khugepaged: recheck pmd after mmap_sem re-acquired
[deliverable/linux.git] / mm / huge_memory.c
1 /*
2 * Copyright (C) 2009 Red Hat, Inc.
3 *
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
6 */
7
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
10 #include <linux/mm.h>
11 #include <linux/sched.h>
12 #include <linux/highmem.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mmu_notifier.h>
15 #include <linux/rmap.h>
16 #include <linux/swap.h>
17 #include <linux/shrinker.h>
18 #include <linux/mm_inline.h>
19 #include <linux/swapops.h>
20 #include <linux/dax.h>
21 #include <linux/kthread.h>
22 #include <linux/khugepaged.h>
23 #include <linux/freezer.h>
24 #include <linux/pfn_t.h>
25 #include <linux/mman.h>
26 #include <linux/memremap.h>
27 #include <linux/pagemap.h>
28 #include <linux/debugfs.h>
29 #include <linux/migrate.h>
30 #include <linux/hashtable.h>
31 #include <linux/userfaultfd_k.h>
32 #include <linux/page_idle.h>
33
34 #include <asm/tlb.h>
35 #include <asm/pgalloc.h>
36 #include "internal.h"
37
38 enum scan_result {
39 SCAN_FAIL,
40 SCAN_SUCCEED,
41 SCAN_PMD_NULL,
42 SCAN_EXCEED_NONE_PTE,
43 SCAN_PTE_NON_PRESENT,
44 SCAN_PAGE_RO,
45 SCAN_NO_REFERENCED_PAGE,
46 SCAN_PAGE_NULL,
47 SCAN_SCAN_ABORT,
48 SCAN_PAGE_COUNT,
49 SCAN_PAGE_LRU,
50 SCAN_PAGE_LOCK,
51 SCAN_PAGE_ANON,
52 SCAN_PAGE_COMPOUND,
53 SCAN_ANY_PROCESS,
54 SCAN_VMA_NULL,
55 SCAN_VMA_CHECK,
56 SCAN_ADDRESS_RANGE,
57 SCAN_SWAP_CACHE_PAGE,
58 SCAN_DEL_PAGE_LRU,
59 SCAN_ALLOC_HUGE_PAGE_FAIL,
60 SCAN_CGROUP_CHARGE_FAIL,
61 SCAN_EXCEED_SWAP_PTE
62 };
63
64 #define CREATE_TRACE_POINTS
65 #include <trace/events/huge_memory.h>
66
67 /*
68 * By default transparent hugepage support is disabled in order that avoid
69 * to risk increase the memory footprint of applications without a guaranteed
70 * benefit. When transparent hugepage support is enabled, is for all mappings,
71 * and khugepaged scans all mappings.
72 * Defrag is invoked by khugepaged hugepage allocations and by page faults
73 * for all hugepage allocations.
74 */
75 unsigned long transparent_hugepage_flags __read_mostly =
76 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
77 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
78 #endif
79 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
80 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
81 #endif
82 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
83 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
84 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
85
86 /* default scan 8*512 pte (or vmas) every 30 second */
87 static unsigned int khugepaged_pages_to_scan __read_mostly;
88 static unsigned int khugepaged_pages_collapsed;
89 static unsigned int khugepaged_full_scans;
90 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
91 /* during fragmentation poll the hugepage allocator once every minute */
92 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
93 static unsigned long khugepaged_sleep_expire;
94 static struct task_struct *khugepaged_thread __read_mostly;
95 static DEFINE_MUTEX(khugepaged_mutex);
96 static DEFINE_SPINLOCK(khugepaged_mm_lock);
97 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
98 /*
99 * default collapse hugepages if there is at least one pte mapped like
100 * it would have happened if the vma was large enough during page
101 * fault.
102 */
103 static unsigned int khugepaged_max_ptes_none __read_mostly;
104 static unsigned int khugepaged_max_ptes_swap __read_mostly;
105
106 static int khugepaged(void *none);
107 static int khugepaged_slab_init(void);
108 static void khugepaged_slab_exit(void);
109
110 #define MM_SLOTS_HASH_BITS 10
111 static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
112
113 static struct kmem_cache *mm_slot_cache __read_mostly;
114
115 /**
116 * struct mm_slot - hash lookup from mm to mm_slot
117 * @hash: hash collision list
118 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
119 * @mm: the mm that this information is valid for
120 */
121 struct mm_slot {
122 struct hlist_node hash;
123 struct list_head mm_node;
124 struct mm_struct *mm;
125 };
126
127 /**
128 * struct khugepaged_scan - cursor for scanning
129 * @mm_head: the head of the mm list to scan
130 * @mm_slot: the current mm_slot we are scanning
131 * @address: the next address inside that to be scanned
132 *
133 * There is only the one khugepaged_scan instance of this cursor structure.
134 */
135 struct khugepaged_scan {
136 struct list_head mm_head;
137 struct mm_slot *mm_slot;
138 unsigned long address;
139 };
140 static struct khugepaged_scan khugepaged_scan = {
141 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
142 };
143
144 static struct shrinker deferred_split_shrinker;
145
146 static void set_recommended_min_free_kbytes(void)
147 {
148 struct zone *zone;
149 int nr_zones = 0;
150 unsigned long recommended_min;
151
152 for_each_populated_zone(zone)
153 nr_zones++;
154
155 /* Ensure 2 pageblocks are free to assist fragmentation avoidance */
156 recommended_min = pageblock_nr_pages * nr_zones * 2;
157
158 /*
159 * Make sure that on average at least two pageblocks are almost free
160 * of another type, one for a migratetype to fall back to and a
161 * second to avoid subsequent fallbacks of other types There are 3
162 * MIGRATE_TYPES we care about.
163 */
164 recommended_min += pageblock_nr_pages * nr_zones *
165 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
166
167 /* don't ever allow to reserve more than 5% of the lowmem */
168 recommended_min = min(recommended_min,
169 (unsigned long) nr_free_buffer_pages() / 20);
170 recommended_min <<= (PAGE_SHIFT-10);
171
172 if (recommended_min > min_free_kbytes) {
173 if (user_min_free_kbytes >= 0)
174 pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n",
175 min_free_kbytes, recommended_min);
176
177 min_free_kbytes = recommended_min;
178 }
179 setup_per_zone_wmarks();
180 }
181
182 static int start_stop_khugepaged(void)
183 {
184 int err = 0;
185 if (khugepaged_enabled()) {
186 if (!khugepaged_thread)
187 khugepaged_thread = kthread_run(khugepaged, NULL,
188 "khugepaged");
189 if (IS_ERR(khugepaged_thread)) {
190 pr_err("khugepaged: kthread_run(khugepaged) failed\n");
191 err = PTR_ERR(khugepaged_thread);
192 khugepaged_thread = NULL;
193 goto fail;
194 }
195
196 if (!list_empty(&khugepaged_scan.mm_head))
197 wake_up_interruptible(&khugepaged_wait);
198
199 set_recommended_min_free_kbytes();
200 } else if (khugepaged_thread) {
201 kthread_stop(khugepaged_thread);
202 khugepaged_thread = NULL;
203 }
204 fail:
205 return err;
206 }
207
208 static atomic_t huge_zero_refcount;
209 struct page *huge_zero_page __read_mostly;
210
211 struct page *get_huge_zero_page(void)
212 {
213 struct page *zero_page;
214 retry:
215 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
216 return READ_ONCE(huge_zero_page);
217
218 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
219 HPAGE_PMD_ORDER);
220 if (!zero_page) {
221 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
222 return NULL;
223 }
224 count_vm_event(THP_ZERO_PAGE_ALLOC);
225 preempt_disable();
226 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
227 preempt_enable();
228 __free_pages(zero_page, compound_order(zero_page));
229 goto retry;
230 }
231
232 /* We take additional reference here. It will be put back by shrinker */
233 atomic_set(&huge_zero_refcount, 2);
234 preempt_enable();
235 return READ_ONCE(huge_zero_page);
236 }
237
238 void put_huge_zero_page(void)
239 {
240 /*
241 * Counter should never go to zero here. Only shrinker can put
242 * last reference.
243 */
244 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
245 }
246
247 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
248 struct shrink_control *sc)
249 {
250 /* we can free zero page only if last reference remains */
251 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
252 }
253
254 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
255 struct shrink_control *sc)
256 {
257 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
258 struct page *zero_page = xchg(&huge_zero_page, NULL);
259 BUG_ON(zero_page == NULL);
260 __free_pages(zero_page, compound_order(zero_page));
261 return HPAGE_PMD_NR;
262 }
263
264 return 0;
265 }
266
267 static struct shrinker huge_zero_page_shrinker = {
268 .count_objects = shrink_huge_zero_page_count,
269 .scan_objects = shrink_huge_zero_page_scan,
270 .seeks = DEFAULT_SEEKS,
271 };
272
273 #ifdef CONFIG_SYSFS
274
275 static ssize_t triple_flag_store(struct kobject *kobj,
276 struct kobj_attribute *attr,
277 const char *buf, size_t count,
278 enum transparent_hugepage_flag enabled,
279 enum transparent_hugepage_flag deferred,
280 enum transparent_hugepage_flag req_madv)
281 {
282 if (!memcmp("defer", buf,
283 min(sizeof("defer")-1, count))) {
284 if (enabled == deferred)
285 return -EINVAL;
286 clear_bit(enabled, &transparent_hugepage_flags);
287 clear_bit(req_madv, &transparent_hugepage_flags);
288 set_bit(deferred, &transparent_hugepage_flags);
289 } else if (!memcmp("always", buf,
290 min(sizeof("always")-1, count))) {
291 clear_bit(deferred, &transparent_hugepage_flags);
292 clear_bit(req_madv, &transparent_hugepage_flags);
293 set_bit(enabled, &transparent_hugepage_flags);
294 } else if (!memcmp("madvise", buf,
295 min(sizeof("madvise")-1, count))) {
296 clear_bit(enabled, &transparent_hugepage_flags);
297 clear_bit(deferred, &transparent_hugepage_flags);
298 set_bit(req_madv, &transparent_hugepage_flags);
299 } else if (!memcmp("never", buf,
300 min(sizeof("never")-1, count))) {
301 clear_bit(enabled, &transparent_hugepage_flags);
302 clear_bit(req_madv, &transparent_hugepage_flags);
303 clear_bit(deferred, &transparent_hugepage_flags);
304 } else
305 return -EINVAL;
306
307 return count;
308 }
309
310 static ssize_t enabled_show(struct kobject *kobj,
311 struct kobj_attribute *attr, char *buf)
312 {
313 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
314 return sprintf(buf, "[always] madvise never\n");
315 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
316 return sprintf(buf, "always [madvise] never\n");
317 else
318 return sprintf(buf, "always madvise [never]\n");
319 }
320
321 static ssize_t enabled_store(struct kobject *kobj,
322 struct kobj_attribute *attr,
323 const char *buf, size_t count)
324 {
325 ssize_t ret;
326
327 ret = triple_flag_store(kobj, attr, buf, count,
328 TRANSPARENT_HUGEPAGE_FLAG,
329 TRANSPARENT_HUGEPAGE_FLAG,
330 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
331
332 if (ret > 0) {
333 int err;
334
335 mutex_lock(&khugepaged_mutex);
336 err = start_stop_khugepaged();
337 mutex_unlock(&khugepaged_mutex);
338
339 if (err)
340 ret = err;
341 }
342
343 return ret;
344 }
345 static struct kobj_attribute enabled_attr =
346 __ATTR(enabled, 0644, enabled_show, enabled_store);
347
348 static ssize_t single_flag_show(struct kobject *kobj,
349 struct kobj_attribute *attr, char *buf,
350 enum transparent_hugepage_flag flag)
351 {
352 return sprintf(buf, "%d\n",
353 !!test_bit(flag, &transparent_hugepage_flags));
354 }
355
356 static ssize_t single_flag_store(struct kobject *kobj,
357 struct kobj_attribute *attr,
358 const char *buf, size_t count,
359 enum transparent_hugepage_flag flag)
360 {
361 unsigned long value;
362 int ret;
363
364 ret = kstrtoul(buf, 10, &value);
365 if (ret < 0)
366 return ret;
367 if (value > 1)
368 return -EINVAL;
369
370 if (value)
371 set_bit(flag, &transparent_hugepage_flags);
372 else
373 clear_bit(flag, &transparent_hugepage_flags);
374
375 return count;
376 }
377
378 /*
379 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
380 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
381 * memory just to allocate one more hugepage.
