shmem, thp: respect MADV_{NO,}HUGEPAGE for file mappings
[deliverable/linux.git] / mm / huge_memory.c
1 /*
2 * Copyright (C) 2009 Red Hat, Inc.
3 *
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
6 */
7
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
10 #include <linux/mm.h>
11 #include <linux/sched.h>
12 #include <linux/highmem.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mmu_notifier.h>
15 #include <linux/rmap.h>
16 #include <linux/swap.h>
17 #include <linux/shrinker.h>
18 #include <linux/mm_inline.h>
19 #include <linux/swapops.h>
20 #include <linux/dax.h>
21 #include <linux/kthread.h>
22 #include <linux/khugepaged.h>
23 #include <linux/freezer.h>
24 #include <linux/pfn_t.h>
25 #include <linux/mman.h>
26 #include <linux/memremap.h>
27 #include <linux/pagemap.h>
28 #include <linux/debugfs.h>
29 #include <linux/migrate.h>
30 #include <linux/hashtable.h>
31 #include <linux/userfaultfd_k.h>
32 #include <linux/page_idle.h>
33 #include <linux/shmem_fs.h>
34
35 #include <asm/tlb.h>
36 #include <asm/pgalloc.h>
37 #include "internal.h"
38
39 enum scan_result {
40 SCAN_FAIL,
41 SCAN_SUCCEED,
42 SCAN_PMD_NULL,
43 SCAN_EXCEED_NONE_PTE,
44 SCAN_PTE_NON_PRESENT,
45 SCAN_PAGE_RO,
46 SCAN_NO_REFERENCED_PAGE,
47 SCAN_PAGE_NULL,
48 SCAN_SCAN_ABORT,
49 SCAN_PAGE_COUNT,
50 SCAN_PAGE_LRU,
51 SCAN_PAGE_LOCK,
52 SCAN_PAGE_ANON,
53 SCAN_PAGE_COMPOUND,
54 SCAN_ANY_PROCESS,
55 SCAN_VMA_NULL,
56 SCAN_VMA_CHECK,
57 SCAN_ADDRESS_RANGE,
58 SCAN_SWAP_CACHE_PAGE,
59 SCAN_DEL_PAGE_LRU,
60 SCAN_ALLOC_HUGE_PAGE_FAIL,
61 SCAN_CGROUP_CHARGE_FAIL,
62 SCAN_EXCEED_SWAP_PTE
63 };
64
65 #define CREATE_TRACE_POINTS
66 #include <trace/events/huge_memory.h>
67
68 /*
69 * By default transparent hugepage support is disabled in order that avoid
70 * to risk increase the memory footprint of applications without a guaranteed
71 * benefit. When transparent hugepage support is enabled, is for all mappings,
72 * and khugepaged scans all mappings.
73 * Defrag is invoked by khugepaged hugepage allocations and by page faults
74 * for all hugepage allocations.
75 */
76 unsigned long transparent_hugepage_flags __read_mostly =
77 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
78 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
79 #endif
80 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
81 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
82 #endif
83 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG)|
84 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
85 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
86
87 /* default scan 8*512 pte (or vmas) every 30 second */
88 static unsigned int khugepaged_pages_to_scan __read_mostly;
89 static unsigned int khugepaged_pages_collapsed;
90 static unsigned int khugepaged_full_scans;
91 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
92 /* during fragmentation poll the hugepage allocator once every minute */
93 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
94 static unsigned long khugepaged_sleep_expire;
95 static struct task_struct *khugepaged_thread __read_mostly;
96 static DEFINE_MUTEX(khugepaged_mutex);
97 static DEFINE_SPINLOCK(khugepaged_mm_lock);
98 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
99 /*
100 * default collapse hugepages if there is at least one pte mapped like
101 * it would have happened if the vma was large enough during page
102 * fault.
103 */
104 static unsigned int khugepaged_max_ptes_none __read_mostly;
105 static unsigned int khugepaged_max_ptes_swap __read_mostly;
106
107 static int khugepaged(void *none);
108 static int khugepaged_slab_init(void);
109 static void khugepaged_slab_exit(void);
110
111 #define MM_SLOTS_HASH_BITS 10
112 static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
113
114 static struct kmem_cache *mm_slot_cache __read_mostly;
115
116 /**
117 * struct mm_slot - hash lookup from mm to mm_slot
118 * @hash: hash collision list
119 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
120 * @mm: the mm that this information is valid for
121 */
122 struct mm_slot {
123 struct hlist_node hash;
124 struct list_head mm_node;
125 struct mm_struct *mm;
126 };
127
128 /**
129 * struct khugepaged_scan - cursor for scanning
130 * @mm_head: the head of the mm list to scan
131 * @mm_slot: the current mm_slot we are scanning
132 * @address: the next address inside that to be scanned
133 *
134 * There is only the one khugepaged_scan instance of this cursor structure.
135 */
136 struct khugepaged_scan {
137 struct list_head mm_head;
138 struct mm_slot *mm_slot;
139 unsigned long address;
140 };
141 static struct khugepaged_scan khugepaged_scan = {
142 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
143 };
144
145 static struct shrinker deferred_split_shrinker;
146
147 static void set_recommended_min_free_kbytes(void)
148 {
149 struct zone *zone;
150 int nr_zones = 0;
151 unsigned long recommended_min;
152
153 for_each_populated_zone(zone)
154 nr_zones++;
155
156 /* Ensure 2 pageblocks are free to assist fragmentation avoidance */
157 recommended_min = pageblock_nr_pages * nr_zones * 2;
158
159 /*
160 * Make sure that on average at least two pageblocks are almost free
161 * of another type, one for a migratetype to fall back to and a
162 * second to avoid subsequent fallbacks of other types There are 3
163 * MIGRATE_TYPES we care about.
164 */
165 recommended_min += pageblock_nr_pages * nr_zones *
166 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
167
168 /* don't ever allow to reserve more than 5% of the lowmem */
169 recommended_min = min(recommended_min,
170 (unsigned long) nr_free_buffer_pages() / 20);
171 recommended_min <<= (PAGE_SHIFT-10);
172
173 if (recommended_min > min_free_kbytes) {
174 if (user_min_free_kbytes >= 0)
175 pr_info("raising min_free_kbytes from %d to %lu to help transparent hugepage allocations\n",
176 min_free_kbytes, recommended_min);
177
178 min_free_kbytes = recommended_min;
179 }
180 setup_per_zone_wmarks();
181 }
182
183 static int start_stop_khugepaged(void)
184 {
185 int err = 0;
186 if (khugepaged_enabled()) {
187 if (!khugepaged_thread)
188 khugepaged_thread = kthread_run(khugepaged, NULL,
189 "khugepaged");
190 if (IS_ERR(khugepaged_thread)) {
191 pr_err("khugepaged: kthread_run(khugepaged) failed\n");
192 err = PTR_ERR(khugepaged_thread);
193 khugepaged_thread = NULL;
194 goto fail;
195 }
196
197 if (!list_empty(&khugepaged_scan.mm_head))
198 wake_up_interruptible(&khugepaged_wait);
199
200 set_recommended_min_free_kbytes();
201 } else if (khugepaged_thread) {
202 kthread_stop(khugepaged_thread);
203 khugepaged_thread = NULL;
204 }
205 fail:
206 return err;
207 }
208
209 static atomic_t huge_zero_refcount;
210 struct page *huge_zero_page __read_mostly;
211
212 struct page *get_huge_zero_page(void)
213 {
214 struct page *zero_page;
215 retry:
216 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
217 return READ_ONCE(huge_zero_page);
218
219 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
220 HPAGE_PMD_ORDER);
221 if (!zero_page) {
222 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
223 return NULL;
224 }
225 count_vm_event(THP_ZERO_PAGE_ALLOC);
226 preempt_disable();
227 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
228 preempt_enable();
229 __free_pages(zero_page, compound_order(zero_page));
230 goto retry;
231 }
232
233 /* We take additional reference here. It will be put back by shrinker */
234 atomic_set(&huge_zero_refcount, 2);
235 preempt_enable();
236 return READ_ONCE(huge_zero_page);
237 }
238
239 void put_huge_zero_page(void)
240 {
241 /*
242 * Counter should never go to zero here. Only shrinker can put
243 * last reference.
244 */
245 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
246 }
247
248 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
249 struct shrink_control *sc)
250 {
251 /* we can free zero page only if last reference remains */
252 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
253 }
254
255 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
256 struct shrink_control *sc)
257 {
258 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
259 struct page *zero_page = xchg(&huge_zero_page, NULL);
260 BUG_ON(zero_page == NULL);
261 __free_pages(zero_page, compound_order(zero_page));
262 return HPAGE_PMD_NR;
263 }
264
265 return 0;
266 }
267
268 static struct shrinker huge_zero_page_shrinker = {
269 .count_objects = shrink_huge_zero_page_count,
270 .scan_objects = shrink_huge_zero_page_scan,
271 .seeks = DEFAULT_SEEKS,
272 };
273
274 #ifdef CONFIG_SYSFS
275
276 static ssize_t triple_flag_store(struct kobject *kobj,
277 struct kobj_attribute *attr,
278 const char *buf, size_t count,
279 enum transparent_hugepage_flag enabled,
280 enum transparent_hugepage_flag deferred,
281 enum transparent_hugepage_flag req_madv)
282 {
283 if (!memcmp("defer", buf,
284 min(sizeof("defer")-1, count))) {
285 if (enabled == deferred)
286 return -EINVAL;
287 clear_bit(enabled, &transparent_hugepage_flags);
288 clear_bit(req_madv, &transparent_hugepage_flags);
289 set_bit(deferred, &transparent_hugepage_flags);
290 } else if (!memcmp("always", buf,
291 min(sizeof("always")-1, count))) {
292 clear_bit(deferred, &transparent_hugepage_flags);
293 clear_bit(req_madv, &transparent_hugepage_flags);
294 set_bit(enabled, &transparent_hugepage_flags);
295 } else if (!memcmp("madvise", buf,
296 min(sizeof("madvise")-1, count))) {
297 clear_bit(enabled, &transparent_hugepage_flags);
298 clear_bit(deferred, &transparent_hugepage_flags);
299 set_bit(req_madv, &transparent_hugepage_flags);
300 } else if (!memcmp("never", buf,
301 min(sizeof("never")-1, count))) {
302 clear_bit(enabled, &transparent_hugepage_flags);
303 clear_bit(req_madv, &transparent_hugepage_flags);
304 clear_bit(deferred, &transparent_hugepage_flags);
305 } else
306 return -EINVAL;
307
308 return count;
309 }
310
311 static ssize_t enabled_show(struct kobject *kobj,
312 struct kobj_attribute *attr, char *buf)
313 {
314 if (test_bit(TRANSPARENT_HUGEPAGE_FLAG, &transparent_hugepage_flags))
315 return sprintf(buf, "[always] madvise never\n");
316 else if (test_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG, &transparent_hugepage_flags))
317 return sprintf(buf, "always [madvise] never\n");
318 else
319 return sprintf(buf, "always madvise [never]\n");
320 }
321
322 static ssize_t enabled_store(struct kobject *kobj,
323 struct kobj_attribute *attr,
324 const char *buf, size_t count)
325 {
326 ssize_t ret;
327
328 ret = triple_flag_store(kobj, attr, buf, count,
329 TRANSPARENT_HUGEPAGE_FLAG,
330 TRANSPARENT_HUGEPAGE_FLAG,
331 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
332
333 if (ret > 0) {
334 int err;
335
336 mutex_lock(&khugepaged_mutex);
337 err = start_stop_khugepaged();
338 mutex_unlock(&khugepaged_mutex);
339
340 if (err)
341 ret = err;
342 }
343
344 return ret;
345 }
346 static struct kobj_attribute enabled_attr =
347 __ATTR(enabled, 0644, enabled_show, enabled_store);
348
349 static ssize_t single_flag_show(struct kobject *kobj,
350 struct kobj_attribute *attr, char *buf,
351 enum transparent_hugepage_flag flag)
352 {
353 return sprintf(buf, "%d\n",
354 !!test_bit(flag, &transparent_hugepage_flags));
355 }
356
357 static ssize_t single_flag_store(struct kobject *kobj,
358 struct kobj_attribute *attr,
359 const char *buf, size_t count,
360 enum transparent_hugepage_flag flag)
361 {
362 unsigned long value;
363 int ret;
364
365 ret = kstrtoul(buf, 10, &value);
366 if (ret < 0)
367 return ret;
368 if (value > 1)
369 return -EINVAL;
370
371 if (value)
372 set_bit(flag, &transparent_hugepage_flags);
373 else
374 clear_bit(flag, &transparent_hugepage_flags);
375
376 return count;
377 }
378
379 /*
380 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
381 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
382 * memory just to allocate one more hugepage.
383 */
384 static ssize_t defrag_show(struct kobject *kobj,
385 struct kobj_attribute *attr, char *buf)
386 {
387 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
388 return sprintf(buf, "[always] defer madvise never\n");
389 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
390 return sprintf(buf, "always [defer] madvise never\n");
391 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags))
392 return sprintf(buf, "always defer [madvise] never\n");
393 else
394 return sprintf(buf, "always defer madvise [never]\n");
395
396 }
397 static ssize_t defrag_store(struct kobject *kobj,
398 struct kobj_attribute *attr,
399 const char *buf, size_t count)
400 {
401 return triple_flag_store(kobj, attr, buf, count,
402 TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG,
403 TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG,
404 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
405 }
406 static struct kobj_attribute defrag_attr =
407 __ATTR(defrag, 0644, defrag_show, defrag_store);
408
409 static ssize_t use_zero_page_show(struct kobject *kobj,
410 struct kobj_attribute *attr, char *buf)
411 {
412 return single_flag_show(kobj, attr, buf,
413 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
414 }
415 static ssize_t use_zero_page_store(struct kobject *kobj,
416 struct kobj_attribute *attr, const char *buf, size_t count)
417 {
418 return single_flag_store(kobj, attr, buf, count,
419 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
420 }
421 static struct kobj_attribute use_zero_page_attr =
422 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
423 #ifdef CONFIG_DEBUG_VM
424 static ssize_t debug_cow_show(struct kobject *kobj,
425 struct kobj_attribute *attr, char *buf)
426 {
427 return single_flag_show(kobj, attr, buf,
428 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
429 }
430 static ssize_t debug_cow_store(struct kobject *kobj,
431 struct kobj_attribute *attr,
432 const char *buf, size_t count)
433 {
434 return single_flag_store(kobj, attr, buf, count,
435 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
436 }
437 static struct kobj_attribute debug_cow_attr =
438 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
439 #endif /* CONFIG_DEBUG_VM */
440
441 static struct attribute *hugepage_attr[] = {
442 &enabled_attr.attr,
443 &defrag_attr.attr,
444 &use_zero_page_attr.attr,
445 #ifdef CONFIG_SHMEM
446 &shmem_enabled_attr.attr,
447 #endif
448 #ifdef CONFIG_DEBUG_VM
449 &debug_cow_attr.attr,
450 #endif
451 NULL,
452 };
453
454 static struct attribute_group hugepage_attr_group = {
455 .attrs = hugepage_attr,
456 };
457
458 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
459 struct kobj_attribute *attr,
460 char *buf)
461 {
462 return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
463 }
464
465 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
466 struct kobj_attribute *attr,
467 const char *buf, size_t count)
468 {
469 unsigned long msecs;
470 int err;
471
472 err = kstrtoul(buf, 10, &msecs);
473 if (err || msecs > UINT_MAX)
474 return -EINVAL;
475
476 khugepaged_scan_sleep_millisecs = msecs;
477 khugepaged_sleep_expire = 0;
478 wake_up_interruptible(&khugepaged_wait);
479
480 return count;
481 }
482 static struct kobj_attribute scan_sleep_millisecs_attr =
483 __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
484 scan_sleep_millisecs_store);
485
486 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
487 struct kobj_attribute *attr,
488 char *buf)
489 {
490 return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
491 }
492
493 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
494 struct kobj_attribute *attr,
495 const char *buf, size_t count)
496 {
497 unsigned long msecs;
498 int err;
499
500 err = kstrtoul(buf, 10, &msecs);
501 if (err || msecs > UINT_MAX)
502 return -EINVAL;
503
504 khugepaged_alloc_sleep_millisecs = msecs;
505 khugepaged_sleep_expire = 0;
506 wake_up_interruptible(&khugepaged_wait);
507
508 return count;
509 }
510 static struct kobj_attribute alloc_sleep_millisecs_attr =
511 __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
512 alloc_sleep_millisecs_store);
513
514 static ssize_t pages_to_scan_show(struct kobject *kobj,
515 struct kobj_attribute *attr,
516 char *buf)
517 {
518 return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
519 }
520 static ssize_t pages_to_scan_store(struct kobject *kobj,
521 struct kobj_attribute *attr,
522 const char *buf, size_t count)
523 {
524 int err;
525 unsigned long pages;
526
527 err = kstrtoul(buf, 10, &pages);
528 if (err || !pages || pages > UINT_MAX)
529 return -EINVAL;
530
531 khugepaged_pages_to_scan = pages;
532
533 return count;
534 }
535 static struct kobj_attribute pages_to_scan_attr =
536 __ATTR(pages_to_scan, 0644, pages_to_scan_show,
537 pages_to_scan_store);
538
539 static ssize_t pages_collapsed_show(struct kobject *kobj,
540 struct kobj_attribute *attr,
541 char *buf)
542 {
543 return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
544 }
545 static struct kobj_attribute pages_collapsed_attr =
546 __ATTR_RO(pages_collapsed);
547
548 static ssize_t full_scans_show(struct kobject *kobj,
549 struct kobj_attribute *attr,
550 char *buf)
551 {
552 return sprintf(buf, "%u\n", khugepaged_full_scans);
553 }
554 static struct kobj_attribute full_scans_attr =
555 __ATTR_RO(full_scans);
556
557 static ssize_t khugepaged_defrag_show(struct kobject *kobj,
558 struct kobj_attribute *attr, char *buf)
559 {
560 return single_flag_show(kobj, attr, buf,
561 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
562 }
563 static ssize_t khugepaged_defrag_store(struct kobject *kobj,
564 struct kobj_attribute *attr,
565 const char *buf, size_t count)
566 {
567 return single_flag_store(kobj, attr, buf, count,
568 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
569 }
570 static struct kobj_attribute khugepaged_defrag_attr =
571 __ATTR(defrag, 0644, khugepaged_defrag_show,
572 khugepaged_defrag_store);
573
574 /*
575 * max_ptes_none controls if khugepaged should collapse hugepages over
576 * any unmapped ptes in turn potentially increasing the memory
577 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
578 * reduce the available free memory in the system as it
579 * runs. Increasing max_ptes_none will instead potentially reduce the
580 * free memory in the system during the khugepaged scan.
