hugepage: convert huge zero page shrinker to new shrinker API
[deliverable/linux.git] / mm / huge_memory.c
1 /*
2 * Copyright (C) 2009 Red Hat, Inc.
3 *
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
6 */
7
8 #include <linux/mm.h>
9 #include <linux/sched.h>
10 #include <linux/highmem.h>
11 #include <linux/hugetlb.h>
12 #include <linux/mmu_notifier.h>
13 #include <linux/rmap.h>
14 #include <linux/swap.h>
15 #include <linux/shrinker.h>
16 #include <linux/mm_inline.h>
17 #include <linux/kthread.h>
18 #include <linux/khugepaged.h>
19 #include <linux/freezer.h>
20 #include <linux/mman.h>
21 #include <linux/pagemap.h>
22 #include <linux/migrate.h>
23 #include <linux/hashtable.h>
24
25 #include <asm/tlb.h>
26 #include <asm/pgalloc.h>
27 #include "internal.h"
28
29 /*
30 * By default transparent hugepage support is enabled for all mappings
31 * and khugepaged scans all mappings. Defrag is only invoked by
32 * khugepaged hugepage allocations and by page faults inside
33 * MADV_HUGEPAGE regions to avoid the risk of slowing down short lived
34 * allocations.
35 */
36 unsigned long transparent_hugepage_flags __read_mostly =
37 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
38 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
39 #endif
40 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
41 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
42 #endif
43 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
44 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
45 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
46
47 /* default scan 8*512 pte (or vmas) every 30 second */
48 static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
49 static unsigned int khugepaged_pages_collapsed;
50 static unsigned int khugepaged_full_scans;
51 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
52 /* during fragmentation poll the hugepage allocator once every minute */
53 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
54 static struct task_struct *khugepaged_thread __read_mostly;
55 static DEFINE_MUTEX(khugepaged_mutex);
56 static DEFINE_SPINLOCK(khugepaged_mm_lock);
57 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
58 /*
59 * default collapse hugepages if there is at least one pte mapped like
60 * it would have happened if the vma was large enough during page
61 * fault.
62 */
63 static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
64
65 static int khugepaged(void *none);
66 static int khugepaged_slab_init(void);
67
68 #define MM_SLOTS_HASH_BITS 10
69 static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
70
71 static struct kmem_cache *mm_slot_cache __read_mostly;
72
73 /**
74 * struct mm_slot - hash lookup from mm to mm_slot
75 * @hash: hash collision list
76 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
77 * @mm: the mm that this information is valid for
78 */
79 struct mm_slot {
80 struct hlist_node hash;
81 struct list_head mm_node;
82 struct mm_struct *mm;
83 };
84
85 /**
86 * struct khugepaged_scan - cursor for scanning
87 * @mm_head: the head of the mm list to scan
88 * @mm_slot: the current mm_slot we are scanning
89 * @address: the next address inside that to be scanned
90 *
91 * There is only the one khugepaged_scan instance of this cursor structure.
92 */
93 struct khugepaged_scan {
94 struct list_head mm_head;
95 struct mm_slot *mm_slot;
96 unsigned long address;
97 };
98 static struct khugepaged_scan khugepaged_scan = {
99 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
100 };
101
102
103 static int set_recommended_min_free_kbytes(void)
104 {
105 struct zone *zone;
106 int nr_zones = 0;
107 unsigned long recommended_min;
108
109 if (!khugepaged_enabled())
110 return 0;
111
112 for_each_populated_zone(zone)
113 nr_zones++;
114
115 /* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
116 recommended_min = pageblock_nr_pages * nr_zones * 2;
117
118 /*
119 * Make sure that on average at least two pageblocks are almost free
120 * of another type, one for a migratetype to fall back to and a
121 * second to avoid subsequent fallbacks of other types There are 3
122 * MIGRATE_TYPES we care about.
123 */
124 recommended_min += pageblock_nr_pages * nr_zones *
125 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
126
127 /* don't ever allow to reserve more than 5% of the lowmem */
128 recommended_min = min(recommended_min,
129 (unsigned long) nr_free_buffer_pages() / 20);
130 recommended_min <<= (PAGE_SHIFT-10);
131
132 if (recommended_min > min_free_kbytes)
133 min_free_kbytes = recommended_min;
134 setup_per_zone_wmarks();
135 return 0;
136 }
137 late_initcall(set_recommended_min_free_kbytes);
138
139 static int start_khugepaged(void)
140 {
141 int err = 0;
142 if (khugepaged_enabled()) {
143 if (!khugepaged_thread)
144 khugepaged_thread = kthread_run(khugepaged, NULL,
145 "khugepaged");
146 if (unlikely(IS_ERR(khugepaged_thread))) {
147 printk(KERN_ERR
148 "khugepaged: kthread_run(khugepaged) failed\n");
149 err = PTR_ERR(khugepaged_thread);
150 khugepaged_thread = NULL;
151 }
152
153 if (!list_empty(&khugepaged_scan.mm_head))
154 wake_up_interruptible(&khugepaged_wait);
155
156 set_recommended_min_free_kbytes();
157 } else if (khugepaged_thread) {
158 kthread_stop(khugepaged_thread);
159 khugepaged_thread = NULL;
160 }
161
162 return err;
163 }
164
165 static atomic_t huge_zero_refcount;
166 static struct page *huge_zero_page __read_mostly;
167
168 static inline bool is_huge_zero_page(struct page *page)
169 {
170 return ACCESS_ONCE(huge_zero_page) == page;
171 }
172
173 static inline bool is_huge_zero_pmd(pmd_t pmd)
174 {
175 return is_huge_zero_page(pmd_page(pmd));
176 }
177
178 static struct page *get_huge_zero_page(void)
179 {
180 struct page *zero_page;
181 retry:
182 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
183 return ACCESS_ONCE(huge_zero_page);
184
185 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
186 HPAGE_PMD_ORDER);
187 if (!zero_page) {
188 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
189 return NULL;
190 }
191 count_vm_event(THP_ZERO_PAGE_ALLOC);
192 preempt_disable();
193 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
194 preempt_enable();
195 __free_page(zero_page);
196 goto retry;
197 }
198
199 /* We take additional reference here. It will be put back by shrinker */
200 atomic_set(&huge_zero_refcount, 2);
201 preempt_enable();
202 return ACCESS_ONCE(huge_zero_page);
203 }
204
205 static void put_huge_zero_page(void)
206 {
207 /*
208 * Counter should never go to zero here. Only shrinker can put
209 * last reference.
210 */
211 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
212 }
213
214 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
215 struct shrink_control *sc)
216 {
217 /* we can free zero page only if last reference remains */
218 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
219 }
220
221 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
222 struct shrink_control *sc)
223 {
224 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
225 struct page *zero_page = xchg(&huge_zero_page, NULL);
226 BUG_ON(zero_page == NULL);
227 __free_page(zero_page);
228 return HPAGE_PMD_NR;
229 }
230
231 return 0;
232 }
233
234 static struct shrinker huge_zero_page_shrinker = {
235 .count_objects = shrink_huge_zero_page_count,
236 .scan_objects = shrink_huge_zero_page_scan,
237 .seeks = DEFAULT_SEEKS,
238 };
239
240 #ifdef CONFIG_SYSFS
241
242 static ssize_t double_flag_show(struct kobject *kobj,
243 struct kobj_attribute *attr, char *buf,
244 enum transparent_hugepage_flag enabled,
245 enum transparent_hugepage_flag req_madv)
246 {
247 if (test_bit(enabled, &transparent_hugepage_flags)) {
248 VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
249 return sprintf(buf, "[always] madvise never\n");
250 } else if (test_bit(req_madv, &transparent_hugepage_flags))
251 return sprintf(buf, "always [madvise] never\n");
252 else
253 return sprintf(buf, "always madvise [never]\n");
254 }
255 static ssize_t double_flag_store(struct kobject *kobj,
256 struct kobj_attribute *attr,
257 const char *buf, size_t count,
258 enum transparent_hugepage_flag enabled,
259 enum transparent_hugepage_flag req_madv)
260 {
261 if (!memcmp("always", buf,
262 min(sizeof("always")-1, count))) {
263 set_bit(enabled, &transparent_hugepage_flags);
264 clear_bit(req_madv, &transparent_hugepage_flags);
265 } else if (!memcmp("madvise", buf,
266 min(sizeof("madvise")-1, count))) {
267 clear_bit(enabled, &transparent_hugepage_flags);
268 set_bit(req_madv, &transparent_hugepage_flags);
269 } else if (!memcmp("never", buf,
270 min(sizeof("never")-1, count))) {
271 clear_bit(enabled, &transparent_hugepage_flags);
272 clear_bit(req_madv, &transparent_hugepage_flags);
273 } else
274 return -EINVAL;
275
276 return count;
277 }
278
279 static ssize_t enabled_show(struct kobject *kobj,
280 struct kobj_attribute *attr, char *buf)
281 {
282 return double_flag_show(kobj, attr, buf,
283 TRANSPARENT_HUGEPAGE_FLAG,
284 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
285 }
286 static ssize_t enabled_store(struct kobject *kobj,
287 struct kobj_attribute *attr,
288 const char *buf, size_t count)
289 {
290 ssize_t ret;
291
292 ret = double_flag_store(kobj, attr, buf, count,
293 TRANSPARENT_HUGEPAGE_FLAG,
294 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
295
296 if (ret > 0) {
297 int err;
298
299 mutex_lock(&khugepaged_mutex);
300 err = start_khugepaged();
301 mutex_unlock(&khugepaged_mutex);
302
303 if (err)
304 ret = err;
305 }
306
307 return ret;
308 }
309 static struct kobj_attribute enabled_attr =
310 __ATTR(enabled, 0644, enabled_show, enabled_store);
311
312 static ssize_t single_flag_show(struct kobject *kobj,
313 struct kobj_attribute *attr, char *buf,
314 enum transparent_hugepage_flag flag)
315 {
316 return sprintf(buf, "%d\n",
317 !!test_bit(flag, &transparent_hugepage_flags));
318 }
319
320 static ssize_t single_flag_store(struct kobject *kobj,
321 struct kobj_attribute *attr,
322 const char *buf, size_t count,
323 enum transparent_hugepage_flag flag)
324 {
325 unsigned long value;
326 int ret;
327
328 ret = kstrtoul(buf, 10, &value);
329 if (ret < 0)
330 return ret;
331 if (value > 1)
332 return -EINVAL;
333
334 if (value)
335 set_bit(flag, &transparent_hugepage_flags);
336 else
337 clear_bit(flag, &transparent_hugepage_flags);
338
339 return count;
340 }
341
342 /*
343 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
344 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
345 * memory just to allocate one more hugepage.