382 */
383 static ssize_t defrag_show(struct kobject *kobj,
384 struct kobj_attribute *attr, char *buf)
385 {
386 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
387 return sprintf(buf, "[always] defer madvise never\n");
388 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
389 return sprintf(buf, "always [defer] madvise never\n");
390 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
391 return sprintf(buf, "always defer [madvise] never\n");
392 else
393 return sprintf(buf, "always defer madvise [never]\n");
394
395 }
396 static ssize_t defrag_store(struct kobject *kobj,
397 struct kobj_attribute *attr,
398 const char *buf, size_t count)
399 {
400 return triple_flag_store(kobj, attr, buf, count,
401 TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
402 TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
403 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
404 }
405 static struct kobj_attribute defrag_attr =
406 __ATTR(defrag, 0644, defrag_show, defrag_store);
407
408 static ssize_t use_zero_page_show(struct kobject *kobj,
409 struct kobj_attribute *attr, char *buf)
410 {
411 return single_flag_show(kobj, attr, buf,
412 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
413 }
414 static ssize_t use_zero_page_store(struct kobject *kobj,
415 struct kobj_attribute *attr, const char *buf, size_t count)
416 {
417 return single_flag_store(kobj, attr, buf, count,
418 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
419 }
420 static struct kobj_attribute use_zero_page_attr =
421 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
422 #ifdef CONFIG_DEBUG_VM
423 static ssize_t debug_cow_show(struct kobject *kobj,
424 struct kobj_attribute *attr, char *buf)
425 {
426 return single_flag_show(kobj, attr, buf,
427 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
428 }
429 static ssize_t debug_cow_store(struct kobject *kobj,
430 struct kobj_attribute *attr,
431 const char *buf, size_t count)
432 {
433 return single_flag_store(kobj, attr, buf, count,
434 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
435 }
436 static struct kobj_attribute debug_cow_attr =
437 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
438 #endif /* CONFIG_DEBUG_VM */
439
440 static struct attribute *hugepage_attr[] = {
441 &enabled_attr.attr,
442 &defrag_attr.attr,
443 &use_zero_page_attr.attr,
444 #ifdef CONFIG_DEBUG_VM
445 &debug_cow_attr.attr,
446 #endif
447 NULL,
448 };
449
450 static struct attribute_group hugepage_attr_group = {
451 .attrs = hugepage_attr,
452 };
453
454 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
455 struct kobj_attribute *attr,
456 char *buf)
457 {
458 return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
459 }
460
461 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
462 struct kobj_attribute *attr,
463 const char *buf, size_t count)
464 {
465 unsigned long msecs;
466 int err;
467
468 err = kstrtoul(buf, 10, &msecs);
469 if (err || msecs > UINT_MAX)
470 return -EINVAL;
471
472 khugepaged_scan_sleep_millisecs = msecs;
473 khugepaged_sleep_expire = 0;
474 wake_up_interruptible(&khugepaged_wait);
475
476 return count;
477 }
478 static struct kobj_attribute scan_sleep_millisecs_attr =
479 __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
480 scan_sleep_millisecs_store);
481
482 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
483 struct kobj_attribute *attr,
484 char *buf)
485 {
486 return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
487 }
488
489 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
490 struct kobj_attribute *attr,
491 const char *buf, size_t count)
492 {
493 unsigned long msecs;
494 int err;
495
496 err = kstrtoul(buf, 10, &msecs);
497 if (err || msecs > UINT_MAX)
498 return -EINVAL;
499
500 khugepaged_alloc_sleep_millisecs = msecs;
501 khugepaged_sleep_expire = 0;
502 wake_up_interruptible(&khugepaged_wait);
503
504 return count;
505 }
506 static struct kobj_attribute alloc_sleep_millisecs_attr =
507 __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
508 alloc_sleep_millisecs_store);
509
510 static ssize_t pages_to_scan_show(struct kobject *kobj,
511 struct kobj_attribute *attr,
512 char *buf)
513 {
514 return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
515 }
516 static ssize_t pages_to_scan_store(struct kobject *kobj,
517 struct kobj_attribute *attr,
518 const char *buf, size_t count)
519 {
520 int err;
521 unsigned long pages;
522
523 err = kstrtoul(buf, 10, &pages);
524 if (err || !pages || pages > UINT_MAX)
525 return -EINVAL;
526
527 khugepaged_pages_to_scan = pages;
528
529 return count;
530 }
531 static struct kobj_attribute pages_to_scan_attr =
532 __ATTR(pages_to_scan, 0644, pages_to_scan_show,
533 pages_to_scan_store);
534
535 static ssize_t pages_collapsed_show(struct kobject *kobj,
536 struct kobj_attribute *attr,
537 char *buf)
538 {
539 return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
540 }
541 static struct kobj_attribute pages_collapsed_attr =
542 __ATTR_RO(pages_collapsed);
543
544 static ssize_t full_scans_show(struct kobject *kobj,
545 struct kobj_attribute *attr,
546 char *buf)
547 {
548 return sprintf(buf, "%u\n", khugepaged_full_scans);
549 }
550 static struct kobj_attribute full_scans_attr =
551 __ATTR_RO(full_scans);
552
553 static ssize_t khugepaged_defrag_show(struct kobject *kobj,
554 struct kobj_attribute *attr, char *buf)
555 {
556 return single_flag_show(kobj, attr, buf,
557 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
558 }
559 static ssize_t khugepaged_defrag_store(struct kobject *kobj,
560 struct kobj_attribute *attr,
561 const char *buf, size_t count)
562 {
563 return single_flag_store(kobj, attr, buf, count,
564 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
565 }
566 static struct kobj_attribute khugepaged_defrag_attr =
567 __ATTR(defrag, 0644, khugepaged_defrag_show,
568 khugepaged_defrag_store);
569
570 /*
571 * max_ptes_none controls if khugepaged should collapse hugepages over
572 * any unmapped ptes in turn potentially increasing the memory
573 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
574 * reduce the available free memory in the system as it
575 * runs. Increasing max_ptes_none will instead potentially reduce the
576 * free memory in the system during the khugepaged scan.
577 */
578 static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
579 struct kobj_attribute *attr,
580 char *buf)
581 {
582 return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
583 }
584 static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
585 struct kobj_attribute *attr,
586 const char *buf, size_t count)
587 {
588 int err;
589 unsigned long max_ptes_none;
590
591 err = kstrtoul(buf, 10, &max_ptes_none);
592 if (err || max_ptes_none > HPAGE_PMD_NR-1)
593 return -EINVAL;
594
595 khugepaged_max_ptes_none = max_ptes_none;
596
597 return count;
598 }
599 static struct kobj_attribute khugepaged_max_ptes_none_attr =
600 __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
601 khugepaged_max_ptes_none_store);
602
603 static ssize_t khugepaged_max_ptes_swap_show(struct kobject *kobj,
604 struct kobj_attribute *attr,
605 char *buf)
606 {
607 return sprintf(buf, "%u\n", khugepaged_max_ptes_swap);
608 }
609
610 static ssize_t khugepaged_max_ptes_swap_store(struct kobject *kobj,
611 struct kobj_attribute *attr,
612 const char *buf, size_t count)
613 {
614 int err;
615 unsigned long max_ptes_swap;
616
617 err = kstrtoul(buf, 10, &max_ptes_swap);
618 if (err || max_ptes_swap > HPAGE_PMD_NR-1)
619 return -EINVAL;
620
621 khugepaged_max_ptes_swap = max_ptes_swap;
622
623 return count;
624 }
625
626 static struct kobj_attribute khugepaged_max_ptes_swap_attr =
627 __ATTR(max_ptes_swap, 0644, khugepaged_max_ptes_swap_show,
628 khugepaged_max_ptes_swap_store);
629
630 static struct attribute *khugepaged_attr[] = {
631 &khugepaged_defrag_attr.attr,
632 &khugepaged_max_ptes_none_attr.attr,
633 &pages_to_scan_attr.attr,
634 &pages_collapsed_attr.attr,
635 &full_scans_attr.attr,
636 &scan_sleep_millisecs_attr.attr,
637 &alloc_sleep_millisecs_attr.attr,
638 &khugepaged_max_ptes_swap_attr.attr,
639 NULL,
640 };
641
642 static struct attribute_group khugepaged_attr_group = {
643 .attrs = khugepaged_attr,
644 .name = "khugepaged",
645 };
646
647 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
648 {
649 int err;
650
651 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
652 if (unlikely(!*hugepage_kobj)) {
653 pr_err("failed to create transparent hugepage kobject\n");
654 return -ENOMEM;
655 }
656
657 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
658 if (err) {
659 pr_err("failed to register transparent hugepage group\n");
660 goto delete_obj;
661 }
662
663 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
664 if (err) {
665 pr_err("failed to register transparent hugepage group\n");
666 goto remove_hp_group;
667 }
668
669 return 0;
670
671 remove_hp_group:
672 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
673 delete_obj:
674 kobject_put(*hugepage_kobj);
675 return err;
676 }
677
678 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
679 {
680 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
681 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
682 kobject_put(hugepage_kobj);
683 }
684 #else
685 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
686 {
687 return 0;
688 }
689
690 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
691 {
692 }
693 #endif /* CONFIG_SYSFS */
694
695 static int __init hugepage_init(void)
696 {
697 int err;
698 struct kobject *hugepage_kobj;
699
700 if (!has_transparent_hugepage()) {
701 transparent_hugepage_flags = 0;
702 return -EINVAL;
703 }
704
705 khugepaged_pages_to_scan = HPAGE_PMD_NR * 8;
706 khugepaged_max_ptes_none = HPAGE_PMD_NR - 1;
707 khugepaged_max_ptes_swap = HPAGE_PMD_NR / 8;
708 /*
709 * hugepages can't be allocated by the buddy allocator
710 */
711 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
712 /*
713 * we use page->mapping and page->index in second tail page
714 * as list_head: assuming THP order >= 2
715 */
716 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
717
718 err = hugepage_init_sysfs(&hugepage_kobj);
719 if (err)
720 goto err_sysfs;
721
722 err = khugepaged_slab_init();
723 if (err)
724 goto err_slab;
725
726 err = register_shrinker(&huge_zero_page_shrinker);
727 if (err)
728 goto err_hzp_shrinker;
729 err = register_shrinker(&deferred_split_shrinker);
730 if (err)
731 goto err_split_shrinker;
732
733 /*
734 * By default disable transparent hugepages on smaller systems,
735 * where the extra memory used could hurt more than TLB overhead
736 * is likely to save. The admin can still enable it through /sys.
737 */
738 if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
739 transparent_hugepage_flags = 0;
740 return 0;
741 }
742
743 err = start_stop_khugepaged();
744 if (err)
745 goto err_khugepaged;
746
747 return 0;
748 err_khugepaged:
749 unregister_shrinker(&deferred_split_shrinker);
750 err_split_shrinker:
751 unregister_shrinker(&huge_zero_page_shrinker);
752 err_hzp_shrinker:
753 khugepaged_slab_exit();
754 err_slab:
755 hugepage_exit_sysfs(hugepage_kobj);
756 err_sysfs:
757 return err;
758 }
759 subsys_initcall(hugepage_init);
760
761 static int __init setup_transparent_hugepage(char *str)
762 {
763 int ret = 0;
764 if (!str)
765 goto out;
766 if (!strcmp(str, "always")) {
767 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
768 &transparent_hugepage_flags);
769 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
770 &transparent_hugepage_flags);
771 ret = 1;
772 } else if (!strcmp(str, "madvise")) {
773 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
774 &transparent_hugepage_flags);
775 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
776 &transparent_hugepage_flags);
777 ret = 1;
778 } else if (!strcmp(str, "never")) {
779 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
780 &transparent_hugepage_flags);
781 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
782 &transparent_hugepage_flags);
783 ret = 1;
784 }
785 out:
786 if (!ret)
787 pr_warn("transparent_hugepage= cannot parse, ignored\n");
788 return ret;
789 }
790 __setup("transparent_hugepage=", setup_transparent_hugepage);
791
792 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
793 {
794 if (likely(vma->vm_flags & VM_WRITE))
795 pmd = pmd_mkwrite(pmd);
796 return pmd;
797 }
798
799 static inline pmd_t mk_huge_pmd(struct page *page, pgprot_t prot)
800 {
801 return pmd_mkhuge(mk_pmd(page, prot));
802 }
803
804 static inline struct list_head *page_deferred_list(struct page *page)
805 {
806 /*
807 * ->lru in the tail pages is occupied by compound_head.
808 * Let's use ->mapping + ->index in the second tail page as list_head.
809 */
810 return (struct list_head *)&page[2].mapping;
811 }
812
813 void prep_transhuge_page(struct page *page)
814 {
815 /*
816 * we use page->mapping and page->indexlru in second tail page
817 * as list_head: assuming THP order >= 2
818 */
819
820 INIT_LIST_HEAD(page_deferred_list(page));
821 set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
822 }
823
824 static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
825 struct vm_area_struct *vma,
826 unsigned long address, pmd_t *pmd,
827 struct page *page, gfp_t gfp,
828 unsigned int flags)
829 {
830 struct mem_cgroup *memcg;
831 pgtable_t pgtable;
832 spinlock_t *ptl;
833 unsigned long haddr = address & HPAGE_PMD_MASK;
834
835 VM_BUG_ON_PAGE(!PageCompound(page), page);
836
837 if (mem_cgroup_try_charge(page, mm, gfp, &memcg, true)) {
838 put_page(page);
839 count_vm_event(THP_FAULT_FALLBACK);
840 return VM_FAULT_FALLBACK;
841 }
842
843 pgtable = pte_alloc_one(mm, haddr);
844 if (unlikely(!pgtable)) {
845 mem_cgroup_cancel_charge(page, memcg, true);
846 put_page(page);
847 return VM_FAULT_OOM;
848 }
849
850 clear_huge_page(page, haddr, HPAGE_PMD_NR);
851 /*
852 * The memory barrier inside __SetPageUptodate makes sure that
853 * clear_huge_page writes become visible before the set_pmd_at()
854 * write.
855 */
856 __SetPageUptodate(page);
857
858 ptl = pmd_lock(mm, pmd);
859 if (unlikely(!pmd_none(*pmd))) {
860 spin_unlock(ptl);
861 mem_cgroup_cancel_charge(page, memcg, true);
862 put_page(page);
863 pte_free(mm, pgtable);
864 } else {
865 pmd_t entry;
866
867 /* Deliver the page fault to userland */
868 if (userfaultfd_missing(vma)) {
869 int ret;
870
871 spin_unlock(ptl);
872 mem_cgroup_cancel_charge(page, memcg, true);
873 put_page(page);
874 pte_free(mm, pgtable);
875 ret = handle_userfault(vma, address, flags,
876 VM_UFFD_MISSING);
877 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
878 return ret;
879 }
880
881 entry = mk_huge_pmd(page, vma->vm_page_prot);
882 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
883 page_add_new_anon_rmap(page, vma, haddr, true);
884 mem_cgroup_commit_charge(page, memcg, false, true);
885 lru_cache_add_active_or_unevictable(page, vma);
886 pgtable_trans_huge_deposit(mm, pmd, pgtable);
887 set_pmd_at(mm, haddr, pmd, entry);
888 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
889 atomic_long_inc(&mm->nr_ptes);
890 spin_unlock(ptl);
891 count_vm_event(THP_FAULT_ALLOC);
892 }
893
894 return 0;
895 }
896
897 /*
898 * If THP is set to always then directly reclaim/compact as necessary
899 * If set to defer then do no reclaim and defer to khugepaged
900 * If set to madvise and the VMA is flagged then directly reclaim/compact
901 */
902 static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
903 {
904 gfp_t reclaim_flags = 0;
905
906 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags) &&
907 (vma->vm_flags & VM_HUGEPAGE))
908 reclaim_flags = __GFP_DIRECT_RECLAIM;
909 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
910 reclaim_flags = __GFP_KSWAPD_RECLAIM;
911 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
912 reclaim_flags = __GFP_DIRECT_RECLAIM;
913
914 return GFP_TRANSHUGE | reclaim_flags;
915 }
916
917 /* Defrag for khugepaged will enter direct reclaim/compaction if necessary */
918 static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void)
919 {
920 return GFP_TRANSHUGE | (khugepaged_defrag() ? __GFP_DIRECT_RECLAIM : 0);
921 }
922
923 /* Caller must hold page table lock. */
924 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
925 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
926 struct page *zero_page)
927 {
928 pmd_t entry;
929 if (!pmd_none(*pmd))
930 return false;
931 entry = mk_pmd(zero_page, vma->vm_page_prot);
932 entry = pmd_mkhuge(entry);
933 if (pgtable)
934 pgtable_trans_huge_deposit(mm, pmd, pgtable);
935 set_pmd_at(mm, haddr, pmd, entry);
936 atomic_long_inc(&mm->nr_ptes);
937 return true;
938 }
939
940 int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
941 unsigned long address, pmd_t *pmd,
942 unsigned int flags)
943 {
944 gfp_t gfp;
945 struct page *page;
946 unsigned long haddr = address & HPAGE_PMD_MASK;
947
948 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
949 return VM_FAULT_FALLBACK;
950 if (unlikely(anon_vma_prepare(vma)))
951 return VM_FAULT_OOM;
952 if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
953 return VM_FAULT_OOM;
954 if (!(flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(mm) &&
955 transparent_hugepage_use_zero_page()) {
956 spinlock_t *ptl;
957 pgtable_t pgtable;
958 struct page *zero_page;
959 bool set;
960 int ret;
961 pgtable = pte_alloc_one(mm, haddr);
962 if (unlikely(!pgtable))
963 return VM_FAULT_OOM;
964 zero_page = get_huge_zero_page();
965 if (unlikely(!zero_page)) {
966 pte_free(mm, pgtable);
967 count_vm_event(THP_FAULT_FALLBACK);
968 return VM_FAULT_FALLBACK;
969 }
970 ptl = pmd_lock(mm, pmd);
971 ret = 0;
972 set = false;
973 if (pmd_none(*pmd)) {
974 if (userfaultfd_missing(vma)) {
975 spin_unlock(ptl);
976 ret = handle_userfault(vma, address, flags,
977 VM_UFFD_MISSING);
978 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
979 } else {
980 set_huge_zero_page(pgtable, mm, vma,
981 haddr, pmd,
982 zero_page);
983 spin_unlock(ptl);
984 set = true;
985 }
986 } else
987 spin_unlock(ptl);
988 if (!set) {
989 pte_free(mm, pgtable);
990 put_huge_zero_page();
991 }
992 return ret;
993 }
994 gfp = alloc_hugepage_direct_gfpmask(vma);
995 page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
996 if (unlikely(!page)) {
997 count_vm_event(THP_FAULT_FALLBACK);
998 return VM_FAULT_FALLBACK;
999 }
1000 prep_transhuge_page(page);
1001 return __do_huge_pmd_anonymous_page(mm, vma, address, pmd, page, gfp,
1002 flags);
1003 }
1004
1005 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
1006 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write)
1007 {
1008 struct mm_struct *mm = vma->vm_mm;
1009 pmd_t entry;
1010 spinlock_t *ptl;
1011
1012 ptl = pmd_lock(mm, pmd);
1013 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
1014 if (pfn_t_devmap(pfn))
1015 entry = pmd_mkdevmap(entry);
1016 if (write) {
1017 entry = pmd_mkyoung(pmd_mkdirty(entry));
1018 entry = maybe_pmd_mkwrite(entry, vma);
1019 }
1020 set_pmd_at(mm, addr, pmd, entry);
1021 update_mmu_cache_pmd(vma, addr, pmd);
1022 spin_unlock(ptl);
1023 }
1024
1025 int vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
1026 pmd_t *pmd, pfn_t pfn, bool write)
1027 {
1028 pgprot_t pgprot = vma->vm_page_prot;
1029 /*
1030 * If we had pmd_special, we could avoid all these restrictions,
1031 * but we need to be consistent with PTEs and architectures that
1032 * can't support a 'special' bit.
