thp: handle errors in hugepage_init() properly
[deliverable/linux.git] / mm / huge_memory.c
1 /*
2 * Copyright (C) 2009 Red Hat, Inc.
3 *
4 * This work is licensed under the terms of the GNU GPL, version 2. See
5 * the COPYING file in the top-level directory.
6 */
7
8 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
9
10 #include <linux/mm.h>
11 #include <linux/sched.h>
12 #include <linux/highmem.h>
13 #include <linux/hugetlb.h>
14 #include <linux/mmu_notifier.h>
15 #include <linux/rmap.h>
16 #include <linux/swap.h>
17 #include <linux/shrinker.h>
18 #include <linux/mm_inline.h>
19 #include <linux/kthread.h>
20 #include <linux/khugepaged.h>
21 #include <linux/freezer.h>
22 #include <linux/mman.h>
23 #include <linux/pagemap.h>
24 #include <linux/migrate.h>
25 #include <linux/hashtable.h>
26
27 #include <asm/tlb.h>
28 #include <asm/pgalloc.h>
29 #include "internal.h"
30
31 /*
32 * By default transparent hugepage support is disabled in order that avoid
33 * to risk increase the memory footprint of applications without a guaranteed
34 * benefit. When transparent hugepage support is enabled, is for all mappings,
35 * and khugepaged scans all mappings.
36 * Defrag is invoked by khugepaged hugepage allocations and by page faults
37 * for all hugepage allocations.
38 */
39 unsigned long transparent_hugepage_flags __read_mostly =
40 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_ALWAYS
41 (1<<TRANSPARENT_HUGEPAGE_FLAG)|
42 #endif
43 #ifdef CONFIG_TRANSPARENT_HUGEPAGE_MADVISE
44 (1<<TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG)|
45 #endif
46 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_FLAG)|
47 (1<<TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG)|
48 (1<<TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
49
50 /* default scan 8*512 pte (or vmas) every 30 second */
51 static unsigned int khugepaged_pages_to_scan __read_mostly = HPAGE_PMD_NR*8;
52 static unsigned int khugepaged_pages_collapsed;
53 static unsigned int khugepaged_full_scans;
54 static unsigned int khugepaged_scan_sleep_millisecs __read_mostly = 10000;
55 /* during fragmentation poll the hugepage allocator once every minute */
56 static unsigned int khugepaged_alloc_sleep_millisecs __read_mostly = 60000;
57 static struct task_struct *khugepaged_thread __read_mostly;
58 static DEFINE_MUTEX(khugepaged_mutex);
59 static DEFINE_SPINLOCK(khugepaged_mm_lock);
60 static DECLARE_WAIT_QUEUE_HEAD(khugepaged_wait);
61 /*
62 * default collapse hugepages if there is at least one pte mapped like
63 * it would have happened if the vma was large enough during page
64 * fault.
65 */
66 static unsigned int khugepaged_max_ptes_none __read_mostly = HPAGE_PMD_NR-1;
67
68 static int khugepaged(void *none);
69 static int khugepaged_slab_init(void);
70 static void khugepaged_slab_exit(void);
71
72 #define MM_SLOTS_HASH_BITS 10
73 static __read_mostly DEFINE_HASHTABLE(mm_slots_hash, MM_SLOTS_HASH_BITS);
74
75 static struct kmem_cache *mm_slot_cache __read_mostly;
76
77 /**
78 * struct mm_slot - hash lookup from mm to mm_slot
79 * @hash: hash collision list
80 * @mm_node: khugepaged scan list headed in khugepaged_scan.mm_head
81 * @mm: the mm that this information is valid for
82 */
83 struct mm_slot {
84 struct hlist_node hash;
85 struct list_head mm_node;
86 struct mm_struct *mm;
87 };
88
89 /**
90 * struct khugepaged_scan - cursor for scanning
91 * @mm_head: the head of the mm list to scan
92 * @mm_slot: the current mm_slot we are scanning
93 * @address: the next address inside that to be scanned
94 *
95 * There is only the one khugepaged_scan instance of this cursor structure.
96 */
97 struct khugepaged_scan {
98 struct list_head mm_head;
99 struct mm_slot *mm_slot;
100 unsigned long address;
101 };
102 static struct khugepaged_scan khugepaged_scan = {
103 .mm_head = LIST_HEAD_INIT(khugepaged_scan.mm_head),
104 };
105
106
107 static int set_recommended_min_free_kbytes(void)
108 {
109 struct zone *zone;
110 int nr_zones = 0;
111 unsigned long recommended_min;
112
113 if (!khugepaged_enabled())
114 return 0;
115
116 for_each_populated_zone(zone)
117 nr_zones++;
118
119 /* Make sure at least 2 hugepages are free for MIGRATE_RESERVE */
120 recommended_min = pageblock_nr_pages * nr_zones * 2;
121
122 /*
123 * Make sure that on average at least two pageblocks are almost free
124 * of another type, one for a migratetype to fall back to and a
125 * second to avoid subsequent fallbacks of other types There are 3
126 * MIGRATE_TYPES we care about.
127 */
128 recommended_min += pageblock_nr_pages * nr_zones *
129 MIGRATE_PCPTYPES * MIGRATE_PCPTYPES;
130
131 /* don't ever allow to reserve more than 5% of the lowmem */
132 recommended_min = min(recommended_min,
133 (unsigned long) nr_free_buffer_pages() / 20);
134 recommended_min <<= (PAGE_SHIFT-10);
135
136 if (recommended_min > min_free_kbytes) {
137 if (user_min_free_kbytes >= 0)
138 pr_info("raising min_free_kbytes from %d to %lu "
139 "to help transparent hugepage allocations\n",
140 min_free_kbytes, recommended_min);
141
142 min_free_kbytes = recommended_min;
143 }
144 setup_per_zone_wmarks();
145 return 0;
146 }
147 late_initcall(set_recommended_min_free_kbytes);
148
149 static int start_khugepaged(void)
150 {
151 int err = 0;
152 if (khugepaged_enabled()) {
153 if (!khugepaged_thread)
154 khugepaged_thread = kthread_run(khugepaged, NULL,
155 "khugepaged");
156 if (unlikely(IS_ERR(khugepaged_thread))) {
157 pr_err("khugepaged: kthread_run(khugepaged) failed\n");
158 err = PTR_ERR(khugepaged_thread);
159 khugepaged_thread = NULL;
160 }
161
162 if (!list_empty(&khugepaged_scan.mm_head))
163 wake_up_interruptible(&khugepaged_wait);
164
165 set_recommended_min_free_kbytes();
166 } else if (khugepaged_thread) {
167 kthread_stop(khugepaged_thread);
168 khugepaged_thread = NULL;
169 }
170
171 return err;
172 }
173
174 static atomic_t huge_zero_refcount;
175 struct page *huge_zero_page __read_mostly;
176
177 static inline bool is_huge_zero_pmd(pmd_t pmd)
178 {
179 return is_huge_zero_page(pmd_page(pmd));
180 }
181
182 static struct page *get_huge_zero_page(void)
183 {
184 struct page *zero_page;
185 retry:
186 if (likely(atomic_inc_not_zero(&huge_zero_refcount)))
187 return READ_ONCE(huge_zero_page);
188
189 zero_page = alloc_pages((GFP_TRANSHUGE | __GFP_ZERO) & ~__GFP_MOVABLE,
190 HPAGE_PMD_ORDER);
191 if (!zero_page) {
192 count_vm_event(THP_ZERO_PAGE_ALLOC_FAILED);
193 return NULL;
194 }
195 count_vm_event(THP_ZERO_PAGE_ALLOC);
196 preempt_disable();
197 if (cmpxchg(&huge_zero_page, NULL, zero_page)) {
198 preempt_enable();
199 __free_pages(zero_page, compound_order(zero_page));
200 goto retry;
201 }
202
203 /* We take additional reference here. It will be put back by shrinker */
204 atomic_set(&huge_zero_refcount, 2);
205 preempt_enable();
206 return READ_ONCE(huge_zero_page);
207 }
208
209 static void put_huge_zero_page(void)
210 {
211 /*
212 * Counter should never go to zero here. Only shrinker can put
213 * last reference.
214 */
215 BUG_ON(atomic_dec_and_test(&huge_zero_refcount));
216 }
217
218 static unsigned long shrink_huge_zero_page_count(struct shrinker *shrink,
219 struct shrink_control *sc)
220 {
221 /* we can free zero page only if last reference remains */
222 return atomic_read(&huge_zero_refcount) == 1 ? HPAGE_PMD_NR : 0;
223 }
224
225 static unsigned long shrink_huge_zero_page_scan(struct shrinker *shrink,
226 struct shrink_control *sc)
227 {
228 if (atomic_cmpxchg(&huge_zero_refcount, 1, 0) == 1) {
229 struct page *zero_page = xchg(&huge_zero_page, NULL);
230 BUG_ON(zero_page == NULL);
231 __free_pages(zero_page, compound_order(zero_page));
232 return HPAGE_PMD_NR;
233 }
234
235 return 0;
236 }
237
238 static struct shrinker huge_zero_page_shrinker = {
239 .count_objects = shrink_huge_zero_page_count,
240 .scan_objects = shrink_huge_zero_page_scan,
241 .seeks = DEFAULT_SEEKS,
242 };
243
244 #ifdef CONFIG_SYSFS
245
246 static ssize_t double_flag_show(struct kobject *kobj,
247 struct kobj_attribute *attr, char *buf,
248 enum transparent_hugepage_flag enabled,
249 enum transparent_hugepage_flag req_madv)
250 {
251 if (test_bit(enabled, &transparent_hugepage_flags)) {
252 VM_BUG_ON(test_bit(req_madv, &transparent_hugepage_flags));
253 return sprintf(buf, "[always] madvise never\n");
254 } else if (test_bit(req_madv, &transparent_hugepage_flags))
255 return sprintf(buf, "always [madvise] never\n");
256 else
257 return sprintf(buf, "always madvise [never]\n");
258 }
259 static ssize_t double_flag_store(struct kobject *kobj,
260 struct kobj_attribute *attr,
261 const char *buf, size_t count,
262 enum transparent_hugepage_flag enabled,
263 enum transparent_hugepage_flag req_madv)
264 {
265 if (!memcmp("always", buf,
266 min(sizeof("always")-1, count))) {
267 set_bit(enabled, &transparent_hugepage_flags);
268 clear_bit(req_madv, &transparent_hugepage_flags);
269 } else if (!memcmp("madvise", buf,
270 min(sizeof("madvise")-1, count))) {
271 clear_bit(enabled, &transparent_hugepage_flags);
272 set_bit(req_madv, &transparent_hugepage_flags);
273 } else if (!memcmp("never", buf,
274 min(sizeof("never")-1, count))) {
275 clear_bit(enabled, &transparent_hugepage_flags);
276 clear_bit(req_madv, &transparent_hugepage_flags);
277 } else
278 return -EINVAL;
279
280 return count;
281 }
282
283 static ssize_t enabled_show(struct kobject *kobj,
284 struct kobj_attribute *attr, char *buf)
285 {
286 return double_flag_show(kobj, attr, buf,
287 TRANSPARENT_HUGEPAGE_FLAG,
288 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
289 }
290 static ssize_t enabled_store(struct kobject *kobj,
291 struct kobj_attribute *attr,
292 const char *buf, size_t count)
293 {
294 ssize_t ret;
295
296 ret = double_flag_store(kobj, attr, buf, count,
297 TRANSPARENT_HUGEPAGE_FLAG,
298 TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG);
299
300 if (ret > 0) {
301 int err;
302
303 mutex_lock(&khugepaged_mutex);
304 err = start_khugepaged();
305 mutex_unlock(&khugepaged_mutex);
306
307 if (err)
308 ret = err;
309 }
310
311 return ret;
312 }
313 static struct kobj_attribute enabled_attr =
314 __ATTR(enabled, 0644, enabled_show, enabled_store);
315
316 static ssize_t single_flag_show(struct kobject *kobj,
317 struct kobj_attribute *attr, char *buf,
318 enum transparent_hugepage_flag flag)
319 {
320 return sprintf(buf, "%d\n",
321 !!test_bit(flag, &transparent_hugepage_flags));
322 }
323
324 static ssize_t single_flag_store(struct kobject *kobj,
325 struct kobj_attribute *attr,
326 const char *buf, size_t count,
327 enum transparent_hugepage_flag flag)
328 {
329 unsigned long value;
330 int ret;
331
332 ret = kstrtoul(buf, 10, &value);
333 if (ret < 0)
334 return ret;
335 if (value > 1)
336 return -EINVAL;
337
338 if (value)
339 set_bit(flag, &transparent_hugepage_flags);
340 else
341 clear_bit(flag, &transparent_hugepage_flags);
342
343 return count;
344 }
345
346 /*
347 * Currently defrag only disables __GFP_NOWAIT for allocation. A blind
348 * __GFP_REPEAT is too aggressive, it's never worth swapping tons of
349 * memory just to allocate one more hugepage.