346 */
347 static ssize_t defrag_show(struct kobject *kobj,
348 struct kobj_attribute *attr, char *buf)
349 {
350 return double_flag_show(kobj, attr, buf,
351 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
352 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
353 }
354 static ssize_t defrag_store(struct kobject *kobj,
355 struct kobj_attribute *attr,
356 const char *buf, size_t count)
357 {
358 return double_flag_store(kobj, attr, buf, count,
359 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
360 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
361 }
362 static struct kobj_attribute defrag_attr =
363 __ATTR(defrag, 0644, defrag_show, defrag_store);
364
365 static ssize_t use_zero_page_show(struct kobject *kobj,
366 struct kobj_attribute *attr, char *buf)
367 {
368 return single_flag_show(kobj, attr, buf,
369 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
370 }
371 static ssize_t use_zero_page_store(struct kobject *kobj,
372 struct kobj_attribute *attr, const char *buf, size_t count)
373 {
374 return single_flag_store(kobj, attr, buf, count,
375 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
376 }
377 static struct kobj_attribute use_zero_page_attr =
378 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
379 #ifdef CONFIG_DEBUG_VM
380 static ssize_t debug_cow_show(struct kobject *kobj,
381 struct kobj_attribute *attr, char *buf)
382 {
383 return single_flag_show(kobj, attr, buf,
384 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
385 }
386 static ssize_t debug_cow_store(struct kobject *kobj,
387 struct kobj_attribute *attr,
388 const char *buf, size_t count)
389 {
390 return single_flag_store(kobj, attr, buf, count,
391 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
392 }
393 static struct kobj_attribute debug_cow_attr =
394 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
395 #endif /* CONFIG_DEBUG_VM */
396
397 static struct attribute *hugepage_attr[] = {
398 &enabled_attr.attr,
399 &defrag_attr.attr,
400 &use_zero_page_attr.attr,
401 #ifdef CONFIG_DEBUG_VM
402 &debug_cow_attr.attr,
403 #endif
404 NULL,
405 };
406
407 static struct attribute_group hugepage_attr_group = {
408 .attrs = hugepage_attr,
409 };
410
411 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
412 struct kobj_attribute *attr,
413 char *buf)
414 {
415 return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
416 }
417
418 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
419 struct kobj_attribute *attr,
420 const char *buf, size_t count)
421 {
422 unsigned long msecs;
423 int err;
424
425 err = strict_strtoul(buf, 10, &msecs);
426 if (err || msecs > UINT_MAX)
427 return -EINVAL;
428
429 khugepaged_scan_sleep_millisecs = msecs;
430 wake_up_interruptible(&khugepaged_wait);
431
432 return count;
433 }
434 static struct kobj_attribute scan_sleep_millisecs_attr =
435 __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
436 scan_sleep_millisecs_store);
437
438 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
439 struct kobj_attribute *attr,
440 char *buf)
441 {
442 return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
443 }
444
445 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
446 struct kobj_attribute *attr,
447 const char *buf, size_t count)
448 {
449 unsigned long msecs;
450 int err;
451
452 err = strict_strtoul(buf, 10, &msecs);
453 if (err || msecs > UINT_MAX)
454 return -EINVAL;
455
456 khugepaged_alloc_sleep_millisecs = msecs;
457 wake_up_interruptible(&khugepaged_wait);
458
459 return count;
460 }
461 static struct kobj_attribute alloc_sleep_millisecs_attr =
462 __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
463 alloc_sleep_millisecs_store);
464
465 static ssize_t pages_to_scan_show(struct kobject *kobj,
466 struct kobj_attribute *attr,
467 char *buf)
468 {
469 return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
470 }
471 static ssize_t pages_to_scan_store(struct kobject *kobj,
472 struct kobj_attribute *attr,
473 const char *buf, size_t count)
474 {
475 int err;
476 unsigned long pages;
477
478 err = strict_strtoul(buf, 10, &pages);
479 if (err || !pages || pages > UINT_MAX)
480 return -EINVAL;
481
482 khugepaged_pages_to_scan = pages;
483
484 return count;
485 }
486 static struct kobj_attribute pages_to_scan_attr =
487 __ATTR(pages_to_scan, 0644, pages_to_scan_show,
488 pages_to_scan_store);
489
490 static ssize_t pages_collapsed_show(struct kobject *kobj,
491 struct kobj_attribute *attr,
492 char *buf)
493 {
494 return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
495 }
496 static struct kobj_attribute pages_collapsed_attr =
497 __ATTR_RO(pages_collapsed);
498
499 static ssize_t full_scans_show(struct kobject *kobj,
500 struct kobj_attribute *attr,
501 char *buf)
502 {
503 return sprintf(buf, "%u\n", khugepaged_full_scans);
504 }
505 static struct kobj_attribute full_scans_attr =
506 __ATTR_RO(full_scans);
507
508 static ssize_t khugepaged_defrag_show(struct kobject *kobj,
509 struct kobj_attribute *attr, char *buf)
510 {
511 return single_flag_show(kobj, attr, buf,
512 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
513 }
514 static ssize_t khugepaged_defrag_store(struct kobject *kobj,
515 struct kobj_attribute *attr,
516 const char *buf, size_t count)
517 {
518 return single_flag_store(kobj, attr, buf, count,
519 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
520 }
521 static struct kobj_attribute khugepaged_defrag_attr =
522 __ATTR(defrag, 0644, khugepaged_defrag_show,
523 khugepaged_defrag_store);
524
525 /*
526 * max_ptes_none controls if khugepaged should collapse hugepages over
527 * any unmapped ptes in turn potentially increasing the memory
528 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
529 * reduce the available free memory in the system as it
530 * runs. Increasing max_ptes_none will instead potentially reduce the
531 * free memory in the system during the khugepaged scan.
532 */
533 static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
534 struct kobj_attribute *attr,
535 char *buf)
536 {
537 return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
538 }
539 static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
540 struct kobj_attribute *attr,
541 const char *buf, size_t count)
542 {
543 int err;
544 unsigned long max_ptes_none;
545
546 err = strict_strtoul(buf, 10, &max_ptes_none);
547 if (err || max_ptes_none > HPAGE_PMD_NR-1)
548 return -EINVAL;
549
550 khugepaged_max_ptes_none = max_ptes_none;
551
552 return count;
553 }
554 static struct kobj_attribute khugepaged_max_ptes_none_attr =
555 __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
556 khugepaged_max_ptes_none_store);
557
558 static struct attribute *khugepaged_attr[] = {
559 &khugepaged_defrag_attr.attr,
560 &khugepaged_max_ptes_none_attr.attr,
561 &pages_to_scan_attr.attr,
562 &pages_collapsed_attr.attr,
563 &full_scans_attr.attr,
564 &scan_sleep_millisecs_attr.attr,
565 &alloc_sleep_millisecs_attr.attr,
566 NULL,
567 };
568
569 static struct attribute_group khugepaged_attr_group = {
570 .attrs = khugepaged_attr,
571 .name = "khugepaged",
572 };
573
574 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
575 {
576 int err;
577
578 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
579 if (unlikely(!*hugepage_kobj)) {
580 printk(KERN_ERR "hugepage: failed to create transparent hugepage kobject\n");
581 return -ENOMEM;
582 }
583
584 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
585 if (err) {
586 printk(KERN_ERR "hugepage: failed to register transparent hugepage group\n");
587 goto delete_obj;
588 }
589
590 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
591 if (err) {
592 printk(KERN_ERR "hugepage: failed to register transparent hugepage group\n");
593 goto remove_hp_group;
594 }
595
596 return 0;
597
598 remove_hp_group:
599 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
600 delete_obj:
601 kobject_put(*hugepage_kobj);
602 return err;
603 }
604
605 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
606 {
607 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
608 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
609 kobject_put(hugepage_kobj);
610 }
611 #else
612 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
613 {
614 return 0;
615 }
616
617 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
618 {
619 }
620 #endif /* CONFIG_SYSFS */
621
622 static int __init hugepage_init(void)
623 {
624 int err;
625 struct kobject *hugepage_kobj;
626
627 if (!has_transparent_hugepage()) {
628 transparent_hugepage_flags = 0;
629 return -EINVAL;
630 }
631
632 err = hugepage_init_sysfs(&hugepage_kobj);
633 if (err)
634 return err;
635
636 err = khugepaged_slab_init();
637 if (err)
638 goto out;
639
640 register_shrinker(&huge_zero_page_shrinker);
641
642 /*
643 * By default disable transparent hugepages on smaller systems,
644 * where the extra memory used could hurt more than TLB overhead
645 * is likely to save. The admin can still enable it through /sys.
646 */
647 if (totalram_pages < (512 << (20 - PAGE_SHIFT)))
648 transparent_hugepage_flags = 0;
649
650 start_khugepaged();
651
652 return 0;
653 out:
654 hugepage_exit_sysfs(hugepage_kobj);
655 return err;
656 }
657 module_init(hugepage_init)
658
659 static int __init setup_transparent_hugepage(char *str)
660 {
661 int ret = 0;
662 if (!str)
663 goto out;
664 if (!strcmp(str, "always")) {
665 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
666 &transparent_hugepage_flags);
667 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
668 &transparent_hugepage_flags);
669 ret = 1;
670 } else if (!strcmp(str, "madvise")) {
671 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
672 &transparent_hugepage_flags);
673 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
674 &transparent_hugepage_flags);
675 ret = 1;
676 } else if (!strcmp(str, "never")) {
677 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
678 &transparent_hugepage_flags);
679 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
680 &transparent_hugepage_flags);
681 ret = 1;
682 }
683 out:
684 if (!ret)
685 printk(KERN_WARNING
686 "transparent_hugepage= cannot parse, ignored\n");
687 return ret;
688 }
689 __setup("transparent_hugepage=", setup_transparent_hugepage);
690
691 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
692 {
693 if (likely(vma->vm_flags & VM_WRITE))
694 pmd = pmd_mkwrite(pmd);
695 return pmd;
696 }
697
698 static inline pmd_t mk_huge_pmd(struct page *page, struct vm_area_struct *vma)
699 {
700 pmd_t entry;
701 entry = mk_pmd(page, vma->vm_page_prot);
702 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
703 entry = pmd_mkhuge(entry);
704 return entry;
705 }
706
707 static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
708 struct vm_area_struct *vma,
709 unsigned long haddr, pmd_t *pmd,
710 struct page *page)
711 {
712 pgtable_t pgtable;
713
714 VM_BUG_ON(!PageCompound(page));
715 pgtable = pte_alloc_one(mm, haddr);
716 if (unlikely(!pgtable))
717 return VM_FAULT_OOM;
718
719 clear_huge_page(page, haddr, HPAGE_PMD_NR);
720 /*
721 * The memory barrier inside __SetPageUptodate makes sure that
722 * clear_huge_page writes become visible before the set_pmd_at()
723 * write.
