Merge branch 'for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/geert/linux...
[deliverable/linux.git] / mm / huge_memory.c
1 /*
2 * Copyright (C) 2009 Red Hat, Inc.
3 *
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
6 */
7
8 #include <linux/mm.h>
9 #include <linux/sched.h>
10 #include <linux/highmem.h>
11 #include <linux/hugetlb.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/rmap.h>
14 #include <linux/swap.h>
15 #include <linux/shrinker.h>
16 #include <linux/mm_inline.h>
17 #include <linux/kthread.h>
18 #include <linux/khugepaged.h>
19 #include <linux/freezer.h>
20 #include <linux/mman.h>
21 #include <linux/pagemap.h>
22
23 #include <asm/tlb.h>
24 #include <asm/pgalloc.h>
25 #include "internal.h"
26
27 /*
28 * By default transparent hugepage support is enabled for all mappings
29 * and khugepaged scans all mappings. Defrag is only invoked by
30 * khugepaged hugepage allocations and by page faults inside
31 * MADV_HUGEPAGE regions to avoid the risk of slowing down short lived
32 * allocations.
33 */
34 unsigned long transparent_hugepage_flags __read_mostly =
35 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
36 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
37 #endif
38 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
39 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
40 #endif
41 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
42 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
43 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
44
45 /* default scan 8*512 pte (or vmas) every 30 second */
46 static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
47 static unsigned int khugepaged_pages_collapsed;
48 static unsigned int khugepaged_full_scans;
49 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
50 /* during fragmentation poll the hugepage allocator once every minute */
51 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
52 static struct task_struct *khugepaged_thread __read_mostly;
53 static DEFINE_MUTEX(khugepaged_mutex);
54 static DEFINE_SPINLOCK(khugepaged_mm_lock);
55 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
56 /*
57 * default collapse hugepages if there is at least one pte mapped like
58 * it would have happened if the vma was large enough during page
59 * fault.
60 */
61 static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
62
63 static int khugepaged(void *none);
64 static int mm_slots_hash_init(void);
65 static int khugepaged_slab_init(void);
66 static void khugepaged_slab_free(void);
67
68 #define MM_SLOTS_HASH_HEADS 1024
69 static struct hlist_head *mm_slots_hash __read_mostly;
70 static struct kmem_cache *mm_slot_cache __read_mostly;
71
72 /**
73 * struct mm_slot - hash lookup from mm to mm_slot
74 * @hash: hash collision list
75 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
76 * @mm: the mm that this information is valid for
77 */
78 struct mm_slot {
79 struct hlist_node hash;
80 struct list_head mm_node;
81 struct mm_struct *mm;
82 };
83
84 /**
85 * struct khugepaged_scan - cursor for scanning
86 * @mm_head: the head of the mm list to scan
87 * @mm_slot: the current mm_slot we are scanning
88 * @address: the next address inside that to be scanned
89 *
90 * There is only the one khugepaged_scan instance of this cursor structure.
91 */
92 struct khugepaged_scan {
93 struct list_head mm_head;
94 struct mm_slot *mm_slot;
95 unsigned long address;
96 };
97 static struct khugepaged_scan khugepaged_scan = {
98 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
99 };
100
101
102 static int set_recommended_min_free_kbytes(void)
103 {
104 struct zone *zone;
105 int nr_zones = 0;
106 unsigned long recommended_min;
107 extern int min_free_kbytes;
108
109 if (!khugepaged_enabled())
110 return 0;
111
112 for_each_populated_zone(zone)
113 nr_zones++;
114
115 /* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
116 recommended_min = pageblock_nr_pages * nr_zones * 2;
117
118 /*
119 * Make sure that on average at least two pageblocks are almost free
120 * of another type, one for a migratetype to fall back to and a
121 * second to avoid subsequent fallbacks of other types There are 3
122 * MIGRATE_TYPES we care about.
123 */
124 recommended_min += pageblock_nr_pages * nr_zones *
125 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
126
127 /* don't ever allow to reserve more than 5% of the lowmem */
128 recommended_min = min(recommended_min,
129 (unsigned long) nr_free_buffer_pages() / 20);
130 recommended_min <<= (PAGE_SHIFT-10);
131
132 if (recommended_min > min_free_kbytes)
133 min_free_kbytes = recommended_min;
134 setup_per_zone_wmarks();
135 return 0;
136 }
137 late_initcall(set_recommended_min_free_kbytes);
138
139 static int start_khugepaged(void)
140 {
141 int err = 0;
142 if (khugepaged_enabled()) {
143 if (!khugepaged_thread)
144 khugepaged_thread = kthread_run(khugepaged, NULL,
145 "khugepaged");
146 if (unlikely(IS_ERR(khugepaged_thread))) {
147 printk(KERN_ERR
148 "khugepaged: kthread_run(khugepaged) failed\n");
149 err = PTR_ERR(khugepaged_thread);
150 khugepaged_thread = NULL;
151 }
152
153 if (!list_empty(&khugepaged_scan.mm_head))
154 wake_up_interruptible(&khugepaged_wait);
155
156 set_recommended_min_free_kbytes();
157 } else if (khugepaged_thread) {
158 kthread_stop(khugepaged_thread);
159 khugepaged_thread = NULL;
160 }
161
162 return err;
163 }
164
165 static atomic_t huge_zero_refcount;
166 static unsigned long huge_zero_pfn __read_mostly;
167
168 static inline bool is_huge_zero_pfn(unsigned long pfn)
169 {
170 unsigned long zero_pfn = ACCESS_ONCE(huge_zero_pfn);
171 return zero_pfn && pfn == zero_pfn;
172 }
173
174 static inline bool is_huge_zero_pmd(pmd_t pmd)
175 {
176 return is_huge_zero_pfn(pmd_pfn(pmd));
177 }
178
179 static unsigned long get_huge_zero_page(void)
180 {
181 struct page *zero_page;
182 retry:
183 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
184 return ACCESS_ONCE(huge_zero_pfn);
185
186 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
187 HPAGE_PMD_ORDER);
188 if (!zero_page) {
189 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
190 return 0;
191 }
192 count_vm_event(THP_ZERO_PAGE_ALLOC);
193 preempt_disable();
194 if (cmpxchg(&huge_zero_pfn, 0, page_to_pfn(zero_page))) {
195 preempt_enable();
196 __free_page(zero_page);
197 goto retry;
198 }
199
200 /* We take additional reference here. It will be put back by shrinker */
201 atomic_set(&huge_zero_refcount, 2);
202 preempt_enable();
203 return ACCESS_ONCE(huge_zero_pfn);
204 }
205
206 static void put_huge_zero_page(void)
207 {
208 /*
209 * Counter should never go to zero here. Only shrinker can put
210 * last reference.
211 */
212 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
213 }
214
215 static int shrink_huge_zero_page(struct shrinker *shrink,
216 struct shrink_control *sc)
217 {
218 if (!sc->nr_to_scan)
219 /* we can free zero page only if last reference remains */
220 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
221
222 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
223 unsigned long zero_pfn = xchg(&huge_zero_pfn, 0);
224 BUG_ON(zero_pfn == 0);
225 __free_page(__pfn_to_page(zero_pfn));
226 }
227
228 return 0;
229 }
230
231 static struct shrinker huge_zero_page_shrinker = {
232 .shrink = shrink_huge_zero_page,
233 .seeks = DEFAULT_SEEKS,
234 };
235
236 #ifdef CONFIG_SYSFS
237
238 static ssize_t double_flag_show(struct kobject *kobj,
239 struct kobj_attribute *attr, char *buf,
240 enum transparent_hugepage_flag enabled,
241 enum transparent_hugepage_flag req_madv)
242 {
243 if (test_bit(enabled, &transparent_hugepage_flags)) {
244 VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
245 return sprintf(buf, "[always] madvise never\n");
246 } else if (test_bit(req_madv, &transparent_hugepage_flags))
247 return sprintf(buf, "always [madvise] never\n");
248 else
249 return sprintf(buf, "always madvise [never]\n");
250 }
251 static ssize_t double_flag_store(struct kobject *kobj,
252 struct kobj_attribute *attr,
253 const char *buf, size_t count,
254 enum transparent_hugepage_flag enabled,
255 enum transparent_hugepage_flag req_madv)
256 {
257 if (!memcmp("always", buf,
258 min(sizeof("always")-1, count))) {
259 set_bit(enabled, &transparent_hugepage_flags);
260 clear_bit(req_madv, &transparent_hugepage_flags);
261 } else if (!memcmp("madvise", buf,
262 min(sizeof("madvise")-1, count))) {
263 clear_bit(enabled, &transparent_hugepage_flags);
264 set_bit(req_madv, &transparent_hugepage_flags);
265 } else if (!memcmp("never", buf,
266 min(sizeof("never")-1, count))) {
267 clear_bit(enabled, &transparent_hugepage_flags);
268 clear_bit(req_madv, &transparent_hugepage_flags);
269 } else
270 return -EINVAL;
271
272 return count;
273 }
274
275 static ssize_t enabled_show(struct kobject *kobj,
276 struct kobj_attribute *attr, char *buf)
277 {
278 return double_flag_show(kobj, attr, buf,
279 TRANSPARENT_HUGEPAGE_FLAG,
280 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
281 }
282 static ssize_t enabled_store(struct kobject *kobj,
283 struct kobj_attribute *attr,
284 const char *buf, size_t count)
285 {
286 ssize_t ret;
287
288 ret = double_flag_store(kobj, attr, buf, count,
289 TRANSPARENT_HUGEPAGE_FLAG,
290 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
291
292 if (ret > 0) {
293 int err;
294
295 mutex_lock(&khugepaged_mutex);
296 err = start_khugepaged();
297 mutex_unlock(&khugepaged_mutex);
298
299 if (err)
300 ret = err;
301 }
302
303 return ret;
304 }
305 static struct kobj_attribute enabled_attr =
306 __ATTR(enabled, 0644, enabled_show, enabled_store);
307
308 static ssize_t single_flag_show(struct kobject *kobj,
309 struct kobj_attribute *attr, char *buf,
310 enum transparent_hugepage_flag flag)
311 {
312 return sprintf(buf, "%d\n",
313 !!test_bit(flag, &transparent_hugepage_flags));
314 }
315
316 static ssize_t single_flag_store(struct kobject *kobj,
317 struct kobj_attribute *attr,
318 const char *buf, size_t count,
319 enum transparent_hugepage_flag flag)
320 {
321 unsigned long value;
322 int ret;
323
324 ret = kstrtoul(buf, 10, &value);
325 if (ret < 0)
326 return ret;
327 if (value > 1)
328 return -EINVAL;
329
330 if (value)
331 set_bit(flag, &transparent_hugepage_flags);
332 else
333 clear_bit(flag, &transparent_hugepage_flags);
334
335 return count;
336 }
337
338 /*
339 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
340 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
341 * memory just to allocate one more hugepage.