350 */
351 static ssize_t defrag_show(struct kobject *kobj,
352 struct kobj_attribute *attr, char *buf)
353 {
354 return double_flag_show(kobj, attr, buf,
355 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
356 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
357 }
358 static ssize_t defrag_store(struct kobject *kobj,
359 struct kobj_attribute *attr,
360 const char *buf, size_t count)
361 {
362 return double_flag_store(kobj, attr, buf, count,
363 TRANSPARENT_HUGEPAGE_DEFRAG_FLAG,
364 TRANSPARENT_HUGEPAGE_DEFRAG_REQ_MADV_FLAG);
365 }
366 static struct kobj_attribute defrag_attr =
367 __ATTR(defrag, 0644, defrag_show, defrag_store);
368
369 static ssize_t use_zero_page_show(struct kobject *kobj,
370 struct kobj_attribute *attr, char *buf)
371 {
372 return single_flag_show(kobj, attr, buf,
373 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
374 }
375 static ssize_t use_zero_page_store(struct kobject *kobj,
376 struct kobj_attribute *attr, const char *buf, size_t count)
377 {
378 return single_flag_store(kobj, attr, buf, count,
379 TRANSPARENT_HUGEPAGE_USE_ZERO_PAGE_FLAG);
380 }
381 static struct kobj_attribute use_zero_page_attr =
382 __ATTR(use_zero_page, 0644, use_zero_page_show, use_zero_page_store);
383 #ifdef CONFIG_DEBUG_VM
384 static ssize_t debug_cow_show(struct kobject *kobj,
385 struct kobj_attribute *attr, char *buf)
386 {
387 return single_flag_show(kobj, attr, buf,
388 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
389 }
390 static ssize_t debug_cow_store(struct kobject *kobj,
391 struct kobj_attribute *attr,
392 const char *buf, size_t count)
393 {
394 return single_flag_store(kobj, attr, buf, count,
395 TRANSPARENT_HUGEPAGE_DEBUG_COW_FLAG);
396 }
397 static struct kobj_attribute debug_cow_attr =
398 __ATTR(debug_cow, 0644, debug_cow_show, debug_cow_store);
399 #endif /* CONFIG_DEBUG_VM */
400
401 static struct attribute *hugepage_attr[] = {
402 &enabled_attr.attr,
403 &defrag_attr.attr,
404 &use_zero_page_attr.attr,
405 #ifdef CONFIG_DEBUG_VM
406 &debug_cow_attr.attr,
407 #endif
408 NULL,
409 };
410
411 static struct attribute_group hugepage_attr_group = {
412 .attrs = hugepage_attr,
413 };
414
415 static ssize_t scan_sleep_millisecs_show(struct kobject *kobj,
416 struct kobj_attribute *attr,
417 char *buf)
418 {
419 return sprintf(buf, "%u\n", khugepaged_scan_sleep_millisecs);
420 }
421
422 static ssize_t scan_sleep_millisecs_store(struct kobject *kobj,
423 struct kobj_attribute *attr,
424 const char *buf, size_t count)
425 {
426 unsigned long msecs;
427 int err;
428
429 err = kstrtoul(buf, 10, &msecs);
430 if (err || msecs > UINT_MAX)
431 return -EINVAL;
432
433 khugepaged_scan_sleep_millisecs = msecs;
434 wake_up_interruptible(&khugepaged_wait);
435
436 return count;
437 }
438 static struct kobj_attribute scan_sleep_millisecs_attr =
439 __ATTR(scan_sleep_millisecs, 0644, scan_sleep_millisecs_show,
440 scan_sleep_millisecs_store);
441
442 static ssize_t alloc_sleep_millisecs_show(struct kobject *kobj,
443 struct kobj_attribute *attr,
444 char *buf)
445 {
446 return sprintf(buf, "%u\n", khugepaged_alloc_sleep_millisecs);
447 }
448
449 static ssize_t alloc_sleep_millisecs_store(struct kobject *kobj,
450 struct kobj_attribute *attr,
451 const char *buf, size_t count)
452 {
453 unsigned long msecs;
454 int err;
455
456 err = kstrtoul(buf, 10, &msecs);
457 if (err || msecs > UINT_MAX)
458 return -EINVAL;
459
460 khugepaged_alloc_sleep_millisecs = msecs;
461 wake_up_interruptible(&khugepaged_wait);
462
463 return count;
464 }
465 static struct kobj_attribute alloc_sleep_millisecs_attr =
466 __ATTR(alloc_sleep_millisecs, 0644, alloc_sleep_millisecs_show,
467 alloc_sleep_millisecs_store);
468
469 static ssize_t pages_to_scan_show(struct kobject *kobj,
470 struct kobj_attribute *attr,
471 char *buf)
472 {
473 return sprintf(buf, "%u\n", khugepaged_pages_to_scan);
474 }
475 static ssize_t pages_to_scan_store(struct kobject *kobj,
476 struct kobj_attribute *attr,
477 const char *buf, size_t count)
478 {
479 int err;
480 unsigned long pages;
481
482 err = kstrtoul(buf, 10, &pages);
483 if (err || !pages || pages > UINT_MAX)
484 return -EINVAL;
485
486 khugepaged_pages_to_scan = pages;
487
488 return count;
489 }
490 static struct kobj_attribute pages_to_scan_attr =
491 __ATTR(pages_to_scan, 0644, pages_to_scan_show,
492 pages_to_scan_store);
493
494 static ssize_t pages_collapsed_show(struct kobject *kobj,
495 struct kobj_attribute *attr,
496 char *buf)
497 {
498 return sprintf(buf, "%u\n", khugepaged_pages_collapsed);
499 }
500 static struct kobj_attribute pages_collapsed_attr =
501 __ATTR_RO(pages_collapsed);
502
503 static ssize_t full_scans_show(struct kobject *kobj,
504 struct kobj_attribute *attr,
505 char *buf)
506 {
507 return sprintf(buf, "%u\n", khugepaged_full_scans);
508 }
509 static struct kobj_attribute full_scans_attr =
510 __ATTR_RO(full_scans);
511
512 static ssize_t khugepaged_defrag_show(struct kobject *kobj,
513 struct kobj_attribute *attr, char *buf)
514 {
515 return single_flag_show(kobj, attr, buf,
516 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
517 }
518 static ssize_t khugepaged_defrag_store(struct kobject *kobj,
519 struct kobj_attribute *attr,
520 const char *buf, size_t count)
521 {
522 return single_flag_store(kobj, attr, buf, count,
523 TRANSPARENT_HUGEPAGE_DEFRAG_KHUGEPAGED_FLAG);
524 }
525 static struct kobj_attribute khugepaged_defrag_attr =
526 __ATTR(defrag, 0644, khugepaged_defrag_show,
527 khugepaged_defrag_store);
528
529 /*
530 * max_ptes_none controls if khugepaged should collapse hugepages over
531 * any unmapped ptes in turn potentially increasing the memory
532 * footprint of the vmas. When max_ptes_none is 0 khugepaged will not
533 * reduce the available free memory in the system as it
534 * runs. Increasing max_ptes_none will instead potentially reduce the
535 * free memory in the system during the khugepaged scan.
536 */
537 static ssize_t khugepaged_max_ptes_none_show(struct kobject *kobj,
538 struct kobj_attribute *attr,
539 char *buf)
540 {
541 return sprintf(buf, "%u\n", khugepaged_max_ptes_none);
542 }
543 static ssize_t khugepaged_max_ptes_none_store(struct kobject *kobj,
544 struct kobj_attribute *attr,
545 const char *buf, size_t count)
546 {
547 int err;
548 unsigned long max_ptes_none;
549
550 err = kstrtoul(buf, 10, &max_ptes_none);
551 if (err || max_ptes_none > HPAGE_PMD_NR-1)
552 return -EINVAL;
553
554 khugepaged_max_ptes_none = max_ptes_none;
555
556 return count;
557 }
558 static struct kobj_attribute khugepaged_max_ptes_none_attr =
559 __ATTR(max_ptes_none, 0644, khugepaged_max_ptes_none_show,
560 khugepaged_max_ptes_none_store);
561
562 static struct attribute *khugepaged_attr[] = {
563 &khugepaged_defrag_attr.attr,
564 &khugepaged_max_ptes_none_attr.attr,
565 &pages_to_scan_attr.attr,
566 &pages_collapsed_attr.attr,
567 &full_scans_attr.attr,
568 &scan_sleep_millisecs_attr.attr,
569 &alloc_sleep_millisecs_attr.attr,
570 NULL,
571 };
572
573 static struct attribute_group khugepaged_attr_group = {
574 .attrs = khugepaged_attr,
575 .name = "khugepaged",
576 };
577
578 static int __init hugepage_init_sysfs(struct kobject **hugepage_kobj)
579 {
580 int err;
581
582 *hugepage_kobj = kobject_create_and_add("transparent_hugepage", mm_kobj);
583 if (unlikely(!*hugepage_kobj)) {
584 pr_err("failed to create transparent hugepage kobject\n");
585 return -ENOMEM;
586 }
587
588 err = sysfs_create_group(*hugepage_kobj, &hugepage_attr_group);
589 if (err) {
590 pr_err("failed to register transparent hugepage group\n");
591 goto delete_obj;
592 }
593
594 err = sysfs_create_group(*hugepage_kobj, &khugepaged_attr_group);
595 if (err) {
596 pr_err("failed to register transparent hugepage group\n");
597 goto remove_hp_group;
598 }
599
600 return 0;
601
602 remove_hp_group:
603 sysfs_remove_group(*hugepage_kobj, &hugepage_attr_group);
604 delete_obj:
605 kobject_put(*hugepage_kobj);
606 return err;
607 }
608
609 static void __init hugepage_exit_sysfs(struct kobject *hugepage_kobj)
610 {
611 sysfs_remove_group(hugepage_kobj, &khugepaged_attr_group);
612 sysfs_remove_group(hugepage_kobj, &hugepage_attr_group);
613 kobject_put(hugepage_kobj);
614 }
615 #else
616 static inline int hugepage_init_sysfs(struct kobject **hugepage_kobj)
617 {
618 return 0;
619 }
620
621 static inline void hugepage_exit_sysfs(struct kobject *hugepage_kobj)
622 {
623 }
624 #endif /* CONFIG_SYSFS */
625
626 static int __init hugepage_init(void)
627 {
628 int err;
629 struct kobject *hugepage_kobj;
630
631 if (!has_transparent_hugepage()) {
632 transparent_hugepage_flags = 0;
633 return -EINVAL;
634 }
635
636 err = hugepage_init_sysfs(&hugepage_kobj);
637 if (err)
638 goto err_sysfs;
639
640 err = khugepaged_slab_init();
641 if (err)
642 goto err_slab;
643
644 err = register_shrinker(&huge_zero_page_shrinker);
645 if (err)
646 goto err_hzp_shrinker;
647
648 /*
649 * By default disable transparent hugepages on smaller systems,
650 * where the extra memory used could hurt more than TLB overhead
651 * is likely to save. The admin can still enable it through /sys.
652 */
653 if (totalram_pages < (512 << (20 - PAGE_SHIFT)))
654 transparent_hugepage_flags = 0;
655
656 err = start_khugepaged();
657 if (err)
658 goto err_khugepaged;
659
660 return 0;
661 err_khugepaged:
662 unregister_shrinker(&huge_zero_page_shrinker);
663 err_hzp_shrinker:
664 khugepaged_slab_exit();
665 err_slab:
666 hugepage_exit_sysfs(hugepage_kobj);
667 err_sysfs:
668 return err;
669 }
670 subsys_initcall(hugepage_init);
671
672 static int __init setup_transparent_hugepage(char *str)
673 {
674 int ret = 0;
675 if (!str)
676 goto out;
677 if (!strcmp(str, "always")) {
678 set_bit(TRANSPARENT_HUGEPAGE_FLAG,
679 &transparent_hugepage_flags);
680 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
681 &transparent_hugepage_flags);
682 ret = 1;
683 } else if (!strcmp(str, "madvise")) {
684 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
685 &transparent_hugepage_flags);
686 set_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
687 &transparent_hugepage_flags);
688 ret = 1;
689 } else if (!strcmp(str, "never")) {
690 clear_bit(TRANSPARENT_HUGEPAGE_FLAG,
691 &transparent_hugepage_flags);
692 clear_bit(TRANSPARENT_HUGEPAGE_REQ_MADV_FLAG,
693 &transparent_hugepage_flags);
694 ret = 1;
695 }
696 out:
697 if (!ret)
698 pr_warn("transparent_hugepage= cannot parse, ignored\n");
699 return ret;
700 }
701 __setup("transparent_hugepage=", setup_transparent_hugepage);
702
703 pmd_t maybe_pmd_mkwrite(pmd_t pmd, struct vm_area_struct *vma)
704 {
705 if (likely(vma->vm_flags & VM_WRITE))
706 pmd = pmd_mkwrite(pmd);
707 return pmd;
708 }
709
710 static inline pmd_t mk_huge_pmd(struct page *page, pgprot_t prot)
711 {
712 pmd_t entry;
713 entry = mk_pmd(page, prot);
714 entry = pmd_mkhuge(entry);
715 return entry;
716 }
717
718 static int __do_huge_pmd_anonymous_page(struct mm_struct *mm,
719 struct vm_area_struct *vma,
720 unsigned long haddr, pmd_t *pmd,
721 struct page *page, gfp_t gfp)
722 {
723 struct mem_cgroup *memcg;
724 pgtable_t pgtable;
725 spinlock_t *ptl;
726
727 VM_BUG_ON_PAGE(!PageCompound(page), page);
728
729 if (mem_cgroup_try_charge(page, mm, gfp, &memcg))
730 return VM_FAULT_OOM;
731
732 pgtable = pte_alloc_one(mm, haddr);
733 if (unlikely(!pgtable)) {
734 mem_cgroup_cancel_charge(page, memcg);
735 return VM_FAULT_OOM;
736 }
737
738 clear_huge_page(page, haddr, HPAGE_PMD_NR);
739 /*
740 * The memory barrier inside __SetPageUptodate makes sure that
741 * clear_huge_page writes become visible before the set_pmd_at()
742 * write.