1033 */
1034 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1035 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1036 (VM_PFNMAP|VM_MIXEDMAP));
1037 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1038 BUG_ON(!pfn_t_devmap(pfn));
1039
1040 if (addr < vma->vm_start || addr >= vma->vm_end)
1041 return VM_FAULT_SIGBUS;
1042 if (track_pfn_insert(vma, &pgprot, pfn))
1043 return VM_FAULT_SIGBUS;
1044 insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write);
1045 return VM_FAULT_NOPAGE;
1046 }
1047 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
1048
1049 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
1050 pmd_t *pmd)
1051 {
1052 pmd_t _pmd;
1053
1054 /*
1055 * We should set the dirty bit only for FOLL_WRITE but for now
1056 * the dirty bit in the pmd is meaningless. And if the dirty
1057 * bit will become meaningful and we'll only set it with
1058 * FOLL_WRITE, an atomic set_bit will be required on the pmd to
1059 * set the young bit, instead of the current set_pmd_at.
1060 */
1061 _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
1062 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
1063 pmd, _pmd, 1))
1064 update_mmu_cache_pmd(vma, addr, pmd);
1065 }
1066
1067 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
1068 pmd_t *pmd, int flags)
1069 {
1070 unsigned long pfn = pmd_pfn(*pmd);
1071 struct mm_struct *mm = vma->vm_mm;
1072 struct dev_pagemap *pgmap;
1073 struct page *page;
1074
1075 assert_spin_locked(pmd_lockptr(mm, pmd));
1076
1077 if (flags & FOLL_WRITE && !pmd_write(*pmd))
1078 return NULL;
1079
1080 if (pmd_present(*pmd) && pmd_devmap(*pmd))
1081 /* pass */;
1082 else
1083 return NULL;
1084
1085 if (flags & FOLL_TOUCH)
1086 touch_pmd(vma, addr, pmd);
1087
1088 /*
1089 * device mapped pages can only be returned if the
1090 * caller will manage the page reference count.
1091 */
1092 if (!(flags & FOLL_GET))
1093 return ERR_PTR(-EEXIST);
1094
1095 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
1096 pgmap = get_dev_pagemap(pfn, NULL);
1097 if (!pgmap)
1098 return ERR_PTR(-EFAULT);
1099 page = pfn_to_page(pfn);
1100 get_page(page);
1101 put_dev_pagemap(pgmap);
1102
1103 return page;
1104 }
1105
1106 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1107 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1108 struct vm_area_struct *vma)
1109 {
1110 spinlock_t *dst_ptl, *src_ptl;
1111 struct page *src_page;
1112 pmd_t pmd;
1113 pgtable_t pgtable = NULL;
1114 int ret;
1115
1116 if (!vma_is_dax(vma)) {
1117 ret = -ENOMEM;
1118 pgtable = pte_alloc_one(dst_mm, addr);
1119 if (unlikely(!pgtable))
1120 goto out;
1121 }
1122
1123 dst_ptl = pmd_lock(dst_mm, dst_pmd);
1124 src_ptl = pmd_lockptr(src_mm, src_pmd);
1125 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1126
1127 ret = -EAGAIN;
1128 pmd = *src_pmd;
1129 if (unlikely(!pmd_trans_huge(pmd) && !pmd_devmap(pmd))) {
1130 pte_free(dst_mm, pgtable);
1131 goto out_unlock;
1132 }
1133 /*
1134 * When page table lock is held, the huge zero pmd should not be
1135 * under splitting since we don't split the page itself, only pmd to
1136 * a page table.
1137 */
1138 if (is_huge_zero_pmd(pmd)) {
1139 struct page *zero_page;
1140 /*
1141 * get_huge_zero_page() will never allocate a new page here,
1142 * since we already have a zero page to copy. It just takes a
1143 * reference.
1144 */
1145 zero_page = get_huge_zero_page();
1146 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
1147 zero_page);
1148 ret = 0;
1149 goto out_unlock;
1150 }
1151
1152 if (!vma_is_dax(vma)) {
1153 /* thp accounting separate from pmd_devmap accounting */
1154 src_page = pmd_page(pmd);
1155 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1156 get_page(src_page);
1157 page_dup_rmap(src_page, true);
1158 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1159 atomic_long_inc(&dst_mm->nr_ptes);
1160 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1161 }
1162
1163 pmdp_set_wrprotect(src_mm, addr, src_pmd);
1164 pmd = pmd_mkold(pmd_wrprotect(pmd));
1165 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1166
1167 ret = 0;
1168 out_unlock:
1169 spin_unlock(src_ptl);
1170 spin_unlock(dst_ptl);
1171 out:
1172 return ret;
1173 }
1174
1175 void huge_pmd_set_accessed(struct mm_struct *mm,
1176 struct vm_area_struct *vma,
1177 unsigned long address,
1178 pmd_t *pmd, pmd_t orig_pmd,
1179 int dirty)
1180 {
1181 spinlock_t *ptl;
1182 pmd_t entry;
1183 unsigned long haddr;
1184
1185 ptl = pmd_lock(mm, pmd);
1186 if (unlikely(!pmd_same(*pmd, orig_pmd)))
1187 goto unlock;
1188
1189 entry = pmd_mkyoung(orig_pmd);
1190 haddr = address & HPAGE_PMD_MASK;
1191 if (pmdp_set_access_flags(vma, haddr, pmd, entry, dirty))
1192 update_mmu_cache_pmd(vma, address, pmd);
1193
1194 unlock:
1195 spin_unlock(ptl);
1196 }
1197
1198 static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
1199 struct vm_area_struct *vma,
1200 unsigned long address,
1201 pmd_t *pmd, pmd_t orig_pmd,
1202 struct page *page,
1203 unsigned long haddr)
1204 {
1205 struct mem_cgroup *memcg;
1206 spinlock_t *ptl;
1207 pgtable_t pgtable;
1208 pmd_t _pmd;
1209 int ret = 0, i;
1210 struct page **pages;
1211 unsigned long mmun_start; /* For mmu_notifiers */
1212 unsigned long mmun_end; /* For mmu_notifiers */
1213
1214 pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
1215 GFP_KERNEL);
1216 if (unlikely(!pages)) {
1217 ret |= VM_FAULT_OOM;
1218 goto out;
1219 }
1220
1221 for (i = 0; i < HPAGE_PMD_NR; i++) {
1222 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
1223 __GFP_OTHER_NODE,
1224 vma, address, page_to_nid(page));
1225 if (unlikely(!pages[i] ||
1226 mem_cgroup_try_charge(pages[i], mm, GFP_KERNEL,
1227 &memcg, false))) {
1228 if (pages[i])
1229 put_page(pages[i]);
1230 while (--i >= 0) {
1231 memcg = (void *)page_private(pages[i]);
1232 set_page_private(pages[i], 0);
1233 mem_cgroup_cancel_charge(pages[i], memcg,
1234 false);
1235 put_page(pages[i]);
1236 }
1237 kfree(pages);
1238 ret |= VM_FAULT_OOM;
1239 goto out;
1240 }
1241 set_page_private(pages[i], (unsigned long)memcg);
1242 }
1243
1244 for (i = 0; i < HPAGE_PMD_NR; i++) {
1245 copy_user_highpage(pages[i], page + i,
1246 haddr + PAGE_SIZE * i, vma);
1247 __SetPageUptodate(pages[i]);
1248 cond_resched();
1249 }
1250
1251 mmun_start = haddr;
1252 mmun_end = haddr + HPAGE_PMD_SIZE;
1253 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1254
1255 ptl = pmd_lock(mm, pmd);
1256 if (unlikely(!pmd_same(*pmd, orig_pmd)))
1257 goto out_free_pages;
1258 VM_BUG_ON_PAGE(!PageHead(page), page);
1259
1260 pmdp_huge_clear_flush_notify(vma, haddr, pmd);
1261 /* leave pmd empty until pte is filled */
1262
1263 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1264 pmd_populate(mm, &_pmd, pgtable);
1265
1266 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1267 pte_t *pte, entry;
1268 entry = mk_pte(pages[i], vma->vm_page_prot);
1269 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1270 memcg = (void *)page_private(pages[i]);
1271 set_page_private(pages[i], 0);
1272 page_add_new_anon_rmap(pages[i], vma, haddr, false);
1273 mem_cgroup_commit_charge(pages[i], memcg, false, false);
1274 lru_cache_add_active_or_unevictable(pages[i], vma);
1275 pte = pte_offset_map(&_pmd, haddr);
1276 VM_BUG_ON(!pte_none(*pte));
1277 set_pte_at(mm, haddr, pte, entry);
1278 pte_unmap(pte);
1279 }
1280 kfree(pages);
1281
1282 smp_wmb(); /* make pte visible before pmd */
1283 pmd_populate(mm, pmd, pgtable);
1284 page_remove_rmap(page, true);
1285 spin_unlock(ptl);
1286
1287 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1288
1289 ret |= VM_FAULT_WRITE;
1290 put_page(page);
1291
1292 out:
1293 return ret;
1294
1295 out_free_pages:
1296 spin_unlock(ptl);
1297 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1298 for (i = 0; i < HPAGE_PMD_NR; i++) {
1299 memcg = (void *)page_private(pages[i]);
1300 set_page_private(pages[i], 0);
1301 mem_cgroup_cancel_charge(pages[i], memcg, false);
1302 put_page(pages[i]);
1303 }
1304 kfree(pages);
1305 goto out;
1306 }
1307
1308 int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1309 unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
1310 {
1311 spinlock_t *ptl;
1312 int ret = 0;
1313 struct page *page = NULL, *new_page;
1314 struct mem_cgroup *memcg;
1315 unsigned long haddr;
1316 unsigned long mmun_start; /* For mmu_notifiers */
1317 unsigned long mmun_end; /* For mmu_notifiers */
1318 gfp_t huge_gfp; /* for allocation and charge */
1319
1320 ptl = pmd_lockptr(mm, pmd);
1321 VM_BUG_ON_VMA(!vma->anon_vma, vma);
1322 haddr = address & HPAGE_PMD_MASK;
1323 if (is_huge_zero_pmd(orig_pmd))
1324 goto alloc;
1325 spin_lock(ptl);
1326 if (unlikely(!pmd_same(*pmd, orig_pmd)))
1327 goto out_unlock;
1328
1329 page = pmd_page(orig_pmd);
1330 VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1331 /*
1332 * We can only reuse the page if nobody else maps the huge page or it's
1333 * part.
1334 */
1335 if (page_trans_huge_mapcount(page, NULL) == 1) {
1336 pmd_t entry;
1337 entry = pmd_mkyoung(orig_pmd);
1338 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1339 if (pmdp_set_access_flags(vma, haddr, pmd, entry, 1))
1340 update_mmu_cache_pmd(vma, address, pmd);
1341 ret |= VM_FAULT_WRITE;
1342 goto out_unlock;
1343 }
1344 get_page(page);
1345 spin_unlock(ptl);
1346 alloc:
1347 if (transparent_hugepage_enabled(vma) &&
1348 !transparent_hugepage_debug_cow()) {
1349 huge_gfp = alloc_hugepage_direct_gfpmask(vma);
1350 new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
1351 } else
1352 new_page = NULL;
1353
1354 if (likely(new_page)) {
1355 prep_transhuge_page(new_page);
1356 } else {
1357 if (!page) {
1358 split_huge_pmd(vma, pmd, address);
1359 ret |= VM_FAULT_FALLBACK;
1360 } else {
1361 ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
1362 pmd, orig_pmd, page, haddr);
1363 if (ret & VM_FAULT_OOM) {
1364 split_huge_pmd(vma, pmd, address);
1365 ret |= VM_FAULT_FALLBACK;
1366 }
1367 put_page(page);
1368 }
1369 count_vm_event(THP_FAULT_FALLBACK);
1370 goto out;
1371 }
1372
1373 if (unlikely(mem_cgroup_try_charge(new_page, mm, huge_gfp, &memcg,
1374 true))) {
1375 put_page(new_page);
1376 if (page) {
1377 split_huge_pmd(vma, pmd, address);
1378 put_page(page);
1379 } else
1380 split_huge_pmd(vma, pmd, address);
1381 ret |= VM_FAULT_FALLBACK;
1382 count_vm_event(THP_FAULT_FALLBACK);
1383 goto out;
1384 }
1385
1386 count_vm_event(THP_FAULT_ALLOC);
1387
1388 if (!page)
1389 clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
1390 else
1391 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
1392 __SetPageUptodate(new_page);
1393
1394 mmun_start = haddr;
1395 mmun_end = haddr + HPAGE_PMD_SIZE;
1396 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1397
1398 spin_lock(ptl);
1399 if (page)
1400 put_page(page);
1401 if (unlikely(!pmd_same(*pmd, orig_pmd))) {
1402 spin_unlock(ptl);
1403 mem_cgroup_cancel_charge(new_page, memcg, true);
1404 put_page(new_page);
1405 goto out_mn;
1406 } else {
1407 pmd_t entry;
1408 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1409 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1410 pmdp_huge_clear_flush_notify(vma, haddr, pmd);
1411 page_add_new_anon_rmap(new_page, vma, haddr, true);
1412 mem_cgroup_commit_charge(new_page, memcg, false, true);
1413 lru_cache_add_active_or_unevictable(new_page, vma);
1414 set_pmd_at(mm, haddr, pmd, entry);
1415 update_mmu_cache_pmd(vma, address, pmd);
1416 if (!page) {
1417 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
1418 put_huge_zero_page();
1419 } else {
1420 VM_BUG_ON_PAGE(!PageHead(page), page);
1421 page_remove_rmap(page, true);
1422 put_page(page);
1423 }
1424 ret |= VM_FAULT_WRITE;
1425 }
1426 spin_unlock(ptl);
1427 out_mn:
1428 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1429 out:
1430 return ret;
1431 out_unlock:
1432 spin_unlock(ptl);
1433 return ret;
1434 }
1435
1436 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1437 unsigned long addr,
1438 pmd_t *pmd,
1439 unsigned int flags)
1440 {
1441 struct mm_struct *mm = vma->vm_mm;
1442 struct page *page = NULL;
1443
1444 assert_spin_locked(pmd_lockptr(mm, pmd));
1445
1446 if (flags & FOLL_WRITE && !pmd_write(*pmd))
1447 goto out;
1448
1449 /* Avoid dumping huge zero page */
1450 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1451 return ERR_PTR(-EFAULT);
1452
1453 /* Full NUMA hinting faults to serialise migration in fault paths */
1454 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1455 goto out;
1456
1457 page = pmd_page(*pmd);
1458 VM_BUG_ON_PAGE(!PageHead(page), page);
1459 if (flags & FOLL_TOUCH)
1460 touch_pmd(vma, addr, pmd);
1461 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1462 /*
1463 * We don't mlock() pte-mapped THPs. This way we can avoid
1464 * leaking mlocked pages into non-VM_LOCKED VMAs.