581 */
582 static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
583 struct kobj_attribute *attr,
584 char *buf)
585 {
586 return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
587 }
588 static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
589 struct kobj_attribute *attr,
590 const char *buf, size_t count)
591 {
592 int err;
593 unsigned long max_ptes_none;
594
595 err = kstrtoul(buf, 10, &max_ptes_none);
596 if (err || max_ptes_none > HPAGE_PMD_NR-1)
597 return -EINVAL;
598
599 khugepaged_max_ptes_none = max_ptes_none;
600
601 return count;
602 }
603 static struct kobj_attribute khugepaged_max_ptes_none_attr =
604 __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
605 khugepaged_max_ptes_none_store);
606
607 static ssize_t khugepaged_max_ptes_swap_show(struct kobject *kobj,
608 struct kobj_attribute *attr,
609 char *buf)
610 {
611 return sprintf(buf, "%u\n", khugepaged_max_ptes_swap);
612 }
613
614 static ssize_t khugepaged_max_ptes_swap_store(struct kobject *kobj,
615 struct kobj_attribute *attr,
616 const char *buf, size_t count)
617 {
618 int err;
619 unsigned long max_ptes_swap;
620
621 err = kstrtoul(buf, 10, &max_ptes_swap);
622 if (err || max_ptes_swap > HPAGE_PMD_NR-1)
623 return -EINVAL;
624
625 khugepaged_max_ptes_swap = max_ptes_swap;
626
627 return count;
628 }
629
630 static struct kobj_attribute khugepaged_max_ptes_swap_attr =
631 __ATTR(max_ptes_swap, 0644, khugepaged_max_ptes_swap_show,
632 khugepaged_max_ptes_swap_store);
633
634 static struct attribute *khugepaged_attr[] = {
635 &khugepaged_defrag_attr.attr,
636 &khugepaged_max_ptes_none_attr.attr,
637 &pages_to_scan_attr.attr,
638 &pages_collapsed_attr.attr,
639 &full_scans_attr.attr,
640 &scan_sleep_millisecs_attr.attr,
641 &alloc_sleep_millisecs_attr.attr,
642 &khugepaged_max_ptes_swap_attr.attr,
643 NULL,
644 };
645
646 static struct attribute_group khugepaged_attr_group = {
647 .attrs = khugepaged_attr,
648 .name = "khugepaged",
649 };
650
651 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
652 {
653 int err;
654
655 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
656 if (unlikely(!*hugepage_kobj)) {
657 pr_err("failed to create transparent hugepage kobject\n");
658 return -ENOMEM;
659 }
660
661 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
662 if (err) {
663 pr_err("failed to register transparent hugepage group\n");
664 goto delete_obj;
665 }
666
667 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
668 if (err) {
669 pr_err("failed to register transparent hugepage group\n");
670 goto remove_hp_group;
671 }
672
673 return 0;
674
675 remove_hp_group:
676 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
677 delete_obj:
678 kobject_put(*hugepage_kobj);
679 return err;
680 }
681
682 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
683 {
684 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
685 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
686 kobject_put(hugepage_kobj);
687 }
688 #else
689 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
690 {
691 return 0;
692 }
693
694 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
695 {
696 }
697 #endif /* CONFIG_SYSFS */
698
699 static int __init hugepage_init(void)
700 {
701 int err;
702 struct kobject *hugepage_kobj;
703
704 if (!has_transparent_hugepage()) {
705 transparent_hugepage_flags = 0;
706 return -EINVAL;
707 }
708
709 khugepaged_pages_to_scan = HPAGE_PMD_NR * 8;
710 khugepaged_max_ptes_none = HPAGE_PMD_NR - 1;
711 khugepaged_max_ptes_swap = HPAGE_PMD_NR / 8;
712 /*
713 * hugepages can't be allocated by the buddy allocator
714 */
715 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER >= MAX_ORDER);
716 /*
717 * we use page->mapping and page->index in second tail page
718 * as list_head: assuming THP order >= 2
719 */
720 MAYBE_BUILD_BUG_ON(HPAGE_PMD_ORDER < 2);
721
722 err = hugepage_init_sysfs(&hugepage_kobj);
723 if (err)
724 goto err_sysfs;
725
726 err = khugepaged_slab_init();
727 if (err)
728 goto err_slab;
729
730 err = register_shrinker(&huge_zero_page_shrinker);
731 if (err)
732 goto err_hzp_shrinker;
733 err = register_shrinker(&deferred_split_shrinker);
734 if (err)
735 goto err_split_shrinker;
736
737 /*
738 * By default disable transparent hugepages on smaller systems,
739 * where the extra memory used could hurt more than TLB overhead
740 * is likely to save. The admin can still enable it through /sys.
741 */
742 if (totalram_pages < (512 << (20 - PAGE_SHIFT))) {
743 transparent_hugepage_flags = 0;
744 return 0;
745 }
746
747 err = start_stop_khugepaged();
748 if (err)
749 goto err_khugepaged;
750
751 return 0;
752 err_khugepaged:
753 unregister_shrinker(&deferred_split_shrinker);
754 err_split_shrinker:
755 unregister_shrinker(&huge_zero_page_shrinker);
756 err_hzp_shrinker:
757 khugepaged_slab_exit();
758 err_slab:
759 hugepage_exit_sysfs(hugepage_kobj);
760 err_sysfs:
761 return err;
762 }
763 subsys_initcall(hugepage_init);
764
765 static int __init setup_transparent_hugepage(char *str)
766 {
767 int ret = 0;
768 if (!str)
769 goto out;
770 if (!strcmp(str, "always")) {
771 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
772 &transparent_hugepage_flags);
773 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
774 &transparent_hugepage_flags);
775 ret = 1;
776 } else if (!strcmp(str, "madvise")) {
777 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
778 &transparent_hugepage_flags);
779 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
780 &transparent_hugepage_flags);
781 ret = 1;
782 } else if (!strcmp(str, "never")) {
783 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
784 &transparent_hugepage_flags);
785 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
786 &transparent_hugepage_flags);
787 ret = 1;
788 }
789 out:
790 if (!ret)
791 pr_warn("transparent_hugepage= cannot parse, ignored\n");
792 return ret;
793 }
794 __setup("transparent_hugepage=", setup_transparent_hugepage);
795
796 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
797 {
798 if (likely(vma->vm_flags & VM_WRITE))
799 pmd = pmd_mkwrite(pmd);
800 return pmd;
801 }
802
803 static inline struct list_head *page_deferred_list(struct page *page)
804 {
805 /*
806 * ->lru in the tail pages is occupied by compound_head.
807 * Let's use ->mapping + ->index in the second tail page as list_head.
808 */
809 return (struct list_head *)&page[2].mapping;
810 }
811
812 void prep_transhuge_page(struct page *page)
813 {
814 /*
815 * we use page->mapping and page->indexlru in second tail page
816 * as list_head: assuming THP order >= 2
817 */
818
819 INIT_LIST_HEAD(page_deferred_list(page));
820 set_compound_page_dtor(page, TRANSHUGE_PAGE_DTOR);
821 }
822
823 static int __do_huge_pmd_anonymous_page(struct fault_env *fe, struct page *page,
824 gfp_t gfp)
825 {
826 struct vm_area_struct *vma = fe->vma;
827 struct mem_cgroup *memcg;
828 pgtable_t pgtable;
829 unsigned long haddr = fe->address & HPAGE_PMD_MASK;
830
831 VM_BUG_ON_PAGE(!PageCompound(page), page);
832
833 if (mem_cgroup_try_charge(page, vma->vm_mm, gfp, &memcg, true)) {
834 put_page(page);
835 count_vm_event(THP_FAULT_FALLBACK);
836 return VM_FAULT_FALLBACK;
837 }
838
839 pgtable = pte_alloc_one(vma->vm_mm, haddr);
840 if (unlikely(!pgtable)) {
841 mem_cgroup_cancel_charge(page, memcg, true);
842 put_page(page);
843 return VM_FAULT_OOM;
844 }
845
846 clear_huge_page(page, haddr, HPAGE_PMD_NR);
847 /*
848 * The memory barrier inside __SetPageUptodate makes sure that
849 * clear_huge_page writes become visible before the set_pmd_at()
850 * write.
851 */
852 __SetPageUptodate(page);
853
854 fe->ptl = pmd_lock(vma->vm_mm, fe->pmd);
855 if (unlikely(!pmd_none(*fe->pmd))) {
856 spin_unlock(fe->ptl);
857 mem_cgroup_cancel_charge(page, memcg, true);
858 put_page(page);
859 pte_free(vma->vm_mm, pgtable);
860 } else {
861 pmd_t entry;
862
863 /* Deliver the page fault to userland */
864 if (userfaultfd_missing(vma)) {
865 int ret;
866
867 spin_unlock(fe->ptl);
868 mem_cgroup_cancel_charge(page, memcg, true);
869 put_page(page);
870 pte_free(vma->vm_mm, pgtable);
871 ret = handle_userfault(fe, VM_UFFD_MISSING);
872 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
873 return ret;
874 }
875
876 entry = mk_huge_pmd(page, vma->vm_page_prot);
877 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
878 page_add_new_anon_rmap(page, vma, haddr, true);
879 mem_cgroup_commit_charge(page, memcg, false, true);
880 lru_cache_add_active_or_unevictable(page, vma);
881 pgtable_trans_huge_deposit(vma->vm_mm, fe->pmd, pgtable);
882 set_pmd_at(vma->vm_mm, haddr, fe->pmd, entry);
883 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
884 atomic_long_inc(&vma->vm_mm->nr_ptes);
885 spin_unlock(fe->ptl);
886 count_vm_event(THP_FAULT_ALLOC);
887 }
888
889 return 0;
890 }
891
892 /*
893 * If THP is set to always then directly reclaim/compact as necessary
894 * If set to defer then do no reclaim and defer to khugepaged
895 * If set to madvise and the VMA is flagged then directly reclaim/compact
896 */
897 static inline gfp_t alloc_hugepage_direct_gfpmask(struct vm_area_struct *vma)
898 {
899 gfp_t reclaim_flags = 0;
900
901 if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG, &transparent_hugepage_flags) &&
902 (vma->vm_flags & VM_HUGEPAGE))
903 reclaim_flags = __GFP_DIRECT_RECLAIM;
904 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_KSWAPD_FLAG, &transparent_hugepage_flags))
905 reclaim_flags = __GFP_KSWAPD_RECLAIM;
906 else if (test_bit(TRANSPARENT_HUGEPAGE_DEFRAG_DIRECT_FLAG, &transparent_hugepage_flags))
907 reclaim_flags = __GFP_DIRECT_RECLAIM;
908
909 return GFP_TRANSHUGE | reclaim_flags;
910 }
911
912 /* Defrag for khugepaged will enter direct reclaim/compaction if necessary */
913 static inline gfp_t alloc_hugepage_khugepaged_gfpmask(void)
914 {
915 return GFP_TRANSHUGE | (khugepaged_defrag() ? __GFP_DIRECT_RECLAIM : 0);
916 }
917
918 /* Caller must hold page table lock. */
919 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
920 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
921 struct page *zero_page)
922 {
923 pmd_t entry;
924 if (!pmd_none(*pmd))
925 return false;
926 entry = mk_pmd(zero_page, vma->vm_page_prot);
927 entry = pmd_mkhuge(entry);
928 if (pgtable)
929 pgtable_trans_huge_deposit(mm, pmd, pgtable);
930 set_pmd_at(mm, haddr, pmd, entry);
931 atomic_long_inc(&mm->nr_ptes);
932 return true;
933 }
934
935 int do_huge_pmd_anonymous_page(struct fault_env *fe)
936 {
937 struct vm_area_struct *vma = fe->vma;
938 gfp_t gfp;
939 struct page *page;
940 unsigned long haddr = fe->address & HPAGE_PMD_MASK;
941
942 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
943 return VM_FAULT_FALLBACK;
944 if (unlikely(anon_vma_prepare(vma)))
945 return VM_FAULT_OOM;
946 if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
947 return VM_FAULT_OOM;
948 if (!(fe->flags & FAULT_FLAG_WRITE) &&
949 !mm_forbids_zeropage(vma->vm_mm) &&
950 transparent_hugepage_use_zero_page()) {
951 pgtable_t pgtable;
952 struct page *zero_page;
953 bool set;
954 int ret;
955 pgtable = pte_alloc_one(vma->vm_mm, haddr);
956 if (unlikely(!pgtable))
957 return VM_FAULT_OOM;
958 zero_page = get_huge_zero_page();
959 if (unlikely(!zero_page)) {
960 pte_free(vma->vm_mm, pgtable);
961 count_vm_event(THP_FAULT_FALLBACK);
962 return VM_FAULT_FALLBACK;
963 }
964 fe->ptl = pmd_lock(vma->vm_mm, fe->pmd);
965 ret = 0;
966 set = false;
967 if (pmd_none(*fe->pmd)) {
968 if (userfaultfd_missing(vma)) {
969 spin_unlock(fe->ptl);
970 ret = handle_userfault(fe, VM_UFFD_MISSING);
971 VM_BUG_ON(ret & VM_FAULT_FALLBACK);
972 } else {
973 set_huge_zero_page(pgtable, vma->vm_mm, vma,
974 haddr, fe->pmd, zero_page);
975 spin_unlock(fe->ptl);
976 set = true;
977 }
978 } else
979 spin_unlock(fe->ptl);
980 if (!set) {
981 pte_free(vma->vm_mm, pgtable);
982 put_huge_zero_page();
983 }
984 return ret;
985 }
986 gfp = alloc_hugepage_direct_gfpmask(vma);
987 page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
988 if (unlikely(!page)) {
989 count_vm_event(THP_FAULT_FALLBACK);
990 return VM_FAULT_FALLBACK;
991 }
992 prep_transhuge_page(page);
993 return __do_huge_pmd_anonymous_page(fe, page, gfp);
994 }
995
996 static void insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
997 pmd_t *pmd, pfn_t pfn, pgprot_t prot, bool write)
998 {
999 struct mm_struct *mm = vma->vm_mm;
1000 pmd_t entry;
1001 spinlock_t *ptl;
1002
1003 ptl = pmd_lock(mm, pmd);
1004 entry = pmd_mkhuge(pfn_t_pmd(pfn, prot));
1005 if (pfn_t_devmap(pfn))
1006 entry = pmd_mkdevmap(entry);
1007 if (write) {
1008 entry = pmd_mkyoung(pmd_mkdirty(entry));
1009 entry = maybe_pmd_mkwrite(entry, vma);
1010 }
1011 set_pmd_at(mm, addr, pmd, entry);
1012 update_mmu_cache_pmd(vma, addr, pmd);
1013 spin_unlock(ptl);
1014 }
1015
1016 int vmf_insert_pfn_pmd(struct vm_area_struct *vma, unsigned long addr,
1017 pmd_t *pmd, pfn_t pfn, bool write)
1018 {
1019 pgprot_t pgprot = vma->vm_page_prot;
1020 /*
1021 * If we had pmd_special, we could avoid all these restrictions,
1022 * but we need to be consistent with PTEs and architectures that
1023 * can't support a 'special' bit.
