 hend = vma->vm_end & HPAGE_PMD_MASK;
2447 if (address < hstart || address + HPAGE_PMD_SIZE > hend)
2448 goto out;
2449 if (!hugepage_vma_check(vma))
2450 goto out;
2451 pmd = mm_find_pmd(mm, address);
2452 if (!pmd)
2453 goto out;
2454
2455 anon_vma_lock_write(vma->anon_vma);
2456
2457 pte = pte_offset_map(pmd, address);
2458 pte_ptl = pte_lockptr(mm, pmd);
2459
2460 mmun_start = address;
2461 mmun_end = address + HPAGE_PMD_SIZE;
2462 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2463 pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
2464 /*
2465 * After this gup_fast can't run anymore. This also removes
2466 * any huge TLB entry from the CPU so we won't allow
2467 * huge and small TLB entries for the same virtual address
2468 * to avoid the risk of CPU bugs in that area.
2469 */
2470 _pmd = pmdp_clear_flush(vma, address, pmd);
2471 spin_unlock(pmd_ptl);
2472 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2473
2474 spin_lock(pte_ptl);
2475 isolated = __collapse_huge_page_isolate(vma, address, pte);
2476 spin_unlock(pte_ptl);
2477
2478 if (unlikely(!isolated)) {
2479 pte_unmap(pte);
2480 spin_lock(pmd_ptl);
2481 BUG_ON(!pmd_none(*pmd));
2482 /*
2483 * We can only use set_pmd_at when establishing
2484 * hugepmds and never for establishing regular pmds that
2485 * points to regular pagetables. Use pmd_populate for that
2486 */
2487 pmd_populate(mm, pmd, pmd_pgtable(_pmd));
2488 spin_unlock(pmd_ptl);
2489 anon_vma_unlock_write(vma->anon_vma);
2490 goto out;
2491 }
2492
2493 /*
2494 * All pages are isolated and locked so anon_vma rmap
2495 * can't run anymore.
2496 */
2497 anon_vma_unlock_write(vma->anon_vma);
2498
2499 __collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl);
2500 pte_unmap(pte);
2501 __SetPageUptodate(new_page);
2502 pgtable = pmd_pgtable(_pmd);
2503
2504 _pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
2505 _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
2506
2507 /*
2508 * spin_lock() below is not the equivalent of smp_wmb(), so
2509 * this is needed to avoid the copy_huge_page writes to become
2510 * visible after the set_pmd_at() write.
2511 */
2512 smp_wmb();
2513
2514 spin_lock(pmd_ptl);
2515 BUG_ON(!pmd_none(*pmd));
2516 page_add_new_anon_rmap(new_page, vma, address);
2517 mem_cgroup_commit_charge(new_page, memcg, false);
2518 lru_cache_add_active_or_unevictable(new_page, vma);
2519 pgtable_trans_huge_deposit(mm, pmd, pgtable);
2520 set_pmd_at(mm, address, pmd, _pmd);
2521 update_mmu_cache_pmd(vma, address, pmd);
2522 spin_unlock(pmd_ptl);
2523
2524 *hpage = NULL;
2525
2526 khugepaged_pages_collapsed++;
2527 out_up_write:
2528 up_write(&mm->mmap_sem);
2529 return;
2530
2531 out:
2532 mem_cgroup_cancel_charge(new_page, memcg);
2533 goto out_up_write;
2534 }
2535
2536 static int khugepaged_scan_pmd(struct mm_struct *mm,
2537 struct vm_area_struct *vma,
2538 unsigned long address,
2539 struct page **hpage)
2540 {
2541 pmd_t *pmd;
2542 pte_t *pte, *_pte;
2543 int ret = 0, none = 0;
2544 struct page *page;
2545 unsigned long _address;
2546 spinlock_t *ptl;
2547 int node = NUMA_NO_NODE;
2548 bool writable = false, referenced = false;
2549
2550 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2551
2552 pmd = mm_find_pmd(mm, address);
2553 if (!pmd)
2554 goto out;
2555
2556 memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
2557 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2558 for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
2559 _pte++, _address += PAGE_SIZE) {
2560 pte_t pteval = *_pte;
2561 if (pte_none(pteval)) {
2562 if (++none <= khugepaged_max_ptes_none)
2563 continue;
2564 else
2565 goto out_unmap;
2566 }
2567 if (!pte_present(pteval))
2568 goto out_unmap;
2569 if (pte_write(pteval))
2570 writable = true;
2571
2572 page = vm_normal_page(vma, _address, pteval);
2573 if (unlikely(!page))
2574 goto out_unmap;
2575 /*
2576 * Record which node the original page is from and save this
2577 * information to khugepaged_node_load[].