1465 *
1466 * In most cases the pmd is the only mapping of the page as we
1467 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1468 * writable private mappings in populate_vma_page_range().
1469 *
1470 * The only scenario when we have the page shared here is if we
1471 * mlocking read-only mapping shared over fork(). We skip
1472 * mlocking such pages.
1473 */
1474 if (compound_mapcount(page) == 1 && !PageDoubleMap(page) &&
1475 page->mapping && trylock_page(page)) {
1476 lru_add_drain();
1477 if (page->mapping)
1478 mlock_vma_page(page);
1479 unlock_page(page);
1480 }
1481 }
1482 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1483 VM_BUG_ON_PAGE(!PageCompound(page), page);
1484 if (flags & FOLL_GET)
1485 get_page(page);
1486
1487 out:
1488 return page;
1489 }
1490
1491 /* NUMA hinting page fault entry point for trans huge pmds */
1492 int do_huge_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
1493 unsigned long addr, pmd_t pmd, pmd_t *pmdp)
1494 {
1495 spinlock_t *ptl;
1496 struct anon_vma *anon_vma = NULL;
1497 struct page *page;
1498 unsigned long haddr = addr & HPAGE_PMD_MASK;
1499 int page_nid = -1, this_nid = numa_node_id();
1500 int target_nid, last_cpupid = -1;
1501 bool page_locked;
1502 bool migrated = false;
1503 bool was_writable;
1504 int flags = 0;
1505
1506 /* A PROT_NONE fault should not end up here */
1507 BUG_ON(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)));
1508
1509 ptl = pmd_lock(mm, pmdp);
1510 if (unlikely(!pmd_same(pmd, *pmdp)))
1511 goto out_unlock;
1512
1513 /*
1514 * If there are potential migrations, wait for completion and retry
1515 * without disrupting NUMA hinting information. Do not relock and
1516 * check_same as the page may no longer be mapped.
1517 */
1518 if (unlikely(pmd_trans_migrating(*pmdp))) {
1519 page = pmd_page(*pmdp);
1520 spin_unlock(ptl);
1521 wait_on_page_locked(page);
1522 goto out;
1523 }
1524
1525 page = pmd_page(pmd);
1526 BUG_ON(is_huge_zero_page(page));
1527 page_nid = page_to_nid(page);
1528 last_cpupid = page_cpupid_last(page);
1529 count_vm_numa_event(NUMA_HINT_FAULTS);
1530 if (page_nid == this_nid) {
1531 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1532 flags |= TNF_FAULT_LOCAL;
1533 }
1534
1535 /* See similar comment in do_numa_page for explanation */
1536 if (!(vma->vm_flags & VM_WRITE))
1537 flags |= TNF_NO_GROUP;
1538
1539 /*
1540 * Acquire the page lock to serialise THP migrations but avoid dropping
1541 * page_table_lock if at all possible
1542 */
1543 page_locked = trylock_page(page);
1544 target_nid = mpol_misplaced(page, vma, haddr);
1545 if (target_nid == -1) {
1546 /* If the page was locked, there are no parallel migrations */
1547 if (page_locked)
1548 goto clear_pmdnuma;
1549 }
1550
1551 /* Migration could have started since the pmd_trans_migrating check */
1552 if (!page_locked) {
1553 spin_unlock(ptl);
1554 wait_on_page_locked(page);
1555 page_nid = -1;
1556 goto out;
1557 }
1558
1559 /*
1560 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1561 * to serialises splits
1562 */
1563 get_page(page);
1564 spin_unlock(ptl);
1565 anon_vma = page_lock_anon_vma_read(page);
1566
1567 /* Confirm the PMD did not change while page_table_lock was released */
1568 spin_lock(ptl);
1569 if (unlikely(!pmd_same(pmd, *pmdp))) {
1570 unlock_page(page);
1571 put_page(page);
1572 page_nid = -1;
1573 goto out_unlock;
1574 }
1575
1576 /* Bail if we fail to protect against THP splits for any reason */
1577 if (unlikely(!anon_vma)) {
1578 put_page(page);
1579 page_nid = -1;
1580 goto clear_pmdnuma;
1581 }
1582
1583 /*
1584 * Migrate the THP to the requested node, returns with page unlocked
1585 * and access rights restored.
1586 */
1587 spin_unlock(ptl);
1588 migrated = migrate_misplaced_transhuge_page(mm, vma,
1589 pmdp, pmd, addr, page, target_nid);
1590 if (migrated) {
1591 flags |= TNF_MIGRATED;
1592 page_nid = target_nid;
1593 } else
1594 flags |= TNF_MIGRATE_FAIL;
1595
1596 goto out;
1597 clear_pmdnuma:
1598 BUG_ON(!PageLocked(page));
1599 was_writable = pmd_write(pmd);
1600 pmd = pmd_modify(pmd, vma->vm_page_prot);
1601 pmd = pmd_mkyoung(pmd);
1602 if (was_writable)
1603 pmd = pmd_mkwrite(pmd);
1604 set_pmd_at(mm, haddr, pmdp, pmd);
1605 update_mmu_cache_pmd(vma, addr, pmdp);
1606 unlock_page(page);
1607 out_unlock:
1608 spin_unlock(ptl);
1609
1610 out:
1611 if (anon_vma)
1612 page_unlock_anon_vma_read(anon_vma);
1613
1614 if (page_nid != -1)
1615 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, flags);
1616
1617 return 0;
1618 }
1619
1620 int madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1621 pmd_t *pmd, unsigned long addr, unsigned long next)
1622
1623 {
1624 spinlock_t *ptl;
1625 pmd_t orig_pmd;
1626 struct page *page;
1627 struct mm_struct *mm = tlb->mm;
1628 int ret = 0;
1629
1630 ptl = pmd_trans_huge_lock(pmd, vma);
1631 if (!ptl)
1632 goto out_unlocked;
1633
1634 orig_pmd = *pmd;
1635 if (is_huge_zero_pmd(orig_pmd)) {
1636 ret = 1;
1637 goto out;
1638 }
1639
1640 page = pmd_page(orig_pmd);
1641 /*
1642 * If other processes are mapping this page, we couldn't discard
1643 * the page unless they all do MADV_FREE so let's skip the page.
1644 */
1645 if (page_mapcount(page) != 1)
1646 goto out;
1647
1648 if (!trylock_page(page))
1649 goto out;
1650
1651 /*
1652 * If user want to discard part-pages of THP, split it so MADV_FREE
1653 * will deactivate only them.
1654 */
1655 if (next - addr != HPAGE_PMD_SIZE) {
1656 get_page(page);
1657 spin_unlock(ptl);
1658 split_huge_page(page);
1659 put_page(page);
1660 unlock_page(page);
1661 goto out_unlocked;
1662 }
1663
1664 if (PageDirty(page))
1665 ClearPageDirty(page);
1666 unlock_page(page);
1667
1668 if (PageActive(page))
1669 deactivate_page(page);
1670
1671 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1672 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1673 tlb->fullmm);
1674 orig_pmd = pmd_mkold(orig_pmd);
1675 orig_pmd = pmd_mkclean(orig_pmd);
1676
1677 set_pmd_at(mm, addr, pmd, orig_pmd);
1678 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1679 }
1680 ret = 1;
1681 out:
1682 spin_unlock(ptl);
1683 out_unlocked:
1684 return ret;
1685 }
1686
1687 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1688 pmd_t *pmd, unsigned long addr)
1689 {
1690 pmd_t orig_pmd;
1691 spinlock_t *ptl;
1692
1693 ptl = __pmd_trans_huge_lock(pmd, vma);
1694 if (!ptl)
1695 return 0;
1696 /*
1697 * For architectures like ppc64 we look at deposited pgtable
1698 * when calling pmdp_huge_get_and_clear. So do the
1699 * pgtable_trans_huge_withdraw after finishing pmdp related
1700 * operations.
1701 */
1702 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1703 tlb->fullmm);
1704 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1705 if (vma_is_dax(vma)) {
1706 spin_unlock(ptl);
1707 if (is_huge_zero_pmd(orig_pmd))
1708 tlb_remove_page(tlb, pmd_page(orig_pmd));
1709 } else if (is_huge_zero_pmd(orig_pmd)) {
1710 pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd));
1711 atomic_long_dec(&tlb->mm->nr_ptes);
1712 spin_unlock(ptl);
1713 tlb_remove_page(tlb, pmd_page(orig_pmd));
1714 } else {
1715 struct page *page = pmd_page(orig_pmd);
1716 page_remove_rmap(page, true);
1717 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1718 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1719 VM_BUG_ON_PAGE(!PageHead(page), page);
1720 pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd));
1721 atomic_long_dec(&tlb->mm->nr_ptes);
1722 spin_unlock(ptl);
1723 tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1724 }
1725 return 1;
1726 }
1727
1728 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1729 unsigned long new_addr, unsigned long old_end,
1730 pmd_t *old_pmd, pmd_t *new_pmd)
1731 {
1732 spinlock_t *old_ptl, *new_ptl;
1733 pmd_t pmd;
1734 struct mm_struct *mm = vma->vm_mm;
1735
1736 if ((old_addr & ~HPAGE_PMD_MASK) ||
1737 (new_addr & ~HPAGE_PMD_MASK) ||
1738 old_end - old_addr < HPAGE_PMD_SIZE)
1739 return false;
1740
1741 /*
1742 * The destination pmd shouldn't be established, free_pgtables()
1743 * should have release it.
1744 */
1745 if (WARN_ON(!pmd_none(*new_pmd))) {
1746 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1747 return false;
1748 }
1749
1750 /*
1751 * We don't have to worry about the ordering of src and dst
1752 * ptlocks because exclusive mmap_sem prevents deadlock.
1753 */
1754 old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1755 if (old_ptl) {
1756 new_ptl = pmd_lockptr(mm, new_pmd);
1757 if (new_ptl != old_ptl)
1758 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1759 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1760 VM_BUG_ON(!pmd_none(*new_pmd));
1761
1762 if (pmd_move_must_withdraw(new_ptl, old_ptl) &&
1763 vma_is_anonymous(vma)) {
1764 pgtable_t pgtable;
1765 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1766 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1767 }
1768 set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
1769 if (new_ptl != old_ptl)
1770 spin_unlock(new_ptl);
1771 spin_unlock(old_ptl);
1772 return true;
1773 }
1774 return false;
1775 }
1776
1777 /*
1778 * Returns
1779 * - 0 if PMD could not be locked
1780 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1781 * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1782 */
1783 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1784 unsigned long addr, pgprot_t newprot, int prot_numa)
1785 {
1786 struct mm_struct *mm = vma->vm_mm;
1787 spinlock_t *ptl;
1788 int ret = 0;
1789
1790 ptl = __pmd_trans_huge_lock(pmd, vma);
1791 if (ptl) {
1792 pmd_t entry;
1793 bool preserve_write = prot_numa && pmd_write(*pmd);
1794 ret = 1;
1795
1796 /*
1797 * Avoid trapping faults against the zero page. The read-only
1798 * data is likely to be read-cached on the local CPU and
1799 * local/remote hits to the zero page are not interesting.
1800 */
1801 if (prot_numa && is_huge_zero_pmd(*pmd)) {
1802 spin_unlock(ptl);
1803 return ret;
1804 }
1805
1806 if (!prot_numa || !pmd_protnone(*pmd)) {
1807 entry = pmdp_huge_get_and_clear_notify(mm, addr, pmd);
1808 entry = pmd_modify(entry, newprot);
1809 if (preserve_write)
1810 entry = pmd_mkwrite(entry);
1811 ret = HPAGE_PMD_NR;
1812 set_pmd_at(mm, addr, pmd, entry);
1813 BUG_ON(!preserve_write && pmd_write(entry));
1814 }
1815 spin_unlock(ptl);
1816 }
1817
1818 return ret;
1819 }
1820
1821 /*
1822 * Returns true if a given pmd maps a thp, false otherwise.
1823 *
1824 * Note that if it returns true, this routine returns without unlocking page
1825 * table lock. So callers must unlock it.
1826 */
1827 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1828 {
1829 spinlock_t *ptl;
1830 ptl = pmd_lock(vma->vm_mm, pmd);
1831 if (likely(pmd_trans_huge(*pmd) || pmd_devmap(*pmd)))
1832 return ptl;
1833 spin_unlock(ptl);
1834 return NULL;
1835 }
1836
1837 #define VM_NO_THP (VM_SPECIAL | VM_HUGETLB | VM_SHARED | VM_MAYSHARE)
1838
1839 int hugepage_madvise(struct vm_area_struct *vma,
1840 unsigned long *vm_flags, int advice)
1841 {
1842 switch (advice) {
1843 case MADV_HUGEPAGE:
1844 #ifdef CONFIG_S390
1845 /*
1846 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
1847 * can't handle this properly after s390_enable_sie, so we simply
1848 * ignore the madvise to prevent qemu from causing a SIGSEGV.
1849 */
1850 if (mm_has_pgste(vma->vm_mm))
1851 return 0;
1852 #endif
1853 /*
1854 * Be somewhat over-protective like KSM for now!