724 */
725 __SetPageUptodate(page);
726
727 spin_lock(&mm->page_table_lock);
728 if (unlikely(!pmd_none(*pmd))) {
729 spin_unlock(&mm->page_table_lock);
730 mem_cgroup_uncharge_page(page);
731 put_page(page);
732 pte_free(mm, pgtable);
733 } else {
734 pmd_t entry;
735 entry = mk_huge_pmd(page, vma);
736 page_add_new_anon_rmap(page, vma, haddr);
737 pgtable_trans_huge_deposit(mm, pmd, pgtable);
738 set_pmd_at(mm, haddr, pmd, entry);
739 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
740 mm->nr_ptes++;
741 spin_unlock(&mm->page_table_lock);
742 }
743
744 return 0;
745 }
746
747 static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
748 {
749 return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp;
750 }
751
752 static inline struct page *alloc_hugepage_vma(int defrag,
753 struct vm_area_struct *vma,
754 unsigned long haddr, int nd,
755 gfp_t extra_gfp)
756 {
757 return alloc_pages_vma(alloc_hugepage_gfpmask(defrag, extra_gfp),
758 HPAGE_PMD_ORDER, vma, haddr, nd);
759 }
760
761 #ifndef CONFIG_NUMA
762 static inline struct page *alloc_hugepage(int defrag)
763 {
764 return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
765 HPAGE_PMD_ORDER);
766 }
767 #endif
768
769 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
770 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
771 struct page *zero_page)
772 {
773 pmd_t entry;
774 if (!pmd_none(*pmd))
775 return false;
776 entry = mk_pmd(zero_page, vma->vm_page_prot);
777 entry = pmd_wrprotect(entry);
778 entry = pmd_mkhuge(entry);
779 pgtable_trans_huge_deposit(mm, pmd, pgtable);
780 set_pmd_at(mm, haddr, pmd, entry);
781 mm->nr_ptes++;
782 return true;
783 }
784
785 int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
786 unsigned long address, pmd_t *pmd,
787 unsigned int flags)
788 {
789 struct page *page;
790 unsigned long haddr = address & HPAGE_PMD_MASK;
791 pte_t *pte;
792
793 if (haddr >= vma->vm_start && haddr + HPAGE_PMD_SIZE <= vma->vm_end) {
794 if (unlikely(anon_vma_prepare(vma)))
795 return VM_FAULT_OOM;
796 if (unlikely(khugepaged_enter(vma)))
797 return VM_FAULT_OOM;
798 if (!(flags & FAULT_FLAG_WRITE) &&
799 transparent_hugepage_use_zero_page()) {
800 pgtable_t pgtable;
801 struct page *zero_page;
802 bool set;
803 pgtable = pte_alloc_one(mm, haddr);
804 if (unlikely(!pgtable))
805 return VM_FAULT_OOM;
806 zero_page = get_huge_zero_page();
807 if (unlikely(!zero_page)) {
808 pte_free(mm, pgtable);
809 count_vm_event(THP_FAULT_FALLBACK);
810 goto out;
811 }
812 spin_lock(&mm->page_table_lock);
813 set = set_huge_zero_page(pgtable, mm, vma, haddr, pmd,
814 zero_page);
815 spin_unlock(&mm->page_table_lock);
816 if (!set) {
817 pte_free(mm, pgtable);
818 put_huge_zero_page();
819 }
820 return 0;
821 }
822 page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
823 vma, haddr, numa_node_id(), 0);
824 if (unlikely(!page)) {
825 count_vm_event(THP_FAULT_FALLBACK);
826 goto out;
827 }
828 count_vm_event(THP_FAULT_ALLOC);
829 if (unlikely(mem_cgroup_newpage_charge(page, mm, GFP_KERNEL))) {
830 put_page(page);
831 goto out;
832 }
833 if (unlikely(__do_huge_pmd_anonymous_page(mm, vma, haddr, pmd,
834 page))) {
835 mem_cgroup_uncharge_page(page);
836 put_page(page);
837 goto out;
838 }
839
840 return 0;
841 }
842 out:
843 /*
844 * Use __pte_alloc instead of pte_alloc_map, because we can't
845 * run pte_offset_map on the pmd, if an huge pmd could
846 * materialize from under us from a different thread.
847 */
848 if (unlikely(pmd_none(*pmd)) &&
849 unlikely(__pte_alloc(mm, vma, pmd, address)))
850 return VM_FAULT_OOM;
851 /* if an huge pmd materialized from under us just retry later */
852 if (unlikely(pmd_trans_huge(*pmd)))
853 return 0;
854 /*
855 * A regular pmd is established and it can't morph into a huge pmd
856 * from under us anymore at this point because we hold the mmap_sem
857 * read mode and khugepaged takes it in write mode. So now it's
858 * safe to run pte_offset_map().
859 */
860 pte = pte_offset_map(pmd, address);
861 return handle_pte_fault(mm, vma, address, pte, pmd, flags);
862 }
863
864 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
865 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
866 struct vm_area_struct *vma)
867 {
868 struct page *src_page;
869 pmd_t pmd;
870 pgtable_t pgtable;
871 int ret;
872
873 ret = -ENOMEM;
874 pgtable = pte_alloc_one(dst_mm, addr);
875 if (unlikely(!pgtable))
876 goto out;
877
878 spin_lock(&dst_mm->page_table_lock);
879 spin_lock_nested(&src_mm->page_table_lock, SINGLE_DEPTH_NESTING);
880
881 ret = -EAGAIN;
882 pmd = *src_pmd;
883 if (unlikely(!pmd_trans_huge(pmd))) {
884 pte_free(dst_mm, pgtable);
885 goto out_unlock;
886 }
887 /*
888 * mm->page_table_lock is enough to be sure that huge zero pmd is not
889 * under splitting since we don't split the page itself, only pmd to
890 * a page table.
891 */
892 if (is_huge_zero_pmd(pmd)) {
893 struct page *zero_page;
894 bool set;
895 /*
896 * get_huge_zero_page() will never allocate a new page here,
897 * since we already have a zero page to copy. It just takes a
898 * reference.
899 */
900 zero_page = get_huge_zero_page();
901 set = set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
902 zero_page);
903 BUG_ON(!set); /* unexpected !pmd_none(dst_pmd) */
904 ret = 0;
905 goto out_unlock;
906 }
907 if (unlikely(pmd_trans_splitting(pmd))) {
908 /* split huge page running from under us */
909 spin_unlock(&src_mm->page_table_lock);
910 spin_unlock(&dst_mm->page_table_lock);
911 pte_free(dst_mm, pgtable);
912
913 wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
914 goto out;
915 }
916 src_page = pmd_page(pmd);
917 VM_BUG_ON(!PageHead(src_page));
918 get_page(src_page);
919 page_dup_rmap(src_page);
920 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
921
922 pmdp_set_wrprotect(src_mm, addr, src_pmd);
923 pmd = pmd_mkold(pmd_wrprotect(pmd));
924 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
925 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
926 dst_mm->nr_ptes++;
927
928 ret = 0;
929 out_unlock:
930 spin_unlock(&src_mm->page_table_lock);
931 spin_unlock(&dst_mm->page_table_lock);
932 out:
933 return ret;
934 }
935
936 void huge_pmd_set_accessed(struct mm_struct *mm,
937 struct vm_area_struct *vma,
938 unsigned long address,
939 pmd_t *pmd, pmd_t orig_pmd,
940 int dirty)
941 {
942 pmd_t entry;
943 unsigned long haddr;
944
945 spin_lock(&mm->page_table_lock);
946 if (unlikely(!pmd_same(*pmd, orig_pmd)))
947 goto unlock;
948
949 entry = pmd_mkyoung(orig_pmd);
950 haddr = address & HPAGE_PMD_MASK;
951 if (pmdp_set_access_flags(vma, haddr, pmd, entry, dirty))
952 update_mmu_cache_pmd(vma, address, pmd);
953
954 unlock:
955 spin_unlock(&mm->page_table_lock);
956 }
957
958 static int do_huge_pmd_wp_zero_page_fallback(struct mm_struct *mm,
959 struct vm_area_struct *vma, unsigned long address,
960 pmd_t *pmd, pmd_t orig_pmd, unsigned long haddr)
961 {
962 pgtable_t pgtable;
963 pmd_t _pmd;
964 struct page *page;
965 int i, ret = 0;
966 unsigned long mmun_start; /* For mmu_notifiers */
967 unsigned long mmun_end; /* For mmu_notifiers */
968
969 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
970 if (!page) {
971 ret |= VM_FAULT_OOM;
972 goto out;
973 }
974
975 if (mem_cgroup_newpage_charge(page, mm, GFP_KERNEL)) {
976 put_page(page);
977 ret |= VM_FAULT_OOM;
978 goto out;
979 }
980
981 clear_user_highpage(page, address);
982 __SetPageUptodate(page);
983
984 mmun_start = haddr;
985 mmun_end = haddr + HPAGE_PMD_SIZE;
986 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
987
988 spin_lock(&mm->page_table_lock);
989 if (unlikely(!pmd_same(*pmd, orig_pmd)))
990 goto out_free_page;
991
992 pmdp_clear_flush(vma, haddr, pmd);
993 /* leave pmd empty until pte is filled */
994
995 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
996 pmd_populate(mm, &_pmd, pgtable);
997
998 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
999 pte_t *pte, entry;
1000 if (haddr == (address & PAGE_MASK)) {
1001 entry = mk_pte(page, vma->vm_page_prot);
1002 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1003 page_add_new_anon_rmap(page, vma, haddr);
1004 } else {
1005 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
1006 entry = pte_mkspecial(entry);
1007 }
1008 pte = pte_offset_map(&_pmd, haddr);
1009 VM_BUG_ON(!pte_none(*pte));
1010 set_pte_at(mm, haddr, pte, entry);
1011 pte_unmap(pte);
1012 }
1013 smp_wmb(); /* make pte visible before pmd */
1014 pmd_populate(mm, pmd, pgtable);
1015 spin_unlock(&mm->page_table_lock);
1016 put_huge_zero_page();
1017 inc_mm_counter(mm, MM_ANONPAGES);
1018
1019 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1020
1021 ret |= VM_FAULT_WRITE;
1022 out:
1023 return ret;
1024 out_free_page:
1025 spin_unlock(&mm->page_table_lock);
1026 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1027 mem_cgroup_uncharge_page(page);
1028 put_page(page);
1029 goto out;
1030 }
1031
1032 static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
1033 struct vm_area_struct *vma,
1034 unsigned long address,
1035 pmd_t *pmd, pmd_t orig_pmd,
1036 struct page *page,
1037 unsigned long haddr)
1038 {
1039 pgtable_t pgtable;
1040 pmd_t _pmd;
1041 int ret = 0, i;
1042 struct page **pages;
1043 unsigned long mmun_start; /* For mmu_notifiers */
1044 unsigned long mmun_end; /* For mmu_notifiers */
1045
1046 pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
1047 GFP_KERNEL);
1048 if (unlikely(!pages)) {
1049 ret |= VM_FAULT_OOM;
1050 goto out;
1051 }
1052
1053 for (i = 0; i < HPAGE_PMD_NR; i++) {
1054 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
1055 __GFP_OTHER_NODE,
1056 vma, address, page_to_nid(page));
1057 if (unlikely(!pages[i] ||
1058 mem_cgroup_newpage_charge(pages[i], mm,
1059 GFP_KERNEL))) {
1060 if (pages[i])
1061 put_page(pages[i]);
1062 mem_cgroup_uncharge_start();
1063 while (--i >= 0) {
1064 mem_cgroup_uncharge_page(pages[i]);
1065 put_page(pages[i]);
1066 }
1067 mem_cgroup_uncharge_end();
1068 kfree(pages);
1069 ret |= VM_FAULT_OOM;
1070 goto out;
1071 }
1072 }
1073
1074 for (i = 0; i < HPAGE_PMD_NR; i++) {
1075 copy_user_highpage(pages[i], page + i,
1076 haddr + PAGE_SIZE * i, vma);
1077 __SetPageUptodate(pages[i]);
1078 cond_resched();
1079 }
1080
1081 mmun_start = haddr;
1082 mmun_end = haddr + HPAGE_PMD_SIZE;
1083 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1084