1024 */
1025 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1026 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1027 (VM_PFNMAP|VM_MIXEDMAP));
1028 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1029 BUG_ON(!pfn_t_devmap(pfn));
1030
1031 if (addr < vma->vm_start || addr >= vma->vm_end)
1032 return VM_FAULT_SIGBUS;
1033 if (track_pfn_insert(vma, &pgprot, pfn))
1034 return VM_FAULT_SIGBUS;
1035 insert_pfn_pmd(vma, addr, pmd, pfn, pgprot, write);
1036 return VM_FAULT_NOPAGE;
1037 }
1038 EXPORT_SYMBOL_GPL(vmf_insert_pfn_pmd);
1039
1040 static void touch_pmd(struct vm_area_struct *vma, unsigned long addr,
1041 pmd_t *pmd)
1042 {
1043 pmd_t _pmd;
1044
1045 /*
1046 * We should set the dirty bit only for FOLL_WRITE but for now
1047 * the dirty bit in the pmd is meaningless. And if the dirty
1048 * bit will become meaningful and we'll only set it with
1049 * FOLL_WRITE, an atomic set_bit will be required on the pmd to
1050 * set the young bit, instead of the current set_pmd_at.
1051 */
1052 _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
1053 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
1054 pmd, _pmd, 1))
1055 update_mmu_cache_pmd(vma, addr, pmd);
1056 }
1057
1058 struct page *follow_devmap_pmd(struct vm_area_struct *vma, unsigned long addr,
1059 pmd_t *pmd, int flags)
1060 {
1061 unsigned long pfn = pmd_pfn(*pmd);
1062 struct mm_struct *mm = vma->vm_mm;
1063 struct dev_pagemap *pgmap;
1064 struct page *page;
1065
1066 assert_spin_locked(pmd_lockptr(mm, pmd));
1067
1068 if (flags & FOLL_WRITE && !pmd_write(*pmd))
1069 return NULL;
1070
1071 if (pmd_present(*pmd) && pmd_devmap(*pmd))
1072 /* pass */;
1073 else
1074 return NULL;
1075
1076 if (flags & FOLL_TOUCH)
1077 touch_pmd(vma, addr, pmd);
1078
1079 /*
1080 * device mapped pages can only be returned if the
1081 * caller will manage the page reference count.
1082 */
1083 if (!(flags & FOLL_GET))
1084 return ERR_PTR(-EEXIST);
1085
1086 pfn += (addr & ~PMD_MASK) >> PAGE_SHIFT;
1087 pgmap = get_dev_pagemap(pfn, NULL);
1088 if (!pgmap)
1089 return ERR_PTR(-EFAULT);
1090 page = pfn_to_page(pfn);
1091 get_page(page);
1092 put_dev_pagemap(pgmap);
1093
1094 return page;
1095 }
1096
1097 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1098 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
1099 struct vm_area_struct *vma)
1100 {
1101 spinlock_t *dst_ptl, *src_ptl;
1102 struct page *src_page;
1103 pmd_t pmd;
1104 pgtable_t pgtable = NULL;
1105 int ret = -ENOMEM;
1106
1107 /* Skip if can be re-fill on fault */
1108 if (!vma_is_anonymous(vma))
1109 return 0;
1110
1111 pgtable = pte_alloc_one(dst_mm, addr);
1112 if (unlikely(!pgtable))
1113 goto out;
1114
1115 dst_ptl = pmd_lock(dst_mm, dst_pmd);
1116 src_ptl = pmd_lockptr(src_mm, src_pmd);
1117 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
1118
1119 ret = -EAGAIN;
1120 pmd = *src_pmd;
1121 if (unlikely(!pmd_trans_huge(pmd))) {
1122 pte_free(dst_mm, pgtable);
1123 goto out_unlock;
1124 }
1125 /*
1126 * When page table lock is held, the huge zero pmd should not be
1127 * under splitting since we don't split the page itself, only pmd to
1128 * a page table.
1129 */
1130 if (is_huge_zero_pmd(pmd)) {
1131 struct page *zero_page;
1132 /*
1133 * get_huge_zero_page() will never allocate a new page here,
1134 * since we already have a zero page to copy. It just takes a
1135 * reference.
1136 */
1137 zero_page = get_huge_zero_page();
1138 set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
1139 zero_page);
1140 ret = 0;
1141 goto out_unlock;
1142 }
1143
1144 src_page = pmd_page(pmd);
1145 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
1146 get_page(src_page);
1147 page_dup_rmap(src_page, true);
1148 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1149 atomic_long_inc(&dst_mm->nr_ptes);
1150 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
1151
1152 pmdp_set_wrprotect(src_mm, addr, src_pmd);
1153 pmd = pmd_mkold(pmd_wrprotect(pmd));
1154 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
1155
1156 ret = 0;
1157 out_unlock:
1158 spin_unlock(src_ptl);
1159 spin_unlock(dst_ptl);
1160 out:
1161 return ret;
1162 }
1163
1164 void huge_pmd_set_accessed(struct fault_env *fe, pmd_t orig_pmd)
1165 {
1166 pmd_t entry;
1167 unsigned long haddr;
1168
1169 fe->ptl = pmd_lock(fe->vma->vm_mm, fe->pmd);
1170 if (unlikely(!pmd_same(*fe->pmd, orig_pmd)))
1171 goto unlock;
1172
1173 entry = pmd_mkyoung(orig_pmd);
1174 haddr = fe->address & HPAGE_PMD_MASK;
1175 if (pmdp_set_access_flags(fe->vma, haddr, fe->pmd, entry,
1176 fe->flags & FAULT_FLAG_WRITE))
1177 update_mmu_cache_pmd(fe->vma, fe->address, fe->pmd);
1178
1179 unlock:
1180 spin_unlock(fe->ptl);
1181 }
1182
1183 static int do_huge_pmd_wp_page_fallback(struct fault_env *fe, pmd_t orig_pmd,
1184 struct page *page)
1185 {
1186 struct vm_area_struct *vma = fe->vma;
1187 unsigned long haddr = fe->address & HPAGE_PMD_MASK;
1188 struct mem_cgroup *memcg;
1189 pgtable_t pgtable;
1190 pmd_t _pmd;
1191 int ret = 0, i;
1192 struct page **pages;
1193 unsigned long mmun_start; /* For mmu_notifiers */
1194 unsigned long mmun_end; /* For mmu_notifiers */
1195
1196 pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
1197 GFP_KERNEL);
1198 if (unlikely(!pages)) {
1199 ret |= VM_FAULT_OOM;
1200 goto out;
1201 }
1202
1203 for (i = 0; i < HPAGE_PMD_NR; i++) {
1204 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
1205 __GFP_OTHER_NODE, vma,
1206 fe->address, page_to_nid(page));
1207 if (unlikely(!pages[i] ||
1208 mem_cgroup_try_charge(pages[i], vma->vm_mm,
1209 GFP_KERNEL, &memcg, false))) {
1210 if (pages[i])
1211 put_page(pages[i]);
1212 while (--i >= 0) {
1213 memcg = (void *)page_private(pages[i]);
1214 set_page_private(pages[i], 0);
1215 mem_cgroup_cancel_charge(pages[i], memcg,
1216 false);
1217 put_page(pages[i]);
1218 }
1219 kfree(pages);
1220 ret |= VM_FAULT_OOM;
1221 goto out;
1222 }
1223 set_page_private(pages[i], (unsigned long)memcg);
1224 }
1225
1226 for (i = 0; i < HPAGE_PMD_NR; i++) {
1227 copy_user_highpage(pages[i], page + i,
1228 haddr + PAGE_SIZE * i, vma);
1229 __SetPageUptodate(pages[i]);
1230 cond_resched();
1231 }
1232
1233 mmun_start = haddr;
1234 mmun_end = haddr + HPAGE_PMD_SIZE;
1235 mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
1236
1237 fe->ptl = pmd_lock(vma->vm_mm, fe->pmd);
1238 if (unlikely(!pmd_same(*fe->pmd, orig_pmd)))
1239 goto out_free_pages;
1240 VM_BUG_ON_PAGE(!PageHead(page), page);
1241
1242 pmdp_huge_clear_flush_notify(vma, haddr, fe->pmd);
1243 /* leave pmd empty until pte is filled */
1244
1245 pgtable = pgtable_trans_huge_withdraw(vma->vm_mm, fe->pmd);
1246 pmd_populate(vma->vm_mm, &_pmd, pgtable);
1247
1248 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1249 pte_t entry;
1250 entry = mk_pte(pages[i], vma->vm_page_prot);
1251 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1252 memcg = (void *)page_private(pages[i]);
1253 set_page_private(pages[i], 0);
1254 page_add_new_anon_rmap(pages[i], fe->vma, haddr, false);
1255 mem_cgroup_commit_charge(pages[i], memcg, false, false);
1256 lru_cache_add_active_or_unevictable(pages[i], vma);
1257 fe->pte = pte_offset_map(&_pmd, haddr);
1258 VM_BUG_ON(!pte_none(*fe->pte));
1259 set_pte_at(vma->vm_mm, haddr, fe->pte, entry);
1260 pte_unmap(fe->pte);
1261 }
1262 kfree(pages);
1263
1264 smp_wmb(); /* make pte visible before pmd */
1265 pmd_populate(vma->vm_mm, fe->pmd, pgtable);
1266 page_remove_rmap(page, true);
1267 spin_unlock(fe->ptl);
1268
1269 mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
1270
1271 ret |= VM_FAULT_WRITE;
1272 put_page(page);
1273
1274 out:
1275 return ret;
1276
1277 out_free_pages:
1278 spin_unlock(fe->ptl);
1279 mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
1280 for (i = 0; i < HPAGE_PMD_NR; i++) {
1281 memcg = (void *)page_private(pages[i]);
1282 set_page_private(pages[i], 0);
1283 mem_cgroup_cancel_charge(pages[i], memcg, false);
1284 put_page(pages[i]);
1285 }
1286 kfree(pages);
1287 goto out;
1288 }
1289
1290 int do_huge_pmd_wp_page(struct fault_env *fe, pmd_t orig_pmd)
1291 {
1292 struct vm_area_struct *vma = fe->vma;
1293 struct page *page = NULL, *new_page;
1294 struct mem_cgroup *memcg;
1295 unsigned long haddr = fe->address & HPAGE_PMD_MASK;
1296 unsigned long mmun_start; /* For mmu_notifiers */
1297 unsigned long mmun_end; /* For mmu_notifiers */
1298 gfp_t huge_gfp; /* for allocation and charge */
1299 int ret = 0;
1300
1301 fe->ptl = pmd_lockptr(vma->vm_mm, fe->pmd);
1302 VM_BUG_ON_VMA(!vma->anon_vma, vma);
1303 if (is_huge_zero_pmd(orig_pmd))
1304 goto alloc;
1305 spin_lock(fe->ptl);
1306 if (unlikely(!pmd_same(*fe->pmd, orig_pmd)))
1307 goto out_unlock;
1308
1309 page = pmd_page(orig_pmd);
1310 VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1311 /*
1312 * We can only reuse the page if nobody else maps the huge page or it's
1313 * part.
1314 */
1315 if (page_trans_huge_mapcount(page, NULL) == 1) {
1316 pmd_t entry;
1317 entry = pmd_mkyoung(orig_pmd);
1318 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1319 if (pmdp_set_access_flags(vma, haddr, fe->pmd, entry, 1))
1320 update_mmu_cache_pmd(vma, fe->address, fe->pmd);
1321 ret |= VM_FAULT_WRITE;
1322 goto out_unlock;
1323 }
1324 get_page(page);
1325 spin_unlock(fe->ptl);
1326 alloc:
1327 if (transparent_hugepage_enabled(vma) &&
1328 !transparent_hugepage_debug_cow()) {
1329 huge_gfp = alloc_hugepage_direct_gfpmask(vma);
1330 new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
1331 } else
1332 new_page = NULL;
1333
1334 if (likely(new_page)) {
1335 prep_transhuge_page(new_page);
1336 } else {
1337 if (!page) {
1338 split_huge_pmd(vma, fe->pmd, fe->address);
1339 ret |= VM_FAULT_FALLBACK;
1340 } else {
1341 ret = do_huge_pmd_wp_page_fallback(fe, orig_pmd, page);
1342 if (ret & VM_FAULT_OOM) {
1343 split_huge_pmd(vma, fe->pmd, fe->address);
1344 ret |= VM_FAULT_FALLBACK;
1345 }
1346 put_page(page);
1347 }
1348 count_vm_event(THP_FAULT_FALLBACK);
1349 goto out;
1350 }
1351
1352 if (unlikely(mem_cgroup_try_charge(new_page, vma->vm_mm,
1353 huge_gfp, &memcg, true))) {
1354 put_page(new_page);
1355 split_huge_pmd(vma, fe->pmd, fe->address);
1356 if (page)
1357 put_page(page);
1358 ret |= VM_FAULT_FALLBACK;
1359 count_vm_event(THP_FAULT_FALLBACK);
1360 goto out;
1361 }
1362
1363 count_vm_event(THP_FAULT_ALLOC);
1364
1365 if (!page)
1366 clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
1367 else
1368 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
1369 __SetPageUptodate(new_page);
1370
1371 mmun_start = haddr;
1372 mmun_end = haddr + HPAGE_PMD_SIZE;
1373 mmu_notifier_invalidate_range_start(vma->vm_mm, mmun_start, mmun_end);
1374
1375 spin_lock(fe->ptl);
1376 if (page)
1377 put_page(page);
1378 if (unlikely(!pmd_same(*fe->pmd, orig_pmd))) {
1379 spin_unlock(fe->ptl);
1380 mem_cgroup_cancel_charge(new_page, memcg, true);
1381 put_page(new_page);
1382 goto out_mn;
1383 } else {
1384 pmd_t entry;
1385 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1386 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1387 pmdp_huge_clear_flush_notify(vma, haddr, fe->pmd);
1388 page_add_new_anon_rmap(new_page, vma, haddr, true);
1389 mem_cgroup_commit_charge(new_page, memcg, false, true);
1390 lru_cache_add_active_or_unevictable(new_page, vma);
1391 set_pmd_at(vma->vm_mm, haddr, fe->pmd, entry);
1392 update_mmu_cache_pmd(vma, fe->address, fe->pmd);
1393 if (!page) {
1394 add_mm_counter(vma->vm_mm, MM_ANONPAGES, HPAGE_PMD_NR);
1395 put_huge_zero_page();
1396 } else {
1397 VM_BUG_ON_PAGE(!PageHead(page), page);
1398 page_remove_rmap(page, true);
1399 put_page(page);
1400 }
1401 ret |= VM_FAULT_WRITE;
1402 }
1403 spin_unlock(fe->ptl);
1404 out_mn:
1405 mmu_notifier_invalidate_range_end(vma->vm_mm, mmun_start, mmun_end);
1406 out:
1407 return ret;
1408 out_unlock:
1409 spin_unlock(fe->ptl);
1410 return ret;
1411 }
1412
1413 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1414 unsigned long addr,
1415 pmd_t *pmd,
1416 unsigned int flags)
1417 {
1418 struct mm_struct *mm = vma->vm_mm;
1419 struct page *page = NULL;
1420
1421 assert_spin_locked(pmd_lockptr(mm, pmd));
1422
1423 if (flags & FOLL_WRITE && !pmd_write(*pmd))
1424 goto out;
1425
1426 /* Avoid dumping huge zero page */
1427 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1428 return ERR_PTR(-EFAULT);
1429
1430 /* Full NUMA hinting faults to serialise migration in fault paths */
1431 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1432 goto out;
1433
1434 page = pmd_page(*pmd);
1435 VM_BUG_ON_PAGE(!PageHead(page), page);
1436 if (flags & FOLL_TOUCH)
1437 touch_pmd(vma, addr, pmd);
1438 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
1439 /*
1440 * We don't mlock() pte-mapped THPs. This way we can avoid
1441 * leaking mlocked pages into non-VM_LOCKED VMAs.