1855 */
1856 if (*vm_flags & VM_NO_THP)
1857 return -EINVAL;
1858 *vm_flags &= ~VM_NOHUGEPAGE;
1859 *vm_flags |= VM_HUGEPAGE;
1860 /*
1861 * If the vma become good for khugepaged to scan,
1862 * register it here without waiting a page fault that
1863 * may not happen any time soon.
1864 */
1865 if (unlikely(khugepaged_enter_vma_merge(vma, *vm_flags)))
1866 return -ENOMEM;
1867 break;
1868 case MADV_NOHUGEPAGE:
1869 /*
1870 * Be somewhat over-protective like KSM for now!
1871 */
1872 if (*vm_flags & VM_NO_THP)
1873 return -EINVAL;
1874 *vm_flags &= ~VM_HUGEPAGE;
1875 *vm_flags |= VM_NOHUGEPAGE;
1876 /*
1877 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1878 * this vma even if we leave the mm registered in khugepaged if
1879 * it got registered before VM_NOHUGEPAGE was set.
1880 */
1881 break;
1882 }
1883
1884 return 0;
1885 }
1886
1887 static int __init khugepaged_slab_init(void)
1888 {
1889 mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
1890 sizeof(struct mm_slot),
1891 __alignof__(struct mm_slot), 0, NULL);
1892 if (!mm_slot_cache)
1893 return -ENOMEM;
1894
1895 return 0;
1896 }
1897
1898 static void __init khugepaged_slab_exit(void)
1899 {
1900 kmem_cache_destroy(mm_slot_cache);
1901 }
1902
1903 static inline struct mm_slot *alloc_mm_slot(void)
1904 {
1905 if (!mm_slot_cache) /* initialization failed */
1906 return NULL;
1907 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
1908 }
1909
1910 static inline void free_mm_slot(struct mm_slot *mm_slot)
1911 {
1912 kmem_cache_free(mm_slot_cache, mm_slot);
1913 }
1914
1915 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
1916 {
1917 struct mm_slot *mm_slot;
1918
1919 hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
1920 if (mm == mm_slot->mm)
1921 return mm_slot;
1922
1923 return NULL;
1924 }
1925
1926 static void insert_to_mm_slots_hash(struct mm_struct *mm,
1927 struct mm_slot *mm_slot)
1928 {
1929 mm_slot->mm = mm;
1930 hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
1931 }
1932
1933 static inline int khugepaged_test_exit(struct mm_struct *mm)
1934 {
1935 return atomic_read(&mm->mm_users) == 0;
1936 }
1937
1938 int __khugepaged_enter(struct mm_struct *mm)
1939 {
1940 struct mm_slot *mm_slot;
1941 int wakeup;
1942
1943 mm_slot = alloc_mm_slot();
1944 if (!mm_slot)
1945 return -ENOMEM;
1946
1947 /* __khugepaged_exit() must not run from under us */
1948 VM_BUG_ON_MM(khugepaged_test_exit(mm), mm);
1949 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
1950 free_mm_slot(mm_slot);
1951 return 0;
1952 }
1953
1954 spin_lock(&khugepaged_mm_lock);
1955 insert_to_mm_slots_hash(mm, mm_slot);
1956 /*
1957 * Insert just behind the scanning cursor, to let the area settle
1958 * down a little.
1959 */
1960 wakeup = list_empty(&khugepaged_scan.mm_head);
1961 list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
1962 spin_unlock(&khugepaged_mm_lock);
1963
1964 atomic_inc(&mm->mm_count);
1965 if (wakeup)
1966 wake_up_interruptible(&khugepaged_wait);
1967
1968 return 0;
1969 }
1970
1971 int khugepaged_enter_vma_merge(struct vm_area_struct *vma,
1972 unsigned long vm_flags)
1973 {
1974 unsigned long hstart, hend;
1975 if (!vma->anon_vma)
1976 /*
1977 * Not yet faulted in so we will register later in the
1978 * page fault if needed.
1979 */
1980 return 0;
1981 if (vma->vm_ops || (vm_flags & VM_NO_THP))
1982 /* khugepaged not yet working on file or special mappings */
1983 return 0;
1984 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1985 hend = vma->vm_end & HPAGE_PMD_MASK;
1986 if (hstart < hend)
1987 return khugepaged_enter(vma, vm_flags);
1988 return 0;
1989 }
1990
1991 void __khugepaged_exit(struct mm_struct *mm)
1992 {
1993 struct mm_slot *mm_slot;
1994 int free = 0;
1995
1996 spin_lock(&khugepaged_mm_lock);
1997 mm_slot = get_mm_slot(mm);
1998 if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
1999 hash_del(&mm_slot->hash);
2000 list_del(&mm_slot->mm_node);
2001 free = 1;
2002 }
2003 spin_unlock(&khugepaged_mm_lock);
2004
2005 if (free) {
2006 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2007 free_mm_slot(mm_slot);
2008 mmdrop(mm);
2009 } else if (mm_slot) {
2010 /*
2011 * This is required to serialize against
2012 * khugepaged_test_exit() (which is guaranteed to run
2013 * under mmap sem read mode). Stop here (after we
2014 * return all pagetables will be destroyed) until
2015 * khugepaged has finished working on the pagetables
2016 * under the mmap_sem.
2017 */
2018 down_write(&mm->mmap_sem);
2019 up_write(&mm->mmap_sem);
2020 }
2021 }
2022
2023 static void release_pte_page(struct page *page)
2024 {
2025 /* 0 stands for page_is_file_cache(page) == false */
2026 dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
2027 unlock_page(page);
2028 putback_lru_page(page);
2029 }
2030
2031 static void release_pte_pages(pte_t *pte, pte_t *_pte)
2032 {
2033 while (--_pte >= pte) {
2034 pte_t pteval = *_pte;
2035 if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval)))
2036 release_pte_page(pte_page(pteval));
2037 }
2038 }
2039
2040 static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
2041 unsigned long address,
2042 pte_t *pte)
2043 {
2044 struct page *page = NULL;
2045 pte_t *_pte;
2046 int none_or_zero = 0, result = 0;
2047 bool referenced = false, writable = false;
2048
2049 for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
2050 _pte++, address += PAGE_SIZE) {
2051 pte_t pteval = *_pte;
2052 if (pte_none(pteval) || (pte_present(pteval) &&
2053 is_zero_pfn(pte_pfn(pteval)))) {
2054 if (!userfaultfd_armed(vma) &&
2055 ++none_or_zero <= khugepaged_max_ptes_none) {
2056 continue;
2057 } else {
2058 result = SCAN_EXCEED_NONE_PTE;
2059 goto out;
2060 }
2061 }
2062 if (!pte_present(pteval)) {
2063 result = SCAN_PTE_NON_PRESENT;
2064 goto out;
2065 }
2066 page = vm_normal_page(vma, address, pteval);
2067 if (unlikely(!page)) {
2068 result = SCAN_PAGE_NULL;
2069 goto out;
2070 }
2071
2072 VM_BUG_ON_PAGE(PageCompound(page), page);
2073 VM_BUG_ON_PAGE(!PageAnon(page), page);
2074 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
2075
2076 /*
2077 * We can do it before isolate_lru_page because the
2078 * page can't be freed from under us. NOTE: PG_lock
2079 * is needed to serialize against split_huge_page
2080 * when invoked from the VM.
2081 */
2082 if (!trylock_page(page)) {
2083 result = SCAN_PAGE_LOCK;
2084 goto out;
2085 }
2086
2087 /*
2088 * cannot use mapcount: can't collapse if there's a gup pin.
2089 * The page must only be referenced by the scanned process
2090 * and page swap cache.
2091 */
2092 if (page_count(page) != 1 + !!PageSwapCache(page)) {
2093 unlock_page(page);
2094 result = SCAN_PAGE_COUNT;
2095 goto out;
2096 }
2097 if (pte_write(pteval)) {
2098 writable = true;
2099 } else {
2100 if (PageSwapCache(page) &&
2101 !reuse_swap_page(page, NULL)) {
2102 unlock_page(page);
2103 result = SCAN_SWAP_CACHE_PAGE;
2104 goto out;
2105 }
2106 /*
2107 * Page is not in the swap cache. It can be collapsed
2108 * into a THP.
2109 */
2110 }
2111
2112 /*
2113 * Isolate the page to avoid collapsing an hugepage
2114 * currently in use by the VM.
2115 */
2116 if (isolate_lru_page(page)) {
2117 unlock_page(page);
2118 result = SCAN_DEL_PAGE_LRU;
2119 goto out;
2120 }
2121 /* 0 stands for page_is_file_cache(page) == false */
2122 inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
2123 VM_BUG_ON_PAGE(!PageLocked(page), page);
2124 VM_BUG_ON_PAGE(PageLRU(page), page);
2125
2126 /* If there is no mapped pte young don't collapse the page */
2127 if (pte_young(pteval) ||
2128 page_is_young(page) || PageReferenced(page) ||
2129 mmu_notifier_test_young(vma->vm_mm, address))
2130 referenced = true;
2131 }
2132 if (likely(writable)) {
2133 if (likely(referenced)) {
2134 result = SCAN_SUCCEED;
2135 trace_mm_collapse_huge_page_isolate(page, none_or_zero,
2136 referenced, writable, result);
2137 return 1;
2138 }
2139 } else {
2140 result = SCAN_PAGE_RO;
2141 }
2142
2143 out:
2144 release_pte_pages(pte, _pte);
2145 trace_mm_collapse_huge_page_isolate(page, none_or_zero,
2146 referenced, writable, result);
2147 return 0;
2148 }
2149
2150 static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
2151 struct vm_area_struct *vma,
2152 unsigned long address,
2153 spinlock_t *ptl)
2154 {
2155 pte_t *_pte;
2156 for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
2157 pte_t pteval = *_pte;
2158 struct page *src_page;
2159
2160 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
2161 clear_user_highpage(page, address);
2162 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
2163 if (is_zero_pfn(pte_pfn(pteval))) {
2164 /*
2165 * ptl mostly unnecessary.
2166 */
2167 spin_lock(ptl);
2168 /*
2169 * paravirt calls inside pte_clear here are
2170 * superfluous.
2171 */
2172 pte_clear(vma->vm_mm, address, _pte);
2173 spin_unlock(ptl);
2174 }
2175 } else {
2176 src_page = pte_page(pteval);
2177 copy_user_highpage(page, src_page, address, vma);
2178 VM_BUG_ON_PAGE(page_mapcount(src_page) != 1, src_page);
2179 release_pte_page(src_page);
2180 /*
2181 * ptl mostly unnecessary, but preempt has to
2182 * be disabled to update the per-cpu stats
2183 * inside page_remove_rmap().
2184 */
2185 spin_lock(ptl);
2186 /*
2187 * paravirt calls inside pte_clear here are
2188 * superfluous.
2189 */
2190 pte_clear(vma->vm_mm, address, _pte);
2191 page_remove_rmap(src_page, false);
2192 spin_unlock(ptl);
2193 free_page_and_swap_cache(src_page);
2194 }
2195
2196 address += PAGE_SIZE;
2197 page++;
2198 }
2199 }
2200
2201 static void khugepaged_alloc_sleep(void)
2202 {
2203 DEFINE_WAIT(wait);
2204
2205 add_wait_queue(&khugepaged_wait, &wait);
2206 freezable_schedule_timeout_interruptible(
2207 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
2208 remove_wait_queue(&khugepaged_wait, &wait);
2209 }
2210
2211 static int khugepaged_node_load[MAX_NUMNODES];
2212
2213 static bool khugepaged_scan_abort(int nid)
2214 {
2215 int i;
2216
2217 /*
2218 * If zone_reclaim_mode is disabled, then no extra effort is made to
2219 * allocate memory locally.
2220 */
2221 if (!zone_reclaim_mode)
2222 return false;
2223
2224 /* If there is a count for this node already, it must be acceptable */
2225 if (khugepaged_node_load[nid])
2226 return false;
2227
2228 for (i = 0; i < MAX_NUMNODES; i++) {
2229 if (!khugepaged_node_load[i])
2230 continue;
2231 if (node_distance(nid, i) > RECLAIM_DISTANCE)
2232 return true;
2233 }
2234 return false;
2235 }
2236
2237 #ifdef CONFIG_NUMA
2238 static int khugepaged_find_target_node(void)
2239 {
2240 static int last_khugepaged_target_node = NUMA_NO_NODE;
2241 int nid, target_node = 0, max_value = 0;
2242
2243 /* find first node with max normal pages hit */
2244 for (nid = 0; nid < MAX_NUMNODES; nid++)
2245 if (khugepaged_node_load[nid] > max_value) {
2246 max_value = khugepaged_node_load[nid];
2247 target_node = nid;
2248 }
2249
2250 /* do some balance if several nodes have the same hit record */
2251 if (target_node <= last_khugepaged_target_node)
2252 for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
2253 nid++)
2254 if (max_value == khugepaged_node_load[nid]) {
2255 target_node = nid;
2256 break;
2257 }
2258
2259 last_khugepaged_target_node = target_node;
2260 return target_node;
2261 }
2262
2263 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2264 {
2265 if (IS_ERR(*hpage)) {
2266 if (!*wait)
2267 return false;
2268
2269 *wait = false;
2270 *hpage = NULL;
2271 khugepaged_alloc_sleep();
2272 } else if (*hpage) {
2273 put_page(*hpage);
2274 *hpage = NULL;
2275 }
2276
2277 return true;
2278 }
2279
2280 static struct page *
2281 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, struct mm_struct *mm,
2282 unsigned long address, int node)
2283 {
2284 VM_BUG_ON_PAGE(*hpage, *hpage);
2285
2286 /*
2287 * Before allocating the hugepage, release the mmap_sem read lock.
2288 * The allocation can take potentially a long time if it involves
2289 * sync compaction, and we do not need to hold the mmap_sem during
2290 * that. We will recheck the vma after taking it again in write mode.
2291 */
2292 up_read(&mm->mmap_sem);
2293
2294 *hpage = __alloc_pages_node(node, gfp, HPAGE_PMD_ORDER);
2295 if (unlikely(!*hpage)) {
2296 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2297 *hpage = ERR_PTR(-ENOMEM);
2298 return NULL;
2299 }
2300
2301 prep_transhuge_page(*hpage);
2302 count_vm_event(THP_COLLAPSE_ALLOC);
2303 return *hpage;
2304 }
2305 #else
2306 static int khugepaged_find_target_node(void)
2307 {
2308 return 0;
2309 }
2310
2311 static inline struct page *alloc_khugepaged_hugepage(void)
2312 {
2313 struct page *page;
2314
2315 page = alloc_pages(alloc_hugepage_khugepaged_gfpmask(),
2316 HPAGE_PMD_ORDER);
2317 if (page)
2318 prep_transhuge_page(page);
2319 return page;
2320 }
2321
2322 static struct page *khugepaged_alloc_hugepage(bool *wait)
2323 {
2324 struct page *hpage;
2325
2326 do {
2327 hpage = alloc_khugepaged_hugepage();
2328 if (!hpage) {
2329 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2330 if (!*wait)
2331 return NULL;
2332
2333 *wait = false;
2334 khugepaged_alloc_sleep();
2335 } else
2336 count_vm_event(THP_COLLAPSE_ALLOC);
2337 } while (unlikely(!hpage) && likely(khugepaged_enabled()));
2338
2339 return hpage;
2340 }
2341
2342 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2343 {
2344 if (!*hpage)
2345 *hpage = khugepaged_alloc_hugepage(wait);
2346
2347 if (unlikely(!*hpage))
2348 return false;
2349
2350 return true;
2351 }
2352
2353 static struct page *
2354 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, struct mm_struct *mm,
2355 unsigned long address, int node)
2356 {
2357 up_read(&mm->mmap_sem);
2358 VM_BUG_ON(!*hpage);
2359
2360 return *hpage;
2361 }
2362 #endif
2363
2364 static bool hugepage_vma_check(struct vm_area_struct *vma)
2365 {
2366 if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
2367 (vma->vm_flags & VM_NOHUGEPAGE))
2368 return false;
2369 if (!vma->anon_vma || vma->vm_ops)
2370 return false;
2371 if (is_vma_temporary_stack(vma))
2372 return false;
2373 return !(vma->vm_flags & VM_NO_THP);
2374 }
2375
2376 /*
2377 * If mmap_sem temporarily dropped, revalidate vma
2378 * before taking mmap_sem.