342 */
343 static ssize_t defrag_show(struct kobject *kobj,
344 struct kobj_attribute *attr, char *buf)
345 {
346 return double_flag_show(kobj, attr, buf,
347 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
348 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
349 }
350 static ssize_t defrag_store(struct kobject *kobj,
351 struct kobj_attribute *attr,
352 const char *buf, size_t count)
353 {
354 return double_flag_store(kobj, attr, buf, count,
355 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
356 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
357 }
358 static struct kobj_attribute defrag_attr =
359 __ATTR(defrag, 0644, defrag_show, defrag_store);
360
361 static ssize_t use_zero_page_show(struct kobject *kobj,
362 struct kobj_attribute *attr, char *buf)
363 {
364 return single_flag_show(kobj, attr, buf,
365 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
366 }
367 static ssize_t use_zero_page_store(struct kobject *kobj,
368 struct kobj_attribute *attr, const char *buf, size_t count)
369 {
370 return single_flag_store(kobj, attr, buf, count,
371 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
372 }
373 static struct kobj_attribute use_zero_page_attr =
374 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
375 #ifdef CONFIG_DEBUG_VM
376 static ssize_t debug_cow_show(struct kobject *kobj,
377 struct kobj_attribute *attr, char *buf)
378 {
379 return single_flag_show(kobj, attr, buf,
380 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
381 }
382 static ssize_t debug_cow_store(struct kobject *kobj,
383 struct kobj_attribute *attr,
384 const char *buf, size_t count)
385 {
386 return single_flag_store(kobj, attr, buf, count,
387 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
388 }
389 static struct kobj_attribute debug_cow_attr =
390 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
391 #endif /* CONFIG_DEBUG_VM */
392
393 static struct attribute *hugepage_attr[] = {
394 &enabled_attr.attr,
395 &defrag_attr.attr,
396 &use_zero_page_attr.attr,
397 #ifdef CONFIG_DEBUG_VM
398 &debug_cow_attr.attr,
399 #endif
400 NULL,
401 };
402
403 static struct attribute_group hugepage_attr_group = {
404 .attrs = hugepage_attr,
405 };
406
407 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
408 struct kobj_attribute *attr,
409 char *buf)
410 {
411 return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
412 }
413
414 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
415 struct kobj_attribute *attr,
416 const char *buf, size_t count)
417 {
418 unsigned long msecs;
419 int err;
420
421 err = strict_strtoul(buf, 10, &msecs);
422 if (err || msecs > UINT_MAX)
423 return -EINVAL;
424
425 khugepaged_scan_sleep_millisecs = msecs;
426 wake_up_interruptible(&khugepaged_wait);
427
428 return count;
429 }
430 static struct kobj_attribute scan_sleep_millisecs_attr =
431 __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
432 scan_sleep_millisecs_store);
433
434 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
435 struct kobj_attribute *attr,
436 char *buf)
437 {
438 return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
439 }
440
441 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
442 struct kobj_attribute *attr,
443 const char *buf, size_t count)
444 {
445 unsigned long msecs;
446 int err;
447
448 err = strict_strtoul(buf, 10, &msecs);
449 if (err || msecs > UINT_MAX)
450 return -EINVAL;
451
452 khugepaged_alloc_sleep_millisecs = msecs;
453 wake_up_interruptible(&khugepaged_wait);
454
455 return count;
456 }
457 static struct kobj_attribute alloc_sleep_millisecs_attr =
458 __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
459 alloc_sleep_millisecs_store);
460
461 static ssize_t pages_to_scan_show(struct kobject *kobj,
462 struct kobj_attribute *attr,
463 char *buf)
464 {
465 return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
466 }
467 static ssize_t pages_to_scan_store(struct kobject *kobj,
468 struct kobj_attribute *attr,
469 const char *buf, size_t count)
470 {
471 int err;
472 unsigned long pages;
473
474 err = strict_strtoul(buf, 10, &pages);
475 if (err || !pages || pages > UINT_MAX)
476 return -EINVAL;
477
478 khugepaged_pages_to_scan = pages;
479
480 return count;
481 }
482 static struct kobj_attribute pages_to_scan_attr =
483 __ATTR(pages_to_scan, 0644, pages_to_scan_show,
484 pages_to_scan_store);
485
486 static ssize_t pages_collapsed_show(struct kobject *kobj,
487 struct kobj_attribute *attr,
488 char *buf)
489 {
490 return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
491 }
492 static struct kobj_attribute pages_collapsed_attr =
493 __ATTR_RO(pages_collapsed);
494
495 static ssize_t full_scans_show(struct kobject *kobj,
496 struct kobj_attribute *attr,
497 char *buf)
498 {
499 return sprintf(buf, "%u\n", khugepaged_full_scans);
500 }
501 static struct kobj_attribute full_scans_attr =
502 __ATTR_RO(full_scans);
503
504 static ssize_t khugepaged_defrag_show(struct kobject *kobj,
505 struct kobj_attribute *attr, char *buf)
506 {
507 return single_flag_show(kobj, attr, buf,
508 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
509 }
510 static ssize_t khugepaged_defrag_store(struct kobject *kobj,
511 struct kobj_attribute *attr,
512 const char *buf, size_t count)
513 {
514 return single_flag_store(kobj, attr, buf, count,
515 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
516 }
517 static struct kobj_attribute khugepaged_defrag_attr =
518 __ATTR(defrag, 0644, khugepaged_defrag_show,
519 khugepaged_defrag_store);
520
521 /*
522 * max_ptes_none controls if khugepaged should collapse hugepages over
523 * any unmapped ptes in turn potentially increasing the memory
524 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
525 * reduce the available free memory in the system as it
526 * runs. Increasing max_ptes_none will instead potentially reduce the
527 * free memory in the system during the khugepaged scan.
528 */
529 static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
530 struct kobj_attribute *attr,
531 char *buf)
532 {
533 return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
534 }
535 static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
536 struct kobj_attribute *attr,
537 const char *buf, size_t count)
538 {
539 int err;
540 unsigned long max_ptes_none;
541
542 err = strict_strtoul(buf, 10, &max_ptes_none);
543 if (err || max_ptes_none > HPAGE_PMD_NR-1)
544 return -EINVAL;
545
546 khugepaged_max_ptes_none = max_ptes_none;
547
548 return count;
549 }
550 static struct kobj_attribute khugepaged_max_ptes_none_attr =
551 __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
552 khugepaged_max_ptes_none_store);
553
554 static struct attribute *khugepaged_attr[] = {
555 &khugepaged_defrag_attr.attr,
556 &khugepaged_max_ptes_none_attr.attr,
557 &pages_to_scan_attr.attr,
558 &pages_collapsed_attr.attr,
559 &full_scans_attr.attr,
560 &scan_sleep_millisecs_attr.attr,
561 &alloc_sleep_millisecs_attr.attr,
562 NULL,
563 };
564
565 static struct attribute_group khugepaged_attr_group = {
566 .attrs = khugepaged_attr,
567 .name = "khugepaged",
568 };
569
570 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
571 {
572 int err;
573
574 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
575 if (unlikely(!*hugepage_kobj)) {
576 printk(KERN_ERR "hugepage: failed kobject create\n");
577 return -ENOMEM;
578 }
579
580 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
581 if (err) {
582 printk(KERN_ERR "hugepage: failed register hugeage group\n");
583 goto delete_obj;
584 }
585
586 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
587 if (err) {
588 printk(KERN_ERR "hugepage: failed register hugeage group\n");
589 goto remove_hp_group;
590 }
591
592 return 0;
593
594 remove_hp_group:
595 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
596 delete_obj:
597 kobject_put(*hugepage_kobj);
598 return err;
599 }
600
601 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
602 {
603 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
604 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
605 kobject_put(hugepage_kobj);
606 }
607 #else
608 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
609 {
610 return 0;
611 }
612
613 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
614 {
615 }
616 #endif /* CONFIG_SYSFS */
617
618 static int __init hugepage_init(void)
619 {
620 int err;
621 struct kobject *hugepage_kobj;
622
623 if (!has_transparent_hugepage()) {
624 transparent_hugepage_flags = 0;
625 return -EINVAL;
626 }
627
628 err = hugepage_init_sysfs(&hugepage_kobj);
629 if (err)
630 return err;
631
632 err = khugepaged_slab_init();
633 if (err)
634 goto out;
635
636 err = mm_slots_hash_init();
637 if (err) {
638 khugepaged_slab_free();
639 goto out;
640 }
641
642 register_shrinker(&huge_zero_page_shrinker);
643
644 /*
645 * By default disable transparent hugepages on smaller systems,
646 * where the extra memory used could hurt more than TLB overhead
647 * is likely to save. The admin can still enable it through /sys.
648 */
649 if (totalram_pages < (512 << (20 - PAGE_SHIFT)))
650 transparent_hugepage_flags = 0;
651
652 start_khugepaged();
653
654 return 0;
655 out:
656 hugepage_exit_sysfs(hugepage_kobj);
657 return err;
658 }
659 module_init(hugepage_init)
660
661 static int __init setup_transparent_hugepage(char *str)
662 {
663 int ret = 0;
664 if (!str)
665 goto out;
666 if (!strcmp(str, "always")) {
667 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
668 &transparent_hugepage_flags);
669 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
670 &transparent_hugepage_flags);
671 ret = 1;
672 } else if (!strcmp(str, "madvise")) {
673 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
674 &transparent_hugepage_flags);
675 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
676 &transparent_hugepage_flags);
677 ret = 1;
678 } else if (!strcmp(str, "never")) {
679 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
680 &transparent_hugepage_flags);
681 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
682 &transparent_hugepage_flags);
683 ret = 1;
684 }
685 out:
686 if (!ret)
687 printk(KERN_WARNING
688 "transparent_hugepage= cannot parse, ignored\n");
689 return ret;
690 }
691 __setup("transparent_hugepage=", setup_transparent_hugepage);
692
693 static inline pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
694 {
695 if (likely(vma->vm_flags & VM_WRITE))
696 pmd = pmd_mkwrite(pmd);
697 return pmd;
698 }
699
700 static inline pmd_t mk_huge_pmd(struct page *page, struct vm_area_struct *vma)
701 {
702 pmd_t entry;
703 entry = mk_pmd(page, vma->vm_page_prot);
704 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
705 entry = pmd_mkhuge(entry);
706 return entry;
707 }
708
709 static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
710 struct vm_area_struct *vma,
711 unsigned long haddr, pmd_t *pmd,
712 struct page *page)
713 {
714 pgtable_t pgtable;
715
716 VM_BUG_ON(!PageCompound(page));
717 pgtable = pte_alloc_one(mm, haddr);
718 if (unlikely(!pgtable))
719 return VM_FAULT_OOM;
720
721 clear_huge_page(page, haddr, HPAGE_PMD_NR);
722 __SetPageUptodate(page);
723
724 spin_lock(&mm->page_table_lock);
725 if (unlikely(!pmd_none(*pmd))) {
726 spin_unlock(&mm->page_table_lock);
727 mem_cgroup_uncharge_page(page);
728 put_page(page);
729 pte_free(mm, pgtable);
730 } else {
731 pmd_t entry;
732 entry = mk_huge_pmd(page, vma);
733 /*
734 * The spinlocking to take the lru_lock inside
735 * page_add_new_anon_rmap() acts as a full memory
736 * barrier to be sure clear_huge_page writes become
737 * visible after the set_pmd_at() write.