2578 * Khupaged will allocate hugepage from the node has the max
2579 * hit record.
2580 */
2581 node = page_to_nid(page);
2582 if (khugepaged_scan_abort(node))
2583 goto out_unmap;
2584 khugepaged_node_load[node]++;
2585 VM_BUG_ON_PAGE(PageCompound(page), page);
2586 if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
2587 goto out_unmap;
2588 /*
2589 * cannot use mapcount: can't collapse if there's a gup pin.
2590 * The page must only be referenced by the scanned process
2591 * and page swap cache.
2592 */
2593 if (page_count(page) != 1 + !!PageSwapCache(page))
2594 goto out_unmap;
2595 if (pte_young(pteval) || PageReferenced(page) ||
2596 mmu_notifier_test_young(vma->vm_mm, address))
2597 referenced = true;
2598 }
2599 if (referenced && writable)
2600 ret = 1;
2601 out_unmap:
2602 pte_unmap_unlock(pte, ptl);
2603 if (ret) {
2604 node = khugepaged_find_target_node();
2605 /* collapse_huge_page will return with the mmap_sem released */
2606 collapse_huge_page(mm, address, hpage, vma, node);
2607 }
2608 out:
2609 return ret;
2610 }
2611
2612 static void collect_mm_slot(struct mm_slot *mm_slot)
2613 {
2614 struct mm_struct *mm = mm_slot->mm;
2615
2616 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2617
2618 if (khugepaged_test_exit(mm)) {
2619 /* free mm_slot */
2620 hash_del(&mm_slot->hash);
2621 list_del(&mm_slot->mm_node);
2622
2623 /*
2624 * Not strictly needed because the mm exited already.
2625 *
2626 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2627 */
2628
2629 /* khugepaged_mm_lock actually not necessary for the below */
2630 free_mm_slot(mm_slot);
2631 mmdrop(mm);
2632 }
2633 }
2634
2635 static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2636 struct page **hpage)
2637 __releases(&khugepaged_mm_lock)
2638 __acquires(&khugepaged_mm_lock)
2639 {
2640 struct mm_slot *mm_slot;
2641 struct mm_struct *mm;
2642 struct vm_area_struct *vma;
2643 int progress = 0;
2644
2645 VM_BUG_ON(!pages);
2646 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2647
2648 if (khugepaged_scan.mm_slot)
2649 mm_slot = khugepaged_scan.mm_slot;
2650 else {
2651 mm_slot = list_entry(khugepaged_scan.mm_head.next,
2652 struct mm_slot, mm_node);
2653 khugepaged_scan.address = 0;
2654 khugepaged_scan.mm_slot = mm_slot;
2655 }
2656 spin_unlock(&khugepaged_mm_lock);
2657
2658 mm = mm_slot->mm;
2659 down_read(&mm->mmap_sem);
2660 if (unlikely(khugepaged_test_exit(mm)))
2661 vma = NULL;
2662 else
2663 vma = find_vma(mm, khugepaged_scan.address);
2664
2665 progress++;
2666 for (; vma; vma = vma->vm_next) {
2667 unsigned long hstart, hend;
2668
2669 cond_resched();
2670 if (unlikely(khugepaged_test_exit(mm))) {
2671 progress++;
2672 break;
2673 }
2674 if (!hugepage_vma_check(vma)) {
2675 skip:
2676 progress++;
2677 continue;
2678 }
2679 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2680 hend = vma->vm_end & HPAGE_PMD_MASK;
2681 if (hstart >= hend)
2682 goto skip;
2683 if (khugepaged_scan.address > hend)
2684 goto skip;
2685 if (khugepaged_scan.address < hstart)
2686 khugepaged_scan.address = hstart;
2687 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2688
2689 while (khugepaged_scan.address < hend) {
2690 int ret;
2691 cond_resched();
2692 if (unlikely(khugepaged_test_exit(mm)))
2693 goto breakouterloop;
2694
2695 VM_BUG_ON(khugepaged_scan.address < hstart ||
2696 khugepaged_scan.address + HPAGE_PMD_SIZE >
2697 hend);
2698 ret = khugepaged_scan_pmd(mm, vma,
2699 khugepaged_scan.address,
2700 hpage);
2701 /* move to next address */
2702 khugepaged_scan.address += HPAGE_PMD_SIZE;
2703 progress += HPAGE_PMD_NR;
2704 if (ret)
2705 /* we released mmap_sem so break loop */
2706 goto breakouterloop_mmap_sem;
2707 if (progress >= pages)
2708 goto breakouterloop;
2709 }
2710 }
2711 breakouterloop:
2712 up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2713 breakouterloop_mmap_sem:
2714
2715 spin_lock(&khugepaged_mm_lock);
2716 VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2717 /*
2718 * Release the current mm_slot if this mm is about to die, or
2719 * if we scanned all vmas of this mm.