2379 * Return 0 if succeeds, otherwise return none-zero
2380 * value (scan code).
2381 */
2382
2383 static int hugepage_vma_revalidate(struct mm_struct *mm, unsigned long address)
2384 {
2385 struct vm_area_struct *vma;
2386 unsigned long hstart, hend;
2387
2388 if (unlikely(khugepaged_test_exit(mm)))
2389 return SCAN_ANY_PROCESS;
2390
2391 vma = find_vma(mm, address);
2392 if (!vma)
2393 return SCAN_VMA_NULL;
2394
2395 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2396 hend = vma->vm_end & HPAGE_PMD_MASK;
2397 if (address < hstart || address + HPAGE_PMD_SIZE > hend)
2398 return SCAN_ADDRESS_RANGE;
2399 if (!hugepage_vma_check(vma))
2400 return SCAN_VMA_CHECK;
2401 return 0;
2402 }
2403
2404 /*
2405 * Bring missing pages in from swap, to complete THP collapse.
2406 * Only done if khugepaged_scan_pmd believes it is worthwhile.
2407 *
2408 * Called and returns without pte mapped or spinlocks held,
2409 * but with mmap_sem held to protect against vma changes.
2410 */
2411
2412 static bool __collapse_huge_page_swapin(struct mm_struct *mm,
2413 struct vm_area_struct *vma,
2414 unsigned long address, pmd_t *pmd)
2415 {
2416 unsigned long _address;
2417 pte_t *pte, pteval;
2418 int swapped_in = 0, ret = 0;
2419
2420 pte = pte_offset_map(pmd, address);
2421 for (_address = address; _address < address + HPAGE_PMD_NR*PAGE_SIZE;
2422 pte++, _address += PAGE_SIZE) {
2423 pteval = *pte;
2424 if (!is_swap_pte(pteval))
2425 continue;
2426 swapped_in++;
2427 ret = do_swap_page(mm, vma, _address, pte, pmd,
2428 FAULT_FLAG_ALLOW_RETRY,
2429 pteval);
2430 /* do_swap_page returns VM_FAULT_RETRY with released mmap_sem */
2431 if (ret & VM_FAULT_RETRY) {
2432 down_read(&mm->mmap_sem);
2433 /* vma is no longer available, don't continue to swapin */
2434 if (hugepage_vma_revalidate(mm, address))
2435 return false;
2436 /* check if the pmd is still valid */
2437 if (mm_find_pmd(mm, address) != pmd)
2438 return false;
2439 }
2440 if (ret & VM_FAULT_ERROR) {
2441 trace_mm_collapse_huge_page_swapin(mm, swapped_in, 0);
2442 return false;
2443 }
2444 /* pte is unmapped now, we need to map it */
2445 pte = pte_offset_map(pmd, _address);
2446 }
2447 pte--;
2448 pte_unmap(pte);
2449 trace_mm_collapse_huge_page_swapin(mm, swapped_in, 1);
2450 return true;
2451 }
2452
2453 static void collapse_huge_page(struct mm_struct *mm,
2454 unsigned long address,
2455 struct page **hpage,
2456 struct vm_area_struct *vma,
2457 int node)
2458 {
2459 pmd_t *pmd, _pmd;
2460 pte_t *pte;
2461 pgtable_t pgtable;
2462 struct page *new_page;
2463 spinlock_t *pmd_ptl, *pte_ptl;
2464 int isolated = 0, result = 0;
2465 struct mem_cgroup *memcg;
2466 unsigned long mmun_start; /* For mmu_notifiers */
2467 unsigned long mmun_end; /* For mmu_notifiers */
2468 gfp_t gfp;
2469
2470 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2471
2472 /* Only allocate from the target node */
2473 gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_OTHER_NODE | __GFP_THISNODE;
2474
2475 /* release the mmap_sem read lock. */
2476 new_page = khugepaged_alloc_page(hpage, gfp, mm, address, node);
2477 if (!new_page) {
2478 result = SCAN_ALLOC_HUGE_PAGE_FAIL;
2479 goto out_nolock;
2480 }
2481
2482 if (unlikely(mem_cgroup_try_charge(new_page, mm, gfp, &memcg, true))) {
2483 result = SCAN_CGROUP_CHARGE_FAIL;
2484 goto out_nolock;
2485 }
2486
2487 down_read(&mm->mmap_sem);
2488 result = hugepage_vma_revalidate(mm, address);
2489 if (result) {
2490 mem_cgroup_cancel_charge(new_page, memcg, true);
2491 up_read(&mm->mmap_sem);
2492 goto out_nolock;
2493 }
2494
2495 pmd = mm_find_pmd(mm, address);
2496 if (!pmd) {
2497 result = SCAN_PMD_NULL;
2498 mem_cgroup_cancel_charge(new_page, memcg, true);
2499 up_read(&mm->mmap_sem);
2500 goto out_nolock;
2501 }
2502
2503 /*
2504 * __collapse_huge_page_swapin always returns with mmap_sem locked.
2505 * If it fails, release mmap_sem and jump directly out.
2506 * Continuing to collapse causes inconsistency.
2507 */
2508 if (!__collapse_huge_page_swapin(mm, vma, address, pmd)) {
2509 mem_cgroup_cancel_charge(new_page, memcg, true);
2510 up_read(&mm->mmap_sem);
2511 goto out_nolock;
2512 }
2513
2514 up_read(&mm->mmap_sem);
2515 /*
2516 * Prevent all access to pagetables with the exception of
2517 * gup_fast later handled by the ptep_clear_flush and the VM
2518 * handled by the anon_vma lock + PG_lock.
2519 */
2520 down_write(&mm->mmap_sem);
2521 result = hugepage_vma_revalidate(mm, address);
2522 if (result)
2523 goto out;
2524 /* check if the pmd is still valid */
2525 if (mm_find_pmd(mm, address) != pmd)
2526 goto out;
2527
2528 anon_vma_lock_write(vma->anon_vma);
2529
2530 pte = pte_offset_map(pmd, address);
2531 pte_ptl = pte_lockptr(mm, pmd);
2532
2533 mmun_start = address;
2534 mmun_end = address + HPAGE_PMD_SIZE;
2535 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2536 pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
2537 /*
2538 * After this gup_fast can't run anymore. This also removes
2539 * any huge TLB entry from the CPU so we won't allow
2540 * huge and small TLB entries for the same virtual address
2541 * to avoid the risk of CPU bugs in that area.
2542 */
2543 _pmd = pmdp_collapse_flush(vma, address, pmd);
2544 spin_unlock(pmd_ptl);
2545 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2546
2547 spin_lock(pte_ptl);
2548 isolated = __collapse_huge_page_isolate(vma, address, pte);
2549 spin_unlock(pte_ptl);
2550
2551 if (unlikely(!isolated)) {
2552 pte_unmap(pte);
2553 spin_lock(pmd_ptl);
2554 BUG_ON(!pmd_none(*pmd));
2555 /*
2556 * We can only use set_pmd_at when establishing
2557 * hugepmds and never for establishing regular pmds that
2558 * points to regular pagetables. Use pmd_populate for that
2559 */
2560 pmd_populate(mm, pmd, pmd_pgtable(_pmd));
2561 spin_unlock(pmd_ptl);
2562 anon_vma_unlock_write(vma->anon_vma);
2563 result = SCAN_FAIL;
2564 goto out;
2565 }
2566
2567 /*
2568 * All pages are isolated and locked so anon_vma rmap
2569 * can't run anymore.
2570 */
2571 anon_vma_unlock_write(vma->anon_vma);
2572
2573 __collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl);
2574 pte_unmap(pte);
2575 __SetPageUptodate(new_page);
2576 pgtable = pmd_pgtable(_pmd);
2577
2578 _pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
2579 _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
2580
2581 /*
2582 * spin_lock() below is not the equivalent of smp_wmb(), so
2583 * this is needed to avoid the copy_huge_page writes to become
2584 * visible after the set_pmd_at() write.
2585 */
2586 smp_wmb();
2587
2588 spin_lock(pmd_ptl);
2589 BUG_ON(!pmd_none(*pmd));
2590 page_add_new_anon_rmap(new_page, vma, address, true);
2591 mem_cgroup_commit_charge(new_page, memcg, false, true);
2592 lru_cache_add_active_or_unevictable(new_page, vma);
2593 pgtable_trans_huge_deposit(mm, pmd, pgtable);
2594 set_pmd_at(mm, address, pmd, _pmd);
2595 update_mmu_cache_pmd(vma, address, pmd);
2596 spin_unlock(pmd_ptl);
2597
2598 *hpage = NULL;
2599
2600 khugepaged_pages_collapsed++;
2601 result = SCAN_SUCCEED;
2602 out_up_write:
2603 up_write(&mm->mmap_sem);
2604 out_nolock:
2605 trace_mm_collapse_huge_page(mm, isolated, result);
2606 return;
2607 out:
2608 mem_cgroup_cancel_charge(new_page, memcg, true);
2609 goto out_up_write;
2610 }
2611
2612 static int khugepaged_scan_pmd(struct mm_struct *mm,
2613 struct vm_area_struct *vma,
2614 unsigned long address,
2615 struct page **hpage)
2616 {
2617 pmd_t *pmd;
2618 pte_t *pte, *_pte;
2619 int ret = 0, none_or_zero = 0, result = 0;
2620 struct page *page = NULL;
2621 unsigned long _address;
2622 spinlock_t *ptl;
2623 int node = NUMA_NO_NODE, unmapped = 0;
2624 bool writable = false, referenced = false;
2625
2626 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2627
2628 pmd = mm_find_pmd(mm, address);
2629 if (!pmd) {
2630 result = SCAN_PMD_NULL;
2631 goto out;
2632 }
2633
2634 memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
2635 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2636 for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
2637 _pte++, _address += PAGE_SIZE) {
2638 pte_t pteval = *_pte;
2639 if (is_swap_pte(pteval)) {
2640 if (++unmapped <= khugepaged_max_ptes_swap) {
2641 continue;
2642 } else {
2643 result = SCAN_EXCEED_SWAP_PTE;
2644 goto out_unmap;
2645 }
2646 }
2647 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
2648 if (!userfaultfd_armed(vma) &&
2649 ++none_or_zero <= khugepaged_max_ptes_none) {
2650 continue;
2651 } else {
2652 result = SCAN_EXCEED_NONE_PTE;
2653 goto out_unmap;
2654 }
2655 }
2656 if (!pte_present(pteval)) {
2657 result = SCAN_PTE_NON_PRESENT;
2658 goto out_unmap;
2659 }
2660 if (pte_write(pteval))
2661 writable = true;
2662
2663 page = vm_normal_page(vma, _address, pteval);
2664 if (unlikely(!page)) {
2665 result = SCAN_PAGE_NULL;
2666 goto out_unmap;
2667 }
2668
2669 /* TODO: teach khugepaged to collapse THP mapped with pte */
2670 if (PageCompound(page)) {
2671 result = SCAN_PAGE_COMPOUND;
2672 goto out_unmap;
2673 }
2674
2675 /*
2676 * Record which node the original page is from and save this
2677 * information to khugepaged_node_load[].
2678 * Khupaged will allocate hugepage from the node has the max
2679 * hit record.
2680 */
2681 node = page_to_nid(page);
2682 if (khugepaged_scan_abort(node)) {
2683 result = SCAN_SCAN_ABORT;
2684 goto out_unmap;
2685 }
2686 khugepaged_node_load[node]++;
2687 if (!PageLRU(page)) {
2688 result = SCAN_PAGE_LRU;
2689 goto out_unmap;
2690 }
2691 if (PageLocked(page)) {
2692 result = SCAN_PAGE_LOCK;
2693 goto out_unmap;
2694 }
2695 if (!PageAnon(page)) {
2696 result = SCAN_PAGE_ANON;
2697 goto out_unmap;
2698 }
2699
2700 /*
2701 * cannot use mapcount: can't collapse if there's a gup pin.
2702 * The page must only be referenced by the scanned process
2703 * and page swap cache.
2704 */
2705 if (page_count(page) != 1 + !!PageSwapCache(page)) {
2706 result = SCAN_PAGE_COUNT;
2707 goto out_unmap;
2708 }
2709 if (pte_young(pteval) ||
2710 page_is_young(page) || PageReferenced(page) ||
2711 mmu_notifier_test_young(vma->vm_mm, address))
2712 referenced = true;
2713 }
2714 if (writable) {
2715 if (referenced) {
2716 result = SCAN_SUCCEED;
2717 ret = 1;
2718 } else {
2719 result = SCAN_NO_REFERENCED_PAGE;
2720 }
2721 } else {
2722 result = SCAN_PAGE_RO;
2723 }
2724 out_unmap:
2725 pte_unmap_unlock(pte, ptl);
2726 if (ret) {
2727 node = khugepaged_find_target_node();
2728 /* collapse_huge_page will return with the mmap_sem released */
2729 collapse_huge_page(mm, address, hpage, vma, node);
2730 }
2731 out:
2732 trace_mm_khugepaged_scan_pmd(mm, page, writable, referenced,
2733 none_or_zero, result, unmapped);
2734 return ret;
2735 }
2736
2737 static void collect_mm_slot(struct mm_slot *mm_slot)
2738 {
2739 struct mm_struct *mm = mm_slot->mm;
2740
2741 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2742
2743 if (khugepaged_test_exit(mm)) {
2744 /* free mm_slot */
2745 hash_del(&mm_slot->hash);
2746 list_del(&mm_slot->mm_node);
2747
2748 /*
2749 * Not strictly needed because the mm exited already.