1442 *
1443 * For anon THP:
1444 *
1445 * In most cases the pmd is the only mapping of the page as we
1446 * break COW for the mlock() -- see gup_flags |= FOLL_WRITE for
1447 * writable private mappings in populate_vma_page_range().
1448 *
1449 * The only scenario when we have the page shared here is if we
1450 * mlocking read-only mapping shared over fork(). We skip
1451 * mlocking such pages.
1452 *
1453 * For file THP:
1454 *
1455 * We can expect PageDoubleMap() to be stable under page lock:
1456 * for file pages we set it in page_add_file_rmap(), which
1457 * requires page to be locked.
1458 */
1459
1460 if (PageAnon(page) && compound_mapcount(page) != 1)
1461 goto skip_mlock;
1462 if (PageDoubleMap(page) || !page->mapping)
1463 goto skip_mlock;
1464 if (!trylock_page(page))
1465 goto skip_mlock;
1466 lru_add_drain();
1467 if (page->mapping && !PageDoubleMap(page))
1468 mlock_vma_page(page);
1469 unlock_page(page);
1470 }
1471 skip_mlock:
1472 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1473 VM_BUG_ON_PAGE(!PageCompound(page), page);
1474 if (flags & FOLL_GET)
1475 get_page(page);
1476
1477 out:
1478 return page;
1479 }
1480
1481 /* NUMA hinting page fault entry point for trans huge pmds */
1482 int do_huge_pmd_numa_page(struct fault_env *fe, pmd_t pmd)
1483 {
1484 struct vm_area_struct *vma = fe->vma;
1485 struct anon_vma *anon_vma = NULL;
1486 struct page *page;
1487 unsigned long haddr = fe->address & HPAGE_PMD_MASK;
1488 int page_nid = -1, this_nid = numa_node_id();
1489 int target_nid, last_cpupid = -1;
1490 bool page_locked;
1491 bool migrated = false;
1492 bool was_writable;
1493 int flags = 0;
1494
1495 /* A PROT_NONE fault should not end up here */
1496 BUG_ON(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)));
1497
1498 fe->ptl = pmd_lock(vma->vm_mm, fe->pmd);
1499 if (unlikely(!pmd_same(pmd, *fe->pmd)))
1500 goto out_unlock;
1501
1502 /*
1503 * If there are potential migrations, wait for completion and retry
1504 * without disrupting NUMA hinting information. Do not relock and
1505 * check_same as the page may no longer be mapped.
1506 */
1507 if (unlikely(pmd_trans_migrating(*fe->pmd))) {
1508 page = pmd_page(*fe->pmd);
1509 spin_unlock(fe->ptl);
1510 wait_on_page_locked(page);
1511 goto out;
1512 }
1513
1514 page = pmd_page(pmd);
1515 BUG_ON(is_huge_zero_page(page));
1516 page_nid = page_to_nid(page);
1517 last_cpupid = page_cpupid_last(page);
1518 count_vm_numa_event(NUMA_HINT_FAULTS);
1519 if (page_nid == this_nid) {
1520 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1521 flags |= TNF_FAULT_LOCAL;
1522 }
1523
1524 /* See similar comment in do_numa_page for explanation */
1525 if (!(vma->vm_flags & VM_WRITE))
1526 flags |= TNF_NO_GROUP;
1527
1528 /*
1529 * Acquire the page lock to serialise THP migrations but avoid dropping
1530 * page_table_lock if at all possible
1531 */
1532 page_locked = trylock_page(page);
1533 target_nid = mpol_misplaced(page, vma, haddr);
1534 if (target_nid == -1) {
1535 /* If the page was locked, there are no parallel migrations */
1536 if (page_locked)
1537 goto clear_pmdnuma;
1538 }
1539
1540 /* Migration could have started since the pmd_trans_migrating check */
1541 if (!page_locked) {
1542 spin_unlock(fe->ptl);
1543 wait_on_page_locked(page);
1544 page_nid = -1;
1545 goto out;
1546 }
1547
1548 /*
1549 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1550 * to serialises splits
1551 */
1552 get_page(page);
1553 spin_unlock(fe->ptl);
1554 anon_vma = page_lock_anon_vma_read(page);
1555
1556 /* Confirm the PMD did not change while page_table_lock was released */
1557 spin_lock(fe->ptl);
1558 if (unlikely(!pmd_same(pmd, *fe->pmd))) {
1559 unlock_page(page);
1560 put_page(page);
1561 page_nid = -1;
1562 goto out_unlock;
1563 }
1564
1565 /* Bail if we fail to protect against THP splits for any reason */
1566 if (unlikely(!anon_vma)) {
1567 put_page(page);
1568 page_nid = -1;
1569 goto clear_pmdnuma;
1570 }
1571
1572 /*
1573 * Migrate the THP to the requested node, returns with page unlocked
1574 * and access rights restored.
1575 */
1576 spin_unlock(fe->ptl);
1577 migrated = migrate_misplaced_transhuge_page(vma->vm_mm, vma,
1578 fe->pmd, pmd, fe->address, page, target_nid);
1579 if (migrated) {
1580 flags |= TNF_MIGRATED;
1581 page_nid = target_nid;
1582 } else
1583 flags |= TNF_MIGRATE_FAIL;
1584
1585 goto out;
1586 clear_pmdnuma:
1587 BUG_ON(!PageLocked(page));
1588 was_writable = pmd_write(pmd);
1589 pmd = pmd_modify(pmd, vma->vm_page_prot);
1590 pmd = pmd_mkyoung(pmd);
1591 if (was_writable)
1592 pmd = pmd_mkwrite(pmd);
1593 set_pmd_at(vma->vm_mm, haddr, fe->pmd, pmd);
1594 update_mmu_cache_pmd(vma, fe->address, fe->pmd);
1595 unlock_page(page);
1596 out_unlock:
1597 spin_unlock(fe->ptl);
1598
1599 out:
1600 if (anon_vma)
1601 page_unlock_anon_vma_read(anon_vma);
1602
1603 if (page_nid != -1)
1604 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, fe->flags);
1605
1606 return 0;
1607 }
1608
1609 int madvise_free_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1610 pmd_t *pmd, unsigned long addr, unsigned long next)
1611
1612 {
1613 spinlock_t *ptl;
1614 pmd_t orig_pmd;
1615 struct page *page;
1616 struct mm_struct *mm = tlb->mm;
1617 int ret = 0;
1618
1619 ptl = pmd_trans_huge_lock(pmd, vma);
1620 if (!ptl)
1621 goto out_unlocked;
1622
1623 orig_pmd = *pmd;
1624 if (is_huge_zero_pmd(orig_pmd)) {
1625 ret = 1;
1626 goto out;
1627 }
1628
1629 page = pmd_page(orig_pmd);
1630 /*
1631 * If other processes are mapping this page, we couldn't discard
1632 * the page unless they all do MADV_FREE so let's skip the page.
1633 */
1634 if (page_mapcount(page) != 1)
1635 goto out;
1636
1637 if (!trylock_page(page))
1638 goto out;
1639
1640 /*
1641 * If user want to discard part-pages of THP, split it so MADV_FREE
1642 * will deactivate only them.
1643 */
1644 if (next - addr != HPAGE_PMD_SIZE) {
1645 get_page(page);
1646 spin_unlock(ptl);
1647 split_huge_page(page);
1648 put_page(page);
1649 unlock_page(page);
1650 goto out_unlocked;
1651 }
1652
1653 if (PageDirty(page))
1654 ClearPageDirty(page);
1655 unlock_page(page);
1656
1657 if (PageActive(page))
1658 deactivate_page(page);
1659
1660 if (pmd_young(orig_pmd) || pmd_dirty(orig_pmd)) {
1661 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1662 tlb->fullmm);
1663 orig_pmd = pmd_mkold(orig_pmd);
1664 orig_pmd = pmd_mkclean(orig_pmd);
1665
1666 set_pmd_at(mm, addr, pmd, orig_pmd);
1667 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1668 }
1669 ret = 1;
1670 out:
1671 spin_unlock(ptl);
1672 out_unlocked:
1673 return ret;
1674 }
1675
1676 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1677 pmd_t *pmd, unsigned long addr)
1678 {
1679 pmd_t orig_pmd;
1680 spinlock_t *ptl;
1681
1682 ptl = __pmd_trans_huge_lock(pmd, vma);
1683 if (!ptl)
1684 return 0;
1685 /*
1686 * For architectures like ppc64 we look at deposited pgtable
1687 * when calling pmdp_huge_get_and_clear. So do the
1688 * pgtable_trans_huge_withdraw after finishing pmdp related
1689 * operations.
1690 */
1691 orig_pmd = pmdp_huge_get_and_clear_full(tlb->mm, addr, pmd,
1692 tlb->fullmm);
1693 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1694 if (vma_is_dax(vma)) {
1695 spin_unlock(ptl);
1696 if (is_huge_zero_pmd(orig_pmd))
1697 tlb_remove_page(tlb, pmd_page(orig_pmd));
1698 } else if (is_huge_zero_pmd(orig_pmd)) {
1699 pte_free(tlb->mm, pgtable_trans_huge_withdraw(tlb->mm, pmd));
1700 atomic_long_dec(&tlb->mm->nr_ptes);
1701 spin_unlock(ptl);
1702 tlb_remove_page(tlb, pmd_page(orig_pmd));
1703 } else {
1704 struct page *page = pmd_page(orig_pmd);
1705 page_remove_rmap(page, true);
1706 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1707 VM_BUG_ON_PAGE(!PageHead(page), page);
1708 if (PageAnon(page)) {
1709 pgtable_t pgtable;
1710 pgtable = pgtable_trans_huge_withdraw(tlb->mm, pmd);
1711 pte_free(tlb->mm, pgtable);
1712 atomic_long_dec(&tlb->mm->nr_ptes);
1713 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1714 } else {
1715 add_mm_counter(tlb->mm, MM_FILEPAGES, -HPAGE_PMD_NR);
1716 }
1717 spin_unlock(ptl);
1718 tlb_remove_page_size(tlb, page, HPAGE_PMD_SIZE);
1719 }
1720 return 1;
1721 }
1722
1723 bool move_huge_pmd(struct vm_area_struct *vma, unsigned long old_addr,
1724 unsigned long new_addr, unsigned long old_end,
1725 pmd_t *old_pmd, pmd_t *new_pmd)
1726 {
1727 spinlock_t *old_ptl, *new_ptl;
1728 pmd_t pmd;
1729 struct mm_struct *mm = vma->vm_mm;
1730
1731 if ((old_addr & ~HPAGE_PMD_MASK) ||
1732 (new_addr & ~HPAGE_PMD_MASK) ||
1733 old_end - old_addr < HPAGE_PMD_SIZE)
1734 return false;
1735
1736 /*
1737 * The destination pmd shouldn't be established, free_pgtables()
1738 * should have release it.
1739 */
1740 if (WARN_ON(!pmd_none(*new_pmd))) {
1741 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1742 return false;
1743 }
1744
1745 /*
1746 * We don't have to worry about the ordering of src and dst
1747 * ptlocks because exclusive mmap_sem prevents deadlock.
1748 */
1749 old_ptl = __pmd_trans_huge_lock(old_pmd, vma);
1750 if (old_ptl) {
1751 new_ptl = pmd_lockptr(mm, new_pmd);
1752 if (new_ptl != old_ptl)
1753 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1754 pmd = pmdp_huge_get_and_clear(mm, old_addr, old_pmd);
1755 VM_BUG_ON(!pmd_none(*new_pmd));
1756
1757 if (pmd_move_must_withdraw(new_ptl, old_ptl) &&
1758 vma_is_anonymous(vma)) {
1759 pgtable_t pgtable;
1760 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1761 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1762 }
1763 set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
1764 if (new_ptl != old_ptl)
1765 spin_unlock(new_ptl);
1766 spin_unlock(old_ptl);
1767 return true;
1768 }
1769 return false;
1770 }
1771
1772 /*
1773 * Returns
1774 * - 0 if PMD could not be locked
1775 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1776 * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1777 */
1778 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1779 unsigned long addr, pgprot_t newprot, int prot_numa)
1780 {
1781 struct mm_struct *mm = vma->vm_mm;
1782 spinlock_t *ptl;
1783 int ret = 0;
1784
1785 ptl = __pmd_trans_huge_lock(pmd, vma);
1786 if (ptl) {
1787 pmd_t entry;
1788 bool preserve_write = prot_numa && pmd_write(*pmd);
1789 ret = 1;
1790
1791 /*
1792 * Avoid trapping faults against the zero page. The read-only
1793 * data is likely to be read-cached on the local CPU and
1794 * local/remote hits to the zero page are not interesting.
1795 */
1796 if (prot_numa && is_huge_zero_pmd(*pmd)) {
1797 spin_unlock(ptl);
1798 return ret;
1799 }
1800
1801 if (!prot_numa || !pmd_protnone(*pmd)) {
1802 entry = pmdp_huge_get_and_clear_notify(mm, addr, pmd);
1803 entry = pmd_modify(entry, newprot);
1804 if (preserve_write)
1805 entry = pmd_mkwrite(entry);
1806 ret = HPAGE_PMD_NR;
1807 set_pmd_at(mm, addr, pmd, entry);
1808 BUG_ON(vma_is_anonymous(vma) && !preserve_write &&
1809 pmd_write(entry));
1810 }
1811 spin_unlock(ptl);
1812 }
1813
1814 return ret;
1815 }
1816
1817 /*
1818 * Returns true if a given pmd maps a thp, false otherwise.
1819 *
1820 * Note that if it returns true, this routine returns without unlocking page
1821 * table lock. So callers must unlock it.
1822 */
1823 spinlock_t *__pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma)
1824 {
1825 spinlock_t *ptl;
1826 ptl = pmd_lock(vma->vm_mm, pmd);
1827 if (likely(pmd_trans_huge(*pmd) || pmd_devmap(*pmd)))
1828 return ptl;
1829 spin_unlock(ptl);
1830 return NULL;
1831 }
1832
1833 #define VM_NO_KHUGEPAGED (VM_SPECIAL | VM_HUGETLB | VM_SHARED | VM_MAYSHARE)
1834
1835 int hugepage_madvise(struct vm_area_struct *vma,
1836 unsigned long *vm_flags, int advice)
1837 {
1838 switch (advice) {
1839 case MADV_HUGEPAGE:
1840 #ifdef CONFIG_S390
1841 /*
1842 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
1843 * can't handle this properly after s390_enable_sie, so we simply
1844 * ignore the madvise to prevent qemu from causing a SIGSEGV.
1845 */
1846 if (mm_has_pgste(vma->vm_mm))
1847 return 0;
1848 #endif
1849 *vm_flags &= ~VM_NOHUGEPAGE;
1850 *vm_flags |= VM_HUGEPAGE;
1851 /*
1852 * If the vma become good for khugepaged to scan,
1853 * register it here without waiting a page fault that
1854 * may not happen any time soon.
1855 */
1856 if (!(*vm_flags & VM_NO_KHUGEPAGED) &&
1857 khugepaged_enter_vma_merge(vma, *vm_flags))
1858 return -ENOMEM;
1859 break;
1860 case MADV_NOHUGEPAGE:
1861 *vm_flags &= ~VM_HUGEPAGE;
1862 *vm_flags |= VM_NOHUGEPAGE;
1863 /*
1864 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1865 * this vma even if we leave the mm registered in khugepaged if
1866 * it got registered before VM_NOHUGEPAGE was set.