2720 */
2721 if (khugepaged_test_exit(mm) || !vma) {
2722 /*
2723 * Make sure that if mm_users is reaching zero while
2724 * khugepaged runs here, khugepaged_exit will find
2725 * mm_slot not pointing to the exiting mm.
2726 */
2727 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2728 khugepaged_scan.mm_slot = list_entry(
2729 mm_slot->mm_node.next,
2730 struct mm_slot, mm_node);
2731 khugepaged_scan.address = 0;
2732 } else {
2733 khugepaged_scan.mm_slot = NULL;
2734 khugepaged_full_scans++;
2735 }
2736
2737 collect_mm_slot(mm_slot);
2738 }
2739
2740 return progress;
2741 }
2742
2743 static int khugepaged_has_work(void)
2744 {
2745 return !list_empty(&khugepaged_scan.mm_head) &&
2746 khugepaged_enabled();
2747 }
2748
2749 static int khugepaged_wait_event(void)
2750 {
2751 return !list_empty(&khugepaged_scan.mm_head) ||
2752 kthread_should_stop();
2753 }
2754
2755 static void khugepaged_do_scan(void)
2756 {
2757 struct page *hpage = NULL;
2758 unsigned int progress = 0, pass_through_head = 0;
2759 unsigned int pages = khugepaged_pages_to_scan;
2760 bool wait = true;
2761
2762 barrier(); /* write khugepaged_pages_to_scan to local stack */
2763
2764 while (progress < pages) {
2765 if (!khugepaged_prealloc_page(&hpage, &wait))
2766 break;
2767
2768 cond_resched();
2769
2770 if (unlikely(kthread_should_stop() || freezing(current)))
2771 break;
2772
2773 spin_lock(&khugepaged_mm_lock);
2774 if (!khugepaged_scan.mm_slot)
2775 pass_through_head++;
2776 if (khugepaged_has_work() &&
2777 pass_through_head < 2)
2778 progress += khugepaged_scan_mm_slot(pages - progress,
2779 &hpage);
2780 else
2781 progress = pages;
2782 spin_unlock(&khugepaged_mm_lock);
2783 }
2784
2785 if (!IS_ERR_OR_NULL(hpage))
2786 put_page(hpage);
2787 }
2788
2789 static void khugepaged_wait_work(void)
2790 {
2791 try_to_freeze();
2792
2793 if (khugepaged_has_work()) {
2794 if (!khugepaged_scan_sleep_millisecs)
2795 return;
2796
2797 wait_event_freezable_timeout(khugepaged_wait,
2798 kthread_should_stop(),
2799 msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
2800 return;
2801 }
2802
2803 if (khugepaged_enabled())
2804 wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2805 }
2806
2807 static int khugepaged(void *none)
2808 {
2809 struct mm_slot *mm_slot;
2810
2811 set_freezable();
2812 set_user_nice(current, MAX_NICE);
2813
2814 while (!kthread_should_stop()) {
2815 khugepaged_do_scan();
2816 khugepaged_wait_work();
2817 }
2818
2819 spin_lock(&khugepaged_mm_lock);
2820 mm_slot = khugepaged_scan.mm_slot;
2821 khugepaged_scan.mm_slot = NULL;
2822 if (mm_slot)
2823 collect_mm_slot(mm_slot);
2824 spin_unlock(&khugepaged_mm_lock);
2825 return 0;
2826 }
2827
2828 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2829 unsigned long haddr, pmd_t *pmd)
2830 {
2831 struct mm_struct *mm = vma->vm_mm;
2832 pgtable_t pgtable;
2833 pmd_t _pmd;
2834 int i;
2835
2836 pmdp_clear_flush_notify(vma, haddr, pmd);
2837 /* leave pmd empty until pte is filled */
2838
2839 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2840 pmd_populate(mm, &_pmd, pgtable);
2841
2842 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2843 pte_t *pte, entry;
2844 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2845 entry = pte_mkspecial(entry);
2846 pte = pte_offset_map(&_pmd, haddr);
2847 VM_BUG_ON(!pte_none(*pte));
2848 set_pte_at(mm, haddr, pte, entry);
2849 pte_unmap(pte);
2850 }
2851 smp_wmb(); /* make pte visible before pmd */
2852 pmd_populate(mm, pmd, pgtable);
2853 put_huge_zero_page();
2854 }
2855
2856 void __split_huge_page_pmd(struct vm_area_struct *vma, unsigned long address,
2857 pmd_t *pmd)
2858 {
2859 spinlock_t *ptl;
2860 struct page *page;
2861 struct mm_struct *mm = vma->vm_mm;