743 */
744 __SetPageUptodate(page);
745
746 ptl = pmd_lock(mm, pmd);
747 if (unlikely(!pmd_none(*pmd))) {
748 spin_unlock(ptl);
749 mem_cgroup_cancel_charge(page, memcg);
750 put_page(page);
751 pte_free(mm, pgtable);
752 } else {
753 pmd_t entry;
754 entry = mk_huge_pmd(page, vma->vm_page_prot);
755 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
756 page_add_new_anon_rmap(page, vma, haddr);
757 mem_cgroup_commit_charge(page, memcg, false);
758 lru_cache_add_active_or_unevictable(page, vma);
759 pgtable_trans_huge_deposit(mm, pmd, pgtable);
760 set_pmd_at(mm, haddr, pmd, entry);
761 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
762 atomic_long_inc(&mm->nr_ptes);
763 spin_unlock(ptl);
764 }
765
766 return 0;
767 }
768
769 static inline gfp_t alloc_hugepage_gfpmask(int defrag, gfp_t extra_gfp)
770 {
771 return (GFP_TRANSHUGE & ~(defrag ? 0 : __GFP_WAIT)) | extra_gfp;
772 }
773
774 /* Caller must hold page table lock. */
775 static bool set_huge_zero_page(pgtable_t pgtable, struct mm_struct *mm,
776 struct vm_area_struct *vma, unsigned long haddr, pmd_t *pmd,
777 struct page *zero_page)
778 {
779 pmd_t entry;
780 if (!pmd_none(*pmd))
781 return false;
782 entry = mk_pmd(zero_page, vma->vm_page_prot);
783 entry = pmd_mkhuge(entry);
784 pgtable_trans_huge_deposit(mm, pmd, pgtable);
785 set_pmd_at(mm, haddr, pmd, entry);
786 atomic_long_inc(&mm->nr_ptes);
787 return true;
788 }
789
790 int do_huge_pmd_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
791 unsigned long address, pmd_t *pmd,
792 unsigned int flags)
793 {
794 gfp_t gfp;
795 struct page *page;
796 unsigned long haddr = address & HPAGE_PMD_MASK;
797
798 if (haddr < vma->vm_start || haddr + HPAGE_PMD_SIZE > vma->vm_end)
799 return VM_FAULT_FALLBACK;
800 if (unlikely(anon_vma_prepare(vma)))
801 return VM_FAULT_OOM;
802 if (unlikely(khugepaged_enter(vma, vma->vm_flags)))
803 return VM_FAULT_OOM;
804 if (!(flags & FAULT_FLAG_WRITE) && !mm_forbids_zeropage(mm) &&
805 transparent_hugepage_use_zero_page()) {
806 spinlock_t *ptl;
807 pgtable_t pgtable;
808 struct page *zero_page;
809 bool set;
810 pgtable = pte_alloc_one(mm, haddr);
811 if (unlikely(!pgtable))
812 return VM_FAULT_OOM;
813 zero_page = get_huge_zero_page();
814 if (unlikely(!zero_page)) {
815 pte_free(mm, pgtable);
816 count_vm_event(THP_FAULT_FALLBACK);
817 return VM_FAULT_FALLBACK;
818 }
819 ptl = pmd_lock(mm, pmd);
820 set = set_huge_zero_page(pgtable, mm, vma, haddr, pmd,
821 zero_page);
822 spin_unlock(ptl);
823 if (!set) {
824 pte_free(mm, pgtable);
825 put_huge_zero_page();
826 }
827 return 0;
828 }
829 gfp = alloc_hugepage_gfpmask(transparent_hugepage_defrag(vma), 0);
830 page = alloc_hugepage_vma(gfp, vma, haddr, HPAGE_PMD_ORDER);
831 if (unlikely(!page)) {
832 count_vm_event(THP_FAULT_FALLBACK);
833 return VM_FAULT_FALLBACK;
834 }
835 if (unlikely(__do_huge_pmd_anonymous_page(mm, vma, haddr, pmd, page, gfp))) {
836 put_page(page);
837 count_vm_event(THP_FAULT_FALLBACK);
838 return VM_FAULT_FALLBACK;
839 }
840
841 count_vm_event(THP_FAULT_ALLOC);
842 return 0;
843 }
844
845 int copy_huge_pmd(struct mm_struct *dst_mm, struct mm_struct *src_mm,
846 pmd_t *dst_pmd, pmd_t *src_pmd, unsigned long addr,
847 struct vm_area_struct *vma)
848 {
849 spinlock_t *dst_ptl, *src_ptl;
850 struct page *src_page;
851 pmd_t pmd;
852 pgtable_t pgtable;
853 int ret;
854
855 ret = -ENOMEM;
856 pgtable = pte_alloc_one(dst_mm, addr);
857 if (unlikely(!pgtable))
858 goto out;
859
860 dst_ptl = pmd_lock(dst_mm, dst_pmd);
861 src_ptl = pmd_lockptr(src_mm, src_pmd);
862 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
863
864 ret = -EAGAIN;
865 pmd = *src_pmd;
866 if (unlikely(!pmd_trans_huge(pmd))) {
867 pte_free(dst_mm, pgtable);
868 goto out_unlock;
869 }
870 /*
871 * When page table lock is held, the huge zero pmd should not be
872 * under splitting since we don't split the page itself, only pmd to
873 * a page table.
874 */
875 if (is_huge_zero_pmd(pmd)) {
876 struct page *zero_page;
877 bool set;
878 /*
879 * get_huge_zero_page() will never allocate a new page here,
880 * since we already have a zero page to copy. It just takes a
881 * reference.
882 */
883 zero_page = get_huge_zero_page();
884 set = set_huge_zero_page(pgtable, dst_mm, vma, addr, dst_pmd,
885 zero_page);
886 BUG_ON(!set); /* unexpected !pmd_none(dst_pmd) */
887 ret = 0;
888 goto out_unlock;
889 }
890
891 if (unlikely(pmd_trans_splitting(pmd))) {
892 /* split huge page running from under us */
893 spin_unlock(src_ptl);
894 spin_unlock(dst_ptl);
895 pte_free(dst_mm, pgtable);
896
897 wait_split_huge_page(vma->anon_vma, src_pmd); /* src_vma */
898 goto out;
899 }
900 src_page = pmd_page(pmd);
901 VM_BUG_ON_PAGE(!PageHead(src_page), src_page);
902 get_page(src_page);
903 page_dup_rmap(src_page);
904 add_mm_counter(dst_mm, MM_ANONPAGES, HPAGE_PMD_NR);
905
906 pmdp_set_wrprotect(src_mm, addr, src_pmd);
907 pmd = pmd_mkold(pmd_wrprotect(pmd));
908 pgtable_trans_huge_deposit(dst_mm, dst_pmd, pgtable);
909 set_pmd_at(dst_mm, addr, dst_pmd, pmd);
910 atomic_long_inc(&dst_mm->nr_ptes);
911
912 ret = 0;
913 out_unlock:
914 spin_unlock(src_ptl);
915 spin_unlock(dst_ptl);
916 out:
917 return ret;
918 }
919
920 void huge_pmd_set_accessed(struct mm_struct *mm,
921 struct vm_area_struct *vma,
922 unsigned long address,
923 pmd_t *pmd, pmd_t orig_pmd,
924 int dirty)
925 {
926 spinlock_t *ptl;
927 pmd_t entry;
928 unsigned long haddr;
929
930 ptl = pmd_lock(mm, pmd);
931 if (unlikely(!pmd_same(*pmd, orig_pmd)))
932 goto unlock;
933
934 entry = pmd_mkyoung(orig_pmd);
935 haddr = address & HPAGE_PMD_MASK;
936 if (pmdp_set_access_flags(vma, haddr, pmd, entry, dirty))
937 update_mmu_cache_pmd(vma, address, pmd);
938
939 unlock:
940 spin_unlock(ptl);
941 }
942
943 /*
944 * Save CONFIG_DEBUG_PAGEALLOC from faulting falsely on tail pages
945 * during copy_user_huge_page()'s copy_page_rep(): in the case when
946 * the source page gets split and a tail freed before copy completes.
947 * Called under pmd_lock of checked pmd, so safe from splitting itself.
948 */
949 static void get_user_huge_page(struct page *page)
950 {
951 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) {
952 struct page *endpage = page + HPAGE_PMD_NR;
953
954 atomic_add(HPAGE_PMD_NR, &page->_count);
955 while (++page < endpage)
956 get_huge_page_tail(page);
957 } else {
958 get_page(page);
959 }
960 }
961
962 static void put_user_huge_page(struct page *page)
963 {
964 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC)) {
965 struct page *endpage = page + HPAGE_PMD_NR;
966
967 while (page < endpage)
968 put_page(page++);
969 } else {
970 put_page(page);
971 }
972 }
973
974 static int do_huge_pmd_wp_page_fallback(struct mm_struct *mm,
975 struct vm_area_struct *vma,
976 unsigned long address,
977 pmd_t *pmd, pmd_t orig_pmd,
978 struct page *page,
979 unsigned long haddr)
980 {
981 struct mem_cgroup *memcg;
982 spinlock_t *ptl;
983 pgtable_t pgtable;
984 pmd_t _pmd;
985 int ret = 0, i;
986 struct page **pages;
987 unsigned long mmun_start; /* For mmu_notifiers */
988 unsigned long mmun_end; /* For mmu_notifiers */
989
990 pages = kmalloc(sizeof(struct page *) * HPAGE_PMD_NR,
991 GFP_KERNEL);
992 if (unlikely(!pages)) {
993 ret |= VM_FAULT_OOM;
994 goto out;
995 }
996
997 for (i = 0; i < HPAGE_PMD_NR; i++) {
998 pages[i] = alloc_page_vma_node(GFP_HIGHUSER_MOVABLE |
999 __GFP_OTHER_NODE,
1000 vma, address, page_to_nid(page));
1001 if (unlikely(!pages[i] ||
1002 mem_cgroup_try_charge(pages[i], mm, GFP_KERNEL,
1003 &memcg))) {
1004 if (pages[i])
1005 put_page(pages[i]);
1006 while (--i >= 0) {
1007 memcg = (void *)page_private(pages[i]);
1008 set_page_private(pages[i], 0);
1009 mem_cgroup_cancel_charge(pages[i], memcg);
1010 put_page(pages[i]);
1011 }
1012 kfree(pages);
1013 ret |= VM_FAULT_OOM;
1014 goto out;
1015 }
1016 set_page_private(pages[i], (unsigned long)memcg);
1017 }
1018
1019 for (i = 0; i < HPAGE_PMD_NR; i++) {
1020 copy_user_highpage(pages[i], page + i,
1021 haddr + PAGE_SIZE * i, vma);
1022 __SetPageUptodate(pages[i]);
1023 cond_resched();
1024 }
1025
1026 mmun_start = haddr;
1027 mmun_end = haddr + HPAGE_PMD_SIZE;
1028 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1029
1030 ptl = pmd_lock(mm, pmd);
1031 if (unlikely(!pmd_same(*pmd, orig_pmd)))
1032 goto out_free_pages;
1033 VM_BUG_ON_PAGE(!PageHead(page), page);
1034
1035 pmdp_clear_flush_notify(vma, haddr, pmd);
1036 /* leave pmd empty until pte is filled */
1037
1038 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1039 pmd_populate(mm, &_pmd, pgtable);
1040
1041 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1042 pte_t *pte, entry;
1043 entry = mk_pte(pages[i], vma->vm_page_prot);
1044 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1045 memcg = (void *)page_private(pages[i]);
1046 set_page_private(pages[i], 0);
1047 page_add_new_anon_rmap(pages[i], vma, haddr);
1048 mem_cgroup_commit_charge(pages[i], memcg, false);
1049 lru_cache_add_active_or_unevictable(pages[i], vma);
1050 pte = pte_offset_map(&_pmd, haddr);
1051 VM_BUG_ON(!pte_none(*pte));
1052 set_pte_at(mm, haddr, pte, entry);
1053 pte_unmap(pte);
1054 }
1055 kfree(pages);
1056
1057 smp_wmb(); /* make pte visible before pmd */
1058 pmd_populate(mm, pmd, pgtable);
1059 page_remove_rmap(page);
1060 spin_unlock(ptl);
1061
1062 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1063
1064 ret |= VM_FAULT_WRITE;
1065 put_page(page);
1066
1067 out:
1068 return ret;
1069
1070 out_free_pages:
1071 spin_unlock(ptl);
1072 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1073 for (i = 0; i < HPAGE_PMD_NR; i++) {
1074 memcg = (void *)page_private(pages[i]);
1075 set_page_private(pages[i], 0);
1076 mem_cgroup_cancel_charge(pages[i], memcg);
1077 put_page(pages[i]);
1078 }
1079 kfree(pages);
1080 goto out;
1081 }
1082
1083 int do_huge_pmd_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1084 unsigned long address, pmd_t *pmd, pmd_t orig_pmd)
1085 {
1086 spinlock_t *ptl;
1087 int ret = 0;
1088 struct page *page = NULL, *new_page;
1089 struct mem_cgroup *memcg;
1090 unsigned long haddr;
1091 unsigned long mmun_start; /* For mmu_notifiers */
1092 unsigned long mmun_end; /* For mmu_notifiers */
1093 gfp_t huge_gfp; /* for allocation and charge */
1094
1095 ptl = pmd_lockptr(mm, pmd);
1096 VM_BUG_ON_VMA(!vma->anon_vma, vma);
1097 haddr = address & HPAGE_PMD_MASK;
1098 if (is_huge_zero_pmd(orig_pmd))
1099 goto alloc;
1100 spin_lock(ptl);
1101 if (unlikely(!pmd_same(*pmd, orig_pmd)))
1102 goto out_unlock;
1103
1104 page = pmd_page(orig_pmd);
1105 VM_BUG_ON_PAGE(!PageCompound(page) || !PageHead(page), page);
1106 if (page_mapcount(page) == 1) {
1107 pmd_t entry;
1108 entry = pmd_mkyoung(orig_pmd);
1109 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1110 if (pmdp_set_access_flags(vma, haddr, pmd, entry, 1))
1111 update_mmu_cache_pmd(vma, address, pmd);
1112 ret |= VM_FAULT_WRITE;
1113 goto out_unlock;
1114 }
1115 get_user_huge_page(page);
1116 spin_unlock(ptl);
1117 alloc:
1118 if (transparent_hugepage_enabled(vma) &&
1119 !transparent_hugepage_debug_cow()) {
1120 huge_gfp = alloc_hugepage_gfpmask(transparent_hugepage_defrag(vma), 0);
1121 new_page = alloc_hugepage_vma(huge_gfp, vma, haddr, HPAGE_PMD_ORDER);
1122 } else
1123 new_page = NULL;
1124
1125 if (unlikely(!new_page)) {
1126 if (!page) {
1127 split_huge_page_pmd(vma, address, pmd);
1128 ret |= VM_FAULT_FALLBACK;
1129 } else {
1130 ret = do_huge_pmd_wp_page_fallback(mm, vma, address,
1131 pmd, orig_pmd, page, haddr);
1132 if (ret & VM_FAULT_OOM) {
1133 split_huge_page(page);
1134 ret |= VM_FAULT_FALLBACK;
1135 }
1136 put_user_huge_page(page);
1137 }
1138 count_vm_event(THP_FAULT_FALLBACK);
1139 goto out;
1140 }
1141
1142 if (unlikely(mem_cgroup_try_charge(new_page, mm, huge_gfp, &memcg))) {
1143 put_page(new_page);
1144 if (page) {
1145 split_huge_page(page);
1146 put_user_huge_page(page);
1147 } else
1148 split_huge_page_pmd(vma, address, pmd);
1149 ret |= VM_FAULT_FALLBACK;
1150 count_vm_event(THP_FAULT_FALLBACK);
1151 goto out;
1152 }
1153
1154 count_vm_event(THP_FAULT_ALLOC);
1155
1156 if (!page)
1157 clear_huge_page(new_page, haddr, HPAGE_PMD_NR);
1158 else
1159 copy_user_huge_page(new_page, page, haddr, vma, HPAGE_PMD_NR);
1160 __SetPageUptodate(new_page);
1161
1162 mmun_start = haddr;
1163 mmun_end = haddr + HPAGE_PMD_SIZE;
1164 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1165
1166 spin_lock(ptl);
1167 if (page)
1168 put_user_huge_page(page);
1169 if (unlikely(!pmd_same(*pmd, orig_pmd))) {
1170 spin_unlock(ptl);
1171 mem_cgroup_cancel_charge(new_page, memcg);
1172 put_page(new_page);
1173 goto out_mn;
1174 } else {
1175 pmd_t entry;
1176 entry = mk_huge_pmd(new_page, vma->vm_page_prot);
1177 entry = maybe_pmd_mkwrite(pmd_mkdirty(entry), vma);
1178 pmdp_clear_flush_notify(vma, haddr, pmd);
1179 page_add_new_anon_rmap(new_page, vma, haddr);
1180 mem_cgroup_commit_charge(new_page, memcg, false);
1181 lru_cache_add_active_or_unevictable(new_page, vma);
1182 set_pmd_at(mm, haddr, pmd, entry);
1183 update_mmu_cache_pmd(vma, address, pmd);
1184 if (!page) {
1185 add_mm_counter(mm, MM_ANONPAGES, HPAGE_PMD_NR);
1186 put_huge_zero_page();
1187 } else {
1188 VM_BUG_ON_PAGE(!PageHead(page), page);
1189 page_remove_rmap(page);
1190 put_page(page);
1191 }
1192 ret |= VM_FAULT_WRITE;
1193 }
1194 spin_unlock(ptl);
1195 out_mn:
1196 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1197 out:
1198 return ret;
1199 out_unlock:
1200 spin_unlock(ptl);
1201 return ret;
1202 }
1203
1204 struct page *follow_trans_huge_pmd(struct vm_area_struct *vma,
1205 unsigned long addr,
1206 pmd_t *pmd,
1207 unsigned int flags)
1208 {
1209 struct mm_struct *mm = vma->vm_mm;
1210 struct page *page = NULL;
1211
1212 assert_spin_locked(pmd_lockptr(mm, pmd));
1213
1214 if (flags & FOLL_WRITE && !pmd_write(*pmd))
1215 goto out;
1216
1217 /* Avoid dumping huge zero page */
1218 if ((flags & FOLL_DUMP) && is_huge_zero_pmd(*pmd))
1219 return ERR_PTR(-EFAULT);
1220
1221 /* Full NUMA hinting faults to serialise migration in fault paths */
1222 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
1223 goto out;
1224
1225 page = pmd_page(*pmd);
1226 VM_BUG_ON_PAGE(!PageHead(page), page);
1227 if (flags & FOLL_TOUCH) {
1228 pmd_t _pmd;
1229 /*
1230 * We should set the dirty bit only for FOLL_WRITE but
1231 * for now the dirty bit in the pmd is meaningless.