1867 */
1868 break;
1869 }
1870
1871 return 0;
1872 }
1873
1874 static int __init khugepaged_slab_init(void)
1875 {
1876 mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
1877 sizeof(struct mm_slot),
1878 __alignof__(struct mm_slot), 0, NULL);
1879 if (!mm_slot_cache)
1880 return -ENOMEM;
1881
1882 return 0;
1883 }
1884
1885 static void __init khugepaged_slab_exit(void)
1886 {
1887 kmem_cache_destroy(mm_slot_cache);
1888 }
1889
1890 static inline struct mm_slot *alloc_mm_slot(void)
1891 {
1892 if (!mm_slot_cache) /* initialization failed */
1893 return NULL;
1894 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
1895 }
1896
1897 static inline void free_mm_slot(struct mm_slot *mm_slot)
1898 {
1899 kmem_cache_free(mm_slot_cache, mm_slot);
1900 }
1901
1902 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
1903 {
1904 struct mm_slot *mm_slot;
1905
1906 hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
1907 if (mm == mm_slot->mm)
1908 return mm_slot;
1909
1910 return NULL;
1911 }
1912
1913 static void insert_to_mm_slots_hash(struct mm_struct *mm,
1914 struct mm_slot *mm_slot)
1915 {
1916 mm_slot->mm = mm;
1917 hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
1918 }
1919
1920 static inline int khugepaged_test_exit(struct mm_struct *mm)
1921 {
1922 return atomic_read(&mm->mm_users) == 0;
1923 }
1924
1925 int __khugepaged_enter(struct mm_struct *mm)
1926 {
1927 struct mm_slot *mm_slot;
1928 int wakeup;
1929
1930 mm_slot = alloc_mm_slot();
1931 if (!mm_slot)
1932 return -ENOMEM;
1933
1934 /* __khugepaged_exit() must not run from under us */
1935 VM_BUG_ON_MM(khugepaged_test_exit(mm), mm);
1936 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
1937 free_mm_slot(mm_slot);
1938 return 0;
1939 }
1940
1941 spin_lock(&khugepaged_mm_lock);
1942 insert_to_mm_slots_hash(mm, mm_slot);
1943 /*
1944 * Insert just behind the scanning cursor, to let the area settle
1945 * down a little.
1946 */
1947 wakeup = list_empty(&khugepaged_scan.mm_head);
1948 list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
1949 spin_unlock(&khugepaged_mm_lock);
1950
1951 atomic_inc(&mm->mm_count);
1952 if (wakeup)
1953 wake_up_interruptible(&khugepaged_wait);
1954
1955 return 0;
1956 }
1957
1958 int khugepaged_enter_vma_merge(struct vm_area_struct *vma,
1959 unsigned long vm_flags)
1960 {
1961 unsigned long hstart, hend;
1962 if (!vma->anon_vma)
1963 /*
1964 * Not yet faulted in so we will register later in the
1965 * page fault if needed.
1966 */
1967 return 0;
1968 if (vma->vm_ops || (vm_flags & VM_NO_KHUGEPAGED))
1969 /* khugepaged not yet working on file or special mappings */
1970 return 0;
1971 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
1972 hend = vma->vm_end & HPAGE_PMD_MASK;
1973 if (hstart < hend)
1974 return khugepaged_enter(vma, vm_flags);
1975 return 0;
1976 }
1977
1978 void __khugepaged_exit(struct mm_struct *mm)
1979 {
1980 struct mm_slot *mm_slot;
1981 int free = 0;
1982
1983 spin_lock(&khugepaged_mm_lock);
1984 mm_slot = get_mm_slot(mm);
1985 if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
1986 hash_del(&mm_slot->hash);
1987 list_del(&mm_slot->mm_node);
1988 free = 1;
1989 }
1990 spin_unlock(&khugepaged_mm_lock);
1991
1992 if (free) {
1993 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
1994 free_mm_slot(mm_slot);
1995 mmdrop(mm);
1996 } else if (mm_slot) {
1997 /*
1998 * This is required to serialize against
1999 * khugepaged_test_exit() (which is guaranteed to run
2000 * under mmap sem read mode). Stop here (after we
2001 * return all pagetables will be destroyed) until
2002 * khugepaged has finished working on the pagetables
2003 * under the mmap_sem.
2004 */
2005 down_write(&mm->mmap_sem);
2006 up_write(&mm->mmap_sem);
2007 }
2008 }
2009
2010 static void release_pte_page(struct page *page)
2011 {
2012 /* 0 stands for page_is_file_cache(page) == false */
2013 dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
2014 unlock_page(page);
2015 putback_lru_page(page);
2016 }
2017
2018 static void release_pte_pages(pte_t *pte, pte_t *_pte)
2019 {
2020 while (--_pte >= pte) {
2021 pte_t pteval = *_pte;
2022 if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval)))
2023 release_pte_page(pte_page(pteval));
2024 }
2025 }
2026
2027 static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
2028 unsigned long address,
2029 pte_t *pte)
2030 {
2031 struct page *page = NULL;
2032 pte_t *_pte;
2033 int none_or_zero = 0, result = 0;
2034 bool referenced = false, writable = false;
2035
2036 for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
2037 _pte++, address += PAGE_SIZE) {
2038 pte_t pteval = *_pte;
2039 if (pte_none(pteval) || (pte_present(pteval) &&
2040 is_zero_pfn(pte_pfn(pteval)))) {
2041 if (!userfaultfd_armed(vma) &&
2042 ++none_or_zero <= khugepaged_max_ptes_none) {
2043 continue;
2044 } else {
2045 result = SCAN_EXCEED_NONE_PTE;
2046 goto out;
2047 }
2048 }
2049 if (!pte_present(pteval)) {
2050 result = SCAN_PTE_NON_PRESENT;
2051 goto out;
2052 }
2053 page = vm_normal_page(vma, address, pteval);
2054 if (unlikely(!page)) {
2055 result = SCAN_PAGE_NULL;
2056 goto out;
2057 }
2058
2059 VM_BUG_ON_PAGE(PageCompound(page), page);
2060 VM_BUG_ON_PAGE(!PageAnon(page), page);
2061 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
2062
2063 /*
2064 * We can do it before isolate_lru_page because the
2065 * page can't be freed from under us. NOTE: PG_lock
2066 * is needed to serialize against split_huge_page
2067 * when invoked from the VM.
2068 */
2069 if (!trylock_page(page)) {
2070 result = SCAN_PAGE_LOCK;
2071 goto out;
2072 }
2073
2074 /*
2075 * cannot use mapcount: can't collapse if there's a gup pin.
2076 * The page must only be referenced by the scanned process
2077 * and page swap cache.
2078 */
2079 if (page_count(page) != 1 + !!PageSwapCache(page)) {
2080 unlock_page(page);
2081 result = SCAN_PAGE_COUNT;
2082 goto out;
2083 }
2084 if (pte_write(pteval)) {
2085 writable = true;
2086 } else {
2087 if (PageSwapCache(page) &&
2088 !reuse_swap_page(page, NULL)) {
2089 unlock_page(page);
2090 result = SCAN_SWAP_CACHE_PAGE;
2091 goto out;
2092 }
2093 /*
2094 * Page is not in the swap cache. It can be collapsed
2095 * into a THP.
2096 */
2097 }
2098
2099 /*
2100 * Isolate the page to avoid collapsing an hugepage
2101 * currently in use by the VM.
2102 */
2103 if (isolate_lru_page(page)) {
2104 unlock_page(page);
2105 result = SCAN_DEL_PAGE_LRU;
2106 goto out;
2107 }
2108 /* 0 stands for page_is_file_cache(page) == false */
2109 inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
2110 VM_BUG_ON_PAGE(!PageLocked(page), page);
2111 VM_BUG_ON_PAGE(PageLRU(page), page);
2112
2113 /* If there is no mapped pte young don't collapse the page */
2114 if (pte_young(pteval) ||
2115 page_is_young(page) || PageReferenced(page) ||
2116 mmu_notifier_test_young(vma->vm_mm, address))
2117 referenced = true;
2118 }
2119 if (likely(writable)) {
2120 if (likely(referenced)) {
2121 result = SCAN_SUCCEED;
2122 trace_mm_collapse_huge_page_isolate(page, none_or_zero,
2123 referenced, writable, result);
2124 return 1;
2125 }
2126 } else {
2127 result = SCAN_PAGE_RO;
2128 }
2129
2130 out:
2131 release_pte_pages(pte, _pte);
2132 trace_mm_collapse_huge_page_isolate(page, none_or_zero,
2133 referenced, writable, result);
2134 return 0;
2135 }
2136
2137 static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
2138 struct vm_area_struct *vma,
2139 unsigned long address,
2140 spinlock_t *ptl)
2141 {
2142 pte_t *_pte;
2143 for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
2144 pte_t pteval = *_pte;
2145 struct page *src_page;
2146
2147 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
2148 clear_user_highpage(page, address);
2149 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
2150 if (is_zero_pfn(pte_pfn(pteval))) {
2151 /*
2152 * ptl mostly unnecessary.
2153 */
2154 spin_lock(ptl);
2155 /*
2156 * paravirt calls inside pte_clear here are
2157 * superfluous.
2158 */
2159 pte_clear(vma->vm_mm, address, _pte);
2160 spin_unlock(ptl);
2161 }
2162 } else {
2163 src_page = pte_page(pteval);
2164 copy_user_highpage(page, src_page, address, vma);
2165 VM_BUG_ON_PAGE(page_mapcount(src_page) != 1, src_page);
2166 release_pte_page(src_page);
2167 /*
2168 * ptl mostly unnecessary, but preempt has to
2169 * be disabled to update the per-cpu stats
2170 * inside page_remove_rmap().
2171 */
2172 spin_lock(ptl);
2173 /*
2174 * paravirt calls inside pte_clear here are
2175 * superfluous.
2176 */
2177 pte_clear(vma->vm_mm, address, _pte);
2178 page_remove_rmap(src_page, false);
2179 spin_unlock(ptl);
2180 free_page_and_swap_cache(src_page);
2181 }
2182
2183 address += PAGE_SIZE;
2184 page++;
2185 }
2186 }
2187
2188 static void khugepaged_alloc_sleep(void)
2189 {
2190 DEFINE_WAIT(wait);
2191
2192 add_wait_queue(&khugepaged_wait, &wait);
2193 freezable_schedule_timeout_interruptible(
2194 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
2195 remove_wait_queue(&khugepaged_wait, &wait);
2196 }
2197
2198 static int khugepaged_node_load[MAX_NUMNODES];
2199
2200 static bool khugepaged_scan_abort(int nid)
2201 {
2202 int i;
2203
2204 /*
2205 * If zone_reclaim_mode is disabled, then no extra effort is made to
2206 * allocate memory locally.
2207 */
2208 if (!zone_reclaim_mode)
2209 return false;
2210
2211 /* If there is a count for this node already, it must be acceptable */
2212 if (khugepaged_node_load[nid])
2213 return false;
2214
2215 for (i = 0; i < MAX_NUMNODES; i++) {
2216 if (!khugepaged_node_load[i])
2217 continue;
2218 if (node_distance(nid, i) > RECLAIM_DISTANCE)
2219 return true;
2220 }
2221 return false;
2222 }
2223
2224 #ifdef CONFIG_NUMA
2225 static int khugepaged_find_target_node(void)
2226 {
2227 static int last_khugepaged_target_node = NUMA_NO_NODE;
2228 int nid, target_node = 0, max_value = 0;
2229
2230 /* find first node with max normal pages hit */
2231 for (nid = 0; nid < MAX_NUMNODES; nid++)
2232 if (khugepaged_node_load[nid] > max_value) {
2233 max_value = khugepaged_node_load[nid];
2234 target_node = nid;
2235 }
2236
2237 /* do some balance if several nodes have the same hit record */
2238 if (target_node <= last_khugepaged_target_node)
2239 for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
2240 nid++)
2241 if (max_value == khugepaged_node_load[nid]) {
2242 target_node = nid;
2243 break;
2244 }
2245
2246 last_khugepaged_target_node = target_node;
2247 return target_node;
2248 }
2249
2250 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2251 {
2252 if (IS_ERR(*hpage)) {
2253 if (!*wait)
2254 return false;
2255
2256 *wait = false;
2257 *hpage = NULL;
2258 khugepaged_alloc_sleep();
2259 } else if (*hpage) {
2260 put_page(*hpage);
2261 *hpage = NULL;
2262 }
2263
2264 return true;
2265 }
2266
2267 static struct page *
2268 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, struct mm_struct *mm,
2269 unsigned long address, int node)
2270 {
2271 VM_BUG_ON_PAGE(*hpage, *hpage);
2272
2273 /*
2274 * Before allocating the hugepage, release the mmap_sem read lock.
2275 * The allocation can take potentially a long time if it involves
2276 * sync compaction, and we do not need to hold the mmap_sem during
2277 * that. We will recheck the vma after taking it again in write mode.
2278 */
2279 up_read(&mm->mmap_sem);
2280
2281 *hpage = __alloc_pages_node(node, gfp, HPAGE_PMD_ORDER);
2282 if (unlikely(!*hpage)) {
2283 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2284 *hpage = ERR_PTR(-ENOMEM);
2285 return NULL;
2286 }
2287
2288 prep_transhuge_page(*hpage);
2289 count_vm_event(THP_COLLAPSE_ALLOC);
2290 return *hpage;
2291 }
2292 #else
2293 static int khugepaged_find_target_node(void)
2294 {
2295 return 0;
2296 }
2297
2298 static inline struct page *alloc_khugepaged_hugepage(void)
2299 {
2300 struct page *page;
2301
2302 page = alloc_pages(alloc_hugepage_khugepaged_gfpmask(),
2303 HPAGE_PMD_ORDER);
2304 if (page)
2305 prep_transhuge_page(page);
2306 return page;
2307 }
2308
2309 static struct page *khugepaged_alloc_hugepage(bool *wait)
2310 {
2311 struct page *hpage;
2312
2313 do {
2314 hpage = alloc_khugepaged_hugepage();
2315 if (!hpage) {
2316 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2317 if (!*wait)
2318 return NULL;
2319
2320 *wait = false;
2321 khugepaged_alloc_sleep();
2322 } else
2323 count_vm_event(THP_COLLAPSE_ALLOC);
2324 } while (unlikely(!hpage) && likely(khugepaged_enabled()));
2325
2326 return hpage;
2327 }
2328
2329 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2330 {
2331 if (!*hpage)
2332 *hpage = khugepaged_alloc_hugepage(wait);
2333
2334 if (unlikely(!*hpage))
2335 return false;
2336
2337 return true;
2338 }
2339
2340 static struct page *
2341 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, struct mm_struct *mm,
2342 unsigned long address, int node)
2343 {
2344 up_read(&mm->mmap_sem);
2345 VM_BUG_ON(!*hpage);
2346
2347 return *hpage;
2348 }
2349 #endif
2350
2351 static bool hugepage_vma_check(struct vm_area_struct *vma)
2352 {
2353 if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
2354 (vma->vm_flags & VM_NOHUGEPAGE))
2355 return false;
2356 if (!vma->anon_vma || vma->vm_ops)
2357 return false;
2358 if (is_vma_temporary_stack(vma))
2359 return false;
2360 return !(vma->vm_flags & VM_NO_KHUGEPAGED);
2361 }
2362
2363 /*
2364 * If mmap_sem temporarily dropped, revalidate vma
2365 * before taking mmap_sem.
2366 * Return 0 if succeeds, otherwise return none-zero
2367 * value (scan code).
2368 */
2369
2370 static int hugepage_vma_revalidate(struct mm_struct *mm, unsigned long address)
2371 {
2372 struct vm_area_struct *vma;
2373 unsigned long hstart, hend;
2374
2375 if (unlikely(khugepaged_test_exit(mm)))
2376 return SCAN_ANY_PROCESS;
2377
2378 vma = find_vma(mm, address);
2379 if (!vma)
2380 return SCAN_VMA_NULL;
2381
2382 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2383 hend = vma->vm_end & HPAGE_PMD_MASK;
2384 if (address < hstart || address + HPAGE_PMD_SIZE > hend)
2385 return SCAN_ADDRESS_RANGE;
2386 if (!hugepage_vma_check(vma))
2387 return SCAN_VMA_CHECK;
2388 return 0;
2389 }
2390
2391 /*
2392 * Bring missing pages in from swap, to complete THP collapse.