1085 spin_lock(&mm->page_table_lock);
1086 if (unlikely(!pmd_same(*pmd, orig_pmd)))
1087 goto out_free_pages;
1088 VM_BUG_ON(!PageHead(page));
1089
1090 pmdp_clear_flush(vma, haddr, pmd);
1091 /* leave pmd empty until pte is filled */
1092
1093 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1094 pmd_populate(mm, &_pmd, pgtable);
1095
1096 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1097 pte_t *pte, entry;
1098 entry = mk_pte(pages[i], vma->vm_page_prot);
1099 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1100 page_add_new_anon_rmap(pages[i], vma, haddr);
1101 pte = pte_offset_map(&_pmd, haddr);
1102 VM_BUG_ON(!pte_none(*pte));
1103 set_pte_at(mm, haddr, pte, entry);
1104 pte_unmap(pte);
1105 }
1106 kfree(pages);
1107
1108 smp_wmb(); /* make pte visible before pmd */
1109 pmd_populate(mm, pmd, pgtable);
1110 page_remove_rmap(page);
1111 spin_unlock(&mm->page_table_lock);
1112
1113 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1114
1115 ret |= VM_FAULT_WRITE;
1116 put_page(page);
1117
1118 out:
1119 return ret;
1120
1121 out_free_pages:
1122 spin_unlock(&mm->page_table_lock);
1123 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1124 mem_cgroup_uncharge_start();
1125 for (i = 0; i < HPAGE_PMD_NR; i++) {
1126 mem_cgroup_uncharge_page(pages[i]);
1127 put_page(pages[i]);
1128 }
1129 mem_cgroup_uncharge_end();
1130 kfree(pages);
1131 goto out;
1132 }
1133
1134 int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1135 unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
1136 {
1137 int ret = 0;
1138 struct page *page = NULL, *new_page;
1139 unsigned long haddr;
1140 unsigned long mmun_start; /* For mmu_notifiers */
1141 unsigned long mmun_end; /* For mmu_notifiers */
1142
1143 VM_BUG_ON(!vma->anon_vma);
1144 haddr = address & HPAGE_PMD_MASK;
1145 if (is_huge_zero_pmd(orig_pmd))
1146 goto alloc;
1147 spin_lock(&mm->page_table_lock);
1148 if (unlikely(!pmd_same(*pmd, orig_pmd)))
1149 goto out_unlock;
1150
1151 page = pmd_page(orig_pmd);
1152 VM_BUG_ON(!PageCompound(page) || !PageHead(page));
1153 if (page_mapcount(page) == 1) {
1154 pmd_t entry;
1155 entry = pmd_mkyoung(orig_pmd);
1156 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1157 if (pmdp_set_access_flags(vma, haddr, pmd, entry, 1))
1158 update_mmu_cache_pmd(vma, address, pmd);
1159 ret |= VM_FAULT_WRITE;
1160 goto out_unlock;
1161 }
1162 get_page(page);
1163 spin_unlock(&mm->page_table_lock);
1164 alloc:
1165 if (transparent_hugepage_enabled(vma) &&
1166 !transparent_hugepage_debug_cow())
1167 new_page = alloc_hugepage_vma(transparent_hugepage_defrag(vma),
1168 vma, haddr, numa_node_id(), 0);
1169 else
1170 new_page = NULL;
1171
1172 if (unlikely(!new_page)) {
1173 count_vm_event(THP_FAULT_FALLBACK);
1174 if (is_huge_zero_pmd(orig_pmd)) {
1175 ret = do_huge_pmd_wp_zero_page_fallback(mm, vma,
1176 address, pmd, orig_pmd, haddr);
1177 } else {
1178 ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
1179 pmd, orig_pmd, page, haddr);
1180 if (ret & VM_FAULT_OOM)
1181 split_huge_page(page);
1182 put_page(page);
1183 }
1184 goto out;
1185 }
1186 count_vm_event(THP_FAULT_ALLOC);
1187
1188 if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL))) {
1189 put_page(new_page);
1190 if (page) {
1191 split_huge_page(page);
1192 put_page(page);
1193 }
1194 ret |= VM_FAULT_OOM;
1195 goto out;
1196 }
1197
1198 if (is_huge_zero_pmd(orig_pmd))
1199 clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
1200 else
1201 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
1202 __SetPageUptodate(new_page);
1203
1204 mmun_start = haddr;
1205 mmun_end = haddr + HPAGE_PMD_SIZE;
1206 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1207
1208 spin_lock(&mm->page_table_lock);
1209 if (page)
1210 put_page(page);
1211 if (unlikely(!pmd_same(*pmd, orig_pmd))) {
1212 spin_unlock(&mm->page_table_lock);
1213 mem_cgroup_uncharge_page(new_page);
1214 put_page(new_page);
1215 goto out_mn;
1216 } else {
1217 pmd_t entry;
1218 entry = mk_huge_pmd(new_page, vma);
1219 pmdp_clear_flush(vma, haddr, pmd);
1220 page_add_new_anon_rmap(new_page, vma, haddr);
1221 set_pmd_at(mm, haddr, pmd, entry);
1222 update_mmu_cache_pmd(vma, address, pmd);
1223 if (is_huge_zero_pmd(orig_pmd)) {
1224 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
1225 put_huge_zero_page();
1226 } else {
1227 VM_BUG_ON(!PageHead(page));
1228 page_remove_rmap(page);
1229 put_page(page);
1230 }
1231 ret |= VM_FAULT_WRITE;
1232 }
1233 spin_unlock(&mm->page_table_lock);
1234 out_mn:
1235 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1236 out:
1237 return ret;
1238 out_unlock:
1239 spin_unlock(&mm->page_table_lock);
1240 return ret;
1241 }
1242
1243 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1244 unsigned long addr,
1245 pmd_t *pmd,
1246 unsigned int flags)
1247 {
1248 struct mm_struct *mm = vma->vm_mm;
1249 struct page *page = NULL;
1250
1251 assert_spin_locked(&mm->page_table_lock);
1252
1253 if (flags & FOLL_WRITE && !pmd_write(*pmd))
1254 goto out;
1255
1256 /* Avoid dumping huge zero page */
1257 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1258 return ERR_PTR(-EFAULT);
1259
1260 page = pmd_page(*pmd);
1261 VM_BUG_ON(!PageHead(page));
1262 if (flags & FOLL_TOUCH) {
1263 pmd_t _pmd;
1264 /*
1265 * We should set the dirty bit only for FOLL_WRITE but
1266 * for now the dirty bit in the pmd is meaningless.
1267 * And if the dirty bit will become meaningful and
1268 * we'll only set it with FOLL_WRITE, an atomic
1269 * set_bit will be required on the pmd to set the
1270 * young bit, instead of the current set_pmd_at.
1271 */
1272 _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
1273 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
1274 pmd, _pmd, 1))
1275 update_mmu_cache_pmd(vma, addr, pmd);
1276 }
1277 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1278 if (page->mapping && trylock_page(page)) {
1279 lru_add_drain();
1280 if (page->mapping)
1281 mlock_vma_page(page);
1282 unlock_page(page);
1283 }
1284 }
1285 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1286 VM_BUG_ON(!PageCompound(page));
1287 if (flags & FOLL_GET)
1288 get_page_foll(page);
1289
1290 out:
1291 return page;
1292 }
1293
1294 /* NUMA hinting page fault entry point for trans huge pmds */
1295 int do_huge_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
1296 unsigned long addr, pmd_t pmd, pmd_t *pmdp)
1297 {
1298 struct page *page;
1299 unsigned long haddr = addr & HPAGE_PMD_MASK;
1300 int target_nid;
1301 int current_nid = -1;
1302 bool migrated;
1303
1304 spin_lock(&mm->page_table_lock);
1305 if (unlikely(!pmd_same(pmd, *pmdp)))
1306 goto out_unlock;
1307
1308 page = pmd_page(pmd);
1309 get_page(page);
1310 current_nid = page_to_nid(page);
1311 count_vm_numa_event(NUMA_HINT_FAULTS);
1312 if (current_nid == numa_node_id())
1313 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1314
1315 target_nid = mpol_misplaced(page, vma, haddr);
1316 if (target_nid == -1) {
1317 put_page(page);
1318 goto clear_pmdnuma;
1319 }
1320
1321 /* Acquire the page lock to serialise THP migrations */
1322 spin_unlock(&mm->page_table_lock);
1323 lock_page(page);
1324
1325 /* Confirm the PTE did not while locked */
1326 spin_lock(&mm->page_table_lock);
1327 if (unlikely(!pmd_same(pmd, *pmdp))) {
1328 unlock_page(page);
1329 put_page(page);
1330 goto out_unlock;
1331 }
1332 spin_unlock(&mm->page_table_lock);
1333
1334 /* Migrate the THP to the requested node */
1335 migrated = migrate_misplaced_transhuge_page(mm, vma,
1336 pmdp, pmd, addr, page, target_nid);
1337 if (!migrated)
1338 goto check_same;
1339
1340 task_numa_fault(target_nid, HPAGE_PMD_NR, true);
1341 return 0;
1342
1343 check_same:
1344 spin_lock(&mm->page_table_lock);
1345 if (unlikely(!pmd_same(pmd, *pmdp)))
1346 goto out_unlock;
1347 clear_pmdnuma:
1348 pmd = pmd_mknonnuma(pmd);
1349 set_pmd_at(mm, haddr, pmdp, pmd);
1350 VM_BUG_ON(pmd_numa(*pmdp));
1351 update_mmu_cache_pmd(vma, addr, pmdp);
1352 out_unlock:
1353 spin_unlock(&mm->page_table_lock);
1354 if (current_nid != -1)
1355 task_numa_fault(current_nid, HPAGE_PMD_NR, false);
1356 return 0;
1357 }
1358
1359 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1360 pmd_t *pmd, unsigned long addr)
1361 {
1362 int ret = 0;
1363
1364 if (__pmd_trans_huge_lock(pmd, vma) == 1) {
1365 struct page *page;
1366 pgtable_t pgtable;
1367 pmd_t orig_pmd;
1368 /*
1369 * For architectures like ppc64 we look at deposited pgtable
1370 * when calling pmdp_get_and_clear. So do the
1371 * pgtable_trans_huge_withdraw after finishing pmdp related
1372 * operations.
1373 */
1374 orig_pmd = pmdp_get_and_clear(tlb->mm, addr, pmd);
1375 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1376 pgtable = pgtable_trans_huge_withdraw(tlb->mm, pmd);
1377 if (is_huge_zero_pmd(orig_pmd)) {
1378 tlb->mm->nr_ptes--;
1379 spin_unlock(&tlb->mm->page_table_lock);
1380 put_huge_zero_page();
1381 } else {
1382 page = pmd_page(orig_pmd);
1383 page_remove_rmap(page);
1384 VM_BUG_ON(page_mapcount(page) < 0);
1385 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1386 VM_BUG_ON(!PageHead(page));
1387 tlb->mm->nr_ptes--;
1388 spin_unlock(&tlb->mm->page_table_lock);
1389 tlb_remove_page(tlb, page);
1390 }
1391 pte_free(tlb->mm, pgtable);
1392 ret = 1;
1393 }
1394 return ret;
1395 }
1396
1397 int mincore_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1398 unsigned long addr, unsigned long end,
1399 unsigned char *vec)
1400 {
1401 int ret = 0;
1402
1403 if (__pmd_trans_huge_lock(pmd, vma) == 1) {
1404 /*
1405 * All logical pages in the range are present
1406 * if backed by a huge page.
1407 */
1408 spin_unlock(&vma->vm_mm->page_table_lock);
1409 memset(vec, 1, (end - addr) >> PAGE_SHIFT);
1410 ret = 1;
1411 }
1412
1413 return ret;
1414 }
1415
1416 int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
1417 unsigned long old_addr,
1418 unsigned long new_addr, unsigned long old_end,
1419 pmd_t *old_pmd, pmd_t *new_pmd)
1420 {
1421 int ret = 0;
1422 pmd_t pmd;
1423
1424 struct mm_struct *mm = vma->vm_mm;
1425
1426 if ((old_addr & ~HPAGE_PMD_MASK) ||
1427 (new_addr & ~HPAGE_PMD_MASK) ||
1428 old_end - old_addr < HPAGE_PMD_SIZE ||
1429 (new_vma->vm_flags & VM_NOHUGEPAGE))
1430 goto out;
1431
1432 /*
1433 * The destination pmd shouldn't be established, free_pgtables()
1434 * should have release it.