1232 * And if the dirty bit will become meaningful and
1233 * we'll only set it with FOLL_WRITE, an atomic
1234 * set_bit will be required on the pmd to set the
1235 * young bit, instead of the current set_pmd_at.
1236 */
1237 _pmd = pmd_mkyoung(pmd_mkdirty(*pmd));
1238 if (pmdp_set_access_flags(vma, addr & HPAGE_PMD_MASK,
1239 pmd, _pmd, 1))
1240 update_mmu_cache_pmd(vma, addr, pmd);
1241 }
1242 if ((flags & FOLL_POPULATE) && (vma->vm_flags & VM_LOCKED)) {
1243 if (page->mapping && trylock_page(page)) {
1244 lru_add_drain();
1245 if (page->mapping)
1246 mlock_vma_page(page);
1247 unlock_page(page);
1248 }
1249 }
1250 page += (addr & ~HPAGE_PMD_MASK) >> PAGE_SHIFT;
1251 VM_BUG_ON_PAGE(!PageCompound(page), page);
1252 if (flags & FOLL_GET)
1253 get_page_foll(page);
1254
1255 out:
1256 return page;
1257 }
1258
1259 /* NUMA hinting page fault entry point for trans huge pmds */
1260 int do_huge_pmd_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
1261 unsigned long addr, pmd_t pmd, pmd_t *pmdp)
1262 {
1263 spinlock_t *ptl;
1264 struct anon_vma *anon_vma = NULL;
1265 struct page *page;
1266 unsigned long haddr = addr & HPAGE_PMD_MASK;
1267 int page_nid = -1, this_nid = numa_node_id();
1268 int target_nid, last_cpupid = -1;
1269 bool page_locked;
1270 bool migrated = false;
1271 bool was_writable;
1272 int flags = 0;
1273
1274 /* A PROT_NONE fault should not end up here */
1275 BUG_ON(!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)));
1276
1277 ptl = pmd_lock(mm, pmdp);
1278 if (unlikely(!pmd_same(pmd, *pmdp)))
1279 goto out_unlock;
1280
1281 /*
1282 * If there are potential migrations, wait for completion and retry
1283 * without disrupting NUMA hinting information. Do not relock and
1284 * check_same as the page may no longer be mapped.
1285 */
1286 if (unlikely(pmd_trans_migrating(*pmdp))) {
1287 page = pmd_page(*pmdp);
1288 spin_unlock(ptl);
1289 wait_on_page_locked(page);
1290 goto out;
1291 }
1292
1293 page = pmd_page(pmd);
1294 BUG_ON(is_huge_zero_page(page));
1295 page_nid = page_to_nid(page);
1296 last_cpupid = page_cpupid_last(page);
1297 count_vm_numa_event(NUMA_HINT_FAULTS);
1298 if (page_nid == this_nid) {
1299 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
1300 flags |= TNF_FAULT_LOCAL;
1301 }
1302
1303 /* See similar comment in do_numa_page for explanation */
1304 if (!(vma->vm_flags & VM_WRITE))
1305 flags |= TNF_NO_GROUP;
1306
1307 /*
1308 * Acquire the page lock to serialise THP migrations but avoid dropping
1309 * page_table_lock if at all possible
1310 */
1311 page_locked = trylock_page(page);
1312 target_nid = mpol_misplaced(page, vma, haddr);
1313 if (target_nid == -1) {
1314 /* If the page was locked, there are no parallel migrations */
1315 if (page_locked)
1316 goto clear_pmdnuma;
1317 }
1318
1319 /* Migration could have started since the pmd_trans_migrating check */
1320 if (!page_locked) {
1321 spin_unlock(ptl);
1322 wait_on_page_locked(page);
1323 page_nid = -1;
1324 goto out;
1325 }
1326
1327 /*
1328 * Page is misplaced. Page lock serialises migrations. Acquire anon_vma
1329 * to serialises splits
1330 */
1331 get_page(page);
1332 spin_unlock(ptl);
1333 anon_vma = page_lock_anon_vma_read(page);
1334
1335 /* Confirm the PMD did not change while page_table_lock was released */
1336 spin_lock(ptl);
1337 if (unlikely(!pmd_same(pmd, *pmdp))) {
1338 unlock_page(page);
1339 put_page(page);
1340 page_nid = -1;
1341 goto out_unlock;
1342 }
1343
1344 /* Bail if we fail to protect against THP splits for any reason */
1345 if (unlikely(!anon_vma)) {
1346 put_page(page);
1347 page_nid = -1;
1348 goto clear_pmdnuma;
1349 }
1350
1351 /*
1352 * Migrate the THP to the requested node, returns with page unlocked
1353 * and access rights restored.
1354 */
1355 spin_unlock(ptl);
1356 migrated = migrate_misplaced_transhuge_page(mm, vma,
1357 pmdp, pmd, addr, page, target_nid);
1358 if (migrated) {
1359 flags |= TNF_MIGRATED;
1360 page_nid = target_nid;
1361 } else
1362 flags |= TNF_MIGRATE_FAIL;
1363
1364 goto out;
1365 clear_pmdnuma:
1366 BUG_ON(!PageLocked(page));
1367 was_writable = pmd_write(pmd);
1368 pmd = pmd_modify(pmd, vma->vm_page_prot);
1369 pmd = pmd_mkyoung(pmd);
1370 if (was_writable)
1371 pmd = pmd_mkwrite(pmd);
1372 set_pmd_at(mm, haddr, pmdp, pmd);
1373 update_mmu_cache_pmd(vma, addr, pmdp);
1374 unlock_page(page);
1375 out_unlock:
1376 spin_unlock(ptl);
1377
1378 out:
1379 if (anon_vma)
1380 page_unlock_anon_vma_read(anon_vma);
1381
1382 if (page_nid != -1)
1383 task_numa_fault(last_cpupid, page_nid, HPAGE_PMD_NR, flags);
1384
1385 return 0;
1386 }
1387
1388 int zap_huge_pmd(struct mmu_gather *tlb, struct vm_area_struct *vma,
1389 pmd_t *pmd, unsigned long addr)
1390 {
1391 spinlock_t *ptl;
1392 int ret = 0;
1393
1394 if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
1395 struct page *page;
1396 pgtable_t pgtable;
1397 pmd_t orig_pmd;
1398 /*
1399 * For architectures like ppc64 we look at deposited pgtable
1400 * when calling pmdp_get_and_clear. So do the
1401 * pgtable_trans_huge_withdraw after finishing pmdp related
1402 * operations.
1403 */
1404 orig_pmd = pmdp_get_and_clear_full(tlb->mm, addr, pmd,
1405 tlb->fullmm);
1406 tlb_remove_pmd_tlb_entry(tlb, pmd, addr);
1407 pgtable = pgtable_trans_huge_withdraw(tlb->mm, pmd);
1408 if (is_huge_zero_pmd(orig_pmd)) {
1409 atomic_long_dec(&tlb->mm->nr_ptes);
1410 spin_unlock(ptl);
1411 put_huge_zero_page();
1412 } else {
1413 page = pmd_page(orig_pmd);
1414 page_remove_rmap(page);
1415 VM_BUG_ON_PAGE(page_mapcount(page) < 0, page);
1416 add_mm_counter(tlb->mm, MM_ANONPAGES, -HPAGE_PMD_NR);
1417 VM_BUG_ON_PAGE(!PageHead(page), page);
1418 atomic_long_dec(&tlb->mm->nr_ptes);
1419 spin_unlock(ptl);
1420 tlb_remove_page(tlb, page);
1421 }
1422 pte_free(tlb->mm, pgtable);
1423 ret = 1;
1424 }
1425 return ret;
1426 }
1427
1428 int move_huge_pmd(struct vm_area_struct *vma, struct vm_area_struct *new_vma,
1429 unsigned long old_addr,
1430 unsigned long new_addr, unsigned long old_end,
1431 pmd_t *old_pmd, pmd_t *new_pmd)
1432 {
1433 spinlock_t *old_ptl, *new_ptl;
1434 int ret = 0;
1435 pmd_t pmd;
1436
1437 struct mm_struct *mm = vma->vm_mm;
1438
1439 if ((old_addr & ~HPAGE_PMD_MASK) ||
1440 (new_addr & ~HPAGE_PMD_MASK) ||
1441 old_end - old_addr < HPAGE_PMD_SIZE ||
1442 (new_vma->vm_flags & VM_NOHUGEPAGE))
1443 goto out;
1444
1445 /*
1446 * The destination pmd shouldn't be established, free_pgtables()
1447 * should have release it.
1448 */
1449 if (WARN_ON(!pmd_none(*new_pmd))) {
1450 VM_BUG_ON(pmd_trans_huge(*new_pmd));
1451 goto out;
1452 }
1453
1454 /*
1455 * We don't have to worry about the ordering of src and dst
1456 * ptlocks because exclusive mmap_sem prevents deadlock.
1457 */
1458 ret = __pmd_trans_huge_lock(old_pmd, vma, &old_ptl);
1459 if (ret == 1) {
1460 new_ptl = pmd_lockptr(mm, new_pmd);
1461 if (new_ptl != old_ptl)
1462 spin_lock_nested(new_ptl, SINGLE_DEPTH_NESTING);
1463 pmd = pmdp_get_and_clear(mm, old_addr, old_pmd);
1464 VM_BUG_ON(!pmd_none(*new_pmd));
1465
1466 if (pmd_move_must_withdraw(new_ptl, old_ptl)) {
1467 pgtable_t pgtable;
1468 pgtable = pgtable_trans_huge_withdraw(mm, old_pmd);
1469 pgtable_trans_huge_deposit(mm, new_pmd, pgtable);
1470 }
1471 set_pmd_at(mm, new_addr, new_pmd, pmd_mksoft_dirty(pmd));
1472 if (new_ptl != old_ptl)
1473 spin_unlock(new_ptl);
1474 spin_unlock(old_ptl);
1475 }
1476 out:
1477 return ret;
1478 }
1479
1480 /*
1481 * Returns
1482 * - 0 if PMD could not be locked
1483 * - 1 if PMD was locked but protections unchange and TLB flush unnecessary
1484 * - HPAGE_PMD_NR is protections changed and TLB flush necessary
1485 */
1486 int change_huge_pmd(struct vm_area_struct *vma, pmd_t *pmd,
1487 unsigned long addr, pgprot_t newprot, int prot_numa)
1488 {
1489 struct mm_struct *mm = vma->vm_mm;
1490 spinlock_t *ptl;
1491 int ret = 0;
1492
1493 if (__pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
1494 pmd_t entry;
1495 bool preserve_write = prot_numa && pmd_write(*pmd);
1496 ret = 1;
1497
1498 /*
1499 * Avoid trapping faults against the zero page. The read-only
1500 * data is likely to be read-cached on the local CPU and
1501 * local/remote hits to the zero page are not interesting.