2393 * Only done if khugepaged_scan_pmd believes it is worthwhile.
2394 *
2395 * Called and returns without pte mapped or spinlocks held,
2396 * but with mmap_sem held to protect against vma changes.
2397 */
2398
2399 static bool __collapse_huge_page_swapin(struct mm_struct *mm,
2400 struct vm_area_struct *vma,
2401 unsigned long address, pmd_t *pmd)
2402 {
2403 pte_t pteval;
2404 int swapped_in = 0, ret = 0;
2405 struct fault_env fe = {
2406 .vma = vma,
2407 .address = address,
2408 .flags = FAULT_FLAG_ALLOW_RETRY,
2409 .pmd = pmd,
2410 };
2411
2412 fe.pte = pte_offset_map(pmd, address);
2413 for (; fe.address < address + HPAGE_PMD_NR*PAGE_SIZE;
2414 fe.pte++, fe.address += PAGE_SIZE) {
2415 pteval = *fe.pte;
2416 if (!is_swap_pte(pteval))
2417 continue;
2418 swapped_in++;
2419 ret = do_swap_page(&fe, pteval);
2420 /* do_swap_page returns VM_FAULT_RETRY with released mmap_sem */
2421 if (ret & VM_FAULT_RETRY) {
2422 down_read(&mm->mmap_sem);
2423 /* vma is no longer available, don't continue to swapin */
2424 if (hugepage_vma_revalidate(mm, address))
2425 return false;
2426 /* check if the pmd is still valid */
2427 if (mm_find_pmd(mm, address) != pmd)
2428 return false;
2429 }
2430 if (ret & VM_FAULT_ERROR) {
2431 trace_mm_collapse_huge_page_swapin(mm, swapped_in, 0);
2432 return false;
2433 }
2434 /* pte is unmapped now, we need to map it */
2435 fe.pte = pte_offset_map(pmd, fe.address);
2436 }
2437 fe.pte--;
2438 pte_unmap(fe.pte);
2439 trace_mm_collapse_huge_page_swapin(mm, swapped_in, 1);
2440 return true;
2441 }
2442
2443 static void collapse_huge_page(struct mm_struct *mm,
2444 unsigned long address,
2445 struct page **hpage,
2446 struct vm_area_struct *vma,
2447 int node)
2448 {
2449 pmd_t *pmd, _pmd;
2450 pte_t *pte;
2451 pgtable_t pgtable;
2452 struct page *new_page;
2453 spinlock_t *pmd_ptl, *pte_ptl;
2454 int isolated = 0, result = 0;
2455 struct mem_cgroup *memcg;
2456 unsigned long mmun_start; /* For mmu_notifiers */
2457 unsigned long mmun_end; /* For mmu_notifiers */
2458 gfp_t gfp;
2459
2460 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2461
2462 /* Only allocate from the target node */
2463 gfp = alloc_hugepage_khugepaged_gfpmask() | __GFP_OTHER_NODE | __GFP_THISNODE;
2464
2465 /* release the mmap_sem read lock. */
2466 new_page = khugepaged_alloc_page(hpage, gfp, mm, address, node);
2467 if (!new_page) {
2468 result = SCAN_ALLOC_HUGE_PAGE_FAIL;
2469 goto out_nolock;
2470 }
2471
2472 if (unlikely(mem_cgroup_try_charge(new_page, mm, gfp, &memcg, true))) {
2473 result = SCAN_CGROUP_CHARGE_FAIL;
2474 goto out_nolock;
2475 }
2476
2477 down_read(&mm->mmap_sem);
2478 result = hugepage_vma_revalidate(mm, address);
2479 if (result) {
2480 mem_cgroup_cancel_charge(new_page, memcg, true);
2481 up_read(&mm->mmap_sem);
2482 goto out_nolock;
2483 }
2484
2485 pmd = mm_find_pmd(mm, address);
2486 if (!pmd) {
2487 result = SCAN_PMD_NULL;
2488 mem_cgroup_cancel_charge(new_page, memcg, true);
2489 up_read(&mm->mmap_sem);
2490 goto out_nolock;
2491 }
2492
2493 /*
2494 * __collapse_huge_page_swapin always returns with mmap_sem locked.
2495 * If it fails, release mmap_sem and jump directly out.
2496 * Continuing to collapse causes inconsistency.
2497 */
2498 if (!__collapse_huge_page_swapin(mm, vma, address, pmd)) {
2499 mem_cgroup_cancel_charge(new_page, memcg, true);
2500 up_read(&mm->mmap_sem);
2501 goto out_nolock;
2502 }
2503
2504 up_read(&mm->mmap_sem);
2505 /*
2506 * Prevent all access to pagetables with the exception of
2507 * gup_fast later handled by the ptep_clear_flush and the VM
2508 * handled by the anon_vma lock + PG_lock.
2509 */
2510 down_write(&mm->mmap_sem);
2511 result = hugepage_vma_revalidate(mm, address);
2512 if (result)
2513 goto out;
2514 /* check if the pmd is still valid */
2515 if (mm_find_pmd(mm, address) != pmd)
2516 goto out;
2517
2518 anon_vma_lock_write(vma->anon_vma);
2519
2520 pte = pte_offset_map(pmd, address);
2521 pte_ptl = pte_lockptr(mm, pmd);
2522
2523 mmun_start = address;
2524 mmun_end = address + HPAGE_PMD_SIZE;
2525 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2526 pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
2527 /*
2528 * After this gup_fast can't run anymore. This also removes
2529 * any huge TLB entry from the CPU so we won't allow
2530 * huge and small TLB entries for the same virtual address
2531 * to avoid the risk of CPU bugs in that area.
2532 */
2533 _pmd = pmdp_collapse_flush(vma, address, pmd);
2534 spin_unlock(pmd_ptl);
2535 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2536
2537 spin_lock(pte_ptl);
2538 isolated = __collapse_huge_page_isolate(vma, address, pte);
2539 spin_unlock(pte_ptl);
2540
2541 if (unlikely(!isolated)) {
2542 pte_unmap(pte);
2543 spin_lock(pmd_ptl);
2544 BUG_ON(!pmd_none(*pmd));
2545 /*
2546 * We can only use set_pmd_at when establishing
2547 * hugepmds and never for establishing regular pmds that
2548 * points to regular pagetables. Use pmd_populate for that
2549 */
2550 pmd_populate(mm, pmd, pmd_pgtable(_pmd));
2551 spin_unlock(pmd_ptl);
2552 anon_vma_unlock_write(vma->anon_vma);
2553 result = SCAN_FAIL;
2554 goto out;
2555 }
2556
2557 /*
2558 * All pages are isolated and locked so anon_vma rmap
2559 * can't run anymore.
2560 */
2561 anon_vma_unlock_write(vma->anon_vma);
2562
2563 __collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl);
2564 pte_unmap(pte);
2565 __SetPageUptodate(new_page);
2566 pgtable = pmd_pgtable(_pmd);
2567
2568 _pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
2569 _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
2570
2571 /*
2572 * spin_lock() below is not the equivalent of smp_wmb(), so
2573 * this is needed to avoid the copy_huge_page writes to become
2574 * visible after the set_pmd_at() write.
2575 */
2576 smp_wmb();
2577
2578 spin_lock(pmd_ptl);
2579 BUG_ON(!pmd_none(*pmd));
2580 page_add_new_anon_rmap(new_page, vma, address, true);
2581 mem_cgroup_commit_charge(new_page, memcg, false, true);
2582 lru_cache_add_active_or_unevictable(new_page, vma);
2583 pgtable_trans_huge_deposit(mm, pmd, pgtable);
2584 set_pmd_at(mm, address, pmd, _pmd);
2585 update_mmu_cache_pmd(vma, address, pmd);
2586 spin_unlock(pmd_ptl);
2587
2588 *hpage = NULL;
2589
2590 khugepaged_pages_collapsed++;
2591 result = SCAN_SUCCEED;
2592 out_up_write:
2593 up_write(&mm->mmap_sem);
2594 out_nolock:
2595 trace_mm_collapse_huge_page(mm, isolated, result);
2596 return;
2597 out:
2598 mem_cgroup_cancel_charge(new_page, memcg, true);
2599 goto out_up_write;
2600 }
2601
2602 static int khugepaged_scan_pmd(struct mm_struct *mm,
2603 struct vm_area_struct *vma,
2604 unsigned long address,
2605 struct page **hpage)
2606 {
2607 pmd_t *pmd;
2608 pte_t *pte, *_pte;
2609 int ret = 0, none_or_zero = 0, result = 0;
2610 struct page *page = NULL;
2611 unsigned long _address;
2612 spinlock_t *ptl;
2613 int node = NUMA_NO_NODE, unmapped = 0;
2614 bool writable = false, referenced = false;
2615
2616 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2617
2618 pmd = mm_find_pmd(mm, address);
2619 if (!pmd) {
2620 result = SCAN_PMD_NULL;
2621 goto out;
2622 }
2623
2624 memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
2625 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2626 for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
2627 _pte++, _address += PAGE_SIZE) {
2628 pte_t pteval = *_pte;
2629 if (is_swap_pte(pteval)) {
2630 if (++unmapped <= khugepaged_max_ptes_swap) {
2631 continue;
2632 } else {
2633 result = SCAN_EXCEED_SWAP_PTE;
2634 goto out_unmap;
2635 }
2636 }
2637 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
2638 if (!userfaultfd_armed(vma) &&
2639 ++none_or_zero <= khugepaged_max_ptes_none) {
2640 continue;
2641 } else {
2642 result = SCAN_EXCEED_NONE_PTE;
2643 goto out_unmap;
2644 }
2645 }
2646 if (!pte_present(pteval)) {
2647 result = SCAN_PTE_NON_PRESENT;
2648 goto out_unmap;
2649 }
2650 if (pte_write(pteval))
2651 writable = true;
2652
2653 page = vm_normal_page(vma, _address, pteval);
2654 if (unlikely(!page)) {
2655 result = SCAN_PAGE_NULL;
2656 goto out_unmap;
2657 }
2658
2659 /* TODO: teach khugepaged to collapse THP mapped with pte */
2660 if (PageCompound(page)) {
2661 result = SCAN_PAGE_COMPOUND;
2662 goto out_unmap;
2663 }
2664
2665 /*
2666 * Record which node the original page is from and save this
2667 * information to khugepaged_node_load[].
2668 * Khupaged will allocate hugepage from the node has the max
2669 * hit record.
2670 */
2671 node = page_to_nid(page);
2672 if (khugepaged_scan_abort(node)) {
2673 result = SCAN_SCAN_ABORT;
2674 goto out_unmap;
2675 }
2676 khugepaged_node_load[node]++;
2677 if (!PageLRU(page)) {
2678 result = SCAN_PAGE_LRU;
2679 goto out_unmap;
2680 }
2681 if (PageLocked(page)) {
2682 result = SCAN_PAGE_LOCK;
2683 goto out_unmap;
2684 }
2685 if (!PageAnon(page)) {
2686 result = SCAN_PAGE_ANON;
2687 goto out_unmap;
2688 }
2689
2690 /*
2691 * cannot use mapcount: can't collapse if there's a gup pin.
2692 * The page must only be referenced by the scanned process
2693 * and page swap cache.
2694 */
2695 if (page_count(page) != 1 + !!PageSwapCache(page)) {
2696 result = SCAN_PAGE_COUNT;
2697 goto out_unmap;
2698 }
2699 if (pte_young(pteval) ||
2700 page_is_young(page) || PageReferenced(page) ||
2701 mmu_notifier_test_young(vma->vm_mm, address))
2702 referenced = true;
2703 }
2704 if (writable) {
2705 if (referenced) {
2706 result = SCAN_SUCCEED;
2707 ret = 1;
2708 } else {
2709 result = SCAN_NO_REFERENCED_PAGE;
2710 }
2711 } else {
2712 result = SCAN_PAGE_RO;
2713 }
2714 out_unmap:
2715 pte_unmap_unlock(pte, ptl);
2716 if (ret) {
2717 node = khugepaged_find_target_node();
2718 /* collapse_huge_page will return with the mmap_sem released */
2719 collapse_huge_page(mm, address, hpage, vma, node);
2720 }
2721 out:
2722 trace_mm_khugepaged_scan_pmd(mm, page, writable, referenced,
2723 none_or_zero, result, unmapped);
2724 return ret;
2725 }
2726
2727 static void collect_mm_slot(struct mm_slot *mm_slot)
2728 {
2729 struct mm_struct *mm = mm_slot->mm;
2730
2731 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2732
2733 if (khugepaged_test_exit(mm)) {
2734 /* free mm_slot */
2735 hash_del(&mm_slot->hash);
2736 list_del(&mm_slot->mm_node);
2737
2738 /*
2739 * Not strictly needed because the mm exited already.
2740 *
2741 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2742 */
2743
2744 /* khugepaged_mm_lock actually not necessary for the below */
2745 free_mm_slot(mm_slot);
2746 mmdrop(mm);
2747 }
2748 }
2749
2750 static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2751 struct page **hpage)
2752 __releases(&khugepaged_mm_lock)
2753 __acquires(&khugepaged_mm_lock)
2754 {
2755 struct mm_slot *mm_slot;
2756 struct mm_struct *mm;
2757 struct vm_area_struct *vma;
2758 int progress = 0;
2759
2760 VM_BUG_ON(!pages);
2761 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2762
2763 if (khugepaged_scan.mm_slot)
2764 mm_slot = khugepaged_scan.mm_slot;
2765 else {
2766 mm_slot = list_entry(khugepaged_scan.mm_head.next,
2767 struct mm_slot, mm_node);
2768 khugepaged_scan.address = 0;
2769 khugepaged_scan.mm_slot = mm_slot;
2770 }
2771 spin_unlock(&khugepaged_mm_lock);
2772
2773 mm = mm_slot->mm;
2774 down_read(&mm->mmap_sem);
2775 if (unlikely(khugepaged_test_exit(mm)))
2776 vma = NULL;
2777 else
2778 vma = find_vma(mm, khugepaged_scan.address);
2779
2780 progress++;
2781 for (; vma; vma = vma->vm_next) {
2782 unsigned long hstart, hend;
2783
2784 cond_resched();
2785 if (unlikely(khugepaged_test_exit(mm))) {
2786 progress++;
2787 break;
2788 }
2789 if (!hugepage_vma_check(vma)) {
2790 skip:
2791 progress++;
2792 continue;
2793 }
2794 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2795 hend = vma->vm_end & HPAGE_PMD_MASK;
2796 if (hstart >= hend)
2797 goto skip;
2798 if (khugepaged_scan.address > hend)
2799 goto skip;
2800 if (khugepaged_scan.address < hstart)
2801 khugepaged_scan.address = hstart;
2802 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2803
2804 while (khugepaged_scan.address < hend) {
2805 int ret;
2806 cond_resched();
2807 if (unlikely(khugepaged_test_exit(mm)))
2808 goto breakouterloop;
2809
2810 VM_BUG_ON(khugepaged_scan.address < hstart ||
2811 khugepaged_scan.address + HPAGE_PMD_SIZE >
2812 hend);
2813 ret = khugepaged_scan_pmd(mm, vma,
2814 khugepaged_scan.address,
2815 hpage);
2816 /* move to next address */
2817 khugepaged_scan.address += HPAGE_PMD_SIZE;
2818 progress += HPAGE_PMD_NR;
2819 if (ret)
2820 /* we released mmap_sem so break loop */
2821 goto breakouterloop_mmap_sem;
2822 if (progress >= pages)
2823 goto breakouterloop;
2824 }
2825 }
2826 breakouterloop:
2827 up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2828 breakouterloop_mmap_sem:
2829
2830 spin_lock(&khugepaged_mm_lock);
2831 VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2832 /*
2833 * Release the current mm_slot if this mm is about to die, or
2834 * if we scanned all vmas of this mm.
2835 */
2836 if (khugepaged_test_exit(mm) || !vma) {
2837 /*
2838 * Make sure that if mm_users is reaching zero while
2839 * khugepaged runs here, khugepaged_exit will find
2840 * mm_slot not pointing to the exiting mm.