738 */
739 page_add_new_anon_rmap(page, vma, haddr);
740 set_pmd_at(mm, haddr, pmd, entry);
741 pgtable_trans_huge_deposit(mm, pgtable);
742 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
743 mm->nr_ptes++;
744 spin_unlock(&mm->page_table_lock);
745 }
746
747 return 0;
748 }
749
750 static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
751 {
752 return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp;
753 }
754
755 static inline struct page *alloc_hugepage_vma(int defrag,
756 struct vm_area_struct *vma,
757 unsigned long haddr, int nd,
758 gfp_t extra_gfp)
759 {
760 return alloc_pages_vma(alloc_hugepage_gfpmask(defrag, extra_gfp),
761 HPAGE_PMD_ORDER, vma, haddr, nd);
762 }
763
764 #ifndef CONFIG_NUMA
765 static inline struct page *alloc_hugepage(int defrag)
766 {
767 return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
768 HPAGE_PMD_ORDER);
769 }
770 #endif
771
772 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
773 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
774 unsigned long zero_pfn)
775 {
776 pmd_t entry;
777 if (!pmd_none(*pmd))
778 return false;
779 entry = pfn_pmd(zero_pfn, vma->vm_page_prot);
780 entry = pmd_wrprotect(entry);
781 entry = pmd_mkhuge(entry);
782 set_pmd_at(mm, haddr, pmd, entry);
783 pgtable_trans_huge_deposit(mm, pgtable);
784 mm->nr_ptes++;
785 return true;
786 }
787
788 int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
789 unsigned long address, pmd_t *pmd,
790 unsigned int flags)
791 {
792 struct page *page;
793 unsigned long haddr = address & HPAGE_PMD_MASK;
794 pte_t *pte;
795
796 if (haddr >= vma->vm_start && haddr + HPAGE_PMD_SIZE <= vma->vm_end) {
797 if (unlikely(anon_vma_prepare(vma)))
798 return VM_FAULT_OOM;
799 if (unlikely(khugepaged_enter(vma)))
800 return VM_FAULT_OOM;
801 if (!(flags & FAULT_FLAG_WRITE) &&
802 transparent_hugepage_use_zero_page()) {
803 pgtable_t pgtable;
804 unsigned long zero_pfn;
805 bool set;
806 pgtable = pte_alloc_one(mm, haddr);
807 if (unlikely(!pgtable))
808 return VM_FAULT_OOM;
809 zero_pfn = get_huge_zero_page();
810 if (unlikely(!zero_pfn)) {
811 pte_free(mm, pgtable);
812 count_vm_event(THP_FAULT_FALLBACK);
813 goto out;
814 }
815 spin_lock(&mm->page_table_lock);
816 set = set_huge_zero_page(pgtable, mm, vma, haddr, pmd,
817 zero_pfn);
818 spin_unlock(&mm->page_table_lock);
819 if (!set) {
820 pte_free(mm, pgtable);
821 put_huge_zero_page();
822 }
823 return 0;
824 }
825 page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
826 vma, haddr, numa_node_id(), 0);
827 if (unlikely(!page)) {
828 count_vm_event(THP_FAULT_FALLBACK);
829 goto out;
830 }
831 count_vm_event(THP_FAULT_ALLOC);
832 if (unlikely(mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))) {
833 put_page(page);
834 goto out;
835 }
836 if (unlikely(__do_huge_pmd_anonymous_page(mm, vma, haddr, pmd,
837 page))) {
838 mem_cgroup_uncharge_page(page);
839 put_page(page);
840 goto out;
841 }
842
843 return 0;
844 }
845 out:
846 /*
847 * Use __pte_alloc instead of pte_alloc_map, because we can't
848 * run pte_offset_map on the pmd, if an huge pmd could
849 * materialize from under us from a different thread.
850 */
851 if (unlikely(__pte_alloc(mm, vma, pmd, address)))
852 return VM_FAULT_OOM;
853 /* if an huge pmd materialized from under us just retry later */
854 if (unlikely(pmd_trans_huge(*pmd)))
855 return 0;
856 /*
857 * A regular pmd is established and it can't morph into a huge pmd
858 * from under us anymore at this point because we hold the mmap_sem
859 * read mode and khugepaged takes it in write mode. So now it's
860 * safe to run pte_offset_map().
861 */
862 pte = pte_offset_map(pmd, address);
863 return handle_pte_fault(mm, vma, address, pte, pmd, flags);
864 }
865
866 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
867 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
868 struct vm_area_struct *vma)
869 {
870 struct page *src_page;
871 pmd_t pmd;
872 pgtable_t pgtable;
873 int ret;
874
875 ret = -ENOMEM;
876 pgtable = pte_alloc_one(dst_mm, addr);
877 if (unlikely(!pgtable))
878 goto out;
879
880 spin_lock(&dst_mm->page_table_lock);
881 spin_lock_nested(&src_mm->page_table_lock, SINGLE_DEPTH_NESTING);
882
883 ret = -EAGAIN;
884 pmd = *src_pmd;
885 if (unlikely(!pmd_trans_huge(pmd))) {
886 pte_free(dst_mm, pgtable);
887 goto out_unlock;
888 }
889 /*
890 * mm->page_table_lock is enough to be sure that huge zero pmd is not
891 * under splitting since we don't split the page itself, only pmd to
892 * a page table.
893 */
894 if (is_huge_zero_pmd(pmd)) {
895 unsigned long zero_pfn;
896 bool set;
897 /*
898 * get_huge_zero_page() will never allocate a new page here,
899 * since we already have a zero page to copy. It just takes a
900 * reference.
901 */
902 zero_pfn = get_huge_zero_page();
903 set = set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
904 zero_pfn);
905 BUG_ON(!set); /* unexpected !pmd_none(dst_pmd) */
906 ret = 0;
907 goto out_unlock;
908 }
909 if (unlikely(pmd_trans_splitting(pmd))) {
910 /* split huge page running from under us */
911 spin_unlock(&src_mm->page_table_lock);
912 spin_unlock(&dst_mm->page_table_lock);
913 pte_free(dst_mm, pgtable);
914
915 wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
916 goto out;
917 }
918 src_page = pmd_page(pmd);
919 VM_BUG_ON(!PageHead(src_page));
920 get_page(src_page);
921 page_dup_rmap(src_page);
922 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
923
924 pmdp_set_wrprotect(src_mm, addr, src_pmd);
925 pmd = pmd_mkold(pmd_wrprotect(pmd));
926 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
927 pgtable_trans_huge_deposit(dst_mm, pgtable);
928 dst_mm->nr_ptes++;
929
930 ret = 0;
931 out_unlock:
932 spin_unlock(&src_mm->page_table_lock);
933 spin_unlock(&dst_mm->page_table_lock);
934 out:
935 return ret;
936 }
937
938 void huge_pmd_set_accessed(struct mm_struct *mm,
939 struct vm_area_struct *vma,
940 unsigned long address,
941 pmd_t *pmd, pmd_t orig_pmd,
942 int dirty)
943 {
944 pmd_t entry;
945 unsigned long haddr;
946
947 spin_lock(&mm->page_table_lock);
948 if (unlikely(!pmd_same(*pmd, orig_pmd)))
949 goto unlock;
950
951 entry = pmd_mkyoung(orig_pmd);
952 haddr = address & HPAGE_PMD_MASK;
953 if (pmdp_set_access_flags(vma, haddr, pmd, entry, dirty))
954 update_mmu_cache_pmd(vma, address, pmd);
955
956 unlock:
957 spin_unlock(&mm->page_table_lock);
958 }
959
960 static int do_huge_pmd_wp_zero_page_fallback(struct mm_struct *mm,
961 struct vm_area_struct *vma, unsigned long address,
962 pmd_t *pmd, pmd_t orig_pmd, unsigned long haddr)
963 {
964 pgtable_t pgtable;
965 pmd_t _pmd;
966 struct page *page;
967 int i, ret = 0;
968 unsigned long mmun_start; /* For mmu_notifiers */
969 unsigned long mmun_end; /* For mmu_notifiers */
970
971 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
972 if (!page) {
973 ret |= VM_FAULT_OOM;
974 goto out;
975 }
976
977 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) {
978 put_page(page);
979 ret |= VM_FAULT_OOM;
980 goto out;
981 }
982
983 clear_user_highpage(page, address);
984 __SetPageUptodate(page);
985
986 mmun_start = haddr;
987 mmun_end = haddr + HPAGE_PMD_SIZE;
988 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
989
990 spin_lock(&mm->page_table_lock);
991 if (unlikely(!pmd_same(*pmd, orig_pmd)))
992 goto out_free_page;
993
994 pmdp_clear_flush(vma, haddr, pmd);
995 /* leave pmd empty until pte is filled */
996
997 pgtable = pgtable_trans_huge_withdraw(mm);
998 pmd_populate(mm, &_pmd, pgtable);
999
1000 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1001 pte_t *pte, entry;
1002 if (haddr == (address & PAGE_MASK)) {
1003 entry = mk_pte(page, vma->vm_page_prot);
1004 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1005 page_add_new_anon_rmap(page, vma, haddr);
1006 } else {
1007 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
1008 entry = pte_mkspecial(entry);
1009 }
1010 pte = pte_offset_map(&_pmd, haddr);
1011 VM_BUG_ON(!pte_none(*pte));
1012 set_pte_at(mm, haddr, pte, entry);
1013 pte_unmap(pte);
1014 }
1015 smp_wmb(); /* make pte visible before pmd */
1016 pmd_populate(mm, pmd, pgtable);
1017 spin_unlock(&mm->page_table_lock);
1018 put_huge_zero_page();
1019 inc_mm_counter(mm, MM_ANONPAGES);
1020
1021 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1022
1023 ret |= VM_FAULT_WRITE;
1024 out:
1025 return ret;
1026 out_free_page:
1027 spin_unlock(&mm->page_table_lock);
1028 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1029 mem_cgroup_uncharge_page(page);
1030 put_page(page);
1031 goto out;
1032 }
1033
1034 static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
1035 struct vm_area_struct *vma,
1036 unsigned long address,
1037 pmd_t *pmd, pmd_t orig_pmd,
1038 struct page *page,
1039 unsigned long haddr)
1040 {
1041 pgtable_t pgtable;
1042 pmd_t _pmd;
1043 int ret = 0, i;
1044 struct page **pages;
1045 unsigned long mmun_start; /* For mmu_notifiers */
1046 unsigned long mmun_end; /* For mmu_notifiers */
1047
1048 pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
1049 GFP_KERNEL);
1050 if (unlikely(!pages)) {
1051 ret |= VM_FAULT_OOM;
1052 goto out;
1053 }
1054
1055 for (i = 0; i < HPAGE_PMD_NR; i++) {
1056 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
1057 __GFP_OTHER_NODE,
1058 vma, address, page_to_nid(page));
1059 if (unlikely(!pages[i] ||
1060 mem_cgroup_newpage_charge(pages[i], mm,
1061 GFP_KERNEL))) {
1062 if (pages[i])
1063 put_page(pages[i]);
1064 mem_cgroup_uncharge_start();
1065 while (--i >= 0) {
1066 mem_cgroup_uncharge_page(pages[i]);
1067 put_page(pages[i]);
1068 }
1069 mem_cgroup_uncharge_end();