1502 */
1503 if (prot_numa && is_huge_zero_pmd(*pmd)) {
1504 spin_unlock(ptl);
1505 return ret;
1506 }
1507
1508 if (!prot_numa || !pmd_protnone(*pmd)) {
1509 entry = pmdp_get_and_clear_notify(mm, addr, pmd);
1510 entry = pmd_modify(entry, newprot);
1511 if (preserve_write)
1512 entry = pmd_mkwrite(entry);
1513 ret = HPAGE_PMD_NR;
1514 set_pmd_at(mm, addr, pmd, entry);
1515 BUG_ON(!preserve_write && pmd_write(entry));
1516 }
1517 spin_unlock(ptl);
1518 }
1519
1520 return ret;
1521 }
1522
1523 /*
1524 * Returns 1 if a given pmd maps a stable (not under splitting) thp.
1525 * Returns -1 if it maps a thp under splitting. Returns 0 otherwise.
1526 *
1527 * Note that if it returns 1, this routine returns without unlocking page
1528 * table locks. So callers must unlock them.
1529 */
1530 int __pmd_trans_huge_lock(pmd_t *pmd, struct vm_area_struct *vma,
1531 spinlock_t **ptl)
1532 {
1533 *ptl = pmd_lock(vma->vm_mm, pmd);
1534 if (likely(pmd_trans_huge(*pmd))) {
1535 if (unlikely(pmd_trans_splitting(*pmd))) {
1536 spin_unlock(*ptl);
1537 wait_split_huge_page(vma->anon_vma, pmd);
1538 return -1;
1539 } else {
1540 /* Thp mapped by 'pmd' is stable, so we can
1541 * handle it as it is. */
1542 return 1;
1543 }
1544 }
1545 spin_unlock(*ptl);
1546 return 0;
1547 }
1548
1549 /*
1550 * This function returns whether a given @page is mapped onto the @address
1551 * in the virtual space of @mm.
1552 *
1553 * When it's true, this function returns *pmd with holding the page table lock
1554 * and passing it back to the caller via @ptl.
1555 * If it's false, returns NULL without holding the page table lock.
1556 */
1557 pmd_t *page_check_address_pmd(struct page *page,
1558 struct mm_struct *mm,
1559 unsigned long address,
1560 enum page_check_address_pmd_flag flag,
1561 spinlock_t **ptl)
1562 {
1563 pgd_t *pgd;
1564 pud_t *pud;
1565 pmd_t *pmd;
1566
1567 if (address & ~HPAGE_PMD_MASK)
1568 return NULL;
1569
1570 pgd = pgd_offset(mm, address);
1571 if (!pgd_present(*pgd))
1572 return NULL;
1573 pud = pud_offset(pgd, address);
1574 if (!pud_present(*pud))
1575 return NULL;
1576 pmd = pmd_offset(pud, address);
1577
1578 *ptl = pmd_lock(mm, pmd);
1579 if (!pmd_present(*pmd))
1580 goto unlock;
1581 if (pmd_page(*pmd) != page)
1582 goto unlock;
1583 /*
1584 * split_vma() may create temporary aliased mappings. There is
1585 * no risk as long as all huge pmd are found and have their
1586 * splitting bit set before __split_huge_page_refcount
1587 * runs. Finding the same huge pmd more than once during the
1588 * same rmap walk is not a problem.
1589 */
1590 if (flag == PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG &&
1591 pmd_trans_splitting(*pmd))
1592 goto unlock;
1593 if (pmd_trans_huge(*pmd)) {
1594 VM_BUG_ON(flag == PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG &&
1595 !pmd_trans_splitting(*pmd));
1596 return pmd;
1597 }
1598 unlock:
1599 spin_unlock(*ptl);
1600 return NULL;
1601 }
1602
1603 static int __split_huge_page_splitting(struct page *page,
1604 struct vm_area_struct *vma,
1605 unsigned long address)
1606 {
1607 struct mm_struct *mm = vma->vm_mm;
1608 spinlock_t *ptl;
1609 pmd_t *pmd;
1610 int ret = 0;
1611 /* For mmu_notifiers */
1612 const unsigned long mmun_start = address;
1613 const unsigned long mmun_end = address + HPAGE_PMD_SIZE;
1614
1615 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
1616 pmd = page_check_address_pmd(page, mm, address,
1617 PAGE_CHECK_ADDRESS_PMD_NOTSPLITTING_FLAG, &ptl);
1618 if (pmd) {
1619 /*
1620 * We can't temporarily set the pmd to null in order
1621 * to split it, the pmd must remain marked huge at all
1622 * times or the VM won't take the pmd_trans_huge paths
1623 * and it won't wait on the anon_vma->root->rwsem to
1624 * serialize against split_huge_page*.
1625 */
1626 pmdp_splitting_flush(vma, address, pmd);
1627
1628 ret = 1;
1629 spin_unlock(ptl);
1630 }
1631 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
1632
1633 return ret;
1634 }
1635
1636 static void __split_huge_page_refcount(struct page *page,
1637 struct list_head *list)
1638 {
1639 int i;
1640 struct zone *zone = page_zone(page);
1641 struct lruvec *lruvec;
1642 int tail_count = 0;
1643
1644 /* prevent PageLRU to go away from under us, and freeze lru stats */
1645 spin_lock_irq(&zone->lru_lock);
1646 lruvec = mem_cgroup_page_lruvec(page, zone);
1647
1648 compound_lock(page);
1649 /* complete memcg works before add pages to LRU */
1650 mem_cgroup_split_huge_fixup(page);
1651
1652 for (i = HPAGE_PMD_NR - 1; i >= 1; i--) {
1653 struct page *page_tail = page + i;
1654
1655 /* tail_page->_mapcount cannot change */
1656 BUG_ON(page_mapcount(page_tail) < 0);
1657 tail_count += page_mapcount(page_tail);
1658 /* check for overflow */
1659 BUG_ON(tail_count < 0);
1660 BUG_ON(atomic_read(&page_tail->_count) != 0);
1661 /*
1662 * tail_page->_count is zero and not changing from
1663 * under us. But get_page_unless_zero() may be running
1664 * from under us on the tail_page. If we used
1665 * atomic_set() below instead of atomic_add(), we
1666 * would then run atomic_set() concurrently with
1667 * get_page_unless_zero(), and atomic_set() is
1668 * implemented in C not using locked ops. spin_unlock
1669 * on x86 sometime uses locked ops because of PPro
1670 * errata 66, 92, so unless somebody can guarantee
1671 * atomic_set() here would be safe on all archs (and
1672 * not only on x86), it's safer to use atomic_add().
1673 */
1674 atomic_add(page_mapcount(page) + page_mapcount(page_tail) + 1,
1675 &page_tail->_count);
1676
1677 /* after clearing PageTail the gup refcount can be released */
1678 smp_mb__after_atomic();
1679
1680 /*
1681 * retain hwpoison flag of the poisoned tail page:
1682 * fix for the unsuitable process killed on Guest Machine(KVM)
1683 * by the memory-failure.
1684 */
1685 page_tail->flags &= ~PAGE_FLAGS_CHECK_AT_PREP | __PG_HWPOISON;
1686 page_tail->flags |= (page->flags &
1687 ((1L << PG_referenced) |
1688 (1L << PG_swapbacked) |
1689 (1L << PG_mlocked) |
1690 (1L << PG_uptodate) |
1691 (1L << PG_active) |
1692 (1L << PG_unevictable)));
1693 page_tail->flags |= (1L << PG_dirty);
1694
1695 /* clear PageTail before overwriting first_page */
1696 smp_wmb();
1697
1698 /*
1699 * __split_huge_page_splitting() already set the
1700 * splitting bit in all pmd that could map this
1701 * hugepage, that will ensure no CPU can alter the
1702 * mapcount on the head page. The mapcount is only
1703 * accounted in the head page and it has to be
1704 * transferred to all tail pages in the below code. So
1705 * for this code to be safe, the split the mapcount
1706 * can't change. But that doesn't mean userland can't
1707 * keep changing and reading the page contents while
1708 * we transfer the mapcount, so the pmd splitting
1709 * status is achieved setting a reserved bit in the
1710 * pmd, not by clearing the present bit.
1711 */
1712 page_tail->_mapcount = page->_mapcount;
1713
1714 BUG_ON(page_tail->mapping);
1715 page_tail->mapping = page->mapping;
1716
1717 page_tail->index = page->index + i;
1718 page_cpupid_xchg_last(page_tail, page_cpupid_last(page));
1719
1720 BUG_ON(!PageAnon(page_tail));
1721 BUG_ON(!PageUptodate(page_tail));
1722 BUG_ON(!PageDirty(page_tail));
1723 BUG_ON(!PageSwapBacked(page_tail));
1724
1725 lru_add_page_tail(page, page_tail, lruvec, list);
1726 }
1727 atomic_sub(tail_count, &page->_count);
1728 BUG_ON(atomic_read(&page->_count) <= 0);
1729
1730 __mod_zone_page_state(zone, NR_ANON_TRANSPARENT_HUGEPAGES, -1);
1731
1732 ClearPageCompound(page);
1733 compound_unlock(page);
1734 spin_unlock_irq(&zone->lru_lock);
1735
1736 for (i = 1; i < HPAGE_PMD_NR; i++) {
1737 struct page *page_tail = page + i;
1738 BUG_ON(page_count(page_tail) <= 0);
1739 /*
1740 * Tail pages may be freed if there wasn't any mapping
1741 * like if add_to_swap() is running on a lru page that
1742 * had its mapping zapped. And freeing these pages
1743 * requires taking the lru_lock so we do the put_page
1744 * of the tail pages after the split is complete.
1745 */
1746 put_page(page_tail);
1747 }
1748
1749 /*
1750 * Only the head page (now become a regular page) is required
1751 * to be pinned by the caller.
1752 */
1753 BUG_ON(page_count(page) <= 0);
1754 }
1755
1756 static int __split_huge_page_map(struct page *page,
1757 struct vm_area_struct *vma,
1758 unsigned long address)
1759 {
1760 struct mm_struct *mm = vma->vm_mm;
1761 spinlock_t *ptl;
1762 pmd_t *pmd, _pmd;
1763 int ret = 0, i;
1764 pgtable_t pgtable;
1765 unsigned long haddr;
1766
1767 pmd = page_check_address_pmd(page, mm, address,
1768 PAGE_CHECK_ADDRESS_PMD_SPLITTING_FLAG, &ptl);
1769 if (pmd) {
1770 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
1771 pmd_populate(mm, &_pmd, pgtable);
1772 if (pmd_write(*pmd))
1773 BUG_ON(page_mapcount(page) != 1);
1774
1775 haddr = address;
1776 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
1777 pte_t *pte, entry;
1778 BUG_ON(PageCompound(page+i));
1779 /*
1780 * Note that NUMA hinting access restrictions are not
1781 * transferred to avoid any possibility of altering
1782 * permissions across VMAs.
1783 */
1784 entry = mk_pte(page + i, vma->vm_page_prot);
1785 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1786 if (!pmd_write(*pmd))
1787 entry = pte_wrprotect(entry);
1788 if (!pmd_young(*pmd))
1789 entry = pte_mkold(entry);
1790 pte = pte_offset_map(&_pmd, haddr);
1791 BUG_ON(!pte_none(*pte));
1792 set_pte_at(mm, haddr, pte, entry);
1793 pte_unmap(pte);
1794 }
1795
1796 smp_wmb(); /* make pte visible before pmd */
1797 /*
1798 * Up to this point the pmd is present and huge and
1799 * userland has the whole access to the hugepage
1800 * during the split (which happens in place). If we
1801 * overwrite the pmd with the not-huge version
1802 * pointing to the pte here (which of course we could
1803 * if all CPUs were bug free), userland could trigger
1804 * a small page size TLB miss on the small sized TLB
1805 * while the hugepage TLB entry is still established
1806 * in the huge TLB. Some CPU doesn't like that. See
1807 * http://support.amd.com/us/Processor_TechDocs/41322.pdf,
1808 * Erratum 383 on page 93. Intel should be safe but is
1809 * also warns that it's only safe if the permission
1810 * and cache attributes of the two entries loaded in
1811 * the two TLB is identical (which should be the case
1812 * here). But it is generally safer to never allow
1813 * small and huge TLB entries for the same virtual
1814 * address to be loaded simultaneously. So instead of
1815 * doing "pmd_populate(); flush_tlb_range();" we first
1816 * mark the current pmd notpresent (atomically because
1817 * here the pmd_trans_huge and pmd_trans_splitting
1818 * must remain set at all times on the pmd until the
1819 * split is complete for this pmd), then we flush the
1820 * SMP TLB and finally we write the non-huge version
1821 * of the pmd entry with pmd_populate.
1822 */
1823 pmdp_invalidate(vma, address, pmd);
1824 pmd_populate(mm, pmd, pgtable);
1825 ret = 1;
1826 spin_unlock(ptl);
1827 }
1828
1829 return ret;
1830 }
1831
1832 /* must be called with anon_vma->root->rwsem held */
1833 static void __split_huge_page(struct page *page,
1834 struct anon_vma *anon_vma,
1835 struct list_head *list)
1836 {
1837 int mapcount, mapcount2;
1838 pgoff_t pgoff = page->index << (PAGE_CACHE_SHIFT - PAGE_SHIFT);
1839 struct anon_vma_chain *avc;
1840
1841 BUG_ON(!PageHead(page));
1842 BUG_ON(PageTail(page));
1843
1844 mapcount = 0;
1845 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1846 struct vm_area_struct *vma = avc->vma;
1847 unsigned long addr = vma_address(page, vma);
1848 BUG_ON(is_vma_temporary_stack(vma));
1849 mapcount += __split_huge_page_splitting(page, vma, addr);
1850 }
1851 /*
1852 * It is critical that new vmas are added to the tail of the
1853 * anon_vma list. This guarantes that if copy_huge_pmd() runs
1854 * and establishes a child pmd before
1855 * __split_huge_page_splitting() freezes the parent pmd (so if
1856 * we fail to prevent copy_huge_pmd() from running until the
1857 * whole __split_huge_page() is complete), we will still see
1858 * the newly established pmd of the child later during the
1859 * walk, to be able to set it as pmd_trans_splitting too.