1435 */
1436 if (WARN_ON(!pmd_none(*new_pmd))) {
1437 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1438 goto out;
1439 }
1440
1441 ret = __pmd_trans_huge_lock(old_pmd, vma);
1442 if (ret == 1) {
1443 pmd = pmdp_get_and_clear(mm, old_addr, old_pmd);
1444 VM_BUG_ON(!pmd_none(*new_pmd));
1445 set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
1446 spin_unlock(&mm->page_table_lock);
1447 }
1448 out:
1449 return ret;
1450 }
1451
1452 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1453 unsigned long addr, pgprot_t newprot, int prot_numa)
1454 {
1455 struct mm_struct *mm = vma->vm_mm;
1456 int ret = 0;
1457
1458 if (__pmd_trans_huge_lock(pmd, vma) == 1) {
1459 pmd_t entry;
1460 entry = pmdp_get_and_clear(mm, addr, pmd);
1461 if (!prot_numa) {
1462 entry = pmd_modify(entry, newprot);
1463 BUG_ON(pmd_write(entry));
1464 } else {
1465 struct page *page = pmd_page(*pmd);
1466
1467 /* only check non-shared pages */
1468 if (page_mapcount(page) == 1 &&
1469 !pmd_numa(*pmd)) {
1470 entry = pmd_mknuma(entry);
1471 }
1472 }
1473 set_pmd_at(mm, addr, pmd, entry);
1474 spin_unlock(&vma->vm_mm->page_table_lock);
1475 ret = 1;
1476 }
1477
1478 return ret;
1479 }
1480
1481 /*
1482 * Returns 1 if a given pmd maps a stable (not under splitting) thp.
1483 * Returns -1 if it maps a thp under splitting. Returns 0 otherwise.
1484 *
1485 * Note that if it returns 1, this routine returns without unlocking page
1486 * table locks. So callers must unlock them.
1487 */
1488 int __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1489 {
1490 spin_lock(&vma->vm_mm->page_table_lock);
1491 if (likely(pmd_trans_huge(*pmd))) {
1492 if (unlikely(pmd_trans_splitting(*pmd))) {
1493 spin_unlock(&vma->vm_mm->page_table_lock);
1494 wait_split_huge_page(vma->anon_vma, pmd);
1495 return -1;
1496 } else {
1497 /* Thp mapped by 'pmd' is stable, so we can
1498 * handle it as it is. */
1499 return 1;
1500 }
1501 }
1502 spin_unlock(&vma->vm_mm->page_table_lock);
1503 return 0;
1504 }
1505
1506 pmd_t *page_check_address_pmd(struct page *page,
1507 struct mm_struct *mm,
1508 unsigned long address,
1509 enum page_check_address_pmd_flag flag)
1510 {
1511 pmd_t *pmd, *ret = NULL;
1512
1513 if (address & ~HPAGE_PMD_MASK)
1514 goto out;
1515
1516 pmd = mm_find_pmd(mm, address);
1517 if (!pmd)
1518 goto out;
1519 if (pmd_none(*pmd))
1520 goto out;
1521 if (pmd_page(*pmd) != page)
1522 goto out;
1523 /*
1524 * split_vma() may create temporary aliased mappings. There is
1525 * no risk as long as all huge pmd are found and have their
1526 * splitting bit set before __split_huge_page_refcount
1527 * runs. Finding the same huge pmd more than once during the
1528 * same rmap walk is not a problem.
1529 */
1530 if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
1531 pmd_trans_splitting(*pmd))
1532 goto out;
1533 if (pmd_trans_huge(*pmd)) {
1534 VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
1535 !pmd_trans_splitting(*pmd));
1536 ret = pmd;
1537 }
1538 out:
1539 return ret;
1540 }
1541
1542 static int __split_huge_page_splitting(struct page *page,
1543 struct vm_area_struct *vma,
1544 unsigned long address)
1545 {
1546 struct mm_struct *mm = vma->vm_mm;
1547 pmd_t *pmd;
1548 int ret = 0;
1549 /* For mmu_notifiers */
1550 const unsigned long mmun_start = address;
1551 const unsigned long mmun_end = address + HPAGE_PMD_SIZE;
1552
1553 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1554 spin_lock(&mm->page_table_lock);
1555 pmd = page_check_address_pmd(page, mm, address,
1556 PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG);
1557 if (pmd) {
1558 /*
1559 * We can't temporarily set the pmd to null in order
1560 * to split it, the pmd must remain marked huge at all
1561 * times or the VM won't take the pmd_trans_huge paths
1562 * and it won't wait on the anon_vma->root->rwsem to
1563 * serialize against split_huge_page*.
1564 */
1565 pmdp_splitting_flush(vma, address, pmd);
1566 ret = 1;
1567 }
1568 spin_unlock(&mm->page_table_lock);
1569 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1570
1571 return ret;
1572 }
1573
1574 static void __split_huge_page_refcount(struct page *page,
1575 struct list_head *list)
1576 {
1577 int i;
1578 struct zone *zone = page_zone(page);
1579 struct lruvec *lruvec;
1580 int tail_count = 0;
1581
1582 /* prevent PageLRU to go away from under us, and freeze lru stats */
1583 spin_lock_irq(&zone->lru_lock);
1584 lruvec = mem_cgroup_page_lruvec(page, zone);
1585
1586 compound_lock(page);
1587 /* complete memcg works before add pages to LRU */
1588 mem_cgroup_split_huge_fixup(page);
1589
1590 for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
1591 struct page *page_tail = page + i;
1592
1593 /* tail_page->_mapcount cannot change */
1594 BUG_ON(page_mapcount(page_tail) < 0);
1595 tail_count += page_mapcount(page_tail);
1596 /* check for overflow */
1597 BUG_ON(tail_count < 0);
1598 BUG_ON(atomic_read(&page_tail->_count) != 0);
1599 /*
1600 * tail_page->_count is zero and not changing from
1601 * under us. But get_page_unless_zero() may be running
1602 * from under us on the tail_page. If we used
1603 * atomic_set() below instead of atomic_add(), we
1604 * would then run atomic_set() concurrently with
1605 * get_page_unless_zero(), and atomic_set() is
1606 * implemented in C not using locked ops. spin_unlock
1607 * on x86 sometime uses locked ops because of PPro
1608 * errata 66, 92, so unless somebody can guarantee
1609 * atomic_set() here would be safe on all archs (and
1610 * not only on x86), it's safer to use atomic_add().
1611 */
1612 atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1,
1613 &page_tail->_count);
1614
1615 /* after clearing PageTail the gup refcount can be released */
1616 smp_mb();
1617
1618 /*
1619 * retain hwpoison flag of the poisoned tail page:
1620 * fix for the unsuitable process killed on Guest Machine(KVM)
1621 * by the memory-failure.
1622 */
1623 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON;
1624 page_tail->flags |= (page->flags &
1625 ((1L << PG_referenced) |
1626 (1L << PG_swapbacked) |
1627 (1L << PG_mlocked) |
1628 (1L << PG_uptodate) |
1629 (1L << PG_active) |
1630 (1L << PG_unevictable)));
1631 page_tail->flags |= (1L << PG_dirty);
1632
1633 /* clear PageTail before overwriting first_page */
1634 smp_wmb();
1635
1636 /*
1637 * __split_huge_page_splitting() already set the
1638 * splitting bit in all pmd that could map this
1639 * hugepage, that will ensure no CPU can alter the
1640 * mapcount on the head page. The mapcount is only
1641 * accounted in the head page and it has to be
1642 * transferred to all tail pages in the below code. So
1643 * for this code to be safe, the split the mapcount
1644 * can't change. But that doesn't mean userland can't
1645 * keep changing and reading the page contents while
1646 * we transfer the mapcount, so the pmd splitting
1647 * status is achieved setting a reserved bit in the
1648 * pmd, not by clearing the present bit.
1649 */
1650 page_tail->_mapcount = page->_mapcount;
1651
1652 BUG_ON(page_tail->mapping);
1653 page_tail->mapping = page->mapping;
1654
1655 page_tail->index = page->index + i;
1656 page_nid_xchg_last(page_tail, page_nid_last(page));
1657
1658 BUG_ON(!PageAnon(page_tail));
1659 BUG_ON(!PageUptodate(page_tail));
1660 BUG_ON(!PageDirty(page_tail));
1661 BUG_ON(!PageSwapBacked(page_tail));
1662
1663 lru_add_page_tail(page, page_tail, lruvec, list);
1664 }
1665 atomic_sub(tail_count, &page->_count);
1666 BUG_ON(atomic_read(&page->_count) <= 0);
1667
1668 __mod_zone_page_state(zone, NR_ANON_TRANSPARENT_HUGEPAGES, -1);
1669 __mod_zone_page_state(zone, NR_ANON_PAGES, HPAGE_PMD_NR);
1670
1671 ClearPageCompound(page);
1672 compound_unlock(page);
1673 spin_unlock_irq(&zone->lru_lock);
1674
1675 for (i = 1; i < HPAGE_PMD_NR; i++) {
1676 struct page *page_tail = page + i;
1677 BUG_ON(page_count(page_tail) <= 0);
1678 /*
1679 * Tail pages may be freed if there wasn't any mapping
1680 * like if add_to_swap() is running on a lru page that
1681 * had its mapping zapped. And freeing these pages
1682 * requires taking the lru_lock so we do the put_page
1683 * of the tail pages after the split is complete.
1684 */
1685 put_page(page_tail);
1686 }
1687
1688 /*
1689 * Only the head page (now become a regular page) is required
1690 * to be pinned by the caller.
1691 */
1692 BUG_ON(page_count(page) <= 0);
1693 }
1694
1695 static int __split_huge_page_map(struct page *page,
1696 struct vm_area_struct *vma,
1697 unsigned long address)
1698 {
1699 struct mm_struct *mm = vma->vm_mm;
1700 pmd_t *pmd, _pmd;
1701 int ret = 0, i;
1702 pgtable_t pgtable;
1703 unsigned long haddr;
1704
1705 spin_lock(&mm->page_table_lock);
1706 pmd = page_check_address_pmd(page, mm, address,
1707 PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG);
1708 if (pmd) {
1709 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1710 pmd_populate(mm, &_pmd, pgtable);
1711
1712 haddr = address;
1713 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1714 pte_t *pte, entry;
1715 BUG_ON(PageCompound(page+i));
1716 entry = mk_pte(page + i, vma->vm_page_prot);
1717 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1718 if (!pmd_write(*pmd))
1719 entry = pte_wrprotect(entry);
1720 else
1721 BUG_ON(page_mapcount(page) != 1);
1722 if (!pmd_young(*pmd))
1723 entry = pte_mkold(entry);
1724 if (pmd_numa(*pmd))
1725 entry = pte_mknuma(entry);
1726 pte = pte_offset_map(&_pmd, haddr);
1727 BUG_ON(!pte_none(*pte));
1728 set_pte_at(mm, haddr, pte, entry);
1729 pte_unmap(pte);
1730 }
1731
1732 smp_wmb(); /* make pte visible before pmd */
1733 /*
1734 * Up to this point the pmd is present and huge and
1735 * userland has the whole access to the hugepage
1736 * during the split (which happens in place). If we
1737 * overwrite the pmd with the not-huge version
1738 * pointing to the pte here (which of course we could
1739 * if all CPUs were bug free), userland could trigger
1740 * a small page size TLB miss on the small sized TLB
1741 * while the hugepage TLB entry is still established
1742 * in the huge TLB. Some CPU doesn't like that. See
1743 * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
1744 * Erratum 383 on page 93. Intel should be safe but is
1745 * also warns that it's only safe if the permission
1746 * and cache attributes of the two entries loaded in
1747 * the two TLB is identical (which should be the case
1748 * here). But it is generally safer to never allow
1749 * small and huge TLB entries for the same virtual
1750 * address to be loaded simultaneously. So instead of
1751 * doing "pmd_populate(); flush_tlb_range();" we first
1752 * mark the current pmd notpresent (atomically because
1753 * here the pmd_trans_huge and pmd_trans_splitting
1754 * must remain set at all times on the pmd until the
1755 * split is complete for this pmd), then we flush the
1756 * SMP TLB and finally we write the non-huge version
1757 * of the pmd entry with pmd_populate.