1070 kfree(pages);
1071 ret |= VM_FAULT_OOM;
1072 goto out;
1073 }
1074 }
1075
1076 for (i = 0; i < HPAGE_PMD_NR; i++) {
1077 copy_user_highpage(pages[i], page + i,
1078 haddr + PAGE_SIZE * i, vma);
1079 __SetPageUptodate(pages[i]);
1080 cond_resched();
1081 }
1082
1083 mmun_start = haddr;
1084 mmun_end = haddr + HPAGE_PMD_SIZE;
1085 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1086
1087 spin_lock(&mm->page_table_lock);
1088 if (unlikely(!pmd_same(*pmd, orig_pmd)))
1089 goto out_free_pages;
1090 VM_BUG_ON(!PageHead(page));
1091
1092 pmdp_clear_flush(vma, haddr, pmd);
1093 /* leave pmd empty until pte is filled */
1094
1095 pgtable = pgtable_trans_huge_withdraw(mm);
1096 pmd_populate(mm, &_pmd, pgtable);
1097
1098 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1099 pte_t *pte, entry;
1100 entry = mk_pte(pages[i], vma->vm_page_prot);
1101 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1102 page_add_new_anon_rmap(pages[i], vma, haddr);
1103 pte = pte_offset_map(&_pmd, haddr);
1104 VM_BUG_ON(!pte_none(*pte));
1105 set_pte_at(mm, haddr, pte, entry);
1106 pte_unmap(pte);
1107 }
1108 kfree(pages);
1109
1110 smp_wmb(); /* make pte visible before pmd */
1111 pmd_populate(mm, pmd, pgtable);
1112 page_remove_rmap(page);
1113 spin_unlock(&mm->page_table_lock);
1114
1115 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1116
1117 ret |= VM_FAULT_WRITE;
1118 put_page(page);
1119
1120 out:
1121 return ret;
1122
1123 out_free_pages:
1124 spin_unlock(&mm->page_table_lock);
1125 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1126 mem_cgroup_uncharge_start();
1127 for (i = 0; i < HPAGE_PMD_NR; i++) {
1128 mem_cgroup_uncharge_page(pages[i]);
1129 put_page(pages[i]);
1130 }
1131 mem_cgroup_uncharge_end();
1132 kfree(pages);
1133 goto out;
1134 }
1135
1136 int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1137 unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
1138 {
1139 int ret = 0;
1140 struct page *page = NULL, *new_page;
1141 unsigned long haddr;
1142 unsigned long mmun_start; /* For mmu_notifiers */
1143 unsigned long mmun_end; /* For mmu_notifiers */
1144
1145 VM_BUG_ON(!vma->anon_vma);
1146 haddr = address & HPAGE_PMD_MASK;
1147 if (is_huge_zero_pmd(orig_pmd))
1148 goto alloc;
1149 spin_lock(&mm->page_table_lock);
1150 if (unlikely(!pmd_same(*pmd, orig_pmd)))
1151 goto out_unlock;
1152
1153 page = pmd_page(orig_pmd);
1154 VM_BUG_ON(!PageCompound(page) || !PageHead(page));
1155 if (page_mapcount(page) == 1) {
1156 pmd_t entry;
1157 entry = pmd_mkyoung(orig_pmd);
1158 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1159 if (pmdp_set_access_flags(vma, haddr, pmd, entry, 1))
1160 update_mmu_cache_pmd(vma, address, pmd);
1161 ret |= VM_FAULT_WRITE;
1162 goto out_unlock;
1163 }
1164 get_page(page);
1165 spin_unlock(&mm->page_table_lock);
1166 alloc:
1167 if (transparent_hugepage_enabled(vma) &&
1168 !transparent_hugepage_debug_cow())
1169 new_page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
1170 vma, haddr, numa_node_id(), 0);
1171 else
1172 new_page = NULL;
1173
1174 if (unlikely(!new_page)) {
1175 count_vm_event(THP_FAULT_FALLBACK);
1176 if (is_huge_zero_pmd(orig_pmd)) {
1177 ret = do_huge_pmd_wp_zero_page_fallback(mm, vma,
1178 address, pmd, orig_pmd, haddr);
1179 } else {
1180 ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
1181 pmd, orig_pmd, page, haddr);
1182 if (ret & VM_FAULT_OOM)
1183 split_huge_page(page);
1184 put_page(page);
1185 }
1186 goto out;
1187 }
1188 count_vm_event(THP_FAULT_ALLOC);
1189
1190 if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
1191 put_page(new_page);
1192 if (page) {
1193 split_huge_page(page);
1194 put_page(page);
1195 }
1196 ret |= VM_FAULT_OOM;
1197 goto out;
1198 }
1199
1200 if (is_huge_zero_pmd(orig_pmd))
1201 clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
1202 else
1203 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
1204 __SetPageUptodate(new_page);
1205
1206 mmun_start = haddr;
1207 mmun_end = haddr + HPAGE_PMD_SIZE;
1208 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1209
1210 spin_lock(&mm->page_table_lock);
1211 if (page)
1212 put_page(page);
1213 if (unlikely(!pmd_same(*pmd, orig_pmd))) {
1214 spin_unlock(&mm->page_table_lock);
1215 mem_cgroup_uncharge_page(new_page);
1216 put_page(new_page);
1217 goto out_mn;
1218 } else {
1219 pmd_t entry;
1220 entry = mk_huge_pmd(new_page, vma);
1221 pmdp_clear_flush(vma, haddr, pmd);
1222 page_add_new_anon_rmap(new_page, vma, haddr);
1223 set_pmd_at(mm, haddr, pmd, entry);
1224 update_mmu_cache_pmd(vma, address, pmd);
1225 if (is_huge_zero_pmd(orig_pmd)) {
1226 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
1227 put_huge_zero_page();
1228 } else {
1229 VM_BUG_ON(!PageHead(page));
1230 page_remove_rmap(page);
1231 put_page(page);
1232 }
1233 ret |= VM_FAULT_WRITE;
1234 }
1235 spin_unlock(&mm->page_table_lock);
1236 out_mn:
1237 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1238 out:
1239 return ret;
1240 out_unlock:
1241 spin_unlock(&mm->page_table_lock);
1242 return ret;
1243 }
1244
1245 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1246 unsigned long addr,
1247 pmd_t *pmd,
1248 unsigned int flags)
1249 {
1250 struct mm_struct *mm = vma->vm_mm;
1251 struct page *page = NULL;
1252
1253 assert_spin_locked(&mm->page_table_lock);
1254
1255 if (flags & FOLL_WRITE && !pmd_write(*pmd))
1256 goto out;
1257
1258 page = pmd_page(*pmd);
1259 VM_BUG_ON(!PageHead(page));
1260 if (flags & FOLL_TOUCH) {
1261 pmd_t _pmd;
1262 /*
1263 * We should set the dirty bit only for FOLL_WRITE but
1264 * for now the dirty bit in the pmd is meaningless.
1265 * And if the dirty bit will become meaningful and
1266 * we'll only set it with FOLL_WRITE, an atomic
1267 * set_bit will be required on the pmd to set the
1268 * young bit, instead of the current set_pmd_at.
1269 */
1270 _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
1271 set_pmd_at(mm, addr & HPAGE_PMD_MASK, pmd, _pmd);
1272 }
1273 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1274 if (page->mapping && trylock_page(page)) {
1275 lru_add_drain();
1276 if (page->mapping)
1277 mlock_vma_page(page);
1278 unlock_page(page);
1279 }
1280 }
1281 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1282 VM_BUG_ON(!PageCompound(page));
1283 if (flags & FOLL_GET)
1284 get_page_foll(page);
1285
1286 out:
1287 return page;
1288 }
1289
1290 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1291 pmd_t *pmd, unsigned long addr)
1292 {
1293 int ret = 0;
1294
1295 if (__pmd_trans_huge_lock(pmd, vma) == 1) {
1296 struct page *page;
1297 pgtable_t pgtable;
1298 pmd_t orig_pmd;
1299 pgtable = pgtable_trans_huge_withdraw(tlb->mm);
1300 orig_pmd = pmdp_get_and_clear(tlb->mm, addr, pmd);
1301 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1302 if (is_huge_zero_pmd(orig_pmd)) {
1303 tlb->mm->nr_ptes--;
1304 spin_unlock(&tlb->mm->page_table_lock);
1305 put_huge_zero_page();
1306 } else {
1307 page = pmd_page(orig_pmd);
1308 page_remove_rmap(page);
1309 VM_BUG_ON(page_mapcount(page) < 0);
1310 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1311 VM_BUG_ON(!PageHead(page));
1312 tlb->mm->nr_ptes--;
1313 spin_unlock(&tlb->mm->page_table_lock);
1314 tlb_remove_page(tlb, page);
1315 }
1316 pte_free(tlb->mm, pgtable);
1317 ret = 1;
1318 }
1319 return ret;
1320 }
1321
1322 int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1323 unsigned long addr, unsigned long end,
1324 unsigned char *vec)
1325 {
1326 int ret = 0;
1327
1328 if (__pmd_trans_huge_lock(pmd, vma) == 1) {
1329 /*
1330 * All logical pages in the range are present
1331 * if backed by a huge page.
1332 */
1333 spin_unlock(&vma->vm_mm->page_table_lock);
1334 memset(vec, 1, (end - addr) >> PAGE_SHIFT);
1335 ret = 1;
1336 }
1337
1338 return ret;
1339 }
1340
1341 int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
1342 unsigned long old_addr,
1343 unsigned long new_addr, unsigned long old_end,
1344 pmd_t *old_pmd, pmd_t *new_pmd)
1345 {
1346 int ret = 0;
1347 pmd_t pmd;
1348
1349 struct mm_struct *mm = vma->vm_mm;
1350
1351 if ((old_addr & ~HPAGE_PMD_MASK) ||
1352 (new_addr & ~HPAGE_PMD_MASK) ||
1353 old_end - old_addr < HPAGE_PMD_SIZE ||
1354 (new_vma->vm_flags & VM_NOHUGEPAGE))
1355 goto out;
1356
1357 /*
1358 * The destination pmd shouldn't be established, free_pgtables()
1359 * should have release it.
1360 */
1361 if (WARN_ON(!pmd_none(*new_pmd))) {
1362 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1363 goto out;
1364 }
1365
1366 ret = __pmd_trans_huge_lock(old_pmd, vma);
1367 if (ret == 1) {
1368 pmd = pmdp_get_and_clear(mm, old_addr, old_pmd);
1369 VM_BUG_ON(!pmd_none(*new_pmd));
1370 set_pmd_at(mm, new_addr, new_pmd, pmd);
1371 spin_unlock(&mm->page_table_lock);
1372 }
1373 out:
1374 return ret;
1375 }
1376
1377 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1378 unsigned long addr, pgprot_t newprot)
1379 {
1380 struct mm_struct *mm = vma->vm_mm;
1381 int ret = 0;
1382
1383 if (__pmd_trans_huge_lock(pmd, vma) == 1) {
1384 pmd_t entry;
1385 entry = pmdp_get_and_clear(mm, addr, pmd);
1386 entry = pmd_modify(entry, newprot);
1387 BUG_ON(pmd_write(entry));
1388 set_pmd_at(mm, addr, pmd, entry);
1389 spin_unlock(&vma->vm_mm->page_table_lock);
1390 ret = 1;
1391 }
1392
1393 return ret;
1394 }
1395
1396 /*
1397 * Returns 1 if a given pmd maps a stable (not under splitting) thp.
1398 * Returns -1 if it maps a thp under splitting. Returns 0 otherwise.
1399 *
1400 * Note that if it returns 1, this routine returns without unlocking page
1401 * table locks. So callers must unlock them.