1860 */
1861 if (mapcount != page_mapcount(page)) {
1862 pr_err("mapcount %d page_mapcount %d\n",
1863 mapcount, page_mapcount(page));
1864 BUG();
1865 }
1866
1867 __split_huge_page_refcount(page, list);
1868
1869 mapcount2 = 0;
1870 anon_vma_interval_tree_foreach(avc, &anon_vma->rb_root, pgoff, pgoff) {
1871 struct vm_area_struct *vma = avc->vma;
1872 unsigned long addr = vma_address(page, vma);
1873 BUG_ON(is_vma_temporary_stack(vma));
1874 mapcount2 += __split_huge_page_map(page, vma, addr);
1875 }
1876 if (mapcount != mapcount2) {
1877 pr_err("mapcount %d mapcount2 %d page_mapcount %d\n",
1878 mapcount, mapcount2, page_mapcount(page));
1879 BUG();
1880 }
1881 }
1882
1883 /*
1884 * Split a hugepage into normal pages. This doesn't change the position of head
1885 * page. If @list is null, tail pages will be added to LRU list, otherwise, to
1886 * @list. Both head page and tail pages will inherit mapping, flags, and so on
1887 * from the hugepage.
1888 * Return 0 if the hugepage is split successfully otherwise return 1.
1889 */
1890 int split_huge_page_to_list(struct page *page, struct list_head *list)
1891 {
1892 struct anon_vma *anon_vma;
1893 int ret = 1;
1894
1895 BUG_ON(is_huge_zero_page(page));
1896 BUG_ON(!PageAnon(page));
1897
1898 /*
1899 * The caller does not necessarily hold an mmap_sem that would prevent
1900 * the anon_vma disappearing so we first we take a reference to it
1901 * and then lock the anon_vma for write. This is similar to
1902 * page_lock_anon_vma_read except the write lock is taken to serialise
1903 * against parallel split or collapse operations.
1904 */
1905 anon_vma = page_get_anon_vma(page);
1906 if (!anon_vma)
1907 goto out;
1908 anon_vma_lock_write(anon_vma);
1909
1910 ret = 0;
1911 if (!PageCompound(page))
1912 goto out_unlock;
1913
1914 BUG_ON(!PageSwapBacked(page));
1915 __split_huge_page(page, anon_vma, list);
1916 count_vm_event(THP_SPLIT);
1917
1918 BUG_ON(PageCompound(page));
1919 out_unlock:
1920 anon_vma_unlock_write(anon_vma);
1921 put_anon_vma(anon_vma);
1922 out:
1923 return ret;
1924 }
1925
1926 #define VM_NO_THP (VM_SPECIAL | VM_HUGETLB | VM_SHARED | VM_MAYSHARE)
1927
1928 int hugepage_madvise(struct vm_area_struct *vma,
1929 unsigned long *vm_flags, int advice)
1930 {
1931 switch (advice) {
1932 case MADV_HUGEPAGE:
1933 #ifdef CONFIG_S390
1934 /*
1935 * qemu blindly sets MADV_HUGEPAGE on all allocations, but s390
1936 * can't handle this properly after s390_enable_sie, so we simply
1937 * ignore the madvise to prevent qemu from causing a SIGSEGV.
1938 */
1939 if (mm_has_pgste(vma->vm_mm))
1940 return 0;
1941 #endif
1942 /*
1943 * Be somewhat over-protective like KSM for now!
1944 */
1945 if (*vm_flags & (VM_HUGEPAGE | VM_NO_THP))
1946 return -EINVAL;
1947 *vm_flags &= ~VM_NOHUGEPAGE;
1948 *vm_flags |= VM_HUGEPAGE;
1949 /*
1950 * If the vma become good for khugepaged to scan,
1951 * register it here without waiting a page fault that
1952 * may not happen any time soon.
1953 */
1954 if (unlikely(khugepaged_enter_vma_merge(vma, *vm_flags)))
1955 return -ENOMEM;
1956 break;
1957 case MADV_NOHUGEPAGE:
1958 /*
1959 * Be somewhat over-protective like KSM for now!
1960 */
1961 if (*vm_flags & (VM_NOHUGEPAGE | VM_NO_THP))
1962 return -EINVAL;
1963 *vm_flags &= ~VM_HUGEPAGE;
1964 *vm_flags |= VM_NOHUGEPAGE;
1965 /*
1966 * Setting VM_NOHUGEPAGE will prevent khugepaged from scanning
1967 * this vma even if we leave the mm registered in khugepaged if
1968 * it got registered before VM_NOHUGEPAGE was set.
1969 */
1970 break;
1971 }
1972
1973 return 0;
1974 }
1975
1976 static int __init khugepaged_slab_init(void)
1977 {
1978 mm_slot_cache = kmem_cache_create("khugepaged_mm_slot",
1979 sizeof(struct mm_slot),
1980 __alignof__(struct mm_slot), 0, NULL);
1981 if (!mm_slot_cache)
1982 return -ENOMEM;
1983
1984 return 0;
1985 }
1986
1987 static void __init khugepaged_slab_exit(void)
1988 {
1989 kmem_cache_destroy(mm_slot_cache);
1990 }
1991
1992 static inline struct mm_slot *alloc_mm_slot(void)
1993 {
1994 if (!mm_slot_cache) /* initialization failed */
1995 return NULL;
1996 return kmem_cache_zalloc(mm_slot_cache, GFP_KERNEL);
1997 }
1998
1999 static inline void free_mm_slot(struct mm_slot *mm_slot)
2000 {
2001 kmem_cache_free(mm_slot_cache, mm_slot);
2002 }
2003
2004 static struct mm_slot *get_mm_slot(struct mm_struct *mm)
2005 {
2006 struct mm_slot *mm_slot;
2007
2008 hash_for_each_possible(mm_slots_hash, mm_slot, hash, (unsigned long)mm)
2009 if (mm == mm_slot->mm)
2010 return mm_slot;
2011
2012 return NULL;
2013 }
2014
2015 static void insert_to_mm_slots_hash(struct mm_struct *mm,
2016 struct mm_slot *mm_slot)
2017 {
2018 mm_slot->mm = mm;
2019 hash_add(mm_slots_hash, &mm_slot->hash, (long)mm);
2020 }
2021
2022 static inline int khugepaged_test_exit(struct mm_struct *mm)
2023 {
2024 return atomic_read(&mm->mm_users) == 0;
2025 }
2026
2027 int __khugepaged_enter(struct mm_struct *mm)
2028 {
2029 struct mm_slot *mm_slot;
2030 int wakeup;
2031
2032 mm_slot = alloc_mm_slot();
2033 if (!mm_slot)
2034 return -ENOMEM;
2035
2036 /* __khugepaged_exit() must not run from under us */
2037 VM_BUG_ON_MM(khugepaged_test_exit(mm), mm);
2038 if (unlikely(test_and_set_bit(MMF_VM_HUGEPAGE, &mm->flags))) {
2039 free_mm_slot(mm_slot);
2040 return 0;
2041 }
2042
2043 spin_lock(&khugepaged_mm_lock);
2044 insert_to_mm_slots_hash(mm, mm_slot);
2045 /*
2046 * Insert just behind the scanning cursor, to let the area settle
2047 * down a little.
2048 */
2049 wakeup = list_empty(&khugepaged_scan.mm_head);
2050 list_add_tail(&mm_slot->mm_node, &khugepaged_scan.mm_head);
2051 spin_unlock(&khugepaged_mm_lock);
2052
2053 atomic_inc(&mm->mm_count);
2054 if (wakeup)
2055 wake_up_interruptible(&khugepaged_wait);
2056
2057 return 0;
2058 }
2059
2060 int khugepaged_enter_vma_merge(struct vm_area_struct *vma,
2061 unsigned long vm_flags)
2062 {
2063 unsigned long hstart, hend;
2064 if (!vma->anon_vma)
2065 /*
2066 * Not yet faulted in so we will register later in the
2067 * page fault if needed.
2068 */
2069 return 0;
2070 if (vma->vm_ops)
2071 /* khugepaged not yet working on file or special mappings */
2072 return 0;
2073 VM_BUG_ON_VMA(vm_flags & VM_NO_THP, vma);
2074 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2075 hend = vma->vm_end & HPAGE_PMD_MASK;
2076 if (hstart < hend)
2077 return khugepaged_enter(vma, vm_flags);
2078 return 0;
2079 }
2080
2081 void __khugepaged_exit(struct mm_struct *mm)
2082 {
2083 struct mm_slot *mm_slot;
2084 int free = 0;
2085
2086 spin_lock(&khugepaged_mm_lock);
2087 mm_slot = get_mm_slot(mm);
2088 if (mm_slot && khugepaged_scan.mm_slot != mm_slot) {
2089 hash_del(&mm_slot->hash);
2090 list_del(&mm_slot->mm_node);
2091 free = 1;
2092 }
2093 spin_unlock(&khugepaged_mm_lock);
2094
2095 if (free) {
2096 clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2097 free_mm_slot(mm_slot);
2098 mmdrop(mm);
2099 } else if (mm_slot) {
2100 /*
2101 * This is required to serialize against
2102 * khugepaged_test_exit() (which is guaranteed to run
2103 * under mmap sem read mode). Stop here (after we
2104 * return all pagetables will be destroyed) until
2105 * khugepaged has finished working on the pagetables
2106 * under the mmap_sem.
2107 */
2108 down_write(&mm->mmap_sem);
2109 up_write(&mm->mmap_sem);
2110 }
2111 }
2112
2113 static void release_pte_page(struct page *page)
2114 {
2115 /* 0 stands for page_is_file_cache(page) == false */
2116 dec_zone_page_state(page, NR_ISOLATED_ANON + 0);
2117 unlock_page(page);
2118 putback_lru_page(page);
2119 }
2120
2121 static void release_pte_pages(pte_t *pte, pte_t *_pte)
2122 {
2123 while (--_pte >= pte) {
2124 pte_t pteval = *_pte;
2125 if (!pte_none(pteval) && !is_zero_pfn(pte_pfn(pteval)))
2126 release_pte_page(pte_page(pteval));
2127 }
2128 }
2129
2130 static int __collapse_huge_page_isolate(struct vm_area_struct *vma,
2131 unsigned long address,
2132 pte_t *pte)
2133 {
2134 struct page *page;
2135 pte_t *_pte;
2136 int none_or_zero = 0;
2137 bool referenced = false, writable = false;
2138 for (_pte = pte; _pte < pte+HPAGE_PMD_NR;
2139 _pte++, address += PAGE_SIZE) {
2140 pte_t pteval = *_pte;
2141 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
2142 if (++none_or_zero <= khugepaged_max_ptes_none)
2143 continue;
2144 else
2145 goto out;
2146 }
2147 if (!pte_present(pteval))
2148 goto out;
2149 page = vm_normal_page(vma, address, pteval);
2150 if (unlikely(!page))
2151 goto out;
2152
2153 VM_BUG_ON_PAGE(PageCompound(page), page);
2154 VM_BUG_ON_PAGE(!PageAnon(page), page);
2155 VM_BUG_ON_PAGE(!PageSwapBacked(page), page);
2156
2157 /*
2158 * We can do it before isolate_lru_page because the
2159 * page can't be freed from under us. NOTE: PG_lock
2160 * is needed to serialize against split_huge_page
2161 * when invoked from the VM.
2162 */
2163 if (!trylock_page(page))
2164 goto out;
2165
2166 /*
2167 * cannot use mapcount: can't collapse if there's a gup pin.
2168 * The page must only be referenced by the scanned process
2169 * and page swap cache.
2170 */
2171 if (page_count(page) != 1 + !!PageSwapCache(page)) {
2172 unlock_page(page);
2173 goto out;
2174 }
2175 if (pte_write(pteval)) {
2176 writable = true;
2177 } else {
2178 if (PageSwapCache(page) && !reuse_swap_page(page)) {
2179 unlock_page(page);
2180 goto out;
2181 }
2182 /*
2183 * Page is not in the swap cache. It can be collapsed
2184 * into a THP.
2185 */
2186 }
2187
2188 /*
2189 * Isolate the page to avoid collapsing an hugepage
2190 * currently in use by the VM.
2191 */
2192 if (isolate_lru_page(page)) {
2193 unlock_page(page);
2194 goto out;
2195 }
2196 /* 0 stands for page_is_file_cache(page) == false */
2197 inc_zone_page_state(page, NR_ISOLATED_ANON + 0);
2198 VM_BUG_ON_PAGE(!PageLocked(page), page);
2199 VM_BUG_ON_PAGE(PageLRU(page), page);
2200
2201 /* If there is no mapped pte young don't collapse the page */
2202 if (pte_young(pteval) || PageReferenced(page) ||
2203 mmu_notifier_test_young(vma->vm_mm, address))
2204 referenced = true;
2205 }
2206 if (likely(referenced && writable))
2207 return 1;
2208 out:
2209 release_pte_pages(pte, _pte);
2210 return 0;
2211 }
2212
2213 static void __collapse_huge_page_copy(pte_t *pte, struct page *page,
2214 struct vm_area_struct *vma,
2215 unsigned long address,
2216 spinlock_t *ptl)
2217 {
2218 pte_t *_pte;
2219 for (_pte = pte; _pte < pte+HPAGE_PMD_NR; _pte++) {
2220 pte_t pteval = *_pte;
2221 struct page *src_page;
2222
2223 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
2224 clear_user_highpage(page, address);
2225 add_mm_counter(vma->vm_mm, MM_ANONPAGES, 1);
2226 if (is_zero_pfn(pte_pfn(pteval))) {
2227 /*
2228 * ptl mostly unnecessary.
2229 */
2230 spin_lock(ptl);
2231 /*
2232 * paravirt calls inside pte_clear here are
2233 * superfluous.