2841 */
2842 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2843 khugepaged_scan.mm_slot = list_entry(
2844 mm_slot->mm_node.next,
2845 struct mm_slot, mm_node);
2846 khugepaged_scan.address = 0;
2847 } else {
2848 khugepaged_scan.mm_slot = NULL;
2849 khugepaged_full_scans++;
2850 }
2851
2852 collect_mm_slot(mm_slot);
2853 }
2854
2855 return progress;
2856 }
2857
2858 static int khugepaged_has_work(void)
2859 {
2860 return !list_empty(&khugepaged_scan.mm_head) &&
2861 khugepaged_enabled();
2862 }
2863
2864 static int khugepaged_wait_event(void)
2865 {
2866 return !list_empty(&khugepaged_scan.mm_head) ||
2867 kthread_should_stop();
2868 }
2869
2870 static void khugepaged_do_scan(void)
2871 {
2872 struct page *hpage = NULL;
2873 unsigned int progress = 0, pass_through_head = 0;
2874 unsigned int pages = khugepaged_pages_to_scan;
2875 bool wait = true;
2876
2877 barrier(); /* write khugepaged_pages_to_scan to local stack */
2878
2879 while (progress < pages) {
2880 if (!khugepaged_prealloc_page(&hpage, &wait))
2881 break;
2882
2883 cond_resched();
2884
2885 if (unlikely(kthread_should_stop() || try_to_freeze()))
2886 break;
2887
2888 spin_lock(&khugepaged_mm_lock);
2889 if (!khugepaged_scan.mm_slot)
2890 pass_through_head++;
2891 if (khugepaged_has_work() &&
2892 pass_through_head < 2)
2893 progress += khugepaged_scan_mm_slot(pages - progress,
2894 &hpage);
2895 else
2896 progress = pages;
2897 spin_unlock(&khugepaged_mm_lock);
2898 }
2899
2900 if (!IS_ERR_OR_NULL(hpage))
2901 put_page(hpage);
2902 }
2903
2904 static bool khugepaged_should_wakeup(void)
2905 {
2906 return kthread_should_stop() ||
2907 time_after_eq(jiffies, khugepaged_sleep_expire);
2908 }
2909
2910 static void khugepaged_wait_work(void)
2911 {
2912 if (khugepaged_has_work()) {
2913 const unsigned long scan_sleep_jiffies =
2914 msecs_to_jiffies(khugepaged_scan_sleep_millisecs);
2915
2916 if (!scan_sleep_jiffies)
2917 return;
2918
2919 khugepaged_sleep_expire = jiffies + scan_sleep_jiffies;
2920 wait_event_freezable_timeout(khugepaged_wait,
2921 khugepaged_should_wakeup(),
2922 scan_sleep_jiffies);
2923 return;
2924 }
2925
2926 if (khugepaged_enabled())
2927 wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2928 }
2929
2930 static int khugepaged(void *none)
2931 {
2932 struct mm_slot *mm_slot;
2933
2934 set_freezable();
2935 set_user_nice(current, MAX_NICE);
2936
2937 while (!kthread_should_stop()) {
2938 khugepaged_do_scan();
2939 khugepaged_wait_work();
2940 }
2941
2942 spin_lock(&khugepaged_mm_lock);
2943 mm_slot = khugepaged_scan.mm_slot;
2944 khugepaged_scan.mm_slot = NULL;
2945 if (mm_slot)
2946 collect_mm_slot(mm_slot);
2947 spin_unlock(&khugepaged_mm_lock);
2948 return 0;
2949 }
2950
2951 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2952 unsigned long haddr, pmd_t *pmd)
2953 {
2954 struct mm_struct *mm = vma->vm_mm;
2955 pgtable_t pgtable;
2956 pmd_t _pmd;
2957 int i;
2958
2959 /* leave pmd empty until pte is filled */
2960 pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2961
2962 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2963 pmd_populate(mm, &_pmd, pgtable);
2964
2965 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2966 pte_t *pte, entry;
2967 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2968 entry = pte_mkspecial(entry);
2969 pte = pte_offset_map(&_pmd, haddr);
2970 VM_BUG_ON(!pte_none(*pte));
2971 set_pte_at(mm, haddr, pte, entry);
2972 pte_unmap(pte);
2973 }
2974 smp_wmb(); /* make pte visible before pmd */
2975 pmd_populate(mm, pmd, pgtable);
2976 put_huge_zero_page();
2977 }
2978
2979 static void __split_huge_pmd_locked(struct vm_area_struct *vma, pmd_t *pmd,
2980 unsigned long haddr, bool freeze)
2981 {
2982 struct mm_struct *mm = vma->vm_mm;
2983 struct page *page;
2984 pgtable_t pgtable;
2985 pmd_t _pmd;
2986 bool young, write, dirty;
2987 unsigned long addr;
2988 int i;
2989
2990 VM_BUG_ON(haddr & ~HPAGE_PMD_MASK);
2991 VM_BUG_ON_VMA(vma->vm_start > haddr, vma);
2992 VM_BUG_ON_VMA(vma->vm_end < haddr + HPAGE_PMD_SIZE, vma);
2993 VM_BUG_ON(!pmd_trans_huge(*pmd) && !pmd_devmap(*pmd));
2994
2995 count_vm_event(THP_SPLIT_PMD);
2996
2997 if (!vma_is_anonymous(vma)) {
2998 _pmd = pmdp_huge_clear_flush_notify(vma, haddr, pmd);
2999 if (is_huge_zero_pmd(_pmd))
3000 put_huge_zero_page();
3001 if (vma_is_dax(vma))
3002 return;
3003 page = pmd_page(_pmd);
3004 if (!PageReferenced(page) && pmd_young(_pmd))
3005 SetPageReferenced(page);
3006 page_remove_rmap(page, true);
3007 put_page(page);
3008 add_mm_counter(mm, MM_FILEPAGES, -HPAGE_PMD_NR);
3009 return;
3010 } else if (is_huge_zero_pmd(*pmd)) {
3011 return __split_huge_zero_page_pmd(vma, haddr, pmd);
3012 }
3013
3014 page = pmd_page(*pmd);
3015 VM_BUG_ON_PAGE(!page_count(page), page);
3016 page_ref_add(page, HPAGE_PMD_NR - 1);
3017 write = pmd_write(*pmd);
3018 young = pmd_young(*pmd);
3019 dirty = pmd_dirty(*pmd);
3020
3021 pmdp_huge_split_prepare(vma, haddr, pmd);
3022 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
3023 pmd_populate(mm, &_pmd, pgtable);
3024
3025 for (i = 0, addr = haddr; i < HPAGE_PMD_NR; i++, addr += PAGE_SIZE) {
3026 pte_t entry, *pte;
3027 /*
3028 * Note that NUMA hinting access restrictions are not
3029 * transferred to avoid any possibility of altering
3030 * permissions across VMAs.
3031 */
3032 if (freeze) {
3033 swp_entry_t swp_entry;
3034 swp_entry = make_migration_entry(page + i, write);
3035 entry = swp_entry_to_pte(swp_entry);
3036 } else {
3037 entry = mk_pte(page + i, vma->vm_page_prot);
3038 entry = maybe_mkwrite(entry, vma);
3039 if (!write)
3040 entry = pte_wrprotect(entry);
3041 if (!young)
3042 entry = pte_mkold(entry);
3043 }
3044 if (dirty)
3045 SetPageDirty(page + i);
3046 pte = pte_offset_map(&_pmd, addr);
3047 BUG_ON(!pte_none(*pte));
3048 set_pte_at(mm, addr, pte, entry);
3049 atomic_inc(&page[i]._mapcount);
3050 pte_unmap(pte);
3051 }
3052
3053 /*
3054 * Set PG_double_map before dropping compound_mapcount to avoid
3055 * false-negative page_mapped().
3056 */
3057 if (compound_mapcount(page) > 1 && !TestSetPageDoubleMap(page)) {
3058 for (i = 0; i < HPAGE_PMD_NR; i++)
3059 atomic_inc(&page[i]._mapcount);
3060 }
3061
3062 if (atomic_add_negative(-1, compound_mapcount_ptr(page))) {
3063 /* Last compound_mapcount is gone. */
3064 __dec_zone_page_state(page, NR_ANON_THPS);
3065 if (TestClearPageDoubleMap(page)) {
3066 /* No need in mapcount reference anymore */
3067 for (i = 0; i < HPAGE_PMD_NR; i++)
3068 atomic_dec(&page[i]._mapcount);
3069 }
3070 }
3071
3072 smp_wmb(); /* make pte visible before pmd */
3073 /*
3074 * Up to this point the pmd is present and huge and userland has the
3075 * whole access to the hugepage during the split (which happens in
3076 * place). If we overwrite the pmd with the not-huge version pointing
3077 * to the pte here (which of course we could if all CPUs were bug
3078 * free), userland could trigger a small page size TLB miss on the
3079 * small sized TLB while the hugepage TLB entry is still established in
3080 * the huge TLB. Some CPU doesn't like that.
3081 * See http://support.amd.com/us/Processor_TechDocs/41322.pdf, Erratum
3082 * 383 on page 93. Intel should be safe but is also warns that it's
3083 * only safe if the permission and cache attributes of the two entries
3084 * loaded in the two TLB is identical (which should be the case here).
3085 * But it is generally safer to never allow small and huge TLB entries
3086 * for the same virtual address to be loaded simultaneously. So instead
3087 * of doing "pmd_populate(); flush_pmd_tlb_range();" we first mark the
3088 * current pmd notpresent (atomically because here the pmd_trans_huge
3089 * and pmd_trans_splitting must remain set at all times on the pmd
3090 * until the split is complete for this pmd), then we flush the SMP TLB
3091 * and finally we write the non-huge version of the pmd entry with
3092 * pmd_populate.
3093 */
3094 pmdp_invalidate(vma, haddr, pmd);
3095 pmd_populate(mm, pmd, pgtable);
3096
3097 if (freeze) {
3098 for (i = 0; i < HPAGE_PMD_NR; i++) {
3099 page_remove_rmap(page + i, false);
3100 put_page(page + i);
3101 }
3102 }
3103 }
3104
3105 void __split_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
3106 unsigned long address, bool freeze, struct page *page)
3107 {
3108 spinlock_t *ptl;
3109 struct mm_struct *mm = vma->vm_mm;
3110 unsigned long haddr = address & HPAGE_PMD_MASK;
3111
3112 mmu_notifier_invalidate_range_start(mm, haddr, haddr + HPAGE_PMD_SIZE);
3113 ptl = pmd_lock(mm, pmd);
3114
3115 /*
3116 * If caller asks to setup a migration entries, we need a page to check
3117 * pmd against. Otherwise we can end up replacing wrong page.
3118 */
3119 VM_BUG_ON(freeze && !page);
3120 if (page && page != pmd_page(*pmd))
3121 goto out;
3122
3123 if (pmd_trans_huge(*pmd)) {
3124 page = pmd_page(*pmd);
3125 if (PageMlocked(page))
3126 clear_page_mlock(page);
3127 } else if (!pmd_devmap(*pmd))
3128 goto out;
3129 __split_huge_pmd_locked(vma, pmd, haddr, freeze);
3130 out:
3131 spin_unlock(ptl);
3132 mmu_notifier_invalidate_range_end(mm, haddr, haddr + HPAGE_PMD_SIZE);
3133 }
3134
3135 void split_huge_pmd_address(struct vm_area_struct *vma, unsigned long address,
3136 bool freeze, struct page *page)
3137 {
3138 pgd_t *pgd;
3139 pud_t *pud;
3140 pmd_t *pmd;
3141
3142 pgd = pgd_offset(vma->vm_mm, address);
3143 if (!pgd_present(*pgd))
3144 return;
3145
3146 pud = pud_offset(pgd, address);
3147 if (!pud_present(*pud))
3148 return;
3149
3150 pmd = pmd_offset(pud, address);
3151
3152 __split_huge_pmd(vma, pmd, address, freeze, page);
3153 }
3154
3155 void vma_adjust_trans_huge(struct vm_area_struct *vma,
3156 unsigned long start,
3157 unsigned long end,
3158 long adjust_next)
3159 {
3160 /*
3161 * If the new start address isn't hpage aligned and it could
3162 * previously contain an hugepage: check if we need to split
3163 * an huge pmd.
3164 */
3165 if (start & ~HPAGE_PMD_MASK &&
3166 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
3167 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
3168 split_huge_pmd_address(vma, start, false, NULL);
3169
3170 /*
3171 * If the new end address isn't hpage aligned and it could
3172 * previously contain an hugepage: check if we need to split
3173 * an huge pmd.
3174 */
3175 if (end & ~HPAGE_PMD_MASK &&
3176 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
3177 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
3178 split_huge_pmd_address(vma, end, false, NULL);
3179
3180 /*
3181 * If we're also updating the vma->vm_next->vm_start, if the new
3182 * vm_next->vm_start isn't page aligned and it could previously
3183 * contain an hugepage: check if we need to split an huge pmd.
3184 */
3185 if (adjust_next > 0) {
3186 struct vm_area_struct *next = vma->vm_next;
3187 unsigned long nstart = next->vm_start;
3188 nstart += adjust_next << PAGE_SHIFT;
3189 if (nstart & ~HPAGE_PMD_MASK &&
3190 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
3191 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
3192 split_huge_pmd_address(next, nstart, false, NULL);
3193 }
3194 }
3195
3196 static void freeze_page(struct page *page)
3197 {
3198 enum ttu_flags ttu_flags = TTU_IGNORE_MLOCK | TTU_IGNORE_ACCESS |
3199 TTU_RMAP_LOCKED;
3200 int i, ret;
3201
3202 VM_BUG_ON_PAGE(!PageHead(page), page);
3203
3204 if (PageAnon(page))
3205 ttu_flags |= TTU_MIGRATION;
3206
3207 /* We only need TTU_SPLIT_HUGE_PMD once */
3208 ret = try_to_unmap(page, ttu_flags | TTU_SPLIT_HUGE_PMD);
3209 for (i = 1; !ret && i < HPAGE_PMD_NR; i++) {
3210 /* Cut short if the page is unmapped */
3211 if (page_count(page) == 1)
3212 return;
3213
3214 ret = try_to_unmap(page + i, ttu_flags);
3215 }
3216 VM_BUG_ON_PAGE(ret, page + i - 1);
3217 }
3218
3219 static void unfreeze_page(struct page *page)
3220 {
3221 int i;
3222
3223 for (i = 0; i < HPAGE_PMD_NR; i++)
3224 remove_migration_ptes(page + i, page + i, true);
3225 }
3226
3227 static void __split_huge_page_tail(struct page *head, int tail,
3228 struct lruvec *lruvec, struct list_head *list)
3229 {
3230 struct page *page_tail = head + tail;
3231
3232 VM_BUG_ON_PAGE(atomic_read(&page_tail->_mapcount) != -1, page_tail);
3233 VM_BUG_ON_PAGE(page_ref_count(page_tail) != 0, page_tail);
3234
3235 /*
3236 * tail_page->_refcount is zero and not changing from under us. But
3237 * get_page_unless_zero() may be running from under us on the
3238 * tail_page. If we used atomic_set() below instead of atomic_inc() or
3239 * atomic_add(), we would then run atomic_set() concurrently with
3240 * get_page_unless_zero(), and atomic_set() is implemented in C not
3241 * using locked ops. spin_unlock on x86 sometime uses locked ops
3242 * because of PPro errata 66, 92, so unless somebody can guarantee
3243 * atomic_set() here would be safe on all archs (and not only on x86),
3244 * it's safer to use atomic_inc()/atomic_add().
3245 */
3246 if (PageAnon(head)) {
3247 page_ref_inc(page_tail);
3248 } else {
3249 /* Additional pin to radix tree */
3250 page_ref_add(page_tail, 2);
3251 }
3252
3253 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
3254 page_tail->flags |= (head->flags &
3255 ((1L << PG_referenced) |
3256 (1L << PG_swapbacked) |
3257 (1L << PG_mlocked) |
3258 (1L << PG_uptodate) |
3259 (1L << PG_active) |
3260 (1L << PG_locked) |
3261 (1L << PG_unevictable) |
3262 (1L << PG_dirty)));
3263
3264 /*
3265 * After clearing PageTail the gup refcount can be released.
3266 * Page flags also must be visible before we make the page non-compound.