1402 */
1403 int __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1404 {
1405 spin_lock(&vma->vm_mm->page_table_lock);
1406 if (likely(pmd_trans_huge(*pmd))) {
1407 if (unlikely(pmd_trans_splitting(*pmd))) {
1408 spin_unlock(&vma->vm_mm->page_table_lock);
1409 wait_split_huge_page(vma->anon_vma, pmd);
1410 return -1;
1411 } else {
1412 /* Thp mapped by 'pmd' is stable, so we can
1413 * handle it as it is. */
1414 return 1;
1415 }
1416 }
1417 spin_unlock(&vma->vm_mm->page_table_lock);
1418 return 0;
1419 }
1420
1421 pmd_t *page_check_address_pmd(struct page *page,
1422 struct mm_struct *mm,
1423 unsigned long address,
1424 enum page_check_address_pmd_flag flag)
1425 {
1426 pmd_t *pmd, *ret = NULL;
1427
1428 if (address & ~HPAGE_PMD_MASK)
1429 goto out;
1430
1431 pmd = mm_find_pmd(mm, address);
1432 if (!pmd)
1433 goto out;
1434 if (pmd_none(*pmd))
1435 goto out;
1436 if (pmd_page(*pmd) != page)
1437 goto out;
1438 /*
1439 * split_vma() may create temporary aliased mappings. There is
1440 * no risk as long as all huge pmd are found and have their
1441 * splitting bit set before __split_huge_page_refcount
1442 * runs. Finding the same huge pmd more than once during the
1443 * same rmap walk is not a problem.
1444 */
1445 if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
1446 pmd_trans_splitting(*pmd))
1447 goto out;
1448 if (pmd_trans_huge(*pmd)) {
1449 VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
1450 !pmd_trans_splitting(*pmd));
1451 ret = pmd;
1452 }
1453 out:
1454 return ret;
1455 }
1456
1457 static int __split_huge_page_splitting(struct page *page,
1458 struct vm_area_struct *vma,
1459 unsigned long address)
1460 {
1461 struct mm_struct *mm = vma->vm_mm;
1462 pmd_t *pmd;
1463 int ret = 0;
1464 /* For mmu_notifiers */
1465 const unsigned long mmun_start = address;
1466 const unsigned long mmun_end = address + HPAGE_PMD_SIZE;
1467
1468 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1469 spin_lock(&mm->page_table_lock);
1470 pmd = page_check_address_pmd(page, mm, address,
1471 PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG);
1472 if (pmd) {
1473 /*
1474 * We can't temporarily set the pmd to null in order
1475 * to split it, the pmd must remain marked huge at all
1476 * times or the VM won't take the pmd_trans_huge paths
1477 * and it won't wait on the anon_vma->root->mutex to
1478 * serialize against split_huge_page*.
1479 */
1480 pmdp_splitting_flush(vma, address, pmd);
1481 ret = 1;
1482 }
1483 spin_unlock(&mm->page_table_lock);
1484 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1485
1486 return ret;
1487 }
1488
1489 static void __split_huge_page_refcount(struct page *page)
1490 {
1491 int i;
1492 struct zone *zone = page_zone(page);
1493 struct lruvec *lruvec;
1494 int tail_count = 0;
1495
1496 /* prevent PageLRU to go away from under us, and freeze lru stats */
1497 spin_lock_irq(&zone->lru_lock);
1498 lruvec = mem_cgroup_page_lruvec(page, zone);
1499
1500 compound_lock(page);
1501 /* complete memcg works before add pages to LRU */
1502 mem_cgroup_split_huge_fixup(page);
1503
1504 for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
1505 struct page *page_tail = page + i;
1506
1507 /* tail_page->_mapcount cannot change */
1508 BUG_ON(page_mapcount(page_tail) < 0);
1509 tail_count += page_mapcount(page_tail);
1510 /* check for overflow */
1511 BUG_ON(tail_count < 0);
1512 BUG_ON(atomic_read(&page_tail->_count) != 0);
1513 /*
1514 * tail_page->_count is zero and not changing from
1515 * under us. But get_page_unless_zero() may be running
1516 * from under us on the tail_page. If we used
1517 * atomic_set() below instead of atomic_add(), we
1518 * would then run atomic_set() concurrently with
1519 * get_page_unless_zero(), and atomic_set() is
1520 * implemented in C not using locked ops. spin_unlock
1521 * on x86 sometime uses locked ops because of PPro
1522 * errata 66, 92, so unless somebody can guarantee
1523 * atomic_set() here would be safe on all archs (and
1524 * not only on x86), it's safer to use atomic_add().
1525 */
1526 atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1,
1527 &page_tail->_count);
1528
1529 /* after clearing PageTail the gup refcount can be released */
1530 smp_mb();
1531
1532 /*
1533 * retain hwpoison flag of the poisoned tail page:
1534 * fix for the unsuitable process killed on Guest Machine(KVM)
1535 * by the memory-failure.
1536 */
1537 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON;
1538 page_tail->flags |= (page->flags &
1539 ((1L << PG_referenced) |
1540 (1L << PG_swapbacked) |
1541 (1L << PG_mlocked) |
1542 (1L << PG_uptodate)));
1543 page_tail->flags |= (1L << PG_dirty);
1544
1545 /* clear PageTail before overwriting first_page */
1546 smp_wmb();
1547
1548 /*
1549 * __split_huge_page_splitting() already set the
1550 * splitting bit in all pmd that could map this
1551 * hugepage, that will ensure no CPU can alter the
1552 * mapcount on the head page. The mapcount is only
1553 * accounted in the head page and it has to be
1554 * transferred to all tail pages in the below code. So
1555 * for this code to be safe, the split the mapcount
1556 * can't change. But that doesn't mean userland can't
1557 * keep changing and reading the page contents while
1558 * we transfer the mapcount, so the pmd splitting
1559 * status is achieved setting a reserved bit in the
1560 * pmd, not by clearing the present bit.
1561 */
1562 page_tail->_mapcount = page->_mapcount;
1563
1564 BUG_ON(page_tail->mapping);
1565 page_tail->mapping = page->mapping;
1566
1567 page_tail->index = page->index + i;
1568
1569 BUG_ON(!PageAnon(page_tail));
1570 BUG_ON(!PageUptodate(page_tail));
1571 BUG_ON(!PageDirty(page_tail));
1572 BUG_ON(!PageSwapBacked(page_tail));
1573
1574 lru_add_page_tail(page, page_tail, lruvec);
1575 }
1576 atomic_sub(tail_count, &page->_count);
1577 BUG_ON(atomic_read(&page->_count) <= 0);
1578
1579 __mod_zone_page_state(zone, NR_ANON_TRANSPARENT_HUGEPAGES, -1);
1580 __mod_zone_page_state(zone, NR_ANON_PAGES, HPAGE_PMD_NR);
1581
1582 ClearPageCompound(page);
1583 compound_unlock(page);
1584 spin_unlock_irq(&zone->lru_lock);
1585
1586 for (i = 1; i < HPAGE_PMD_NR; i++) {
1587 struct page *page_tail = page + i;
1588 BUG_ON(page_count(page_tail) <= 0);
1589 /*
1590 * Tail pages may be freed if there wasn't any mapping
1591 * like if add_to_swap() is running on a lru page that
1592 * had its mapping zapped. And freeing these pages
1593 * requires taking the lru_lock so we do the put_page
1594 * of the tail pages after the split is complete.
1595 */
1596 put_page(page_tail);
1597 }
1598
1599 /*
1600 * Only the head page (now become a regular page) is required
1601 * to be pinned by the caller.
1602 */
1603 BUG_ON(page_count(page) <= 0);
1604 }
1605
1606 static int __split_huge_page_map(struct page *page,
1607 struct vm_area_struct *vma,
1608 unsigned long address)
1609 {
1610 struct mm_struct *mm = vma->vm_mm;
1611 pmd_t *pmd, _pmd;
1612 int ret = 0, i;
1613 pgtable_t pgtable;
1614 unsigned long haddr;
1615
1616 spin_lock(&mm->page_table_lock);
1617 pmd = page_check_address_pmd(page, mm, address,
1618 PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG);
1619 if (pmd) {
1620 pgtable = pgtable_trans_huge_withdraw(mm);
1621 pmd_populate(mm, &_pmd, pgtable);
1622
1623 haddr = address;
1624 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1625 pte_t *pte, entry;
1626 BUG_ON(PageCompound(page+i));
1627 entry = mk_pte(page + i, vma->vm_page_prot);
1628 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1629 if (!pmd_write(*pmd))
1630 entry = pte_wrprotect(entry);
1631 else
1632 BUG_ON(page_mapcount(page) != 1);
1633 if (!pmd_young(*pmd))
1634 entry = pte_mkold(entry);
1635 pte = pte_offset_map(&_pmd, haddr);
1636 BUG_ON(!pte_none(*pte));
1637 set_pte_at(mm, haddr, pte, entry);
1638 pte_unmap(pte);
1639 }
1640
1641 smp_wmb(); /* make pte visible before pmd */
1642 /*
1643 * Up to this point the pmd is present and huge and
1644 * userland has the whole access to the hugepage
1645 * during the split (which happens in place). If we
1646 * overwrite the pmd with the not-huge version
1647 * pointing to the pte here (which of course we could
1648 * if all CPUs were bug free), userland could trigger
1649 * a small page size TLB miss on the small sized TLB
1650 * while the hugepage TLB entry is still established
1651 * in the huge TLB. Some CPU doesn't like that. See
1652 * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
1653 * Erratum 383 on page 93. Intel should be safe but is
1654 * also warns that it's only safe if the permission
1655 * and cache attributes of the two entries loaded in
1656 * the two TLB is identical (which should be the case
1657 * here). But it is generally safer to never allow
1658 * small and huge TLB entries for the same virtual
1659 * address to be loaded simultaneously. So instead of
1660 * doing "pmd_populate(); flush_tlb_range();" we first
1661 * mark the current pmd notpresent (atomically because
1662 * here the pmd_trans_huge and pmd_trans_splitting
1663 * must remain set at all times on the pmd until the
1664 * split is complete for this pmd), then we flush the
1665 * SMP TLB and finally we write the non-huge version
1666 * of the pmd entry with pmd_populate.
1667 */
1668 pmdp_invalidate(vma, address, pmd);
1669 pmd_populate(mm, pmd, pgtable);
1670 ret = 1;
1671 }
1672 spin_unlock(&mm->page_table_lock);
1673
1674 return ret;
1675 }
1676
1677 /* must be called with anon_vma->root->mutex hold */
1678 static void __split_huge_page(struct page *page,
1679 struct anon_vma *anon_vma)
1680 {
1681 int mapcount, mapcount2;
1682 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1683 struct anon_vma_chain *avc;
1684
1685 BUG_ON(!PageHead(page));
1686 BUG_ON(PageTail(page));
1687
1688 mapcount = 0;
1689 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1690 struct vm_area_struct *vma = avc->vma;
1691 unsigned long addr = vma_address(page, vma);
1692 BUG_ON(is_vma_temporary_stack(vma));
1693 mapcount += __split_huge_page_splitting(page, vma, addr);
1694 }
1695 /*
1696 * It is critical that new vmas are added to the tail of the
1697 * anon_vma list. This guarantes that if copy_huge_pmd() runs
1698 * and establishes a child pmd before
1699 * __split_huge_page_splitting() freezes the parent pmd (so if
1700 * we fail to prevent copy_huge_pmd() from running until the
1701 * whole __split_huge_page() is complete), we will still see
1702 * the newly established pmd of the child later during the
1703 * walk, to be able to set it as pmd_trans_splitting too.