1758 */
1759 pmdp_invalidate(vma, address, pmd);
1760 pmd_populate(mm, pmd, pgtable);
1761 ret = 1;
1762 }
1763 spin_unlock(&mm->page_table_lock);
1764
1765 return ret;
1766 }
1767
1768 /* must be called with anon_vma->root->rwsem held */
1769 static void __split_huge_page(struct page *page,
1770 struct anon_vma *anon_vma,
1771 struct list_head *list)
1772 {
1773 int mapcount, mapcount2;
1774 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1775 struct anon_vma_chain *avc;
1776
1777 BUG_ON(!PageHead(page));
1778 BUG_ON(PageTail(page));
1779
1780 mapcount = 0;
1781 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1782 struct vm_area_struct *vma = avc->vma;
1783 unsigned long addr = vma_address(page, vma);
1784 BUG_ON(is_vma_temporary_stack(vma));
1785 mapcount += __split_huge_page_splitting(page, vma, addr);
1786 }
1787 /*
1788 * It is critical that new vmas are added to the tail of the
1789 * anon_vma list. This guarantes that if copy_huge_pmd() runs
1790 * and establishes a child pmd before
1791 * __split_huge_page_splitting() freezes the parent pmd (so if
1792 * we fail to prevent copy_huge_pmd() from running until the
1793 * whole __split_huge_page() is complete), we will still see
1794 * the newly established pmd of the child later during the
1795 * walk, to be able to set it as pmd_trans_splitting too.
1796 */
1797 if (mapcount != page_mapcount(page))
1798 printk(KERN_ERR "mapcount %d page_mapcount %d\n",
1799 mapcount, page_mapcount(page));
1800 BUG_ON(mapcount != page_mapcount(page));
1801
1802 __split_huge_page_refcount(page, list);
1803
1804 mapcount2 = 0;
1805 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1806 struct vm_area_struct *vma = avc->vma;
1807 unsigned long addr = vma_address(page, vma);
1808 BUG_ON(is_vma_temporary_stack(vma));
1809 mapcount2 += __split_huge_page_map(page, vma, addr);
1810 }
1811 if (mapcount != mapcount2)
1812 printk(KERN_ERR "mapcount %d mapcount2 %d page_mapcount %d\n",
1813 mapcount, mapcount2, page_mapcount(page));
1814 BUG_ON(mapcount != mapcount2);
1815 }
1816
1817 /*
1818 * Split a hugepage into normal pages. This doesn't change the position of head
1819 * page. If @list is null, tail pages will be added to LRU list, otherwise, to
1820 * @list. Both head page and tail pages will inherit mapping, flags, and so on
1821 * from the hugepage.
1822 * Return 0 if the hugepage is split successfully otherwise return 1.
1823 */
1824 int split_huge_page_to_list(struct page *page, struct list_head *list)
1825 {
1826 struct anon_vma *anon_vma;
1827 int ret = 1;
1828
1829 BUG_ON(is_huge_zero_page(page));
1830 BUG_ON(!PageAnon(page));
1831
1832 /*
1833 * The caller does not necessarily hold an mmap_sem that would prevent
1834 * the anon_vma disappearing so we first we take a reference to it
1835 * and then lock the anon_vma for write. This is similar to
1836 * page_lock_anon_vma_read except the write lock is taken to serialise
1837 * against parallel split or collapse operations.
1838 */
1839 anon_vma = page_get_anon_vma(page);
1840 if (!anon_vma)
1841 goto out;
1842 anon_vma_lock_write(anon_vma);
1843
1844 ret = 0;
1845 if (!PageCompound(page))
1846 goto out_unlock;
1847
1848 BUG_ON(!PageSwapBacked(page));
1849 __split_huge_page(page, anon_vma, list);
1850 count_vm_event(THP_SPLIT);
1851
1852 BUG_ON(PageCompound(page));
1853 out_unlock:
1854 anon_vma_unlock_write(anon_vma);
1855 put_anon_vma(anon_vma);
1856 out:
1857 return ret;
1858 }
1859
1860 #define VM_NO_THP (VM_SPECIAL|VM_MIXEDMAP|VM_HUGETLB|VM_SHARED|VM_MAYSHARE)
1861
1862 int hugepage_madvise(struct vm_area_struct *vma,
1863 unsigned long *vm_flags, int advice)
1864 {
1865 struct mm_struct *mm = vma->vm_mm;
1866
1867 switch (advice) {
1868 case MADV_HUGEPAGE:
1869 /*
1870 * Be somewhat over-protective like KSM for now!
1871 */
1872 if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP))
1873 return -EINVAL;
1874 if (mm->def_flags & VM_NOHUGEPAGE)
1875 return -EINVAL;
1876 *vm_flags &= ~VM_NOHUGEPAGE;
1877 *vm_flags |= VM_HUGEPAGE;
1878 /*
1879 * If the vma become good for khugepaged to scan,
1880 * register it here without waiting a page fault that
1881 * may not happen any time soon.
1882 */
1883 if (unlikely(khugepaged_enter_vma_merge(vma)))
1884 return -ENOMEM;
1885 break;
1886 case MADV_NOHUGEPAGE:
1887 /*
1888 * Be somewhat over-protective like KSM for now!
1889 */
1890 if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP))
1891 return -EINVAL;
1892 *vm_flags &= ~VM_HUGEPAGE;
1893 *vm_flags |= VM_NOHUGEPAGE;
1894 /*
1895 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1896 * this vma even if we leave the mm registered in khugepaged if
1897 * it got registered before VM_NOHUGEPAGE was set.
1898 */
1899 break;
1900 }
1901
1902 return 0;
1903 }
1904
1905 static int __init khugepaged_slab_init(void)
1906 {
1907 mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
1908 sizeof(struct mm_slot),
1909 __alignof__(struct mm_slot), 0, NULL);
1910 if (!mm_slot_cache)
1911 return -ENOMEM;
1912
1913 return 0;
1914 }
1915
1916 static inline struct mm_slot *alloc_mm_slot(void)
1917 {
1918 if (!mm_slot_cache) /* initialization failed */
1919 return NULL;
1920 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
1921 }
1922
1923 static inline void free_mm_slot(struct mm_slot *mm_slot)
1924 {
1925 kmem_cache_free(mm_slot_cache, mm_slot);
1926 }
1927
1928 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
1929 {
1930 struct mm_slot *mm_slot;
1931
1932 hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
1933 if (mm == mm_slot->mm)
1934 return mm_slot;
1935
1936 return NULL;
1937 }
1938
1939 static void insert_to_mm_slots_hash(struct mm_struct *mm,
1940 struct mm_slot *mm_slot)
1941 {
1942 mm_slot->mm = mm;
1943 hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
1944 }
1945
1946 static inline int khugepaged_test_exit(struct mm_struct *mm)
1947 {
1948 return atomic_read(&mm->mm_users) == 0;
1949 }
1950
1951 int __khugepaged_enter(struct mm_struct *mm)
1952 {
1953 struct mm_slot *mm_slot;
1954 int wakeup;
1955
1956 mm_slot = alloc_mm_slot();
1957 if (!mm_slot)
1958 return -ENOMEM;
1959
1960 /* __khugepaged_exit() must not run from under us */
1961 VM_BUG_ON(khugepaged_test_exit(mm));
1962 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
1963 free_mm_slot(mm_slot);
1964 return 0;
1965 }
1966
1967 spin_lock(&khugepaged_mm_lock);
1968 insert_to_mm_slots_hash(mm, mm_slot);
1969 /*
1970 * Insert just behind the scanning cursor, to let the area settle
1971 * down a little.
1972 */
1973 wakeup = list_empty(&khugepaged_scan.mm_head);
1974 list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
1975 spin_unlock(&khugepaged_mm_lock);
1976
1977 atomic_inc(&mm->mm_count);
1978 if (wakeup)
1979 wake_up_interruptible(&khugepaged_wait);
1980
1981 return 0;
1982 }
1983
1984 int khugepaged_enter_vma_merge(struct vm_area_struct *vma)
1985 {
1986 unsigned long hstart, hend;
1987 if (!vma->anon_vma)
1988 /*
1989 * Not yet faulted in so we will register later in the
1990 * page fault if needed.
1991 */
1992 return 0;
1993 if (vma->vm_ops)
1994 /* khugepaged not yet working on file or special mappings */
1995 return 0;
1996 VM_BUG_ON(vma->vm_flags & VM_NO_THP);
1997 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1998 hend = vma->vm_end & HPAGE_PMD_MASK;
1999 if (hstart < hend)
2000 return khugepaged_enter(vma);
2001 return 0;
2002 }
2003
2004 void __khugepaged_exit(struct mm_struct *mm)
2005 {
2006 struct mm_slot *mm_slot;
2007 int free = 0;
2008
2009 spin_lock(&khugepaged_mm_lock);
2010 mm_slot = get_mm_slot(mm);
2011 if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
2012 hash_del(&mm_slot->hash);
2013 list_del(&mm_slot->mm_node);
2014 free = 1;
2015 }
2016 spin_unlock(&khugepaged_mm_lock);
2017
2018 if (free) {
2019 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2020 free_mm_slot(mm_slot);
2021 mmdrop(mm);
2022 } else if (mm_slot) {
2023 /*
2024 * This is required to serialize against
2025 * khugepaged_test_exit() (which is guaranteed to run
2026 * under mmap sem read mode). Stop here (after we
2027 * return all pagetables will be destroyed) until
2028 * khugepaged has finished working on the pagetables
2029 * under the mmap_sem.
2030 */
2031 down_write(&mm->mmap_sem);
2032 up_write(&mm->mmap_sem);
2033 }
2034 }
2035
2036 static void release_pte_page(struct page *page)
2037 {
2038 /* 0 stands for page_is_file_cache(page) == false */
2039 dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
2040 unlock_page(page);
2041 putback_lru_page(page);
2042 }
2043
2044 static void release_pte_pages(pte_t *pte, pte_t *_pte)
2045 {
2046 while (--_pte >= pte) {
2047 pte_t pteval = *_pte;
2048 if (!pte_none(pteval))
2049 release_pte_page(pte_page(pteval));
2050 }
2051 }
2052
2053 static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
2054 unsigned long address,
2055 pte_t *pte)
2056 {
2057 struct page *page;
2058 pte_t *_pte;
2059 int referenced = 0, none = 0;
2060 for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
2061 _pte++, address += PAGE_SIZE) {
2062 pte_t pteval = *_pte;
2063 if (pte_none(pteval)) {
2064 if (++none <= khugepaged_max_ptes_none)
2065 continue;
2066 else
2067 goto out;
2068 }
2069 if (!pte_present(pteval) || !pte_write(pteval))
2070 goto out;
2071 page = vm_normal_page(vma, address, pteval);
2072 if (unlikely(!page))
2073 goto out;
2074
2075 VM_BUG_ON(PageCompound(page));
2076 BUG_ON(!PageAnon(page));
2077 VM_BUG_ON(!PageSwapBacked(page));
2078
2079 /* cannot use mapcount: can't collapse if there's a gup pin */
2080 if (page_count(page) != 1)
2081 goto out;
2082 /*
2083 * We can do it before isolate_lru_page because the
2084 * page can't be freed from under us. NOTE: PG_lock
2085 * is needed to serialize against split_huge_page
2086 * when invoked from the VM.
2087 */
2088 if (!trylock_page(page))
2089 goto out;
2090 /*
2091 * Isolate the page to avoid collapsing an hugepage
2092 * currently in use by the VM.