2862 unsigned long haddr = address & HPAGE_PMD_MASK;
2863 unsigned long mmun_start; /* For mmu_notifiers */
2864 unsigned long mmun_end; /* For mmu_notifiers */
2865
2866 BUG_ON(vma->vm_start > haddr || vma->vm_end < haddr + HPAGE_PMD_SIZE);
2867
2868 mmun_start = haddr;
2869 mmun_end = haddr + HPAGE_PMD_SIZE;
2870 again:
2871 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2872 ptl = pmd_lock(mm, pmd);
2873 if (unlikely(!pmd_trans_huge(*pmd))) {
2874 spin_unlock(ptl);
2875 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2876 return;
2877 }
2878 if (is_huge_zero_pmd(*pmd)) {
2879 __split_huge_zero_page_pmd(vma, haddr, pmd);
2880 spin_unlock(ptl);
2881 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2882 return;
2883 }
2884 page = pmd_page(*pmd);
2885 VM_BUG_ON_PAGE(!page_count(page), page);
2886 get_page(page);
2887 spin_unlock(ptl);
2888 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2889
2890 split_huge_page(page);
2891
2892 put_page(page);
2893
2894 /*
2895 * We don't always have down_write of mmap_sem here: a racing
2896 * do_huge_pmd_wp_page() might have copied-on-write to another
2897 * huge page before our split_huge_page() got the anon_vma lock.
2898 */
2899 if (unlikely(pmd_trans_huge(*pmd)))
2900 goto again;
2901 }
2902
2903 void split_huge_page_pmd_mm(struct mm_struct *mm, unsigned long address,
2904 pmd_t *pmd)
2905 {
2906 struct vm_area_struct *vma;
2907
2908 vma = find_vma(mm, address);
2909 BUG_ON(vma == NULL);
2910 split_huge_page_pmd(vma, address, pmd);
2911 }
2912
2913 static void split_huge_page_address(struct mm_struct *mm,
2914 unsigned long address)
2915 {
2916 pgd_t *pgd;
2917 pud_t *pud;
2918 pmd_t *pmd;
2919
2920 VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
2921
2922 pgd = pgd_offset(mm, address);
2923 if (!pgd_present(*pgd))
2924 return;
2925
2926 pud = pud_offset(pgd, address);
2927 if (!pud_present(*pud))
2928 return;
2929
2930 pmd = pmd_offset(pud, address);
2931 if (!pmd_present(*pmd))
2932 return;
2933 /*
2934 * Caller holds the mmap_sem write mode, so a huge pmd cannot
2935 * materialize from under us.
2936 */
2937 split_huge_page_pmd_mm(mm, address, pmd);
2938 }
2939
2940 void __vma_adjust_trans_huge(struct vm_area_struct *vma,
2941 unsigned long start,
2942 unsigned long end,
2943 long adjust_next)
2944 {
2945 /*
2946 * If the new start address isn't hpage aligned and it could
2947 * previously contain an hugepage: check if we need to split
2948 * an huge pmd.
2949 */
2950 if (start & ~HPAGE_PMD_MASK &&
2951 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2952 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2953 split_huge_page_address(vma->vm_mm, start);
2954
2955 /*
2956 * If the new end address isn't hpage aligned and it could
2957 * previously contain an hugepage: check if we need to split
2958 * an huge pmd.
2959 */
2960 if (end & ~HPAGE_PMD_MASK &&
2961 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2962 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2963 split_huge_page_address(vma->vm_mm, end);
2964
2965 /*
2966 * If we're also updating the vma->vm_next->vm_start, if the new
2967 * vm_next->vm_start isn't page aligned and it could previously
2968 * contain an hugepage: check if we need to split an huge pmd.
2969 */
2970 if (adjust_next > 0) {
2971 struct vm_area_struct *next = vma->vm_next;
2972 unsigned long nstart = next->vm_start;
2973 nstart += adjust_next << PAGE_SHIFT;
2974 if (nstart & ~HPAGE_PMD_MASK &&
2975 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2976 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2977 split_huge_page_address(next->vm_mm, nstart);
2978 }
2979 }
This page took 0.088254 seconds and 6 git commands to generate.