1704 */
1705 if (mapcount != page_mapcount(page))
1706 printk(KERN_ERR "mapcount %d page_mapcount %d\n",
1707 mapcount, page_mapcount(page));
1708 BUG_ON(mapcount != page_mapcount(page));
1709
1710 __split_huge_page_refcount(page);
1711
1712 mapcount2 = 0;
1713 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1714 struct vm_area_struct *vma = avc->vma;
1715 unsigned long addr = vma_address(page, vma);
1716 BUG_ON(is_vma_temporary_stack(vma));
1717 mapcount2 += __split_huge_page_map(page, vma, addr);
1718 }
1719 if (mapcount != mapcount2)
1720 printk(KERN_ERR "mapcount %d mapcount2 %d page_mapcount %d\n",
1721 mapcount, mapcount2, page_mapcount(page));
1722 BUG_ON(mapcount != mapcount2);
1723 }
1724
1725 int split_huge_page(struct page *page)
1726 {
1727 struct anon_vma *anon_vma;
1728 int ret = 1;
1729
1730 BUG_ON(is_huge_zero_pfn(page_to_pfn(page)));
1731 BUG_ON(!PageAnon(page));
1732 anon_vma = page_lock_anon_vma(page);
1733 if (!anon_vma)
1734 goto out;
1735 ret = 0;
1736 if (!PageCompound(page))
1737 goto out_unlock;
1738
1739 BUG_ON(!PageSwapBacked(page));
1740 __split_huge_page(page, anon_vma);
1741 count_vm_event(THP_SPLIT);
1742
1743 BUG_ON(PageCompound(page));
1744 out_unlock:
1745 page_unlock_anon_vma(anon_vma);
1746 out:
1747 return ret;
1748 }
1749
1750 #define VM_NO_THP (VM_SPECIAL|VM_MIXEDMAP|VM_HUGETLB|VM_SHARED|VM_MAYSHARE)
1751
1752 int hugepage_madvise(struct vm_area_struct *vma,
1753 unsigned long *vm_flags, int advice)
1754 {
1755 struct mm_struct *mm = vma->vm_mm;
1756
1757 switch (advice) {
1758 case MADV_HUGEPAGE:
1759 /*
1760 * Be somewhat over-protective like KSM for now!
1761 */
1762 if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP))
1763 return -EINVAL;
1764 if (mm->def_flags & VM_NOHUGEPAGE)
1765 return -EINVAL;
1766 *vm_flags &= ~VM_NOHUGEPAGE;
1767 *vm_flags |= VM_HUGEPAGE;
1768 /*
1769 * If the vma become good for khugepaged to scan,
1770 * register it here without waiting a page fault that
1771 * may not happen any time soon.
1772 */
1773 if (unlikely(khugepaged_enter_vma_merge(vma)))
1774 return -ENOMEM;
1775 break;
1776 case MADV_NOHUGEPAGE:
1777 /*
1778 * Be somewhat over-protective like KSM for now!
1779 */
1780 if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP))
1781 return -EINVAL;
1782 *vm_flags &= ~VM_HUGEPAGE;
1783 *vm_flags |= VM_NOHUGEPAGE;
1784 /*
1785 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1786 * this vma even if we leave the mm registered in khugepaged if
1787 * it got registered before VM_NOHUGEPAGE was set.
1788 */
1789 break;
1790 }
1791
1792 return 0;
1793 }
1794
1795 static int __init khugepaged_slab_init(void)
1796 {
1797 mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
1798 sizeof(struct mm_slot),
1799 __alignof__(struct mm_slot), 0, NULL);
1800 if (!mm_slot_cache)
1801 return -ENOMEM;
1802
1803 return 0;
1804 }
1805
1806 static void __init khugepaged_slab_free(void)
1807 {
1808 kmem_cache_destroy(mm_slot_cache);
1809 mm_slot_cache = NULL;
1810 }
1811
1812 static inline struct mm_slot *alloc_mm_slot(void)
1813 {
1814 if (!mm_slot_cache) /* initialization failed */
1815 return NULL;
1816 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
1817 }
1818
1819 static inline void free_mm_slot(struct mm_slot *mm_slot)
1820 {
1821 kmem_cache_free(mm_slot_cache, mm_slot);
1822 }
1823
1824 static int __init mm_slots_hash_init(void)
1825 {
1826 mm_slots_hash = kzalloc(MM_SLOTS_HASH_HEADS * sizeof(struct hlist_head),
1827 GFP_KERNEL);
1828 if (!mm_slots_hash)
1829 return -ENOMEM;
1830 return 0;
1831 }
1832
1833 #if 0
1834 static void __init mm_slots_hash_free(void)
1835 {
1836 kfree(mm_slots_hash);
1837 mm_slots_hash = NULL;
1838 }
1839 #endif
1840
1841 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
1842 {
1843 struct mm_slot *mm_slot;
1844 struct hlist_head *bucket;
1845 struct hlist_node *node;
1846
1847 bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
1848 % MM_SLOTS_HASH_HEADS];
1849 hlist_for_each_entry(mm_slot, node, bucket, hash) {
1850 if (mm == mm_slot->mm)
1851 return mm_slot;
1852 }
1853 return NULL;
1854 }
1855
1856 static void insert_to_mm_slots_hash(struct mm_struct *mm,
1857 struct mm_slot *mm_slot)
1858 {
1859 struct hlist_head *bucket;
1860
1861 bucket = &mm_slots_hash[((unsigned long)mm / sizeof(struct mm_struct))
1862 % MM_SLOTS_HASH_HEADS];
1863 mm_slot->mm = mm;
1864 hlist_add_head(&mm_slot->hash, bucket);
1865 }
1866
1867 static inline int khugepaged_test_exit(struct mm_struct *mm)
1868 {
1869 return atomic_read(&mm->mm_users) == 0;
1870 }
1871
1872 int __khugepaged_enter(struct mm_struct *mm)
1873 {
1874 struct mm_slot *mm_slot;
1875 int wakeup;
1876
1877 mm_slot = alloc_mm_slot();
1878 if (!mm_slot)
1879 return -ENOMEM;
1880
1881 /* __khugepaged_exit() must not run from under us */
1882 VM_BUG_ON(khugepaged_test_exit(mm));
1883 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
1884 free_mm_slot(mm_slot);
1885 return 0;
1886 }
1887
1888 spin_lock(&khugepaged_mm_lock);
1889 insert_to_mm_slots_hash(mm, mm_slot);
1890 /*
1891 * Insert just behind the scanning cursor, to let the area settle
1892 * down a little.
1893 */
1894 wakeup = list_empty(&khugepaged_scan.mm_head);
1895 list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
1896 spin_unlock(&khugepaged_mm_lock);
1897
1898 atomic_inc(&mm->mm_count);
1899 if (wakeup)
1900 wake_up_interruptible(&khugepaged_wait);
1901
1902 return 0;
1903 }
1904
1905 int khugepaged_enter_vma_merge(struct vm_area_struct *vma)
1906 {
1907 unsigned long hstart, hend;
1908 if (!vma->anon_vma)
1909 /*
1910 * Not yet faulted in so we will register later in the
1911 * page fault if needed.
1912 */
1913 return 0;
1914 if (vma->vm_ops)
1915 /* khugepaged not yet working on file or special mappings */
1916 return 0;
1917 VM_BUG_ON(vma->vm_flags & VM_NO_THP);
1918 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1919 hend = vma->vm_end & HPAGE_PMD_MASK;
1920 if (hstart < hend)
1921 return khugepaged_enter(vma);
1922 return 0;
1923 }
1924
1925 void __khugepaged_exit(struct mm_struct *mm)
1926 {
1927 struct mm_slot *mm_slot;
1928 int free = 0;
1929
1930 spin_lock(&khugepaged_mm_lock);
1931 mm_slot = get_mm_slot(mm);
1932 if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
1933 hlist_del(&mm_slot->hash);
1934 list_del(&mm_slot->mm_node);
1935 free = 1;
1936 }
1937 spin_unlock(&khugepaged_mm_lock);
1938
1939 if (free) {
1940 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1941 free_mm_slot(mm_slot);
1942 mmdrop(mm);
1943 } else if (mm_slot) {
1944 /*
1945 * This is required to serialize against
1946 * khugepaged_test_exit() (which is guaranteed to run
1947 * under mmap sem read mode). Stop here (after we
1948 * return all pagetables will be destroyed) until
1949 * khugepaged has finished working on the pagetables
1950 * under the mmap_sem.
1951 */
1952 down_write(&mm->mmap_sem);
1953 up_write(&mm->mmap_sem);
1954 }
1955 }
1956
1957 static void release_pte_page(struct page *page)
1958 {
1959 /* 0 stands for page_is_file_cache(page) == false */
1960 dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
1961 unlock_page(page);
1962 putback_lru_page(page);
1963 }
1964
1965 static void release_pte_pages(pte_t *pte, pte_t *_pte)
1966 {
1967 while (--_pte >= pte) {
1968 pte_t pteval = *_pte;
1969 if (!pte_none(pteval))
1970 release_pte_page(pte_page(pteval));
1971 }
1972 }
1973
1974 static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
1975 unsigned long address,
1976 pte_t *pte)
1977 {
1978 struct page *page;
1979 pte_t *_pte;
1980 int referenced = 0, none = 0;
1981 for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
1982 _pte++, address += PAGE_SIZE) {
1983 pte_t pteval = *_pte;
1984 if (pte_none(pteval)) {
1985 if (++none <= khugepaged_max_ptes_none)
1986 continue;
1987 else
1988 goto out;
1989 }
1990 if (!pte_present(pteval) || !pte_write(pteval))
1991 goto out;
1992 page = vm_normal_page(vma, address, pteval);
1993 if (unlikely(!page))
1994 goto out;
1995
1996 VM_BUG_ON(PageCompound(page));
1997 BUG_ON(!PageAnon(page));
1998 VM_BUG_ON(!PageSwapBacked(page));
1999
2000 /* cannot use mapcount: can't collapse if there's a gup pin */
2001 if (page_count(page) != 1)
2002 goto out;
2003 /*
2004 * We can do it before isolate_lru_page because the
2005 * page can't be freed from under us. NOTE: PG_lock
2006 * is needed to serialize against split_huge_page
2007 * when invoked from the VM.
2008 */
2009 if (!trylock_page(page))
2010 goto out;
2011 /*
2012 * Isolate the page to avoid collapsing an hugepage
2013 * currently in use by the VM.