2093 */
2094 if (isolate_lru_page(page)) {
2095 unlock_page(page);
2096 goto out;
2097 }
2098 /* 0 stands for page_is_file_cache(page) == false */
2099 inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
2100 VM_BUG_ON(!PageLocked(page));
2101 VM_BUG_ON(PageLRU(page));
2102
2103 /* If there is no mapped pte young don't collapse the page */
2104 if (pte_young(pteval) || PageReferenced(page) ||
2105 mmu_notifier_test_young(vma->vm_mm, address))
2106 referenced = 1;
2107 }
2108 if (likely(referenced))
2109 return 1;
2110 out:
2111 release_pte_pages(pte, _pte);
2112 return 0;
2113 }
2114
2115 static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
2116 struct vm_area_struct *vma,
2117 unsigned long address,
2118 spinlock_t *ptl)
2119 {
2120 pte_t *_pte;
2121 for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
2122 pte_t pteval = *_pte;
2123 struct page *src_page;
2124
2125 if (pte_none(pteval)) {
2126 clear_user_highpage(page, address);
2127 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
2128 } else {
2129 src_page = pte_page(pteval);
2130 copy_user_highpage(page, src_page, address, vma);
2131 VM_BUG_ON(page_mapcount(src_page) != 1);
2132 release_pte_page(src_page);
2133 /*
2134 * ptl mostly unnecessary, but preempt has to
2135 * be disabled to update the per-cpu stats
2136 * inside page_remove_rmap().
2137 */
2138 spin_lock(ptl);
2139 /*
2140 * paravirt calls inside pte_clear here are
2141 * superfluous.
2142 */
2143 pte_clear(vma->vm_mm, address, _pte);
2144 page_remove_rmap(src_page);
2145 spin_unlock(ptl);
2146 free_page_and_swap_cache(src_page);
2147 }
2148
2149 address += PAGE_SIZE;
2150 page++;
2151 }
2152 }
2153
2154 static void khugepaged_alloc_sleep(void)
2155 {
2156 wait_event_freezable_timeout(khugepaged_wait, false,
2157 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
2158 }
2159
2160 #ifdef CONFIG_NUMA
2161 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2162 {
2163 if (IS_ERR(*hpage)) {
2164 if (!*wait)
2165 return false;
2166
2167 *wait = false;
2168 *hpage = NULL;
2169 khugepaged_alloc_sleep();
2170 } else if (*hpage) {
2171 put_page(*hpage);
2172 *hpage = NULL;
2173 }
2174
2175 return true;
2176 }
2177
2178 static struct page
2179 *khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
2180 struct vm_area_struct *vma, unsigned long address,
2181 int node)
2182 {
2183 VM_BUG_ON(*hpage);
2184 /*
2185 * Allocate the page while the vma is still valid and under
2186 * the mmap_sem read mode so there is no memory allocation
2187 * later when we take the mmap_sem in write mode. This is more
2188 * friendly behavior (OTOH it may actually hide bugs) to
2189 * filesystems in userland with daemons allocating memory in
2190 * the userland I/O paths. Allocating memory with the
2191 * mmap_sem in read mode is good idea also to allow greater
2192 * scalability.
2193 */
2194 *hpage = alloc_hugepage_vma(khugepaged_defrag(), vma, address,
2195 node, __GFP_OTHER_NODE);
2196
2197 /*
2198 * After allocating the hugepage, release the mmap_sem read lock in
2199 * preparation for taking it in write mode.
2200 */
2201 up_read(&mm->mmap_sem);
2202 if (unlikely(!*hpage)) {
2203 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2204 *hpage = ERR_PTR(-ENOMEM);
2205 return NULL;
2206 }
2207
2208 count_vm_event(THP_COLLAPSE_ALLOC);
2209 return *hpage;
2210 }
2211 #else
2212 static struct page *khugepaged_alloc_hugepage(bool *wait)
2213 {
2214 struct page *hpage;
2215
2216 do {
2217 hpage = alloc_hugepage(khugepaged_defrag());
2218 if (!hpage) {
2219 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2220 if (!*wait)
2221 return NULL;
2222
2223 *wait = false;
2224 khugepaged_alloc_sleep();
2225 } else
2226 count_vm_event(THP_COLLAPSE_ALLOC);
2227 } while (unlikely(!hpage) && likely(khugepaged_enabled()));
2228
2229 return hpage;
2230 }
2231
2232 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2233 {
2234 if (!*hpage)
2235 *hpage = khugepaged_alloc_hugepage(wait);
2236
2237 if (unlikely(!*hpage))
2238 return false;
2239
2240 return true;
2241 }
2242
2243 static struct page
2244 *khugepaged_alloc_page(struct page **hpage, struct mm_struct *mm,
2245 struct vm_area_struct *vma, unsigned long address,
2246 int node)
2247 {
2248 up_read(&mm->mmap_sem);
2249 VM_BUG_ON(!*hpage);
2250 return *hpage;
2251 }
2252 #endif
2253
2254 static bool hugepage_vma_check(struct vm_area_struct *vma)
2255 {
2256 if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
2257 (vma->vm_flags & VM_NOHUGEPAGE))
2258 return false;
2259
2260 if (!vma->anon_vma || vma->vm_ops)
2261 return false;
2262 if (is_vma_temporary_stack(vma))
2263 return false;
2264 VM_BUG_ON(vma->vm_flags & VM_NO_THP);
2265 return true;
2266 }
2267
2268 static void collapse_huge_page(struct mm_struct *mm,
2269 unsigned long address,
2270 struct page **hpage,
2271 struct vm_area_struct *vma,
2272 int node)
2273 {
2274 pmd_t *pmd, _pmd;
2275 pte_t *pte;
2276 pgtable_t pgtable;
2277 struct page *new_page;
2278 spinlock_t *ptl;
2279 int isolated;
2280 unsigned long hstart, hend;
2281 unsigned long mmun_start; /* For mmu_notifiers */
2282 unsigned long mmun_end; /* For mmu_notifiers */
2283
2284 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2285
2286 /* release the mmap_sem read lock. */
2287 new_page = khugepaged_alloc_page(hpage, mm, vma, address, node);
2288 if (!new_page)
2289 return;
2290
2291 if (unlikely(mem_cgroup_newpage_charge(new_page, mm, GFP_KERNEL)))
2292 return;
2293
2294 /*
2295 * Prevent all access to pagetables with the exception of
2296 * gup_fast later hanlded by the ptep_clear_flush and the VM
2297 * handled by the anon_vma lock + PG_lock.
2298 */
2299 down_write(&mm->mmap_sem);
2300 if (unlikely(khugepaged_test_exit(mm)))
2301 goto out;
2302
2303 vma = find_vma(mm, address);
2304 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2305 hend = vma->vm_end & HPAGE_PMD_MASK;
2306 if (address < hstart || address + HPAGE_PMD_SIZE > hend)
2307 goto out;
2308 if (!hugepage_vma_check(vma))
2309 goto out;
2310 pmd = mm_find_pmd(mm, address);
2311 if (!pmd)
2312 goto out;
2313 if (pmd_trans_huge(*pmd))
2314 goto out;
2315
2316 anon_vma_lock_write(vma->anon_vma);
2317
2318 pte = pte_offset_map(pmd, address);
2319 ptl = pte_lockptr(mm, pmd);
2320
2321 mmun_start = address;
2322 mmun_end = address + HPAGE_PMD_SIZE;
2323 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2324 spin_lock(&mm->page_table_lock); /* probably unnecessary */
2325 /*
2326 * After this gup_fast can't run anymore. This also removes
2327 * any huge TLB entry from the CPU so we won't allow
2328 * huge and small TLB entries for the same virtual address
2329 * to avoid the risk of CPU bugs in that area.
2330 */
2331 _pmd = pmdp_clear_flush(vma, address, pmd);
2332 spin_unlock(&mm->page_table_lock);
2333 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2334
2335 spin_lock(ptl);
2336 isolated = __collapse_huge_page_isolate(vma, address, pte);
2337 spin_unlock(ptl);
2338
2339 if (unlikely(!isolated)) {
2340 pte_unmap(pte);
2341 spin_lock(&mm->page_table_lock);
2342 BUG_ON(!pmd_none(*pmd));
2343 /*
2344 * We can only use set_pmd_at when establishing
2345 * hugepmds and never for establishing regular pmds that
2346 * points to regular pagetables. Use pmd_populate for that
2347 */
2348 pmd_populate(mm, pmd, pmd_pgtable(_pmd));
2349 spin_unlock(&mm->page_table_lock);
2350 anon_vma_unlock_write(vma->anon_vma);
2351 goto out;
2352 }
2353
2354 /*
2355 * All pages are isolated and locked so anon_vma rmap
2356 * can't run anymore.
2357 */
2358 anon_vma_unlock_write(vma->anon_vma);
2359
2360 __collapse_huge_page_copy(pte, new_page, vma, address, ptl);
2361 pte_unmap(pte);
2362 __SetPageUptodate(new_page);
2363 pgtable = pmd_pgtable(_pmd);
2364
2365 _pmd = mk_huge_pmd(new_page, vma);
2366
2367 /*
2368 * spin_lock() below is not the equivalent of smp_wmb(), so
2369 * this is needed to avoid the copy_huge_page writes to become
2370 * visible after the set_pmd_at() write.
2371 */
2372 smp_wmb();
2373
2374 spin_lock(&mm->page_table_lock);
2375 BUG_ON(!pmd_none(*pmd));
2376 page_add_new_anon_rmap(new_page, vma, address);
2377 pgtable_trans_huge_deposit(mm, pmd, pgtable);
2378 set_pmd_at(mm, address, pmd, _pmd);
2379 update_mmu_cache_pmd(vma, address, pmd);
2380 spin_unlock(&mm->page_table_lock);
2381
2382 *hpage = NULL;
2383
2384 khugepaged_pages_collapsed++;
2385 out_up_write:
2386 up_write(&mm->mmap_sem);
2387 return;
2388
2389 out:
2390 mem_cgroup_uncharge_page(new_page);
2391 goto out_up_write;
2392 }
2393
2394 static int khugepaged_scan_pmd(struct mm_struct *mm,
2395 struct vm_area_struct *vma,
2396 unsigned long address,
2397 struct page **hpage)
2398 {
2399 pmd_t *pmd;
2400 pte_t *pte, *_pte;
2401 int ret = 0, referenced = 0, none = 0;
2402 struct page *page;
2403 unsigned long _address;
2404 spinlock_t *ptl;
2405 int node = NUMA_NO_NODE;
2406
2407 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2408
2409 pmd = mm_find_pmd(mm, address);
2410 if (!pmd)
2411 goto out;
2412 if (pmd_trans_huge(*pmd))
2413 goto out;
2414
2415 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2416 for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
2417 _pte++, _address += PAGE_SIZE) {
2418 pte_t pteval = *_pte;
2419 if (pte_none(pteval)) {
2420 if (++none <= khugepaged_max_ptes_none)
2421 continue;
2422 else
2423 goto out_unmap;
2424 }
2425 if (!pte_present(pteval) || !pte_write(pteval))
2426 goto out_unmap;
2427 page = vm_normal_page(vma, _address, pteval);
2428 if (unlikely(!page))
2429 goto out_unmap;
2430 /*
2431 * Chose the node of the first page. This could
2432 * be more sophisticated and look at more pages,
2433 * but isn't for now.
2434 */
2435 if (node == NUMA_NO_NODE)
2436 node = page_to_nid(page);
2437 VM_BUG_ON(PageCompound(page));
2438 if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
2439 goto out_unmap;
2440 /* cannot use mapcount: can't collapse if there's a gup pin */
2441 if (page_count(page) != 1)
2442 goto out_unmap;
2443 if (pte_young(pteval) || PageReferenced(page) ||
2444 mmu_notifier_test_young(vma->vm_mm, address))
2445 referenced = 1;
2446 }
2447 if (referenced)
2448 ret = 1;
2449 out_unmap:
2450 pte_unmap_unlock(pte, ptl);
2451 if (ret)
2452 /* collapse_huge_page will return with the mmap_sem released */
2453 collapse_huge_page(mm, address, hpage, vma, node);
2454 out:
2455 return ret;
2456 }
2457
2458 static void collect_mm_slot(struct mm_slot *mm_slot)
2459 {
2460 struct mm_struct *mm = mm_slot->mm;
2461
2462 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2463
2464 if (khugepaged_test_exit(mm)) {
2465 /* free mm_slot */
2466 hash_del(&mm_slot->hash);
2467 list_del(&mm_slot->mm_node);
2468
2469 /*
2470 * Not strictly needed because the mm exited already.