2750 *
2751 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2752 */
2753
2754 /* khugepaged_mm_lock actually not necessary for the below */
2755 free_mm_slot(mm_slot);
2756 mmdrop(mm);
2757 }
2758 }
2759
2760 static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2761 struct page **hpage)
2762 __releases(&khugepaged_mm_lock)
2763 __acquires(&khugepaged_mm_lock)
2764 {
2765 struct mm_slot *mm_slot;
2766 struct mm_struct *mm;
2767 struct vm_area_struct *vma;
2768 int progress = 0;
2769
2770 VM_BUG_ON(!pages);
2771 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2772
2773 if (khugepaged_scan.mm_slot)
2774 mm_slot = khugepaged_scan.mm_slot;
2775 else {
2776 mm_slot = list_entry(khugepaged_scan.mm_head.next,
2777 struct mm_slot, mm_node);
2778 khugepaged_scan.address = 0;
2779 khugepaged_scan.mm_slot = mm_slot;
2780 }
2781 spin_unlock(&khugepaged_mm_lock);
2782
2783 mm = mm_slot->mm;
2784 down_read(&mm->mmap_sem);
2785 if (unlikely(khugepaged_test_exit(mm)))
2786 vma = NULL;
2787 else
2788 vma = find_vma(mm, khugepaged_scan.address);
2789
2790 progress++;
2791 for (; vma; vma = vma->vm_next) {
2792 unsigned long hstart, hend;
2793
2794 cond_resched();
2795 if (unlikely(khugepaged_test_exit(mm))) {
2796 progress++;
2797 break;
2798 }
2799 if (!hugepage_vma_check(vma)) {
2800 skip:
2801 progress++;
2802 continue;
2803 }
2804 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2805 hend = vma->vm_end & HPAGE_PMD_MASK;
2806 if (hstart >= hend)
2807 goto skip;
2808 if (khugepaged_scan.address > hend)
2809 goto skip;
2810 if (khugepaged_scan.address < hstart)
2811 khugepaged_scan.address = hstart;
2812 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2813
2814 while (khugepaged_scan.address < hend) {
2815 int ret;
2816 cond_resched();
2817 if (unlikely(khugepaged_test_exit(mm)))
2818 goto breakouterloop;
2819
2820 VM_BUG_ON(khugepaged_scan.address < hstart ||
2821 khugepaged_scan.address + HPAGE_PMD_SIZE >
2822 hend);
2823 ret = khugepaged_scan_pmd(mm, vma,
2824 khugepaged_scan.address,
2825 hpage);
2826 /* move to next address */
2827 khugepaged_scan.address += HPAGE_PMD_SIZE;
2828 progress += HPAGE_PMD_NR;
2829 if (ret)
2830 /* we released mmap_sem so break loop */
2831 goto breakouterloop_mmap_sem;
2832 if (progress >= pages)
2833 goto breakouterloop;
2834 }
2835 }
2836 breakouterloop:
2837 up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2838 breakouterloop_mmap_sem:
2839
2840 spin_lock(&khugepaged_mm_lock);
2841 VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2842 /*
2843 * Release the current mm_slot if this mm is about to die, or
2844 * if we scanned all vmas of this mm.
2845 */
2846 if (khugepaged_test_exit(mm) || !vma) {
2847 /*
2848 * Make sure that if mm_users is reaching zero while
2849 * khugepaged runs here, khugepaged_exit will find
2850 * mm_slot not pointing to the exiting mm.
2851 */
2852 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2853 khugepaged_scan.mm_slot = list_entry(
2854 mm_slot->mm_node.next,
2855 struct mm_slot, mm_node);
2856 khugepaged_scan.address = 0;
2857 } else {
2858 khugepaged_scan.mm_slot = NULL;
2859 khugepaged_full_scans++;
2860 }
2861
2862 collect_mm_slot(mm_slot);
2863 }
2864
2865 return progress;
2866 }
2867
2868 static int khugepaged_has_work(void)
2869 {
2870 return !list_empty(&khugepaged_scan.mm_head) &&
2871 khugepaged_enabled();
2872 }
2873
2874 static int khugepaged_wait_event(void)
2875 {
2876 return !list_empty(&khugepaged_scan.mm_head) ||
2877 kthread_should_stop();
2878 }
2879
2880 static void khugepaged_do_scan(void)
2881 {
2882 struct page *hpage = NULL;
2883 unsigned int progress = 0, pass_through_head = 0;
2884 unsigned int pages = khugepaged_pages_to_scan;
2885 bool wait = true;
2886
2887 barrier(); /* write khugepaged_pages_to_scan to local stack */
2888
2889 while (progress < pages) {
2890 if (!khugepaged_prealloc_page(&hpage, &wait))
2891 break;
2892
2893 cond_resched();
2894
2895 if (unlikely(kthread_should_stop() || try_to_freeze()))
2896 break;
2897
2898 spin_lock(&khugepaged_mm_lock);
2899 if (!khugepaged_scan.mm_slot)
2900 pass_through_head++;
2901 if (khugepaged_has_work() &&
2902 pass_through_head < 2)
2903 progress += khugepaged_scan_mm_slot(pages - progress,
2904 &hpage);
2905 else
2906 progress = pages;
2907 spin_unlock(&khugepaged_mm_lock);
2908 }
2909
2910 if (!IS_ERR_OR_NULL(hpage))
2911 put_page(hpage);
2912 }
2913
2914 static bool khugepaged_should_wakeup(void)
2915 {
2916 return kthread_should_stop() ||
2917 time_after_eq(jiffies, khugepaged_sleep_expire);
2918 }
2919
2920 static void khugepaged_wait_work(void)
2921 {
2922 if (khugepaged_has_work()) {
2923 const unsigned long scan_sleep_jiffies =
2924 msecs_to_jiffies(khugepaged_scan_sleep_millisecs);
2925
2926 if (!scan_sleep_jiffies)
2927 return;
2928
2929 khugepaged_sleep_expire = jiffies + scan_sleep_jiffies;
2930 wait_event_freezable_timeout(khugepaged_wait,
2931 khugepaged_should_wakeup(),
2932 scan_sleep_jiffies);
2933 return;
2934 }
2935
2936 if (khugepaged_enabled())
2937 wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2938 }
2939
2940 static int khugepaged(void *none)
2941 {
2942 struct mm_slot *mm_slot;
2943
2944 set_freezable();
2945 set_user_nice(current, MAX_NICE);
2946
2947 while (!kthread_should_stop()) {
2948 khugepaged_do_scan();
2949 khugepaged_wait_work();
2950 }
2951
2952 spin_lock(&khugepaged_mm_lock);
2953 mm_slot = khugepaged_scan.mm_slot;
2954 khugepaged_scan.mm_slot = NULL;
2955 if (mm_slot)
2956 collect_mm_slot(mm_slot);
2957 spin_unlock(&khugepaged_mm_lock);
2958 return 0;
2959 }
2960
2961 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2962 unsigned long haddr, pmd_t *pmd)
2963 {
2964 struct mm_struct *mm = vma->vm_mm;
2965 pgtable_t pgtable;
2966 pmd_t _pmd;
2967 int i;
2968
2969 /* leave pmd empty until pte is filled */
2970 pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2971
2972 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2973 pmd_populate(mm, &_pmd, pgtable);
2974
2975 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2976 pte_t *pte, entry;
2977 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2978 entry = pte_mkspecial(entry);
2979 pte = pte_offset_map(&_pmd, haddr);
2980 VM_BUG_ON(!pte_none(*pte));
2981 set_pte_at(mm, haddr, pte, entry);
2982 pte_unmap(pte);
2983 }
2984 smp_wmb(); /* make pte visible before pmd */
2985 pmd_populate(mm, pmd, pgtable);
2986 put_huge_zero_page();
2987 }
2988
2989 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2990 unsigned long haddr, bool freeze)
2991 {
2992 struct mm_struct *mm = vma->vm_mm;
2993 struct page *page;
2994 pgtable_t pgtable;
2995 pmd_t _pmd;
2996 bool young, write, dirty;
2997 unsigned long addr;
2998 int i;
2999
3000 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
3001 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
3002 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
3003 VM_BUG_ON(!pmd_trans_huge(*pmd) && !pmd_devmap(*pmd));
3004
3005 count_vm_event(THP_SPLIT_PMD);
3006
3007 if (vma_is_dax(vma)) {
3008 pmd_t _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
3009 if (is_huge_zero_pmd(_pmd))
3010 put_huge_zero_page();
3011 return;
3012 } else if (is_huge_zero_pmd(*pmd)) {
3013 return __split_huge_zero_page_pmd(vma, haddr, pmd);
3014 }
3015
3016 page = pmd_page(*pmd);
3017 VM_BUG_ON_PAGE(!page_count(page), page);
3018 page_ref_add(page, HPAGE_PMD_NR - 1);
3019 write = pmd_write(*pmd);
3020 young = pmd_young(*pmd);
3021 dirty = pmd_dirty(*pmd);
3022
3023 pmdp_huge_split_prepare(vma, haddr, pmd);
3024 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
3025 pmd_populate(mm, &_pmd, pgtable);
3026
3027 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
3028 pte_t entry, *pte;
3029 /*
3030 * Note that NUMA hinting access restrictions are not
3031 * transferred to avoid any possibility of altering
3032 * permissions across VMAs.
3033 */
3034 if (freeze) {
3035 swp_entry_t swp_entry;
3036 swp_entry = make_migration_entry(page + i, write);
3037 entry = swp_entry_to_pte(swp_entry);
3038 } else {
3039 entry = mk_pte(page + i, vma->vm_page_prot);
3040 entry = maybe_mkwrite(entry, vma);
3041 if (!write)
3042 entry = pte_wrprotect(entry);
3043 if (!young)
3044 entry = pte_mkold(entry);
3045 }
3046 if (dirty)
3047 SetPageDirty(page + i);
3048 pte = pte_offset_map(&_pmd, addr);
3049 BUG_ON(!pte_none(*pte));
3050 set_pte_at(mm, addr, pte, entry);
3051 atomic_inc(&page[i]._mapcount);
3052 pte_unmap(pte);
3053 }
3054
3055 /*
3056 * Set PG_double_map before dropping compound_mapcount to avoid
3057 * false-negative page_mapped().
3058 */
3059 if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
3060 for (i = 0; i < HPAGE_PMD_NR; i++)
3061 atomic_inc(&page[i]._mapcount);
3062 }
3063
3064 if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
3065 /* Last compound_mapcount is gone. */
3066 __dec_zone_page_state(page, NR_ANON_TRANSPARENT_HUGEPAGES);
3067 if (TestClearPageDoubleMap(page)) {
3068 /* No need in mapcount reference anymore */
3069 for (i = 0; i < HPAGE_PMD_NR; i++)
3070 atomic_dec(&page[i]._mapcount);
3071 }
3072 }
3073
3074 smp_wmb(); /* make pte visible before pmd */
3075 /*
3076 * Up to this point the pmd is present and huge and userland has the
3077 * whole access to the hugepage during the split (which happens in
3078 * place). If we overwrite the pmd with the not-huge version pointing
3079 * to the pte here (which of course we could if all CPUs were bug
3080 * free), userland could trigger a small page size TLB miss on the
3081 * small sized TLB while the hugepage TLB entry is still established in
3082 * the huge TLB. Some CPU doesn't like that.
3083 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
3084 * 383 on page 93. Intel should be safe but is also warns that it's
3085 * only safe if the permission and cache attributes of the two entries
3086 * loaded in the two TLB is identical (which should be the case here).
3087 * But it is generally safer to never allow small and huge TLB entries
3088 * for the same virtual address to be loaded simultaneously. So instead
3089 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
3090 * current pmd notpresent (atomically because here the pmd_trans_huge
3091 * and pmd_trans_splitting must remain set at all times on the pmd
3092 * until the split is complete for this pmd), then we flush the SMP TLB
3093 * and finally we write the non-huge version of the pmd entry with
3094 * pmd_populate.
3095 */
3096 pmdp_invalidate(vma, haddr, pmd);
3097 pmd_populate(mm, pmd, pgtable);
3098
3099 if (freeze) {
3100 for (i = 0; i < HPAGE_PMD_NR; i++) {
3101 page_remove_rmap(page + i, false);
3102 put_page(page + i);
3103 }
3104 }
3105 }
3106
3107 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
3108 unsigned long address, bool freeze, struct page *page)
3109 {
3110 spinlock_t *ptl;
3111 struct mm_struct *mm = vma->vm_mm;
3112 unsigned long haddr = address & HPAGE_PMD_MASK;
3113
3114 mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE);
3115 ptl = pmd_lock(mm, pmd);
3116
3117 /*
3118 * If caller asks to setup a migration entries, we need a page to check
3119 * pmd against. Otherwise we can end up replacing wrong page.
3120 */
3121 VM_BUG_ON(freeze && !page);
3122 if (page && page != pmd_page(*pmd))
3123 goto out;
3124
3125 if (pmd_trans_huge(*pmd)) {
3126 page = pmd_page(*pmd);
3127 if (PageMlocked(page))
3128 clear_page_mlock(page);
3129 } else if (!pmd_devmap(*pmd))
3130 goto out;
3131 __split_huge_pmd_locked(vma, pmd, haddr, freeze);
3132 out:
3133 spin_unlock(ptl);
3134 mmu_notifier_invalidate_range_end(mm, haddr, haddr + HPAGE_PMD_SIZE);
3135 }
3136
3137 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
3138 bool freeze, struct page *page)
3139 {
3140 pgd_t *pgd;
3141 pud_t *pud;
3142 pmd_t *pmd;
3143
3144 pgd = pgd_offset(vma->vm_mm, address);
3145 if (!pgd_present(*pgd))
3146 return;
3147
3148 pud = pud_offset(pgd, address);
3149 if (!pud_present(*pud))
3150 return;
3151
3152 pmd = pmd_offset(pud, address);
3153
3154 __split_huge_pmd(vma, pmd, address, freeze, page);
3155 }
3156
3157 void vma_adjust_trans_huge(struct vm_area_struct *vma,
3158 unsigned long start,
3159 unsigned long end,
3160 long adjust_next)
3161 {
3162 /*
3163 * If the new start address isn't hpage aligned and it could
3164 * previously contain an hugepage: check if we need to split
3165 * an huge pmd.
3166 */
3167 if (start & ~HPAGE_PMD_MASK &&
3168 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
3169 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
3170 split_huge_pmd_address(vma, start, false, NULL);
3171
3172 /*
3173 * If the new end address isn't hpage aligned and it could
3174 * previously contain an hugepage: check if we need to split
3175 * an huge pmd.
3176 */
3177 if (end & ~HPAGE_PMD_MASK &&
3178 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
3179 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
3180 split_huge_pmd_address(vma, end, false, NULL);
3181
3182 /*
3183 * If we're also updating the vma->vm_next->vm_start, if the new
3184 * vm_next->vm_start isn't page aligned and it could previously
3185 * contain an hugepage: check if we need to split an huge pmd.