2014 */
2015 if (isolate_lru_page(page)) {
2016 unlock_page(page);
2017 goto out;
2018 }
2019 /* 0 stands for page_is_file_cache(page) == false */
2020 inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
2021 VM_BUG_ON(!PageLocked(page));
2022 VM_BUG_ON(PageLRU(page));
2023
2024 /* If there is no mapped pte young don't collapse the page */
2025 if (pte_young(pteval) || PageReferenced(page) ||
2026 mmu_notifier_test_young(vma->vm_mm, address))
2027 referenced = 1;
2028 }
2029 if (likely(referenced))
2030 return 1;
2031 out:
2032 release_pte_pages(pte, _pte);
2033 return 0;
2034 }
2035
2036 static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
2037 struct vm_area_struct *vma,
2038 unsigned long address,
2039 spinlock_t *ptl)
2040 {
2041 pte_t *_pte;
2042 for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
2043 pte_t pteval = *_pte;
2044 struct page *src_page;
2045
2046 if (pte_none(pteval)) {
2047 clear_user_highpage(page, address);
2048 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
2049 } else {
2050 src_page = pte_page(pteval);
2051 copy_user_highpage(page, src_page, address, vma);
2052 VM_BUG_ON(page_mapcount(src_page) != 1);
2053 release_pte_page(src_page);
2054 /*
2055 * ptl mostly unnecessary, but preempt has to
2056 * be disabled to update the per-cpu stats
2057 * inside page_remove_rmap().
2058 */
2059 spin_lock(ptl);
2060 /*
2061 * paravirt calls inside pte_clear here are
2062 * superfluous.
2063 */
2064 pte_clear(vma->vm_mm, address, _pte);
2065 page_remove_rmap(src_page);
2066 spin_unlock(ptl);
2067 free_page_and_swap_cache(src_page);
2068 }
2069
2070 address += PAGE_SIZE;
2071 page++;
2072 }
2073 }
2074
2075 static void khugepaged_alloc_sleep(void)
2076 {
2077 wait_event_freezable_timeout(khugepaged_wait, false,
2078 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
2079 }
2080
2081 #ifdef CONFIG_NUMA
2082 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2083 {
2084 if (IS_ERR(*hpage)) {
2085 if (!*wait)
2086 return false;
2087
2088 *wait = false;
2089 *hpage = NULL;
2090 khugepaged_alloc_sleep();
2091 } else if (*hpage) {
2092 put_page(*hpage);
2093 *hpage = NULL;
2094 }
2095
2096 return true;
2097 }
2098
2099 static struct page
2100 *khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
2101 struct vm_area_struct *vma, unsigned long address,
2102 int node)
2103 {
2104 VM_BUG_ON(*hpage);
2105 /*
2106 * Allocate the page while the vma is still valid and under
2107 * the mmap_sem read mode so there is no memory allocation
2108 * later when we take the mmap_sem in write mode. This is more
2109 * friendly behavior (OTOH it may actually hide bugs) to
2110 * filesystems in userland with daemons allocating memory in
2111 * the userland I/O paths. Allocating memory with the
2112 * mmap_sem in read mode is good idea also to allow greater
2113 * scalability.
2114 */
2115 *hpage = alloc_hugepage_vma(khugepaged_defrag(), vma, address,
2116 node, __GFP_OTHER_NODE);
2117
2118 /*
2119 * After allocating the hugepage, release the mmap_sem read lock in
2120 * preparation for taking it in write mode.
2121 */
2122 up_read(&mm->mmap_sem);
2123 if (unlikely(!*hpage)) {
2124 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2125 *hpage = ERR_PTR(-ENOMEM);
2126 return NULL;
2127 }
2128
2129 count_vm_event(THP_COLLAPSE_ALLOC);
2130 return *hpage;
2131 }
2132 #else
2133 static struct page *khugepaged_alloc_hugepage(bool *wait)
2134 {
2135 struct page *hpage;
2136
2137 do {
2138 hpage = alloc_hugepage(khugepaged_defrag());
2139 if (!hpage) {
2140 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2141 if (!*wait)
2142 return NULL;
2143
2144 *wait = false;
2145 khugepaged_alloc_sleep();
2146 } else
2147 count_vm_event(THP_COLLAPSE_ALLOC);
2148 } while (unlikely(!hpage) && likely(khugepaged_enabled()));
2149
2150 return hpage;
2151 }
2152
2153 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2154 {
2155 if (!*hpage)
2156 *hpage = khugepaged_alloc_hugepage(wait);
2157
2158 if (unlikely(!*hpage))
2159 return false;
2160
2161 return true;
2162 }
2163
2164 static struct page
2165 *khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
2166 struct vm_area_struct *vma, unsigned long address,
2167 int node)
2168 {
2169 up_read(&mm->mmap_sem);
2170 VM_BUG_ON(!*hpage);
2171 return *hpage;
2172 }
2173 #endif
2174
2175 static bool hugepage_vma_check(struct vm_area_struct *vma)
2176 {
2177 if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
2178 (vma->vm_flags & VM_NOHUGEPAGE))
2179 return false;
2180
2181 if (!vma->anon_vma || vma->vm_ops)
2182 return false;
2183 if (is_vma_temporary_stack(vma))
2184 return false;
2185 VM_BUG_ON(vma->vm_flags & VM_NO_THP);
2186 return true;
2187 }
2188
2189 static void collapse_huge_page(struct mm_struct *mm,
2190 unsigned long address,
2191 struct page **hpage,
2192 struct vm_area_struct *vma,
2193 int node)
2194 {
2195 pmd_t *pmd, _pmd;
2196 pte_t *pte;
2197 pgtable_t pgtable;
2198 struct page *new_page;
2199 spinlock_t *ptl;
2200 int isolated;
2201 unsigned long hstart, hend;
2202 unsigned long mmun_start; /* For mmu_notifiers */
2203 unsigned long mmun_end; /* For mmu_notifiers */
2204
2205 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2206
2207 /* release the mmap_sem read lock. */
2208 new_page = khugepaged_alloc_page(hpage, mm, vma, address, node);
2209 if (!new_page)
2210 return;
2211
2212 if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL)))
2213 return;
2214
2215 /*
2216 * Prevent all access to pagetables with the exception of
2217 * gup_fast later hanlded by the ptep_clear_flush and the VM
2218 * handled by the anon_vma lock + PG_lock.
2219 */
2220 down_write(&mm->mmap_sem);
2221 if (unlikely(khugepaged_test_exit(mm)))
2222 goto out;
2223
2224 vma = find_vma(mm, address);
2225 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2226 hend = vma->vm_end & HPAGE_PMD_MASK;
2227 if (address < hstart || address + HPAGE_PMD_SIZE > hend)
2228 goto out;
2229 if (!hugepage_vma_check(vma))
2230 goto out;
2231 pmd = mm_find_pmd(mm, address);
2232 if (!pmd)
2233 goto out;
2234 if (pmd_trans_huge(*pmd))
2235 goto out;
2236
2237 anon_vma_lock(vma->anon_vma);
2238
2239 pte = pte_offset_map(pmd, address);
2240 ptl = pte_lockptr(mm, pmd);
2241
2242 mmun_start = address;
2243 mmun_end = address + HPAGE_PMD_SIZE;
2244 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2245 spin_lock(&mm->page_table_lock); /* probably unnecessary */
2246 /*
2247 * After this gup_fast can't run anymore. This also removes
2248 * any huge TLB entry from the CPU so we won't allow
2249 * huge and small TLB entries for the same virtual address
2250 * to avoid the risk of CPU bugs in that area.
2251 */
2252 _pmd = pmdp_clear_flush(vma, address, pmd);
2253 spin_unlock(&mm->page_table_lock);
2254 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2255
2256 spin_lock(ptl);
2257 isolated = __collapse_huge_page_isolate(vma, address, pte);
2258 spin_unlock(ptl);
2259
2260 if (unlikely(!isolated)) {
2261 pte_unmap(pte);
2262 spin_lock(&mm->page_table_lock);
2263 BUG_ON(!pmd_none(*pmd));
2264 set_pmd_at(mm, address, pmd, _pmd);
2265 spin_unlock(&mm->page_table_lock);
2266 anon_vma_unlock(vma->anon_vma);
2267 goto out;
2268 }
2269
2270 /*
2271 * All pages are isolated and locked so anon_vma rmap
2272 * can't run anymore.
2273 */
2274 anon_vma_unlock(vma->anon_vma);
2275
2276 __collapse_huge_page_copy(pte, new_page, vma, address, ptl);
2277 pte_unmap(pte);
2278 __SetPageUptodate(new_page);
2279 pgtable = pmd_pgtable(_pmd);
2280
2281 _pmd = mk_huge_pmd(new_page, vma);
2282
2283 /*
2284 * spin_lock() below is not the equivalent of smp_wmb(), so
2285 * this is needed to avoid the copy_huge_page writes to become
2286 * visible after the set_pmd_at() write.
2287 */
2288 smp_wmb();
2289
2290 spin_lock(&mm->page_table_lock);
2291 BUG_ON(!pmd_none(*pmd));
2292 page_add_new_anon_rmap(new_page, vma, address);
2293 set_pmd_at(mm, address, pmd, _pmd);
2294 update_mmu_cache_pmd(vma, address, pmd);
2295 pgtable_trans_huge_deposit(mm, pgtable);
2296 spin_unlock(&mm->page_table_lock);
2297
2298 *hpage = NULL;
2299
2300 khugepaged_pages_collapsed++;
2301 out_up_write:
2302 up_write(&mm->mmap_sem);
2303 return;
2304
2305 out:
2306 mem_cgroup_uncharge_page(new_page);
2307 goto out_up_write;
2308 }
2309
2310 static int khugepaged_scan_pmd(struct mm_struct *mm,
2311 struct vm_area_struct *vma,
2312 unsigned long address,
2313 struct page **hpage)
2314 {
2315 pmd_t *pmd;
2316 pte_t *pte, *_pte;
2317 int ret = 0, referenced = 0, none = 0;
2318 struct page *page;
2319 unsigned long _address;
2320 spinlock_t *ptl;
2321 int node = -1;
2322
2323 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2324
2325 pmd = mm_find_pmd(mm, address);
2326 if (!pmd)
2327 goto out;
2328 if (pmd_trans_huge(*pmd))
2329 goto out;
2330
2331 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2332 for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
2333 _pte++, _address += PAGE_SIZE) {
2334 pte_t pteval = *_pte;
2335 if (pte_none(pteval)) {
2336 if (++none <= khugepaged_max_ptes_none)
2337 continue;
2338 else
2339 goto out_unmap;
2340 }
2341 if (!pte_present(pteval) || !pte_write(pteval))
2342 goto out_unmap;
2343 page = vm_normal_page(vma, _address, pteval);
2344 if (unlikely(!page))
2345 goto out_unmap;
2346 /*
2347 * Chose the node of the first page. This could
2348 * be more sophisticated and look at more pages,
2349 * but isn't for now.
2350 */
2351 if (node == -1)
2352 node = page_to_nid(page);
2353 VM_BUG_ON(PageCompound(page));
2354 if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
2355 goto out_unmap;
2356 /* cannot use mapcount: can't collapse if there's a gup pin */
2357 if (page_count(page) != 1)
2358 goto out_unmap;
2359 if (pte_young(pteval) || PageReferenced(page) ||
2360 mmu_notifier_test_young(vma->vm_mm, address))
2361 referenced = 1;
2362 }
2363 if (referenced)
2364 ret = 1;
2365 out_unmap:
2366 pte_unmap_unlock(pte, ptl);
2367 if (ret)
2368 /* collapse_huge_page will return with the mmap_sem released */
2369 collapse_huge_page(mm, address, hpage, vma, node);
2370 out:
2371 return ret;
2372 }
2373
2374 static void collect_mm_slot(struct mm_slot *mm_slot)
2375 {
2376 struct mm_struct *mm = mm_slot->mm;
2377
2378 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2379
2380 if (khugepaged_test_exit(mm)) {
2381 /* free mm_slot */
2382 hlist_del(&mm_slot->hash);
2383 list_del(&mm_slot->mm_node);
2384
2385 /*
2386 * Not strictly needed because the mm exited already.