2471 *
2472 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2473 */
2474
2475 /* khugepaged_mm_lock actually not necessary for the below */
2476 free_mm_slot(mm_slot);
2477 mmdrop(mm);
2478 }
2479 }
2480
2481 static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2482 struct page **hpage)
2483 __releases(&khugepaged_mm_lock)
2484 __acquires(&khugepaged_mm_lock)
2485 {
2486 struct mm_slot *mm_slot;
2487 struct mm_struct *mm;
2488 struct vm_area_struct *vma;
2489 int progress = 0;
2490
2491 VM_BUG_ON(!pages);
2492 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2493
2494 if (khugepaged_scan.mm_slot)
2495 mm_slot = khugepaged_scan.mm_slot;
2496 else {
2497 mm_slot = list_entry(khugepaged_scan.mm_head.next,
2498 struct mm_slot, mm_node);
2499 khugepaged_scan.address = 0;
2500 khugepaged_scan.mm_slot = mm_slot;
2501 }
2502 spin_unlock(&khugepaged_mm_lock);
2503
2504 mm = mm_slot->mm;
2505 down_read(&mm->mmap_sem);
2506 if (unlikely(khugepaged_test_exit(mm)))
2507 vma = NULL;
2508 else
2509 vma = find_vma(mm, khugepaged_scan.address);
2510
2511 progress++;
2512 for (; vma; vma = vma->vm_next) {
2513 unsigned long hstart, hend;
2514
2515 cond_resched();
2516 if (unlikely(khugepaged_test_exit(mm))) {
2517 progress++;
2518 break;
2519 }
2520 if (!hugepage_vma_check(vma)) {
2521 skip:
2522 progress++;
2523 continue;
2524 }
2525 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2526 hend = vma->vm_end & HPAGE_PMD_MASK;
2527 if (hstart >= hend)
2528 goto skip;
2529 if (khugepaged_scan.address > hend)
2530 goto skip;
2531 if (khugepaged_scan.address < hstart)
2532 khugepaged_scan.address = hstart;
2533 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2534
2535 while (khugepaged_scan.address < hend) {
2536 int ret;
2537 cond_resched();
2538 if (unlikely(khugepaged_test_exit(mm)))
2539 goto breakouterloop;
2540
2541 VM_BUG_ON(khugepaged_scan.address < hstart ||
2542 khugepaged_scan.address + HPAGE_PMD_SIZE >
2543 hend);
2544 ret = khugepaged_scan_pmd(mm, vma,
2545 khugepaged_scan.address,
2546 hpage);
2547 /* move to next address */
2548 khugepaged_scan.address += HPAGE_PMD_SIZE;
2549 progress += HPAGE_PMD_NR;
2550 if (ret)
2551 /* we released mmap_sem so break loop */
2552 goto breakouterloop_mmap_sem;
2553 if (progress >= pages)
2554 goto breakouterloop;
2555 }
2556 }
2557 breakouterloop:
2558 up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2559 breakouterloop_mmap_sem:
2560
2561 spin_lock(&khugepaged_mm_lock);
2562 VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2563 /*
2564 * Release the current mm_slot if this mm is about to die, or
2565 * if we scanned all vmas of this mm.
2566 */
2567 if (khugepaged_test_exit(mm) || !vma) {
2568 /*
2569 * Make sure that if mm_users is reaching zero while
2570 * khugepaged runs here, khugepaged_exit will find
2571 * mm_slot not pointing to the exiting mm.
2572 */
2573 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2574 khugepaged_scan.mm_slot = list_entry(
2575 mm_slot->mm_node.next,
2576 struct mm_slot, mm_node);
2577 khugepaged_scan.address = 0;
2578 } else {
2579 khugepaged_scan.mm_slot = NULL;
2580 khugepaged_full_scans++;
2581 }
2582
2583 collect_mm_slot(mm_slot);
2584 }
2585
2586 return progress;
2587 }
2588
2589 static int khugepaged_has_work(void)
2590 {
2591 return !list_empty(&khugepaged_scan.mm_head) &&
2592 khugepaged_enabled();
2593 }
2594
2595 static int khugepaged_wait_event(void)
2596 {
2597 return !list_empty(&khugepaged_scan.mm_head) ||
2598 kthread_should_stop();
2599 }
2600
2601 static void khugepaged_do_scan(void)
2602 {
2603 struct page *hpage = NULL;
2604 unsigned int progress = 0, pass_through_head = 0;
2605 unsigned int pages = khugepaged_pages_to_scan;
2606 bool wait = true;
2607
2608 barrier(); /* write khugepaged_pages_to_scan to local stack */
2609
2610 while (progress < pages) {
2611 if (!khugepaged_prealloc_page(&hpage, &wait))
2612 break;
2613
2614 cond_resched();
2615
2616 if (unlikely(kthread_should_stop() || freezing(current)))
2617 break;
2618
2619 spin_lock(&khugepaged_mm_lock);
2620 if (!khugepaged_scan.mm_slot)
2621 pass_through_head++;
2622 if (khugepaged_has_work() &&
2623 pass_through_head < 2)
2624 progress += khugepaged_scan_mm_slot(pages - progress,
2625 &hpage);
2626 else
2627 progress = pages;
2628 spin_unlock(&khugepaged_mm_lock);
2629 }
2630
2631 if (!IS_ERR_OR_NULL(hpage))
2632 put_page(hpage);
2633 }
2634
2635 static void khugepaged_wait_work(void)
2636 {
2637 try_to_freeze();
2638
2639 if (khugepaged_has_work()) {
2640 if (!khugepaged_scan_sleep_millisecs)
2641 return;
2642
2643 wait_event_freezable_timeout(khugepaged_wait,
2644 kthread_should_stop(),
2645 msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
2646 return;
2647 }
2648
2649 if (khugepaged_enabled())
2650 wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2651 }
2652
2653 static int khugepaged(void *none)
2654 {
2655 struct mm_slot *mm_slot;
2656
2657 set_freezable();
2658 set_user_nice(current, 19);
2659
2660 while (!kthread_should_stop()) {
2661 khugepaged_do_scan();
2662 khugepaged_wait_work();
2663 }
2664
2665 spin_lock(&khugepaged_mm_lock);
2666 mm_slot = khugepaged_scan.mm_slot;
2667 khugepaged_scan.mm_slot = NULL;
2668 if (mm_slot)
2669 collect_mm_slot(mm_slot);
2670 spin_unlock(&khugepaged_mm_lock);
2671 return 0;
2672 }
2673
2674 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2675 unsigned long haddr, pmd_t *pmd)
2676 {
2677 struct mm_struct *mm = vma->vm_mm;
2678 pgtable_t pgtable;
2679 pmd_t _pmd;
2680 int i;
2681
2682 pmdp_clear_flush(vma, haddr, pmd);
2683 /* leave pmd empty until pte is filled */
2684
2685 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2686 pmd_populate(mm, &_pmd, pgtable);
2687
2688 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2689 pte_t *pte, entry;
2690 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2691 entry = pte_mkspecial(entry);
2692 pte = pte_offset_map(&_pmd, haddr);
2693 VM_BUG_ON(!pte_none(*pte));
2694 set_pte_at(mm, haddr, pte, entry);
2695 pte_unmap(pte);
2696 }
2697 smp_wmb(); /* make pte visible before pmd */
2698 pmd_populate(mm, pmd, pgtable);
2699 put_huge_zero_page();
2700 }
2701
2702 void __split_huge_page_pmd(struct vm_area_struct *vma, unsigned long address,
2703 pmd_t *pmd)
2704 {
2705 struct page *page;
2706 struct mm_struct *mm = vma->vm_mm;
2707 unsigned long haddr = address & HPAGE_PMD_MASK;
2708 unsigned long mmun_start; /* For mmu_notifiers */
2709 unsigned long mmun_end; /* For mmu_notifiers */
2710
2711 BUG_ON(vma->vm_start > haddr || vma->vm_end < haddr + HPAGE_PMD_SIZE);
2712
2713 mmun_start = haddr;
2714 mmun_end = haddr + HPAGE_PMD_SIZE;
2715 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2716 spin_lock(&mm->page_table_lock);
2717 if (unlikely(!pmd_trans_huge(*pmd))) {
2718 spin_unlock(&mm->page_table_lock);
2719 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2720 return;
2721 }
2722 if (is_huge_zero_pmd(*pmd)) {
2723 __split_huge_zero_page_pmd(vma, haddr, pmd);
2724 spin_unlock(&mm->page_table_lock);
2725 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2726 return;
2727 }
2728 page = pmd_page(*pmd);
2729 VM_BUG_ON(!page_count(page));
2730 get_page(page);
2731 spin_unlock(&mm->page_table_lock);
2732 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2733
2734 split_huge_page(page);
2735
2736 put_page(page);
2737 BUG_ON(pmd_trans_huge(*pmd));
2738 }
2739
2740 void split_huge_page_pmd_mm(struct mm_struct *mm, unsigned long address,
2741 pmd_t *pmd)
2742 {
2743 struct vm_area_struct *vma;
2744
2745 vma = find_vma(mm, address);
2746 BUG_ON(vma == NULL);
2747 split_huge_page_pmd(vma, address, pmd);
2748 }
2749
2750 static void split_huge_page_address(struct mm_struct *mm,
2751 unsigned long address)
2752 {
2753 pmd_t *pmd;
2754
2755 VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
2756
2757 pmd = mm_find_pmd(mm, address);
2758 if (!pmd)
2759 return;
2760 /*
2761 * Caller holds the mmap_sem write mode, so a huge pmd cannot
2762 * materialize from under us.
2763 */
2764 split_huge_page_pmd_mm(mm, address, pmd);
2765 }
2766
2767 void __vma_adjust_trans_huge(struct vm_area_struct *vma,
2768 unsigned long start,
2769 unsigned long end,
2770 long adjust_next)
2771 {
2772 /*
2773 * If the new start address isn't hpage aligned and it could
2774 * previously contain an hugepage: check if we need to split
2775 * an huge pmd.
2776 */
2777 if (start & ~HPAGE_PMD_MASK &&
2778 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2779 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2780 split_huge_page_address(vma->vm_mm, start);
2781
2782 /*
2783 * If the new end address isn't hpage aligned and it could
2784 * previously contain an hugepage: check if we need to split
2785 * an huge pmd.
2786 */
2787 if (end & ~HPAGE_PMD_MASK &&
2788 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2789 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2790 split_huge_page_address(vma->vm_mm, end);
2791
2792 /*
2793 * If we're also updating the vma->vm_next->vm_start, if the new
2794 * vm_next->vm_start isn't page aligned and it could previously
2795 * contain an hugepage: check if we need to split an huge pmd.
2796 */
2797 if (adjust_next > 0) {
2798 struct vm_area_struct *next = vma->vm_next;
2799 unsigned long nstart = next->vm_start;
2800 nstart += adjust_next << PAGE_SHIFT;
2801 if (nstart & ~HPAGE_PMD_MASK &&
2802 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
2803 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
2804 split_huge_page_address(next->vm_mm, nstart);
2805 }
2806 }
This page took 0.197872 seconds and 6 git commands to generate.