2234 */
2235 pte_clear(vma->vm_mm, address, _pte);
2236 spin_unlock(ptl);
2237 }
2238 } else {
2239 src_page = pte_page(pteval);
2240 copy_user_highpage(page, src_page, address, vma);
2241 VM_BUG_ON_PAGE(page_mapcount(src_page) != 1, src_page);
2242 release_pte_page(src_page);
2243 /*
2244 * ptl mostly unnecessary, but preempt has to
2245 * be disabled to update the per-cpu stats
2246 * inside page_remove_rmap().
2247 */
2248 spin_lock(ptl);
2249 /*
2250 * paravirt calls inside pte_clear here are
2251 * superfluous.
2252 */
2253 pte_clear(vma->vm_mm, address, _pte);
2254 page_remove_rmap(src_page);
2255 spin_unlock(ptl);
2256 free_page_and_swap_cache(src_page);
2257 }
2258
2259 address += PAGE_SIZE;
2260 page++;
2261 }
2262 }
2263
2264 static void khugepaged_alloc_sleep(void)
2265 {
2266 wait_event_freezable_timeout(khugepaged_wait, false,
2267 msecs_to_jiffies(khugepaged_alloc_sleep_millisecs));
2268 }
2269
2270 static int khugepaged_node_load[MAX_NUMNODES];
2271
2272 static bool khugepaged_scan_abort(int nid)
2273 {
2274 int i;
2275
2276 /*
2277 * If zone_reclaim_mode is disabled, then no extra effort is made to
2278 * allocate memory locally.
2279 */
2280 if (!zone_reclaim_mode)
2281 return false;
2282
2283 /* If there is a count for this node already, it must be acceptable */
2284 if (khugepaged_node_load[nid])
2285 return false;
2286
2287 for (i = 0; i < MAX_NUMNODES; i++) {
2288 if (!khugepaged_node_load[i])
2289 continue;
2290 if (node_distance(nid, i) > RECLAIM_DISTANCE)
2291 return true;
2292 }
2293 return false;
2294 }
2295
2296 #ifdef CONFIG_NUMA
2297 static int khugepaged_find_target_node(void)
2298 {
2299 static int last_khugepaged_target_node = NUMA_NO_NODE;
2300 int nid, target_node = 0, max_value = 0;
2301
2302 /* find first node with max normal pages hit */
2303 for (nid = 0; nid < MAX_NUMNODES; nid++)
2304 if (khugepaged_node_load[nid] > max_value) {
2305 max_value = khugepaged_node_load[nid];
2306 target_node = nid;
2307 }
2308
2309 /* do some balance if several nodes have the same hit record */
2310 if (target_node <= last_khugepaged_target_node)
2311 for (nid = last_khugepaged_target_node + 1; nid < MAX_NUMNODES;
2312 nid++)
2313 if (max_value == khugepaged_node_load[nid]) {
2314 target_node = nid;
2315 break;
2316 }
2317
2318 last_khugepaged_target_node = target_node;
2319 return target_node;
2320 }
2321
2322 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2323 {
2324 if (IS_ERR(*hpage)) {
2325 if (!*wait)
2326 return false;
2327
2328 *wait = false;
2329 *hpage = NULL;
2330 khugepaged_alloc_sleep();
2331 } else if (*hpage) {
2332 put_page(*hpage);
2333 *hpage = NULL;
2334 }
2335
2336 return true;
2337 }
2338
2339 static struct page *
2340 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, struct mm_struct *mm,
2341 struct vm_area_struct *vma, unsigned long address,
2342 int node)
2343 {
2344 VM_BUG_ON_PAGE(*hpage, *hpage);
2345
2346 /*
2347 * Before allocating the hugepage, release the mmap_sem read lock.
2348 * The allocation can take potentially a long time if it involves
2349 * sync compaction, and we do not need to hold the mmap_sem during
2350 * that. We will recheck the vma after taking it again in write mode.
2351 */
2352 up_read(&mm->mmap_sem);
2353
2354 *hpage = alloc_pages_exact_node(node, gfp, HPAGE_PMD_ORDER);
2355 if (unlikely(!*hpage)) {
2356 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2357 *hpage = ERR_PTR(-ENOMEM);
2358 return NULL;
2359 }
2360
2361 count_vm_event(THP_COLLAPSE_ALLOC);
2362 return *hpage;
2363 }
2364 #else
2365 static int khugepaged_find_target_node(void)
2366 {
2367 return 0;
2368 }
2369
2370 static inline struct page *alloc_hugepage(int defrag)
2371 {
2372 return alloc_pages(alloc_hugepage_gfpmask(defrag, 0),
2373 HPAGE_PMD_ORDER);
2374 }
2375
2376 static struct page *khugepaged_alloc_hugepage(bool *wait)
2377 {
2378 struct page *hpage;
2379
2380 do {
2381 hpage = alloc_hugepage(khugepaged_defrag());
2382 if (!hpage) {
2383 count_vm_event(THP_COLLAPSE_ALLOC_FAILED);
2384 if (!*wait)
2385 return NULL;
2386
2387 *wait = false;
2388 khugepaged_alloc_sleep();
2389 } else
2390 count_vm_event(THP_COLLAPSE_ALLOC);
2391 } while (unlikely(!hpage) && likely(khugepaged_enabled()));
2392
2393 return hpage;
2394 }
2395
2396 static bool khugepaged_prealloc_page(struct page **hpage, bool *wait)
2397 {
2398 if (!*hpage)
2399 *hpage = khugepaged_alloc_hugepage(wait);
2400
2401 if (unlikely(!*hpage))
2402 return false;
2403
2404 return true;
2405 }
2406
2407 static struct page *
2408 khugepaged_alloc_page(struct page **hpage, gfp_t gfp, struct mm_struct *mm,
2409 struct vm_area_struct *vma, unsigned long address,
2410 int node)
2411 {
2412 up_read(&mm->mmap_sem);
2413 VM_BUG_ON(!*hpage);
2414
2415 return *hpage;
2416 }
2417 #endif
2418
2419 static bool hugepage_vma_check(struct vm_area_struct *vma)
2420 {
2421 if ((!(vma->vm_flags & VM_HUGEPAGE) && !khugepaged_always()) ||
2422 (vma->vm_flags & VM_NOHUGEPAGE))
2423 return false;
2424
2425 if (!vma->anon_vma || vma->vm_ops)
2426 return false;
2427 if (is_vma_temporary_stack(vma))
2428 return false;
2429 VM_BUG_ON_VMA(vma->vm_flags & VM_NO_THP, vma);
2430 return true;
2431 }
2432
2433 static void collapse_huge_page(struct mm_struct *mm,
2434 unsigned long address,
2435 struct page **hpage,
2436 struct vm_area_struct *vma,
2437 int node)
2438 {
2439 pmd_t *pmd, _pmd;
2440 pte_t *pte;
2441 pgtable_t pgtable;
2442 struct page *new_page;
2443 spinlock_t *pmd_ptl, *pte_ptl;
2444 int isolated;
2445 unsigned long hstart, hend;
2446 struct mem_cgroup *memcg;
2447 unsigned long mmun_start; /* For mmu_notifiers */
2448 unsigned long mmun_end; /* For mmu_notifiers */
2449 gfp_t gfp;
2450
2451 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2452
2453 /* Only allocate from the target node */
2454 gfp = alloc_hugepage_gfpmask(khugepaged_defrag(), __GFP_OTHER_NODE) |
2455 __GFP_THISNODE;
2456
2457 /* release the mmap_sem read lock. */
2458 new_page = khugepaged_alloc_page(hpage, gfp, mm, vma, address, node);
2459 if (!new_page)
2460 return;
2461
2462 if (unlikely(mem_cgroup_try_charge(new_page, mm,
2463 gfp, &memcg)))
2464 return;
2465
2466 /*
2467 * Prevent all access to pagetables with the exception of
2468 * gup_fast later hanlded by the ptep_clear_flush and the VM
2469 * handled by the anon_vma lock + PG_lock.
2470 */
2471 down_write(&mm->mmap_sem);
2472 if (unlikely(khugepaged_test_exit(mm)))
2473 goto out;
2474
2475 vma = find_vma(mm, address);
2476 if (!vma)
2477 goto out;
2478 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2479 hend = vma->vm_end & HPAGE_PMD_MASK;
2480 if (address < hstart || address + HPAGE_PMD_SIZE > hend)
2481 goto out;
2482 if (!hugepage_vma_check(vma))
2483 goto out;
2484 pmd = mm_find_pmd(mm, address);
2485 if (!pmd)
2486 goto out;
2487
2488 anon_vma_lock_write(vma->anon_vma);
2489
2490 pte = pte_offset_map(pmd, address);
2491 pte_ptl = pte_lockptr(mm, pmd);
2492
2493 mmun_start = address;
2494 mmun_end = address + HPAGE_PMD_SIZE;
2495 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2496 pmd_ptl = pmd_lock(mm, pmd); /* probably unnecessary */
2497 /*
2498 * After this gup_fast can't run anymore. This also removes
2499 * any huge TLB entry from the CPU so we won't allow
2500 * huge and small TLB entries for the same virtual address
2501 * to avoid the risk of CPU bugs in that area.
2502 */
2503 _pmd = pmdp_clear_flush(vma, address, pmd);
2504 spin_unlock(pmd_ptl);
2505 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2506
2507 spin_lock(pte_ptl);
2508 isolated = __collapse_huge_page_isolate(vma, address, pte);
2509 spin_unlock(pte_ptl);
2510
2511 if (unlikely(!isolated)) {
2512 pte_unmap(pte);
2513 spin_lock(pmd_ptl);
2514 BUG_ON(!pmd_none(*pmd));
2515 /*
2516 * We can only use set_pmd_at when establishing
2517 * hugepmds and never for establishing regular pmds that
2518 * points to regular pagetables. Use pmd_populate for that
2519 */
2520 pmd_populate(mm, pmd, pmd_pgtable(_pmd));
2521 spin_unlock(pmd_ptl);
2522 anon_vma_unlock_write(vma->anon_vma);
2523 goto out;
2524 }
2525
2526 /*
2527 * All pages are isolated and locked so anon_vma rmap
2528 * can't run anymore.
2529 */
2530 anon_vma_unlock_write(vma->anon_vma);
2531
2532 __collapse_huge_page_copy(pte, new_page, vma, address, pte_ptl);
2533 pte_unmap(pte);
2534 __SetPageUptodate(new_page);
2535 pgtable = pmd_pgtable(_pmd);
2536
2537 _pmd = mk_huge_pmd(new_page, vma->vm_page_prot);
2538 _pmd = maybe_pmd_mkwrite(pmd_mkdirty(_pmd), vma);
2539
2540 /*
2541 * spin_lock() below is not the equivalent of smp_wmb(), so
2542 * this is needed to avoid the copy_huge_page writes to become
2543 * visible after the set_pmd_at() write.
2544 */
2545 smp_wmb();
2546
2547 spin_lock(pmd_ptl);
2548 BUG_ON(!pmd_none(*pmd));
2549 page_add_new_anon_rmap(new_page, vma, address);
2550 mem_cgroup_commit_charge(new_page, memcg, false);
2551 lru_cache_add_active_or_unevictable(new_page, vma);
2552 pgtable_trans_huge_deposit(mm, pmd, pgtable);
2553 set_pmd_at(mm, address, pmd, _pmd);
2554 update_mmu_cache_pmd(vma, address, pmd);
2555 spin_unlock(pmd_ptl);
2556
2557 *hpage = NULL;
2558
2559 khugepaged_pages_collapsed++;
2560 out_up_write:
2561 up_write(&mm->mmap_sem);
2562 return;
2563
2564 out:
2565 mem_cgroup_cancel_charge(new_page, memcg);
2566 goto out_up_write;
2567 }
2568
2569 static int khugepaged_scan_pmd(struct mm_struct *mm,
2570 struct vm_area_struct *vma,
2571 unsigned long address,
2572 struct page **hpage)
2573 {
2574 pmd_t *pmd;
2575 pte_t *pte, *_pte;
2576 int ret = 0, none_or_zero = 0;
2577 struct page *page;
2578 unsigned long _address;
2579 spinlock_t *ptl;
2580 int node = NUMA_NO_NODE;
2581 bool writable = false, referenced = false;
2582
2583 VM_BUG_ON(address & ~HPAGE_PMD_MASK);
2584
2585 pmd = mm_find_pmd(mm, address);
2586 if (!pmd)
2587 goto out;
2588
2589 memset(khugepaged_node_load, 0, sizeof(khugepaged_node_load));
2590 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2591 for (_address = address, _pte = pte; _pte < pte+HPAGE_PMD_NR;
2592 _pte++, _address += PAGE_SIZE) {
2593 pte_t pteval = *_pte;
2594 if (pte_none(pteval) || is_zero_pfn(pte_pfn(pteval))) {
2595 if (++none_or_zero <= khugepaged_max_ptes_none)
2596 continue;
2597 else
2598 goto out_unmap;
2599 }
2600 if (!pte_present(pteval))
2601 goto out_unmap;
2602 if (pte_write(pteval))
2603 writable = true;
2604
2605 page = vm_normal_page(vma, _address, pteval);
2606 if (unlikely(!page))
2607 goto out_unmap;
2608 /*
2609 * Record which node the original page is from and save this
2610 * information to khugepaged_node_load[].
2611 * Khupaged will allocate hugepage from the node has the max
2612 * hit record.
2613 */
2614 node = page_to_nid(page);
2615 if (khugepaged_scan_abort(node))
2616 goto out_unmap;
2617 khugepaged_node_load[node]++;
2618 VM_BUG_ON_PAGE(PageCompound(page), page);
2619 if (!PageLRU(page) || PageLocked(page) || !PageAnon(page))
2620 goto out_unmap;
2621 /*
2622 * cannot use mapcount: can't collapse if there's a gup pin.
2623 * The page must only be referenced by the scanned process
2624 * and page swap cache.