2387 *
2388 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2389 */
2390
2391 /* khugepaged_mm_lock actually not necessary for the below */
2392 free_mm_slot(mm_slot);
2393 mmdrop(mm);
2394 }
2395 }
2396
2397 static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2398 struct page **hpage)
2399 __releases(&khugepaged_mm_lock)
2400 __acquires(&khugepaged_mm_lock)
2401 {
2402 struct mm_slot *mm_slot;
2403 struct mm_struct *mm;
2404 struct vm_area_struct *vma;
2405 int progress = 0;
2406
2407 VM_BUG_ON(!pages);
2408 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2409
2410 if (khugepaged_scan.mm_slot)
2411 mm_slot = khugepaged_scan.mm_slot;
2412 else {
2413 mm_slot = list_entry(khugepaged_scan.mm_head.next,
2414 struct mm_slot, mm_node);
2415 khugepaged_scan.address = 0;
2416 khugepaged_scan.mm_slot = mm_slot;
2417 }
2418 spin_unlock(&khugepaged_mm_lock);
2419
2420 mm = mm_slot->mm;
2421 down_read(&mm->mmap_sem);
2422 if (unlikely(khugepaged_test_exit(mm)))
2423 vma = NULL;
2424 else
2425 vma = find_vma(mm, khugepaged_scan.address);
2426
2427 progress++;
2428 for (; vma; vma = vma->vm_next) {
2429 unsigned long hstart, hend;
2430
2431 cond_resched();
2432 if (unlikely(khugepaged_test_exit(mm))) {
2433 progress++;
2434 break;
2435 }
2436 if (!hugepage_vma_check(vma)) {
2437 skip:
2438 progress++;
2439 continue;
2440 }
2441 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2442 hend = vma->vm_end & HPAGE_PMD_MASK;
2443 if (hstart >= hend)
2444 goto skip;
2445 if (khugepaged_scan.address > hend)
2446 goto skip;
2447 if (khugepaged_scan.address < hstart)
2448 khugepaged_scan.address = hstart;
2449 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2450
2451 while (khugepaged_scan.address < hend) {
2452 int ret;
2453 cond_resched();
2454 if (unlikely(khugepaged_test_exit(mm)))
2455 goto breakouterloop;
2456
2457 VM_BUG_ON(khugepaged_scan.address < hstart ||
2458 khugepaged_scan.address + HPAGE_PMD_SIZE >
2459 hend);
2460 ret = khugepaged_scan_pmd(mm, vma,
2461 khugepaged_scan.address,
2462 hpage);
2463 /* move to next address */
2464 khugepaged_scan.address += HPAGE_PMD_SIZE;
2465 progress += HPAGE_PMD_NR;
2466 if (ret)
2467 /* we released mmap_sem so break loop */
2468 goto breakouterloop_mmap_sem;
2469 if (progress >= pages)
2470 goto breakouterloop;
2471 }
2472 }
2473 breakouterloop:
2474 up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2475 breakouterloop_mmap_sem:
2476
2477 spin_lock(&khugepaged_mm_lock);
2478 VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2479 /*
2480 * Release the current mm_slot if this mm is about to die, or
2481 * if we scanned all vmas of this mm.
2482 */
2483 if (khugepaged_test_exit(mm) || !vma) {
2484 /*
2485 * Make sure that if mm_users is reaching zero while
2486 * khugepaged runs here, khugepaged_exit will find
2487 * mm_slot not pointing to the exiting mm.
2488 */
2489 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2490 khugepaged_scan.mm_slot = list_entry(
2491 mm_slot->mm_node.next,
2492 struct mm_slot, mm_node);
2493 khugepaged_scan.address = 0;
2494 } else {
2495 khugepaged_scan.mm_slot = NULL;
2496 khugepaged_full_scans++;
2497 }
2498
2499 collect_mm_slot(mm_slot);
2500 }
2501
2502 return progress;
2503 }
2504
2505 static int khugepaged_has_work(void)
2506 {
2507 return !list_empty(&khugepaged_scan.mm_head) &&
2508 khugepaged_enabled();
2509 }
2510
2511 static int khugepaged_wait_event(void)
2512 {
2513 return !list_empty(&khugepaged_scan.mm_head) ||
2514 kthread_should_stop();
2515 }
2516
2517 static void khugepaged_do_scan(void)
2518 {
2519 struct page *hpage = NULL;
2520 unsigned int progress = 0, pass_through_head = 0;
2521 unsigned int pages = khugepaged_pages_to_scan;
2522 bool wait = true;
2523
2524 barrier(); /* write khugepaged_pages_to_scan to local stack */
2525
2526 while (progress < pages) {
2527 if (!khugepaged_prealloc_page(&hpage, &wait))
2528 break;
2529
2530 cond_resched();
2531
2532 if (unlikely(kthread_should_stop() || freezing(current)))
2533 break;
2534
2535 spin_lock(&khugepaged_mm_lock);
2536 if (!khugepaged_scan.mm_slot)
2537 pass_through_head++;
2538 if (khugepaged_has_work() &&
2539 pass_through_head < 2)
2540 progress += khugepaged_scan_mm_slot(pages - progress,
2541 &hpage);
2542 else
2543 progress = pages;
2544 spin_unlock(&khugepaged_mm_lock);
2545 }
2546
2547 if (!IS_ERR_OR_NULL(hpage))
2548 put_page(hpage);
2549 }
2550
2551 static void khugepaged_wait_work(void)
2552 {
2553 try_to_freeze();
2554
2555 if (khugepaged_has_work()) {
2556 if (!khugepaged_scan_sleep_millisecs)
2557 return;
2558
2559 wait_event_freezable_timeout(khugepaged_wait,
2560 kthread_should_stop(),
2561 msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
2562 return;
2563 }
2564
2565 if (khugepaged_enabled())
2566 wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2567 }
2568
2569 static int khugepaged(void *none)
2570 {
2571 struct mm_slot *mm_slot;
2572
2573 set_freezable();
2574 set_user_nice(current, 19);
2575
2576 while (!kthread_should_stop()) {
2577 khugepaged_do_scan();
2578 khugepaged_wait_work();
2579 }
2580
2581 spin_lock(&khugepaged_mm_lock);
2582 mm_slot = khugepaged_scan.mm_slot;
2583 khugepaged_scan.mm_slot = NULL;
2584 if (mm_slot)
2585 collect_mm_slot(mm_slot);
2586 spin_unlock(&khugepaged_mm_lock);
2587 return 0;
2588 }
2589
2590 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2591 unsigned long haddr, pmd_t *pmd)
2592 {
2593 struct mm_struct *mm = vma->vm_mm;
2594 pgtable_t pgtable;
2595 pmd_t _pmd;
2596 int i;
2597
2598 pmdp_clear_flush(vma, haddr, pmd);
2599 /* leave pmd empty until pte is filled */
2600
2601 pgtable = pgtable_trans_huge_withdraw(mm);
2602 pmd_populate(mm, &_pmd, pgtable);
2603
2604 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2605 pte_t *pte, entry;
2606 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2607 entry = pte_mkspecial(entry);
2608 pte = pte_offset_map(&_pmd, haddr);
2609 VM_BUG_ON(!pte_none(*pte));
2610 set_pte_at(mm, haddr, pte, entry);
2611 pte_unmap(pte);
2612 }
2613 smp_wmb(); /* make pte visible before pmd */
2614 pmd_populate(mm, pmd, pgtable);
2615 put_huge_zero_page();
2616 }
2617
2618 void __split_huge_page_pmd(struct vm_area_struct *vma, unsigned long address,
2619 pmd_t *pmd)
2620 {
2621 struct page *page;
2622 struct mm_struct *mm = vma->vm_mm;
2623 unsigned long haddr = address & HPAGE_PMD_MASK;
2624 unsigned long mmun_start; /* For mmu_notifiers */
2625 unsigned long mmun_end; /* For mmu_notifiers */
2626
2627 BUG_ON(vma->vm_start > haddr || vma->vm_end < haddr + HPAGE_PMD_SIZE);
2628
2629 mmun_start = haddr;
2630 mmun_end = haddr + HPAGE_PMD_SIZE;
2631 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2632 spin_lock(&mm->page_table_lock);
2633 if (unlikely(!pmd_trans_huge(*pmd))) {
2634 spin_unlock(&mm->page_table_lock);
2635 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2636 return;
2637 }
2638 if (is_huge_zero_pmd(*pmd)) {
2639 __split_huge_zero_page_pmd(vma, haddr, pmd);
2640 spin_unlock(&mm->page_table_lock);
2641 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2642 return;
2643 }
2644 page = pmd_page(*pmd);
2645 VM_BUG_ON(!page_count(page));
2646 get_page(page);
2647 spin_unlock(&mm->page_table_lock);
2648 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2649
2650 split_huge_page(page);
2651
2652 put_page(page);
2653 BUG_ON(pmd_trans_huge(*pmd));
2654 }
2655
2656 void split_huge_page_pmd_mm(struct mm_struct *mm, unsigned long address,
2657 pmd_t *pmd)
2658 {
2659 struct vm_area_struct *vma;
2660
2661 vma = find_vma(mm, address);
2662 BUG_ON(vma == NULL);
2663 split_huge_page_pmd(vma, address, pmd);
2664 }
2665
2666 static void split_huge_page_address(struct mm_struct *mm,
2667 unsigned long address)
2668 {
2669 pmd_t *pmd;
2670
2671 VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
2672
2673 pmd = mm_find_pmd(mm, address);
2674 if (!pmd)
2675 return;
2676 /*
2677 * Caller holds the mmap_sem write mode, so a huge pmd cannot
2678 * materialize from under us.
2679 */
2680 split_huge_page_pmd_mm(mm, address, pmd);
2681 }
2682
2683 void __vma_adjust_trans_huge(struct vm_area_struct *vma,
2684 unsigned long start,
2685 unsigned long end,
2686 long adjust_next)
2687 {
2688 /*
2689 * If the new start address isn't hpage aligned and it could
2690 * previously contain an hugepage: check if we need to split
2691 * an huge pmd.
2692 */
2693 if (start & ~HPAGE_PMD_MASK &&
2694 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2695 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2696 split_huge_page_address(vma->vm_mm, start);
2697
2698 /*
2699 * If the new end address isn't hpage aligned and it could
2700 * previously contain an hugepage: check if we need to split
2701 * an huge pmd.
2702 */
2703 if (end & ~HPAGE_PMD_MASK &&
2704 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2705 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2706 split_huge_page_address(vma->vm_mm, end);
2707
2708 /*
2709 * If we're also updating the vma->vm_next->vm_start, if the new
2710 * vm_next->vm_start isn't page aligned and it could previously
2711 * contain an hugepage: check if we need to split an huge pmd.
2712 */
2713 if (adjust_next > 0) {
2714 struct vm_area_struct *next = vma->vm_next;
2715 unsigned long nstart = next->vm_start;
2716 nstart += adjust_next << PAGE_SHIFT;
2717 if (nstart & ~HPAGE_PMD_MASK &&
2718 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2719 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2720 split_huge_page_address(next->vm_mm, nstart);
2721 }
2722 }
This page took 0.083578 seconds and 6 git commands to generate.