3186 */
3187 if (adjust_next > 0) {
3188 struct vm_area_struct *next = vma->vm_next;
3189 unsigned long nstart = next->vm_start;
3190 nstart += adjust_next << PAGE_SHIFT;
3191 if (nstart & ~HPAGE_PMD_MASK &&
3192 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
3193 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
3194 split_huge_pmd_address(next, nstart, false, NULL);
3195 }
3196 }
3197
3198 static void freeze_page(struct page *page)
3199 {
3200 enum ttu_flags ttu_flags = TTU_MIGRATION | TTU_IGNORE_MLOCK |
3201 TTU_IGNORE_ACCESS | TTU_RMAP_LOCKED;
3202 int i, ret;
3203
3204 VM_BUG_ON_PAGE(!PageHead(page), page);
3205
3206 /* We only need TTU_SPLIT_HUGE_PMD once */
3207 ret = try_to_unmap(page, ttu_flags | TTU_SPLIT_HUGE_PMD);
3208 for (i = 1; !ret && i < HPAGE_PMD_NR; i++) {
3209 /* Cut short if the page is unmapped */
3210 if (page_count(page) == 1)
3211 return;
3212
3213 ret = try_to_unmap(page + i, ttu_flags);
3214 }
3215 VM_BUG_ON(ret);
3216 }
3217
3218 static void unfreeze_page(struct page *page)
3219 {
3220 int i;
3221
3222 for (i = 0; i < HPAGE_PMD_NR; i++)
3223 remove_migration_ptes(page + i, page + i, true);
3224 }
3225
3226 static void __split_huge_page_tail(struct page *head, int tail,
3227 struct lruvec *lruvec, struct list_head *list)
3228 {
3229 struct page *page_tail = head + tail;
3230
3231 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
3232 VM_BUG_ON_PAGE(page_ref_count(page_tail) != 0, page_tail);
3233
3234 /*
3235 * tail_page->_refcount is zero and not changing from under us. But
3236 * get_page_unless_zero() may be running from under us on the
3237 * tail_page. If we used atomic_set() below instead of atomic_inc(), we
3238 * would then run atomic_set() concurrently with
3239 * get_page_unless_zero(), and atomic_set() is implemented in C not
3240 * using locked ops. spin_unlock on x86 sometime uses locked ops
3241 * because of PPro errata 66, 92, so unless somebody can guarantee
3242 * atomic_set() here would be safe on all archs (and not only on x86),
3243 * it's safer to use atomic_inc().
3244 */
3245 page_ref_inc(page_tail);
3246
3247 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
3248 page_tail->flags |= (head->flags &
3249 ((1L << PG_referenced) |
3250 (1L << PG_swapbacked) |
3251 (1L << PG_mlocked) |
3252 (1L << PG_uptodate) |
3253 (1L << PG_active) |
3254 (1L << PG_locked) |
3255 (1L << PG_unevictable) |
3256 (1L << PG_dirty)));
3257
3258 /*
3259 * After clearing PageTail the gup refcount can be released.
3260 * Page flags also must be visible before we make the page non-compound.
3261 */
3262 smp_wmb();
3263
3264 clear_compound_head(page_tail);
3265
3266 if (page_is_young(head))
3267 set_page_young(page_tail);
3268 if (page_is_idle(head))
3269 set_page_idle(page_tail);
3270
3271 /* ->mapping in first tail page is compound_mapcount */
3272 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
3273 page_tail);
3274 page_tail->mapping = head->mapping;
3275
3276 page_tail->index = head->index + tail;
3277 page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
3278 lru_add_page_tail(head, page_tail, lruvec, list);
3279 }
3280
3281 static void __split_huge_page(struct page *page, struct list_head *list)
3282 {
3283 struct page *head = compound_head(page);
3284 struct zone *zone = page_zone(head);
3285 struct lruvec *lruvec;
3286 int i;
3287
3288 /* prevent PageLRU to go away from under us, and freeze lru stats */
3289 spin_lock_irq(&zone->lru_lock);
3290 lruvec = mem_cgroup_page_lruvec(head, zone);
3291
3292 /* complete memcg works before add pages to LRU */
3293 mem_cgroup_split_huge_fixup(head);
3294
3295 for (i = HPAGE_PMD_NR - 1; i >= 1; i--)
3296 __split_huge_page_tail(head, i, lruvec, list);
3297
3298 ClearPageCompound(head);
3299 spin_unlock_irq(&zone->lru_lock);
3300
3301 unfreeze_page(head);
3302
3303 for (i = 0; i < HPAGE_PMD_NR; i++) {
3304 struct page *subpage = head + i;
3305 if (subpage == page)
3306 continue;
3307 unlock_page(subpage);
3308
3309 /*
3310 * Subpages may be freed if there wasn't any mapping
3311 * like if add_to_swap() is running on a lru page that
3312 * had its mapping zapped. And freeing these pages
3313 * requires taking the lru_lock so we do the put_page
3314 * of the tail pages after the split is complete.
3315 */
3316 put_page(subpage);
3317 }
3318 }
3319
3320 int total_mapcount(struct page *page)
3321 {
3322 int i, ret;
3323
3324 VM_BUG_ON_PAGE(PageTail(page), page);
3325
3326 if (likely(!PageCompound(page)))
3327 return atomic_read(&page->_mapcount) + 1;
3328
3329 ret = compound_mapcount(page);
3330 if (PageHuge(page))
3331 return ret;
3332 for (i = 0; i < HPAGE_PMD_NR; i++)
3333 ret += atomic_read(&page[i]._mapcount) + 1;
3334 if (PageDoubleMap(page))
3335 ret -= HPAGE_PMD_NR;
3336 return ret;
3337 }
3338
3339 /*
3340 * This calculates accurately how many mappings a transparent hugepage
3341 * has (unlike page_mapcount() which isn't fully accurate). This full
3342 * accuracy is primarily needed to know if copy-on-write faults can
3343 * reuse the page and change the mapping to read-write instead of
3344 * copying them. At the same time this returns the total_mapcount too.
3345 *
3346 * The function returns the highest mapcount any one of the subpages
3347 * has. If the return value is one, even if different processes are
3348 * mapping different subpages of the transparent hugepage, they can
3349 * all reuse it, because each process is reusing a different subpage.
3350 *
3351 * The total_mapcount is instead counting all virtual mappings of the
3352 * subpages. If the total_mapcount is equal to "one", it tells the
3353 * caller all mappings belong to the same "mm" and in turn the
3354 * anon_vma of the transparent hugepage can become the vma->anon_vma
3355 * local one as no other process may be mapping any of the subpages.
3356 *
3357 * It would be more accurate to replace page_mapcount() with
3358 * page_trans_huge_mapcount(), however we only use
3359 * page_trans_huge_mapcount() in the copy-on-write faults where we
3360 * need full accuracy to avoid breaking page pinning, because
3361 * page_trans_huge_mapcount() is slower than page_mapcount().
3362 */
3363 int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
3364 {
3365 int i, ret, _total_mapcount, mapcount;
3366
3367 /* hugetlbfs shouldn't call it */
3368 VM_BUG_ON_PAGE(PageHuge(page), page);
3369
3370 if (likely(!PageTransCompound(page))) {
3371 mapcount = atomic_read(&page->_mapcount) + 1;
3372 if (total_mapcount)
3373 *total_mapcount = mapcount;
3374 return mapcount;
3375 }
3376
3377 page = compound_head(page);
3378
3379 _total_mapcount = ret = 0;
3380 for (i = 0; i < HPAGE_PMD_NR; i++) {
3381 mapcount = atomic_read(&page[i]._mapcount) + 1;
3382 ret = max(ret, mapcount);
3383 _total_mapcount += mapcount;
3384 }
3385 if (PageDoubleMap(page)) {
3386 ret -= 1;
3387 _total_mapcount -= HPAGE_PMD_NR;
3388 }
3389 mapcount = compound_mapcount(page);
3390 ret += mapcount;
3391 _total_mapcount += mapcount;
3392 if (total_mapcount)
3393 *total_mapcount = _total_mapcount;
3394 return ret;
3395 }
3396
3397 /*
3398 * This function splits huge page into normal pages. @page can point to any
3399 * subpage of huge page to split. Split doesn't change the position of @page.
3400 *
3401 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
3402 * The huge page must be locked.
3403 *
3404 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
3405 *
3406 * Both head page and tail pages will inherit mapping, flags, and so on from
3407 * the hugepage.
3408 *
3409 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
3410 * they are not mapped.
3411 *
3412 * Returns 0 if the hugepage is split successfully.
3413 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
3414 * us.
3415 */
3416 int split_huge_page_to_list(struct page *page, struct list_head *list)
3417 {
3418 struct page *head = compound_head(page);
3419 struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
3420 struct anon_vma *anon_vma;
3421 int count, mapcount, ret;
3422 bool mlocked;
3423 unsigned long flags;
3424
3425 VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
3426 VM_BUG_ON_PAGE(!PageAnon(page), page);
3427 VM_BUG_ON_PAGE(!PageLocked(page), page);
3428 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
3429 VM_BUG_ON_PAGE(!PageCompound(page), page);
3430
3431 /*
3432 * The caller does not necessarily hold an mmap_sem that would prevent
3433 * the anon_vma disappearing so we first we take a reference to it
3434 * and then lock the anon_vma for write. This is similar to
3435 * page_lock_anon_vma_read except the write lock is taken to serialise
3436 * against parallel split or collapse operations.
3437 */
3438 anon_vma = page_get_anon_vma(head);
3439 if (!anon_vma) {
3440 ret = -EBUSY;
3441 goto out;
3442 }
3443 anon_vma_lock_write(anon_vma);
3444
3445 /*
3446 * Racy check if we can split the page, before freeze_page() will
3447 * split PMDs
3448 */
3449 if (total_mapcount(head) != page_count(head) - 1) {
3450 ret = -EBUSY;
3451 goto out_unlock;
3452 }
3453
3454 mlocked = PageMlocked(page);
3455 freeze_page(head);
3456 VM_BUG_ON_PAGE(compound_mapcount(head), head);
3457
3458 /* Make sure the page is not on per-CPU pagevec as it takes pin */
3459 if (mlocked)
3460 lru_add_drain();
3461
3462 /* Prevent deferred_split_scan() touching ->_refcount */
3463 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
3464 count = page_count(head);
3465 mapcount = total_mapcount(head);
3466 if (!mapcount && count == 1) {
3467 if (!list_empty(page_deferred_list(head))) {
3468 pgdata->split_queue_len--;
3469 list_del(page_deferred_list(head));
3470 }
3471 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3472 __split_huge_page(page, list);
3473 ret = 0;
3474 } else if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
3475 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3476 pr_alert("total_mapcount: %u, page_count(): %u\n",
3477 mapcount, count);
3478 if (PageTail(page))
3479 dump_page(head, NULL);
3480 dump_page(page, "total_mapcount(head) > 0");
3481 BUG();
3482 } else {
3483 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3484 unfreeze_page(head);
3485 ret = -EBUSY;
3486 }
3487
3488 out_unlock:
3489 anon_vma_unlock_write(anon_vma);
3490 put_anon_vma(anon_vma);
3491 out:
3492 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
3493 return ret;
3494 }
3495
3496 void free_transhuge_page(struct page *page)
3497 {
3498 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
3499 unsigned long flags;
3500
3501 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
3502 if (!list_empty(page_deferred_list(page))) {
3503 pgdata->split_queue_len--;
3504 list_del(page_deferred_list(page));
3505 }
3506 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3507 free_compound_page(page);
3508 }
3509
3510 void deferred_split_huge_page(struct page *page)
3511 {
3512 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
3513 unsigned long flags;
3514
3515 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
3516
3517 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
3518 if (list_empty(page_deferred_list(page))) {
3519 count_vm_event(THP_DEFERRED_SPLIT_PAGE);
3520 list_add_tail(page_deferred_list(page), &pgdata->split_queue);
3521 pgdata->split_queue_len++;
3522 }
3523 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3524 }
3525
3526 static unsigned long deferred_split_count(struct shrinker *shrink,
3527 struct shrink_control *sc)
3528 {
3529 struct pglist_data *pgdata = NODE_DATA(sc->nid);
3530 return ACCESS_ONCE(pgdata->split_queue_len);
3531 }
3532
3533 static unsigned long deferred_split_scan(struct shrinker *shrink,
3534 struct shrink_control *sc)
3535 {
3536 struct pglist_data *pgdata = NODE_DATA(sc->nid);
3537 unsigned long flags;
3538 LIST_HEAD(list), *pos, *next;
3539 struct page *page;
3540 int split = 0;
3541
3542 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
3543 /* Take pin on all head pages to avoid freeing them under us */
3544 list_for_each_safe(pos, next, &pgdata->split_queue) {
3545 page = list_entry((void *)pos, struct page, mapping);
3546 page = compound_head(page);
3547 if (get_page_unless_zero(page)) {
3548 list_move(page_deferred_list(page), &list);
3549 } else {
3550 /* We lost race with put_compound_page() */
3551 list_del_init(page_deferred_list(page));
3552 pgdata->split_queue_len--;
3553 }
3554 if (!--sc->nr_to_scan)
3555 break;
3556 }
3557 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3558
3559 list_for_each_safe(pos, next, &list) {
3560 page = list_entry((void *)pos, struct page, mapping);
3561 lock_page(page);
3562 /* split_huge_page() removes page from list on success */
3563 if (!split_huge_page(page))
3564 split++;
3565 unlock_page(page);
3566 put_page(page);
3567 }
3568
3569 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
3570 list_splice_tail(&list, &pgdata->split_queue);
3571 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3572
3573 /*
3574 * Stop shrinker if we didn't split any page, but the queue is empty.
3575 * This can happen if pages were freed under us.
3576 */
3577 if (!split && list_empty(&pgdata->split_queue))
3578 return SHRINK_STOP;
3579 return split;
3580 }
3581
3582 static struct shrinker deferred_split_shrinker = {
3583 .count_objects = deferred_split_count,
3584 .scan_objects = deferred_split_scan,
3585 .seeks = DEFAULT_SEEKS,
3586 .flags = SHRINKER_NUMA_AWARE,
3587 };
3588
3589 #ifdef CONFIG_DEBUG_FS
3590 static int split_huge_pages_set(void *data, u64 val)
3591 {
3592 struct zone *zone;
3593 struct page *page;
3594 unsigned long pfn, max_zone_pfn;
3595 unsigned long total = 0, split = 0;
3596
3597 if (val != 1)
3598 return -EINVAL;
3599
3600 for_each_populated_zone(zone) {
3601 max_zone_pfn = zone_end_pfn(zone);
3602 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
3603 if (!pfn_valid(pfn))
3604 continue;
3605
3606 page = pfn_to_page(pfn);
3607 if (!get_page_unless_zero(page))
3608 continue;
3609
3610 if (zone != page_zone(page))
3611 goto next;
3612
3613 if (!PageHead(page) || !PageAnon(page) ||
3614 PageHuge(page))
3615 goto next;
3616
3617 total++;
3618 lock_page(page);
3619 if (!split_huge_page(page))
3620 split++;
3621 unlock_page(page);
3622 next:
3623 put_page(page);
3624 }
3625 }
3626
3627 pr_info("%lu of %lu THP split\n", split, total);
3628
3629 return 0;
3630 }
3631 DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
3632 "%llu\n");
3633
3634 static int __init split_huge_pages_debugfs(void)
3635 {
3636 void *ret;
3637
3638 ret = debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
3639 &split_huge_pages_fops);
3640 if (!ret)
3641 pr_warn("Failed to create split_huge_pages in debugfs");
3642 return 0;
3643 }
3644 late_initcall(split_huge_pages_debugfs);
3645 #endif
This page took 0.224026 seconds and 6 git commands to generate.