2625 */
2626 if (page_count(page) != 1 + !!PageSwapCache(page))
2627 goto out_unmap;
2628 if (pte_young(pteval) || PageReferenced(page) ||
2629 mmu_notifier_test_young(vma->vm_mm, address))
2630 referenced = true;
2631 }
2632 if (referenced && writable)
2633 ret = 1;
2634 out_unmap:
2635 pte_unmap_unlock(pte, ptl);
2636 if (ret) {
2637 node = khugepaged_find_target_node();
2638 /* collapse_huge_page will return with the mmap_sem released */
2639 collapse_huge_page(mm, address, hpage, vma, node);
2640 }
2641 out:
2642 return ret;
2643 }
2644
2645 static void collect_mm_slot(struct mm_slot *mm_slot)
2646 {
2647 struct mm_struct *mm = mm_slot->mm;
2648
2649 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2650
2651 if (khugepaged_test_exit(mm)) {
2652 /* free mm_slot */
2653 hash_del(&mm_slot->hash);
2654 list_del(&mm_slot->mm_node);
2655
2656 /*
2657 * Not strictly needed because the mm exited already.
2658 *
2659 * clear_bit(MMF_VM_HUGEPAGE, &mm->flags);
2660 */
2661
2662 /* khugepaged_mm_lock actually not necessary for the below */
2663 free_mm_slot(mm_slot);
2664 mmdrop(mm);
2665 }
2666 }
2667
2668 static unsigned int khugepaged_scan_mm_slot(unsigned int pages,
2669 struct page **hpage)
2670 __releases(&khugepaged_mm_lock)
2671 __acquires(&khugepaged_mm_lock)
2672 {
2673 struct mm_slot *mm_slot;
2674 struct mm_struct *mm;
2675 struct vm_area_struct *vma;
2676 int progress = 0;
2677
2678 VM_BUG_ON(!pages);
2679 VM_BUG_ON(NR_CPUS != 1 && !spin_is_locked(&khugepaged_mm_lock));
2680
2681 if (khugepaged_scan.mm_slot)
2682 mm_slot = khugepaged_scan.mm_slot;
2683 else {
2684 mm_slot = list_entry(khugepaged_scan.mm_head.next,
2685 struct mm_slot, mm_node);
2686 khugepaged_scan.address = 0;
2687 khugepaged_scan.mm_slot = mm_slot;
2688 }
2689 spin_unlock(&khugepaged_mm_lock);
2690
2691 mm = mm_slot->mm;
2692 down_read(&mm->mmap_sem);
2693 if (unlikely(khugepaged_test_exit(mm)))
2694 vma = NULL;
2695 else
2696 vma = find_vma(mm, khugepaged_scan.address);
2697
2698 progress++;
2699 for (; vma; vma = vma->vm_next) {
2700 unsigned long hstart, hend;
2701
2702 cond_resched();
2703 if (unlikely(khugepaged_test_exit(mm))) {
2704 progress++;
2705 break;
2706 }
2707 if (!hugepage_vma_check(vma)) {
2708 skip:
2709 progress++;
2710 continue;
2711 }
2712 hstart = (vma->vm_start + ~HPAGE_PMD_MASK) & HPAGE_PMD_MASK;
2713 hend = vma->vm_end & HPAGE_PMD_MASK;
2714 if (hstart >= hend)
2715 goto skip;
2716 if (khugepaged_scan.address > hend)
2717 goto skip;
2718 if (khugepaged_scan.address < hstart)
2719 khugepaged_scan.address = hstart;
2720 VM_BUG_ON(khugepaged_scan.address & ~HPAGE_PMD_MASK);
2721
2722 while (khugepaged_scan.address < hend) {
2723 int ret;
2724 cond_resched();
2725 if (unlikely(khugepaged_test_exit(mm)))
2726 goto breakouterloop;
2727
2728 VM_BUG_ON(khugepaged_scan.address < hstart ||
2729 khugepaged_scan.address + HPAGE_PMD_SIZE >
2730 hend);
2731 ret = khugepaged_scan_pmd(mm, vma,
2732 khugepaged_scan.address,
2733 hpage);
2734 /* move to next address */
2735 khugepaged_scan.address += HPAGE_PMD_SIZE;
2736 progress += HPAGE_PMD_NR;
2737 if (ret)
2738 /* we released mmap_sem so break loop */
2739 goto breakouterloop_mmap_sem;
2740 if (progress >= pages)
2741 goto breakouterloop;
2742 }
2743 }
2744 breakouterloop:
2745 up_read(&mm->mmap_sem); /* exit_mmap will destroy ptes after this */
2746 breakouterloop_mmap_sem:
2747
2748 spin_lock(&khugepaged_mm_lock);
2749 VM_BUG_ON(khugepaged_scan.mm_slot != mm_slot);
2750 /*
2751 * Release the current mm_slot if this mm is about to die, or
2752 * if we scanned all vmas of this mm.
2753 */
2754 if (khugepaged_test_exit(mm) || !vma) {
2755 /*
2756 * Make sure that if mm_users is reaching zero while
2757 * khugepaged runs here, khugepaged_exit will find
2758 * mm_slot not pointing to the exiting mm.
2759 */
2760 if (mm_slot->mm_node.next != &khugepaged_scan.mm_head) {
2761 khugepaged_scan.mm_slot = list_entry(
2762 mm_slot->mm_node.next,
2763 struct mm_slot, mm_node);
2764 khugepaged_scan.address = 0;
2765 } else {
2766 khugepaged_scan.mm_slot = NULL;
2767 khugepaged_full_scans++;
2768 }
2769
2770 collect_mm_slot(mm_slot);
2771 }
2772
2773 return progress;
2774 }
2775
2776 static int khugepaged_has_work(void)
2777 {
2778 return !list_empty(&khugepaged_scan.mm_head) &&
2779 khugepaged_enabled();
2780 }
2781
2782 static int khugepaged_wait_event(void)
2783 {
2784 return !list_empty(&khugepaged_scan.mm_head) ||
2785 kthread_should_stop();
2786 }
2787
2788 static void khugepaged_do_scan(void)
2789 {
2790 struct page *hpage = NULL;
2791 unsigned int progress = 0, pass_through_head = 0;
2792 unsigned int pages = khugepaged_pages_to_scan;
2793 bool wait = true;
2794
2795 barrier(); /* write khugepaged_pages_to_scan to local stack */
2796
2797 while (progress < pages) {
2798 if (!khugepaged_prealloc_page(&hpage, &wait))
2799 break;
2800
2801 cond_resched();
2802
2803 if (unlikely(kthread_should_stop() || freezing(current)))
2804 break;
2805
2806 spin_lock(&khugepaged_mm_lock);
2807 if (!khugepaged_scan.mm_slot)
2808 pass_through_head++;
2809 if (khugepaged_has_work() &&
2810 pass_through_head < 2)
2811 progress += khugepaged_scan_mm_slot(pages - progress,
2812 &hpage);
2813 else
2814 progress = pages;
2815 spin_unlock(&khugepaged_mm_lock);
2816 }
2817
2818 if (!IS_ERR_OR_NULL(hpage))
2819 put_page(hpage);
2820 }
2821
2822 static void khugepaged_wait_work(void)
2823 {
2824 try_to_freeze();
2825
2826 if (khugepaged_has_work()) {
2827 if (!khugepaged_scan_sleep_millisecs)
2828 return;
2829
2830 wait_event_freezable_timeout(khugepaged_wait,
2831 kthread_should_stop(),
2832 msecs_to_jiffies(khugepaged_scan_sleep_millisecs));
2833 return;
2834 }
2835
2836 if (khugepaged_enabled())
2837 wait_event_freezable(khugepaged_wait, khugepaged_wait_event());
2838 }
2839
2840 static int khugepaged(void *none)
2841 {
2842 struct mm_slot *mm_slot;
2843
2844 set_freezable();
2845 set_user_nice(current, MAX_NICE);
2846
2847 while (!kthread_should_stop()) {
2848 khugepaged_do_scan();
2849 khugepaged_wait_work();
2850 }
2851
2852 spin_lock(&khugepaged_mm_lock);
2853 mm_slot = khugepaged_scan.mm_slot;
2854 khugepaged_scan.mm_slot = NULL;
2855 if (mm_slot)
2856 collect_mm_slot(mm_slot);
2857 spin_unlock(&khugepaged_mm_lock);
2858 return 0;
2859 }
2860
2861 static void __split_huge_zero_page_pmd(struct vm_area_struct *vma,
2862 unsigned long haddr, pmd_t *pmd)
2863 {
2864 struct mm_struct *mm = vma->vm_mm;
2865 pgtable_t pgtable;
2866 pmd_t _pmd;
2867 int i;
2868
2869 pmdp_clear_flush_notify(vma, haddr, pmd);
2870 /* leave pmd empty until pte is filled */
2871
2872 pgtable = pgtable_trans_huge_withdraw(mm, pmd);
2873 pmd_populate(mm, &_pmd, pgtable);
2874
2875 for (i = 0; i < HPAGE_PMD_NR; i++, haddr += PAGE_SIZE) {
2876 pte_t *pte, entry;
2877 entry = pfn_pte(my_zero_pfn(haddr), vma->vm_page_prot);
2878 entry = pte_mkspecial(entry);
2879 pte = pte_offset_map(&_pmd, haddr);
2880 VM_BUG_ON(!pte_none(*pte));
2881 set_pte_at(mm, haddr, pte, entry);
2882 pte_unmap(pte);
2883 }
2884 smp_wmb(); /* make pte visible before pmd */
2885 pmd_populate(mm, pmd, pgtable);
2886 put_huge_zero_page();
2887 }
2888
2889 void __split_huge_page_pmd(struct vm_area_struct *vma, unsigned long address,
2890 pmd_t *pmd)
2891 {
2892 spinlock_t *ptl;
2893 struct page *page;
2894 struct mm_struct *mm = vma->vm_mm;
2895 unsigned long haddr = address & HPAGE_PMD_MASK;
2896 unsigned long mmun_start; /* For mmu_notifiers */
2897 unsigned long mmun_end; /* For mmu_notifiers */
2898
2899 BUG_ON(vma->vm_start > haddr || vma->vm_end < haddr + HPAGE_PMD_SIZE);
2900
2901 mmun_start = haddr;
2902 mmun_end = haddr + HPAGE_PMD_SIZE;
2903 again:
2904 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2905 ptl = pmd_lock(mm, pmd);
2906 if (unlikely(!pmd_trans_huge(*pmd))) {
2907 spin_unlock(ptl);
2908 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2909 return;
2910 }
2911 if (is_huge_zero_pmd(*pmd)) {
2912 __split_huge_zero_page_pmd(vma, haddr, pmd);
2913 spin_unlock(ptl);
2914 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2915 return;
2916 }
2917 page = pmd_page(*pmd);
2918 VM_BUG_ON_PAGE(!page_count(page), page);
2919 get_page(page);
2920 spin_unlock(ptl);
2921 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
2922
2923 split_huge_page(page);
2924
2925 put_page(page);
2926
2927 /*
2928 * We don't always have down_write of mmap_sem here: a racing
2929 * do_huge_pmd_wp_page() might have copied-on-write to another
2930 * huge page before our split_huge_page() got the anon_vma lock.
2931 */
2932 if (unlikely(pmd_trans_huge(*pmd)))
2933 goto again;
2934 }
2935
2936 void split_huge_page_pmd_mm(struct mm_struct *mm, unsigned long address,
2937 pmd_t *pmd)
2938 {
2939 struct vm_area_struct *vma;
2940
2941 vma = find_vma(mm, address);
2942 BUG_ON(vma == NULL);
2943 split_huge_page_pmd(vma, address, pmd);
2944 }
2945
2946 static void split_huge_page_address(struct mm_struct *mm,
2947 unsigned long address)
2948 {
2949 pgd_t *pgd;
2950 pud_t *pud;
2951 pmd_t *pmd;
2952
2953 VM_BUG_ON(!(address & ~HPAGE_PMD_MASK));
2954
2955 pgd = pgd_offset(mm, address);
2956 if (!pgd_present(*pgd))
2957 return;
2958
2959 pud = pud_offset(pgd, address);
2960 if (!pud_present(*pud))
2961 return;
2962
2963 pmd = pmd_offset(pud, address);
2964 if (!pmd_present(*pmd))
2965 return;
2966 /*
2967 * Caller holds the mmap_sem write mode, so a huge pmd cannot
2968 * materialize from under us.
2969 */
2970 split_huge_page_pmd_mm(mm, address, pmd);
2971 }
2972
2973 void __vma_adjust_trans_huge(struct vm_area_struct *vma,
2974 unsigned long start,
2975 unsigned long end,
2976 long adjust_next)
2977 {
2978 /*
2979 * If the new start address isn't hpage aligned and it could
2980 * previously contain an hugepage: check if we need to split
2981 * an huge pmd.
2982 */
2983 if (start & ~HPAGE_PMD_MASK &&
2984 (start & HPAGE_PMD_MASK) >= vma->vm_start &&
2985 (start & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2986 split_huge_page_address(vma->vm_mm, start);
2987
2988 /*
2989 * If the new end address isn't hpage aligned and it could
2990 * previously contain an hugepage: check if we need to split
2991 * an huge pmd.
2992 */
2993 if (end & ~HPAGE_PMD_MASK &&
2994 (end & HPAGE_PMD_MASK) >= vma->vm_start &&
2995 (end & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= vma->vm_end)
2996 split_huge_page_address(vma->vm_mm, end);
2997
2998 /*
2999 * If we're also updating the vma->vm_next->vm_start, if the new
3000 * vm_next->vm_start isn't page aligned and it could previously
3001 * contain an hugepage: check if we need to split an huge pmd.
3002 */
3003 if (adjust_next > 0) {
3004 struct vm_area_struct *next = vma->vm_next;
3005 unsigned long nstart = next->vm_start;
3006 nstart += adjust_next << PAGE_SHIFT;
3007 if (nstart & ~HPAGE_PMD_MASK &&
3008 (nstart & HPAGE_PMD_MASK) >= next->vm_start &&
3009 (nstart & HPAGE_PMD_MASK) + HPAGE_PMD_SIZE <= next->vm_end)
3010 split_huge_page_address(next->vm_mm, nstart);
3011 }
3012 }
This page took 0.089105 seconds and 6 git commands to generate.