3267 */
3268 smp_wmb();
3269
3270 clear_compound_head(page_tail);
3271
3272 if (page_is_young(head))
3273 set_page_young(page_tail);
3274 if (page_is_idle(head))
3275 set_page_idle(page_tail);
3276
3277 /* ->mapping in first tail page is compound_mapcount */
3278 VM_BUG_ON_PAGE(tail > 2 && page_tail->mapping != TAIL_MAPPING,
3279 page_tail);
3280 page_tail->mapping = head->mapping;
3281
3282 page_tail->index = head->index + tail;
3283 page_cpupid_xchg_last(page_tail, page_cpupid_last(head));
3284 lru_add_page_tail(head, page_tail, lruvec, list);
3285 }
3286
3287 static void __split_huge_page(struct page *page, struct list_head *list,
3288 unsigned long flags)
3289 {
3290 struct page *head = compound_head(page);
3291 struct zone *zone = page_zone(head);
3292 struct lruvec *lruvec;
3293 pgoff_t end = -1;
3294 int i;
3295
3296 lruvec = mem_cgroup_page_lruvec(head, zone);
3297
3298 /* complete memcg works before add pages to LRU */
3299 mem_cgroup_split_huge_fixup(head);
3300
3301 if (!PageAnon(page))
3302 end = DIV_ROUND_UP(i_size_read(head->mapping->host), PAGE_SIZE);
3303
3304 for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
3305 __split_huge_page_tail(head, i, lruvec, list);
3306 /* Some pages can be beyond i_size: drop them from page cache */
3307 if (head[i].index >= end) {
3308 __ClearPageDirty(head + i);
3309 __delete_from_page_cache(head + i, NULL);
3310 if (IS_ENABLED(CONFIG_SHMEM) && PageSwapBacked(head))
3311 shmem_uncharge(head->mapping->host, 1);
3312 put_page(head + i);
3313 }
3314 }
3315
3316 ClearPageCompound(head);
3317 /* See comment in __split_huge_page_tail() */
3318 if (PageAnon(head)) {
3319 page_ref_inc(head);
3320 } else {
3321 /* Additional pin to radix tree */
3322 page_ref_add(head, 2);
3323 spin_unlock(&head->mapping->tree_lock);
3324 }
3325
3326 spin_unlock_irqrestore(&page_zone(head)->lru_lock, flags);
3327
3328 unfreeze_page(head);
3329
3330 for (i = 0; i < HPAGE_PMD_NR; i++) {
3331 struct page *subpage = head + i;
3332 if (subpage == page)
3333 continue;
3334 unlock_page(subpage);
3335
3336 /*
3337 * Subpages may be freed if there wasn't any mapping
3338 * like if add_to_swap() is running on a lru page that
3339 * had its mapping zapped. And freeing these pages
3340 * requires taking the lru_lock so we do the put_page
3341 * of the tail pages after the split is complete.
3342 */
3343 put_page(subpage);
3344 }
3345 }
3346
3347 int total_mapcount(struct page *page)
3348 {
3349 int i, compound, ret;
3350
3351 VM_BUG_ON_PAGE(PageTail(page), page);
3352
3353 if (likely(!PageCompound(page)))
3354 return atomic_read(&page->_mapcount) + 1;
3355
3356 compound = compound_mapcount(page);
3357 if (PageHuge(page))
3358 return compound;
3359 ret = compound;
3360 for (i = 0; i < HPAGE_PMD_NR; i++)
3361 ret += atomic_read(&page[i]._mapcount) + 1;
3362 /* File pages has compound_mapcount included in _mapcount */
3363 if (!PageAnon(page))
3364 return ret - compound * HPAGE_PMD_NR;
3365 if (PageDoubleMap(page))
3366 ret -= HPAGE_PMD_NR;
3367 return ret;
3368 }
3369
3370 /*
3371 * This calculates accurately how many mappings a transparent hugepage
3372 * has (unlike page_mapcount() which isn't fully accurate). This full
3373 * accuracy is primarily needed to know if copy-on-write faults can
3374 * reuse the page and change the mapping to read-write instead of
3375 * copying them. At the same time this returns the total_mapcount too.
3376 *
3377 * The function returns the highest mapcount any one of the subpages
3378 * has. If the return value is one, even if different processes are
3379 * mapping different subpages of the transparent hugepage, they can
3380 * all reuse it, because each process is reusing a different subpage.
3381 *
3382 * The total_mapcount is instead counting all virtual mappings of the
3383 * subpages. If the total_mapcount is equal to "one", it tells the
3384 * caller all mappings belong to the same "mm" and in turn the
3385 * anon_vma of the transparent hugepage can become the vma->anon_vma
3386 * local one as no other process may be mapping any of the subpages.
3387 *
3388 * It would be more accurate to replace page_mapcount() with
3389 * page_trans_huge_mapcount(), however we only use
3390 * page_trans_huge_mapcount() in the copy-on-write faults where we
3391 * need full accuracy to avoid breaking page pinning, because
3392 * page_trans_huge_mapcount() is slower than page_mapcount().
3393 */
3394 int page_trans_huge_mapcount(struct page *page, int *total_mapcount)
3395 {
3396 int i, ret, _total_mapcount, mapcount;
3397
3398 /* hugetlbfs shouldn't call it */
3399 VM_BUG_ON_PAGE(PageHuge(page), page);
3400
3401 if (likely(!PageTransCompound(page))) {
3402 mapcount = atomic_read(&page->_mapcount) + 1;
3403 if (total_mapcount)
3404 *total_mapcount = mapcount;
3405 return mapcount;
3406 }
3407
3408 page = compound_head(page);
3409
3410 _total_mapcount = ret = 0;
3411 for (i = 0; i < HPAGE_PMD_NR; i++) {
3412 mapcount = atomic_read(&page[i]._mapcount) + 1;
3413 ret = max(ret, mapcount);
3414 _total_mapcount += mapcount;
3415 }
3416 if (PageDoubleMap(page)) {
3417 ret -= 1;
3418 _total_mapcount -= HPAGE_PMD_NR;
3419 }
3420 mapcount = compound_mapcount(page);
3421 ret += mapcount;
3422 _total_mapcount += mapcount;
3423 if (total_mapcount)
3424 *total_mapcount = _total_mapcount;
3425 return ret;
3426 }
3427
3428 /*
3429 * This function splits huge page into normal pages. @page can point to any
3430 * subpage of huge page to split. Split doesn't change the position of @page.
3431 *
3432 * Only caller must hold pin on the @page, otherwise split fails with -EBUSY.
3433 * The huge page must be locked.
3434 *
3435 * If @list is null, tail pages will be added to LRU list, otherwise, to @list.
3436 *
3437 * Both head page and tail pages will inherit mapping, flags, and so on from
3438 * the hugepage.
3439 *
3440 * GUP pin and PG_locked transferred to @page. Rest subpages can be freed if
3441 * they are not mapped.
3442 *
3443 * Returns 0 if the hugepage is split successfully.
3444 * Returns -EBUSY if the page is pinned or if anon_vma disappeared from under
3445 * us.
3446 */
3447 int split_huge_page_to_list(struct page *page, struct list_head *list)
3448 {
3449 struct page *head = compound_head(page);
3450 struct pglist_data *pgdata = NODE_DATA(page_to_nid(head));
3451 struct anon_vma *anon_vma = NULL;
3452 struct address_space *mapping = NULL;
3453 int count, mapcount, extra_pins, ret;
3454 bool mlocked;
3455 unsigned long flags;
3456
3457 VM_BUG_ON_PAGE(is_huge_zero_page(page), page);
3458 VM_BUG_ON_PAGE(!PageLocked(page), page);
3459 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
3460 VM_BUG_ON_PAGE(!PageCompound(page), page);
3461
3462 if (PageAnon(head)) {
3463 /*
3464 * The caller does not necessarily hold an mmap_sem that would
3465 * prevent the anon_vma disappearing so we first we take a
3466 * reference to it and then lock the anon_vma for write. This
3467 * is similar to page_lock_anon_vma_read except the write lock
3468 * is taken to serialise against parallel split or collapse
3469 * operations.
3470 */
3471 anon_vma = page_get_anon_vma(head);
3472 if (!anon_vma) {
3473 ret = -EBUSY;
3474 goto out;
3475 }
3476 extra_pins = 0;
3477 mapping = NULL;
3478 anon_vma_lock_write(anon_vma);
3479 } else {
3480 mapping = head->mapping;
3481
3482 /* Truncated ? */
3483 if (!mapping) {
3484 ret = -EBUSY;
3485 goto out;
3486 }
3487
3488 /* Addidional pins from radix tree */
3489 extra_pins = HPAGE_PMD_NR;
3490 anon_vma = NULL;
3491 i_mmap_lock_read(mapping);
3492 }
3493
3494 /*
3495 * Racy check if we can split the page, before freeze_page() will
3496 * split PMDs
3497 */
3498 if (total_mapcount(head) != page_count(head) - extra_pins - 1) {
3499 ret = -EBUSY;
3500 goto out_unlock;
3501 }
3502
3503 mlocked = PageMlocked(page);
3504 freeze_page(head);
3505 VM_BUG_ON_PAGE(compound_mapcount(head), head);
3506
3507 /* Make sure the page is not on per-CPU pagevec as it takes pin */
3508 if (mlocked)
3509 lru_add_drain();
3510
3511 /* prevent PageLRU to go away from under us, and freeze lru stats */
3512 spin_lock_irqsave(&page_zone(head)->lru_lock, flags);
3513
3514 if (mapping) {
3515 void **pslot;
3516
3517 spin_lock(&mapping->tree_lock);
3518 pslot = radix_tree_lookup_slot(&mapping->page_tree,
3519 page_index(head));
3520 /*
3521 * Check if the head page is present in radix tree.
3522 * We assume all tail are present too, if head is there.
3523 */
3524 if (radix_tree_deref_slot_protected(pslot,
3525 &mapping->tree_lock) != head)
3526 goto fail;
3527 }
3528
3529 /* Prevent deferred_split_scan() touching ->_refcount */
3530 spin_lock(&pgdata->split_queue_lock);
3531 count = page_count(head);
3532 mapcount = total_mapcount(head);
3533 if (!mapcount && page_ref_freeze(head, 1 + extra_pins)) {
3534 if (!list_empty(page_deferred_list(head))) {
3535 pgdata->split_queue_len--;
3536 list_del(page_deferred_list(head));
3537 }
3538 if (mapping)
3539 __dec_zone_page_state(page, NR_SHMEM_THPS);
3540 spin_unlock(&pgdata->split_queue_lock);
3541 __split_huge_page(page, list, flags);
3542 ret = 0;
3543 } else {
3544 if (IS_ENABLED(CONFIG_DEBUG_VM) && mapcount) {
3545 pr_alert("total_mapcount: %u, page_count(): %u\n",
3546 mapcount, count);
3547 if (PageTail(page))
3548 dump_page(head, NULL);
3549 dump_page(page, "total_mapcount(head) > 0");
3550 BUG();
3551 }
3552 spin_unlock(&pgdata->split_queue_lock);
3553 fail: if (mapping)
3554 spin_unlock(&mapping->tree_lock);
3555 spin_unlock_irqrestore(&page_zone(head)->lru_lock, flags);
3556 unfreeze_page(head);
3557 ret = -EBUSY;
3558 }
3559
3560 out_unlock:
3561 if (anon_vma) {
3562 anon_vma_unlock_write(anon_vma);
3563 put_anon_vma(anon_vma);
3564 }
3565 if (mapping)
3566 i_mmap_unlock_read(mapping);
3567 out:
3568 count_vm_event(!ret ? THP_SPLIT_PAGE : THP_SPLIT_PAGE_FAILED);
3569 return ret;
3570 }
3571
3572 void free_transhuge_page(struct page *page)
3573 {
3574 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
3575 unsigned long flags;
3576
3577 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
3578 if (!list_empty(page_deferred_list(page))) {
3579 pgdata->split_queue_len--;
3580 list_del(page_deferred_list(page));
3581 }
3582 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3583 free_compound_page(page);
3584 }
3585
3586 void deferred_split_huge_page(struct page *page)
3587 {
3588 struct pglist_data *pgdata = NODE_DATA(page_to_nid(page));
3589 unsigned long flags;
3590
3591 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
3592
3593 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
3594 if (list_empty(page_deferred_list(page))) {
3595 count_vm_event(THP_DEFERRED_SPLIT_PAGE);
3596 list_add_tail(page_deferred_list(page), &pgdata->split_queue);
3597 pgdata->split_queue_len++;
3598 }
3599 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3600 }
3601
3602 static unsigned long deferred_split_count(struct shrinker *shrink,
3603 struct shrink_control *sc)
3604 {
3605 struct pglist_data *pgdata = NODE_DATA(sc->nid);
3606 return ACCESS_ONCE(pgdata->split_queue_len);
3607 }
3608
3609 static unsigned long deferred_split_scan(struct shrinker *shrink,
3610 struct shrink_control *sc)
3611 {
3612 struct pglist_data *pgdata = NODE_DATA(sc->nid);
3613 unsigned long flags;
3614 LIST_HEAD(list), *pos, *next;
3615 struct page *page;
3616 int split = 0;
3617
3618 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
3619 /* Take pin on all head pages to avoid freeing them under us */
3620 list_for_each_safe(pos, next, &pgdata->split_queue) {
3621 page = list_entry((void *)pos, struct page, mapping);
3622 page = compound_head(page);
3623 if (get_page_unless_zero(page)) {
3624 list_move(page_deferred_list(page), &list);
3625 } else {
3626 /* We lost race with put_compound_page() */
3627 list_del_init(page_deferred_list(page));
3628 pgdata->split_queue_len--;
3629 }
3630 if (!--sc->nr_to_scan)
3631 break;
3632 }
3633 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3634
3635 list_for_each_safe(pos, next, &list) {
3636 page = list_entry((void *)pos, struct page, mapping);
3637 lock_page(page);
3638 /* split_huge_page() removes page from list on success */
3639 if (!split_huge_page(page))
3640 split++;
3641 unlock_page(page);
3642 put_page(page);
3643 }
3644
3645 spin_lock_irqsave(&pgdata->split_queue_lock, flags);
3646 list_splice_tail(&list, &pgdata->split_queue);
3647 spin_unlock_irqrestore(&pgdata->split_queue_lock, flags);
3648
3649 /*
3650 * Stop shrinker if we didn't split any page, but the queue is empty.
3651 * This can happen if pages were freed under us.
3652 */
3653 if (!split && list_empty(&pgdata->split_queue))
3654 return SHRINK_STOP;
3655 return split;
3656 }
3657
3658 static struct shrinker deferred_split_shrinker = {
3659 .count_objects = deferred_split_count,
3660 .scan_objects = deferred_split_scan,
3661 .seeks = DEFAULT_SEEKS,
3662 .flags = SHRINKER_NUMA_AWARE,
3663 };
3664
3665 #ifdef CONFIG_DEBUG_FS
3666 static int split_huge_pages_set(void *data, u64 val)
3667 {
3668 struct zone *zone;
3669 struct page *page;
3670 unsigned long pfn, max_zone_pfn;
3671 unsigned long total = 0, split = 0;
3672
3673 if (val != 1)
3674 return -EINVAL;
3675
3676 for_each_populated_zone(zone) {
3677 max_zone_pfn = zone_end_pfn(zone);
3678 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++) {
3679 if (!pfn_valid(pfn))
3680 continue;
3681
3682 page = pfn_to_page(pfn);
3683 if (!get_page_unless_zero(page))
3684 continue;
3685
3686 if (zone != page_zone(page))
3687 goto next;
3688
3689 if (!PageHead(page) || PageHuge(page) || !PageLRU(page))
3690 goto next;
3691
3692 total++;
3693 lock_page(page);
3694 if (!split_huge_page(page))
3695 split++;
3696 unlock_page(page);
3697 next:
3698 put_page(page);
3699 }
3700 }
3701
3702 pr_info("%lu of %lu THP split\n", split, total);
3703
3704 return 0;
3705 }
3706 DEFINE_SIMPLE_ATTRIBUTE(split_huge_pages_fops, NULL, split_huge_pages_set,
3707 "%llu\n");
3708
3709 static int __init split_huge_pages_debugfs(void)
3710 {
3711 void *ret;
3712
3713 ret = debugfs_create_file("split_huge_pages", 0200, NULL, NULL,
3714 &split_huge_pages_fops);
3715 if (!ret)
3716 pr_warn("Failed to create split_huge_pages in debugfs");
3717 return 0;
3718 }
3719 late_initcall(split_huge_pages_debugfs);
3720 #endif
This page took 0.330314 seconds and 6 git commands to generate.